WorldWideScience

Sample records for technology transfer methodology

  1. THE EFFICIENCY OF TECHNOLOGY TRANSFER – THEORETICAL AND METHODOLOGICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Andreea-Clara MUNTEANU

    2006-06-01

    Full Text Available As the importance and complexity level of technological transfer increased, the need of adequate systems of assessing the efficiency of this process became the more obvious. Introducing sustainability criteria requires the creation of a complex framework for analysing and studying efficiency that would incorporate all other three dimensions of contemporary economic development: economic, social and environmental.

  2. A Conceptual Decision Methodology for High Technology Transfer Assessment.

    Science.gov (United States)

    1982-05-01

    review and provide input within given time periods on selected technologies. The basic industrial export control mechanism continues to be centered in...Department of Commerce is the center of the export control system, it is by no means predominate in the control of all exports. True, it is a key...Department of State endorsed the venture as, "in the national interest." The technology was promised during the Nixon- Pompidou Summit in the Azores. Without

  3. Technology Transfer

    Science.gov (United States)

    Smith, Nanette R.

    1995-01-01

    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can

  4. Technology transfer by multinationals

    OpenAIRE

    Kostyantyn Zuzik

    2003-01-01

    The paper analyses the issue of technology transfer by multinational corporations. The following questions are explored: (a) world market of technologies, the role of MNCs (b) Choice of the technology transfer mode, Dunning's OLI-theory as a factor of the choice of the mode of transfer (c) measurement and profitability of technology transfer (d) transfer of technology through partnerships, JVs, alliances and through M&As (e) aspects of technology transfer by services multinationals. Paper uti...

  5. Technology transfer by multinationals

    OpenAIRE

    2003-01-01

    The paper analyses the issue of technology transfer by multinational corporations. The following questions are explored: (a) world market of technologies, the role of MNCs (b) Choice of the technology transfer mode, Dunning's OLI-theory as a factor of the choice of the mode of transfer (c) measurement and profitability of technology transfer (d) transfer of technology through partnerships, JVs, alliances and through M&As (e) aspects of technology transfer by services multinationals. Paper uti...

  6. Technology transfer within the telecare technology innovation system

    NARCIS (Netherlands)

    Vlies, R.D. van der; Felix, E.

    2013-01-01

    Telecare technology is not common yet, although it is perceived as promising. Most studies on telecare technology transfer present a case involving the use of a single methodology and approach during some steps of technology transfer. Technology transfer models cannot be sensibly constructed if they

  7. The Commtech Methodology: A Demand-Driven Approach to Efficient, Productive, and Measurable Technology Transfer and Commercialization

    Science.gov (United States)

    Horsham, Gary A. P.

    1999-01-01

    This paper presents a comprehensive review and assessment of a demonstration technology transfer and commercialization prouram called "CommTech". The pro-ram was conceived and initiated in early to mid-fiscal year 1995, and extended roughly three years into the future. Market research sources were used to initially gather primary technological problems and needs data from non-aerospace companies in three targeted industry sectors: environmental, surface transportation, and bioengineering. Company-supplied information served as input data to activate or start-up an internal, phased matchmaking process. This process was based on technical-level relationship exploration followed by business-level agreement negotiations. and culminated with project management and execution. Space Act Agreements represented near-term outputs. Company product or process commercialization derived from NASA Glenn support and measurable economic effects represented far-term outputs.

  8. Technology transfer for adaptation

    Science.gov (United States)

    Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia

    2014-09-01

    Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.

  9. Technology Transfer and Technology Transfer Intermediaries

    Science.gov (United States)

    Bauer, Stephen M.; Flagg, Jennifer L.

    2010-01-01

    A standard and comprehensive model is needed to evaluate and compare technology transfer systems and the stakeholders within these systems. The principle systems considered include federal laboratories, U.S. universities, the rehabilitation engineering research centers (RERCs), and large small business innovation research programs. An earlier…

  10. Technology transfer 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  11. Technology transfer and learning

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.

    2002-01-01

    Despite the fact that international technology transfer has been widely studied its management still encounters many difficulties. To fully understand the issues that are relevant to the process of transferring production technology, it is necessary to determine the important factors that influence

  12. Technology and technology transfer: some basic issues

    OpenAIRE

    Shamsavari, Ali; Adikibi, Owen; Taha, Yasser

    2002-01-01

    This paper addresses various issues relating to technology and transfer of technology such as technology and society, technology and science, channels and models of technology transfer, the role of multinational companies in transfer of technology, etc. The ultimate objective is to pose the question of relevance of some existing models and ideas like technological independence in an increasingly globalised world economy.

  13. Technology Transfer Issues and a New Technology Transfer Model

    Science.gov (United States)

    Choi, Hee Jun

    2009-01-01

    The following are major issues that should be considered for efficient and effective technology transfer: conceptions of technology, technological activity and transfer, communication channels, factors affecting transfer, and models of transfer. In particular, a well-developed model of technology transfer could be used as a framework for…

  14. Mississippi Technology Transfer Center

    Science.gov (United States)

    1987-01-01

    The Mississippi Technology Transfer Center at the John C. Stennis Space Center in Hancock County, Miss., was officially dedicated in 1987. The center is home to several state agencies as well as the Center For Higher Learning.

  15. Technology Transfer and Commercialization

    Science.gov (United States)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  16. Technology Transfer and Commercialization

    Science.gov (United States)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  17. University Technology Transfer

    Directory of Open Access Journals (Sweden)

    Mike Cox

    2004-09-01

    Full Text Available This article describes the experiences and general observations of the author at Heriot-Watt University and concerns the transfer of university technology for the purposes of commercialisation. Full commercial exploitation of a university invention generally requires transferring that technology into the industrial arena, usually either by formation of a new company or licensing into an existing company. Commercialisation activities need to be carried out in unison with the prime activities of the university of research and teaching. Responsibility for commercialising university inventions generally rests with a specific group within the university, typically referred to as the technology transfer group. Each technology transfer should be considered individually and appropriate arrangements made for that particular invention. In general, this transfer process involves four stages: identification, evaluation, protection and exploitation. Considerations under these general headings are outlined from a university viewpoint. A phased approach is generally preferred where possible for the evaluation, protection and exploitation of an invention to balance risk with potential reward. Evaluation of the potential opportunity for a university invention involves essentially the same considerations as for an industrial invention. However, there are a range of commercial exploitation routes and potential deals so that only general guidelines can be given. Naturally, the final deal achieved is that which can be negotiated. The potential rewards for the university and inventor are both financial (via licensing income and equity realisation and non-financial.

  18. Theoretical and methodological foundations of technological management

    Directory of Open Access Journals (Sweden)

    L.O. Ligonenko

    2016-09-01

    Full Text Available The aim of the article. In the article there are critically analyzed the existing developments about the content, objectives and functions of technological management, which allowed to identify such approaches as target, process, functional, philosophical, resource and competitive ones. The results of the analysis. While integrating them there was formed the author's interpretation of theoretical and methodological foundations of this relatively new functional type of management for Ukraine, which represented the system of principles and methods of taking and implementing complex management decisions aimed at efficient use of available technological resources and technological development of the company. There are also grounded the purposes of technological management, which are: technological development of enterprises, that is purposeful, continuous (constantly organized process of irreversible changes in production processes (technologies of enterprise economic activity that provoke (cause the corresponding development of the fixed assets (which provide them, staff (which implements and use them and intangible assets (which identify their creation or use, which together enable to ensure technological competitiveness of the enterprise and development of the market of technologies in general. The object of such management is defined, which are: technological processes, preconditions (technological potential and the consequences of their implementation (technological competitiveness of the enterprise. There are identified the key subjects of technological management, their interests and spheres of responsibilities. The methodological basis of technological management is considered to be the concept of open innovations by H. Chesbro which, on the one hand, means deliberate involvement of external ideas and technologies; active cooperation of all stakeholders in the company as to the formation of new ideas aimed at systematic improving the product

  19. What Is Technology Transfer? | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.

  20. What Is Technology Transfer? | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.

  1. Technology transfer 1995

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  2. Dual Space Technology Transfer

    Science.gov (United States)

    Kowbel, W.; Loutfy, R.

    2009-03-01

    Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.

  3. Managerial technology transfer

    CERN Document Server

    2012-01-01

    Organisations need to think globally, but act locally - with a full appreciation of the diversity of local cultures. Major global companies must recognise that policies need to be managed with the broad context of business strategy and integrated into the work culture with the support of all elements of human resources management. Most currently, companies are accommodating national cultural differences while preserving work culture principals that encourage people to effectively execute the company's strategic objectives. Even to the casual observer, it is apparent that culture- a society's programming of the mind- has both a pervasive and changing influence on each national business environment. Global managers must recognise the influence of culture and be prepared to either respond to it or change it. This book examines current research in the study of managerial technology transfer.

  4. Information technology security system engineering methodology

    Science.gov (United States)

    Childs, D.

    2003-01-01

    A methodology is described for system engineering security into large information technology systems under development. The methodology is an integration of a risk management process and a generic system development life cycle process. The methodology is to be used by Security System Engineers to effectively engineer and integrate information technology security into a target system as it progresses through the development life cycle. The methodology can also be used to re-engineer security into a legacy system.

  5. Technological transfer to the education

    Directory of Open Access Journals (Sweden)

    Enrique Melamed-Varela

    2016-12-01

    . It is undeniable that the role of technology in a society has been a motivating element of downsizing of social coexistence, which promotes  knowledge through the easy access to information and knowledge  This principle is supported in education, by evidences such as: curricular content virtualization or the educational offer. The teaching practice in classroom supported with multimedia resources and the disruptive in [H1] teaching-learning methodologies, based on an integrating framework of information technologies with teaching and research (Sandoval, 2011. It is valid that the organization of classrooms in different levels of training, must be related to the technological component,  before the scenarios for education represented by the twenty-first century; the new generations have already so almost innate skills for the use of the technology, so that interaction with this component is increasingly simple based on Prensky (2001; In addition, to the academic processes and collaborative work in classroom facilitation, this fact allows the educational projects in the institutions planning and direction  (Corner, 2015. It can be said, the  degree of technology incorporation in education has also strengthened the pedagogical models by which the students knowledge is transferred and assesses, this principle generates different spaces of learning characterized by promoting the critical skill, thought disruptive and collaborative work, as well as empowerment with the educational process, encouraging self-management and commitment in the students   Based on education and humanism journal in its 18 years of academic career and research through the academic praxis and research activities of the scientists who believe that a space of transcendent knowledge sharing has  been co-created in order to facilitate an adequate transfer of universal knowledge resulting from the science, technology and innovation activities,  generated and implemented in the institutions of

  6. Search Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  7. Available Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  8. Federal Technology Transfer Act (FTTA)

    Science.gov (United States)

    EPA's Federal Technology Transfer Act (FTTA) is a mechanism with which EPA can patent its inventions and license them to companies, through which innovative technologies can enter the marketplace to improve the environment and human health.

  9. Federal Technology Transfer Act Success Stories

    Science.gov (United States)

    Successful Federal Technology Transfer Act (FTTA) partnerships demonstrate the many advantages of technology transfer and collaboration. EPA and partner organizations create valuable and applicable technologies for the marketplace.

  10. SHARED TECHNOLOGY TRANSFER PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  11. Technology Performance Level Assessment Methodology.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Bull, Diana L; Malins, Robert Joseph; Costello, Ronan Patrick; Aurelien Babarit; Kim Nielsen; Claudio Bittencourt Ferreira; Ben Kennedy; Kathryn Dykes; Jochem Weber

    2017-04-01

    The technology performance level (TPL) assessments can be applied at all technology development stages and associated technology readiness levels (TRLs). Even, and particularly, at low TRLs the TPL assessment is very effective as it, holistically, considers a wide range of WEC attributes that determine the techno-economic performance potential of the WEC farm when fully developed for commercial operation. The TPL assessment also highlights potential showstoppers at the earliest possible stage of the WEC technology development. Hence, the TPL assessment identifies the technology independent “performance requirements.” In order to achieve a successful solution, the entirety of the performance requirements within the TPL must be considered because, in the end, all the stakeholder needs must be achieved. The basis for performing a TPL assessment comes from the information provided in a dedicated format, the Technical Submission Form (TSF). The TSF requests information from the WEC developer that is required to answer the questions posed in the TPL assessment document.

  12. Technology Transfer: A Policy Model

    Science.gov (United States)

    1988-04-01

    34 Caveman Club-Without Nail." More serious scholars indicate that understand- ing how to start and maintain fires was the first tech- nology transfer of...others. From caveman clubs to hyper- velocity missiles, technology transfer has played a significant military role; it also has assisted imperialis- tic

  13. Ethical Considerations in Technology Transfer.

    Science.gov (United States)

    Froehlich, Thomas J.

    1991-01-01

    Examines ethical considerations involved in the transfer of appropriate information technology to less developed countries. Approaches to technology are considered; two philosophical frameworks for studying ethical considerations are discussed, i.e., the Kantian approach and the utilitarian perspective by John Stuart Mill; and integration of the…

  14. Ethical Considerations in Technology Transfer.

    Science.gov (United States)

    Froehlich, Thomas J.

    1991-01-01

    Examines ethical considerations involved in the transfer of appropriate information technology to less developed countries. Approaches to technology are considered; two philosophical frameworks for studying ethical considerations are discussed, i.e., the Kantian approach and the utilitarian perspective by John Stuart Mill; and integration of the…

  15. Understanding University Technology Transfer

    Science.gov (United States)

    Association of American Universities, 2011

    2011-01-01

    Federal government agencies provide about $33 billion a year to universities to conduct scientific research. That continuing investment expands human knowledge and helps educate the next generation of science and technology leaders. New discoveries from university research also form the basis for many new products and processes that benefit the…

  16. Development of Technological Profiles for Transfer of Energy- and Resource Saving Technologies

    Directory of Open Access Journals (Sweden)

    Lysenko, V.S.

    2015-01-01

    Full Text Available The article deals with the methodological foundations for the development of technological profiles for «System of Transfer of Energy- and Resource Saving Technologies». It is determined that a compliance with the methodology and standards of the European network «Relay Centers» (Innovation Relay Centers — IRC network, since 2008 — EEN, the Russian Technology Transfer Network RTTN and Uk rainian Technology Transfer Network UTTN is the main pri nciple of the development process of technological requests and offers.

  17. Innovative technology transfer of nondestructive evaluation research

    Science.gov (United States)

    Brian Brashaw; Robert J. Ross; Xiping Wang

    2008-01-01

    Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...

  18. Software engineering technology transfer: Understanding the process

    Science.gov (United States)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  19. Macroeconomic level of technology transfer

    Directory of Open Access Journals (Sweden)

    Smirnova Nadezhda

    2016-04-01

    Full Text Available World practice of economic management has proved that the best indicator of competitiveness is achieved by that economic system, the economic units of which timely and adequately update the resource and technical base, thus achieving higher financial and economic indicators. Ensuring that sustainable development becomes possible due to the transfer of technological innovations, namely the diffusion from the developer to the customer on both commercial and free of charge basis. The article focuses on functioning of technology transfer at the macro level, namely the creation of its domestic models.

  20. Technology transfer and space science missions

    Science.gov (United States)

    Acuna, Mario

    1992-01-01

    Viewgraphs on technology transfer and space science missions are provided. Topics covered include: project scientist role within NASA; role of universities in technology transfer; role of government laboratories in research; and technology issues associated with science.

  1. Technology Transfer: A Contact Sport

    Science.gov (United States)

    Paynter, Nina P.

    1995-01-01

    Technology transfer is a dynamic process, involving dynamic people as the bridge between NASA Langley Research Center and the outside world. This bridge, for nonaerospace applications, is known as the Technology Applications Group. The introduction of new innovations and expertise where they are needed occurs through a 'push' and 'pull' process. A 'push' occurs when a new technology is first developed with high commercial potential and then a company is found to licence or further develop the technology. The 'pull' process occurs through problem statements. A company or group will submit a written statement of what they need and the shortcomings of commercially available technology. The Technology Transfer Team (T3) reviews these problem statements and decides where NASA LaRC can offer assistance. A researcher or group of researchers are then identified who can help solve the problem and they are put in contact with the company. Depending upon the situation in either method, a Space Act Agreement (SAA), or outline of the responsibilities for each party, is developed.

  2. NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners. With specialized teams, TTC guides the interactions of our partners from the point of discovery to patenting, from invention development to licensing. We play a key role in helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class researchers, facilities, and knowledge.

  3. DIGITAL TECHNOLOGY BUSINESS CASE METHODOLOGY GUIDE & WORKBOOK

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken; Lawrie, Sean; Hart, Adam; Vlahoplus, Chris

    2014-09-01

    Performance advantages of the new digital technologies are widely acknowledged, but it has proven difficult for utilities to derive business cases for justifying investment in these new capabilities. Lack of a business case is often cited by utilities as a barrier to pursuing wide-scale application of digital technologies to nuclear plant work activities. The decision to move forward with funding usually hinges on demonstrating actual cost reductions that can be credited to budgets and thereby truly reduce O&M or capital costs. Technology enhancements, while enhancing work methods and making work more efficient, often fail to eliminate workload such that it changes overall staffing and material cost requirements. It is critical to demonstrate cost reductions or impacts on non-cost performance objectives in order for the business case to justify investment by nuclear operators. This Business Case Methodology approaches building a business case for a particular technology or suite of technologies by detailing how they impact an operator in one or more of the three following areas: Labor Costs, Non-Labor Costs, and Key Performance Indicators (KPIs). Key to those impacts will be identifying where the savings are “harvestable,” meaning they result in an actual reduction in headcount and/or cost. The report consists of a Digital Technology Business Case Methodology Guide and an accompanying spreadsheet workbook that will enable the user to develop a business case.

  4. TECHNOLOGY TRANSFER FOR CUCUMBER (Cucumis sativus ...

    African Journals Online (AJOL)

    Dell

    2011-11-07

    Nov 7, 2011 ... This technology transfer trials have shown the advantages and ... Key words: Cucumber production, protected agriculture tunnels, cost benefit ratio, technology transfer, ... Use of PA can increase production by more than five.

  5. EPA Reports to Congress on Technology Transfer

    Science.gov (United States)

    Agencies are required to report to the Congress annually on their technology transfer activities. These reports summarize technology transfer activities of the EPA’s federal laboratories, by fiscal year.

  6. Accelerating the transfer of improved production technologies ...

    African Journals Online (AJOL)

    Accelerating the transfer of improved production technologies: controlling African cassava mosaic ... African Crop Science Journal ... A national network of cassava workers (NANEC) was created to address the problem of technology transfer.

  7. A model technology transfer program for independent operators

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1996-08-01

    In August 1992, the Energy Research Center (ERC) at the University of Kansas was awarded a contract by the US Department of Energy (DOE) to develop a technology transfer regional model. This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program.

  8. Simulation and Modeling Methodologies, Technologies and Applications

    CERN Document Server

    Filipe, Joaquim; Kacprzyk, Janusz; Pina, Nuno

    2014-01-01

    This book includes extended and revised versions of a set of selected papers from the 2012 International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2012) which was sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC) and held in Rome, Italy. SIMULTECH 2012 was technically co-sponsored by the Society for Modeling & Simulation International (SCS), GDR I3, Lionphant Simulation, Simulation Team and IFIP and held in cooperation with AIS Special Interest Group of Modeling and Simulation (AIS SIGMAS) and the Movimento Italiano Modellazione e Simulazione (MIMOS).

  9. Geo energy research and development: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Traeger, R.K.

    1982-03-01

    Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

  10. Cost analysis methodology: Photovoltaic Manufacturing Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    Whisnant, R.A. (Research Triangle Inst., Research Triangle Park, NC (United States))

    1992-09-01

    This report describes work done under Phase 1 of the Photovoltaic Manufacturing Technology (PVMaT) Project. PVMaT is a five-year project to support the translation of research and development in PV technology into the marketplace. PVMaT, conceived as a DOE/industry partnership, seeks to advanced PV manufacturing technologies, reduce PV module production costs, increase module performance, and expand US commercial production capacities. Under PVMaT, manufacturers will propose specific manufacturing process improvements that may contribute to the goals of the project, which is to lessen the cost, thus hastening entry into the larger scale, grid-connected applications. Phase 1 of the PVMaT project is to identify obstacles and problems associated with manufacturing processes. This report describes the cost analysis methodology required under Phase 1 that will allow subcontractors to be ranked and evaluated during Phase 2.

  11. Technological Forecasting: Methodology Embrapa Brazilian Company

    Directory of Open Access Journals (Sweden)

    Eliane Fernandes Pietrovski

    2017-04-01

    Full Text Available Structural, economic and social changes are present in organizations. One of the strategies for decision-making, which leads to organizational policies, is the construction of feasible and doable technological scenarios that enable innovations to trigger the processes of technological change. This study to analyze the prospect of technological scenarios in the Brazilian Agricultural Research Agency a public organization of Research, Development and Innovation, based on scenario building in its operating environment. For the methodological procedures, a systemic review addressing the problem of searching for qualitative bias was developed. Taking this study’s point of view, the research is exploratory and descriptive. The sources of data collection were primary and secondary. The technical consistency of prospective scenarios for the company was highlighted in the results of this study, as this was the object of this analysis. Through the collected data it was possible to verify the inferences between literature and the applied method. [JEL Classification: O310].

  12. Gas turbine heat transfer and cooling technology

    CERN Document Server

    Han, Je-Chin; Ekkad, Srinath

    2012-01-01

    FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat

  13. A cost evaluation methodology for surgical technologies.

    Science.gov (United States)

    Ismail, Imad; Wolff, Sandrine; Gronfier, Agnes; Mutter, Didier; Swanström, Lee L; Swantröm, Lee L

    2015-08-01

    To create and validate a micro-costing methodology that surgeons and hospital administrators can use to evaluate the cost of implementing innovative surgical technologies. Our analysis is broken down into several elements of fixed and variable costs which are used to effectively and easily calculate the cost of surgical operations. As an example of application, we use data from 86 robot assisted gastric bypass operations made in our hospital. To validate our methodology, we discuss the cost reporting approaches used in 16 surgical publications with respect to 7 predefined criteria. Four formulas are created which allow users to import data from their health system or particular situation and derive the total cost. We have established that the robotic surgical system represents 97.53 % of our operating room's medical device costs which amounts to $4320.11. With a mean surgery time of 303 min, personnel cost per operation amounts to $1244.73, whereas reusable instruments and disposable costs are, respectively, $1539.69 and $3629.55 per case. The literature survey demonstrates that the cost of surgery is rarely reported or emphasized, and authors who do cover this concept do so with variable methodologies which make their findings difficult to interpret. Using a micro-costing methodology, it is possible to identify the cost of any new surgical procedure/technology using formulas that can be adapted to a variety of operations and healthcare systems. We hope that this paper will provide guidance for decision makers and a means for surgeons to harmonise cost reporting in the literature.

  14. A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1993-09-01

    This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

  15. Judging the international transfer of technology

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2000-01-01

    International transfer of technology is a widely discussed area in the scientific literature. Although many different factors are discussed in the literature that affect the transfer of technology, it is not clear how to judge the performance of companies involved in international technology

  16. Judging The International Transfer Of Technology

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.

    2000-01-01

    International transfer of technology is a widely discussed area in the scientific literature. Although many different factors are discussed in the literature that affect the transfer of technology, it is not clear how to judge the performance of companies involved in international technology transfe

  17. Venture Creation Programs: Bridging Entrepreneurship Education and Technology Transfer

    Science.gov (United States)

    Lackéus, Martin; Williams Middleton, Karen

    2015-01-01

    Purpose: The purpose of this paper is to explore how university-based entrepreneurship programs, incorporating real-life venture creation into educational design and delivery, can bridge the gap between entrepreneurship education and technology transfer within the university environment. Design/methodology/approach: Based on a literature review…

  18. Venture Creation Programs: Bridging Entrepreneurship Education and Technology Transfer

    Science.gov (United States)

    Lackéus, Martin; Williams Middleton, Karen

    2015-01-01

    Purpose: The purpose of this paper is to explore how university-based entrepreneurship programs, incorporating real-life venture creation into educational design and delivery, can bridge the gap between entrepreneurship education and technology transfer within the university environment. Design/methodology/approach: Based on a literature review…

  19. A case of technology transfer in Macedonia

    Directory of Open Access Journals (Sweden)

    Nattacia Dabescki

    2014-11-01

    Full Text Available As a process of transferring skills, knowledge, technologies, methods of manufacturing and facilities among organizations, the transfer of technology is instrumental for boosting the economy through creation of competitive products, new jobs and a better quality of life. The stagnant environment for technology transfers in Macedonia in the post-privatisation era is a result of a combination of factors. Among them is the outdated educational system that does not boost entrepreneurial spirit and innovation thinking. Main purpose of this paper is to examine the current status, conditions, anomalies and challenges for technology transfer in the Republic of Macedonia, as well as the potential for development and possibilities for improvement of the process. Through a lens of the technology transfer paradigm, this exploratory study will present a case in which the Foundation Business Start-up Centre in Macedonia, as a technology transfer agent provided links and cooperative platform for creation of new technologies and innovations within the local SME ecosystem. The focus will be on a couple of initiatives for technology development and transfer in a domestic context. Results from the process of implementation of these initiatives will be discussed, along with their stimulating impact on the environment for technology transfer.

  20. Technology Transfer/Commercialization Report 2002

    Science.gov (United States)

    2002-01-01

    Contents include the following: 1. Technology opportunities and successes in 2002: Hilbert-Huang transform. New sensors via sol-gel-filled fiber optics. Hierarchical segmentation software. 2. Activity in 2002: encouraging researcher involvment. 10th annual new technology reporting award program. Commercial technology development program. 3. Inventorying new technologies: Sensors and detectors. Environmental systems. Information systems. Guidance, navigation, and control. Thermal and cryogenics. Optics. Patenting Goddard technologies. Striking gold with NASA technology transfer.

  1. Technology Transfer/Commercialization Report 2002

    Science.gov (United States)

    2002-01-01

    Contents include the following: 1. Technology opportunities and successes in 2002: Hilbert-Huang transform. New sensors via sol-gel-filled fiber optics. Hierarchical segmentation software. 2. Activity in 2002: encouraging researcher involvment. 10th annual new technology reporting award program. Commercial technology development program. 3. Inventorying new technologies: Sensors and detectors. Environmental systems. Information systems. Guidance, navigation, and control. Thermal and cryogenics. Optics. Patenting Goddard technologies. Striking gold with NASA technology transfer.

  2. From Sky to Earth: Data Science Methodology Transfer

    Science.gov (United States)

    Mahabal, Ashish A.; Crichton, Daniel; Djorgovski, S. G.; Law, Emily; Hughes, John S.

    2017-06-01

    We describe here the parallels in astronomy and earth science datasets, their analyses, and the opportunities for methodology transfer from astroinformatics to geoinformatics. Using example of hydrology, we emphasize how meta-data and ontologies are crucial in such an undertaking. Using the infrastructure being designed for EarthCube - the Virtual Observatory for the earth sciences - we discuss essential steps for better transfer of tools and techniques in the future e.g. domain adaptation. Finally we point out that it is never a one-way process and there is enough for astroinformatics to learn from geoinformatics as well.

  3. An integrated approach towards technology transfer

    NARCIS (Netherlands)

    Wal, L.F. van der; Eldering, C.J.J.; Putten, N.J. van

    2010-01-01

    In 2001 the European Space Agency (ESA), the Dutch Ministry of Economic Affairs and the Netherlands Organisation of applied scientific research TNO initiated the Dutch Technology Transfer Programme (DTTP). Since then, 'technology transfer' has been a relevant part of Dutch space policy. The DTTP aim

  4. An integrated approach towards technology transfer

    NARCIS (Netherlands)

    Wal, L.F. van der; Eldering, C.J.J.; Putten, N.J. van

    2010-01-01

    In 2001 the European Space Agency (ESA), the Dutch Ministry of Economic Affairs and the Netherlands Organisation of applied scientific research TNO initiated the Dutch Technology Transfer Programme (DTTP). Since then, 'technology transfer' has been a relevant part of Dutch space policy. The DTTP aim

  5. 48 CFR 970.2770 - Technology Transfer.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer....

  6. Technology Transfer/Commercialization Report

    Science.gov (United States)

    2002-01-01

    Contents include the following: (1) Who we are. (2) Technology opportunities and successes in 2002: Hilbert-Huang transform; new sensors via sol-gel-filled fiber optics; hierarchical segmentation software. (3) Activities in 2002: encouraging researcher involvement; inventorying new technologies; patenting Goddard technologies; promoting Goddard technologies; establishing new agreements;seeking and bestowing awards. (4) How to reach Goddard's: technology commercialization office.

  7. Technology Transfer/Commercialization Report

    Science.gov (United States)

    2002-01-01

    Contents include the following: (1) Who we are. (2) Technology opportunities and successes in 2002: Hilbert-Huang transform; new sensors via sol-gel-filled fiber optics; hierarchical segmentation software. (3) Activities in 2002: encouraging researcher involvement; inventorying new technologies; patenting Goddard technologies; promoting Goddard technologies; establishing new agreements;seeking and bestowing awards. (4) How to reach Goddard's: technology commercialization office.

  8. A Network Based Methodology to Reveal Patterns in Knowledge Transfer

    Directory of Open Access Journals (Sweden)

    Orlando López-Cruz

    2015-12-01

    Full Text Available This paper motivates, presents and demonstrates in use a methodology based in complex network analysis to support research aimed at identification of sources in the process of knowledge transfer at the interorganizational level. The importance of this methodology is that it states a unified model to reveal knowledge sharing patterns and to compare results from multiple researches on data from different periods of time and different sectors of the economy. This methodology does not address the underlying statistical processes. To do this, national statistics departments (NSD provide documents and tools at their websites. But this proposal provides a guide to model information inferences gathered from data processing revealing links between sources and recipients of knowledge being transferred and that the recipient detects as main source to new knowledge creation. Some national statistics departments set as objective for these surveys the characterization of innovation dynamics in firms and to analyze the use of public support instruments. From this characterization scholars conduct different researches. Measures of dimensions of the network composed by manufacturing firms and other organizations conform the base to inquiry the structure that emerges from taking ideas from other organizations to incept innovations. These two sets of data are actors of a two- mode-network. The link between two actors (network nodes, one acting as the source of the idea. The second one acting as the destination comes from organizations or events organized by organizations that “provide” ideas to other group of firms. The resulting demonstrated design satisfies the objective of being a methodological model to identify sources in knowledge transfer of knowledge effectively used in innovation.

  9. Technology Transfer brochure (Swedish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  10. Technology Transfer brochure (English version)

    CERN Multimedia

    Lefevre, C

    2007-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  11. Technology Transfer brochure (Polish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  12. Technology transfer — bridging space and society

    Science.gov (United States)

    Students of Technology Transfer Design Project Team (ISU Summer Session 1997)

    Strategies, policies and methods by which technologies can be cross-fertilized between the space and non-space sectors were examined by students of the design project "Technology Transfer — Bridging Space and Society". This project was undertaken by students attending the 1997 10th Anniversary Summer Session Program of the International Space University. General issues relating to transfer of technology were discussed including definitions and mechanisms (push, pull, interactive and pro-active). As well as looking at case studies and the impact of national policies on space agencies, the design project also sought to look at technology transfer on a country-by-country basis, selecting various countries for scrutiny and reporting on their technology transfer status. The project report shows how transfer of technology varies between nations and when analyzed with the case studies identifies the general strategies, policies and methods in use and how they can be improved. Finally, the report seeks to recommend certain issues to governments, space agencies and industrial organizations to facilitate the transfer of technology. These include the development of a generic metrics system and the implementation of better appropriate procedures and mechanisms for a positive diffusion process between space and non-space sectors.

  13. Risk Management in Biologics Technology Transfer.

    Science.gov (United States)

    Toso, Robert; Tsang, Jonathan; Xie, Jasmina; Hohwald, Stephen; Bain, David; Willison-Parry, Derek

    Technology transfer of biological products is a complex process that is important for product commercialization. To achieve a successful technology transfer, the risks that arise from changes throughout the project must be managed. Iterative risk analysis and mitigation tools can be used to both evaluate and reduce risk. The technology transfer stage gate model is used as an example tool to help manage risks derived from both designed process change and unplanned changes that arise due to unforeseen circumstances. The strategy of risk assessment for a change can be tailored to the type of change. In addition, a cross-functional team and centralized documentation helps maximize risk management efficiency to achieve a successful technology transfer. © PDA, Inc. 2016.

  14. [Technology transfer of building materials by ECOMAT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report discusses the plan for technology transfer of building materials developed by ECOMAT to the commercial private sector. Some of the materials are briefly discussed like foams, fiber reinforcement, fly ash development, and polymer fillers.

  15. Financial options methodology for analyzing investments in new technology

    Science.gov (United States)

    Wenning, B. D.

    1995-01-01

    The evaluation of investments in longer term research and development in emerging technologies, because of the nature of such subjects, must address inherent uncertainties. Most notably, future cash flow forecasts include substantial uncertainties. Conventional present value methodology, when applied to emerging technologies severely penalizes cash flow forecasts, and strategic investment opportunities are at risk of being neglected. Use of options evaluation methodology adapted from the financial arena has been introduced as having applicability in such technology evaluations. Indeed, characteristics of superconducting magnetic energy storage technology suggest that it is a candidate for the use of options methodology when investment decisions are being contemplated.

  16. Financial options methodology for analyzing investments in new technology

    Energy Technology Data Exchange (ETDEWEB)

    Wenning, B.D. [Texas Utilities Services, Inc., Dallas, TX (United States)

    1994-12-31

    The evaluation of investments in longer term research and development in emerging technologies, because of the nature of such subjects, must address inherent uncertainties. Most notably, future cash flow forecasts include substantial uncertainties. Conventional present value methodology, when applied to emerging technologies severely penalizes cash flow forecasts, and strategic investment opportunities are at risk of being neglected. Use of options valuation methodology adapted from the financial arena has been introduced as having applicability in such technology evaluations. Indeed, characteristics of superconducting magnetic energy storage technology suggest that it is a candidate for the use of options methodology when investment decisions are being contemplated.

  17. A framework for evaluation of technology transfer programs. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The objective of this volume is to describe a framework with which DOE can develop a program specific methodology to evaluate it`s technology transfer efforts. This approach could also be applied to an integrated private sector technology transfer organization. Several benefits will be realized from the application of this work. While the immediate effect will be to assist program managers in evaluating and improving program performance, the ultimate benefits will accrue to the producing industry, the states, and the nation in the form of sustained or increased domestic oil production. This benefit depends also, of course, on the effectiveness of the technology being transferred. The managers of the Technology Transfer program, and the larger federal oil and gas R&D programs, will be provided with a means to design and assess the effectiveness of program efforts as they are developed, tested and performed. The framework allows deficiencies in critical aspects of the program to be quickly identified, allowing for timely corrections and improvements. The actual process of developing the evaluation also gives the staff of the Oil R&D Program or Technology Transfer subprogram the opportunity to become oriented to the overall program goals. The structure and focus imposed by the evaluation paradigm will guide program staff in selecting activities which are consistent with achieving the goals of the overall R&D program.

  18. Join TTC! | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) offers a unique opportunity for training through the NCI TTC Fellowship program. TTC also has a unit dedicated to marketing these research opportunities and their underlying technologies to potential collaborators and licensees. | [google6f4cd5334ac394ab.html

  19. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2006-09-29

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

  20. Development of Technology Transfer Economic Growth Metrics

    Science.gov (United States)

    Mastrangelo, Christina M.

    1998-01-01

    The primary objective of this project is to determine the feasibility of producing technology transfer metrics that answer the question: Do NASA/MSFC technical assistance activities impact economic growth? The data for this project resides in a 7800-record database maintained by Tec-Masters, Incorporated. The technology assistance data results from survey responses from companies and individuals who have interacted with NASA via a Technology Transfer Agreement, or TTA. The goal of this project was to determine if the existing data could provide indications of increased wealth. This work demonstrates that there is evidence that companies that used NASA technology transfer have a higher job growth rate than the rest of the economy. It also shows that the jobs being supported are jobs in higher wage SIC codes, and this indicates improvements in personal wealth. Finally, this work suggests that with correct data, the wealth issue may be addressed.

  1. Clean Cast Steel Technology - Machinability and Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    C. E. Bates; J. A. Griffin

    2000-05-01

    There were two main tasks in the Clean Cast Steel Technology - Machinability and Technology Transfer Project. These were (1) determine the processing facts that control the machinability of cast steel and (2) determine the ability of ladle stirring to homogenize ladle temperature, reduce the tap and pouring temperatures, and reduce casting scrap.

  2. Technology Transfer and Commercialization Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Michelle R. Blacker

    2008-12-01

    The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers

  3. NASA's southeast technology transfer alliance: A cooperative technology assistance initiative

    Science.gov (United States)

    Craft, Harry G.; Sheehan, William; Johnson, Anne

    1996-03-01

    Since 1958, NASA has been charged with actively assisting in the transfer of technologies derived from the United States space program into the industrial sector of the U.S. economy. This has historically been accomplished through technology transfer offices working independently at each NASA field center. NASA recently restructured the program to provide regional coordination, maximize efficiencies, eliminate redundancies, and capitalize on each center's fundamental technology strengths. The nation is divided into six NASA technology transfer geographical regions with each region containing one or more NASA field centers and a regional technology transfer center. The southeast region includes the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee. The NASA field centers in this region are: the Marshall Space Flight Center in Huntsville, Alabama; the Kennedy Space Center in Florida; and the Stennis Space Center in Bay St. Louis, Mississippi. The centers have teamed to focus primarily on regional industries and businesses, to provide a wide range of resources for U.S. industries, including access to unique government facilities, regional workshops, and technical problem solving. Hundreds of American businesses have benefited from this new regional initiative, as evidenced by reports of over 10,500 added or saved jobs and over 988 million worth of economic impacts as a result of their technology transfer activities.

  4. 76 FR 52670 - 2011 Technology Transfer Summit North America Conference

    Science.gov (United States)

    2011-08-23

    ... HUMAN SERVICES National Institutes of Health 2011 Technology Transfer Summit North America Conference...: The NIH Office of Technology Transfer extends invitations to attend the 2011 Technology Transfer... by the NIH Office of Technology Transfer, TTS Ltd. and regional host partners such as BIO Maryland...

  5. Technology transfer trends in Indian space programme

    Science.gov (United States)

    Sridhara Murthi, K. R.; Shoba, T. S.

    2010-10-01

    Indian space programme, whose objectives involve acceleration of economic and social development through applications of space technology, has been engaged in the development of state-of-the-art satellite systems, launch vehicles and equipment necessary for applications. Even during the early phase of evolution of this Programme, deliberate policies have been adopted by the national space agency, namely, Indian Space Research Organisation (ISRO), to promote spin-off benefit from the technologies developed for the use of space projects. Consistently adhering to this policy, ISRO has transferred over 280 technologies till date, spanning a wide spectrum of disciplines. This has resulted in a fruitful two-way cooperation between a number of SMEs and the ISRO. In order to make the technology transfer process effective, ISRO has adopted a variety of functional and organizational policies that included awareness building measures, licensee selection methods, innovative contract systems, diverse transfer processes, post licencing services and feedback mechanisms. Besides analyzing these policies and their evolution, the paper discusses various models adopted for technology transfer and their impact on assessment. It also touches upon relevant issues relating to creating interface between public funded R&D and the private commercial enterprises. It suggests few models in which international cooperation could be pursued in this field.

  6. Factors that Influence the Dissemination of Knowledge in Technology Transfer among Malaysian Manufacturing Employees

    Directory of Open Access Journals (Sweden)

    Mughaneswari ap Sahadevan

    2014-04-01

    Full Text Available The meaning of technology transfer is so wide but mostly involving some form of technology-re- lated exchange. However, in this particular paper, technology transfer is consider as a concept to examine the process of disseminating knowledge and skills that a person owned to another per- son in order to generate higher productivity with new approach of producing a particular prod- uct or service. Although, many researchers have explored the evolution of technology transfer, nonetheless some drivers are yet to be explored in a Malaysian manufacturing industry. This study, therefore attempts to determine the relationship between absorptive capacity, transfer capacity, communication motivation and learning intent and technology transfer performance. A survey methodology was used in a Japanese multinational company based in Klang Valley, Malaysia. A total of 117 questionnaires were received. Results show that absorptive capacity is the most signifi- cant to influence technology transfer performance.

  7. Technology Transfer Annual Report Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Wendy Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to

  8. Local R&D and Technology Transfers

    DEFF Research Database (Denmark)

    Aggarwal, Aradhna

    -2014. The propensity score matching (PSM) analysis reveals that the majority owned foreign companies spend less on R&D and more on technology transfers than their local counterparts. Overall, threshold equity holding and global conditions matter. A panel data regression analysis on matched sample confirms the findings...... and validates the PSM findings. A horizontal cluster analysis on 3-digit industry level data shows that foreign firms cluster in high technology industries....

  9. License Agreements | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Since the government cannot engage in the development, manufacture, and sale of products, the NCI Technology Transfer Center (TTC) makes its discoveries (and discoveries from nine other NIH Institutes) available to organizations that can assist in the further development and commercialization of these basic science discoveries, to convert them into public health benefits. | [google6f4cd5334ac394ab.html

  10. A New Strategic Approach to Technology Transfer

    Science.gov (United States)

    The principal goal of Federal research and development (R&D) is to solve problems for public benefit. Technology transfer, innovation, entrepreneurship: words and concepts that once belonged exclusively in the domain of private research enterprises, have quickly become part of everyday lexicon in Fe...

  11. About TTC | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners, and helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class facilities, resources, and discoveries. Contact us to learn more. | [google6f4cd5334ac394ab.html

  12. Coupling new technologies and methodologies for performance improvement.

    Science.gov (United States)

    Monge, Paul

    2007-01-01

    Radiology is a pivotal part of the patient's experience within a healthcare organization and has traditionally embraced new technologies. It is now time to embrace new management methodologies. With the changing winds in reimbursement, activity-based methods (ABC and ABM) will assist us to maximize our resources, reduce costs, and increase our efficiencies to maintain the quality of care. We have embraced new technologies, but we have implemented them on top of old processes. Without embracing new methodologies we may never maximize our new technology.

  13. Climate change scenarios and technology transfer protocols

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, Socrates; Turton, Hal [Energy Economics Group, Paul Scherrer Institute, Villigen PSI, CH-5232 (Switzerland)

    2011-02-15

    We apply a specific version of MERGE-ETL, an integrated assessment model, to study global climate policies supported by Technology Transfer Protocols (TTPs). We model a specific formulation of such a TTP where donor countries finance via carbon tax revenues, the diffusion of carbon-free technologies in developing countries (DCs) and quantify its benefits. Industrialized countries profit from increased technology exports, global diffusion of advanced technology (leading to additional technology learning and cost reductions) and reduced climate damages through the likelihood of greater global participation in a new international agreement. DCs experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and expected secondary benefits of carbon abatement (such as reduced local and regional air pollution). The analysis identifies potential candidate technologies that could be supported under a TTP, and the impact of a TTP on economic development (including the flow of transfer subsidies) and global emissions. Although a TTP may encourage additional participation, such a proposal is only likely to be successful if an increased willingness to pay to avoid climate damages is accepted, first by the present and future generations of the industrialized world and later on, when sufficient economic growth is accumulated, by today's developing countries. (author)

  14. Communication and Cultural Change in University Technology Transfer

    Science.gov (United States)

    Wright, David

    2013-01-01

    Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…

  15. Communication and Cultural Change in University Technology Transfer

    Science.gov (United States)

    Wright, David

    2013-01-01

    Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…

  16. Conceptual Model for Transfer of Technology in a Shipyard

    OpenAIRE

    Firmansyah, Mohammad Rizal; Djafar, Wihdat

    2017-01-01

    Transfer of technology is an important program to be done by a shipyard if the respective shipyard is to maintain and increase its competitiveness. But sometimes, some aspects that need to be considered in a transfer of technology program are ignored. Before any transfer of technology program is to be conducted in any shipyard, identification of the required technology to be transferred and why the changes in shipyard technology are needed must be done. These identifications will lead to the ...

  17. Validation of InnoSPICE for technology transfer

    OpenAIRE

    Mitašiūnas, Antanas; Besson, Jeremy Daniel; Boronowsky, Michael; Woronowicz, Tanja

    2015-01-01

    Innovation and technology transfer consist mainly of process-oriented activities and can be described in process-oriented terms by an innovation and technology transfer process capability model such as InnoSPICE. To verify such a thesis, an extended validation of the InnoSPICE adequacy for different factual innovation and technology transfer activities is needed. The purpose of this paper is to validate the InnoSPICE model for technology transfer led by a technology developer based on capabil...

  18. Domestic Technology Transfer versus Technology Export Control - The Emerging National Policies and the Role of the Bench Engineer

    Science.gov (United States)

    1984-01-01

    Defense Technology Transfer Fundamentals 10 B. Governmental Stimuli to Technology Transfer 1. Information Programs 2. Information Analysis Centers 3...networking. II. Domestic Technology Transfer A. Non- Defense Technology Transfer Fundamentals The nation’s technological reservoir is filled by

  19. Methodologies and Intelligent Systems for Technology Enhanced Learning

    CERN Document Server

    Gennari, Rosella; Vittorini, Pierpaolo; Prieta, Fernando

    2015-01-01

    This volume presents recent research on Methodologies and Intelligent Systems for Technology Enhanced Learning. It contains the contributions of MIS4TEL 2015, which took place in Salamanca, Spain,. On June 3rd to 5th 2015. Like the previous edition, this proceedings and the conference is an open forum for discussing intelligent systems for Technology Enhanced Learning and empirical methodologies for their design or evaluation MIS4TEL’15 conference has been organized by University of L’aquila, Free University of Bozen-Bolzano and the University of Salamanca.  .

  20. Tropical medicine: Telecommunications and technology transfer

    Science.gov (United States)

    Legters, Llewellyn J.

    1991-01-01

    The potential for global outbreaks of tropical infectious diseases, and our ability to identify and respond to such outbreaks is a major concern. Rapid, efficient telecommunications is viewed as part of the solution to this set of problems - the means to link a network of epidemiological field stations via satellite with U.S. academic institutions and government agencies, for purposes of research, training in tropical medicine, and observation of and response to epidemic emergencies. At a workshop, telecommunications and technology transfer were addressed and applications of telecommunications technology in long-distance consultation, teaching and disaster relief were demonstrated. Applications in teaching and consultation in tropical infectious diseases is discussed.

  1. MHD Technology Transfer, Integration and Review Committee

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

  2. Technology and knowledge transfer for development

    CSIR Research Space (South Africa)

    Chakwizira, J

    2008-01-01

    Full Text Available . An indicative list of recommendations to turnaround the knowledge and technology transfer condition of Africa into a more resounding success than currently existing is indicated. A brief conclusion that includes critical percepts and thoughts on the future... growth and development. "Knowledge Management caters to the critical issues of organizational adaption, survival and competence in face of increasingly discontinuous environmental change. Essentially, it embodies organizational processes that seek...

  3. Computer technology -- 1996: Applications and methodology. PVP-Volume 326

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, G.M. [ed.] [Univ. of Michigan, Ann Arbor, MI (United States); Hsu, K.H. [ed.] [Babcock and Wilcox, Barberton, OH (United States); Lee, T.W. [ed.] [FMC Corp., Santa Clara, CA (United States); Nicholas, T. [ed.] [USAF Wright Laboratory, Wright-Patterson AFB, OH (United States)

    1996-12-01

    The primary objective of the Computer Technology Committee of the ASME Pressure Vessels and Piping Division is to promote interest and technical exchange in the field of computer technology, related to the design and analysis of pressure vessels and piping. The topics included in this volume are: analysis of bolted joints; nonlinear analysis, applications and methodology; finite element analysis and applications; and behavior of materials. Separate abstracts were prepared for 23 of the papers in this volume.

  4. Mission & Role | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The NCI TTC serves as the focal point for implementing the Federal Technology Transfer Act to utilize patents as incentive for commercial development of technologies and to establish research collaborations and licensing among academia, federal laboratories, non-profit organizations, and industry. The TTC supports technology development activities for the National Cancer Institute and nine other NIH Institutes and Centers. TTC staff negotiate co-development agreements and licenses with universities, non-profit organizations, and pharmaceutical and biotechnology companies to ensure compliance with Federal statutes, regulations and the policies of the National Institutes of Health. TTC also reviews employee invention reports and makes recommendations concerning filing of domestic and foreign patent applications. | [google6f4cd5334ac394ab.html

  5. New Ways in Technology Transfer from University Towards Industry.

    Science.gov (United States)

    van den Kroonenberg, H.H.

    1983-01-01

    Three approaches to technology transfer are described: passive, stimulative, and active. A condition for successful technology transfer to small- and medium-sized industry is the availability of "receivers" in the industries. Stimulating young engineers to start their own small company can affect technology transfer positively. (MSE)

  6. Risk management in methodologies of information technology and communications projects

    Directory of Open Access Journals (Sweden)

    Jonathan Carrillo

    2013-12-01

    Full Text Available (Received: 2013/10/02 - Accepted: 2013/12/13At present there are methodologies that have several alternatives and methods to manage projects of Information and Communication Technologies. However, these do not cover a solution for the technology events that can occur in the industry, government, education, among others. In the technology market there are several models to identify and analyze risks according to relevant aspects of their area of specialty e.g. projects, in software development, communications, information security and business alignment. For this reason, this research conducted an evaluation of risk management activities of the methodologies used mostly to know which of them includes more correspondence with basic elements of IT using a rating scale.

  7. TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-01-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during

  8. Progress report on technology transfer at CERN since December 1999

    CERN Document Server

    2000-01-01

    In March 1999 the Finance Committee endorsed the CERN Technology Transfer paper FC/4126 entitled "Technology Transfer Policy at CERN". In June 1999 Council took note of the plan to create a new Division, the Education and Technology Transfer Division, one of its essential aims being to enhance the Technology Transfer activities at CERN. A verbal activity report on Technology Transfer was given at the December 1999 meeting of the Finance Committee. Finally, in January 2000, ETT Division came into existence. This document contains a description of the current organisation of TT activities together with some relevant results and highlights for the year 2000.

  9. Marketing for Oak Ridge technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Prosser, G.A.

    1989-06-15

    Martin Marietta Energy Systems, Inc., which manages major research and production facilities in Oak Ridge, Tennessee for the Department of Energy, has implemented a systematic approach to marketing for technology transfer. Unique mechanisms have been created to address the need for market research and analysis, strategy formulation, and the execution of plans designed to engender the broadest commercial use of government-funded technologies. Establishment of formal ties with the University of Tennessee Graduate School of Business has resulted in an expanded role for marketing in support of the Oak Ridge program. The creation of graduate research positions has enabled MBA students to contribute to, and learn from, a program which is at the forefront of an important national initiative.

  10. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the

  11. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  12. A methodology for evaluating ``new`` technologies in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, K.; Clark, R.L.; Holcomb, D.E.

    1994-06-01

    As obsolescence and spare parts issues drive nuclear power plants to upgrade with new technology (such as optical fiber communication systems), the ability of the new technology to withstand stressors present where it is installed needs to be determined. In particular, new standards may be required to address qualification criteria and their application to the nuclear power plants of tomorrow. This paper discusses the failure modes and age-related degradation mechanisms of fiber optic communication systems, and suggests a methodology for identifying when accelerated aging should be performed during qualification testing.

  13. Accelerated technology transfer: the UK quantum initiative

    Science.gov (United States)

    Bennett, Simon D.

    2016-10-01

    A new generation of quantum technology based systems, exploiting effects such as superposition and entanglement, will enable widespread, highly disruptive applications which are expected to be of great economic significance. However, the technology is only just emerging from the physics laboratory and generally remains at low TRLs. The question is: where, and when, will this impact be first manifest? The UK, with substantial Government backing, has embarked on an ambitious national program to accelerate the process of technology transfer with the objective of seizing a significant and sustainable share of the future economic benefit for the UK. Many challenges and uncertainties remain but the combined and co-ordinated efforts of Government, Industry and Academia are making great progress. The level of collaboration is unusually high and the goal of embedding a "QT Ecosystem" in the UK looks to be attainable. This paper describes the UK national programme, its key players, and their respective roles. It will illustrate some of the likely first commercial applications and provide a status update. Some of the challenges that might prevent realisation of the goal will be highlighted.

  14. Benefit Transfer: A Review of Methodologies and Challenges

    Directory of Open Access Journals (Sweden)

    John V. Westra

    2013-10-01

    Full Text Available For policy makers, regulators and natural resource managers, the resources necessary for original empirical resource valuations are often unavailable. A common alternative to original valuation studies is the practice of benefit transfer—the use of an empirical value estimate or estimates from a previous study or studies for application in a similar context. In order to reduce the error inherent in applying values from one parcel of land to another, researchers commonly use meta-analysis, or the “study of studies”, to provide a more thorough and statistically valid value estimate for use in a benefit transfer. In the practice of benefit transfer, much emphasis has been placed on improving the validity of values for transfer, but fewer studies have focused on the appropriate application of the established estimates. In this article, several often disregarded concerns that should be addressed when practicing benefit transfer are identified. A special focus is placed on spatial considerations and the recent progress that has been made to incorporate spatial trends. Geographic information systems (GIS are advocated as a useful tool for incorporating the spatial aspects of benefit transfer. Consensuses and trends in the literature are acknowledged, and areas of potential improvement are highlighted.

  15. Media Literacy, Education & (Civic) Capability: A Transferable Methodology

    Science.gov (United States)

    McDougall, Julian; Berger, Richard; Fraser, Pete; Zezulkova, Marketa

    2015-01-01

    This article explores the relationship between a formal media educational encounter in the UK and the broad objectives for media and information literacy education circulating in mainland Europe and the US. A pilot study, developed with a special interest group of the United Kingdom Literacy Association, applied a three-part methodology for…

  16. GPS Technology and Human Psychological Research: A Methodological Proposal

    Directory of Open Access Journals (Sweden)

    Pedro S. A. Wolf

    2010-10-01

    Full Text Available Animal behaviorists have made extensive use of GPS technology since 1991. In contrast, psychological research has made little use of the technology, even though the technology is relatively inexpensive, familiar, and widespread. Hence, its potential for pure and applied psychological research remains untapped. We describe three methods psychologists could apply to individual differences research, clinical research, or spatial use research. In the context of individual differences research, GPS technology permits us to test hypotheses predicting specific relations among patterns of spatial use and individual differences variables. In a clinical context, GPS technology provides outcome measures that may relate to the outcome of interventions designed to treat psychological disorders that, for example, may leave a person homebound (e.g. Agoraphobia, PTSD, TBI. Finally, GPS technology provides natural measures of spatial use. We, for example, used GPS technology to quantify traffic flow and exhibit use at the Arizona Sonora Desert Museum. Interested parties could easily extend this methodology some aspects of urban planning or business usage.DOI: 10.2458/azu_jmmss.v1i1.74

  17. A Study of the Factors Associated with Successful Technology Transfer and their Applicability to Air Force Technology Transfers.

    Science.gov (United States)

    1995-09-01

    relay race, where one runner passes the baton to the next. Richard Dorf describes in "Models for Technology Transfer From Universities and Research...Meeting. 9. Dorf , Richard C. "Models for Technology Transfer From Universities and Research Laboratories," Technology Management Publication TM1.1988...both located at Wright- Patterson Air Force Base, Ohio. Namely, Tim Sharp, Chief, Technology Transfer Division and my faculty advisor, Major Richard

  18. A planning framework for transferring building energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  19. Technology transfers, foreign investment and productivity spillovers

    DEFF Research Database (Denmark)

    Newman, Carol; Rand, John; Talbot, Theodore Purdendu

    2015-01-01

    This paper explores the relationship between foreign direct investment (FDI) and the productivity of host country domestic firms. We rely on a specially designed survey of over 4000 manufacturing firms in Vietnam, and separate out productivity gains along the supply chain (obtained through direct...... transfers of knowledge/technology between linked firms) from productivity effects through indirect FDI spillovers. In addition to identifying indirect vertical productivity spillovers from FDI, our results show that there are productivity gains associated with direct linkages between foreign......-owned and domestic firms along the supply chain not captured by commonly used measures of spillovers. This includes evidence of productivity gains through forward linkages for domestic firms which receive inputs from foreign-owned firms....

  20. OCT Technology Transfer and the OCT Market

    Science.gov (United States)

    Swanson, Eric A.

    The field of optical coherence tomography (OCT) has blossomed dramatically since the first studies by various researchers around the world began in the late 1980s and early 1990s. Since then cumulatively, there have been dozens of companies created, over a hundred research groups working on or with OCT, over a thousand OCT patents issued, over 10,000 research articles published, tens of millions of patients scanned with OCT, hundreds of millions of venture capital and corporate R&D dollars invested, hundreds of millions of dollars in company acquisitions, and over a billion of dollars of OCT system revenue. This chapter will describe some of the history and factors involved in OCT technology transfer and commercialization, give a snapshot of the current OCT market, and speculate on some future OCT issues.

  1. Technology transfer at NASA - A librarian's view

    Science.gov (United States)

    Buchan, Ronald L.

    1991-01-01

    The NASA programs, publications, and services promoting the transfer and utilization of aerospace technology developed by and for NASA are briefly surveyed. Topics addressed include the corporate sources of NASA technical information and its interest for corporate users of information services; the IAA and STAR abstract journals; NASA/RECON, NTIS, and the AIAA Aerospace Database; the RECON Space Commercialization file; the Computer Software Management and Information Center file; company information in the RECON database; and services to small businesses. Also discussed are the NASA publications Tech Briefs and Spinoff, the Industrial Applications Centers, NASA continuing bibliographies on management and patent abstracts (indexed using the NASA Thesaurus), the Index to NASA News Releases and Speeches, and the Aerospace Research Information Network (ARIN).

  2. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the

  3. Valuation Methodology for Technology Developed at Academic R&D Groups

    Directory of Open Access Journals (Sweden)

    L.R. Vega‐González

    2010-04-01

    Full Text Available This work refers to technology embodied as devices, equipment, software or processes primarily developed at universities indeveloping countries for research or teaching. Sometimes it is also as the result of externally financed projects contracted withindustry. Nearly always technology developed at academic R&D groups results in laboratory prototypes. When it is required todefine the technology transfer (TT contract terms for the license of the university patrimonial rights to external fundingcompanies or other interested parties, a question arises: what is the monetary value? In this paper we present a four‐stepmethod for technology valuation based on the identification of specific value points (SVP related to its development. The finaltechnology value must be within previously defined value limits. The presented methodology is actually being used to valuatesome devices developed at the Centro de Ciencias Aplicadas y Desarrollo Tecnológico (CCADET of the Universidad NacionalAutónoma de México (UNAM.

  4. 76 FR 71562 - Emergint Technologies, Inc.; Transfer of Data

    Science.gov (United States)

    2011-11-18

    ... AGENCY Emergint Technologies, Inc.; Transfer of Data AGENCY: Environmental Protection Agency (EPA... claimed as Confidential Business Information (CBI) by the submitter, will be transferred to Emergint Technologies, Inc. in accordance with 40 CFR 2.307(h)(3) and 2.308(i)(2). Emergint Technologies, Inc. has...

  5. TOWARDS PHASE TRANSFERABLE POTENTIAL FUNCTIONS - METHODOLOGY AND APPLICATION TO NITROGEN

    NARCIS (Netherlands)

    JORDAN, PC; VAN MAAREN, PJ; MAVRI, J; VAN DER SPOEL, D; BERENDSEN, HJC

    1995-01-01

    We describe a generalizable approach to the development of phase transferable effective intermolecular potentials and apply the method to the study of N-2 The method is based on a polarizable shell model description of the isolated molecule and uses experimental data to establish the parameters.

  6. Technology transfer of brain-computer interfaces as assistive technology: barriers and opportunities

    National Research Council Canada - National Science Library

    Nijboer, F

    2015-01-01

    .... Three barriers for technology transfer of BCIs as access technologies are identified. First, BCIs are developed with a narrow focus on creating a reliable technology, while a broader focus on creating a usable technology is needed...

  7. CONCERNING CORRELATION BETWEEN METHODOLOGY AND TECHNOLOGY IN PEDAGOGICAL RESEARCH

    Directory of Open Access Journals (Sweden)

    Vladimir I. Zagvyazinsky

    2015-01-01

    Full Text Available The purpose of the paper is the continuation of a cycle of the methodological articles, called to help work of young researchers.The general dissatisfaction with quality and results of research work in an education sphere and pedagogics has been largely caused not only insufficient level of methodological culture of competitors of scientific degrees and researchers-experts, but also their inability to choose a work technology of procedure of research that will be adequate to the purposes, problems and a plan of it. The present article is also devoted to this problem.Methods. The methods of the analysis, synthesis, idealisation, generalisation of author’s experience, a concrete definition and modelling are used.Results and scientific novelty. The general technology of scientific search in an education sphere is presented; the technology is developed on the basis of long-term experience of the Tyumen scientific and pedagogical school, and justified in practice. The author doesn’t take into consideration the rigid technology of algorithmic type which is hardly useful in works of creative character; but in the present case – frame technology that defines the expedient organisation, sequence of stages of work and its corresponding maintenance. The following technology components are described: self-determination of the researcher or research group on the basis of creation and the statement of the developed project of all procedures of search; statement of questions on initial allocation of the problem conducting ideas, a plan-way of its realisation; project performance, its ascertaining and a reformative part, research procedures (the basic stage; summarising, generalisation of the research performed, a writing of the text of report documents, preparation of total publications. Examples of typical errors of the young scientists who do not own the technology of scientific activity are given.Practical significance. Proposed recommendations stated

  8. Modeling of InP HBTs in Transferred-Substrate Technology for Millimeter-Wave Applications

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Rudolph, Matthias; Jensen, Thomas;

    2013-01-01

    In this paper, the modeling of InP heterojunction bipolar transistors (HBTs) in transferred substrate (TS) technology is investigated. At first, a direct parameter extraction methodology dedicated to III-V based HBTs is employed to determine the small-signal equivalent circuit parameters from...

  9. Department of Defense Laboratories: Finding a Future in Technology Transfer

    Science.gov (United States)

    1993-04-01

    investment. There is no mention of DoD even trying. This, then, presents a problem for Defense technology transfer management. The President expects both...effort, but nonetheless felt unable to express their effort quantitatively. The potential size and demand for Defense technology transfer calls for some... Defense technology transfer is taking place, it is doing so on the enthusiasm and drive of a few key individuals. Political demand and legislation

  10. Geo energy research and development: technology transfer update

    Energy Technology Data Exchange (ETDEWEB)

    Traeger, R.K.; Dugan, V.L.

    1983-01-01

    Sandia Geo Energy Programs in geothermal, coal, oil and gas, and synfuel technologies have been effective in transferring research concepts to applications in private industry. This report updates the previous summary (SAND82-0211, March 1982) to include recent technology transfers and to reflect recent changes in philosophy on technology transfer. Over 40 items transferred to industry have been identified in the areas of Hardware, Risk Removal and Understanding. Successful transfer is due largely to personal interactions between Sandia engineers and the technical staffs of private industry.

  11. Trade, Foreign Direct Investment, and International Technology Transfer: A Survey

    National Research Council Canada - National Science Library

    Kamal Saggi

    2002-01-01

    ...? Using these questions as motivation, this article surveys the recent trade literature on international technology transfer, paying particular attention to the role of foreign direct investment...

  12. Methodology for vocational psychodiagnostics of senior schoolchildren using information technologies

    Science.gov (United States)

    Bogdanovskaya, I. M.; Kosheleva, A. N.; Kiselev, P. B.; Davydova, Yu. A.

    2017-01-01

    The article identifies the role and main problems of vocational psychodiagnostics in modern socio-cultural conditions. It analyzes the potentials of information technologies in vocational psychodiagnostics of senior schoolchildren. The article describes the theoretical and methodological grounds, content and diagnostic potentials of the computerized method in vocational psychodiagnostics. The computerized method includes three blocks of sub-tests to identify intellectual potential, personal qualities, professional interests and values, career orientations, as well as subtests to analyze the specific life experience of senior schoolchildren. The results of diagnostics allow developing an integrated psychodiagnostic conclusion with recommendations. The article contains options of software architecture for the given method.

  13. Development of tools, technologies, and methodologies for imaging sensor testing

    Science.gov (United States)

    Lowry, H.; Bynum, K.; Steely, S.; Nicholson, R.; Horne, H.

    2013-05-01

    Ground testing of space- and air-borne imaging sensor systems is supported by Vis-to-LWIR imaging sensor calibration and characterization, as well as hardware-in-the-loop (HWIL) simulation with high-fidelity complex scene projection to validate sensor mission performance. To accomplish this successfully, there must be the development of tools, technologies, and methodologies that are used in space simulation chambers for such testing. This paper provides an overview of such efforts being investigated and implemented at Arnold Engineering Development Complex (AEDC).

  14. Dissemination of CERN's Technology Transfer: Added Value from Regional Transfer Agents

    Science.gov (United States)

    Hofer, Franz

    2005-01-01

    Technologies developed at CERN, the European Organization for Nuclear Research, are disseminated via a network of external technology transfer officers. Each of CERN's 20 member states has appointed at least one technology transfer officer to help establish links with CERN. This network has been in place since 2001 and early experiences indicate…

  15. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Schatzinger, Viola [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Chapman, Kathy [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Lovendahl, Kristi [Petroleum Tech. Transfer Council, Tulsa, OK (United States)

    2014-09-30

    The Petroleum Technology Transfer Council (PTTC) is a unique not-for-profit network that focuses on transferring Exploration and Production (E&P) technology to the domestic oil and natural gas producing industry. PTTC connects producers, technology providers and innovators, academia, research and development (R&D) consortiums and governments. Local affordable workshops delivered by Regional Lead Organizations (RLOs), which are typically a university or geological survey, are a primary tool. PTTC also maintains a website network, issues a national newsletter, provides a column in a major trade publication, and exhibits at major industry events. It also encourages industry to ask technology-related questions, striving to find relevant answers that will save questioners significant time. Working since late 1993, the PTTC network has a proven track record of providing industry with technology insights they can apply. Volunteers at the regional and national level provide key guidance regarding where to focus technical effort and help connect PTTC with industry. At historical funding levels, PTTC had been able to hold well more than 100 workshops per year, drawing 6,000+ attendees. As funding decreased in the early 2000s, the level of activity decreased and PTTC sought a merger with the American Association of Petroleum Geologists (AAPG), becoming an AAPG-managed organization at the start of FY08. This relationship with AAPG was terminated by mutual consent in May 2011 and PTTC once again operates independently. Chris Hall, California continued to serve as Chairman of the Board of Directors until December 2013. At the time PTTC reorganized into a RLO led organization with Mary Carr and Jeremy Viscomi as co-Executive Directors. Jerry Anderson became the Chairman of the PTTC Board of Directors and Chris Hall continues to serve on the Board. Workshop activity stabilized at 55-65 workshops per year averaging 3,100 attendees. FY14 represented the fifth year in a multi

  16. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

  17. Auto-disable syringes for immunization: issues in technology transfer.

    Science.gov (United States)

    Lloyd, J S; Milstien, J B

    1999-01-01

    WHO and its partners recommend the use of auto-disable syringes, "bundled" with the supply of vaccines when donor dollars are used, in all mass immunization campaigns, and also strongly advocate their use in routine immunization programmes. Because of the relatively high price of auto-disable syringes, WHO's Technical Network for Logistics in Health recommends that activities be initiated to encourage the transfer of production technology for these syringes as a means of promoting their use and enhancing access to the technology. The present article examines factors influencing technology transfer, including feasibility, corporate interest, cost, quality assurance, intellectual property considerations, and probable time frames for implementation. Technology transfer activities are likely to be complex and difficult, and may not result in lower prices for syringes. Guidelines are offered on technology transfer initiatives for auto-disable syringes to ensure the quality of the product, the reliability of the supply, and the feasibility of the technology transfer activity itself.

  18. How technology transfer issues are managed

    Energy Technology Data Exchange (ETDEWEB)

    Sink, C.H. [Dept. of Energy, Washington, DC (United States); Easley, K.R. [Waste Policy Inst. (United States)

    1991-12-31

    In 1989, Secretary of Energy James Watkins made a commitment to accelerate DOE compliance with all applicable laws and standards aimed at protecting human health and the environment. At a minimum, this pledge requires the remediation of the 1989 inventory of chemical, radioactive, and mixed wastes at DOE production sites by 2019. The 1989 Complex inventory consisted of more than 3,700 sites, encompassing more than 26,000 acres contaminated with radioactive, hazardous, and mixed wastes. In addition, over 500 surplus sites are awaiting decontamination and decommissioning (D and D), and approximately 5,000 peripheral properties have contaminated soils (e.g., uranium tailings). Moreover, these problems exist at both inactive sites, where the primary focus is on environmental restoration, and at active sites, where the major emphasis is on improved waste management techniques. Although some of DOE`s problems are considered unique due to radioactivity, most forms of contamination resident in the Complex are not; rather, contaminants such as waste chemicals (e.g., inorganics), organics (e.g., fuels and solvents), halogenated organics (e.g., PCBs) and heavy metals commonly result in conventional industrial processes. Although certain other forms of contamination are more unique to DOE operations (e.g., radioactive materials, explosives, and pyrophorics), they are not exclusive to DOE. As DOE develops innovative solutions to these and related waste problems, it is imperative that technology systems and lessons learned be transferred from DOE sites and its R and D laboratories to private industry to maximize the nation`s return on environmental management technology investments.

  19. OPTIMIZING OUTCOME IN THE UNIVERSITY-INDUSTRY TECHNOLOGY TRANSFER PROJECTS

    Directory of Open Access Journals (Sweden)

    Hamed ALAVI

    2016-04-01

    Full Text Available Transferring inventions of academic scientists to private enterprises for the purpose of commercialization is long known as University-Industry (firm Technology Transfer While the importance of this phenomenon is simultaneously raising in public and private sector, only a part of patented academic inventions succeed in passing the process of commercialization. Despite the fact that formal Technology Transfer process and licencing of patented innovations to third party is the main legal tool for safeguarding rights of academic inventors in commercialization of their inventions, it is not sufficient for transmitting tacit knowledge which is necessary in exploitation of transferred technology. Existence of reciprocal and complementary relations between formal and informal technology transfer process has resulted in formation of different models for university-industry organizational collaboration or even integration where licensee firms keep contact with academic inventors after gaining legal right for commercialization of their patented invention. Current paper argues that despite necessity for patents to legally pass the right of commercialization of an invention, they are not sufficient for complete knowledge transmission in the process of technology transfer. Lack of efficiency of formal mechanism to end the Technology Transfer loop makes an opportunity to create innovative interpersonal and organizational connections among patentee and licensee company. With emphasize on need for further elaboration of informal mechanisms as critical and underappreciated aspect of technology transfer process, article will try to answer the questions of how to optimize knowledge transmission process in the framework of University-Industry Technology Transfer Projects? What is the theoretical basis for university-industry technology transfer process? What are organization collaborative models which can enhance overall performance by improving transmission of

  20. [Nasal submicron emulsion of Scutellariae Radix extract preparation technology research based on phase transfer of solute technology].

    Science.gov (United States)

    Shi, Ya-jun; Shi, Jun-hui; Chen, Shi-bin; Yang, Ming

    2015-07-01

    Based on the demand of nasal drug delivery high drug loadings, using the unique phase transfer of solute, integrating the phospholipid complex preparation and submicron emulsion molding process of Scutellariae Radix extract, the study obtained the preparation of the high drug loadings submicron emulsion of Scutellariae Radix extract. In the study of drug solution dispersion method, the uniformity of drug dispersed as the evaluation index, the traditional mixing method, grinding, homogenate and solute phase transfer technology were investigated, and the solute phase transfer technology was adopted in the last. With the adoption of new technology, the drug loading capacity reached 1.33% (phospholipid complex was 4%). The drug loading capacity was improved significantly. The transfer of solute method and timing were studied as follows,join the oil phase when the volume of phospholipid complex anhydrous ethanol solution remaining 30%, the solute phase transfer was completed with the continued recycling of anhydrous ethanol. After drug dissolved away to oil phase, the preparation technology of colostrum was determined with the evaluation index of emulsion droplet form. The particle size of submicron emulsion, PDI and stability parameters were used as evaluation index, orthogonal methodology were adopted to optimize the submicron emulsion ingredient and main influential factors of high pressure homogenization technology. The optimized preparation technology of Scutellariae Radix extract nasal submicron emulsion is practical and stable.

  1. Introduction to the workshop on technology transfer in software engineering

    NARCIS (Netherlands)

    Harrison, Warren; Wieringa, Roelf J.

    The goal of the Workshop on Technology Transfer in Software Engineering is to increase our understanding of technology transfer in software engineering, and to learn from successful case studies. We wanted to bring researchers and practitioners together to create an inventory of problems in software

  2. A southern region conference on technology transfer and extension

    Science.gov (United States)

    Sarah F. Ashton; William G. Hubbard; H. Michael Rauscher

    2009-01-01

    Forest landowners and managers have different education and technology transfer needs and preferences. To be effective it is important to use a multi-faceted science delivery/technology transfer program to reach them. Multi-faceted science delivery programs can provide similar content over a wide range of mechanisms including printed publications, face-to-face...

  3. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact

    Science.gov (United States)

    Fraser, John

    2010-01-01

    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  4. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact

    Science.gov (United States)

    Fraser, John

    2010-01-01

    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  5. Technology transfer? The rise of China and India in green technology sectors

    DEFF Research Database (Denmark)

    Lema, Rasmus; Lema, Adrian

    2012-01-01

    International technology transfer is central to the debate about how to curb the carbon emissions from rapid economic growth in China and India. But given China and India's great progress in building innovation capabilities and green industries, how relevant is technology transfer...... transfer in these sectors in China and India. We argue that the emphasis should shift from transfer of mitigation technology to international collaboration and local innovation...

  6. Toward equality of biodiversity knowledge through technology transfer.

    Science.gov (United States)

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a

  7. Impact on technology transfer innovation processes: Ukrainian and foreign experience

    Directory of Open Access Journals (Sweden)

    Halyna Nahornyak

    2013-11-01

    Full Text Available The paper identified and reasonably effective mechanisms for technology transfer in Ukraine and several foreign countries. The analysis of the national and international technology transfer. It is shown that based on the experience of the transfer of innovative technologies in foreign countries, the priority areas of the state scientific and technical policy is to create conditions for innovation-based economic development and structural adjustment of industrial and technological sectors. The development of legislation affecting science and technology and innovation activity in Ukraine. Comparison of statistical data on the innovation process in the European Union and Ukraine. Investigated the technical and technological production in Ukraine, as well as the factors that hinder the development of innovations in the industry. Found effective mechanisms for technology transfer in foreign countries (USA, Germany, Japan, Russia. The role of technology transfer centres, public-private partnerships, long-term leasing of equipment, government contracts, the introduction of tax incentives to enterprises that carry out upgrading and development of new technologies. An effective means of technology transfer that will enhance innovation processes of enterprises in the innovation economy type.

  8. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  9. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  10. A methodology to investigate the usage of educational technologies on tablets in schools

    NARCIS (Netherlands)

    Molenaar, I.; Schaik, A. van

    2016-01-01

    This chapter introduces a methodology to study how educational technologies on tablets are being used in schools. Specifically it investigates how different educational technologies influence the organization of the learning environment and the way teachers teach. Educational technologies differ gre

  11. HPCC technology awareness program: Improved economic competitiveness through technology awareness, transfer and application. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    A need has been defined by Congress for the DOE National Laboratories to participate in various dual use and technology transfer programs. This requirement has spawned several technology transfer approaches at the DOE laboratories. These programs are designed to encourage large and small business to bring their problems and needs forward, and to allow the labs to transfer effective high performance computing technology to the commercial marketplace. This IG Technologies grant from the DOE was undertaken to address the issues and problems associated with technology transfer between the DOE National Laboratories and commercial industry. The key focus is to gain an understanding of how DOE and industry independently and collectively view the requirements and the missing elements that could allow DOE to facilitate HPCC technology transfer. At issue is HPCC Technology Transfer for the High Performance Computing industry and its relationship to the DOE National Laboratories. Several observations on this are addressed. The issue of a ``Technology Utilization Gap`` between the National Laboratories and Independent Software Vendors is discussed. This study addressed the HPCC Technology Transfer plans of all six DOE National Labs. Study team members briefed numerous industrial users of HPCC technology as to the feasibility of technology transfer for various applications. Significant findings of the effort are that the resistance to technology transfer is much higher than anticipated for both the National Labs and industry. Also, HPCC Technology Transfer is observed to be a large company`s dominion. Small businesses have a difficult time in addressing the requirements of technology transfer using Cooperative Research and Development Agreements (CRADA`s). Large businesses and the DOE National Labs however, often have requirements and objectives which are at cross purposes, making effective technology transfer difficult.

  12. [Technology transfer to the facility for production of medicines].

    Science.gov (United States)

    Beregovykh, V V; Spitskiĭ, O P

    2013-01-01

    Innovation development of pharmaceutical industry is close connected to knowledge transfer going to each subsequent life cycle phase of medicinal product. Formal regulation of technology and knowledge transfer is essential for achievement high quality during production of medicines designed during development phase. Conceptual tools, approaches and requirements are considered that are necessary for knowledge and technology transfer across all the life cycle phases of medicines. They are based on scientific knowledge of medicinal products and take into account both international and Russian regulations in the area of development, production and distribution of medicines. Importance of taking into consideration all aspects related to quality of medicines in all steps of technology transfer is shown. An approach is described for technology transfer organization for Russian pharmaceutical manufacturers based on international guides in this area.

  13. A new hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer

    Science.gov (United States)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    This paper describes new and recent advances in the development of a hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer problems. The transfinite element methodology, while retaining the modeling versatility of contemporary finite element formulations, is based on application of transform techniques in conjunction with classical Galerkin schemes and is a hybrid approach. The purpose of this paper is to provide a viable hybrid computational methodology for applicability to general transient thermal analysis. Highlights and features of the methodology are described and developed via generalized formulations and applications to several test problems. The proposed transfinite element methodology successfully provides a viable computational approach and numerical test problems validate the proposed developments for conduction/convection/radiation thermal analysis.

  14. A new hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer

    Science.gov (United States)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    This paper describes new and recent advances in the development of a hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer problems. The transfinite element methodology, while retaining the modeling versatility of contemporary finite element formulations, is based on application of transform techniques in conjunction with classical Galerkin schemes and is a hybrid approach. The purpose of this paper is to provide a viable hybrid computational methodology for applicability to general transient thermal analysis. Highlights and features of the methodology are described and developed via generalized formulations and applications to several test problems. The proposed transfinite element methodology successfully provides a viable computational approach and numerical test problems validate the proposed developments for conduction/convection/radiation thermal analysis.

  15. The Evolutionary Business Valuation of Technology Transfer

    NARCIS (Netherlands)

    Leloux, M.S.; van der Sijde, Peter; Groen, Arend J.; Oakey, R.; Groen, A.; Cook, G.; van der Sijde, P.

    2009-01-01

    Conventional models for the business valuation of technology are usually financially oriented and only measure economic value. Several of these financially oriented approaches have been reviewed by Leloux and Groen (2007). Current monetary (financial) valuation methods for technology include

  16. Technology Transfer at CERN (english version)

    CERN Multimedia

    Marcastel, F

    2006-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  17. Technology Transfer at CERN (french version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    Abrief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  18. Food irradiation: Technology transfer in Asia, practical experiences

    Science.gov (United States)

    Kunstadt, Peter; Eng, P.

    1993-10-01

    Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the succesful conclusion of the world's first complete food irradiation technology transfer project.

  19. Exploring the influence of technology size on the duration of production technology transfer implementation

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2005-01-01

    This study explores the relationship between technology size and installation time in technology transfer projects. A literature study revealed that the installation time has so far not received much attention. Current studies address the effectiveness of technology transfer rather than efficiency.

  20. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  1. Advancing Green Economy through Technology Transfer

    African Journals Online (AJOL)

    This qualitative study explores the transfer of renewable energy ... Based on experiences from the projects, a literature review, site visits and ... generated sustainable ideas, and disseminating information on successes and lessons learnt.

  2. A generic model-based methodology for quantification of mass transfer limitations in microreactors

    DEFF Research Database (Denmark)

    Van Daele, Timothy; Fernandes del Pozo, David; Van Hauwermeiren, Daan

    2016-01-01

    Microreactors are becoming more popular in the biocatalytic field to speed up reactions and thus achieve process intensification. However, even these small-scale reactors can suffer from mass transfer limitations. Traditionally, dimensionless numbers such as the second Damköhler number are used...... to determine whether the reaction is either kinetically or mass transfer limited. However, these dimensionless numbers only give a qualitative measure of the extent of the mass transfer limitation, and are only applicable to simple reactor configurations. In practice, this makes it difficult to rapidly...... quantify the importance of such mass transfer limitations and compare different reactor configurations. This paper presents a novel generic methodology to quantify mass transfer limitations. It was applied to two microreactor configurations: a microreactor with immobilised enzyme at the wall and a Y...

  3. Double-layered cell transfer technology for bone regeneration.

    Science.gov (United States)

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-09-14

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called "cell transfer technology", enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration.

  4. Creation of a European network dedicated to technology transfer

    CERN Multimedia

    2008-01-01

    The CERN Council recently approved the creation of a technology transfer network, whose aim will be to improve European industry’s access to the technologies developed by the particle physics community in the Member States. The gas detectors for the TOTEM experiment (GEM) offer potential for fruitful collaboration within the framework of the TT network. Many other technologies are going down the same road.The desire to set up a technology transfer network follows on from the European Strategy for Particle Physics, approved by the CERN Council on 14 July 2006 in Lisbon. In this context, special emphasis was laid on European industry’s participation in the implementation of particle physics programmes and, in particular, its access to the new technologies developed by the scientific community. It was recognised that effort needs to be put into improving the efficiency of technology transfer...

  5. High efficient wireless power transfer devices transcend the distance constraint: methodology inspired from transformation optics

    CERN Document Server

    Zhu, Lin; Ma, Hongru

    2015-01-01

    We introduce a methodology to design high efficient wireless power transfer(WPT) devices inspired by transformation optics theory, and calculate its transmission power and efficiency by the scattering theory for electromagnetic (EM) wave. Using the series expansion methods, we demonstrate the WPT devices' transmission efficiency can be significantly improved by covered with super scatterer. The comparison with those results obtained by COMSOL shows the series expansion method is effective and expected to deal with long-distance transfer problem. We present some examples to exam our methodology, and showed how WPT devices' efficiency is significantly improved as our expectation. The transfer distances of such WPT devices are several meters and can be widely extended by regulating its parameters.

  6. Using Six Sigma methodology to reduce patient transfer times from floor to critical-care beds.

    Science.gov (United States)

    Silich, Stephan J; Wetz, Robert V; Riebling, Nancy; Coleman, Christine; Khoueiry, Georges; Abi Rafeh, Nidal; Bagon, Emma; Szerszen, Anita

    2012-01-01

    In response to concerns regarding delays in transferring critically ill patients to intensive care units (ICU), a quality improvement project, using the Six Sigma process, was undertaken to correct issues leading to transfer delay. To test the efficacy of a Six Sigma intervention to reduce transfer time and establish a patient transfer process that would effectively enhance communication between hospital caregivers and improve the continuum of care for patients. The project was conducted at a 714-bed tertiary care hospital in Staten Island, New York. A Six Sigma multidisciplinary team was assembled to assess areas that needed improvement, manage the intervention, and analyze the results. The Six Sigma process identified eight key steps in the transfer of patients from general medical floors to critical care areas. Preintervention data and a root-cause analysis helped to establish the goal transfer-time limits of 3 h for any individual transfer and 90 min for the average of all transfers. The Six Sigma approach is a problem-solving methodology that resulted in almost a 60% reduction in patient transfer time from a general medical floor to a critical care area. The Six Sigma process is a feasible method for implementing healthcare related quality of care projects, especially those that are complex. © 2011 National Association for Healthcare Quality.

  7. Japan acts to speed technology transfer from universities

    CERN Multimedia

    Saegusa, A

    1999-01-01

    A Japanese law will take effect in the autumn to promote technology transfer from universities and laboratories. The new measures aim to encourage collaborations with the commercial sector and allow industrial research partners to retain title to inventions (1 page).

  8. Collaborating with EPA through the Federal Technology Transfer Act

    Science.gov (United States)

    Under the Federal Technology Transfer Act (FTTA), EPA can collaborate with external parties on research projects, and share research materials. Learn more about the types of partnerships the EPA offers.

  9. Technology transfer in the space sector: an international perspective.

    Science.gov (United States)

    Hertzfeld, Henry R

    2002-12-01

    This article is an introduction to four articles in this issue, all related to the different policy objectives and approaches of technology transfer in space programs run by the United States, the European Space Agency, Canada, and Russia.

  10. Overcoming Barriers to the Transfer and Diffusion of Climate Technologies

    DEFF Research Database (Denmark)

    Nygaard, Ivan; Hansen, Ulrich Elmer

    This guidebook provides practical and operational guidance on how to assess and overcome barriersfacing the transfer and diffusion of technologies for climate change mitigation and adaptation.The guidebook is designed to support the analysis of specific technologies, rather than pursuing asectoral...... (e.g. transport) or technology group (e.g. renewable energy) approach.Given that there is no single solution to enhancing technology transfer and diffusion policies needbe tailored to country-specific context and interests. Therefore, the guidebook presents a flexibleapproach, identifying various...

  11. special issue: Technology transfer in United States universities

    OpenAIRE

    Ann-Charlotte Fridh; Bo Carlsson

    2002-01-01

    This paper examines the role of offices of technology transfer (OTT) in 12 U.S. universities in 1998 in commercializing research results in the form of patents, licenses, and start-ups of new companies. We study the organization and place of OTTs within the university structure, the process of technology transfer, and the staffing and funding of the office. Data were collected through a mail questionnaire followed up through telephone interviews. We also conducted a statistical analysis of da...

  12. Determination of Royalty Rates in the International Technology Transfer Contracts

    OpenAIRE

    Kapitsa, Yu.; Aralova, N.

    2015-01-01

    The existing approaches used in determination of the royalty rates for technology transfer contracts and based on the experience of research institutions of the National Academy of Sciences of Ukraine, research organizations and universities in Europe and USA were reviewed. The analysis of the existing rates has been made as well as recommendations on determination of the royalty rates for technology transfer contracts between research institutions and foreign and domestic partners have been ...

  13. Determination of Royalty Rates in the International Technology Transfer Contracts

    Directory of Open Access Journals (Sweden)

    Kapitsa, Yu.

    2015-03-01

    Full Text Available The existing approaches used in determination of the royalty rates for technology transfer contracts and based on the experience of research institutions of the National Academy of Sciences of Ukraine, research organizations and universities in Europe and USA were reviewed. The analysis of the existing rates has been made as well as recommendations on determination of the royalty rates for technology transfer contracts between research institutions and foreign and domestic partners have been worked out.

  14. Climate Change and Requirement of Transfer of Environmentally Sound Technology

    DEFF Research Database (Denmark)

    of international environmental debates. This thesis addresses, firstly, the possible methods of technology transfer and secondly, how current international environmental laws play its role to facilitate the transfer. Accordingly, I have focused on the concerned provisions of Kyoto Protocol and its subsequent...

  15. International Water and Sanitation Technology Transfers, Experiences from Europe

    NARCIS (Netherlands)

    Krozer, Yoram; Hophmayer-Tockich, Sharon

    2016-01-01

    Possibilities of transferring cost-effective, innovative water and wastewater technologies on public water markets are discussed based on experiences of the Dutch water business cluster in the Central and Eastern European Countries. These transfers evolved under suitable conditions, among others fin

  16. International water and sanitation technology transfers, experiences from Europe

    NARCIS (Netherlands)

    Krozer, Yoram; Hophmayer Tokich, Sharon

    2016-01-01

    Possibilities of transferring cost-effective, innovative water and wastewater technologies on public water markets are discussed based on experiences of the Dutch water business cluster in the Central and Eastern European Countries. These transfers evolved under suitable conditions, among others fin

  17. Fruit Fly Liquid Larval Diet Technology Transfer and Update

    Science.gov (United States)

    Since October 2006, USDA-ARS has been implementing a fruit fly liquid larval diet technology transfer, which has proceeded according to the following steps: (1) Recruitment of interested groups through request; (2) Establishment of the Material Transfer Agreement (MTA) with ARS; (3) Fruit fly liquid...

  18. 76 FR 11498 - Submission for OMB Review; Comment Request; Generic Submission of Technology Transfer Center (TTC...

    Science.gov (United States)

    2011-03-02

    ... Submission of Technology Transfer Center (TTC) External Customer Satisfaction Surveys (NCI) SUMMARY: Under... control number. Proposed Collection: Title: Generic Submission of Technology Transfer Center (TTC... collaborations and alliances with the NIH. The needs of external technology transfer customers and stakeholders...

  19. 'Emerging technologies for the changing global market' - Prioritization methodology for chemical replacement

    Science.gov (United States)

    Cruit, Wendy; Schutzenhofer, Scott; Goldberg, Ben; Everhart, Kurt

    1993-01-01

    This project served to define an appropriate methodology for effective prioritization of technology efforts required to develop replacement technologies mandated by imposed and forecast legislation. The methodology used is a semiquantitative approach derived from quality function deployment techniques (QFD Matrix). This methodology aims to weight the full environmental, cost, safety, reliability, and programmatic implications of replacement technology development to allow appropriate identification of viable candidates and programmatic alternatives. The results will be implemented as a guideline for consideration for current NASA propulsion systems.

  20. Societal and economic valuation of technology-transfer deals

    Science.gov (United States)

    Holmes, Joseph S., Jr.

    2009-09-01

    The industrial adoption of concepts such as open innovation brings new legitimacy to activities technology-transfer professionals have conducted for over 20 years. This movement highlights the need for an increased understanding of the valuation of intellectual property (IP) and technology-transfer deals. Valuation, though a centerpiece of corporate finance, is more challenging when applied to the inherent uncertainty surrounding innovation. Technology-transfer professionals are often overwhelmed by the complexity and data requirements of valuation techniques and skeptical of their applicability to and utility for technology transfer. The market longs for an approach which bridges the gap between valuation fundamentals and technology-transfer realities. This paper presents the foundations of a simple, flexible, precise/accurate, and useful framework for considering the valuation of technology-transfer deals. The approach is predicated on a 12-factor model—a 3×4 value matrix predicated on categories of economic, societal, and strategic value. Each of these three categories consists of three core subcategories followed by a fourth "other" category to facilitate inevitable special considerations. This 12-factor value matrix provides a framework for harvesting data during deals and for the application of best-of-breed valuation techniques which can be employed on a per-factor basis. Future work will include framework implementation within a database platform.

  1. Testing Technology Transfer Hypotheses in GIS Environments Using a Case Study Approach (93-8)

    OpenAIRE

    Onsrud, Harlan J.; Jeffrey K. Pinto; Azad, Bijan

    1993-01-01

    In late 1990 and early 1991, a methodological framework was developed for testing technology transfer hypotheses within GIS operational environments. The paper reporting this work was titled "Case Study Research Methods for Geographic Information Systems" (Onsrud, Pinto, and Azad 1992). This report gathers together (1) the original foundation paper used as the basis for the case study research project, (2) the call for participation that includes a listing of the thirty hypotheses for which "...

  2. 2017 Technology Showcase | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The 2017 Technology Showcase is an inaugural, half-day event that will showcase technologies developed by the National Cancer Institute's Center for Cancer Research (CCR) and the Frederick National Laboratory for Cancer Research (FNLCR). The goal of the Showcase is to encourage startup company formation, technology licensing, and public-private collaborations. It will introduce the Frederick community to the regional technology development stakeholders, as well as highlight available resources. WHO SHOULD ATTEND: Prospective investors, established companies, educators, those looking to commercialize technologies, and all interested stakeholders. | [google6f4cd5334ac394ab.html

  3. A Program Office Guide to Technology Transfer

    Science.gov (United States)

    1988-11-01

    maintenance is emphasized, interchan- tions. Second source component verification geability requirements are pushed lower to the activities often are...technology tiansfer risk, the program office considers the following: 10.7 THE TECNOLOGY TRANSFERPLAN * Schedule intensity and concurrency The

  4. Verification of Methodology for Determination of Deposit Thickness on Heat Transfer Surface of Natural Gas Coolers

    Directory of Open Access Journals (Sweden)

    Miroslav PŘÍHODA

    2010-12-01

    Full Text Available The paper describes briefly an original methodology for the determination of the deposit thickness on the inside heat transfer surface of natural gas cooler and a procedure of its verification at the cooler CH_R of the booster station KS01 in Velké Kapušany. The methodology is based on the measurement of the degree of the gas cooling. It has the universal validity and can be used to determine the thickness of the deposits of all types of coolers working on any booster station.

  5. Florida commercial space initiatives and technology transfer mechanisms

    Science.gov (United States)

    Moore, Roger L.

    1989-01-01

    This paper discusses commercial space policy for the State of Florida in the context of state initiatives for general technology and economic development. The paper also compares Florida's commercial space initiatives to national space policies and describes mechanisms for transferring space related technologies and research to Florida businesses for subsequent development and commercialization.

  6. Techno-Nationalism and the Construction of University Technology Transfer

    Science.gov (United States)

    Sá, Creso; Kretz, Andrew; Sigurdson, Kristjan

    2013-01-01

    Our historical study of Canada's main research university illuminates the overlooked influence of national identities and interests as forces shaping the institutionalization of technology transfer. Through the use of archival sources we trace the rise and influence of Canadian technological nationalism--a response to Canada's perceived…

  7. The Technology Transfer of the ICT Curriculum in Taiwan

    Science.gov (United States)

    Huang, Teng

    2015-01-01

    Focusing on the process of "technology transfer", this paper aims to critically examine the production and usage of the information and communication technology (ICT) curriculum, and discusses its possibilities. It is found that the goals in both of the two stages of the ICT curriculum in Taiwan were rather "rhetorical". Three…

  8. Techno-Nationalism and the Construction of University Technology Transfer

    Science.gov (United States)

    Sá, Creso; Kretz, Andrew; Sigurdson, Kristjan

    2013-01-01

    Our historical study of Canada's main research university illuminates the overlooked influence of national identities and interests as forces shaping the institutionalization of technology transfer. Through the use of archival sources we trace the rise and influence of Canadian technological nationalism--a response to Canada's perceived dependency…

  9. Techno-Nationalism and the Construction of University Technology Transfer

    Science.gov (United States)

    Sá, Creso; Kretz, Andrew; Sigurdson, Kristjan

    2013-01-01

    Our historical study of Canada's main research university illuminates the overlooked influence of national identities and interests as forces shaping the institutionalization of technology transfer. Through the use of archival sources we trace the rise and influence of Canadian technological nationalism--a response to Canada's perceived dependency…

  10. The Technology Transfer of the ICT Curriculum in Taiwan

    Science.gov (United States)

    Huang, Teng

    2015-01-01

    Focusing on the process of "technology transfer", this paper aims to critically examine the production and usage of the information and communication technology (ICT) curriculum, and discusses its possibilities. It is found that the goals in both of the two stages of the ICT curriculum in Taiwan were rather "rhetorical". Three…

  11. University Technology Transfer Factors as Predictors of Entrepreneurial Orientation

    Science.gov (United States)

    Kirkman, Dorothy M.

    2011-01-01

    University technology transfer is a collaborative effort between academia and industry involving knowledge sharing and learning. Working closely with their university partners affords biotechnology firms the opportunity to successfully develop licensed inventions and gain access to novel scientific and technological discoveries. These factors may…

  12. Attuning speech-enabled interfaces to user and context for inclusive design: Technology, methodology and practice

    NARCIS (Netherlands)

    Neerincx, M.A.; Cremers, A.H.M.; Kessens, J.M.; Leeuwen, D.A. van; Truong, K.P.

    2009-01-01

    This paper presents a methodology to apply speech technology for compensating sensory, motor, cognitive and affective usage difficulties. It distinguishes (1) an analysis of accessibility and technological issues for the identification of context-dependent user needs and corresponding opportunities

  13. Attuning speech-enabled interfaces to user and context for inclusive design: Technology, methodology and practice

    NARCIS (Netherlands)

    Neerincx, M.A.; Cremers, A.H.M.; Kessens, J.M.; Leeuwen, D.A. van; Truong, K.P.

    2009-01-01

    This paper presents a methodology to apply speech technology for compensating sensory, motor, cognitive and affective usage difficulties. It distinguishes (1) an analysis of accessibility and technological issues for the identification of context-dependent user needs and corresponding opportunities

  14. Technology Transfer: A Qualitative Analysis of Air Force Office of Research and Technology Applications

    Science.gov (United States)

    2006-06-01

    branch. Two, attending Department of Defense Technology Transfer Integrated Planning Team workshops. Three, attending two Federal Laboratory...Question 12 What database tools do you use to Perform ORTA duties? The number one database tool used was the Defense Technology Transfer Information

  15. GPR Technologies and Methodologies in Italy: A Review

    Science.gov (United States)

    Benedetto, Andrea; Frezza, Fabrizio; Manacorda, Guido; Massa, Andrea; Pajewski, Lara

    2014-05-01

    GPR techniques and technologies have been subject of intense research activities at the Italian level in the last 15 years because of their potential applications specifically to civil engineering. More in detail, several innovative approaches and models have been developed to inspect road pavements to measure the thickness of their layers as well as to diagnose or prevent damage. Moreover, new frontiers in bridge inspection as well as in geotechnical applications such as slides and flows have been investigated using GPR. From the methodological viewpoint, innovative techniques have been developed to solve GPR forward-scattering problems, as well to locate and classify subsurface targets in real-time and to retrieve their properties through multi-resolution strategies, and linear and non-linear methodologies. Furthermore, the application of GPR and other non-destructive testing methods in archaeological prospecting, cultural heritage diagnostics, and in the localization and detection of vital signs of trapped people has been widely investigated. More recently, new theoretical and empirical paradigms regarding water moisture evaluation in various porous media and soil characterization have been published as the results of long terms research activities. Pioneer studies are also currently under development with the scope to correlate GPR measurement with mechanical characteristics of bound and unbound construction materials. In such a framework, this abstract will be aimed at reviewing some of the most recent advances of GPR techniques and technologies within the Italian industrial and academic communities [also including their application within international projects such as FP7 ISTIMES (http://www.istimes.eu)], and at envisaging some of the most promising research trends currently under development. Acknowledgment - This work was supported by COST Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' References [1] M. Balsi, S. Esposito, F

  16. Innovative methodologies and technologies for thermal energy release measurement.

    Science.gov (United States)

    Marotta, Enrica; Peluso, Rosario; Avino, Rosario; Belviso, Pasquale; Caliro, Stefano; Carandente, Antonio; Chiodini, Giovanni; Mangiacapra, Annarita; Petrillo, Zaccaria; Sansivero, Fabio; Vilardo, Giuseppe; Marfe, Barbara

    2016-04-01

    Volcanoes exchange heat, gases and other fluids between the interrior of the Earth and its atmosphere influencing processes both at the surface and above it. This work is devoted to improve the knowledge on the parameters that control the anomalies in heat flux and chemical species emissions associated with the diffuse degassing processes of volcanic and hydrothermal zones. We are studying and developing innovative medium range remote sensing technologies to measure the variations through time of heat flux and chemical emissions in order to boost the definition of the activity state of a volcano and allowing a better assessment of the related hazard and risk mitigation. The current methodologies used to measure heat flux (i.e. CO2 flux or temperature gradient) are either poorly efficient or effective, and are unable to detect short to medium time (days to months) variation trends in the heat flux. Remote sensing of these parameters will allow for measurements faster than already accredited methods therefore it will be both more effective and efficient in case of emergency and it will be used to make quick routine monitoring. We are currently developing a method based on drone-born IR cameras to measure the ground surface temperature that, in a purely conductive regime, is directly correlated to the shallow temperature gradient. The use of flying drones will allow to quickly obtain a mapping of areas with thermal anomalies and a measure of their temperature at distance in the order of hundreds of meters. Further development of remote sensing will be done through the use, on flying drones, of multispectral and/or iperspectral sensors, UV scanners in order to be able to detect the amount of chemical species released in the athmosphere.

  17. Advanced Manufacturing Technology: A Department of Energy technology transfer initiative

    Energy Technology Data Exchange (ETDEWEB)

    Steele, R.S. Jr.; Barkman, W.E.

    1990-02-01

    This paper describes a new initiative called the Advanced Manufacturing Technology (AMT) Program that is managed for the US Department of Energy (DOE) by Martin Marietta Energy Systems in Oak Ridge, Tennessee. The AMT Program seeks to assist the US manufacturing community regain some of the market share that it has lost to competiting companies in both Europe and the Far East. One key element to this program is the establishment of teaching and development facilities called manufacturing technology centers (MTCs) which will showcase unclassified DOE manufacturing technologies. This paper describes some of the precision flexible manufacturing system (PFMS) technology that is available through the Oak Ridge Y-12 Plant. This technology will be highlighted in the first of the MTCs that is being established. 4 figs.

  18. Standardized cost estimation for new technology (SCENT) - methodology and tool

    NARCIS (Netherlands)

    Ereev, S.Y.; Patel, M.K.

    2012-01-01

    This paper presents the development of a methodology and tool (called SCENT) to prepare preliminary economic estimates of the total production costs related to manufacturing in the process industries. The methodology uses the factorial approach – cost objects are estimated using factors and

  19. Uplifting developing communities through sustained technology transfer

    CSIR Research Space (South Africa)

    Mashiri, M

    2007-05-01

    Full Text Available feedback mechanisms to both the local Integrated Development Plan and the Provincial Growth and Development Strategy, was able to navigate potential conflict areas such as negotiating acceptable wage rates [below minimum wage] with the community... to mobilize and galvanize the community around the benefits of the project, as well as to explain and to iron out potential mine fields, such as the level of funding available, wage rate and payment policy, technology issues and project implementation...

  20. 2017 Technology Showcase Presentations | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Presentations from the 2017 Technology Showcase by NIH Intramural Research Program scientists held at Frederick National Laboratories for Cancer Research on June 7, 2017. | [google6f4cd5334ac394ab.html

  1. Nuclear transfer technology in mammalian cloning.

    Science.gov (United States)

    Wolf, D P; Mitalipov, S; Norgren, R B

    2001-01-01

    The past several years have witnessed remarkable progress in mammalian cloning using nuclear transfer (NT). Until 1997 and the announcement of the successful cloning of sheep from adult mammary gland or fetal fibroblast cells, our working assumption was that cloning by NT could only be accomplished with relatively undifferentiated embryonic cells. Indeed, live offspring were first produced by NT over 15 years ago from totipotent, embryonic blastomeres derived from early cleavage-stage embryos. However, once begun, the progression to somatic cell cloning or NT employing differentiated cells as the source of donor nuclei was meteoric, initially involving differentiated embryonic cell cultures in sheep in 1996 and quickly thereafter, fetal or adult somatic cells in sheep, cow, mouse, goat, and pig. Several recent reviews provide a background for and discussion of these successes. Here we will focus on the potential uses of reproductive cloning along with recent activities in the field and a discussion concerning current interests in human reproductive and therapeutic cloning.

  2. Adaptation in the context of technology development and transfer

    DEFF Research Database (Denmark)

    Olhoff, Anne

    2015-01-01

    and transfer. It summarizes what technologies for adaptation are, how they relate to development, and what their role is in adaptation. It subsequently highlights a number of policy and research issues that could be important to inform future policy. The commentary has two key messages. First, it argues...... that informed policy decisions on technology development and transfer to enhance adaptation require systematic assessments of the findings in the theoretical and empirical literature. Second, in light of the potential for overlap between processes for adaptation and processes for technologies for adaptation......Starting from a summary of key developments under the United Nations Framework Convention on Climate Change (UNFCCC) related to adaptation and technologies, the commentary provides an initial review of the available literature relevant to adaptation in the context of technology development...

  3. A DYNAMICAL SYSTEM APPROACH IN MODELING TECHNOLOGY TRANSFER

    Directory of Open Access Journals (Sweden)

    Hennie Husniah

    2016-05-01

    Full Text Available In this paper we discuss a mathematical model of two parties technology transfer from a leader to a follower. The model is reconstructed via dynamical system approach from a known standard Raz and Assa model and we found some important conclusion which have not been discussed in the original model. The model assumes that in the absence of technology transfer from a leader to a follower, both the leader and the follower have a capability to grow independently with a known upper limit of the development. We obtain a rich mathematical structure of the steady state solution of the model. We discuss a special situation in which the upper limit of the technological development of the follower is higher than that of the leader, but the leader has started earlier than the follower in implementing the technology. In this case we show a paradox stating that the follower is unable to reach its original upper limit of the technological development could appear whenever the transfer rate is sufficiently high.  We propose a new model to increase realism so that any technological transfer rate could only has a positive effect in accelerating the rate of growth of the follower in reaching its original upper limit of the development.

  4. A case study of technology transfer: Cardiology

    Science.gov (United States)

    Schafer, G.

    1974-01-01

    Research advancements in cardiology instrumentation and techniques are summarized. Emphasis is placed upon the following techniques: (1) development of electrodes which show good skin compatibility and wearer comfort; (2) contourography - a real time display system for showing the results of EKGs; (3) detection of arteriosclerosis by digital computer processing of X-ray photos; (4) automated, noninvasive systems for blood pressure measurement; (5) ultrasonoscope - a noninvasive device for use in diagnosis of aortic, mitral, and tricuspid valve disease; and (6) rechargable cardiac pacemakers. The formation of a biomedical applications team which is an interdisciplinary team to bridge the gap between the developers and users of technology is described.

  5. Local R&D and Technology Transfers

    DEFF Research Database (Denmark)

    Aggarwal, Aradhna

    This study examines how inter-firm heterogeneities in technology modes and intensities are linked to ownership of firms in India, using a panel dataset of 2000 odd Bombay Stock Exchange listed firms for the period from 2003 to 2014 drawn from the PROWESS database of CMIE. For the analysis, foreign...... ownership is categorised according to the control exercisable by them as defined under the Companies’ Act of India. A comparative analysis of domestic and different categories of foreign firms was conducted at two time periods: the global boom period of 2004-2008 and post crisis period of 2008...

  6. MORE THAN MONEY: THE EXPONENTIAL IMPACT OF ACADEMIC TECHNOLOGY TRANSFER.

    Science.gov (United States)

    McDevitt, Valerie Landrio; Mendez-Hinds, Joelle; Winwood, David; Nijhawan, Vinit; Sherer, Todd; Ritter, John F; Sanberg, Paul R

    2014-11-01

    Academic technology transfer in its current form began with the passage of the Bayh-Dole Act in 1980, which allowed universities to retain ownership of federally funded intellectual property. Since that time, a profession has evolved that has transformed how inventions arising in universities are treated, resulting in significant impact to US society. While there have been a number of articles highlighting benefits of technology transfer, now, more than at any other time since the Bayh-Dole Act was passed, the profession and the impacts of this groundbreaking legislation have come under intense scrutiny. This article serves as an examination of the many positive benefits and evolution, both financial and intrinsic, provided by academic invention and technology transfer, summarized in Table 1.

  7. Technology transfer and technological learning through CERN's procurement activity

    CERN Document Server

    Autio, Erkko; Hameri, Ari-Pekka; CERN. Geneva

    2003-01-01

    This report analyses the technological learning and innovation benefits derived from CERN's procurement activity during the period 1997-2001. The base population of our study, the technology-intensive suppliers to CERN, consisted of 629 companies out of 6806 companies during the same period, representing 1197 MCHF in procurement. The main findings from the study can be summarized as follows: the various learning and innovation benefits (e.g., technological learning, organizational capability development, market learning) tend to occur together. Learning and innovation benefits appear to be regulated by the quality of the supplier's relationship with CERN: the greater the amount of social capital built into the relationship, the greater the learning and innovation benefits. Regardless of relationship quality, virtually all suppliers derived significant marketing reference benefits from CERN. Many corollary benefits are associated with procurement activity. As an example, as many as 38% of the respondents devel...

  8. NASA technology utilization applications. [transfer of medical sciences

    Science.gov (United States)

    1973-01-01

    The work is reported from September 1972 through August 1973 by the Technology Applications Group of the Science Communication Division (SCD), formerly the Biological Sciences Communication Project (BSCP) in the Department of Medical and Public Affairs of the George Washington University. The work was supportive of many aspects of the NASA Technology Utilization program but in particular those dealing with Biomedical and Technology Application Teams, Applications Engineering projects, new technology reporting and documentation and transfer activities. Of particular interest are detailed reports on the progress of various hardware projects, and suggestions and criteria for the evaluation of candidate hardware projects. Finally some observations about the future expansion of the TU program are offered.

  9. Some aspects of technology transfer and direct foreign investment

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, R.

    1978-05-01

    A model showing technology transfer to developing countries links questions of appropriations with the socio-economic reasons for technological change. The rate at which foreign capital is used is found to be directly related to after-tax profits. If the developing country raises taxes on foreign capital, the effect is to increase the proportion of domestic capital needed and to widen the technological gap between the two countries. The analysis also shows a higher gain from new techniques with increased demand volume and suggests large developing countries with similar capital to invest are more likely to generate intermediate technologies. 8 references.

  10. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned,...

  11. Contrasting Technology Integration and Traditional Methodology in Adult ESL Instruction

    Science.gov (United States)

    Kinser, Jeong-Lan

    2006-01-01

    The usage of technology in adult ESL classrooms needs to be examined as it is creating new opportunities and added challenges. The purpose of the study was to explore how technology was being used in such environment and what factors contributed as supports or hindrances to technology use. Interviews, questionnaires, and observations were used to…

  12. Emerging technologies and corporate culture at Microsoft: a methodological note.

    Science.gov (United States)

    Klein, David; Schmeling, James; Blanck, Peter

    2005-01-01

    This article explores factors important in the study and examination of corporate culture and change. The particular focus is on the technological methods used to conduct a study of accessible technology and corporate culture at Microsoft Corporation. Reasons for particular approaches are explained. Advantages and challenges of emerging technologies that store and retrieve information in the study of corporate culture are reviewed.

  13. Methodology of constructive technology assessment in health care

    NARCIS (Netherlands)

    Douma, Kirsten F.L.; Karsenberg, Kim; Hummel, Marjan J.M.; Bueno-de-Mesquita, Jolien M.; Harten, van Wim H.

    2007-01-01

    Objectives: Technologies in health care are evolving quickly, with new findings in the area of biotechnological and genetic research being published regularly. A health technology assessment (HTA) is often used to answer the question of whether the new technology should be implemented into clinical

  14. Low-carbon innovation and technology transfer in latecomer countries

    DEFF Research Database (Denmark)

    Lema, Rasmus; Lema, Adrian

    2016-01-01

    This paper examines the organizational arrangements for technology supply in solar photovoltaic projects in the Clean Development Mechanism (CDM). It shows that while lower middle-income countries typically import solar PV equipment into CDM projects, China, India and Thailand have begun to use new...... the future of the global climate regime. Technology transfer does not become less important as developing countries' capabilities mature, but the nature of technology transfer changes over time. This suggests a need to differentiate between countries at different levels of development. Lower middle-income...... countries may have greater needs for building technological capabilities whereas cooperative activities may be suitable for upper middle-income countries that already have capabilities to address climate change...

  15. Technology transfer from NASA to targeted industries, volume 2

    Science.gov (United States)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure.

  16. An inverse gas chromatographic methodology for studying gas-liquid mass transfer.

    Science.gov (United States)

    Paloglou, A; Martakidis, K; Gavril, D

    2017-01-13

    A novel methodology of reversed flow inverse gas chromatography (RF-IGC) is presented. It permits the simultaneous determination of mass transfer coefficients across the gas liquid interface as well as the respective solubility parameters and thermodynamic functions of dissolution of gases into liquids. The standard deviation of the experimentally determined parameters is estimated for first time, which combined with the successful comparison of the values of the present parameters with other literature ones ascertain the reliability of the methodology. Another novelty of the present work is that the chromatographic sampling of the physicochemical phenomena is done without performing the usual flow reversals procedure. Vinyl chloride monomer's (VCM) interaction with various composition liquid foods: orange juice, milk and olive oil was used as model system. The present transfer rates are controlled by the gas film at lower temperatures, but at higher temperatures the resistances in both films tend to become equal. The found liquid diffusivity values express the total mass transfer from the gas phase into the liquid's bulk and they decrease with rising temperature, as the solubilities of gases in liquids do. Solubility, expressed by Henry's law constant and the mean values of interfacial thickness are of the same order of magnitude to literature ones. From the thermodynamic point of view, VCM dissolution in all liquids is accompanied by significant heat release and it is a slightly non-spontaneous process, near equilibrium, while the entropy change values are negative. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Biomedical technology transfer. Applications of NASA science and technology

    Science.gov (United States)

    Harrison, D. C.

    1980-01-01

    Ongoing projects described address: (1) intracranial pressure monitoring; (2) versatile portable speech prosthesis; (3) cardiovascular magnetic measurements; (4) improved EMG biotelemetry for pediatrics; (5) ultrasonic kidney stone disintegration; (6) pediatric roentgen densitometry; (7) X-ray spatial frequency multiplexing; (8) mechanical impedance determination of bone strength; (9) visual-to-tactile mobility aid for the blind; (10) Purkinje image eyetracker and stabilized photocoalqulator; (11) neurological applications of NASA-SRI eyetracker; (12) ICU synthesized speech alarm; (13) NANOPHOR: microelectrophoresis instrument; (14) WRISTCOM: tactile communication system for the deaf-blind; (15) medical applications of NASA liquid-circulating garments; and (16) hip prosthesis with biotelemetry. Potential transfer projects include a person-portable versatile speech prosthesis, a critical care transport sytem, a clinical information system for cardiology, a programmable biofeedback orthosis for scoliosis a pediatric long-bone reconstruction, and spinal immobilization apparatus.

  18. Business Model Change Methodology: Applying New Technology in Organization: The Case of Mobile Technology in Learning Industry

    OpenAIRE

    Nastaran Hajiheydari; Payam Hanafizadeh

    2013-01-01

    The present study intends to design a methodology for examining the influence of modern information and communication technology on business models (BMs). Theoretical framework is mainly selected based on literature as well as consultation with expert focus groups. This methodology is validated by expert judgment and simulated as a real case applying system dynamics. The outcome of the survey includes a change methodology formulated in 5 phases and 37 activities. Not only has this study cover...

  19. Forecasting and Technology Management: Statistical Theory and Methodological Issues

    DEFF Research Database (Denmark)

    Madsen, Henning

    technology. The conclusion is that widespread awareness of the growing force of technology and increasing concern over its impact means that forecasting of technological development and consequences is absolutely essential in many managerial decision situations. Examples cover e.g. identification...... of directions and targets for a R and D project, monitoring of a given area by a public agency, and evaluation of the future competitive situation for a company. This paper gives a brief introduction to the field of technological forecasting especially in relation to the strategic planning process...... as the essential phase where decisions concerning introduction of new technology are taken in companies. It includes as well a description of the problems related to the marketing area and of methods applicable in practising technological forecasting....

  20. 77 FR 46909 - Small Business Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR...

    Science.gov (United States)

    2012-08-06

    ... Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR) Program Policy Directives... Small Business Innovation Research (SBIR) and Small Business Technology Transfer Program (STTR) Policy... technology@sba.gov . SUPPLEMENTARY INFORMATION: I. Background Information SBA is publishing Policy Directives...

  1. The Employee Invention Report (EIR) | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    After making a unique, non-obvious, and useful discovery, NIH researchers must immediately contact their Laboratory or Branch Chief and inform him or her of a possible invention, and then consult with your NCI TTC Technology Transfer Manager about submitting an Employee Invention Report (EIR) Form. | [google6f4cd5334ac394ab.html

  2. Transfer bonding technology for batch fabrication of SMA microactuators

    Science.gov (United States)

    Grund, T.; Guerre, R.; Despont, M.; Kohl, M.

    2008-05-01

    Currently, the broad market introduction of shape memory alloy (SMA) microactuators and sensors is hampered by technological barriers, since batch fabrication methods common to electronics industry are not available. The present study intends to overcome these barriers by introducing a wafer scale transfer process that allows the selective transfer of heat-treated and micromachined shape memory alloy (SMA) film or foil microactuators to randomly selected receiving sites on a target substrate. The technology relies on a temporary adhesive bonding layer between SMA film/foil and an auxiliary substrate, which can be removed by laser ablation. The transfer technology was tested for microactuators of a cold-rolled NiTi foil of 20 μm thickness, which were heat-treated in free-standing condition, then micromachined on an auxiliary substrate of glass, and finally selectively transferred to different target substrates of a polymer. For demonstration, the new technology was used for batch-fabrication of SMA-actuated polymer microvalves.

  3. Building Technology Transfer Capacity in Turkish Universities: A Critical Analysis

    Science.gov (United States)

    Ranga, Marina; Temel, Serdal; Ar, Ilker Murat; Yesilay, Rustem Baris; Sukan, Fazilet Vardar

    2016-01-01

    University technology transfer has been receiving significant government funding since 2012. Results of this major investment are now expected by the Turkish government and society, not only in terms of better teaching and research performance, but also of new jobs, new products and services, enhanced regional development and contribution to…

  4. Teacher Linguistic, Cultural, and Technological Awareness Development and Transfer

    Science.gov (United States)

    Wang, Congcong

    2012-01-01

    This dissertation includes two studies: a pilot study on native-English-speaking preservice teachers' perceptions of learning a foreign language online and a follow-up study on inservice teachers' perceptions of transferring teacher linguistic, cultural and technological awareness into teaching practice. Conducted in 2010, the pilot…

  5. Space spin-offs: is technology transfer worth it?

    Science.gov (United States)

    Bush, Lance B.

    Dual-uses, spin-offs, and technology transfer have all become part of the space lexicon, creating a cultural attitude toward space activity justification. From the very beginning of space activities in the late 1950's, this idea of secondary benefits became a major part of the space culture and its beliefs system. Technology transfer has played a central role in public and political debates of funding for space activities. Over the years, several studies of the benefits of space activities have been performed, with some estimates reaching as high as a 60:1 return to the economy for each dollar spent in space activities. Though many of these models claiming high returns have been roundly criticized. More recent studies of technology transfer from federal laboratories to private sector are showing a return on investment of 2.8:1, with little evidence of jobs increases. Yet, a purely quantitative analysis is not sufficient as there exist cultural and social benefits attainable only through case studies. Space projects tend to have a long life cycle, making it difficult to track metrics on their secondary benefits. Recent studies have begun to make inroads towards a better understanding of the benefits and drawbacks of investing in technology transfer activities related to space, but there remains significant analyses to be performed which must include a combination of quantitative and qualitative analyses.

  6. Institutionalization of Technology Transfer Organizations in Chinese Universities

    Science.gov (United States)

    Cai, Yuzhuo; Zhang, Han; Pinheiro, Rómulo

    2015-01-01

    There is a lack of in-depth studies on how technology transfer organizations (TTOs) are organized and developed. This paper examines the evolution/institutionalization of TTOs in Tsinghua University (TU), as a microcosm of the development of TTOs in Chinese universities. It explores two issues in particular: what kinds of TTOs have been developed…

  7. Agile manufacturing and technology transfer to industrialising countries

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Boer, S.J.

    2003-01-01

    One of the requirements of agile manufacturing, the necessity to gain flexibility, can be reached by using a supplier network. A possible way to develop a supplier network is by subcontracting to parties in industrialising countries. In most cases, it is necessary to transfer technology. The

  8. Strategic Evaluation of University Knowledge and Technology Transfer Effectiveness

    Science.gov (United States)

    Tran, Thien Anh

    2013-01-01

    Academic knowledge and technology transfer has been growing in importance both in academic research and practice. A critical question in managing this activity is how to evaluate its effectiveness. The literature shows an increasing number of studies done to address this question; however, it also reveals important gaps that need more research.…

  9. Agile manufacturing and technology transfer to industrialising countries

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Boer, de Sirp

    2003-01-01

    One of the requirements of agile manufacturing, the necessity to gain flexibility, can be reached by using a supplier network. A possible way to develop a supplier network is by subcontracting to parties in industrialising countries. In most cases, it is necessary to transfer technology. The aircraf

  10. Strategic Evaluation of University Knowledge and Technology Transfer Effectiveness

    Science.gov (United States)

    Tran, Thien Anh

    2013-01-01

    Academic knowledge and technology transfer has been growing in importance both in academic research and practice. A critical question in managing this activity is how to evaluate its effectiveness. The literature shows an increasing number of studies done to address this question; however, it also reveals important gaps that need more research.…

  11. Institutionalization of Technology Transfer Organizations in Chinese Universities

    Science.gov (United States)

    Cai, Yuzhuo; Zhang, Han; Pinheiro, Rómulo

    2015-01-01

    There is a lack of in-depth studies on how technology transfer organizations (TTOs) are organized and developed. This paper examines the evolution/institutionalization of TTOs in Tsinghua University (TU), as a microcosm of the development of TTOs in Chinese universities. It explores two issues in particular: what kinds of TTOs have been developed…

  12. Taxation and the transfer of technology by multinational firms

    NARCIS (Netherlands)

    Huizinga, H.P.

    1995-01-01

    This paper analyzes a multinational's transfer of technology to a foreign subsidiary for the case where there is a risk of expropriation. An expropriation is assumed to give rise to competition between the parts of the previous multinational enterprise. To reduce the benefit of expropriation, the

  13. 48 CFR 970.5227-3 - Technology transfer mission.

    Science.gov (United States)

    2010-10-01

    ... benefits to the U.S. domestic economy. The Contractor shall consider the following factors in all of its... shall establish subject to the approval of the contracting officer a policy for making awards or sharing... believes that the transfer of technology to the U.S. domestic economy will benefit from, or other...

  14. Building technology transfer within research universities an entrepreneurial approach

    CERN Document Server

    O'Shea, Rory P

    2014-01-01

    For the past number of years, academic entrepreneurship has become one of the most widely studied topics in the entrepreneurship literature. Yet, despite all the research that has been conducted to date, there has not been a systematic attempt to analyze critically the factors which lie behind successful business spin-offs from university research. In this book, a group of academic thought-leaders in the field of technology transfer examine a number of areas critical to the promotion of start-ups on campus. Through a series of case studies, they examine current policies, structures, program initiatives and practices of fourteen international universities to develop a theory of successful academic entrepreneurship, with the aim of helping other universities to enhance the quality of their university transfer programs. This book is a valuable resource for researchers and graduate students working on innovation, entrepreneurship and technology transfer, as well as senior managers and policymakers.

  15. Knowledge Consolidation Analysis: Toward a Methodology for Studying the Role of Argument in Technology Development

    Science.gov (United States)

    Dyehouse, Jeremiah

    2007-01-01

    Researchers studying technology development often examine how rhetorical activity contributes to technologies' design, implementation, and stabilization. This article offers a possible methodology for studying one role of rhetorical activity in technology development: knowledge consolidation analysis. Applying this method to an exemplar case, the…

  16. Neurolinguistic measures of typological effects in multilingual transfer: Introducing an ERP methodology

    Directory of Open Access Journals (Sweden)

    Jason eRothman

    2015-08-01

    Full Text Available This article has two main objectives. First, we offer an introduction to the subfield of generative third language (L3 acquisition. Concerned primarily with modeling initial stages transfer of morphosyntax, one goal of this program is to show how initial stages L3 data make significant contributions towards a better understanding of how the mind represents language and how (cognitive economy constrains acquisition processes more generally. Our second objective is to argue for and demonstrate how this subfield will benefit from a neuro/psycholinguistic methodological approach, such as event related potential (ERP experiments, to complement the claims currently made on the basis of exclusively behavioral experiments.

  17. Neurolinguistic measures of typological effects in multilingual transfer: introducing an ERP methodology.

    Science.gov (United States)

    Rothman, Jason; Alemán Bañón, José; González Alonso, Jorge

    2015-01-01

    This article has two main objectives. First, we offer an introduction to the subfield of generative third language (L3) acquisition. Concerned primarily with modeling initial stages transfer of morphosyntax, one goal of this program is to show how initial stages L3 data make significant contributions toward a better understanding of how the mind represents language and how (cognitive) economy constrains acquisition processes more generally. Our second objective is to argue for and demonstrate how this subfield will benefit from a neuro/psycholinguistic methodological approach, such as event-related potential experiments, to complement the claims currently made on the basis of exclusively behavioral experiments.

  18. Neurolinguistic measures of typological effects in multilingual transfer: introducing an ERP methodology

    Science.gov (United States)

    Rothman, Jason; Alemán Bañón, José; González Alonso, Jorge

    2015-01-01

    This article has two main objectives. First, we offer an introduction to the subfield of generative third language (L3) acquisition. Concerned primarily with modeling initial stages transfer of morphosyntax, one goal of this program is to show how initial stages L3 data make significant contributions toward a better understanding of how the mind represents language and how (cognitive) economy constrains acquisition processes more generally. Our second objective is to argue for and demonstrate how this subfield will benefit from a neuro/psycholinguistic methodological approach, such as event-related potential experiments, to complement the claims currently made on the basis of exclusively behavioral experiments. PMID:26300800

  19. Research in space commercialization, technology transfer, and communications

    Science.gov (United States)

    1982-01-01

    Research and internship programs in technology transfer, space commercialization, and information and communications policy are described. The intern's activities are reviewed. On-campus research involved work on the costs of conventional telephone technology in rural areas, an investigation of the lag between the start of a research and development project and the development of new technology, using NASA patent and patent waiver data, studies of the financial impact and economic prospects of a space operation center, a study of the accuracy of expert forecasts of uncertain quantities and a report on frequency coordination in the fixed and fixed satellite services at 4 and 6 GHz.

  20. Methodology of heat transfer and flow resistance measurement for matrices of rotating regenerative heat exchangers

    Directory of Open Access Journals (Sweden)

    Butrymowicz Dariusz

    2016-09-01

    Full Text Available The theoretical basis for the indirect measurement approach of mean heat transfer coefficient for the packed bed based on the modified single blow technique was presented and discussed in the paper. The methodology of this measurement approach dedicated to the matrix of the rotating regenerative gas heater was discussed in detail. The testing stand consisted of a dedicated experimental tunnel with auxiliary equipment and a measurement system are presented. Selected experimental results are presented and discussed for selected types of matrices of regenerative air preheaters for the wide range of Reynolds number of gas. The agreement between the theoretically predicted and measured temperature profiles was demonstrated. The exemplary dimensionless relationships between Colburn heat transfer factor, Darcy flow resistance factor and Reynolds number were presented for the investigated matrices of the regenerative gas heater.

  1. A methodology to promote business development from research outcomes in food science and technology

    Directory of Open Access Journals (Sweden)

    Eduardo L. Cardoso

    2015-04-01

    Full Text Available Valorization of knowledge produced in research units has been a major challenge for research universities in contemporary societies. The prevailing forces have led these institutions to develop a “third mission”, the facilitation of technology transfer and activity in an entrepreneurial paradigm. Effective management of challenges encountered in the development of academic entrepreneurship and the associated valorization of knowledge produced by universities are major factors to bridge the gap between research and innovation in Europe.The need to improve the existing institutional knowledge valorization processes, concerning entrepreneurship and business development and the processes required were discussed.A case study was designed to describe the institutional knowledge valorization process in a food science and technology research unit and a related incubator, during a five year evaluation period that ended in 2012.The knowledge valorization processes benefited from the adoption of a structured framework methodology that led to ideas and teams from a business model generation to client development, in parallel, when possible, with an agile product/service development.Although academic entrepreneurship engagement could be improved, this case study demonstrated that stronger skills development was needed to enable the researcher to be more aware of business development fundamentals and therefore contribute to research decisions and the valorisation of individual and institutional knowledge assets. It was noted that the timing for involvement of companies in the research projects or programs varied with the nature of the research.

  2. A methodology to promote business development from research outcomes in food science and technology

    Directory of Open Access Journals (Sweden)

    Eduardo L. Cardoso

    2015-04-01

    Full Text Available Valorization of knowledge produced in research units has been a major challenge for research universities in contemporary societies. The prevailing forces have led these institutions to develop a “third mission”, the facilitation of technology transfer and activity in an entrepreneurial paradigm. Effective management of challenges encountered in the development of academic entrepreneurship and the associated valorization of knowledge produced by universities are major factors to bridge the gap between research and innovation in Europe.The need to improve the existing institutional knowledge valorization processes, concerning entrepreneurship and business development and the processes required were discussed.A case study was designed to describe the institutional knowledge valorization process in a food science and technology research unit and a related incubator, during a five year evaluation period that ended in 2012.The knowledge valorization processes benefited from the adoption of a structured framework methodology that led to ideas and teams from a business model generation to client development, in parallel, when possible, with an agile product/service development.Although academic entrepreneurship engagement could be improved, this case study demonstrated that stronger skills development was needed to enable the researcher to be more aware of business development fundamentals and therefore contribute to research decisions and the valorisation of individual and institutional knowledge assets. It was noted that the timing for involvement of companies in the research projects or programs varied with the nature of the research.

  3. Biomedical technology transfer: Applications of NASA science and technology

    Science.gov (United States)

    1976-01-01

    The major efforts of the Stanford Biomedical Applications Team Program at the Stanford University School of Medicine for the period from October 1, 1975 to September 31, 1976 are covered. A completed EMG biotelemetry system which monitors the physiological signals of man and animals in space related research is discussed. The results of a pilot study involving lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative pressure unit for evaluating heart patients. This technology utilizes vacuum chambers to stress the cardiovascular system during space flight. Laboratory tests of an intracranial pressure transducer, have been conducted. Extremely stable long term data using capacative pressure sensors has lead to the order of commercially manufactured monitoring systems base. Projects involving commercialization are: flexible medical electrodes, an echocardioscope, a miniature biotelemetry system, and an on-line ventricular contour detector.

  4. Technology Transfer: From the Research Bench to Commercialization

    Directory of Open Access Journals (Sweden)

    Gail A. Van Norman, MD

    2017-02-01

    Full Text Available Progress in medicine hinges on the successful translation of basic science discoveries into new medical devices, diagnostics, and therapeutics. “Technology transfer” is the process by which new innovations flow from the basic research bench to commercial entities and then to public use. In academic institutions, intellectual property rights do not usually fall automatically to the individual inventor per se, but most often are the property of the institution. Technology transfer offices are tasked with seeing to it that such intellectual property rights are properly managed and commercialized. This 2-part series explores the technology transfer process from invention to commercialization. Part 1 reviews basic aspects of intellectual property rights, primarily patents and copyrights. Part 2 will discuss the ways in which inventions become commercialized through startup companies and licensing arrangements with industry players.

  5. State of the Science in Technology Transfer: At the Confluence of Academic Research and Business Development--Merging Technology Transfer with Knowledge Translation to Deliver Value

    Science.gov (United States)

    Lane, Joseph P.

    2010-01-01

    The practice of technology transfer continues to evolve into a discipline. Efforts continue in the field of assistive technology (AT) to move technology-related prototypes, resulting from development in the academic sector, to product commercialization within the business sector. The article describes how technology transfer can be linked to…

  6. Develop and demonstrate a methodology using Janus(A) to analyze advanced technologies.

    OpenAIRE

    Wright, Jerry Vernon

    1991-01-01

    Approved for public release; Distribution is unlimited This thesis presents a study of a methodology for analyzing advanced technologies using the Janus(A) High Resolution Combat Model. The goal of this research was to verify that the methodology using Janus(A) gave expected or realistic results. The methodology used a case where the results were known: the addition of a long range direct fire weapon into a force on force battle. Both the weapon characteristics and force mixes were used as...

  7. The PHM-Ethics methodology: interdisciplinary technology assessment of personal health monitoring.

    Science.gov (United States)

    Schmidt, Silke; Verweij, Marcel

    2013-01-01

    The contribution briefly introduces the PHM Ethics project and the PHM methodology. Within the PHM-Ethics project, a set of tools and modules had been developed that may assist in the evaluation and assessment of new technologies for personal health monitoring, referred to as "PHM methodology" or "PHM toolbox". An overview on this interdisciplinary methodology and its comprising modules is provided, areas of application and intended target groups are indicated.

  8. Methodology for Selection of Non-Restored Reserved Systems Pertaining to Control of Technological Processes

    Directory of Open Access Journals (Sweden)

    V. A. Anischenko

    2008-01-01

    Full Text Available The paper contains analysis of reliability of non-restored passive reserved systems pertaining to control of technological processes. Criteria have been justified and methodology for optimum selection of reserved systems has been developed.

  9. Methodology for Web Services Adoption Based on Technology Adoption Theory and Business Process Analyses

    Institute of Scientific and Technical Information of China (English)

    AN Liping; YAN Jianyuan; TONG Lingyun

    2008-01-01

    Web services use an emerging service-oriented architecture for distributed computing. Many organizations are either in the process of adopting web services technology or evaluating this option for incorporation into their enterprise information architectures. Implementation of this new technology requires careful assessment of the needs and capabilities of an organization to formulate adoption strategies. This paper presents a methodology for web services adoption based on technology adoption theory and business process analyses. The methodology suggests that strategies, business areas, and functions within an organization should be considered based on the existing organizational information technology status during the process of adopting web services to support the business needs and requirements.

  10. Managing knowledge: a technology transfer case study in IEN

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ana Gabriella Amorim Abreu [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil). Servico de Transferencia de Tecnologia], e-mail: agaap@ien.gov.br

    2009-07-01

    Knowledge management is paramount nowadays. In order to enable the members of an organization to deal with their current situations effectively it is mandatory to know and enhance its intellectual capital. Managing the organization knowledge is important to the extent that it allows and reinforce its mission (what we are trying to accomplish?), and performance (how do we deliver the results?). As a result of a knowledge management effort, the organization can create value for itself and for society as a whole. In this paper, we argue that a technology developed at a research institute and transferred to an industry is knowledge to be managed in order to create value, both for the society and for the Institute. In order to manage such knowledge, it is proposed an approach to enhance the value creation potential of a technology transfer. This paper propose an investigation to expand the understanding on how a public research institute and a private firm could introduce their value creation wishes into a technology transfer agreement in a way to reflect and provide the realization of those wishes. It is proposed that, from the identification of the organizations expectations it is possible to infer which agreement attributes will contribute to that value creation and to establish satisfactory agreement configurations. These configurations have the potential to generate those consequences, given that, through the transfer, each organization seeks to increase potential benefits and to reduce potential sacrifices. Supported by exchange flow and value creation models, by the knowledge management and the means-end theory, an approach to increase the value creation potential of a technology transfer is proposed. Evidences from a case study sustain the proposed approach. The case study unity is the Instituto de Engenharia Nuclear, a public research institute. (author)

  11. Tech transfer outreach. An informal proceedings of the first technology transfer/communications conference

    Energy Technology Data Exchange (ETDEWEB)

    Liebetrau, S. [ed.

    1992-10-01

    This document provides an informal summary of the conference workshop sessions. ``Tech Transfer Outreach!`` was originally designed as an opportunity for national laboratory communications and technology transfer staff to become better acquainted and to discuss matters of mutual interest. When DOE field office personnel asked if they could attend, and then when one of our keynote speakers became a participant in the discussions, the actual event grew in importance. The conference participants--the laboratories and DOE representatives from across the nation--worked to brainstorm ideas. Their objective: identify ways to cooperate for effective (and cost-effective) technology transfer outreach. Thus, this proceedings is truly a product of ten national laboratories and DOE, working together. It candidly presents the discussion of issues and the ideas generated by each working group. The issues and recommendations are a consensus of their views.

  12. Climate Change and Requirement of Transfer of Environmentally Sound Technology

    DEFF Research Database (Denmark)

    implementation measures. I have also taken in to account the decisions of the annual meetings of the Conference of the parties (COPs) of the UNFCCC. The thesis has also made a brief comparative discussion between the provisions of international environmental laws and the provisions of intellectual property...... of international environmental debates. This thesis addresses, firstly, the possible methods of technology transfer and secondly, how current international environmental laws play its role to facilitate the transfer. Accordingly, I have focused on the concerned provisions of Kyoto Protocol and its subsequent...

  13. TRIPS Agreement, International Technology Transfer and Least Developed Countries

    Directory of Open Access Journals (Sweden)

    Mark V. Shugurov

    2015-04-01

    Full Text Available The author examines the role of the trade-related aspects of intellectual property rights (TRIPS Agreement in facilitation the international technology transfer to least developed countries (LDCs. The primary purpose of this study is to investigate the new conditions of technology development of LDCs connected with TRIPS adoption. Special attention is paid to the potentials of Article 66.2 for solving the problem of LDCs capacity building. The article presents detailed analysis of the discussions on the impact of the TRIPS provisions concerning the strengthening of the intellectual property rights (IPRs and the protection of technology transfer to LDCs. An important finding of this study is the recognition of the need to take urgent measures for the transition unto a new model of partnership between developed countries and LDCs in area of technology transfer and IPRs protection. The study concluded that a new model needed to be elaborated at the international level should be based on the effective implementation of Article 66.2 of the TRIPS Agreement.

  14. Virtual Astronomy, Information Technology, and the New Scientific Methodology

    CERN Document Server

    Djorgovski, S G

    2005-01-01

    All sciences, including astronomy, are now entering the era of information abundance. The exponentially increasing volume and complexity of modern data sets promises to transform the scientific practice, but also poses a number of common technological challenges. The Virtual Observatory concept is the astronomical community's response to these challenges: it aims to harness the progress in information technology in the service of astronomy, and at the same time provide a valuable testbed for information technology and applied computer science. Challenges broadly fall into two categories: data handling (or "data farming"), including issues such as archives, intelligent storage, databases, interoperability, fast networks, etc., and data mining, data understanding, and knowledge discovery, which include issues such as automated clustering and classification, multivariate correlation searches, pattern recognition, visualization in highly hyperdimensional parameter spaces, etc., as well as various applications of ...

  15. Forecasting and Technology Management: Statistical Theory and Methodological Issues

    DEFF Research Database (Denmark)

    Madsen, Henning

    The degree of development in the technical capability of many new devices and materials over their predecessors often is in multiples of improvement. These gains in performance are so great that they abruptly and drastically alter the means, effects, time, or costs of doing things. Thus, they dis......The degree of development in the technical capability of many new devices and materials over their predecessors often is in multiples of improvement. These gains in performance are so great that they abruptly and drastically alter the means, effects, time, or costs of doing things. Thus...... technology. The conclusion is that widespread awareness of the growing force of technology and increasing concern over its impact means that forecasting of technological development and consequences is absolutely essential in many managerial decision situations. Examples cover e.g. identification...

  16. Exploring student engagement and transfer in technology mediated environments

    Science.gov (United States)

    Sinha, Suparna

    Exploring student engagement and transfer of mechanistic reasoning skills in computer-supported learning environments by SUPARNA SINHA Dissertation Director: Cindy Hmelo-Silver Computer-supported environments designed on learning science principles aim to provide a rich learning experience for students. Students are given opportunities to collaborate, model their understanding, have access to real-time data and engage in hypotheses testing to solve authentic problems. That is to say that affordances of technologies make it possible for students to engage in mechanistic reasoning, a complex inquiry-oriented practice (Machamer, Craver & Darden, 2000; Russ et al., 2008). However, we have limited understanding of the quality of engagement fostered in these contexts. This calls for close observations of the activity systems that the students participate in. The situative perspective focuses on analyzing interactions of individuals (students) with other people, tools and materials within activity systems (Greeno, 2006). Importantly, as the central goal of education is to provide learning experiences that are useful beyond the specific conditions of initial learning, analysis of such interactions sheds light on key experiences that lead to transfer of mechanistic reasoning skills. This is made possible, as computer-supported contexts are activity systems that bring forth trends in students' engagement. From a curriculum design perspective, observing student engagement can be a useful tool to identify features of interactions (with technological tools, peers, curriculum materials) that lead to successful learning. Therefore, the purpose of the present studies is to explore the extent to which technological affordances influence students' engagement and subsequent transfer of reasoning skills. Specifically, the goal of this research is to address the following research questions: How do learners generalize understanding of mechanistic reasoning in computer

  17. Imagining value, imagining users: academic technology transfer for health innovation.

    Science.gov (United States)

    Miller, Fiona Alice; Sanders, Carrie B; Lehoux, Pascale

    2009-04-01

    Governments have invested heavily in the clinical and economic promise of health innovation and express increasing concern with the efficacy and efficiency of the health innovation system. In considering strategies for 'better' health innovation, policy makers and researchers have taken a particular interest in the work of universities and related public research organizations: How do these organizations identify and transfer promising innovations to market, and do these efforts make best use of public sector investments? We conducted an ethnographic study of technology transfer offices (TTOs) in Ontario and British Columbia, Canada, to consider the place of health and health system imperatives in judgments of value in early-stage health innovation. Our analysis suggests that the valuation process is poorly specified as a set of task-specific judgments. Instead, we argue that technology transfer professionals are active participants in the construction of the innovation and assign value by 'imagining' the end product in its 'context of use'. Oriented as they are to the commercialization of health technology, TTOs understand users primarily as market players. The immediate users of TTOs' efforts are commercial partners (i.e., licensees, investors) who are capable of translating current discoveries into future commodities. The ultimate end users - patients, clinicians, health systems - are the future consumers of the products to be sold. Attention to these proximate and more distal users in the valuation process is a complex and constitutive feature of the work of health technology transfer. At the same time, judgements about individual technologies are made in relation to a broader imperative through which TTOs seek to imagine and construct sustainable innovation systems. Judgments of value are rendered sensible in relation to the logic of valuation for systems of innovation that, in turn, configure users of health innovation in systemic ways.

  18. Technology Transfer: A Case Study of Programs and Practices at NASA, DOD, DOC, and Academia

    Science.gov (United States)

    Blood, John R.

    2009-01-01

    Technology transfer is vital to humanity. It spurs innovation, promotes commerce, and provides technology-based goods and services. Technology transfer is also highly complex and interdependent in nature. This interdependence is exemplified principally by the various technology transfer interactions between government, industry, and academia. …

  19. Technology Transfer: A Case Study of Programs and Practices at NASA, DOD, DOC, and Academia

    Science.gov (United States)

    Blood, John R.

    2009-01-01

    Technology transfer is vital to humanity. It spurs innovation, promotes commerce, and provides technology-based goods and services. Technology transfer is also highly complex and interdependent in nature. This interdependence is exemplified principally by the various technology transfer interactions between government, industry, and academia. …

  20. BMDO: New Mexico Technology Transfer Demonstration Project. Interim final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The BMDO-New Mexico Technology Transfer Demonstration Project(BMDO-NM) was a collaborative effort among the national laboratories to identify and evaluate the commercial potential of selected SDI-funded technologies. The project was funded by BMDO (formerly known as the Strategic Defense Initiative Office or SDIO), the Technology Enterprise Division (NM-TED) of the NM Economic Development Division, and the three National Laboratories. The project was managed and supervised by SAGE Management Partners of Albuquerque, and project funding was administered through the University of New Mexico. The BMDO-NM Demonstration Project focused on the development of a process to assist technology developers in the evaluation of selected BMDO technology programs so that commercialization decisions can be made in an accelerated manner. The project brought together BMDO, the NM-TED, the University of New Mexico, and three New Mexico Federal laboratories -- Los Alamos (DOE), Phillips (DOD) and Sandia (DOE). Each national laboratory actively participated throughout the project through its technology transfer offices. New Mexico was selected as the site for the Demonstration Program because of its three national and federal research laboratories engaged in BMDO programs, and the existing relationship among state govemment, the labs, universities and local economic development and business assistance organizations. Subsequent Commercialization and Implementation phases for the selected technologies from LANL and SNL were completed by SAGE and the Project Team. Funding for those phases was provided by the individual labs as well as BMDO and NM-TED in kind services. NM-TED played a proactive role in this New Mexico partnership. Its mandate is to promote technology-based economic development, with a commitment to facilitate the use of technology by industry and business statewide. TED assumed the role of program manager and executing agent for BMDO in this demonstration project.

  1. The Keystone Approach: Integration of Methodology and Technology

    Science.gov (United States)

    Siadat, M. Vali; Peterson, Euguenia; Oseledets, Cyrill; Wang, Ming-Jer; Zhang, Guo Quan

    2012-01-01

    This article is the result of a comprehensive research study investigating the impact of computer-learning technology as well as the impact of a synergistic teaching approach (Keystone Method) on developmental mathematics classes at the college level. The study focused on mathematics skills of elementary and intermediate algebra students and…

  2. Environmental assessment of digestate treatment technologies using LCA methodology.

    Science.gov (United States)

    Vázquez-Rowe, Ian; Golkowska, Katarzyna; Lebuf, Viooltje; Vaneeckhaute, Céline; Michels, Evi; Meers, Erik; Benetto, Enrico; Koster, Daniel

    2015-09-01

    The production of biogas from energy crops, organic waste and manure has augmented considerably the amounts of digestate available in Flanders. This has pushed authorities to steadily introduce legislative changes to promote its use as a fertilising agent. There is limited arable land in Flanders, which entails that digestate has to compete with animal manure to be spread. This forces many anaerobic digestion plants to further treat digestate in such a way that it can either be exported or the nitrogen be removed. Nevertheless, the environmental impact of these treatment options is still widely unknown, as well as the influence of these impacts on the sustainability of Flemish anaerobic digestion plants in comparison to other regions where spreading of raw digestate is allowed. Despite important economic aspects that must be considered, the use of Life Cycle Assessment (LCA) is suggested in this study to identify the environmental impacts of spreading digestate directly as compared to four different treatment technologies. Results suggest relevant environmental gains when the digestate mix is treated using the examined conversion technologies prior to spreading, although important trade-offs between impact categories were observed and discussed. The promising results of digestate conversion technologies suggest that further LCA analyses should be performed to delve into, for instance, the appropriateness to shift to nutrient recovery technologies rather than digestate conversion treatments.

  3. Synthesizing Soft Systems Methodology and Human Performance Technology

    Science.gov (United States)

    Scott, Glen; Winiecki, Donald J.

    2012-01-01

    Human performance technology (HPT), like other concepts, models, and frameworks that we use to describe the world in which we live and the way we organize ourselves to accomplish valuable activities, is built from paradigms that were fresh and relevant at the time it was conceived and from the fields of study from which it grew. However, when the…

  4. Design Based Research Methodology for Teaching with Technology in English

    Science.gov (United States)

    Jetnikoff, Anita

    2015-01-01

    Design based research (DBR) is an appropriate method for small scale educational research projects involving collaboration between teachers, students and researchers. It is particularly useful in collaborative projects where an intervention is implemented and evaluated in a grounded context. The intervention can be technological, or a new program…

  5. Application of Direct Assessment Approaches and Methodologies to Cathodically Protected Nuclear Waste Transfer Lines

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Megan M. [ARES Corporation, Richland, WA (United States); Pikas, Joseph [Schiff Associates, Sugar Land TX (United States); Edgemon, Glenn L. [ARES Corporation, Richland, WA (United States); Philo, Sarah [ARES Corporation, Richland, WA (United States)

    2013-01-22

    The U.S. Department of Energy's (DOE) Hanford Site is responsible for the safe storage, retrieval, treatment, and disposal of approximately 54 million gallons (204 million liters) of radioactive waste generated since the site's inception in 1943. Today, the major structures involved in waste management at Hanford include 149 carbon steel single-shell tanks, 28 carbon-steel double-shell tanks, plus a network of buried metallic transfer lines and ancillary systems (pits, vaults, catch tanks, etc.) required to store, retrieve, and transfer waste within the tank farm system. Many of the waste management systems at Hanford are still in use today. In response to uncertainties regarding the structural integrity of these systems,' an independent, comprehensive integrity assessment of the Hanford Site piping system was performed. It was found that regulators do not require the cathodically protected pipelines located within the Hanford Site to be assessed by External Corrosion Direct Assessment (ECDA) or any other method used to ensure integrity. However, a case study is presented discussing the application of the direct assessment process on pipelines in such a nuclear environment. Assessment methodology and assessment results are contained herein. An approach is described for the monitoring, integration of outside data, and analysis of this information in order to identify whether coating deterioration accompanied by external corrosion is a threat for these waste transfer lines.

  6. A field methodology for quantifying phosphorus transfer and delivery to streams in first order agricultural catchments

    Science.gov (United States)

    Deasy, C.; Heathwaite, A. L.; Brazier, R. E.

    2008-02-01

    SummaryAn understanding of the relative importance of different hydrological pathways in phosphorus delivery from land to water is currently constrained by a lack of appropriate methods available to quantify the delivery process. New monitoring tools are needed which will provide a framework for understanding phosphorus (P) transfer and delivery at a range of scales in agricultural catchments. A field methodology incorporating the techniques of event-based, on-site observation and sampling within a flexible, non-plot based structure is described and applied to a first order stream catchment in Southern England, UK. The results show that P transfers to the stream reach monitored were dominated by inputs from one field drain, and that overland flow inputs, despite being directly connected to the stream and containing higher P concentrations (maximum 3708 μg l -1), contributed less to the stream P flux. The processes of P transfer and delivery to the stream were complex, changing both within flow pathways and temporally over an event.

  7. Curbing international transfers of arms and military technology

    Energy Technology Data Exchange (ETDEWEB)

    Vayrynen, R.

    1978-07-01

    The magnitude of the value and quantity of transfers of arms and military technology, the internationalization and commercialization of armaments industry (through vastly increased direct investments, through co-production, licensing and sub-contracting arrangements), the supply of training and technical services as adjuncts of arms supply, the blurring of the dividing line between military and civilian technology--all have made control measures infinitely more complicated and difficult. What compounds the difficulty is the fact that, since an overwhelmingly preponderant portion of arms transfers is made up of government-to-government transactions, control measures must emanate from supplying and/or receiving governments. But even if by some miracle these measures were forthcoming and proved effective, they will have touched only a small part of the problem of disarmament, because the share of international transfers of arms and military technology amounts to only 5 to 6% of the total world military expenditure. The other, far larger and more intractable, part relates to the staggering stockpiles of both conventional and nuclear weapon systems, almost wholly concentrated in the hands of the two superpowers. Both transfers and stockpiles of armaments are inextricably enmeshed in the existing international structure, epitomized in a dominance-dependency relationship. This paper examines the measures that the supplier nations and recipient nations can take unilaterally, bilaterally, and multilaterally to curb arms transfers, and comes to the conclusion that unilateral initiatives, especially on the part of receiving nations, are more feasible. Not to take such initiatives on the ground that they cannot succeed unless taken in concert is only an excuse for doing nothing.

  8. Ethics and technology transfer: patients, patents, and public trust.

    Science.gov (United States)

    Zucker, Deborah

    2011-06-01

    Universities and academic medical centers have been increasing their focus on technology transfer and research commercialization. With this shift in focus, academic-industry ties have become prevalent. These relationships can benefit academic researchers and help then to transform their research into tangible societal benefits. However, there also are concerns that these ties and the greater academic focus on commercialization might lead to conflicts of interest, especially financial conflicts of interest. This paper briefly explores some of these conflicts of interest, particularly relating to research and training. This paper also discusses some of the policies that have been, and are being, developed to try to mitigate and manage these conflicts so that academic involvement in technology transfer and commercialization can continue without jeopardizing academic work or the public's trust in them.

  9. Technology Transfer, Labour and Local Learning Processes in Malaysian Industry

    DEFF Research Database (Denmark)

    Wangel, Arne

    1999-01-01

    The transfer of technologies by the foreign electronic industries operating in Malaysia involves training of workers for various purposes. The upgrading of skills to assimilate the transferred technology aims at increasing productivity and product quality. Communicating awareness about work hazards...... is meant to reduce breakdowns in production and workers' accidents. How do the training paradigms, which transnationals introduce in their subsidiaries in Malaysia, interact with the preconditions of learning with the local labour force? In shaping local learning processes, what is the scope for workers...... and trade unions to articulate their interests and define the issues, in particular with regard to the working environment and the external environment? The paper will discuss these questions by exploring the significance of labour market structures, labour-management relations, concepts of knowledge...

  10. Transferring federally-funded technologies: New strategies for success

    Energy Technology Data Exchange (ETDEWEB)

    Stenehjem, E.J.

    1993-02-01

    In almost every year of the post-war era, the federal government has spent more on research and development (R D) than has US industry. These expenditures have been divided largely among the nation's federal laboratories and universities and. contrary to widely held beliefs, devoted in greater measure to applied R D than basic research. As pointed out by Salvador, this federally-funded research has resulted in the development of market/application oriented'' technology that, for the most part, has failed to reach the commercial marketplace. This report discusses new strategies for a more success technology transfer.

  11. Transferring federally-funded technologies: New strategies for success

    Energy Technology Data Exchange (ETDEWEB)

    Stenehjem, E.J.

    1993-02-01

    In almost every year of the post-war era, the federal government has spent more on research and development (R&D) than has US industry. These expenditures have been divided largely among the nation`s federal laboratories and universities and. contrary to widely held beliefs, devoted in greater measure to applied R&D than basic research. As pointed out by Salvador, this federally-funded research has resulted in the development of ``market/application oriented`` technology that, for the most part, has failed to reach the commercial marketplace. This report discusses new strategies for a more success technology transfer.

  12. Technology Transfer and Outreach for SNL/Rochester ALPHA Project.

    Energy Technology Data Exchange (ETDEWEB)

    Sinars, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    This report describes the next stage goals and resource needs for the joint Sandia and University of Rochester ARPA-E project. A key portion of this project is Technology Transfer and Outreach, with the goal being to help ensure that this project develops a credible method or tool that the magneto-inertial fusion (MIF) research community can use to broaden the advocacy base, to pursue a viable path to commercial fusion energy, and to develop other commercial opportunities for the associated technology. This report describes an analysis of next stage goals and resource needs as requested by Milestone 5.1.1.

  13. Small Business Innovation Research and Small Business Technology Transfer Programs

    Science.gov (United States)

    Garrison, Lynn; Jasper, Gwen

    2015-01-01

    The Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) programs fund the research, development, and demonstration of innovative technologies that fulfill NASA's needs as described in the annual Solicitations and have significant potential for successful commercialization. The only eligible participants are small business concern (SBC) with 500 or fewer employees or a nonprofit research institute such as a university or a research laboratory with ties to an SBC. These programs are potential sources of seed funding for the development of small business innovations.

  14. ASSESSING THE IMPACT OF UNIVERSITY TECHNOLOGY TRANSFER ON FIRMS’ INNOVATION

    OpenAIRE

    Paola Cardamone; Valeria Pupo; Fernanda Ricotta

    2014-01-01

    This paper analyses the influence of universities on Italian firms’ probability to innovate. Using firm-level data, we focus on institutionalised technology transfer (TT) activities in universities, namely spin-offs, patents and research contracts. Results show that TT activities play a significant role in the probability to innovate by Italian manufacturing firms located in the same province as the university. Nevertheless, the effect is not uniform: the contribution of university TT activit...

  15. Survey of Long-Term Technology Forecasting Methodologies

    Science.gov (United States)

    2002-11-01

    betting scores at horse races (Ref. 11). The RAND research was directed at improving the use of expert predictions in policy - making. Procedures were... policy formulation, but we have no way of knowing whether it did. Much of the thinking was heavily oriented toward then-current problems, such as the...asked to put themselves into a future time frame in which some technology is assumed to be commonplace. Then, the group is asked to “ backcast ” to

  16. ADVANCING TECHNOLOGY AND METHODOLOGY TO STREAMLINE ENVIRONMENTAL COMPLIANCE

    Energy Technology Data Exchange (ETDEWEB)

    Ben Grunewald; Paul Jehn

    2002-11-15

    By early 2000, fifteen oil and gas State Agencies were using RBDMS or a RBDMS utility to handle a significant amount or all of their data management needs. There are three additional State slated to begin implementation this year. There are an additional twelve State agencies that are not utilizing this technology that have proven to be very useful for so many other States. This project will allow for the base RBDMS install in all State oil and gas agency that desire it.

  17. Optimising Gas Quenching Technology through Modelling of Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Florent Chaffotte; Linda L(e)fevre; Didier Domergue; Aymeric Goldsteinas; Xavier Doussot; Qingfei Zhang

    2004-01-01

    Gas Quenching represents an environmentally friendly alternative to more commonly-used oil quenching. Yet,the performances of this technology remain limited in terms of cooling rates reached compared to oil quenching. Distortion and process homogeneity also have to be controlled carefully. The efficiency of the gas quenching process fully depends on the heat transfer between the gas and the quenched parts. The goal of this study is the optimisation of the gas quenching process efficiency through a better understanding of the heat transfer phenomena involved. The study has been performed with modelling means and validated by an experimental approach. The configuration of the gas flow has a major influence on the heat transfer phenomena between the gas and the parts. The fluid dynamics modelling approach performed in this study allows to optimise the heat transfer phenomena. New gas quenching processes allowing enhanced gas quenching performance through higher cooling rates can be thereby identified. The new solutions have been validated in experimental and industrial conditions. Results obtained allow to expect significant improvement of high pressure gas quenching technology.

  18. Optimising Gas Quenching Technology through Modelling of Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    FiorentChaffotte; LindaLefevre; DidierDomergue; AymericGoidsteinas; XavierDoussot; QingfeiZhang

    2004-01-01

    Gas Quenching represents an environmentally friendly alternative to more commonly-used oil quenching. Yet,the performances of this technology remain limited in terms of cooling rates reached compared to oil quenching. Distortion and process homogeneity also have to be controlled carefully. The efficiency of the gas quenching process fully depends on the heat transfer between the gas and the quenched parts. The goal of this study is the optimisation of the gas quenching process efficiency through a better understanding of the heat transfer phenomena involved. The study has been performed with modelling means and validated by an experimental approach. ThE configuration of the gas flow has a major influence on the heat transfer phenomena between the gas and the parts. The fluid dynamics modelling approach performed in this study allows to optimise the heat transfer phenomena. New gas quenching processes allowing enhanced gas quenching performance through higher cooling rates can be thereby identified. The new solutions have been validated in experimental and industrial conditions. Results obtained allow to expect significant improvement of high pressure gas quenching technology.

  19. Problems of method of technology assessment. A methodological analysis; Methodenprobleme des Technology Assessment; Eine methodologische Analyse

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, V.

    1993-03-01

    The study undertakes to analyse the theoretical and methodological structure of Technology Assessment (TA). It is based on a survey of TA studies which provided an important condition for theoreticall sound statements on methodological aspects of TA. It was established that the main basic theoretical problems of TA are in the field of dealing with complexity. This is also apparent in the constitution of problems, the most elementary and central approach of TA. Scientifically founded constitution of problems and the corresponding construction of models call for interdisciplinary scientific work. Interdisciplinarity in the TA research process is achieved at the level of virtual networks, these networks being composed of individuals suited to teamwork. The emerging network structures have an objective-organizational and an ideational basis. The objective-organizational basis is mainly the result of team composition and the external affiliations of the team members. The ideational basis of the virtual network is represented by the team members` mode of thinking, which is individually located at a multidisciplinary level. The theoretical `skeleton` of the TA knowledge system, which is represented by process knowledge based linkage structures, can be generated and also processed in connection with the knowledge on types of problems, areas of analysis and procedures to deal with complexity. Within this process, disciplinary knowledge is a necessary but not a sufficient condition. Metatheoretical and metadisciplinary knowledge and the correspondingly processes complexity of models are the basis for the necessary methodological awareness, that allows TA to become designable as a research procedure. (orig./HP) [Deutsch] Die Studie stellt sich die Aufgabe, die theoretische und methodische Struktur des Technology Assessment (TA) zu analysieren. Sie fusst auf Erhebungen, die bei Technology-Assessment-Studien vorgenommen wurden und die wesentliche Voraussetzungen fuer

  20. Comparative Characteristics of Technology Transfer in Developed Countries

    Directory of Open Access Journals (Sweden)

    Natalia Palii

    2013-08-01

    Full Text Available The research into innovation transfer in the global economy is a very urgent issue under the modern conditions of development of any country. Comparative characteristics of technology transfer in such countries and regions as the USA, EU, Asia, presented in the article, permit us to detect certain patterns of this process inherent both in developed and developing countries. The analysis made in the article can be useful for developing technology transfer processes in the Danube countries’ economy. The analytical method used in this research allowed us to determine the factor that is crucial for the growth of the world market of high-technology products and services. The analysis was conducted on several criteria such as the level of expenditure on R&D in the whole global economy, as well as in individual countries and regions. Besides, there were taken into account the added value of high-tech industries and the share of expenditure on R&D in total production costs. The conclusions regarding the effectiveness of funds allocated for scientific research and experimental development in the U.S. can be drawn on the basis of data presented in the paper on the amount of added value of the U.S. high-tech industries.

  1. Methodological Capacity within the Field of "Educational Technology" Research: An Initial Investigation

    Science.gov (United States)

    Bulfin, Scott; Henderson, Michael; Johnson, Nicola F.; Selwyn, Neil

    2014-01-01

    The academic study of educational technology is often characterised by critics as methodologically limited. In order to test this assumption, the present paper reports on data collected from a survey of 462 "research active" academic researchers working in the broad areas of educational technology and educational media. The paper…

  2. IDR: A Participatory Methodology for Interdisciplinary Design in Technology Enhanced Learning

    Science.gov (United States)

    Winters, Niall; Mor, Yishay

    2008-01-01

    One of the important themes that emerged from the CAL'07 conference was the failure of technology to bring about the expected disruptive effect to learning and teaching. We identify one of the causes as an inherent weakness in prevalent development methodologies. While the problem of designing technology for learning is irreducibly…

  3. A Holistic Approach for Addressing the Issue of Effective Technology Transfer in the Frame of Climate Change

    Directory of Open Access Journals (Sweden)

    Charikleia Karakosta

    2016-06-01

    Full Text Available Climate change policy and sustainable development issues and goals are closely intertwined. Recognizing the dual relationship between sustainable development and climate change points to a need for the exploration of actions that jointly address sustainable development and climate change. Technology transfer is considered an issue with growing interest worldwide and has been recognized as the key in supporting countries to achieve sustainable development, while addressing climate change challenges. This study presents an integrated decision support methodological framework for the formulation and evaluation of activities to promote technology transfer, as well as the provision of clear recommendations and strategies for framing specific policy in the context of climate change. The philosophy of the proposed approach, under the name: assess-identify-define (AID, consists of three components, where each one focuses on a particular problem. The methodology is integrated using appropriate tools in the information decision support system for effective technology transfer (DSS-ΕTT. The pilot application of the proposed methodology, in five representative developing countries, provided the possibility to evaluate the characteristics of the adopted methodology in terms of completeness, usability, extensionality, as well as analysis of results reliability.

  4. Technology transfer and catch-up; Lessons from the commercial aircraft industry

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.; Heerkens, Johannes M.G.

    2007-01-01

    This paper analyses the technology development and technology transfer strategies in the aircraft manufacturing industry for four industrially developing countries. It is concluded from four case studies that technology catch-up is extremely difficult due to aircraft technology characteristics.

  5. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  6. Methodology of teaching of the discipline "Endocrinology" with the use of case-technologies

    OpenAIRE

    Лахно, Ольга Вікторівна

    2016-01-01

    Aim of research – to theoretically ground, elaborate and partially verify the methodology of teaching of the discipline “Internal medicine” using case-technologies in KNMU.Object of research – the process of teaching students of the higher educational institutions. Subject of research – the methodology of teaching of the discipline “Internal medicine” in KNMU using case-technologies.In the work were analyzed the possibilities of use of case-technologies of learning in the process of teaching ...

  7. From technological acceptability to appropriation by users: methodological steps for device assessment in road safety.

    Science.gov (United States)

    Bordel, Stéphanie; Somat, Alain; Barbeau, Hervé; Anceaux, Françoise; Greffeuille, Catherine; Menguy, Gaëlle; Pacaux, Marie-Pierre; Subirats, Peggy; Terrade, Florence; Gallenne, Marie-Line

    2014-06-01

    This article presents the methodology developed within the framework of the research project SARI (Automated Road Surveillance for Driver and Administrator Information). This methodology is based on the logic of action research. The article presents the different stages in the development of technological innovation addressing vehicle control loss when driving on a curve. The results observed in speed reduction illustrate that no matter how optimal an innovation may be technologically speaking, it is only as effective as it is acceptable from a user standpoint. This acceptability can only be obtained if the technology is developed by engineers in liaison with social science specialists.

  8. E-Beam—a new transfer system for isolator technology

    Science.gov (United States)

    Sadat, Theo; Huber, Thomas

    2002-03-01

    In every aseptic filling application, the sterile transfer of goods into the aseptic area is a challenge, and there are many different ways to do it. With isolator technology a higher sterility assurance level (SAL) is achieved. This SAL is only as good as the weakest segment in the chain of manufacturing. The transfer of goods into and out of the isolator is one of these critical segments. Today different techniques, some already well established, others still very new, are available on the market like: dry heat tunnel, autoclave, pulsed light, rapid transfer systems (RTP), H 2O 2 tunnel, UV light, etc. all these systems are either not applicable for continuous transfer, only good for heat-compatible materials like glass, or do not guarantee a 6 log spore reduction. E-Beam opens new perspectives in this field. With E-beam technology it is possible to transfer heat-sensitive (plastic), pre-sterilised materials at high speed, continuously into an aseptic area. E-Beam unifies three different technologies, that result in a very efficient and high-speed decontamination machine designed for the pharmaceutical industry. First, there is the electron beam that decontaminates the goods and an accurate shielding that protects the surrounding from this beam. Second, there is the conveyor system that guarantees the output and the correct exposure time underneath the beam. And third, there is the isolator interface to provide correct differential pressure and clean air inside the tunnel as well as the decontamination of the tunnel with H 2O 2 prior to production. The E-beam is a low-energy electron beam, capable of decontaminating any kind of surface. It penetrates only a few micrometers into the material and therefore does not deform the packaging media. Currently, machines are being built to transfer pre-sterilised syringes, packed in plastic tubs with a Tyvek cover into an aseptic filling isolator with the following data: decontamination efficiency of 10 6 (6 log spore

  9. TRANSFER OF TECHNOLOGY – MECHANISM OF MODERN UNIVERSITY WITH COMMUNITY CONNECTION

    Directory of Open Access Journals (Sweden)

    Mihaela DIACONU

    2014-11-01

    Full Text Available This study presents, starting from the third mission of the university, a modern mechanism – technology transfer, by which the university can effectively contribute to local and regional socio-economic development and may provide additional sources of income for the research and development work in terms of substantially reducing the financial support by the state. The study emphasizes the role of the office of technology transfer as a means of connection of the university with the business environment able to arrange joint efforts of both sides in economic development. The method used was that of thematic analysis of the content of data published on the websites of the best performing TTO`s on technology transfer and the literature referring to the third mission of the university. The study develops a methodology with the procedural approach and the steps that should followed so that the university could become more competitive with the help of TTO. The conclusion is that, in the current conditions of higher education market, the entrepreneurial spirit of the university valued through TTO brings important benefits to society.

  10. Technology transfer present and futures in the electronic arts

    Directory of Open Access Journals (Sweden)

    Brian Degger

    2008-01-01

    Full Text Available We are entering an era where creating the fantastical is possible in the arts. In the areas of mixed reality and biological arts, responsive works are created based on advances in basic science and technology. This is enabling scientists and artists to pose new questions. As the time between discovery and application is so short, artists need imaginative ways of accessing new technology in order to critique and use it.These are the new paints that the majority of artists cannot afford or access, technology to enable cloning of DNA, to print channels on a chip, to access proprietary 3G networks. Currently, partnerships or residencies are used to facilitate artist’s access to these technologies. What would they do if technology was available that enabled them to make any art work they so desire? Are the limitations in current technology an advantage rather than a disadvantage in some of their works? Does interaction with technologists make their work more robust? Are there disadvantages? How do they get access to the technology they require? Open source or proprietary? Or have they encountered the situation where their vision is greater than technology allows. When their work breaks because of this fact, is their art broken? Blast Theory (Brighton,UK, FoAM(Brussels, Belgium and Amsterdam, Netherlands, SymbioticA (Perth, Australia are organisations pushing technological boundaries in the service of art. This paper addresses some questions of technology transfer in relation to recent artworks, particularly I like Frank in Adelaide (Blast Theory, transient reality generators (trg (FoAM and Multi electrode array artist (MeART (SymbioticA.

  11. 78 FR 48537 - Small Business Innovation Research and Small Business Technology Transfer Programs...

    Science.gov (United States)

    2013-08-08

    ... ADMINISTRATION Small Business Innovation Research and Small Business Technology Transfer Programs... Administration (SBA) is publishing the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program Commercialization Benchmark for the 11 participating agencies for public comment...

  12. Baseline Study Methodology for Future Phases of Research on Nuclear Power Plant Control Room Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, Katya Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bower, Gordon Ross [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hill, Rachael Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spielman, Zachary Alexander [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rice, Brandon Charles [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-01

    In order to provide a basis for industry adoption of advanced technologies, the Control Room Upgrades Benefits Research Project will investigate the benefits of including advanced technologies as part of control room modernization This report describes the background, methodology, and research plan for the first in a series of full-scale studies to test the effects of advanced technology in NPP control rooms. This study will test the effect of Advanced Overview Displays in the partner Utility’s control room simulator

  13. Advanced biosensing methodologies developed for evaluating performance quality and safety of emerging biophotonics technologies and medical devices (Conference Presentation)

    Science.gov (United States)

    Ilev, Ilko K.; Walker, Bennett; Calhoun, William; Hassan, Moinuddin

    2016-03-01

    Biophotonics is an emerging field in modern biomedical technology that has opened up new horizons for transfer of state-of-the-art techniques from the areas of lasers, fiber optics and biomedical optics to the life sciences and medicine. This field continues to vastly expand with advanced developments across the entire spectrum of biomedical applications ranging from fundamental "bench" laboratory studies to clinical patient "bedside" diagnostics and therapeutics. However, in order to translate these technologies to clinical device applications, the scientific and industrial community, and FDA are facing the requirement for a thorough evaluation and review of laser radiation safety and efficacy concerns. In many cases, however, the review process is complicated due the lack of effective means and standard test methods to precisely analyze safety and effectiveness of some of the newly developed biophotonics techniques and devices. There is, therefore, an immediate public health need for new test protocols, guidance documents and standard test methods to precisely evaluate fundamental characteristics, performance quality and safety of these technologies and devices. Here, we will overview our recent developments of novel test methodologies for safety and efficacy evaluation of some emerging biophotonics technologies and medical devices. These methodologies are based on integrating the advanced features of state-of-the-art optical sensor technologies and approaches such as high-resolution fiber-optic sensing, confocal and optical coherence tomography imaging, and infrared spectroscopy. The presentation will also illustrate some methodologies developed and implemented for testing intraocular lens implants, biochemical contaminations of medical devices, ultrahigh-resolution nanoscopy, and femtosecond laser therapeutics.

  14. 76 FR 71048 - Sixth Annual Philip S. Chen, Jr. Distinguished Lecture on Innovation and Technology Transfer

    Science.gov (United States)

    2011-11-16

    ... Innovation and Technology Transfer AGENCY: National Institutes of Health, Public Health Service, HHS. ACTION....D. Distinguished Lecture on Innovation and Technology Transfer. DATES: Friday, December 9, 2011, at... Recombinant Immunotoxins: From Technology Transfer to the Patient.'' Dr. Pastan is an NIH Distinguished...

  15. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Science.gov (United States)

    2010-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission,...

  16. Methodological approach to crime scene investigation: the dangers of technology

    Science.gov (United States)

    Barnett, Peter D.

    1997-02-01

    The visitor to any modern forensic science laboratory is confronted with equipment and processes that did not exist even 10 years ago: thermocyclers to allow genetic typing of nanogram amounts of DNA isolated from a few spermatozoa; scanning electron microscopes that can nearly automatically detect submicrometer sized particles of molten lead, barium and antimony produced by the discharge of a firearm and deposited on the hands of the shooter; and computers that can compare an image of a latent fingerprint with millions of fingerprints stored in the computer memory. Analysis of populations of physical evidence has permitted statistically minded forensic scientists to use Bayesian inference to draw conclusions based on a priori assumptions which are often poorly understood, irrelevant, or misleading. National commissions who are studying quality control in DNA analysis propose that people with barely relevant graduate degrees and little forensic science experience be placed in charge of forensic DNA laboratories. It is undeniable that high- tech has reversed some miscarriages of justice by establishing the innocence of a number of people who were imprisoned for years for crimes that they did not commit. However, this papers deals with the dangers of technology in criminal investigations.

  17. Advanced chemistry of monolayers at interfaces trends in methodology and technology

    CERN Document Server

    Imae, Toyoko

    2007-01-01

    Advanced Chemistry of Monolayers at Interfaces describes the advanced chemistry of monolayers at interfaces. Focusing on the recent trends of methodology and technology, which are indispensable in monolayer science. They are applied to monolayers of surfactants, amphiphiles, polymers, dendrimers, enzymes, and proteins, which serve many uses.Introduces the methodologies of scanning probe microscopy, surface force instrumentation, surface spectroscopy, surface plasmon optics, reflectometry, and near-field scanning optical microscopy. Modern interface reaction method, lithographic tech

  18. EPA and the Federal Technology Transfer Act: Opportunity knocks

    Energy Technology Data Exchange (ETDEWEB)

    Gatchett, A.M.; Fradkin, L.; Moore, M.; Gorman, T.; Ehrlich, A. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    In 1986, the Federal Technology Transfer Act (FTTA) was established to promote a closer, collaborative relationship between federal government agencies and the private sector. With the increasing need for new cost-effective technologies to prevent and control pollution, both the US Environmental Protection Agency (EPA) and private industry are encouraged to facilitate the transfer of knowledge and technology under this Act. The FTTA removed several of the legal and institutional barriers to cooperative research that existed before the Act`s passage. Through the FTTA, the government strives to promote the movement of its products, processes, skills, and knowledge into the private sector for further development and commercialization by encouraging the exchange of technical personnel and the sharing of facilities and other resources. Collaborative efforts between industry, federal agencies, and academia are made possible through cooperative research and development agreements (CRADAs). Forty-two CRADAs and five licensing agreements have been initiated with EPA under this program. This paper provides an overview of this new and innovative program within the EPA. 1 fig., 2 tabs.

  19. Security technologies and protocols for Asynchronous Transfer Mode networks

    Energy Technology Data Exchange (ETDEWEB)

    Tarman, T.D.

    1996-06-01

    Asynchronous Transfer Mode (ATM) is a new data communications technology that promises to integrate voice, video, and data traffic into a common network infrastructure. In order to fully utilize ATM`s ability to transfer real-time data at high rates, applications will start to access the ATM layer directly. As a result of this trend, security mechanisms at the ATM layer will be required. A number of research programs are currently in progress which seek to better understand the unique issues associated with ATM security. This paper describes some of these issues, and the approaches taken by various organizations in the design of ATM layer security mechanisms. Efforts within the ATM Forum to address the user communities need for ATM security are also described.

  20. A first thermodynamic interpretation of the technology transfer activities

    CERN Document Server

    Ripandelli, S

    2016-01-01

    In the last years new interdisciplinary approaches to economics and social science have been developed. A Thermodynamic approach to socio-economics has brought to a new interdisciplinary scientific field called econophysics. Why thermodynamic? Thermodynamic is a statistical theory for large atomic system under constraints of energy[1] and the economy can be considered a large system governed by complex rules. The present job proposes a new application, starting from econophysic, passing throughout the thermodynamic laws to interpret and to described the Technology Transfer (TT) activities. Using the definition of economy (i.e. economy[dictionary def.] = the process or system by which goods and services are produced, sold, and bought in a country or region) the TT can be considered an important sub-domain of the economy and a transversal new area of the scientific research. The TT is the process of transferring knowledge, that uses the results from the research to produce innovation and to ensure that scientif...

  1. Technology transfer: Half-way houses. No. 17

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, R.W.

    1995-05-01

    In the fall of 1993, 1 was asked by the Center for National Security Studies (CNSS) of the Los Alamos National Laboratory (LANL) to study the ways in which technology transfer and defense conversion had been accomplished at General Atomics (GA) and Science Applications International Corporation (SAIC) by interviewing Harold Agnew, who had served as director of Los Alamos before becoming president of General Atomics in 1979, and J. Robert Beyster, who had been a staff member at Los Alamos and at General Atomics before founding SAIC in 1969. Harold Agnew readily complied with my request for an interview and also suggested that I talk to Douglas Fouquet, who is in charge of public relations at General Atomics and is their unofficial historian. Robert Beyster was not available for an interview, but, through the courtesy of John C. Hopkins, a former director of CNSS, I was able to interview SAIC`s executive vice president, Donald M. Kerr, who is also a former director at Los Alamos, and Steven Rockwood, a sector vice president at SAIC who was formerly a staff member at the Laboratory Because Agnew, Kerr, and Rockwood are all familiar with LANL, as well as with their respective companies, the interviews becam exercises In comparative analyses of technology transfer. In what follows, I have tried to summarize both the interviews and some of the research which attended them. It is the historian`s hope that by use of comparative institutional analyses, Laboratory administrators may learn something of value in directing their efforts toward the transfer of technology to private industry and other government agencies.

  2. Technology transfer of brain-computer interfaces as assistive technology: barriers and opportunities.

    Science.gov (United States)

    Nijboer, F

    2015-02-01

    This paper provides an analysis of perspectives from different stakeholders on the state-of-the-art of BCI. Three barriers for technology transfer of BCIs as access technologies are identified. First, BCIs are developed with a narrow focus on creating a reliable technology, while a broader focus on creating a usable technology is needed. Second, the potential target group, which could benefit from BCIs as access technologies is expected to be very small. Development costs are therefore high, while reimbursements are expected to be low, which challenges the commercial viability. Third, potential target users should be much more included in the design process of BCIs to ensure that the end-products meet technical, ethical, legal and social requirements. These three issues need to be urgently addressed so that target users may benefit from this promising technology.

  3. Cast Metals Coalition Technology Transfer and Program Management Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people

  4. Technology transfer package on seismic base isolation - Volume III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume III contains supporting materials not included in Volumes I and II.

  5. Technology transfers, foreign investment and productivity spillovers: evidence from Vietnam

    DEFF Research Database (Denmark)

    Newman, Carol; Rand, John; Talbot, Theodore Purdendu

    This paper provides new evidence on the relationship between foreign direct investment (FDI) and the productivity of domestic firms. Using a specially designed survey on a sample of over 7,500 manufacturing firms in Vietnam we uncover some of the mechanisms that explain productivity spillovers from....... Productivity externalities from upstream sectors are associated with joint venture foreign investors while downstream sectors experience direct technology transfers from upstream wholly foreign owned investors. Spillovers from FDI through backward linkages are also detected but only when competition from...

  6. Technologies, Methodologies and Challenges in Network Intrusion Detection and Prevention Systems

    Directory of Open Access Journals (Sweden)

    Nicoleta STANCIU

    2013-01-01

    Full Text Available This paper presents an overview of the technologies and the methodologies used in Network Intrusion Detection and Prevention Systems (NIDPS. Intrusion Detection and Prevention System (IDPS technologies are differentiated by types of events that IDPSs can recognize, by types of devices that IDPSs monitor and by activity. NIDPSs monitor and analyze the streams of network packets in order to detect security incidents. The main methodology used by NIDPSs is protocol analysis. Protocol analysis requires good knowledge of the theory of the main protocols, their definition, how each protocol works.

  7. Evaluation of technology transferring: The experiences of the first Navy Domestic Technology Transfair. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    In August 1989 the Office of the Chief of Naval Research and the American Defense Preparedness Association conducted the first Navy Domestic Technology Transfair. The objective of the Transfair was to expose the US Navy`s years of solid experience across a broad span of technology to organizations outside of the Navy. It was an opportunity for private industry to capitalize on the Navy developed technology and this opening for industry was the primary focus of the Transfair. The event provided a unique forum to meet leading Navy scientific and engineering innovators face-to-face. Information was available concerning licensing of naval technology that was for sale to the private sector. Further, discussions covered opportunities for new cooperative research and development agreements with Navy laboratories and R&D activities. These agreements were authorized under the Federal Technology Transfer Act of 1986. The Transfair program was conducted in such a manner as to allow each Navy inventor, either scientist or engineer, to present a system, piece of hardware, or licensable concept in a formal paper presentation. Then, the Navy inventors were available in two, two-hour periods in which individual discussions were conducted, with attendees pursuing specific venues of cooperative agreements as desired. This report provides specifics concerning the technologies that were made available for transfer to the private sector during the Transfair. The Transfair concept sought to add special emphasis to the opening that the 1988 Technology Transfer Act brought to the marketplace. The experience was a step in the education of the possibilities for cooperation between the government and the private sector to share technology. Of additional significance is the economic enhancement for business expansion with the application of the technology to markets beyond defense.

  8. Opportunities for the transfer of astronomical technology to medicine.

    Science.gov (United States)

    Hughes, S

    2007-12-01

    There are many examples of technology transfer from astronomy to medicine, for example algorithms for reconstructing X-ray CT images were first developed for processing radio astronomy images. In more recent times, X-ray detectors developed for the Hubble Space Telescope have been used in a fine-needle breast biopsy system. Software originally developed to mosaic planetary images has been incorporated into a system for detecting breast cancer. Australia has expertise in the development of instrumentation for producing radio images from an array of radio telescopes and in multi-object fibre systems for capturing the spectra of hundreds of stellar objects simultaneously. Two possible applications of these Australian technologies are suggested that may merit further exploration. A meeting between interested parties is suggested to discuss future directions and funding.

  9. Formal and Informal Technology Transfer from Academia to Industry : Complementarity Effects and Innovation Performance

    OpenAIRE

    Grimpe, Christoph; Hussinger, Katrin

    2008-01-01

    Literature has identified formal and informal channels in university technology transfer. While formal technology transfer typically involves a legal contract on a patent or on collaborative research activities, informal transfer channels refer to personal contacts and hence to the tacit dimension of knowledge transfer. Research is, however, scarce regarding the interaction of formal and informal transfer mechanisms. In this paper, we analyze whether these activities are mutually reinforcing,...

  10. The role of technological transfer in the societies based on knowledge economy

    OpenAIRE

    2009-01-01

    The knowledge based economy is an economy based on innovation. Implementing innovation requires acquiring new technology, using the technique of technological transfer. The problems and the timing for implementing an emerging technology are under discussion in this paper.

  11. A methodology for spacecraft technology insertion analysis balancing benefit, cost, and risk

    Science.gov (United States)

    Bearden, David Allen

    Emerging technologies are changing the way space missions are developed and implemented. Technology development programs are proceeding with the goal of enhancing spacecraft performance and reducing mass and cost. However, it is often the case that technology insertion assessment activities, in the interest of maximizing performance and/or mass reduction, do not consider synergistic system-level effects. Furthermore, even though technical risks are often identified as a large cost and schedule driver, many design processes ignore effects of cost and schedule uncertainty. This research is based on the hypothesis that technology selection is a problem of balancing interrelated (and potentially competing) objectives. Current spacecraft technology selection approaches are summarized, and a Methodology for Evaluating and Ranking Insertion of Technology (MERIT) that expands on these practices to attack otherwise unsolved problems is demonstrated. MERIT combines the modern techniques of technology maturity measures, parametric models, genetic algorithms, and risk assessment (cost and schedule) in a unique manner to resolve very difficult issues including: user-generated uncertainty, relationships between cost/schedule and complexity, and technology "portfolio" management. While the methodology is sufficiently generic that it may in theory be applied to a number of technology insertion problems, this research focuses on application to the specific case of small (goals, not-to-exceed costs, or hard schedule requirements. MERIT'S contributions to the engineering community are its: unique coupling of the aspects of performance, cost, and schedule; assessment of system level impacts of technology insertion; procedures for estimating uncertainties (risks) associated with advanced technology; and application of heuristics to facilitate informed system-level technology utilization decisions earlier in the conceptual design phase. MERIT extends the state of the art in technology

  12. 7th International Conference in Methodologies and Intelligent Systems for Technology Enhanced Learning

    CERN Document Server

    Gennari, Rosella; Mascio, Tania; Rodríguez, Sara; Prieta, Fernando; Ramos, Carlos; Silveira, Ricardo

    2017-01-01

    This book presents the outcomes of the 7th International Conference in Methodologies and Intelligent Systems for Technology Enhanced Learning (MIS4TEL'17), hosted by the Polytechnic of Porto, Portugal from 21 to 23 June 2017. Expanding on the topics of the previous conferences, it provided an open forum for discussing intelligent systems for technology enhanced learning (TEL) and their roots in novel learning theories, empirical methodologies for their design or evaluation, stand-alone and web-based solutions, and makerspaces. It also fostered entrepreneurship and business startup ideas, bringing together researchers and developers from industry, education and the academic world to report on the latest scientific research, technical advances and methodologies.

  13. Disruption of Information Technology Projects: The Reactive Decoupling of Project Management Methodologies

    Science.gov (United States)

    Schmitz, Kurt W.

    2013-01-01

    Information Technology projects have migrated toward two dominant Project Management (PM) methodologies. Plan-driven practices provide organizational control through highly structured plans, schedules, and specifications that facilitate oversight by hierarchical bureaucracies. In contrast, agile practices emphasize empowered teams using flexible…

  14. Studying Marriage and Family Therapists in the 21st Century: Methodological and Technological Issues

    Science.gov (United States)

    Northey, William F., Jr.

    2005-01-01

    In this article, I present data from two waves of research on demographic characteristics and practice patterns of marriage and family therapists (MFTs) conducted in 2000 and 2002. The research focuses on the methodological and technological issues in studying this population. Specifically, an online survey with MFTs obtained lower response rates…

  15. A food quality management research methodology integrating technological and managerial theories

    NARCIS (Netherlands)

    Luning, P.A.; Marcelis, W.J.

    2009-01-01

    In this article it is argued how the complexity of food quality management combined with the high requirements on food quality requires a specific research methodology. It is concluded that food quality management research has to deal with two quite different paradigms, the one from technological

  16. Success Rates by Software Development Methodology in Information Technology Project Management: A Quantitative Analysis

    Science.gov (United States)

    Wright, Gerald P.

    2013-01-01

    Despite over half a century of Project Management research, project success rates are still too low. Organizations spend a tremendous amount of valuable resources on Information Technology projects and seek to maximize the utility gained from their efforts. The author investigated the impact of software development methodology choice on ten…

  17. A food quality management research methodology integrating technological and managerial theories

    NARCIS (Netherlands)

    Luning, P.A.; Marcelis, W.J.

    2009-01-01

    In this article it is argued how the complexity of food quality management combined with the high requirements on food quality requires a specific research methodology. It is concluded that food quality management research has to deal with two quite different paradigms, the one from technological an

  18. Success Rates by Software Development Methodology in Information Technology Project Management: A Quantitative Analysis

    Science.gov (United States)

    Wright, Gerald P.

    2013-01-01

    Despite over half a century of Project Management research, project success rates are still too low. Organizations spend a tremendous amount of valuable resources on Information Technology projects and seek to maximize the utility gained from their efforts. The author investigated the impact of software development methodology choice on ten…

  19. Disruption of Information Technology Projects: The Reactive Decoupling of Project Management Methodologies

    Science.gov (United States)

    Schmitz, Kurt W.

    2013-01-01

    Information Technology projects have migrated toward two dominant Project Management (PM) methodologies. Plan-driven practices provide organizational control through highly structured plans, schedules, and specifications that facilitate oversight by hierarchical bureaucracies. In contrast, agile practices emphasize empowered teams using flexible…

  20. A Radiative Transfer Modeling Methodology in Gas-Liquid Multiphase Flow Simulations

    Directory of Open Access Journals (Sweden)

    Gautham Krishnamoorthy

    2014-01-01

    Full Text Available A methodology for performing radiative transfer calculations in computational fluid dynamic simulations of gas-liquid multiphase flows is presented. By considering an externally irradiated bubble column photoreactor as our model system, the bubble scattering coefficients were determined through add-on functions by employing as inputs the bubble volume fractions, number densities, and the fractional contribution of each bubble size to the bubble volume from four different multiphase modeling options. The scattering coefficient profiles resulting from the models were significantly different from one another and aligned closely with their predicted gas-phase volume fraction distributions. The impacts of the multiphase modeling option, initial bubble diameter, and gas flow rates on the radiation distribution patterns within the reactor were also examined. An increase in air inlet velocities resulted in an increase in the fraction of larger sized bubbles and their contribution to the scattering coefficient. However, the initial bubble sizes were found to have the strongest impact on the radiation field.

  1. Inside the triple helix: technology transfer and commercialization in the life sciences.

    Science.gov (United States)

    Campbell, Eric G; Powers, Joshua B; Blumenthal, David; Biles, Brian

    2004-01-01

    The transfer and subsequent application of academic research results has demonstrable benefits for health care, researchers, universities, companies, and local economies. Nonetheless, at least three general concerns exist: bias in the reporting of results, limited revenues from these activities, and the lack of data to evaluate technology transfer activities. Future efforts with regard to technology transfer in the life sciences will need to recognize its importance without ignoring concerns or overestimating benefits. Next steps include better monitoring of university-industry relationships, the development of a better data system, the dissemination of best practices in technology transfer management, and evaluation of national technology-transfer policies.

  2. Reverse knowledge and technology transfer: imbalances caused by cognitive barriers in asymmetric relationships

    NARCIS (Netherlands)

    Millar-Schijf, Carla C.J.M.; Choi, Chong-Ju

    2009-01-01

    An imbalance exists in almost any type of knowledge and technology transfer due to the information asymmetry of the relationship. However, this is especially the case for reverse technology and knowledge transfer which is epitomised for us by "transfers from an MNC's subsidiary to its headquarters".

  3. FY05 Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-11-01

    Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions

  4. FY05 Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-11-01

    Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions

  5. Knowledge management aiming to technology transfer: the challenges face by the tic of the state university of Santa Cruz

    Directory of Open Access Journals (Sweden)

    Luan Carlos Santos Silva

    2013-05-01

    Full Text Available The present article discusses the concept of organizational knowledge, and theory models for the creation and management of organizational knowledge that, in many approaches, do not take into account the specificity of each organization and the relationship. The paper analyses the innovation dynamics and the technology transfer from Technological Innovation Centers (TIC to the productive sector. The methodology employed was qualitative and of descriptive nature. The method used in the research was a case study in a TIC well-structured in respect to the constitution of the TICs from the perspective of the Federal Innovation Law nº 10.973 of the Innovation Law of the Bahia State nº 11.174. Barriers for knowledge creation and management that guarantee the effective technology transfer were identified.

  6. Does Technology Transfer Help Small and Medium Companies? Empirical Evidence from Korea

    Directory of Open Access Journals (Sweden)

    Dae-Hwan Kim

    2016-11-01

    Full Text Available We challenge the view that technology transfer from big companies to small and medium (SM size companies helps SM companies to prosper. With a large dataset of SM companies in Korea, we utilize the stochastic production frontier (SPF model to examine the productivity of inputs and the generalized linear model (GLM to compare business performance between two groups of SM companies: SM companies that receive technology transfer and those that do not receive technology transfer from big companies. The empirical results demonstrate that the transfer of technology from big companies to SM companies help SM companies to enjoy productivity of capital. Nonetheless, SM companies receiving technology transfer were found to underperform in terms of labor productivity and profit margin compared to their counterparts. We further investigate the reasons why SM companies receiving technology transfer from big companies underperform relative to their counterparts, and our findings shows that the former do not export much of their product and face more difficulties such as lower price for their products imposed by big companies than the latter. By identifying the negative rather than the conventionally assumed positive effect of technology transfer, this paper contributes to the literature on the relationship between technology transfer and SM companies’ prosperity in the case of Korea. Our findings have important implications for how SM companies should strategize and rethink about the clauses embedded in the transfer of technology that they receive from big companies because technology transfer plays as a barrier to their prosperity.

  7. Inter-institutional decision making in the technology transfer process: Some preliminary issues in the evaluation of ORNL's High-Temperature Superconductivity Pilot Center

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, D.L.

    1989-09-01

    This report illuminates the decision-making processes affecting technology transfer at ORNL as they potentially impact upon development of high-temperature superconductors. The methodology of this report consists of an analysis of Oak Ridge National Laboratory (ORNL) documents laws, and regulations; a review of relevant literature on licensing, patents, and user center decision making; and interviews with persons directly involved in technology development and transfer at the laboratory. The process of technology development at ORNL encompasses, among other things, activities aimed at research and development (R D), technology transfer, and technology utilization. Each of these activities has officially become part of an overall laboratory mission referred to as technology development. 28 refs., 1 fig., 3 tabs.

  8. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Science.gov (United States)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  9. Technology transfer significance of the International Safeguards Project Office

    Energy Technology Data Exchange (ETDEWEB)

    Marcuse, W.; Waligura, A.J.

    1988-06-01

    The safeguards implemented by the International Atomic Energy Agency (IAEA) are of major importance to the non-proliferation objectives of the United States of America and other nations of the world. Assurance of safeguards effectiveness is mandatory to continued peaceful use of nuclear power. To enhance the ability of the IAEA to apply safeguards effectively, and to ensure that the IAEA does not lack technical assistance in critical areas, the US Congress has made available a special authorization for a Program for Technical Assistance to IAEA Safeguards (POTAS). This substantial program of technology transfer was initiated in 1976. The United States Departments of State and Energy, the Arms control and Disarmament Agency and the Nuclear Regulatory Commission have each accepted responsibility for parts of the Program for Technical Assistance to IAEA Safeguards. Funding is provided by state through the Foreign Assistance Act. This report provides a discussion of this program.

  10. Technology transfer package on seismic base isolation - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume II contains the proceedings for the Short Course on Seismic Base Isolation held in Berkeley, California, August 10-14, 1992.

  11. Technology transfer package on seismic base isolation - Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume I contains the proceedings of the Workshop on Seismic Base Isolation for Department of Energy Facilities held in Marina Del Rey, California, May 13-15, 1992.

  12. Analysis and technology transfer report, 1989 and 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    The buildings sector used 29.6 quadrillion Btus (quads) of energy in 1989, or 36 percent of the total primary energy consumed in the United States. The major uses are for space heating and cooling, water heating, refrigeration, and lighting. Electricity is the dominant fuel, followed by natural gas, petroleum, and other fuels. Although there were dramatic improvements in energy efficiency in this sector from 1975 to 1985, in recent years energy use has grown rapidly. The large growth expected in commercial building floor space and in residential units means that total building-sector energy consumption could increase dramatically by the year 2030. The mission of the US DOE's Office of Building Technologies (OBT) is to lead a national program supporting private sector efforts to improve the energy efficiency of the nation's buildings and to increase their utilization of renewable energy sources. The Office is also responsible for energy efficiency planning and management for Federal buildings as well as buildings-related associated information, financial incentives, and regulatory functions that are determined to be appropriate for the Federal government. To accomplish its goals, OBT plans and conducts research and development to make technologies available and provides information on their effectiveness. The selection and management of OBT research activities requires an understanding of where and how energy is used within the buildings sectors, how energy use is expected to change in the future, and the potential impact of new and emerging technologies on energy use. Analysis activities serve to collect energy use information, provide the analysis necessary to apply this information to research and development planning, and develop analysis tools which the program uses to set priorities for research projects. This report summarizes analysis and technology transfer activities undertaken by OBT during 1989 and 1990. 101 refs., 19 figs., 9 tabs.

  13. Information to Change the World--Fulfilling the Information Needs of Technology Transfer.

    Science.gov (United States)

    Duberman, Josh; Zeller, Martin

    1996-01-01

    Provides an introduction to fulfilling the information needs of technology transfer. Highlights include a definition of technology transfer; government and university involvement; industry's role; publishers; an annotated list of information sources and contacts; technology assessment, including patent searching, competitive intelligence, and…

  14. 78 FR 59410 - Small Business Innovation Research and Small Business Technology Transfer Programs...

    Science.gov (United States)

    2013-09-26

    ... ADMINISTRATION Small Business Innovation Research and Small Business Technology Transfer Programs... period for the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR... Street SW., Washington, DC 20416; or send an email to Technology@sba.gov . Highlight the information that...

  15. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    Science.gov (United States)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  16. Effective methodology to derive strategic decisions from ESA exploration technology roadmaps

    Science.gov (United States)

    Cresto Aleina, Sara; Viola, Nicole; Fusaro, Roberta; Saccoccia, Giorgio

    2016-09-01

    Top priorities in future international space exploration missions regard the achievement of the necessary maturation of enabling technologies, thereby allowing Europe to play a role commensurate with its industrial, operational and scientific capabilities. As part of the actions derived from this commitment, ESA Technology Roadmaps for Exploration represent a powerful tool to prioritise R&D activities in technologies for space exploration and support the preparation of a consistent procurement plan for space exploration technologies in Europe. The roadmaps illustrate not only the technology procurement (to TRL-8) paths for specific missions envisaged in the present timeframe, but also the achievement for Europe of technological milestones enabling operational capabilities and building blocks, essential for current and future Exploration missions. Coordination of requirements and funding sources among all European stakeholders (ESA, EU, National, and Industry) is one of the objectives of these roadmaps, that show also possible application of the technologies beyond space exploration, both at ESA and outside. The present paper describes the activity that supports the work on-going at ESA on the elaboration and update of these roadmaps and related tools, in order to criticise the followed approach and to suggest methodologies of assessment of the Roadmaps, and to derive strategic decision for the advancement of Space Exploration in Europe. After a review of Technology Areas, Missions/Programmes and related building blocks (architectures) and operational capabilities, technology applicability analyses are presented. The aim is to identify if a specific technology is required, applicable or potentially a demonstrator in the building blocks of the proposed mission concepts. In this way, for each technology it is possible to outline one or more specific plans to increase TRL up to the required level. In practice, this translates into two possible solutions: on the one

  17. The Software Technology Center at Lawrence Livermore National Laboratory: Software engineering technology transfer in a scientific R&D laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Zucconi, L.

    1993-12-01

    Software engineering technology transfer for productivity and quality improvement can be difficult to initiate and sustain in a non-profit research laboratory where the concepts of profit and loss do not exist. In this experience report, the author discusses the approach taken to establish and maintain a software engineering technology transfer organization at a large R&D laboratory.

  18. Technology Transfer Challenges in Indonesia: An Experience from Industry Turbine Overhaul

    Directory of Open Access Journals (Sweden)

    Subiakto Soekarno

    2012-01-01

    Full Text Available This paper discusses the problems and challenges that Indonesia faces in the process of its technology transfer. Matters discussed in this paper are based on the lead writer’s personal observation and experience of the technology transfer taking place in Indonesia’s turbine maintenance and overhaul industry.The first challenge faced is the lack of basic skills on the part of factory workers. The next challenge is the lack of supporting industries. Furthermore, the low level of English proficiency of the workforce has contribution to the technology transfer problems. Final challenges are the low credibility of the government entities that oversee the turbine maintenance industry in Indonesia. The steps undertaken in the technology transfer in the turbine maintenance and overhaul industry in Indonesia is done through several complex stages.Keywords: challenges in the transfer of technology, technology transfer in Indonesia, turbine maintenance and overhaul industry.

  19. Artifacts and collaborative work in healthcare: methodological, theoretical, and technological implications of the tangible.

    Science.gov (United States)

    Xiao, Yan

    2005-02-01

    Although modeled as knowledge work with emphasis on data flow and decision making, healthcare is delivered in the context of a highly structured physical environment, with much effort and emphasis placed on physical and spatial arrangement and re-arrangement of workers, patients, and materials. The tangible aspects of highly collaborative healthcare work have profound implications for research and development of information and communication technology (ICT) despite the tendency to model work as flow of abstract data items. This article reviews field studies in healthcare and other domains on the role of artifacts in collaborative work and draws implications in three areas: methodological, theoretical, and technological. In regard to methodologies, assessment of new ICT and development of user requirements should take into account how artifacts are used and exploited to facilitate collaborative work. In regard to theories, the framework of distributed cognition provides a starting point for modeling the contribution and exploitation of physical artifacts in supporting collaborative work. In regard to technology, design and deployment of new technology should support the functions provided by physical artifacts replaced or disrupted by new technology, and profitable ways for new technology to support collaborative work by embedding ICT into existing infrastructure of physical artifacts.

  20. Mobile Eye Tracking Methodology in Informal E-Learning in Social Groups in Technology-Enhanced Science Centres

    Science.gov (United States)

    Magnussen, Rikke; Zachariassen, Maria; Kharlamov, Nikita; Larsen, Birger

    2017-01-01

    This paper presents a methodological discussion of the potential and challenges of involving mobile eye tracking technology in studies of knowledge generation and learning in a science centre context. The methodological exploration is based on eye-tracking studies of audience interaction and knowledge generation in the technology-enhanced health…

  1. Analyzing the Impacts of an IPM Vegetable Technology Transfer in Bangladesh

    OpenAIRE

    McCarthy, Evan Tyler

    2015-01-01

    This study evaluates the effectiveness and impacts of USAID's IPM IL vegetable technology transfer subproject in Bangladesh. The effectiveness of the technology transfer is evaluated in four ways: IPM adoption rates and determinants of IPM adoption, measuring the impact of IPM adoption on vegetable yields, pest management costs, and the number of pesticide applications used, estimation of the economic impacts of IPM adoption and the technology transfer, and analysis of the relative efficienc...

  2. Technology Transfer: A Compilation of Varied Approaches to the Management of Innovation.

    Science.gov (United States)

    1982-12-01

    Intergovernmental Cooperation in Science and Tech- nology--J. E. Clark 89. Department of Defense Technology Transfer Consor- tium: An Overview--G. F...DEPARTMENT OF DEFENSE TECHNOLOGY TRANSFER CONSORTIUM: AN OVERVIEW George F. Linsteadt Abstract The federal R&D laboratories represent a large...agencies who have compatible requirements. The Department of Defense Technology Transfer Consortium, as a subset of the Federal Laboratory Consortium for

  3. 6th International Conference in Methodologies and intelligent Systems for Technology Enhanced Learning

    CERN Document Server

    Prieta, Fernando; Mascio, Tania; Gennari, Rosella; Rodríguez, Javier; Vittorini, Pierpaolo

    2016-01-01

    The 6th International Conference in Methodologies and intelligent Systems for Technology Enhanced Learning held in Seville (Spain) is host by the University of Seville from 1st to 3rd June, 2016. The 6th edition of this conference expands the topics of the evidence-based TEL workshops series in order to provide an open forum for discussing intelligent systems for TEL, their roots in novel learning theories, empirical methodologies for their design or evaluation, stand-alone solutions or web-based ones. It intends to bring together researchers and developers from industry, the education field and the academic world to report on the latest scientific research, technical advances and methodologies.

  4. Advanced robotic technologies for transfer at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C.

    1994-10-01

    Hazardous operations which have in the past been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. As a result, remote systems are needed to accomplish many hazardous materials handling tasks such as the clean-up of waste sites in which the exposure of personnel to radiation, chemical, explosive and other hazardous constituents is unacceptable. Computer models augmented by sensing, and structured, modular computing environments are proving effective in automating many unstructured hazardous tasks. Work at Sandia National Laboratories (SNL) has focused on applying flexible automation (robotics) to meet the needs of the U.S. Department of Energy (USDOE). Dismantling facilities, environmental remediation, and materials handling in changing, hazardous environments lead to many technical challenges. Computer planning, monitoring and operator assistance shorten training cycles, reduce errors, and speed execution of operations. Robotic systems that re-use well-understood generic technologies can be much better characterized than robotic systems developed for a particular application, leading to a more reliable and safer systems. Further safety in robotic operations results from use of environmental sensors and knowledge of the task and environment. Collision detection and avoidance is achieved from such sensor integration and model-based control. This paper discusses selected technologies developed at SNL for use within the USDOE complex that have been or are ready for transfer to government and industrial suppliers. These technologies include sensors, sub-systems, and the design philosophy applied to quickly integrate them into a working robotic system. This paper represents the work of many people at the Intelligent Systems and Robotics Center at SNL, to whom the credit belongs.

  5. INTERNET RESOURCES SEARCH METHODOLOGY FOR DEMONSTRATION OF TECHNOLOGICAL PROCESSES IN CHEMISTRY STUDYING

    Directory of Open Access Journals (Sweden)

    Olga M. Naumenko

    2014-01-01

    Full Text Available The question of methodology of organization of search and application of Resources of the Internet is examined for demonstration of technological processes at the study of chemistry in senior school and higher educational establishments of І-ІІ levels of accreditation. Realization of positions of the new State standard of the base and complete secondary education needs creation of the certain methodical going near organization of search and use in the educational process of Resources of the Internet, that can be used in a course of chemistry for demonstration of their practical using, including technological processes. Considerable attention is devoted to advices for teachers in relation to methodology of the use of Resources of the Internet at preparation and realization of practical and laboratory work, other forms of students’ educational-searching activity.

  6. Methodology of Computer Science and Technology%计算机科学与技术方法论

    Institute of Scientific and Technical Information of China (English)

    董荣胜; 古天龙; 蔡国永; 谢春光

    2002-01-01

    In this paper,two documents of “Computing as a discpline”and “Computing Curricula 1991” are briefly introduccd,and their main contributions to the methodology of computer science and technology are porinted out.Then based on the general methodology of science and technology,the definition of computer science and technology is given,and its three paradigms (abstraction,theory,design),fundamental problem,core concept,mathematical methods and system approaches are presented.Finally,we conclude that the methodology of computer science and technology is a new theory in the computing cognition field.

  7. Development of a Screening Tool to Facilitate Technology Transfer of an Innovative Technology to Treat Perchlorate-Contaminated Water

    Science.gov (United States)

    2008-03-01

    specific technology screening instrument, Mandalas et al. (1998) demonstrated that technology transfer can be facilitated by making available user...S. D., and Aly, O. M. (1998). Chemistry of Water Treatment, 2nd Edition. Boca Raton, Florida: Lewis Publishers. Goltz, M. N., Mandalas , G. C...McGraw-Hill. Mandalas , G., Christ, J., and Goltz, M. (1998). Software to Aid Transfer of an Innovative In Situ Bioremediation Technology

  8. Methodological principles outline discipline "Organization studies-tourism activity" using information technologies.

    Directory of Open Access Journals (Sweden)

    Kozina Zh.L.

    2011-08-01

    Full Text Available The basic methodological principles of the disciplines of tourism and local history with information technology. 15 analyzed the literature and experience of leading experts in the field of sports and health tourism, and orienteering. Identified principles of academic disciplines of tourism and local history: the shift in emphasis from sports tourism to the cognitive, health tourism, the development of spiritual qualities, acquisition of life skills in nature, discovery and development of pedagogical and psychological abilities, character traits through the study of native land, the development of cognitive-research abilities, physical abilities, motor skills, application of modern information technology.

  9. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  10. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  11. Moving R&D to the Marketplace, A Guidebook for Technology Transfer Managers

    Energy Technology Data Exchange (ETDEWEB)

    Mock, John E.; Kenkeremath, Deepak C.; Janis, F. Timothy

    1993-01-01

    This Guidebook serves as an introduction as well as a refresher for technology transfer managers. It focuses on the question: What can the Technology Transfer manager do when confronted by complex situations and events? The main functional issues addressed here concern the conduct of technology transfer in Technology Utilization programs. These R&D programs whose primary mission is to develop technologies that will be used outside of the Federal sector. Renewable energy, health care, and agricultural advances are technologies of this type. The contents of this Guidebook will be of value to managers in a variety of Federal, State, university and industry technology development and transfer programs. The general area of transferring service innovations is not covered here. The Guidebook is primarily about the development and care of hardware. This Guidebook makes no attempt to judge the value of specific technologies in meeting societal needs. Rather, it addresses the improvement of the technology transfer process itself. It does, however, include reminders that ascertainment of the social value of specific technologies is one of the important yet difficult tasks of R&D and technology transfer programs. [DJE-2005

  12. Transforming incomplete fault tree to Ishikawa diagram as an alternative method for technology transfer

    Science.gov (United States)

    Batzias, Dimitris F.

    2012-12-01

    Fault Tree Analysis (FTA) can be used for technology transfer when the relevant problem (called 'top even' in FTA) is solved in a technology centre and the results are diffused to interested parties (usually Small Medium Enterprises - SMEs) that have not the proper equipment and the required know-how to solve the problem by their own. Nevertheless, there is a significant drawback in this procedure: the information usually provided by the SMEs to the technology centre, about production conditions and corresponding quality characteristics of the product, and (sometimes) the relevant expertise in the Knowledge Base of this centre may be inadequate to form a complete fault tree. Since such cases are quite frequent in practice, we have developed a methodology for transforming incomplete fault tree to Ishikawa diagram, which is more flexible and less strict in establishing causal chains, because it uses a surface phenomenological level with a limited number of categories of faults. On the other hand, such an Ishikawa diagram can be extended to simulate a fault tree as relevant knowledge increases. An implementation of this transformation, referring to anodization of aluminium, is presented.

  13. Giving It Away : Free Technology Transfer to the Irish SME Sector

    OpenAIRE

    Kavanagh, Peter; Maguire, Andy; Casey, James J.

    2006-01-01

    One of Europe’s major weaknesses lies in its inferiority in terms of transforming the results of technological research and skills into innovations and competitive advantages. (European Commission, 1995, p. 8.) Technology transfer is a key aspect of economic development and research administration. These concerns are shared equally between academia and industry on both sides of the Atlantic. As technology is developed at a greater rate, concerns about the technology transfer will heighten....

  14. LAN technology transfer using the Naval Postgraduate School as a case study

    OpenAIRE

    1995-01-01

    In today's Department of Defense (DoD) environment, more emphasis is being placed on using computing resources to receive and process information. Local area networks (LANs) are used to access these computing resources by users. As new resources are added to networks, an effective mechanism is required to transfer this technology to the users. The effective transfer of technology requires user awareness of the technology and the ability of the user to use the technology. NA NA U.S. N...

  15. The Effects of Absorptive Capacity and Recipient Collaborativeness as Technology Recipient Characteristics on Degree of Inter-Firm Technology Transfer

    Directory of Open Access Journals (Sweden)

    A. W. Sazali

    2009-01-01

    Full Text Available Problem statement: As an efficient means to increase global competitiveness, technological capabilities and potential for local innovation, organizations in the developing countries are working hard to collaborate, learn and internalize their foreign partner’s technological knowledge by forming strategic alliances or International Joint Ventures (IJVs. Technology recipient characteristics, as one of the important actors/facilitators of inter-firm technology transfer, have increasingly become crucial factors in determining the success or failure of inter-firm technology transfer within IJVs. Since the current issue on inter-firm Technology Transfer (TT in the developing countries is centered on the efficiency and effectiveness of the transfer process by the Multinationals (MNCs therefore the success is often associated with or measured by degree of technology transferred to local partners. Based on the underlying knowledge-based view and organizational learning perspective, this study aims to empirically examine the effects of two critical elements of technology recipient characteristics: Absorptive Capacity (ACAP and Recipient Collaborativeness (RCOL on degree of technology transfer: Degree of tacit and explicit knowledge in IJVs. Approach: Using the quantitative analytical approach, the theoretical model and hypotheses in this study were tested based on empirical data gathered from 128 joint venture companies registered with the Registrar of Companies Of Malaysia (ROC. Data obtained from the survey questionnaires were analyzed using the correlation coefficients and multiple linear regression analyses. Results: The results revealed that recipient collaborativeness as the critical element of technology recipient characteristics has strong significant effects on both degrees of tacit and explicit knowledge. Although absorptive capacity has been strongly emphasized of its significance effect, however, the results are not statistically significant

  16. Technology transfer at CERN a study on inter-organizational knowledge transfer within multi-national R&D collaborations

    CERN Document Server

    Huuse, H; Streit-Bianchi, M

    2004-01-01

    This study focus on the knowledge aspect of inter-organizational technology transfer projects. We have studied two large R&D collaborations where CERN is involved as one of several participating organizations, in order to reveal the causalities related to the knowledge transfer processes within these projects. The objective of the study is to understand how knowledge transfer happens, identify influencing factors to the process, and finally investigate the outcome of such processes. The study is founded on a thorough literature review where we examine different aspects of inter-organizational knowledge transfer. Based on the theory, we develop an analytic framework and establish different elements in the knowledge transfer process to study in more detail. This framework illustrates the relation between the different elements in a knowledge transfer process and provides the structure for our empirical foundation. We perform an explanatory embedded multiple case study and analyze our findings in terms of th...

  17. Vehicle technologies heavy vehicle program : FY 2008 benefits analysis, methodology and results --- final report.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Energy Systems; TA Engineering

    2008-02-29

    This report describes the approach to estimating the benefits and analysis results for the Heavy Vehicle Technologies activities of the Vehicle Technologies (VT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identifying technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, and (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 08 the Heavy Vehicles program continued its involvement with various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. These changes are the result of a planning effort that first occurred during FY 04 and was updated in the past year. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. The market penetrations are used as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY08 Budget Request. The energy savings models are utilized by the VT program for internal project management purposes.

  18. New systematic methodology for incorporating dynamic heat transfer modelling in multi-phase biochemical reactors.

    Science.gov (United States)

    Fernández-Arévalo, T; Lizarralde, I; Grau, P; Ayesa, E

    2014-09-01

    This paper presents a new modelling methodology for dynamically predicting the heat produced or consumed in the transformations of any biological reactor using Hess's law. Starting from a complete description of model components stoichiometry and formation enthalpies, the proposed modelling methodology has integrated successfully the simultaneous calculation of both the conventional mass balances and the enthalpy change of reaction in an expandable multi-phase matrix structure, which facilitates a detailed prediction of the main heat fluxes in the biochemical reactors. The methodology has been implemented in a plant-wide modelling methodology in order to facilitate the dynamic description of mass and heat throughout the plant. After validation with literature data, as illustrative examples of the capability of the methodology, two case studies have been described. In the first one, a predenitrification-nitrification dynamic process has been analysed, with the aim of demonstrating the easy integration of the methodology in any system. In the second case study, the simulation of a thermal model for an ATAD has shown the potential of the proposed methodology for analysing the effect of ventilation and influent characterization.

  19. Using CASE to Exploit Process Modeling in Technology Transfer

    Science.gov (United States)

    Renz-Olar, Cheryl

    2003-01-01

    A successful business will be one that has processes in place to run that business. Creating processes, reengineering processes, and continually improving processes can be accomplished through extensive modeling. Casewise(R) Corporate Modeler(TM) CASE is a computer aided software engineering tool that will enable the Technology Transfer Department (TT) at NASA Marshall Space Flight Center (MSFC) to capture these abilities. After successful implementation of CASE, it could then go on to be applied in other departments at MSFC and other centers at NASA. The success of a business process is dependent upon the players working as a team and continuously improving the process. A good process fosters customer satisfaction as well as internal satisfaction in the organizational infrastructure. CASE provides a method for business process success through functions consisting of systems and processes business models; specialized diagrams; matrix management; simulation; report generation and publishing; and, linking, importing, and exporting documents and files. The software has an underlying repository or database to support these functions. The Casewise. manual informs us that dynamics modeling is a technique used in business design and analysis. Feedback is used as a tool for the end users and generates different ways of dealing with the process. Feedback on this project resulted from collection of issues through a systems analyst interface approach of interviews with process coordinators and Technical Points of Contact (TPOCs).

  20. Your idea and your university: issues in academic technology transfer.

    Science.gov (United States)

    Smith, Charles D

    2011-06-01

    Research discoveries may lead to products for commercial development. A central consideration for the researcher is how involved she or he will be in the commercialization process. In some cases, a university out-licenses the intellectual property, whereas in other cases, the investigator may want to be involved in the development process and choose to start his or her own company to develop and possibly to manufacture and sell the product. Before undertaking such a challenge, however, the investigator-turned-entrepreneur must consider a variety of issues, including career goals, financial and time commitments, potential conflicts of interest and/or commitment, start-up funding, and his or her ability to run a company or step aside to allow business experts to make necessary decisions. This paper discusses some personal considerations in deciding to start a spinout company and provides information on some of the available government grants to assist you should you decide to undertake your product's commercial development. In particular, the Small Business Innovative Research and Small Business Technology Transfer programs of federal funding agencies often are the source of early funding for new biomedical companies.

  1. Technology transfer and catch-up; Lessons from the commercial aircraft industry

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.; Heerkens, Hans

    2007-01-01

    This paper analyses the technology development and technology transfer strategies in the aircraft manufacturing industry for four industrially developing countries. It is concluded from four case studies that technology catch-up is extremely difficult due to aircraft technology characteristics. Base

  2. Digital technology impacts on the Arnhem transfer hall structural design

    NARCIS (Netherlands)

    Van de Straat, R.; Hofman, S.; Coenders, J.L.; Paul, J.C.

    2015-01-01

    The new Transfer Hall in Arnhem is one of the key projects to prepare the Dutch railways for the increased future demands for capacity. UNStudio developed a master plan in 1996 for the station area of which the completion of the Transfer Hall in 2015 will be a final milestone. The Transfer Hall is a

  3. Digital technology impacts on the Arnhem transfer hall structural design

    NARCIS (Netherlands)

    Van de Straat, R.; Hofman, S.; Coenders, J.L.; Paul, J.C.

    2015-01-01

    The new Transfer Hall in Arnhem is one of the key projects to prepare the Dutch railways for the increased future demands for capacity. UNStudio developed a master plan in 1996 for the station area of which the completion of the Transfer Hall in 2015 will be a final milestone. The Transfer Hall is a

  4. A Predictive Model of Technology Transfer Using Patent Analysis

    OpenAIRE

    Jaehyun Choi; Dongsik Jang; Sunghae Jun; Sangsung Park

    2015-01-01

    The rapid pace of technological advances creates many difficulties for R&D practitioners in analyzing emerging technologies. Patent information analysis is an effective tool in this situation. Conventional patent information analysis has focused on the extraction of vacant, promising, or core technologies and the monitoring of technological trends. From a technology management perspective, the ultimate purpose of R&D is technology commercialization. The core of technology commercializ...

  5. Technology-Enhanced Problem-Based Learning Methodology in Geographically Dispersed Learners of Tshwane University of Technology

    Directory of Open Access Journals (Sweden)

    Sibitse M. Tlhapane

    2010-03-01

    Full Text Available Improving teaching and learning methodologies is not just a wish but rather strife for most educational institutions globally. To attain this, the Adelaide Tambo School of Nursing Science implemented a Technology-enhanced Problem-Based Learning methodology in the programme B Tech Occupational Nursing, in 2006. This is a two-year post-basic nursing program. The students are geographically dispersed and the curriculum design is the typically student-centred outcomes-based education. The research question posed by this paper is: How does technology-enhanced problem-based learning enhance student-centred learning, thinking skills, social skills and social space for learners? To answer the above question, a case study with both qualitative and quantitative data was utilised. The participants consisted of all students registered for the subject Occupational Health level 4. The sample group was chosen from willing participants from the Pretoria, eMalahleni and Polokwane learning sites, using the snowball method. This method was seen as appropriate due to the timing of the study. Data was collected using a questionnaire with both open and closed-ended questions. An analyses of the students‟ end of year examination was also done, including a comparison of performances by students on technology enhanced problem-based learning and those on problem-based learning only. The findings revealed that with Technology-enhanced Problem Based Learning (PBL, students‟ critical thinking, problem solving, and social skills improved and that social space was enhanced. This was supported by improved grades in students‟ on Technology-enhanced PBL as compared to those on PBL only.

  6. Methodology and technological aspects of the flexible substrate preparation for ink-jet printing technology

    Science.gov (United States)

    Tarapata, Grzegorz; Marzecki, Michał

    2013-10-01

    The ink-jet printing technology becomes especially promising for wide volume of production of cheap sensors, consumable electronics and other dedicated applications of everyday life like smart packaging, smart textiles, smart labels, etc. To achieve this goal new materials compatible with ink-jet printing should be developed. Currently on the market there is a growing number of inks with different properties, but their use requires many tests related to its printability and their interaction with other materials. The paper presents technological problems that are encountered by people associated with fabrication of various devices with using of inkjet printing techniques. Results presented in the paper show the influence of surface preparation techniques on the quality of achieved shapes, the impact of other materials already deposited and the impact of another external factors. During carried out experiments the printer Dimatix DMP 2831 and several inks base on nanosilver or dielectric UV curable was used.

  7. Public Relations and Technology Transfer Offices: An Assessment of US Universities' Relations with Media and Government

    Science.gov (United States)

    Haney, James M.; Cohn, Andrew

    2004-01-01

    This article discusses the importance for technology transfer offices of sound media and government relations strategies. It reports the results of a nationwide electronic survey in the USA and interviews with technology transfer managers on how they handle public relations issues in their offices. Strengths and weaknesses of their communication …

  8. Why NIH Scientists Need to Report an Invention | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    As an NIH scientist, you must report new inventions, including improvements of previously reported inventions, to the Technology Transfer Manager assigned to your Laboratory. If you do not know the name of your TTM, please call or email the Technology Transfer Center.  | [google6f4cd5334ac394ab.html

  9. A New Technology Transfer Paradigm: How State Universities Can Collaborate with Industry in the USA

    Science.gov (United States)

    Renault, Catherine S.; Cope, Jeff; Dix, Molly; Hersey, Karen

    2008-01-01

    In some US states, policy makers, pressed by local and regional industrial interests, are debating how to "reform" technology transfer at public universities. "Reform" in this context is generally understood to mean redirecting university technology transfer activities to increase the benefits of state-funded research to local industries.…

  10. Assessment of research and technology transfer needs for wood-frame housing

    Science.gov (United States)

    Kevin Powell; David Tilotta; Karen Martinson

    2008-01-01

    Improvements to housing will require both research and the transfer of that research to homebuilders, homebuyers, and others in need of technology. This report summarizes results of a national survey on research and technology transfer needs for housing and prioritizes those needs. Survey participants included academicians, builders, code officials, government...

  11. Introduction to the Workshop on Software Technology Transfer in Software Engineering

    NARCIS (Netherlands)

    Harrison, Warren; Wieringa, Roel

    2006-01-01

    The goal of the Workshop on Technology Transfer in Software Engineering is to increase our understanding of technology transfer in software engineering, and to learn from successful case studies. We wanted to bring researchers and practitioners together to create an inventory of problems in software

  12. A New Technology Transfer Paradigm: How State Universities Can Collaborate with Industry in the USA

    Science.gov (United States)

    Renault, Catherine S.; Cope, Jeff; Dix, Molly; Hersey, Karen

    2008-01-01

    In some US states, policy makers, pressed by local and regional industrial interests, are debating how to "reform" technology transfer at public universities. "Reform" in this context is generally understood to mean redirecting university technology transfer activities to increase the benefits of state-funded research to local industries.…

  13. USING THE AHP METHODOLOGY TO EVALUATE STRATEGIC INVESTMENT ALTERNATIVES OF NEW PARADIGMS IN INFORMATION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    EMILIJA RISTOVA

    2012-02-01

    Full Text Available Enterprise adoption of a Product Life Cycle Management (PLM system is a multi-faceted process that can be simplified by choosing the right information technology (IT deployment model. Cloud computing has been described as a technological change brought about by the convergence of a number of new and existing technologies. The paper provides a review of the main developments in the AHP (Analytical Hierarchy Processmethodology as a tool for decision makers to be able to do more informed decisions regarding investments in new paradigms that IT offers. The AHP methodology is a multi-objective, multi criteria decision-making approach that employs a pair-wise comparison procedure to arrive at a scale of preferences among a set of alternatives. The selection process of the alternatives is not possible from the result of the financial analysis alone. Identification of the scalability and the risks assessment as criteria’s give us the comprehensiveness of the treated problem.

  14. The Status Quo and Prospect of Chinese-funded Enterprises Technology Transfer to Africa

    Institute of Scientific and Technical Information of China (English)

    Yang Guang; Li Xinfeng; Chen Mo

    2015-01-01

    Weak technical foundation is an important bottleneck to restrict economic growth of African countries. To promote the technological progress of Africa, the Chinese African strategy always encourages and supports Chinese-funded enterprises to transfer technology to Africa, but it is worth nothing that the critique by some African scholars and local communities on technology transfer to Africa by the Chinese-funded enterprises is spreading. In fact, in order to implement the "localization" strategy, develop African market or honor cooperation agreement on additional technical transfer, Chinese-funded enterprises always adhere to actively carrying out technology transfer to Africa, and have made certain achievements in improving the host countries’ technical environment, increasing labor income and others. In order to cope with the challenges and dispel the crisis of public opinion, China should uphold the concept of "teaching how to fish" and push forward the continuous upgrading and optimization of technology transfer to Africa all-dimensionally.

  15. A methodology for capability-based technology evaluation for systems-of-systems

    Science.gov (United States)

    Biltgen, Patrick Thomas

    2007-12-01

    Post-Cold War military conflicts have highlighted the need for a flexible, agile joint force responsive to emerging crises around the globe. The 2005 Joint Capabilities Integration and Development System (JCIDS) acquisition policy document mandates a shift away from stove-piped threat-based acquisition to a capability-based model focused on the multiple ways and means of achieving an effect. This shift requires a greater emphasis on scenarios, tactics, and operational concepts during the conceptual phase of design and structured processes for technology evaluation to support this transition are lacking. In this work, a methodology for quantitative technology evaluation for systems-of-systems is defined. Physics-based models of an aircraft system are exercised within a hierarchical, object-oriented constructive simulation to quantify technology potential in the context of a relevant scenario. A major technical challenge to this approach is the lack of resources to support real-time human-in-the-loop tactical decision making and technology analysis. An approach that uses intelligent agents to create a "Meta-General" capable of forecasting strategic and tactical decisions based on technology inputs is used. To demonstrate the synergy between new technologies and tactics, surrogate models are utilized to provide intelligence to individual agents within the framework and develop a set of tactics that appropriately exploit new technologies. To address the long run-times associated with constructive military simulations, neural network surrogate models are implemented around the forecasting environment to enable rapid trade studies. Probabilistic techniques are used to quantify uncertainty and richly populate the design space with technology-infused alternatives. Since a large amount of data is produced in the analysis of systems-of-systems, dynamic, interactive visualization techniques are used to enable "what-if" games on assumptions, systems, technologies, tactics, and

  16. Laboratory 3.0: Manufacturing technologies laboratory virtualization with a student-centred methodology

    Directory of Open Access Journals (Sweden)

    Albert Fabregat-Sanjuan

    2017-06-01

    Full Text Available This paper presents a blended-learning strategy for improving the teaching method applied in the laboratory subject Manufacturing Technologies. The teaching method has been changed from a predominantly teacher-centred to an active learning system with a student-centred focus and e-learning activities. In face-to-face classes, a game-based learning platform has been used. This methodology ensured engaging classes at the same time that provided a useful live feedback for students and teachers. The virtualization of the laboratory was achieved by two different e-learning activities, self-assessment tasks and video clips. These e-learning tools have been used not only to improve the students’ learning but also to enhance their motivation. The results from academic outputs show a significant improvement after the new blended learning method is applied. Moreover, a student satisfaction survey shows the positive impact of the methodology on the students’ engagement and motivation.

  17. 2014 International Conference on Simulation and Modeling Methodologies, Technologies and Applications

    CERN Document Server

    Ören, Tuncer; Kacprzyk, Janusz; Filipe, Joaquim

    2015-01-01

    The present book includes a set of selected extended papers from the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2014), held in Vienna, Austria, from 28 to 30 August 2014. The conference brought together researchers, engineers and practitioners interested in methodologies and applications of modeling and simulation. New and innovative solutions are reported in this book. SIMULTECH 2014 received 167 submissions, from 45 countries, in all continents. After a double blind paper review performed by the Program Committee, 23% were accepted as full papers and thus selected for oral presentation. Additional papers were accepted as short papers and posters. A further selection was made after the Conference, based also on the assessment of presentation quality and audience interest, so that this book includes the extended and revised versions of the very best papers of SIMULTECH 2014. Commitment to high quality standards is a major concern of SIMULTEC...

  18. 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

    CERN Document Server

    Kacprzyk, Janusz; Ören, Tuncer; Filipe, Joaquim

    2016-01-01

    The present book includes a set of selected extended papers from the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2015), held in Colmar, France, from 21 to 23 July 2015. The conference brought together researchers, engineers and practitioners interested in methodologies and applications of modeling and simulation. New and innovative solutions are reported in this book. SIMULTECH 2015 received 102 submissions, from 36 countries, in all continents. After a double blind paper review performed by the Program Committee, 19% were accepted as full papers and thus selected for oral presentation. Additional papers were accepted as short papers and posters. A further selection was made after the Conference, based also on the assessment of presentation quality and audience interest, so that this book includes the extended and revised versions of the very best papers of SIMULTECH 2015. Commitment to high quality standards is a major concern of SIMULTECH t...

  19. Technology transfer metrics: Measurement and verification of data/reusable launch vehicle business analysis

    Science.gov (United States)

    Trivoli, George W.

    1996-01-01

    Congress and the Executive Branch have mandated that all branches of the Federal Government exert a concentrated effort to transfer appropriate government and government contractor-developed technology to the industrial use in the U.S. economy. For many years, NASA has had a formal technology transfer program to transmit information about new technologies developed for space applications into the industrial or commercial sector. Marshall Space Flight Center (MSFC) has been in the forefront of the development of U.S. industrial assistance programs using technologies developed at the Center. During 1992-93, MSFC initiated a technology transfer metrics study. The MSFC study was the first of its kind among the various NASA centers. The metrics study is a continuing process, with periodic updates that reflect on-going technology transfer activities.

  20. Methodology of heat transfer and flow resistance measurement for matrices of rotating regenerative heat exchangers

    National Research Council Canada - National Science Library

    Dariusz Butrymowicz; Jarosław Karwacki; Roman Kwidziński; Kamil Śmierciew; Jerzy Gagan; Tomasz Przybyliński; Teodor Skiepko; Marek Łapin

    2016-01-01

    The theoretical basis for the indirect measurement approach of mean heat transfer coefficient for the packed bed based on the modified single blow technique was presented and discussed in the paper...

  1. The role of Ethics in the process of Technology Transfer and Development of 206 Peugeot

    Directory of Open Access Journals (Sweden)

    Aliakbar Mazlomi

    2011-02-01

    Full Text Available Looking at the past history we find that the first phenomenon of technology transfer was taught by people who were traveling to another community and bring their technology, they move. After theindustrialization, transfer of knowledge from individuals to maintain their importance. However, now the situation for developing countries is controversial because it denied people with technical skills fromdeveloped countries to developing countries do not migrate, but the reverse is the professionals that are developing countries to developed countries loan go. Until developing countries can train your human resources specialist, they powerful companies overseas are the means of technology transfer, whether through direct investment, and whether through the sale of licenses and other means. (Noble, p. 105 - 106, 1367 Technology transfer is an important issue that should be given the capacity of countries to assess the possibility of application, absorption and its compatibility with local conditions to increase. Ie the transfer of technology and gain access to technology for its effective use for economic development and growth of countries relatively backward technology provides. (Archibugi, 2003 Today, the role of ethics in technology transfer and development is of great importance. The meaning of ethics and technology than are harvested, ethical values that have roles in the formation of modern technology. Another meaning of ethics and technology than is reached, that moral people who are dealing with technology, they must observe. It also includes technology to those that exist and sets it to those who apply and who are the analysis and criticism. In this article factors and ethical factors in the process of technology transfer and development for Peugeot 206 in Iran Khodro Company has been studied. For this purpose a questionnaire to determine and evaluate factors is designed and results are analyzed.

  2. Information systems and technology transfer programs on geothermal energy and other renewable sources of energy

    Energy Technology Data Exchange (ETDEWEB)

    Lippmann, M.J.; Antunez, E.

    1996-01-01

    In order to remain competitive, it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them, is also given.

  3. Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L.

    Directory of Open Access Journals (Sweden)

    J. Prakash Maran

    2013-09-01

    Full Text Available In this study, a comparative approach was made between artificial neural network (ANN and response surface methodology (RSM to predict the mass transfer parameters of osmotic dehydration of papaya. The effects of process variables such as temperature, osmotic solution concentration and agitation speed on water loss, weight reduction, and solid gain during osmotic dehydration were investigated using a three-level three-factor Box-Behnken experimental design. Same design was utilized to train a feed-forward multilayered perceptron (MLP ANN with back-propagation algorithm. The predictive capabilities of the two methodologies were compared in terms of root mean square error (RMSE, mean absolute error (MAE, standard error of prediction (SEP, model predictive error (MPE, chi square statistic (χ2, and coefficient of determination (R2 based on the validation data set. The results showed that properly trained ANN model is found to be more accurate in prediction as compared to RSM model.

  4. Information for Our Partners | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NCI TTC CRADA PAYMENT OPTIONS: Electronic Payments by Wire Transfer via Fedwire, Mail a check to the Institute or Center, or Automated Clearing House (ACH)/Electronic Funds Transfer (ETF) payments via Pay.gov (NCI ONLY). | [google6f4cd5334ac394ab.html

  5. 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications

    CERN Document Server

    Koziel, Slawomir; Kacprzyk, Janusz; Leifsson, Leifur; Ören, Tuncer

    2015-01-01

    This book includes extended and revised versions of a set of selected papers from the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2013) which was co-organized by the Reykjavik University (RU) and sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC). SIMULTECH 2013 was held in cooperation with the ACM SIGSIM - Special Interest Group (SIG) on SImulation and Modeling (SIM), Movimento Italiano Modellazione e Simulazione (MIMOS) and AIS Special Interest Group on Modeling and Simulation (AIS SIGMAS) and technically co-sponsored by the Society for Modeling & Simulation International (SCS), Liophant Simulation, Simulation Team and International Federation for Information Processing (IFIP). This proceedings brings together researchers, engineers, applied mathematicians and practitioners working in the advances and applications in the field of system simulation.

  6. METHODOLOGICAL QUESTIONS OF SCIENTIFIC COMMUNICATION PERFECTING WITH THE USE OF MODERN INFORMATION AND COMMUNICATION TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Georgii A. Ball

    2011-05-01

    Full Text Available The authors outline vital methodological questions which concern: (a value guidelines of scientific cognition and scientific communication; b theoretical bases (corresponding to task approach of building of scientific activity; c rational using of modern information and communication technologies in that activity. Among the most important steps towards the improvement of scientific communication the following were stressed: a awareness by scientists of their responsibility not only for adequate knowledge of the objects, but also for creating backgrounds so that the results of this knowledge might become the property of the consumers of scientific products, b development, to form such backgrounds, the ways based on adequate theoretical tools (in particular, on the task theory and on modern information and communication technologies, c coverage and discussion of the results of such development.

  7. Process optimization of rolling for zincked sheet technology using response surface methodology and genetic algorithm

    Science.gov (United States)

    Ji, Liang-Bo; Chen, Fang

    2017-07-01

    Numerical simulation and intelligent optimization technology were adopted for rolling and extrusion of zincked sheet. By response surface methodology (RSM), genetic algorithm (GA) and data processing technology, an efficient optimization of process parameters for rolling of zincked sheet was investigated. The influence trend of roller gap, rolling speed and friction factor effects on reduction rate and plate shortening rate were analyzed firstly. Then a predictive response surface model for comprehensive quality index of part was created using RSM. Simulated and predicted values were compared. Through genetic algorithm method, the optimal process parameters for the forming of rolling were solved. They were verified and the optimum process parameters of rolling were obtained. It is feasible and effective.

  8. Developing Q-methodology to explore staff views toward the use of technology in nurse education.

    Science.gov (United States)

    Petit dit Dariel, Odessa; Wharrad, Heather; Windle, Richard

    2010-01-01

    Technology in education is moving quickly in terms of the hardware and software applications available, but also due to the expectations of an increasingly digitally competent student population. Academics have to rethink their pedagogy in relation to these changes. Nurse educators, in particular, must face the challenge of effectively integrating technology into what is essentially a hands-on, people-centred profession. To date, the factors most commonly cited as barriers to the adoption of e-learning by academics have focused on explicit and tangible ('hard') issues. Less frequently mentioned are the implicit and tacit ('soft') factors which are harder to identify. This article describes a pilot study using Q-methodology to explore the limitations of commonly used research methods in identifying how these hard and soft issues are prioritised by individuals, through the voices of nurse educators.

  9. A Conceptual Methodology for Assessing Acquisition Requirements Robustness against Technology Uncertainties

    Science.gov (United States)

    Chou, Shuo-Ju

    2011-12-01

    -makers with the ability to assess or measure the robustness of program requirements against such uncertainties. A literature review of techniques for forecasting technology performance and development uncertainties and subsequent impacts on capability, budget, and schedule requirements resulted in the conclusion that an analysis process that coupled a probabilistic analysis technique such as Monte Carlo Simulations with quantitative and parametric models of technology performance impact and technology development time and cost requirements would allow the probabilities of meeting specific constraints of these requirements to be established. These probabilities of requirements success metrics can then be used as a quantitative and probabilistic measure of program requirements robustness against technology uncertainties. Combined with a Multi-Objective Genetic Algorithm optimization process and computer-based Decision Support System, critical information regarding requirements robustness against technology uncertainties can be captured and quantified for acquisition decision-makers. This results in a more informed and justifiable selection of program technologies during initial program definition as well as formulation of program development and risk management strategies. To meet the stated research objective, the ENhanced TEchnology Robustness Prediction and RISk Evaluation (ENTERPRISE) methodology was formulated to provide a structured and transparent process for integrating these enabling techniques to provide a probabilistic and quantitative assessment of acquisition program requirements robustness against technology performance and development uncertainties. In order to demonstrate the capabilities of the ENTERPRISE method and test the research Hypotheses, an demonstration application of this method was performed on a notional program for acquiring the Carrier-based Suppression of Enemy Air Defenses (SEAD) using Unmanned Combat Aircraft Systems (UCAS) and their enabling

  10. The role of technological transfer in the societies based on knowledge economy

    Directory of Open Access Journals (Sweden)

    Daniela HÎNCU

    2009-12-01

    Full Text Available The knowledge based economy is an economy based on innovation. Implementing innovation requires acquiring new technology, using the technique of technological transfer. The problems and the timing for implementing an emerging technology are under discussion in this paper.

  11. Tools, courses, and learning pathways offered by the National Interagency Fuels, Fire, and Vegetation Technology Transfer

    Science.gov (United States)

    Eva K. Strand; Kathy H. Schon; Jeff Jones

    2010-01-01

    Technological advances in the area of fuel and wildland fire management have created a need for effective decision support tools and technology training. The National Interagency Fuels Committee and LANDFIRE have chartered a team to develop science-based learning tools for assessment of fire and fuels and to provide online training and technology transfer to help...

  12. What do we need from intermediaries for technology transfer to China?

    DEFF Research Database (Denmark)

    Li-Ying, Jason

    2012-01-01

    Cross-national technology transfer has been one of the most important vehicles by which firms in developed countries exploit the value of their technological innovations, and firms in developing countries gain access to technological and organizational knowledge from developed economies. To facil...

  13. An Empirical Analysis of Technology Transfer of National R&D Projects in South Korea

    Directory of Open Access Journals (Sweden)

    Mi-Sun Kim

    2015-01-01

    Full Text Available This study is aimed at seeking policy implications for the policy makers of South Korean government and finding a direction to support R&D institutions in performing R&D activities more efficiently, by analyzing the factors influencing technology transfer of the national R&D projects. The data retrieved from NTIS (National Science & Technology Information Service was used in analyzing the results of 575 projects with 1,903 cases of technology transfer, performed by the Ministry of Science, ICT and Future Planning, between 2002 and 2012. We found that there were significant differences between the government funded institutions and the universities and between basic R&D and applied ones. We also discovered that the government funded institutions did not necessarily take a better position than the universities in terms of the quantity of technology transfer. Lastly, the applied R&D of the universities was very vulnerable in terms of technology transfer.

  14. Research Funding, Patent Search Training and Technology Transfer: a collaboration

    KAUST Repository

    Tyhurst, Janis

    2016-01-01

    This paper will focus on the collaboration efforts of three different university departments to create, teach and evaluate the benefits of a joint patent training series, as well as the future directions this collaboration will take. KAUST has as one of its goals the diversification of the Saudi economy. There is a strong focus at the university on developing entrepreneurial ideas and commercializing research done. The University Library supports this goal through the provision of electronic resources and introductory patent search training skills. However, the patent training class offered by the University Library is only one step in a process that faculty and students need when starting or taking their research to the next level. In the Fall of 2015, I met with representatives of the two major stakeholders in the patent arena, the office of Sponsored Research (OSR) and the Technology Transfer Office (TTO), to develop a patent training program to meet the needs of researchers. The OSR provides funding to researchers who have demonstrated that their ideas have merit with potential applications, the TTO works with researchers who are at the point of needing IP protection. The resulting discussion led us to collaborate on creating a workshop series that benefit the researcher’s information needs and each of our departments as well. In the first of the series of three 2 hour workshops, the Manager of TTO and the Lead Integrative Specialist from the OSR presented a workshop on an overview of Intellectual Property and the patenting process. These presentations focused on when and how to determine whether research is potentially patentable, why a researcher needs to protect his/her research and how to go about protecting it. The second workshop focused on introductory patent search skills and tools, how to expand a literature search to include the information found in patents, and how this kind of research will improve not only the literature search but the research

  15. Technologies for Lunar Surface Power Systems Power Beaming and Transfer

    Science.gov (United States)

    Marzwell, Neville; Pogorzelski, Ronald J.; Chang, Kai; Little, Frank

    2008-01-01

    Wireless power transmission within a given working area is required or enabling for many NASA Exploration Systems. Fields of application include robotics, habitats, autonomous rendezvous and docking, life support, EVA, and many others. In robotics applications, for example, the robots must move in the working area without being hampered by power cables and, meanwhile, obtain a continuous and constant power from a power transmitter. The development of modern technology for transmitting electric power over free space has been studied for several decades, but its use in a system has been mainly limited to low power, 1-2 Vdc output voltage at a transmission distance of few meters for which relatively less than 0.5 mW/cm2 is required (e.g., Radio frequency identification RFID). Most of the rectenna conversion efficiency research to date has concentrated in low GHz frequency range of 2.45 to 10 GHz, with some work at 35 GHz. However, for space application, atmospheric adsorbtion is irrelevant and higher frequency systems with smaller transmit and receive apertures may be appropriate. For high power, most of the work on rectennas has concentrated on optimizing the conversion efficiency of the microwave rectifier element; the highest power demonstrated was 35 kW of power over a distance of 1.5 km. The objective of this paper is to establish the manner in which a very large number of very low power microwave devices can be synchronized to provide a beam of microwaves that can be used to efficiently and safely transport a significant amount of power to a remote location where it can be converted to dc (or ac) power by a ``rectenna.'' The proposed system is based on spatial power combining of the outputs of a large number of devices synchronized by mutual injection locking. We have demonstrated at JPL that such power could be achieved by combining 25 sources in a configuration that allows for convenient steering of the resulting beam of microwaves. Retrodirective beam

  16. A hypertext-based Internet-assessable database for the MSFC Technology Transfer Office

    Science.gov (United States)

    Jackson, Jeff

    1994-01-01

    There exists a continuing need to disseminate technical information and facilities capabilities from NASA field centers in an effort to promote the successful transfer of technologies developed with public funds to the private sector. As technology transfer is a stated NASA mission, there exists a critical need for NASA centers to document technology capabilities and disseminate this information on as wide a basis as possible. Certainly local and regional dissemination is critical, but global dissemination of scientific and engineering facilities and capabilities gives NASA centers the ability to contribute to technology transfer on a much broader scale. Additionally, information should be disseminated in a complete and rapidly available form. To accomplish this information dissemination, the unique capabilities of the Internet are being exploited. The Internet allows widescale information distribution in a rapid fashion to aid in the accomplishment of technology transfer goals established by the NASA/MSFC Technology Transfer Office. Rapid information retrieval coupled with appropriate electronic feedback, allows the scientific and technical capabilities of Marshall Space Flight Center, often unique in the world, to be explored by a large number of potential benefactors of NASA (or NASA-derived) technologies. Electronic feedback, coupled with personal contact with the MSFC Technology Transfer Office personnel, allows rapid responses to technical requests from industry and academic personnel as well as private citizens. The remainder of this report gives a brief overview of the Mosaic software and a discussion of technology transfer office and laboratory facilities data that have been made available on the Internet to promote technology transfer.

  17. Light Water Reactor Sustainability Program: Digital Technology Business Case Methodology Guide

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lawrie, Sean [ScottMadden, Inc., Raleigh, NC (United States); Hart, Adam [ScottMadden, Inc., Raleigh, NC (United States); Vlahoplus, Chris [ScottMadden, Inc., Raleigh, NC (United States)

    2014-09-01

    The Department of Energy’s (DOE’s) Light Water Reactor Sustainability Program aims to develop and deploy technologies that will make the existing U.S. nuclear fleet more efficient and competitive. The program has developed a standard methodology for determining the impact of new technologies in order to assist nuclear power plant (NPP) operators in building sound business cases. The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway is part of the DOE’s Light Water Reactor Sustainability (LWRS) Program. It conducts targeted research and development (R&D) to address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals: (1) to ensure that legacy analog II&C systems are not life-limiting issues for the LWR fleet and (2) to implement digital II&C technology in a manner that enables broad innovation and business improvement in the NPP operating model. Resolving long-term operational concerns with the II&C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation’s energy and environmental security. The II&C Pathway is conducting a series of pilot projects that enable the development and deployment of new II&C technologies in existing nuclear plants. Through the LWRS program, individual utilities and plants are able to participate in these projects or otherwise leverage the results of projects conducted at demonstration plants. Performance advantages of the new pilot project technologies are widely acknowledged, but it has proven difficult for utilities to derive business cases for justifying investment in these new capabilities. Lack of a business case is often cited by utilities as a barrier to pursuing wide-scale application of digital technologies to nuclear plant work activities. The decision to move forward with funding usually hinges on

  18. A parametric transfer function methodology for analyzing reactive transport in nonuniform flow.

    Science.gov (United States)

    Luo, Jian; Cirpka, Olaf A; Fienen, Michael N; Wu, Wei-min; Mehlhorn, Tonia L; Carley, Jack; Jardine, Philip M; Criddle, Craig S; Kitanidis, Peter K

    2006-02-01

    We analyze reactive transport during in-situ bioremediation in a nonuniform flow field, involving multiple extraction and injection wells, by the method of transfer functions. Gamma distributions are used as parametric models of the transfer functions. Apparent parameters of classical transport models may be estimated from those of the gamma distributions by matching temporal moments. We demonstrate the method by application to measured data taken at a field experiment on bioremediation conducted in a multiple-well system in Oak Ridge, TN. Breakthrough curves (BTCs) of a conservative tracer (bromide) and a reactive compound (ethanol) are measured at multi-level sampling (MLS) wells and in extraction wells. The BTCs of both compounds are jointly analyzed to estimate the first-order degradation rate of ethanol. To quantify the tracer loss, we compare the approaches of using a scaling factor and a first-order decay term. Results show that by including a scaling factor both gamma distributions and inverse-Gaussian distributions (transfer functions according to the advection-dispersion equation) are suitable to approximate the transfer functions and estimate the reactive rate coefficients for both MLS and extraction wells. However, using a first-order decay term for tracer loss fails to describe the BTCs at the extraction well, which is affected by the nonuniform distribution of travel paths.

  19. EXPERIMENTAL METHODOLOGIES AND PRELIMINARY TRANSFER FACTOR DATA FOR ESTIMATION OF DERMAL EXPOSURES TO PARTICLES

    Science.gov (United States)

    Developmental efforts and experimental data are described that focused on quantifying the transfer of particles on a mass basis from indoor surfaces to human skin. Methods were developed that utilized a common fluorescein-tagged Arizona Test Dust (ATD) as a possible surrogate ...

  20. Methodology for conceptual remote sensing spacecraft technology: insertion analysis balancing performance, cost, and risk

    Science.gov (United States)

    Bearden, David A.; Duclos, Donald P.; Barrera, Mark J.; Mosher, Todd J.; Lao, Norman Y.

    1997-12-01

    Emerging technologies and micro-instrumentation are changing the way remote sensing spacecraft missions are developed and implemented. Government agencies responsible for procuring space systems are increasingly requesting analyses to estimate cost, performance and design impacts of advanced technology insertion for both state-of-the-art systems as well as systems to be built 5 to 10 years in the future. Numerous spacecraft technology development programs are being sponsored by Department of Defense (DoD) and National Aeronautics and Space Administration (NASA) agencies with the goal of enhancing spacecraft performance, reducing mass, and reducing cost. However, it is often the case that technology studies, in the interest of maximizing subsystem-level performance and/or mass reduction, do not anticipate synergistic system-level effects. Furthermore, even though technical risks are often identified as one of the largest cost drivers for space systems, many cost/design processes and models ignore effects of cost risk in the interest of quick estimates. To address these issues, the Aerospace Corporation developed a concept analysis methodology and associated software tools. These tools, collectively referred to as the concept analysis and design evaluation toolkit (CADET), facilitate system architecture studies and space system conceptual designs focusing on design heritage, technology selection, and associated effects on cost, risk and performance at the system and subsystem level. CADET allows: (1) quick response to technical design and cost questions; (2) assessment of the cost and performance impacts of existing and new designs/technologies; and (3) estimation of cost uncertainties and risks. These capabilities aid mission designers in determining the configuration of remote sensing missions that meet essential requirements in a cost- effective manner. This paper discuses the development of CADET modules and their application to several remote sensing satellite

  1. New research trends on high-precision time transfer technology

    Institute of Scientific and Technical Information of China (English)

    DONG; Ruifang; QUAN; Run’ai; HOU; Feiyan; WANG; Shaofeng; XIANG; Xiao; ZHOU; Conghua; WANG; Mengmeng; LIU; Tao; ZHANG; Shou’gang

    2015-01-01

    High-precision time transfer plays an important role in the areas of fundamental research and applications. Accompanying w ith the remarkable improvements in the ability of generating and measuring high-accuracy time-frequency signal,seeking for new time-transfer techniques betw een distant clocks w ith much further improved accuracy attracts attentions w orld-w idely. The time-transfer technique based on optical pulses has the highest precision presently,and the further improvement in the accuracy is heavily dependent on the time-domain properties of the pulse as w ell as the sensitivity of the applied measurement on the exchanged pulse. The application of optical frequency comb in time transfer for a precision up to femtosecond level are currently the focus of much interest,and has recently achieved many breakthroughs. Further investigations show that,utilizing quantum techniques,i.e. quantum measurement technique and quantum optical pulse source,can lead to a new limit on the measured timing information. Furthermore,it can be immune from atmospheric parameters,such as pressure,temperature,humidity and so on.Such quantum improvements on time-transfer have a bright prospect in the future applications requiring extremely high-accuracy timing and ranging. The potential achievements w ill form a technical basis for the future realization of sub-femtosecond time transfer system.

  2. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Science.gov (United States)

    2010-04-01

    ... technology transfer work programs? 420.207 Section 420.207 Highways FEDERAL HIGHWAY ADMINISTRATION..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a...

  3. Neurolinguistic measures of typological effects in multilingual transfer: introducing an ERP methodology

    OpenAIRE

    Rothman, Jason; Alemán Bañón, José; González Alonso, Jorge

    2015-01-01

    Published version. Also available at http://dx.doi.org/10.3389/fpsyg.2015.01087 This article has two main objectives. First, we offer an introduction to the subfield of generative third language (L3) acquisition. Concerned primarily with modeling initial stages transfer of morphosyntax, one goal of this program is to show how initial stages L3 data make significant contributions toward a better understanding of how the mind represents language and how (cognitive) economy constrains acquis...

  4. Experimental Studies of the Heat Transfer to RBCC Rocket Nozzles for CFD Application to Design Methodologies

    Science.gov (United States)

    Santoro, Robert J.; Pal, Sibtosh

    1999-01-01

    Rocket thrusters for Rocket Based Combined Cycle (RBCC) engines typically operate with hydrogen/oxygen propellants in a very compact space. Packaging considerations lead to designs with either axisymmetric or two-dimensional throat sections. Nozzles tend to be either two- or three-dimensional. Heat transfer characteristics, particularly in the throat, where the peak heat flux occurs, are not well understood. Heat transfer predictions for these small thrusters have been made with one-dimensional analysis such as the Bartz equation or scaling of test data from much larger thrusters. The current work addresses this issue with an experimental program that examines the heat transfer characteristics of a gaseous oxygen (GO2)/gaseous hydrogen (GH2) two-dimensional compact rocket thruster. The experiments involved measuring the axial wall temperature profile in the nozzle region of a water-cooled gaseous oxygen/gaseous hydrogen rocket thruster at a pressure of 3.45 MPa. The wall temperature measurements in the thruster nozzle in concert with Bartz's correlation are utilized in a one-dimensional model to obtain axial profiles of nozzle wall heat flux.

  5. University technology transfer: comparative study of US, European and Australian universities

    NARCIS (Netherlands)

    Vinig, T.; van Rijsbergen, P.; Malach-Pines, A.; Özbilgin, M.F.

    2010-01-01

    We studied the factors that influence university knowledge commercialization through university Technology Transfer Office (TTO). We analyzed the resources associated with commercialization performance as measured by patenting, licensing, and spin-off activities in a sample of 124 Australian, Europe

  6. Report of the workshop on transferring X-ray Lithography Synchrotron (XLS) technology to industry

    Energy Technology Data Exchange (ETDEWEB)

    Marcuse, W.

    1987-01-01

    This paper reports on plans to develop an x-ray synchrotron for use in lithography. The primary concern of the present paper is technology transfer from national laboratories to private industry. (JDH)

  7. Technology transfer of large aggregate mix base [LAMBS] on Johannesburg roads.

    CSIR Research Space (South Africa)

    Horak, E

    1994-10-01

    Full Text Available done by the Department of Transport. The need for structural strengthening of the M2-Motorway in Johannesburg during its rehabilitation afforded opportunity of transferring the technology to the road construction industry. LAMBS were selected...

  8. Federal Laboratory Consortium Recognizes Unituxin Collaborators with Excellence in Technology Transfer Awards | Poster

    Science.gov (United States)

    The Federal Laboratory Consortium (FLC) presented an Excellence in Technology Transfer award to the group that collaborated to bring Unituxin (dinutuximab, also known as ch14.18), an immunotherapy for neuroblastoma, to licensure.

  9. Technology Transfer In Rural Industries of Thailand: The Case of Dessert And Palm Tree Industries

    Directory of Open Access Journals (Sweden)

    Apisek Pansuwan

    2013-07-01

    Full Text Available In last decade, the small industrial sector has increasingly received attention from Thai policy makers. This study investigates the relationship between small industries and community in rural area in term of technology transfer. In the research area, knowledge and experience gathered from workplace as an employee and family businesses are the core resources to establish and run busineSses. Technically, technology transfer is divided into 2 characteristics; intra-enterprise and inter-enterprise. Intra-enterprise technology transfer comes from employers to employees, emphasizing production development. Beside, technology transfer of inter-enterprise has two directions. Firstly, direction points from the entrepreneur to material suppliers aiming to secure raw material quality. Secondly direction points from consumers to the entrepreneur aiming to put a great emphasis on product development, quality control and management.

  10. Federal Laboratory Consortium Recognizes Unituxin Collaborators with Excellence in Technology Transfer Awards | Poster

    Science.gov (United States)

    The Federal Laboratory Consortium (FLC) presented an Excellence in Technology Transfer award to the group that collaborated to bring Unituxin (dinutuximab, also known as ch14.18), an immunotherapy for neuroblastoma, to licensure.

  11. The role of technology transfer for the development of a local wind component industry in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Pueyo, Ana, E-mail: anapueyo@hotmail.com [Technical University of Madrid (UPM)-Escuela Tecnica Superior de Ingenieros Industriales (ETSII), Madrid (Spain); Garcia, Rodrigo [Centro de Energias Renovables (CER), Santiago de Chile (Chile); Mendiluce, Maria [World Business Council for Sustainable Development (WBCSD), Geneva (Switzerland); Morales, Dario [InnovaChile-CORFO Chile, Santiago de Chile (Chile)

    2011-07-15

    This paper contributes to the debate about climate change technology transfer by analysing barriers and enablers for a Chilean company starting up the production of wind blades. Literature on the role of technology transfer for the development and deployment of local renewable energy technologies in developing countries often refers to success stories in Brazil, India and China. Instead, this case study highlights the different challenges faced by smaller emerging economies. The paper argues that successful technology transfer in a smaller economy like Chile requires: a minimum internal demand and access to regional markets to attract foreign knowledge providers; a focus in the types of technologies where the recipient country or company have a competitive advantage; and active learning processes by the recipient company. Lessons are drawn for improving the design and implementation of technology-push and market-pull policies in small or medium emerging economies. - Highlights: > We analyse the case of a Chilean company starting up wind blades production. > Technology transfer is required as the relevant knowledge is not available in the country. > We examine the factors that enable technology transfer to draw policy conclusions. > We highlight the particularities of medium sized developing countries.

  12. Fundamental Research on Convective Heat Transfer in Electronic Cooling Technology

    Institute of Scientific and Technical Information of China (English)

    C.F.Ma; Y.P.Gan; 等

    1992-01-01

    During the past six years comprehensive research programs have been conducted at the Beijing Polytechnic University to provide a better understanding of heat transfer characteristics of existing and condidate cooling techniques for electronic and microelestanding of heat transfer characteristics of existing and condidate cooling techniques for electronic and microleectronic devices.This paper provides a review and summary of the programs with emphasis on direct liquid cooling.Included in this review are the heat transfer investigations related to the following cooling modes:liquid free,mixed and forced convection.liquid jet impingement,flowing liquid film cooling,pool boiling,spray cooling,foreign gas jet impingement in liquid pool,and forced convection air-cooling.

  13. Inward technology transfer as an interactive process: A case study of ICI.

    OpenAIRE

    Trott, Paul

    1993-01-01

    This thesis sets out to explore the area of inward technology transfer and in particular the notion of "receptivity". A conceptual framework is developed which identifies four major components of the inward technology transfer process. These are: "Awareness"- "Association"-"Assimilation"-"Application". Using this conceptual device a series of investigations are undertaken into three of these components. These studies are conducted within a number of businesses within ICI Che...

  14. The Relevance of Career Aspirations for Transfer Students Persisting in Science, Technology, Engineering and Math Disciplines

    Science.gov (United States)

    Coyote, Ruthann T.

    2013-01-01

    This qualitative study utilizes data acquired from interviews with 18 community college transfer students in Science, Technology, Engineering and Math (STEM) majors and 7 university staff people who work in direct student services with this student population. This study explores the experiences of transfer students in STEM majors regarding what…

  15. Technology and Knowledge Transfer in the Graz Region Ten Years of Experience

    Science.gov (United States)

    Hofer, Franz; Adametz, Christoph; Holzer, Franz

    2004-01-01

    Technology and knowledge transfer from universities to small and medium-sized enterprises (SMEs) is seen as one way to strengthen a region's innovation capability. But what if SMEs do not want to play along? Looking back at some 10 years' experience of supporting SMEs, the authors describe in detail the 'Active Knowledge Transfer' programme, which…

  16. The Relevance of Career Aspirations for Transfer Students Persisting in Science, Technology, Engineering and Math Disciplines

    Science.gov (United States)

    Coyote, Ruthann T.

    2013-01-01

    This qualitative study utilizes data acquired from interviews with 18 community college transfer students in Science, Technology, Engineering and Math (STEM) majors and 7 university staff people who work in direct student services with this student population. This study explores the experiences of transfer students in STEM majors regarding what…

  17. Health care technology transfer in Latin America and the Caribbean

    NARCIS (Netherlands)

    Coe, G.A.; Banta, H.D.

    1992-01-01

    The greatest problem concerning health care technology for developing countries is that they are dependent upon the industrialized world for technology. The only short-term solution to this problem is to improve the choices that are available to them. This goal will require changes in the structure

  18. Technology transfer: how to remove obstacles in advancing employment growth

    NARCIS (Netherlands)

    Nijkamp, P.; Geenhuizen, van M.

    1995-01-01

    It has become increasingly evident that technology is a major determinant of thecompetitiveness of cities and regions nowadays. The availability of new technologyessentially reduces the amount of uncertainty with which companies deal in their dailyoperations. In addition, new technology is a basis f

  19. Influenza vaccine production for Brazil: a classic example of successful North-South bilateral technology transfer.

    Science.gov (United States)

    Miyaki, Cosue; Meros, Mauricio; Precioso, Alexander R; Raw, Isaias

    2011-07-01

    Technology transfer is a promising approach to increase vaccine production at an affordable price in developing countries. In the case of influenza, it is imperative that developing countries acquire the technology to produce pandemic vaccines through the transfer of know-how, as this will be the only way for the majority of these countries to face the huge demand for vaccine created by influenza pandemics. Access to domestically produced influenza vaccine in such health crises is thus an important national defence strategy. However, technology transfer is not a simple undertaking. It requires a committed provider who is willing to transfer a complete production process, and not just the formulation and fill-finish parts of the process. It requires a recipient with established experience in vaccine production for human use and the ability to conduct research into new developments. In addition, the country of the recipient should preferably have sufficient financial resources to support the undertaking, and an internal market for the new vaccine. Technology transfer should create a solid partnership that results in the joint development of new competency, improvements to the product, and to further innovation. The Instituto Butantan-sanofi pasteur partnership can be seen as a model for successful technology transfer and has led to the technological independence of the Instituto Butantan in the use a strategic public health tool.

  20. Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Chojnacki, Kent

    2013-01-01

    Objectives: 1) Store cryogenic propellants in a manner that maximizes their availability for use regardless of mission duration. 2) Efficiently transfer conditioned cryogenic propellant to an engine or tank situated in a microgravity environment. 3) Accurately monitor and gauge cryogenic propellants situated in a microgravity environment.

  1. Optimization of the processing technology of Fructus Arctii by response surface methodology.

    Science.gov (United States)

    Liu, Qi-Di; Qin, Kun-Ming; Shen, Bao-Jia; Cai, Hao; Cai, Bao-Chang

    2015-03-01

    The present study was designed to optimize the processing of Fructus Arctii by response surface methodology (RSM). Based on single factor studies, a three-variable, three-level Box-Behnken design (BBD) was used to monitor the effects of independent variables, including processing temperature and time, on the dependent variables. Response surfaces and contour plots of the contents of total lignans, chlorogenic acid, arctiin, and arctigenin were obtained through ultraviolet and visible (UV-Vis) monitoring and high performance liquid chromatography (HPLC). Fructus Arctii should be processed under heating in a pot at 311 °C, medicine at 119 °C for 123s with flipping frequently. The experimental values under the optimized processing technology were consistent with the predicted values. In conclusion, RSM is an effective method to optimize the processing of traditional Chinese medicine (TCM).

  2. The Analysis of the Relationship between Clean Technology Transfer and Chinese Intellectual Property Countering the Climate Changes

    DEFF Research Database (Denmark)

    Min, Hao

    This report discusses the relationship between the Chinese intellectual property systems which counter with the climate change and the transfer of clean technology, and states how to encourage the developed countries transfer the clean technology to the developing countries according...... to the relative international climate convention program. The report also proposes the current hindrances and developing strategies according to Chinese current situation at this field. The report is mainly divided into three subjects: the relationship between clean technology transfer and the intellectual...... property countering the climate changes; the analysis of current technology transfer modes relating to the climate; the difficulties of Chinese countering climate changes technology transfer and strategic thinking....

  3. Entropy and gravity concepts as new methodological indexes to investigate technological convergence: patent network-based approach.

    Directory of Open Access Journals (Sweden)

    Yongrae Cho

    Full Text Available The volatility and uncertainty in the process of technological developments are growing faster than ever due to rapid technological innovations. Such phenomena result in integration among disparate technology fields. At this point, it is a critical research issue to understand the different roles and the propensity of each element technology for technological convergence. In particular, the network-based approach provides a holistic view in terms of technological linkage structures. Furthermore, the development of new indicators based on network visualization can reveal the dynamic patterns among disparate technologies in the process of technological convergence and provide insights for future technological developments. This research attempts to analyze and discover the patterns of the international patent classification codes of the United States Patent and Trademark Office's patent data in printed electronics, which is a representative technology in the technological convergence process. To this end, we apply the physical idea as a new methodological approach to interpret technological convergence. More specifically, the concepts of entropy and gravity are applied to measure the activities among patent citations and the binding forces among heterogeneous technologies during technological convergence. By applying the entropy and gravity indexes, we could distinguish the characteristic role of each technology in printed electronics. At the technological convergence stage, each technology exhibits idiosyncratic dynamics which tend to decrease technological differences and heterogeneity. Furthermore, through nonlinear regression analysis, we have found the decreasing patterns of disparity over a given total period in the evolution of technological convergence. This research has discovered the specific role of each element technology field and has consequently identified the co-evolutionary patterns of technological convergence. These new findings

  4. Beyond Technology Transfer: Quality of Life Impacts from R&D Outcomes

    Science.gov (United States)

    Stone, Vathsala I.; Lockett, Michelle; Usiak, Douglas J.; Arthanat, Sajay

    2010-01-01

    This paper presents methodology and findings from three product efficacy studies that verify the quality of life benefits resulting from prior research, development, and transfer activities. The paper then discusses key lessons learned with implications for product evaluation practice. The studies assessed the quality of three assistive technology…

  5. Renal Cancer Biomarkers | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute's Laboratory of Proteomics and Analytical Technologies is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize diagnostic, therapeutic and prognostic cancer biomarkers from clinical specimens.

  6. Exemplar Practices for Department of Defense Technology Transfer

    Science.gov (United States)

    2013-01-01

    as Amazon, Discovery Studios, Google, Under Armour , McCormick, and Cisco are invited to speak to researchers about innovation, how they manage it...commercialization and marketing strategies for each of the selected DoD technologies; • actively markets these technologies to industry...Publication This work was conducted by the Institute for Defense Analyses (IDA) under contract DASW01-04-C-0003, Task AI-6-3558 “Review of DoD

  7. The Commercialization of New Technologies Transfer from Laboratory to Firm.

    Science.gov (United States)

    1983-05-09

    immediate market introduction . A gap exists, which is a measure of technology maturity, that reflects the amount of additional research and development the...as successful commercialization. A failure occurs when a 15 potential innovation does not reach the point of market introduction for any reason. THE...ready for immediate * market introduction . A gap exists, which is a measure of technology maturity, that reflects the amount of additional

  8. Tools and methodologies for evaluation of energy chains and for technology perspective

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The challenge of climate change implies to accelerate the pace of innovation and consequently to lead long-term basic and applied research with a planning horizon of several decades, far beyond the conditions of current market development. In such a context, the availability of efficient decision-aiding tools and methodologies, far more advanced than those presently operated, is a critical stake.The different categories of tools will have to be more complementary by design and the overall decision-aiding processes will have to integrate numerous system analysis approaches in order to take into account more deeply all economical, environmental and societal impacts. The general goal of the workshop was to address this imperative to break new ground in decision-aiding tools and methodologies to help us to prioritize energy R and D options, comparing the needs jointly with the state of art and with the potentiality of breakthroughs, mainly in environmental and social sciences. The expected outcome was to characterize the scope and limits of existing decision-aiding processes, to highlight the perspectives towards more advanced new ones, and, as such, to foster interdisciplinary cooperation by linking more closely social and environmental sciences with energy socio-economic modelling research. The workshop included four parts. The first three addressed specialized sessions, outlining three different categories of tools. The fourth one was dedicated to the perspective of a combined use of these complementary tools in order to have methodologies available for covering the whole field of energy and social sciences issues. After this last session, there was a closing synthesis of the two day's work on the challenges to take up and the ways to go. This document gathers the transparencies of the following presentations: H2A Project/Evaluation of hydrogen chains (G. Sverdrup); E3DataBase/Evaluation of hydrogen chains (J. Schindler); Micro-economic modelling for evaluation

  9. Brazilian university technology transfer to rural areas Transferência de tecnologia de universidades brasileiras na área rural

    Directory of Open Access Journals (Sweden)

    Enio Marchesan

    2010-10-01

    Full Text Available In agriculture, there is a difference between average yield obtained by farmers and crop potential. There is technology available to increase yields, but not all farmers have access to it and/or use this information. This clearly characterizes an extension and technology transference problem. There are several technology transfer systems, but there is no system to fit all conditions. Therefore, it is necessary to create extension solutions according to local conditions. Another rural extension challenge is efficiency, despite continuous funding reductions. One proposal that has resulted from extension reform worldwide has suggested integration between the public and private sectors. The public universities could play the role of training and updating technical assistance of human resources, which is the one of the main aspects that has limited technology transfer. The objective of this study was to identify approaches to promote technology transfer generated in Brazilian public universities to rural areas through literature review. An experimental approach of technology transfer is presented here where a Brazilian university extension Vice-chancellor incorporates professionals from consolidated research groups according to demand. In this way, public universities take part of their social functions, by integrating teaching, research, and extension.Em agricultura, há diferenças entre a produtividade média obtida pelos produtores e o potencial produtivo dos cultivos. Há informação tecnológica disponível para aumentar a produtividade, mas nem todos os produtores têm acesso e/ou usam a informação. Isso caracteriza claramente um problema de extensão e transferência de tecnologia. Há vários sistemas de transferência de tecnologia, mas, como não há sistema que se ajuste a todas as condições, é necessário criar alternativas adequadas às condições de cada local. Outro desafio da extensão rural é ser eficiente, apesar da cont

  10. Technology Transfer Challenges for High-Assurance Software Engineering Tools

    Science.gov (United States)

    Koga, Dennis (Technical Monitor); Penix, John; Markosian, Lawrence Z.

    2003-01-01

    In this paper, we describe our experience with the challenges thar we are currently facing in our effort to develop advanced software verification and validation tools. We categorize these challenges into several areas: cost benefits modeling, tool usability, customer application domain, and organizational issues. We provide examples of challenges in each area and identrfj, open research issues in areas which limit our ability to transfer high-assurance software engineering tools into practice.

  11. Asynchronous Transfer Mode (ATM) Switch Technology and Vendor Survey

    Science.gov (United States)

    Berry, Noemi

    1995-01-01

    Asynchronous Transfer Mode (ATM) switch and software features are described and compared in order to make switch comparisons meaningful. An ATM switch's performance cannot be measured solely based on its claimed switching capacity; traffic management and congestion control are emerging as the determining factors in an ATM network's ultimate throughput. Non-switch ATM products and experiences with actual installations of ATM networks are described. A compilation of select vendor offerings as of October 1994 is provided in chart form.

  12. Research on localization and alignment technology for transfer cask

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingchuan, E-mail: jchwang@sjtu.edu.cn [Department of Automation, Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai (China); Yang, Ming; Chen, Weidong [Department of Automation, Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai (China)

    2015-10-15

    Highlights: • A method for the alignment between TB and HCB based on localizability is proposed. • A localization method based on the localizability estimation is proposed to realize the cask's localization accurately and ensures the transfer cask's accurate docking in the front of the window of Tokmak Building. • The experimental results show that the proposed algorithm works well in the indoor simulation environment. This system will be test in EAST of China. - Abstract: According to the long length characteristics of transfer cask compared to the environment space between Tokmak Building (TB) and HCB (Hot Cell Building), this paper proposes an autonomous localization and alignment method for the internal components transportation and replacement. A localization method based on the localizability estimation is used to realize the cask's localization and navigation accurately. Once the cask arrives at the front of the TB window, the position and attitude measurement system is used to detect the relative alignment error between the seal door of pallet and the window of TB real-time. The alignment between seal door and TB window could be realized based on this offset. The simulation experiment based on the real model is designed according to the real TB situation. The experiment results show that the proposed localization and alignment method can be used for transfer cask.

  13. International Scientist Mobility and the Locus of Knowledge and Technology Transfer

    DEFF Research Database (Denmark)

    Edler, Jakob; Fier, Hedie; Grimpe, Christoph

    2011-01-01

    Despite the growing interest of scholars and policymakers to better understand the determinants for researchers in public science to transfer knowledge and technology to firms, little is known how temporary international mobility of scientists affects both their propensity to engage in knowledge ...... circulation”. The article contributes to the growing strand of the literature on scientist mobility and on the determinants of industry–science linkages at the individual level.Scientist......Despite the growing interest of scholars and policymakers to better understand the determinants for researchers in public science to transfer knowledge and technology to firms, little is known how temporary international mobility of scientists affects both their propensity to engage in knowledge...... and technology transfer (KTT) as well as the locus of such transfer. Based on a sample of more than 950 German academics from science and engineering faculties, we investigate how the duration and the frequency of scientists’ visits at research institutions outside their home country affect KTT activities. We...

  14. Innovation, Technology Transfer and Labor Productivity Linkages: Evidence from a Panel of Manufacturing Industries

    NARCIS (Netherlands)

    Apergis, N.; Economidou, C.; Filippidis, I.

    2008-01-01

    The paper explores the linkages between labor productivity, innovation and technology spillovers in a panel of manufacturing industries. The roles of R&D, human capital and international trade are considered in stimulating innovation and/or facilitating technology transfer. Using panel-based unit ro

  15. Technology Transfer Strategies for Creating Growth Opportunities in Frontier Markets of Sub-Saharan Africa

    DEFF Research Database (Denmark)

    Nielsen, Ulrik B.

    be the new growth frontier. Evidence has shown that if countries in SSA where using the same level of technology utilized by industrial countries, income levels in SSA would be significantly higher. The paper aims to address this issue, and study how Danish agriculture firms can use technology transfer...... to create growth opportunities in Frontier Markets of Sub-Saharan Africa....

  16. Technology Transfer Activities of NASA/MSFC: Enhancing the Southeast Region's Production Capabilities

    Science.gov (United States)

    Trivoli, George W.

    1998-01-01

    The researcher was charged with the task of developing a simplified model to illustrate the impact of how NASA/MSFC technology transfer activities contribute to shifting outward the Southeast region's and the nation's productive capacity. The report is a background of the impact of technological growth on the nation's production possibility frontier (ppf).

  17. Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector.

    Science.gov (United States)

    Creighton, J. W., Ed.; And Others

    This report reviews a joint attempt of the United States Forest Service and the Naval Service to enhance the utilization of research results and the new technologies through improved effectiveness of technology transfer efforts. It consists of an introduction by J. W. Creighton and seven papers: (1) "Management for Change" by P. A.…

  18. Investigating Practices in Teacher Education That Promote and Inhibit Technology Integration Transfer in Early Career Teachers

    Science.gov (United States)

    Brenner, Aimee M.; Brill, Jennifer M.

    2016-01-01

    The purpose of this study was to identify instructional technology integration strategies and practices in preservice teacher education that contribute to the transfer of technology integration knowledge and skills to the instructional practices of early career teachers. This study used a two-phase, sequential explanatory strategy. Data were…

  19. Technology Transfer and Climate Change: Additional Considerations for Implementation under the UNFCCC

    Directory of Open Access Journals (Sweden)

    Karen Sullivan

    2011-06-01

    Full Text Available Technology transfer is recognised as playing a central and critical role in the global response to climate change, as embodied in the Unite Nations Framework Convention on Climate Change (UNFCCC. However, technology transfer is a complex process, and despite numerous attempts to prescribe approaches to optimisation, there remain serious obstacles to its effective operation. The breadth of technologies and range of would-be recipient territories under the climate change regime serve to complicate things even further. Against this background, the Expert Group on Technology Transfer have produced a robust Strategy, which it will now fall to the Technology Mechanism announced in Cancun to implement. However, despite the rigour with which the technology transfer strategy was produced, it is never possible to cover all possible eventualities. It is on this basis that this article presents a number of tactical and strategic issues which may merit further consideration as the implementation process moves forward. At the operational level, such issues include a possible role for a centralised or regional technology procurement effort, the need for greater emphasis on sectoral specific approaches to technology transfer, and a pragmatic approach to reducing the impact of some barriers to transactions by the expedient use of insurance to reduce risk, as opposed to the longer term approach of international standardisation. At the strategic level, there are major issues with regard to prioritisation of resources applied to technology transfer, and in particular the resolution of the tensions existing between achieving sustainable development and the time critical need to achieve climate stabilisation.

  20. Quantum dynamical simulation of non-adiabatic proton transfers in aqueous solution methodology, molecular models and applications

    CERN Document Server

    Billeter, S R

    1998-01-01

    This thesis describes the methodology of quantum dynamical (QD) simulation of proton transfers in aqueous solutions, its implementation in the simulation program QDGROMOS and its application to protonated water and aqueous solutions of acetic acid. QDGROMOS is based on the GROMOS96 molecular dynamics (MD) program package. Many of the solutions to partial problems such as the representation of the quantum state, the solution of the time-dependent Schrodinger equation, the forces from the quantum subsystem, the time-ordering of the propagations and the correlations between the subsystems, are complementary. In chapter 1, various numerical propagation algorithms for solving the time-dependent Schrodinger equation under the influence of a constant Hamilton operator are compared against each other, mainly in one dimension. A Chebysheff series expansion and the expansion in terms of eigenstates of the Hamilton operator were found to be most stable. Chapter 2 describes the theory, the methods and the algorithms of Q...

  1. Evaluating Colombian SMEs’ technological innovation: Part 1: conceptual basis, evaluation methodology and characterisation of innovative companies

    Directory of Open Access Journals (Sweden)

    Óscar Fernando Castellanos Domínguez

    2010-04-01

    Full Text Available Innovative processes currently constitute one of the most important alternatives for increasing organisations’ levels of competitiveness and productivity. The Colombian state (being conscious of this has generated mechanisms aimed at encouraging technological and innovative development activities in SMEs, as was the case with the Colombian Prize for Entrepreneurial Technological Innovation for SME (Innova 2006. The experience acquired through the technical evaluation of such prize was a valuable element for identifying Colombian MSMSC innovative characteristics and trends. The present article seeks to establish the current state of innovation in SMEs from expe- rience gained when evaluating and awarding the Innova prize; a frame of reference concerning innovation and design, the methodology used for evaluating the prize and some general statistics regarding the results obtained in 2006 are thus presented. A future publication will give the factors influencing innovation taking geographical regions, sectors and impact as reference. Such results revealed innovative initiatives in strategic sectors such as computer science and services, the leadership of cities such as Bogota and MedellIn and the need for producing clear guidelines for incorporating process and product design into being part of the innovative process.

  2. PERCEPTION OF THEATTRIBUTES OF A PROFESSIONAL OF INNOVATION BY OPERATION AND MAINTENANCE OF A THERMAL POWER PLANT: A CASE FOR TECHNOLOGY TRANSFER TO FOCUS ON END USERS

    Directory of Open Access Journals (Sweden)

    Fabricio Baron Mussi

    2013-01-01

    Full Text Available To attend Brazil‘s energy demands, considering the typical seasonality of Brazilian climates conditions, part of the energy available in the national electrical system has been generated from natural gas power plant (in the most recent years. This paper analyses a case of technology transfer with focus on end-users, observing theirs perception in relation to attributes of technological tool installed, a control and monitoring system. The case, developed in a thermoelectric power plant, has four organizations participants: the thermoelectric power plant that bought the technology, the company that will operate with the new technology, a research institution that helped out on the selection process and adjustments of technological tool to local necessities and the international supplier of the technology. This work used qualitative and quantitative methodology to arrive its purpose. Between the findings, there are some differences on perception of attributes for some users groups. Given the relevance of technological tool acquired, it‘s possible that communications actions and technical trainings would be necessaries to ensure that users know all the functionalities of new system, its advantages in relation to previous system and its compatibility with power plant‘s technical process. The technological dependency of foreign companies and necessities of adjustments to schedule of technological tool installation contributed for a partial transference of the technology observed, demanding future researches to check the overcoming of these limitations.

  3. Poverty Alleviation and Environmental Sustainability through Improved Regimes of Technology Transfer

    Directory of Open Access Journals (Sweden)

    Klaus Bosselmann

    2006-06-01

    Full Text Available To achieve the Millennium Development Goals, international technology transfer can play a major role for poverty alleviation and environmental sustainability. At present, there are economic, social and legal (rather than technical barriers preventing the transfer of environmentally sound technology (EST from a wider use in international regimes. Removing these barriers requires greater political and regulatory efforts both domestically and internationally. To enable EST transfer, developed States need to improve domestic market conditions such as removal of negative subsidies and barriers to foreign investment, targeted fiscal incentives and law reforms favouring sustainable production and use of energy. There is no realistic perspective for international EST transfer as long as it is disadvantaged domestically. A coherent EST transfer regime is only possible through greater governmental intervention at the national and international level, including environmental regulations, national systems of innovation, and creating an enabling environment for EST. Such intervention should include effective public-private partnerships, both within and between States. Partnerships, if guided by law, could ensure EST innovation more efficiently than purely State-driven or market-driven EST transfers. In search for a model, the EST transfer regime under the Vienna Ozone Layer Convention and the Montreal Protocol deserves recognition. For example, the clean development mechanism under the Kyoto Protocol allows for considerable scope for EST transfer. The potential of EST transfer for climate change and for meeting the Millennium Development Goals has yet to be realized.

  4. Biomedical technical transfer. Applications of NASA science and technology

    Science.gov (United States)

    1976-01-01

    Lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative unit for evaluating heart patients. This technology is based on NASA research, using vacuum chambers to stress the cardiovascular system during space flight. Additional laboratory tests of an intracranial pressure transducer, have been conducted. Three new biomedical problems to which NASA technology is applicable are also identified. These are: a communication device for the speech impaired, the NASA development liquid-cooled garment, and miniature force transducers for heart research.

  5. Millimeter-Wave Wireless Power Transfer Technology for Space Applications

    Science.gov (United States)

    Chattopadhyay, Goutam; Manohara, Harish; Mojarradi, Mohammad M.; Vo, Tuan A.; Mojarradi, Hadi; Bae, Sam Y.; Marzwell, Neville

    2008-01-01

    In this paper we present a new compact, scalable, and low cost technology for efficient receiving of power using RF waves at 94 GHz. This technology employs a highly innovative array of slot antennas that is integrated on substrate composed of gold (Au), silicon (Si), and silicon dioxide (SiO2) layers. The length of the slots and spacing between them are optimized for a highly efficient beam through a 3-D electromagnetic simulation process. Antenna simulation results shows a good beam profile with very low side lobe levels and better than 93% antenna efficiency.

  6. Anaerobic digestion: technology transfer, engineering performance and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cecchi, F.; Traverso, P.G.; Ganapini, W.

    1987-10-01

    The chemical, technological and process aspects of anaerobic digestion process are analysed on the basis of the Authors' experience and of scientific literature. Emphasis is put on the necessity of integrating the presentation of experimental data and some suggestions are common to those of the EEC to improve the knowledge of the process. An analysis of the types of full-scale digesters used in Europe and in the USA is supplied and suggestions are proposed on the future development of anaerobic technology with the aim of improving performance and efficiency.

  7. Internet and technology transfer in acute care hospitals in the United States: survey-2000.

    Science.gov (United States)

    Hatcher, M

    2001-12-01

    This paper provides the results of the survey-2000 measuring technology transfer and, specifically, Internet usage. The purpose of the survey was to measure the levels of Internet and Intranet existence and usage in acute care hospitals. The depth of the survey includes e-commerce for both business-to-business and customers. These results are compared with responses to the same questions in survey-1997. Changes in response are noted and discussed. This information will provide benchmarks for hospitals to plan their network technology position and to set goals. This is the third of three articles based upon the results of the survey-2000. Readers are referred to prior articles by the author, which discuss the survey design and provide a tutorial on technology transfer in acute care hospitals. (1) Thefirst article based upon the survey results discusses technology transfer, system design approaches, user involvement, and decision-making purposes. (2)

  8. An Examination of Technology Transfer as a Tool for Management.

    Science.gov (United States)

    1986-03-01

    Berlo , R. K., Lamert, J. B., and Mertz, R. J., "Dimensions of Evaluating the Acceptability of Message Source", Public Opinion Quarterl, Vol. 33, 1979...1966. Carr-Harris, G. G. M., "The Information Scientist: Industry’s Link With Science and Technology", Industrial Canada, March 1964. Clark, David L

  9. Low-carbon innovation and technology transfer in latecomer countries

    DEFF Research Database (Denmark)

    Lema, Adrian; Lema, Rasmus

    2016-01-01

    This paper examines the organizational arrangements for technology supply in solar photovoltaic projects in the Clean Development Mechanism (CDM). It shows that while lower middle-income countries typically import solar PV equipment into CDM projects, China, India and Thailand have begun to use n...

  10. Managing Technology Transfer in the Korean Military Establishment

    Science.gov (United States)

    1979-12-01

    Horticulture : Field crop production, I cultivation of orchards, gardens, nurseries, etc. For plant anatomy, physiology, etc. 991 Animal Husbandry...technology, physical therapy , and prosthesis. Environmental Biology: External influences on the V biological processes of organism. Ecology...and particle radiation. Dosimetry, health .physics, radiation injury. Prophylaxis and i therapy of nuclear radiation sickness and injury. Stress

  11. An Action Research on Open Knowledge and Technology Transfer

    Science.gov (United States)

    Ramos, Isabel; Cardoso, Margarida; Carvalho, João Vidal; Graça, José Ismael

    R&D has always been considered a strategic asset of companies. Traditionally, companies that have their own R&D function are better prepared to compete in the globalized economy because they are able to produce the knowledge and technology required to advance products and services. SMEs also need to become highly innovative and competitive in order to be successful. Nevertheless, their ability to have an internal R&D function that effectively meets their innovation needs is usually very weak. Open innovation provides access to a vast amount of new ideas and technologies at lower costs than closed innovation. This paper presents an action research study being carried out at University of Minho to develop a business model and technology platform for an innovation brokering service connecting ideas and technologies being developed at Universities with the specific innovation needs of SMEs. The expected contributions of the study include the empirical investigation of the effectiveness and risks of crowdsourcing innovation when applied in the socio-economic context of a European developing country where SMEs represent 99,6% of the businesses.

  12. Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

  13. Co-Development Agreements | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute's TTC uses three different co-development agreements to help industry and academia interact and partner with National Institutes of Health laboratories and scientists to support technology development activities. | [google6f4cd5334ac394ab.html

  14. Effects of Critical Knowledge Characteristics on Degree of Inter-Firm Technology Transfer

    Directory of Open Access Journals (Sweden)

    A. W. Sazali

    2009-01-01

    Full Text Available Problem statement: The current issue on inter-firm technology transfer in the developing countries is centered on the efficiency and effectiveness of the transfer process by the Multinationals (MNCs. Thus, organizations in the developing countries are striving hard to collaborate, learn and internalize their foreign partner’s technological knowledge by forming strategic alliances or International Joint Ventures (IJVs as an efficient mean to increase their competitiveness, technological capabilities and potential for local innovation. Knowledge as the critical element underlying technology has become one of the main factors that affects the success and failure of inter-firm technology transfer within IJVs which is measured by the degree of technology transferred. Based on the underlying knowledge-based view perspective, this paper aims to empirically examine the effect of three critical knowledge characteristics: Tacitness, complexity and specificity on degree of technology transfer and its two dimensions: Degree of tacit and explicit knowledge. Approach: The theoretical model and hypotheses in this study were tested using empirical data gathered from 128 joint venture companies registered with the Registrar of Companies of Malaysia. Data obtained from the survey questionnaires were analyzed using the correlation coefficients and multiple linear regression analyses. Results: The results revealed that tacitness and complexity as two critical elements of knowledge characteristics have significant effects on both degrees of tacit and explicit knowledge; with complexity recording slightly stronger effect than tacitness. However, although specificity has a strong theoretical foundation, it did not record significant effect. Conclusion: The study has bridged the literature gaps in such that it provides empirical evidence on the effects of three generic knowledge attributes: Tacitness, complexity and specificity on degree of inter-firm technology

  15. Experimental Determination of the Dynamic Hydraulic Transfer Function for the J-2X Oxidizer Turbopump. Part One; Methodology

    Science.gov (United States)

    Zoladz, Tom; Patel, Sandeep; Lee, Erik; Karon, Dave

    2011-01-01

    An advanced methodology for extracting the hydraulic dynamic pump transfer matrix (Yp) for a cavitating liquid rocket engine turbopump inducer+impeller has been developed. The transfer function is required for integrated vehicle pogo stability analysis as well as optimization of local inducer pumping stability. Laboratory pulsed subscale waterflow test of the J-2X oxygen turbo pump is introduced and our new extraction method applied to the data collected. From accurate measures of pump inlet and discharge perturbational mass flows and pressures, and one-dimensional flow models that represents complete waterflow loop physics, we are able to derive Yp and hence extract the characteristic pump parameters: compliance, pump gain, impedance, mass flow gain. Detailed modeling is necessary to accurately translate instrument plane measurements to the pump inlet and discharge and extract Yp. We present the MSFC Dynamic Lump Parameter Fluid Model Framework and describe critical dynamic component details. We report on fit minimization techniques, cost (fitness) function derivation, and resulting model fits to our experimental data are presented. Comparisons are made to alternate techniques for spatially translating measurement stations to actual pump inlet and discharge.

  16. Transformation of Scientific and Technological Achievements of the University Technology Transfer Centers and Technology Transfer Analysis%高校技术转移中心科技成果转化及技术转移现状分析

    Institute of Scientific and Technical Information of China (English)

    崔岩; 郑帆帆; 朱继国

    2012-01-01

    Transformation of scientific and technological achievements and technology transfer in university technology transfer center is an important part of the field of technology transfer. However, conversion rate of scientific and technological achievements of our colleges and universities is low, and service capacity of technology transfer centers is not strong. Based on this, we will study and analyze the status of scientific and technological achievements transformation and technology transfer in domestic universities to provide reference for its future development and research.%高校技术转移中心的科技成果转化及技术转移是技术转移领域的重要组成部分.但是,我国高校的科技成果转化率很低,技术转移中心的服务能力不强.基于此,本文将研究分析国内高校科技成果转化及技术转移的现状,为其今后的发展和研究提供参考.

  17. [Methodological approaches to the development of environmentally benign technology for the use of solid waste in iron metallurgy].

    Science.gov (United States)

    Pugin, K G; Vaĭsman, Ia I

    2013-01-01

    On the basis of the life cycle of materials, containing wastes of iron and steel industry, new methodological approaches to the assessment of technologies of the secondary use of wastes are developed A complex criteria for selection of the technology for the use of resource potential of solid waste of iron and steel industry are developed with taking into account environmental, technological and economic indices. The technology of the use of wastes of ferrovanadium industry as bulk solid materials at the solid waste landfill is shown.

  18. Air Force Domestic Technology Transfer: Is It Effective

    Science.gov (United States)

    1992-04-01

    Solow , Robert M., and Thurow, Lester C., "Toward a New Industrial America," Scientific American, June 1989, Vol. 260, No. 6, p. 42. ’ National...pp. 1, 2. " Berger, Suzanne, Dertouzos, Michael L., Lester, Richard K., Solow , Robert M., and Thurow, Lester C., "Toward a New Industrial America...American industries, but the inability to bring " Inman, B.R., and Burton, Daniel F., Jr, "Technology and Competitiveness: The New Policy Frontier

  19. Technology Transfer at Edgar Mine: Phase 1; October 2016

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Chad R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bauer, Stephen [Sandia National Laboratory; Nakagawa, Masami [Colorado School of Mines; Zhou, Wendy [Colorado School of Mines

    2017-09-14

    The objective of this project is to study the flow of fluid through the fractures and to characterize the efficiency of heat extraction (heat transfer) from the test rock mass in the Edgar Mine, managed by Colorado School of Mines in Idaho Springs, CO. The experiment consists of drilling into the wall of the mine and fracturing the rock, characterizing the size and nature of the fracture network, circulating fluid through the network, and measuring the efficiency of heat extraction from the 'reservoir' by monitoring the temperature of the 'produced' fluid with time. This is a multi-year project performed as a collaboration between the National Renewable Energy Laboratory, Colorado School of Mines and Sandia National Laboratories and carried out in phases. This report summarizes Phase 1: Selection and characterization of the location for the experiment, and outlines the steps for Phase 2: Circulation Experiments.

  20. IPAD: A unique approach to government/industry cooperation for technology development and transfer

    Science.gov (United States)

    Fulton, Robert E.; Salley, George C.

    1985-01-01

    A key element to improved industry productivity is effective management of Computer Aided Design / Computer Aided Manufacturing (CAD/CAM) information. To stimulate advancement, a unique joint government/industry project designated Integrated Programs for Aerospace-Vehicle Design (IPAD) was carried out from 1971 to 1984. The goal was to raise aerospace industry productivity through advancement of computer based technology to integrate and manage information involved in the design and manufacturing process. IPAD research was guided by an Industry Technical Advisory Board (ITAB) composed of over 100 representatives from aerospace and computer companies. The project complemented traditional NASA/DOD research to develop aerospace design technology and the Air Force's Integrated Computer Aided Manufacturing (ICAM) program to advance CAM technology. IPAD had unprecedented industry support and involvement and served as a unique approach to government industry cooperation in the development and transfer of advanced technology. The IPAD project background, approach, accomplishments, industry involvement, technology transfer mechanisms and lessons learned are summarized.

  1. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Denninger, Kate; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Bell, Sean; Jacobs, Amelia; Nagandran, Uneshddarann; Tilley, Mitch; Quick, Ralph

    2015-09-02

    There is a significant amount of financial risk associated with geothermal drilling. This study of drilling operations seeks opportunities to improve upon current practices and technologies. The scope of this study included analyzing 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'Perfect Well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.) and poor data collection practices An online software database was used to format drilling data to IADC coded daily drilling reports and generate figures for analysis. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/ equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averaged 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million was spent on non-productive time in the 21 geothermal wells, compared with only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry using Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.

  2. Vaccines for HIV | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The development of an effective HIV vaccine has been an ongoing area of research. The high variability in HIV-1 virus strains has represented a major challenge in successful development. Ideally, an effective candidate vaccine would provide protection against the majority of clades of HIV. Two major hurdles to overcome are immunodominance and sequence diversity. This vaccine utilizes a strategy for overcoming these two issues by identifying the conserved regions of the virus and exploiting them for use in a targeted therapy. NCI seeks licensees and/or research collaborators to commercialize this technology, which has been validated in macaque models.

  3. Climate Change Modeling Methodology Selected Entries from the Encyclopedia of Sustainability Science and Technology

    CERN Document Server

    2012-01-01

    The Earth's average temperature has risen by 1.4°F over the past century, and computer models project that it will rise much more over the next hundred years, with significant impacts on weather, climate, and human society. Many climate scientists attribute these increases to the buildup of greenhouse gases produced by the burning of fossil fuels and to the anthropogenic production of short-lived climate pollutants. Climate Change Modeling Methodologies: Selected Entries from the Encyclopedia of Sustainability Science and Technology provides readers with an introduction to the tools and analysis techniques used by climate change scientists to interpret the role of these forcing agents on climate.  Readers will also gain a deeper understanding of the strengths and weaknesses of these models and how to test and assess them.  The contributions include a glossary of key terms and a concise definition of the subject for each topic, as well as recommendations for sources of more detailed information. Features au...

  4. Barriers to the Transfer of Low-carbon Electricity Generation Technologies in Four Latin American Countries

    DEFF Research Database (Denmark)

    Desgain, Denis DR; Haselip, James Arthur

    2015-01-01

    This article discusses the conclusions of four national Technology Needs Assessment (TNA) processes in Latin America (2011-2013), as applied to the electricity sector. The primary focus is on the financial and economic barriers identified by countries to the transfer of prioritized low-carbon ene......This article discusses the conclusions of four national Technology Needs Assessment (TNA) processes in Latin America (2011-2013), as applied to the electricity sector. The primary focus is on the financial and economic barriers identified by countries to the transfer of prioritized low...... to the debate about the relationship between financial and economic barriers to technology transfer and electricity market structures, based on a new round of country-driven priorities and analysis, in support of the UNFCCC process on climate change mitigation....

  5. Operational Research for Developing Countries - a case of transfer of technology

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui; Ravn, Hans V.

    1986-01-01

    This paper is concerned with some fundamental aspects of the process of transfer of operational research from the industrialized countries to the Third World. Two complementary conceptions of operational research are identified: technical and social operational research. The main contribution...... of this paper is to regard the discussion of operational research for developing countries as a case of transfer of technology. Finally, some proposals for action and further research will be briefly outlined....

  6. An Analysis of Complex Multiple-Choice Science-Technology-Society Items: Methodological Development and Preliminary Results

    Science.gov (United States)

    Vazquez-Alonso, Angel; Manassero-Mas, Maria-Antonia; Acevedo-Diaz, Jose-Antonio

    2006-01-01

    The scarce attention to the assessment and evaluation in science education research has been especially harmful for teaching science-technology-society (STS) issues, due to the dialectical, tentative, value-laden, and polemic nature of most STS topics. This paper tackles the methodological difficulties of the instruments that monitor views related…

  7. Incorporating the Delphi Technique to investigate renewable energy technology transfer in Saudi Arabia

    Science.gov (United States)

    Al-Otaibi, Nasir K.

    Saudi Arabia is a major oil-producing nation facing a rapidly-growing population, high unemployment, climate change, and the depletion of its natural resources, potentially including its oil supply. Technology transfer is regarded as a means to diversify countries' economies beyond their natural resources. This dissertation examined the opportunities and barriers to utilizing technology transfer successfully to build renewable energy resources in Saudi Arabia to diversify the economy beyond oil production. Examples of other developing countries that have successfully used technology transfer to transform their economies are explored, including Japan, Malayasia, and the United Arab Emirates. Brazil is presented as a detailed case study to illustrate its transition to an economy based to a much greater degree than before on renewable energy. Following a pilot study, the Delphi Method was used in this research to gather the opinions of a panel of technology transfer experts consisting of 10 heterogeneous members of different institutions in the Kingdom of Saudi Arabia, including aviation, telecommunication, oil industry, education, health systems, and military and governmental organizations. In three rounds of questioning, the experts identified Education, Dependence on Oil, and Manpower as the 3 most significant factors influencing the potential for success of renewable energy technology transfer for Saudi Arabia. Political factors were also rated toward the "Very Important" end of a Likert scale and were discussed as they impact Education, Oil Dependence, and Manpower. The experts' opinions are presented and interpreted. They form the basis for recommended future research and discussion of how in light of its political system and its dependence on oil, Saudi Arabia can realistically move forward on renewable energy technology transfer and secure its economic future.

  8. Current status and potential of embryo transfer and reproductive technology in dairy cattle.

    Science.gov (United States)

    Hasler, J F

    1992-10-01

    Significant use of embryo transfer in dairy cattle commenced with the introduction of nonsurgical embryo recovery in the mid-1970s and developed with the use of nonsurgical transfers in the late 1970s. Numbers of registered Holstein calves from embryo transfer doubled yearly through 1980, after which the rate of increase slowed; the total reached nearly 19,000 calves in 1990. However, the efficacy of superovulation procedures and commercial success rates of transferred fresh embryos have not improved the past 10 to 15 yr. Fertilization rates in superovulated donors remain low. Although embryo-splitting techniques were perfected in the early 1980s, they are not used widely. A practical, commercial embryo-sexing procedure remains unavailable. Recent significant improvement is apparent in the technology of ultrasound-guided oocyte collection and in vitro oocyte maturation, fertilization, and embryo culture. In the future, this technology may be used in conjunction with sperm separated by sex with a flow cytometer. Modest numbers of embryo clones have been produced in several commercial programs via nuclear transfer techniques. However, the efficiency of gene transfer experiments involving ova of cattle and other domestic species has been low. Recently, DNA probe technology has begun to provide genotype information for cattle and will ultimately be applied to embryos.

  9. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, Mitch; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Nagandran, Uneshddarann; Quick, Ralph

    2015-01-26

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC coded daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real

  10. Formal and Informal Knowledge and Technology Transfer from Academia to Industry

    DEFF Research Database (Denmark)

    Grimpe, Christoph; Hussinger, Katrin

    2013-01-01

    Literature has identified formal and informal channels in university knowledge and technology transfer (KTT). While formal KTT typically involves a legal contract on a patent or on collaborative research activities, informal transfer channels refer to personal contacts and hence to the tacit...... dimension of knowledge transfer. Research is, however, scarce regarding the interaction of formal and informal transfer mechanisms. In this paper, we analyze whether these activities are mutually reinforcing, i.e., complementary. Our analysis is based on a comprehensive data-set of more than 2,000 German...... manufacturing firms and confirms a complementary relationship between formal and informal KTT modes: using both transfer channels contributes to higher innovation performance. The management of the firm should therefore strive to maintain close informal relationships with universities to realize the full...

  11. Some ethical issues in technology transfer and applications

    Science.gov (United States)

    Shine, Kenneth I.

    1995-10-01

    Health care systems all around the world are struggling to provide care in an era of limited resources. In an article entitled, 'Straight Talk About Rationing,' Arthur Kaplan reviews the work of the Swedish Commission designed to prioritize health care for that country. The commission identified three core principles that they felt should underlie decisions about priorities for health care. Those principles were (1) all human beings are equally valuable; (2) society must pay special attention to the needs of the weakest and most vulnerable; and (3) all other things being equal, cost efficiency in gaining the greatest return for the amount of money spent must prevail. These are three extremely useful principles which can be helpful to us as we consider many of the issues confronted in this country about the allocation of resources for health. I would like to consider three major issues. The first issue is the current evolving nature of health care and the ethical dilemmas that exist in the present system. In balancing increased access to care with decreasing cost, particularly in managed care, all of us are concerned about ethical issues. I would like to emphasize that the current system -- the system that we have lived with and is changing -- has inherent in it a series of ethical dilemmas. Secondly, I would like to consider issues related to productivity and its measurement in relation to technology. This relates to the third item in the Swedish Commission, which is the principle that we ought to spend money in the most cost-efficient way. Finally, I would like to discuss the dilemma of decision making about health and how that impacts upon the ethics of health care in the application of technology.

  12. WHO influenza vaccine technology transfer initiative: role and activities of the Technical Advisory Group.

    Science.gov (United States)

    Francis, Donald P; Grohmann, Gary

    2011-07-01

    In May 2006, the WHO published a Global Pandemic Influenza Action Plan. A significant part of that plan involves the transfer of technology necessary to build production capacity in developing countries. The WHO influenza technology transfer initiative has been successful. Clearly the relatively small WHO investments made in these companies to develop their own influenza vaccine production facilities have had quite dramatic results. A few companies are already producing large amounts of influenza vaccine. Others will soon follow. Whether they are developing egg-based or planning non-egg based influenza vaccine production, all companies are optimistic that their efforts will come to fruition.

  13. From Becquerel to Nanotechnology:. One Century of Decline of Scientific Dissemination, Publishing and Technology Transfer

    Science.gov (United States)

    Margaritondo, G.

    2008 marks the 100th anniversary of Henri Becquerel's death, the discoverer of radioactivity and a leading contributor to the birth of modern physics. In addition to well-deserved celebrations, this offers a chance for a sobering look at scientific dissemination then and now and at the evolution of technology transfer. The facts are shocking: both dissemination and technology transfer were much faster and effective at the time of Becquerel, in spite of all the new communication techniques. I briefly speculate on the causes of these dismal failures, arguing that they are primarily rooted in society, academic management and industrial management — and therefore very difficult to reverse.

  14. NASA Langley Research and Technology-Transfer Program in Formal Methods

    Science.gov (United States)

    Butler, Ricky W.; Caldwell, James L.; Carreno, Victor A.; Holloway, C. Michael; Miner, Paul S.; DiVito, Ben L.

    1995-01-01

    This paper presents an overview of NASA Langley research program in formal methods. The major goals of this work are to make formal methods practical for use on life critical systems, and to orchestrate the transfer of this technology to U.S. industry through use of carefully designed demonstration projects. Several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of five NASA civil servants and contractors from Odyssey Research Associates, SRI International, and VIGYAN Inc.

  15. A Synergy between the Technological Process and a Methodology for Web Design: Implications for Technological Problem Solving and Design

    Science.gov (United States)

    Jakovljevic, Maria; Ankiewicz, Piet; De swardt, Estelle; Gross, Elna

    2004-01-01

    Traditional instructional methodology in the Information System Design (ISD) environment lacks explicit strategies for promoting the cognitive skills of prospective system designers. This contributes to the fragmented knowledge and low motivational and creative involvement of learners in system design tasks. In addition, present ISD methodologies,…

  16. Licensing and {open_quotes}CRADA`s{close_quotes} in Oak Ridge technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Prosser, G.A.

    1993-10-01

    In the belief that effective technology transfer is a ``contact sport,`` Martin Marietta Energy Systems (Energy Systems), the Department of Energy`s (DOE`s) management contractor in Oak Ridge, Tennessee, encourages its research and engineering employees to directly interact with their commercial-sector counterparts. Over the years, relationships which have been initiated through such technical interactions have led to many of the patent licenses ad cooperative research and development agreements (CRADAs) which currently exist among Energy Systems, US companies, universities, and industrial consortia. The responsibility for creating and implementing Energy Systems policies and procedures to accomplish DOE`s technology transfer objectives in Oak Ridge lies with the Office of Technology Transfer (OTT). In addition, licensing executives within OTT are responsible for negotiating the terms and conditions of patent licenses and CRADAs for the commercialization of government-funded technologies and research expertise. Other technology transfer initiatives in Oak Ridge help companies in a wide range of industries overcome manufacturing obstacles, enabling them to retain existing jobs and to create new business opportunities.

  17. Lead-free solder technology transfer from ASE Americas

    Energy Technology Data Exchange (ETDEWEB)

    FTHENAKIS,V.

    1999-10-19

    To safeguard the environmental friendliness of photovoltaics, the PV industry follows a proactive, long-term environmental strategy involving a life-of-cycle approach to prevent environmental damage by its processes and products from cradle to grave. Part of this strategy is to examine substituting lead-based solder on PV modules with other solder alloys. Lead is a toxic metal that, if ingested, can damage the brain, nervous system, liver and kidneys. Lead from solder in electronic products has been found to leach out from municipal waste landfills and municipal incinerator ash was found to be high in lead also because of disposed consumer electronics and batteries. Consequently, there is a movement in Europe and Japan to ban lead altogether from use in electronic products and to restrict the movement across geographical boundaries of waste containing lead. Photovoltaic modules may contain small amounts of regulated materials, which vary from one technology to another. Environmental regulations impact the cost and complexity of dealing with end-of-life PV modules. If they were classified as hazardous according to Federal or State criteria, then special requirements for material handling, disposal, record-keeping and reporting would escalate the cost of decommissioning the modules. Fthenakis showed that several of today's x-Si modules failed the US-EPA Toxicity Characteristic Leaching Procedure (TCLP) for potential leaching of Pb in landfills and also California's standard on Total Threshold Limit Concentration (TTLC) for Pb. Consequently, such modules may be classified as hazardous waste. He highlighted potential legislation in Europe and Japan which could ban or restrict the use of lead and the efforts of the printed-circuit industries in developing Pb-free solder technologies in response to such expected legislation. Japanese firms already have introduced electronic products with Pb-free solder, and one PV manufacturer in the US, ASE Americas has used a

  18. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-10-31

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  19. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-05-01

    During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

  20. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    1999-12-01

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  1. An overview of remote sensing technology transfer in Canada and the United States

    Science.gov (United States)

    Strome, W. M.; Lauer, D. T.

    1977-01-01

    To realize the maximum potential benefits of remote sensing, the technology must be applied by personnel responsible for the management of natural resources and the environment. In Canada and the United States, these managers are often in local offices and are not those responsible for the development of systems to acquire, preprocess, and disseminate remotely sensed data, nor those leading the research and development of techniques for analysis of the data. However, the latter organizations have recognized that the technology they develop must be transferred to the management agencies if the technology is to be useful to society. Problems of motivation and communication associated with the technology transfer process, and some of the methods employed by Federal, State, Provincial, and local agencies, academic institutions, and private organizations to overcome these problems are explored.

  2. Technology transfer from biomedical research to clinical practice: measuring innovation performance.

    Science.gov (United States)

    Balas, E Andrew; Elkin, Peter L

    2013-12-01

    Studies documented 17 years of transfer time from clinical trials to practice of care. Launched in 2002, the National Institutes of Health (NIH) translational research initiative needs to develop metrics for impact assessment. A recent White House report highlighted that research and development productivity is declining as a result of increased research spending while the new drugs output is flat. The goal of this study was to develop an expanded model of research-based innovation and performance thresholds of transfer from research to practice. Models for transfer of research to practice have been collected and reviewed. Subsequently, innovation pathways have been specified based on common characteristics. An integrated, intellectual property transfer model is described. The central but often disregarded role of research innovation disclosure is highlighted. Measures of research transfer and milestones of progress have been identified based on the Association of University Technology Managers 2012 performance reports. Numeric milestones of technology transfer are recommended at threshold (top 50%), target (top 25%), and stretch goal (top 10%) performance levels. Transfer measures and corresponding target levels include research spending to disclosure (0.81), patents to start-up (>0.1), patents to licenses (>2.25), and average per license income (>$48,000). Several limitations of measurement are described. Academic institutions should take strategic steps to bring innovation to the center of scholarly discussions. Research on research, particularly on pathways to disclosures, is needed to improve R&D productivity. Researchers should be informed about the technology transfer performance of their institution and regulations should better support innovators.

  3. An integrated impact assessment and weighting methodology: evaluation of the environmental consequences of computer display technology substitution.

    Science.gov (United States)

    Zhou, Xiaoying; Schoenung, Julie M

    2007-04-01

    Computer display technology is currently in a state of transition, as the traditional technology of cathode ray tubes is being replaced by liquid crystal display flat-panel technology. Technology substitution and process innovation require the evaluation of the trade-offs among environmental impact, cost, and engineering performance attributes. General impact assessment methodologies, decision analysis and management tools, and optimization methods commonly used in engineering cannot efficiently address the issues needed for such evaluation. The conventional Life Cycle Assessment (LCA) process often generates results that can be subject to multiple interpretations, although the advantages of the LCA concept and framework obtain wide recognition. In the present work, the LCA concept is integrated with Quality Function Deployment (QFD), a popular industrial quality management tool, which is used as the framework for the development of our integrated model. The problem of weighting is addressed by using pairwise comparison of stakeholder preferences. Thus, this paper presents a new integrated analytical approach, Integrated Industrial Ecology Function Deployment (I2-EFD), to assess the environmental behavior of alternative technologies in correlation with their performance and economic characteristics. Computer display technology is used as the case study to further develop our methodology through the modification and integration of various quality management tools (e.g., process mapping, prioritization matrix) and statistical methods (e.g., multi-attribute analysis, cluster analysis). Life cycle thinking provides the foundation for our methodology, as we utilize a published LCA report, which stopped at the characterization step, as our starting point. Further, we evaluate the validity and feasibility of our methodology by considering uncertainty and conducting sensitivity analysis.

  4. Naval Surface Weapons Center Technology Transfer Biennial Report (Fiscal Year 1983/1984),

    Science.gov (United States)

    2014-09-26

    Catholic University of America by providing Van de Graff accelerator and computer assistance for the development of an improved data base and...1980 (Public Law 96-480). The objectives of Navy technology transfer are (1) to disseminate non-critical technology, originally developed in support of...A-4 10. HIGH ALTITUDE PARACHUTE DEPLOYMENT ... ........... .A-5 11. UNIVERSITY RESEARCH ASSIST ..... ............... A-6 12. GULF STREAM

  5. U.S. Technology Transfer to the Soviet Union: A Dilemma

    Science.gov (United States)

    1981-04-01

    record?" V That is what Don Landa of the Department of Commerce asked when a news reporter told him that Representative John Ashbrook had a secret...internal Department of Com- merce document describing illegal technology transfer to the Soviet Union. 1 Landa continued, "My reaction to that is that I’ll...to East." OECD Observer, November 1979, pp. 25-30. Tross, Carl H., ed. Export of Aerospace Technology. San Diego , CA: For American Astronautical

  6. Barriers to using consumer science information in food technology innovations: An exploratory study using Delphi methodology

    NARCIS (Netherlands)

    Raley, Marian E.; Ragona, Maddalena; Sijtsema, S.J.; Fischer, A.R.H.; Frewer, L.J.

    2016-01-01

    Food technology innovation has the potential to deliver many benets to society, although some technologies have been problematic in terms of public acceptance. In promoting the commercial success of innovative technological processes and resultant products it will be important to

  7. A methodology to enable rapid evaluation of aviation environmental impacts and aircraft technologies

    Science.gov (United States)

    Becker, Keith Frederick

    -processing, which does not capture physical interdependencies that may arise at the aircraft-level. The goal of the work that has been conducted here was the development of a methodology to develop surrogate fleet approaches that leverage the capability of physics-based aircraft models and the development of connectivity to fleet-level analysis tools to enable rapid evaluation of fuel burn and emissions metrics. Instead of requiring development of an individual physics-based model for each vehicle in the fleet, the surrogate fleet approaches seek to reduce the number of such models needed while still accurately capturing performance of the fleet. By reducing the number of models, both development time and execution time to generate fleet-level results may also be reduced. The initial steps leading to surrogate fleet formulation were a characterization of the commercial fleet into groups based on capability followed by the selection of a reference vehicle model and a reference set of operations for each group. Next, three potential surrogate fleet approaches were formulated. These approaches include the parametric correction factor approach, in which the results of a reference vehicle model are corrected to match the aggregate results of each group; the average replacement approach, in which a new vehicle model is developed to generate aggregate results of each group, and the best-in-class replacement approach, in which results for a reference vehicle are simply substituted for the entire group. Once candidate surrogate fleet approaches were developed, they were each applied to and evaluated over the set of reference operations. Then each approach was evaluated for their ability to model variations in operations. Finally, the ability of each surrogate fleet approach to capture implementation of different technology suites along with corresponding interdependencies between fuel burn and emissions was evaluated using the concept of a virtual fleet to simulate the technology response

  8. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China.

    Science.gov (United States)

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-11-01

    Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the

  9. A strategy for nontimber forest products research and technology transfer for southern United States

    Science.gov (United States)

    James L. Chamberlain

    2003-01-01

    In mid-2001, the Southern Research Station (SRS) and the Southern Regional Office (R8) of the U.S. Forest Service worked through a 3-day facilitated discussion to develop a strategy to guide research and technology transfer on non-timber forest products (NTFPs). In all, more than 14 specialists took part in developing the strategy, representing the Forest Service...

  10. The International Trade Policy for Technology Transfers: Legal and Economic Dilemmas on Multilateralism versus Bilateralism

    DEFF Research Database (Denmark)

    Tang, Yi Shin

    In the book, the Researcher addresses the importance of international technology transfers for economic development, as well as the underlying causes for the different institutional arrangements that promote such activity. The work provides a systematic interpretation of the wide range of interests...

  11. Technical Education Transfer: Perceptions of Employee Computer Technology Self-Efficacy.

    Science.gov (United States)

    Decker, C. A.

    1999-01-01

    This study investigated influences on employee self-efficacy of computer technologies resulting from computer-training programs that were intended to meet individual and organization objectives for university personnel. Influences on the transfer of training process included previous computer training, computer-use requirements, computer-use…

  12. 48 CFR 970.5227-2 - Rights in data-technology transfer.

    Science.gov (United States)

    2010-10-01

    ... operations and (ii) data comprising source code listings, design details, algorithms, processes, flow charts... Research and Development Agreement (CRADA) information in accordance with Technology Transfer actions under... an abstract which is descriptive of the data and is suitable for dissemination purposes, (B) The...

  13. International technology transfer: building theory from a multiple case-study in the aircraft industry

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.

    2005-01-01

    International technology transfer occurs frequently in international operations, for example in cases of foreign direct investment where companies set-up existing manufacturing lines in new locations. It also occurs in situations of international outsourcing where a new supplier receives product and

  14. Technology transfer potential of an automated water monitoring system. [market research

    Science.gov (United States)

    Jamieson, W. M.; Hillman, M. E. D.; Eischen, M. A.; Stilwell, J. M.

    1976-01-01

    The nature and characteristics of the potential economic need (markets) for a highly integrated water quality monitoring system were investigated. The technological, institutional and marketing factors that would influence the transfer and adoption of an automated system were studied for application to public and private water supply, public and private wastewater treatment and environmental monitoring of rivers and lakes.

  15. Research Universities, Technology Transfer, and Job Creation: What Infrastructure, For What Training?

    Science.gov (United States)

    Brodhag, Christian

    2013-01-01

    Technology transfer and innovation are considered major drivers of sustainable development; they place knowledge and its dissemination in society at the heart of the development process. This article considers the role of research universities, and how they can interact with key actors and institutions involved in "innovation…

  16. Small- and large-signal modeling of InP HBTs in transferred-substrate technology

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Rudolph, Matthias; Jensen, Thomas

    2014-01-01

    In this paper, the small- and large-signal modeling of InP heterojunction bipolar transistors (HBTs) in transferred substrate (TS) technology is investigated. The small-signal equivalent circuit parameters for TS-HBTs in two-terminal and three-terminal configurations are determined by employing...

  17. Transferring the Soft-Skills Technology of Workplace Learning and Performance to China.

    Science.gov (United States)

    Yan, Jenny; Rothwell, William J.; Webster, Lois

    2001-01-01

    Discusses international business and workplace learning and performance (WLP), and describes a long-term strategic alliance between Motorola University China, Penn State University, Beijing University, and Nankai University. Highlights include a needs assessment of multinational corporations in China; transferring the soft-skills technology of WLP…

  18. Considering Components, Types, and Degrees of Authenticity in Designing Technology to Support Transfer

    Science.gov (United States)

    Hardre, Patricia L.

    2013-01-01

    Authenticity is a key to using technology for instruction in ways that enhance learning and support learning transfer. Simply put, a representation is authentic when it shows learners clearly what a task, context, or experience will be like in real practice. More authentic representations help people learn and understand better. They support…

  19. Technology Transfer from University-Based Research Centers: The University of New Mexico Experience.

    Science.gov (United States)

    Rogers, Everett M.; Hall, Brad; Hashimoto, Michio; Steffensen, Morten; Speakman, Kristen L.; Timko, Molly K.

    1999-01-01

    A study of 55 research centers at the University of New Mexico investigated the nature of the typical center, why funding has risen during the 1990s, reasons for founding the centers, the director's role, how university-based research centers transfer technology to private companies and other organizations, and what determines program…

  20. Technology Transfer and Innovation Initiatives in Strategic Management: Generating an Alternative Perspective

    Science.gov (United States)

    Major, E.

    2003-01-01

    This paper taps the strategic management discipline to inform our understanding of technology transfer and innovation (TTI) initiatives. With special focus on the UK Foresight programme it considers the impacts that the resource-based and core competence approaches to strategy can have on understanding the nature and effectiveness of TTI…