WorldWideScience

Sample records for technology transfer design

  1. Technology Transfer

    Science.gov (United States)

    Smith, Nanette R.

    1995-01-01

    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can

  2. Digital technology impacts on the Arnhem transfer hall structural design

    NARCIS (Netherlands)

    Van de Straat, R.; Hofman, S.; Coenders, J.L.; Paul, J.C.

    2015-01-01

    The new Transfer Hall in Arnhem is one of the key projects to prepare the Dutch railways for the increased future demands for capacity. UNStudio developed a master plan in 1996 for the station area of which the completion of the Transfer Hall in 2015 will be a final milestone. The Transfer Hall is a

  3. Digital technology impacts on the Arnhem transfer hall structural design

    NARCIS (Netherlands)

    Van de Straat, R.; Hofman, S.; Coenders, J.L.; Paul, J.C.

    2015-01-01

    The new Transfer Hall in Arnhem is one of the key projects to prepare the Dutch railways for the increased future demands for capacity. UNStudio developed a master plan in 1996 for the station area of which the completion of the Transfer Hall in 2015 will be a final milestone. The Transfer Hall is a

  4. Technology transfer by multinationals

    OpenAIRE

    Kostyantyn Zuzik

    2003-01-01

    The paper analyses the issue of technology transfer by multinational corporations. The following questions are explored: (a) world market of technologies, the role of MNCs (b) Choice of the technology transfer mode, Dunning's OLI-theory as a factor of the choice of the mode of transfer (c) measurement and profitability of technology transfer (d) transfer of technology through partnerships, JVs, alliances and through M&As (e) aspects of technology transfer by services multinationals. Paper uti...

  5. Technology transfer by multinationals

    OpenAIRE

    2003-01-01

    The paper analyses the issue of technology transfer by multinational corporations. The following questions are explored: (a) world market of technologies, the role of MNCs (b) Choice of the technology transfer mode, Dunning's OLI-theory as a factor of the choice of the mode of transfer (c) measurement and profitability of technology transfer (d) transfer of technology through partnerships, JVs, alliances and through M&As (e) aspects of technology transfer by services multinationals. Paper uti...

  6. A cross-disciplinary technology transfer for search-based evolutionary computing: from engineering design to software engineering design

    Science.gov (United States)

    Simons, C. L.; Parmee, I. C.

    2007-07-01

    Although object-oriented conceptual software design is difficult to learn and perform, computational tool support for the conceptual software designer is limited. In conceptual engineering design, however, computational tools exploiting interactive evolutionary computation (EC) have shown significant utility. This article investigates the cross-disciplinary technology transfer of search-based EC from engineering design to software engineering design in an attempt to provide support for the conceptual software designer. Firstly, genetic operators inspired by genetic algorithms (GAs) and evolutionary programming are evaluated for their effectiveness against a conceptual software design representation using structural cohesion as an objective fitness function. Building on this evaluation, a multi-objective GA inspired by a non-dominated Pareto sorting approach is investigated for an industrial-scale conceptual design problem. Results obtained reveal a mass of interesting and useful conceptual software design solution variants of equivalent optimality—a typical characteristic of successful multi-objective evolutionary search techniques employed in conceptual engineering design. The mass of software design solution variants produced suggests that transferring search-based technology across disciplines has significant potential to provide computationally intelligent tool support for the conceptual software designer.

  7. Integrated systems, design and technology 2010 knowledge transfer in new technologies

    CERN Document Server

    Fathi, Madjid

    2011-01-01

    Knowledge creation and technological experiences resulting from modern production life cycles are definitely the most Economical and important intellectual capitals in the current manufacturing endeavors. These are also the basis for enabling industrial competition through managing and identifying organizational and product related needs and opportunities; e. g. health care systems society needs clean environment, sustainable production life cycles needs flexible approachable design and engineering of materials whilst valuable materials are needed for renewable energies and the production of

  8. Technology Transfer Challenges: A Case Study of User-Centered Design in NASA's Systems Engineering Culture

    Science.gov (United States)

    Quick, Jason

    2009-01-01

    The Upper Stage (US) section of the National Aeronautics and Space Administration's (NASA) Ares I rocket will require internal access platforms for maintenance tasks performed by humans inside the vehicle. Tasks will occur during expensive critical path operations at Kennedy Space Center (KSC) including vehicle stacking and launch preparation activities. Platforms must be translated through a small human access hatch, installed in an enclosed worksite environment, support the weight of ground operators and be removed before flight - and their design must minimize additional vehicle mass at attachment points. This paper describes the application of a user-centered conceptual design process and the unique challenges encountered within NASA's systems engineering culture focused on requirements and "heritage hardware". The NASA design team at Marshall Space Flight Center (MSFC) initiated the user-centered design process by studying heritage internal access kits and proposing new design concepts during brainstorming sessions. Simultaneously, they partnered with the Technology Transfer/Innovative Partnerships Program to research inflatable structures and dynamic scaffolding solutions that could enable ground operator access. While this creative, technology-oriented exploration was encouraged by upper management, some design stakeholders consistently opposed ideas utilizing novel, untested equipment. Subsequent collaboration with an engineering consulting firm improved the technical credibility of several options, however, there was continued resistance from team members focused on meeting system requirements with pre-certified hardware. After a six-month idea-generating phase, an intensive six-week effort produced viable design concepts that justified additional vehicle mass while optimizing the human factors of platform installation and use. Although these selected final concepts closely resemble heritage internal access platforms, challenges from the application of the

  9. Technology transfer for adaptation

    Science.gov (United States)

    Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia

    2014-09-01

    Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.

  10. Technology Transfer and Technology Transfer Intermediaries

    Science.gov (United States)

    Bauer, Stephen M.; Flagg, Jennifer L.

    2010-01-01

    A standard and comprehensive model is needed to evaluate and compare technology transfer systems and the stakeholders within these systems. The principle systems considered include federal laboratories, U.S. universities, the rehabilitation engineering research centers (RERCs), and large small business innovation research programs. An earlier…

  11. Technology transfer 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  12. Technology transfer and learning

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.

    2002-01-01

    Despite the fact that international technology transfer has been widely studied its management still encounters many difficulties. To fully understand the issues that are relevant to the process of transferring production technology, it is necessary to determine the important factors that influence

  13. Considering Components, Types, and Degrees of Authenticity in Designing Technology to Support Transfer

    Science.gov (United States)

    Hardre, Patricia L.

    2013-01-01

    Authenticity is a key to using technology for instruction in ways that enhance learning and support learning transfer. Simply put, a representation is authentic when it shows learners clearly what a task, context, or experience will be like in real practice. More authentic representations help people learn and understand better. They support…

  14. Technology and technology transfer: some basic issues

    OpenAIRE

    Shamsavari, Ali; Adikibi, Owen; Taha, Yasser

    2002-01-01

    This paper addresses various issues relating to technology and transfer of technology such as technology and society, technology and science, channels and models of technology transfer, the role of multinational companies in transfer of technology, etc. The ultimate objective is to pose the question of relevance of some existing models and ideas like technological independence in an increasingly globalised world economy.

  15. Technology Transfer Issues and a New Technology Transfer Model

    Science.gov (United States)

    Choi, Hee Jun

    2009-01-01

    The following are major issues that should be considered for efficient and effective technology transfer: conceptions of technology, technological activity and transfer, communication channels, factors affecting transfer, and models of transfer. In particular, a well-developed model of technology transfer could be used as a framework for…

  16. Mississippi Technology Transfer Center

    Science.gov (United States)

    1987-01-01

    The Mississippi Technology Transfer Center at the John C. Stennis Space Center in Hancock County, Miss., was officially dedicated in 1987. The center is home to several state agencies as well as the Center For Higher Learning.

  17. Technology Transfer and Commercialization

    Science.gov (United States)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  18. Technology Transfer and Commercialization

    Science.gov (United States)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  19. Technology transfer with system analysis, design, decision making, and impact (Survey-2000) in acute care hospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    2001-10-01

    This paper provides the results of the Survey-2000 measuring technology transfer for management information systems in health care. The relationships with systems approaches, user involvement, usersatisfaction, and decision-making were measured and are presented. The survey also measured the levels Internet and Intranet presents in acute care hospitals, which will be discussed in future articles. The depth of the survey includes e-commerce for both business to business and customers. These results are compared, where appropriate, with results from survey 1997 and changes are discussed. This information will provide benchmarks for hospitals to plan their network technology position and to set goals. This is the first of three articles based upon the results of the Srvey-2000. Readers are referred to a prior article by the author that discusses the survey design and provides a tutorial on technology transfer in acute care hospitals.

  20. University Technology Transfer

    Directory of Open Access Journals (Sweden)

    Mike Cox

    2004-09-01

    Full Text Available This article describes the experiences and general observations of the author at Heriot-Watt University and concerns the transfer of university technology for the purposes of commercialisation. Full commercial exploitation of a university invention generally requires transferring that technology into the industrial arena, usually either by formation of a new company or licensing into an existing company. Commercialisation activities need to be carried out in unison with the prime activities of the university of research and teaching. Responsibility for commercialising university inventions generally rests with a specific group within the university, typically referred to as the technology transfer group. Each technology transfer should be considered individually and appropriate arrangements made for that particular invention. In general, this transfer process involves four stages: identification, evaluation, protection and exploitation. Considerations under these general headings are outlined from a university viewpoint. A phased approach is generally preferred where possible for the evaluation, protection and exploitation of an invention to balance risk with potential reward. Evaluation of the potential opportunity for a university invention involves essentially the same considerations as for an industrial invention. However, there are a range of commercial exploitation routes and potential deals so that only general guidelines can be given. Naturally, the final deal achieved is that which can be negotiated. The potential rewards for the university and inventor are both financial (via licensing income and equity realisation and non-financial.

  1. ICAM (Integrated Computer-Aided Manufacturing) Manufacturing Cost/Design Guide. Volume 7. Technology Transfer Summary.

    Science.gov (United States)

    1984-09-01

    advanced composite structures for production. Conduct material and manufacturing trade-off studies on ATF advanced design, NASA composite wing, and...255-7371. D-17 .* . . . . . . .. . .. .. . . . . . - . , o , . . - .’. TTD4502 60000 12 Sept 1984 CC tE % > LL 00 o0h K; Cr A .’ TTD450260000 12... coatings on the internal "Top-of-the-Line" Manu- observing the effect of the surfaces of hollowf~acturing Technology Success proposed change. Potential

  2. Heat transfer equipment design

    Science.gov (United States)

    Shah, R. K.; Subbarao, Eleswarapu Chinna; Mashelkar, R. A.

    A comprehensive presentation is made of state-of-the-art configurations and design methodologies for heat transfer devices applicable to industrial processes, automotive systems, air conditioning/refrigeration, cryogenics, and petrochemicals refining. Attention is given to topics in heat exchanger mechanical design, single-phase convection processes, thermal design, two-phase exchanger thermal design, heat-transfer augmentation, and rheological effects. Computerized analysis and design methodologies are presented for the range of heat transfer systems, as well as advanced methods for optimization and performance projection.

  3. What Is Technology Transfer? | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.

  4. What Is Technology Transfer? | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.

  5. Technology transfer 1995

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  6. Dual Space Technology Transfer

    Science.gov (United States)

    Kowbel, W.; Loutfy, R.

    2009-03-01

    Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.

  7. Managerial technology transfer

    CERN Document Server

    2012-01-01

    Organisations need to think globally, but act locally - with a full appreciation of the diversity of local cultures. Major global companies must recognise that policies need to be managed with the broad context of business strategy and integrated into the work culture with the support of all elements of human resources management. Most currently, companies are accommodating national cultural differences while preserving work culture principals that encourage people to effectively execute the company's strategic objectives. Even to the casual observer, it is apparent that culture- a society's programming of the mind- has both a pervasive and changing influence on each national business environment. Global managers must recognise the influence of culture and be prepared to either respond to it or change it. This book examines current research in the study of managerial technology transfer.

  8. Search Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  9. Available Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  10. Federal Technology Transfer Act (FTTA)

    Science.gov (United States)

    EPA's Federal Technology Transfer Act (FTTA) is a mechanism with which EPA can patent its inventions and license them to companies, through which innovative technologies can enter the marketplace to improve the environment and human health.

  11. Federal Technology Transfer Act Success Stories

    Science.gov (United States)

    Successful Federal Technology Transfer Act (FTTA) partnerships demonstrate the many advantages of technology transfer and collaboration. EPA and partner organizations create valuable and applicable technologies for the marketplace.

  12. Orbital Transfer Vehicle Oxygen Turbopump Technology. Final Report, Volume 1. Design, Fabrication, and Hydrostatic Bearing Testing

    Science.gov (United States)

    1990-12-01

    cc c 58 uju CD C:> ɘ CDC L.) C) 0 crc> 01 2Li L-1 c-.l0 I CD C.- 2.5,Detail Design, cont. assembly error . The most sensitive area for contact is the...exit ports sealed. All transducers sensed within their typi- cal error tolerance at the low pressures being used in the initial tests. Chilldown tests...exterior temp. at turbine TIPO OF (0.25,0) bearing IPmp bearing exit tenperature TPBEC OF PBEI Pmp bearing exit temperature TPBEC OF PBE2 SPump bearing

  13. SHARED TECHNOLOGY TRANSFER PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  14. Technology transfer — bridging space and society

    Science.gov (United States)

    Students of Technology Transfer Design Project Team (ISU Summer Session 1997)

    Strategies, policies and methods by which technologies can be cross-fertilized between the space and non-space sectors were examined by students of the design project "Technology Transfer — Bridging Space and Society". This project was undertaken by students attending the 1997 10th Anniversary Summer Session Program of the International Space University. General issues relating to transfer of technology were discussed including definitions and mechanisms (push, pull, interactive and pro-active). As well as looking at case studies and the impact of national policies on space agencies, the design project also sought to look at technology transfer on a country-by-country basis, selecting various countries for scrutiny and reporting on their technology transfer status. The project report shows how transfer of technology varies between nations and when analyzed with the case studies identifies the general strategies, policies and methods in use and how they can be improved. Finally, the report seeks to recommend certain issues to governments, space agencies and industrial organizations to facilitate the transfer of technology. These include the development of a generic metrics system and the implementation of better appropriate procedures and mechanisms for a positive diffusion process between space and non-space sectors.

  15. Technology Transfer: A Policy Model

    Science.gov (United States)

    1988-04-01

    34 Caveman Club-Without Nail." More serious scholars indicate that understand- ing how to start and maintain fires was the first tech- nology transfer of...others. From caveman clubs to hyper- velocity missiles, technology transfer has played a significant military role; it also has assisted imperialis- tic

  16. Risk Management in Biologics Technology Transfer.

    Science.gov (United States)

    Toso, Robert; Tsang, Jonathan; Xie, Jasmina; Hohwald, Stephen; Bain, David; Willison-Parry, Derek

    Technology transfer of biological products is a complex process that is important for product commercialization. To achieve a successful technology transfer, the risks that arise from changes throughout the project must be managed. Iterative risk analysis and mitigation tools can be used to both evaluate and reduce risk. The technology transfer stage gate model is used as an example tool to help manage risks derived from both designed process change and unplanned changes that arise due to unforeseen circumstances. The strategy of risk assessment for a change can be tailored to the type of change. In addition, a cross-functional team and centralized documentation helps maximize risk management efficiency to achieve a successful technology transfer. © PDA, Inc. 2016.

  17. Ethical Considerations in Technology Transfer.

    Science.gov (United States)

    Froehlich, Thomas J.

    1991-01-01

    Examines ethical considerations involved in the transfer of appropriate information technology to less developed countries. Approaches to technology are considered; two philosophical frameworks for studying ethical considerations are discussed, i.e., the Kantian approach and the utilitarian perspective by John Stuart Mill; and integration of the…

  18. Ethical Considerations in Technology Transfer.

    Science.gov (United States)

    Froehlich, Thomas J.

    1991-01-01

    Examines ethical considerations involved in the transfer of appropriate information technology to less developed countries. Approaches to technology are considered; two philosophical frameworks for studying ethical considerations are discussed, i.e., the Kantian approach and the utilitarian perspective by John Stuart Mill; and integration of the…

  19. Understanding University Technology Transfer

    Science.gov (United States)

    Association of American Universities, 2011

    2011-01-01

    Federal government agencies provide about $33 billion a year to universities to conduct scientific research. That continuing investment expands human knowledge and helps educate the next generation of science and technology leaders. New discoveries from university research also form the basis for many new products and processes that benefit the…

  20. Innovative technology transfer of nondestructive evaluation research

    Science.gov (United States)

    Brian Brashaw; Robert J. Ross; Xiping Wang

    2008-01-01

    Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...

  1. Software engineering technology transfer: Understanding the process

    Science.gov (United States)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  2. Macroeconomic level of technology transfer

    Directory of Open Access Journals (Sweden)

    Smirnova Nadezhda

    2016-04-01

    Full Text Available World practice of economic management has proved that the best indicator of competitiveness is achieved by that economic system, the economic units of which timely and adequately update the resource and technical base, thus achieving higher financial and economic indicators. Ensuring that sustainable development becomes possible due to the transfer of technological innovations, namely the diffusion from the developer to the customer on both commercial and free of charge basis. The article focuses on functioning of technology transfer at the macro level, namely the creation of its domestic models.

  3. Technology transfer and space science missions

    Science.gov (United States)

    Acuna, Mario

    1992-01-01

    Viewgraphs on technology transfer and space science missions are provided. Topics covered include: project scientist role within NASA; role of universities in technology transfer; role of government laboratories in research; and technology issues associated with science.

  4. Technology Transfer: A Contact Sport

    Science.gov (United States)

    Paynter, Nina P.

    1995-01-01

    Technology transfer is a dynamic process, involving dynamic people as the bridge between NASA Langley Research Center and the outside world. This bridge, for nonaerospace applications, is known as the Technology Applications Group. The introduction of new innovations and expertise where they are needed occurs through a 'push' and 'pull' process. A 'push' occurs when a new technology is first developed with high commercial potential and then a company is found to licence or further develop the technology. The 'pull' process occurs through problem statements. A company or group will submit a written statement of what they need and the shortcomings of commercially available technology. The Technology Transfer Team (T3) reviews these problem statements and decides where NASA LaRC can offer assistance. A researcher or group of researchers are then identified who can help solve the problem and they are put in contact with the company. Depending upon the situation in either method, a Space Act Agreement (SAA), or outline of the responsibilities for each party, is developed.

  5. NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners. With specialized teams, TTC guides the interactions of our partners from the point of discovery to patenting, from invention development to licensing. We play a key role in helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class researchers, facilities, and knowledge.

  6. TECHNOLOGY TRANSFER FOR CUCUMBER (Cucumis sativus ...

    African Journals Online (AJOL)

    Dell

    2011-11-07

    Nov 7, 2011 ... This technology transfer trials have shown the advantages and ... Key words: Cucumber production, protected agriculture tunnels, cost benefit ratio, technology transfer, ... Use of PA can increase production by more than five.

  7. EPA Reports to Congress on Technology Transfer

    Science.gov (United States)

    Agencies are required to report to the Congress annually on their technology transfer activities. These reports summarize technology transfer activities of the EPA’s federal laboratories, by fiscal year.

  8. Accelerating the transfer of improved production technologies ...

    African Journals Online (AJOL)

    Accelerating the transfer of improved production technologies: controlling African cassava mosaic ... African Crop Science Journal ... A national network of cassava workers (NANEC) was created to address the problem of technology transfer.

  9. Technology transfer within the telecare technology innovation system

    NARCIS (Netherlands)

    Vlies, R.D. van der; Felix, E.

    2013-01-01

    Telecare technology is not common yet, although it is perceived as promising. Most studies on telecare technology transfer present a case involving the use of a single methodology and approach during some steps of technology transfer. Technology transfer models cannot be sensibly constructed if they

  10. Designing Human Technologies

    DEFF Research Database (Denmark)

    Simonsen, Jesper

    and the design process, in ethical and society-related concerns, and in evaluating how designs fulfill needs and solve problems. Designing Human Technologies subscribes to a broad technology concept including information and communication, mobile, environmental/sustainable and energy technologies......, the Humanities, and Social Science. The initiative broadens the perspective of IS and recognize reflections on aesthetics, ethics, values, connections to politics, and strategies for enabling a better future as legitimate parts of the research agenda. Designing Human Technologies is a design-oriented Strategic...... a shared interdisciplinary research and educational collaboration. As a creative research initiative it focuses on change and innovative thinking. The innovativeness is a result of the strongly interdisciplinary perspective which is at the heart of Designing Human Technologies. Designing Human Technologies...

  11. Technological transfer to the education

    Directory of Open Access Journals (Sweden)

    Enrique Melamed-Varela

    2016-12-01

    Full Text Available One of the most efficient strategies related to generation of differentiation factors which contribute to stability and sustainability in time as well as the  momentum of technological development in different territories is represented by the growth in scientific, technological and innovative development based on the structure of economic systems. Education is considered a fundamental element because it is the essence in the formation and fortification of the capacities, skills and competencies in human capital. This is needed for the management of research projects, development and innovation that will contribute to technology transfer and the progress of scientific knowledge that is encouraged from the inside of the organizational structures of the national economic sectors One of the most influential and conceptual tendencies of economic thinking in the countries (Gomez, Ibagón& Forero, 2014 are represented by the theories based on endogenous development in Latin America.  In addition,  the scientific development of a nation brewing from a process of internal learning and strengthening of the technical and technological capabilities that support the processes of education and research as generators of knowledge (Amar &Diazgranados, 2006, this principle is supported by Mazzucato´s (2014 theory,  who considers states as  capable of generating a platform for enabling capabilities of resources for the scientific and technological development entrepreneurs ;fact that are continuously supported by education. Starting from this series of concepts, the following question arises: do different levels of modern educational institutions use technological access? It must be taken into account that the scientific and technological progress results of the research, development and innovation (RDI is not indifferent for educational organizations, an activity that is mostly awarded to the universities and technological development centers (Ortiz, 2012

  12. Geo energy research and development: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Traeger, R.K.

    1982-03-01

    Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

  13. Designing Human Technologies

    DEFF Research Database (Denmark)

    Simonsen, Jesper

    and the design process, in ethical and society-related concerns, and in evaluating how designs fulfill needs and solve problems. Designing Human Technologies subscribes to a broad technology concept including information and communication, mobile, environmental/sustainable and energy technologies......, the Humanities, and Social Science. The initiative broadens the perspective of IS and recognize reflections on aesthetics, ethics, values, connections to politics, and strategies for enabling a better future as legitimate parts of the research agenda. Designing Human Technologies is a design-oriented Strategic...... and technologies relating to performances and experiences, urban design, climate adaptation, etc. The research takes a process-oriented and participatory approach and involves interaction between different user interests and designs. It is based on empirical, typical case- and action research-oriented studies...

  14. Gas turbine heat transfer and cooling technology

    CERN Document Server

    Han, Je-Chin; Ekkad, Srinath

    2012-01-01

    FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat

  15. Conceptual and Empirical Themes regarding the Design of Technology Transfer Programs: A Review of Wood Utilization Research in the United States

    OpenAIRE

    Ellefson, Paul V.; Kilgore, Michael A.; Skog, Kenneth E.; Risbrudt, Christopher D.

    2011-01-01

    Transfer of technologies produced by research is critical to innovation within all organizations. The intent of this paper is to take stock of the conceptual underpinnings of technology transfer processes as they relate to wood utilization research and to identify conditions that promote the successful transfer of research results. Conceptually, research utilization can be viewed from multiple perspectives, including the haphazard diffusion of knowledge in response to vague and imprecise dema...

  16. Research, architectural design and knowledge transfer

    Directory of Open Access Journals (Sweden)

    Mario Losasso

    2014-10-01

    Full Text Available Dossier develops a reflection on the relationship between research, design and knowledge transfer, starting by the contributions that emerged in the conference in Rome on 19th of June on the theme “Experimenting design. Teaching and Scientific Research in Architecture Schools”. The design phase is seen as specialized, experimental and innovative activity. In this context design has a high study value, and represents a consistent commitment of civil as well as ethical, because of the important socio-economic consequences. Dossier contains interviews with Presidents of several Scientific Societies who animat- ed the conference. Today Universities and Scientific Societies may constitute relevant subjects for the promotion of design research, starting from the specific competencies expressed in several fields, ranging from the experimentation to the product, design, and process innovation, and to the technology and knowledge transfer.

  17. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

  18. Judging the international transfer of technology

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2000-01-01

    International transfer of technology is a widely discussed area in the scientific literature. Although many different factors are discussed in the literature that affect the transfer of technology, it is not clear how to judge the performance of companies involved in international technology

  19. Judging The International Transfer Of Technology

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.

    2000-01-01

    International transfer of technology is a widely discussed area in the scientific literature. Although many different factors are discussed in the literature that affect the transfer of technology, it is not clear how to judge the performance of companies involved in international technology transfe

  20. Ethics and technology design

    DEFF Research Database (Denmark)

    Albrechtslund, Anders

    This article offers a discussion of the connection between technology and values and, specifically, I take a closer look at ethically sound design. In order to bring the discussion into a concrete context, the theory of Value Sensitive Design (VSD) will be the focus point. To illustrate my argument...... concerning design ethics, the discussion involves a case study of an augmented window, designed by the VSD Research Lab, which has turned out to be a potentially surveillanceenabling technology. I call attention to a “positivist problem” that has to do with the connection between the design context...... of design ethics, is intended as a constructive criticism, which can hopefully contribute to the further development of design ethics....

  1. Ethics and technology design

    DEFF Research Database (Denmark)

    Albrechtslund, Anders

    2007-01-01

    This article offers a discussion of the connection between technology and values and, specifically, I take a closer look at ethically sound design. In order to bring the discussion into a concrete context, the theory of Value Sensitive Design (VSD) will be the focus point. To illustrate my argument...... concerning design ethics, the discussion involves a case study of an augmented window, designed by the VSD Research Lab, which has turned out to be a potentially surveillance-enabling technology. I call attention to a "positivist problem" that has to do with the connection between the design context...... of design ethics, is intended as a constructive criticism, which can hopefully contribute to the further development of design ethics....

  2. Ethics and technology design

    DEFF Research Database (Denmark)

    Albrechtslund, Anders

    This article offers a discussion of the connection between technology and values and, specifically, I take a closer look at ethically sound design. In order to bring the discussion into a concrete context, the theory of Value Sensitive Design (VSD) will be the focus point. To illustrate my argument...... concerning design ethics, the discussion involves a case study of an augmented window, designed by the VSD Research Lab, which has turned out to be a potentially surveillanceenabling technology. I call attention to a “positivist problem” that has to do with the connection between the design context...... of design ethics, is intended as a constructive criticism, which can hopefully contribute to the further development of design ethics....

  3. A case of technology transfer in Macedonia

    Directory of Open Access Journals (Sweden)

    Nattacia Dabescki

    2014-11-01

    Full Text Available As a process of transferring skills, knowledge, technologies, methods of manufacturing and facilities among organizations, the transfer of technology is instrumental for boosting the economy through creation of competitive products, new jobs and a better quality of life. The stagnant environment for technology transfers in Macedonia in the post-privatisation era is a result of a combination of factors. Among them is the outdated educational system that does not boost entrepreneurial spirit and innovation thinking. Main purpose of this paper is to examine the current status, conditions, anomalies and challenges for technology transfer in the Republic of Macedonia, as well as the potential for development and possibilities for improvement of the process. Through a lens of the technology transfer paradigm, this exploratory study will present a case in which the Foundation Business Start-up Centre in Macedonia, as a technology transfer agent provided links and cooperative platform for creation of new technologies and innovations within the local SME ecosystem. The focus will be on a couple of initiatives for technology development and transfer in a domestic context. Results from the process of implementation of these initiatives will be discussed, along with their stimulating impact on the environment for technology transfer.

  4. Technology Transfer/Commercialization Report 2002

    Science.gov (United States)

    2002-01-01

    Contents include the following: 1. Technology opportunities and successes in 2002: Hilbert-Huang transform. New sensors via sol-gel-filled fiber optics. Hierarchical segmentation software. 2. Activity in 2002: encouraging researcher involvment. 10th annual new technology reporting award program. Commercial technology development program. 3. Inventorying new technologies: Sensors and detectors. Environmental systems. Information systems. Guidance, navigation, and control. Thermal and cryogenics. Optics. Patenting Goddard technologies. Striking gold with NASA technology transfer.

  5. Technology Transfer/Commercialization Report 2002

    Science.gov (United States)

    2002-01-01

    Contents include the following: 1. Technology opportunities and successes in 2002: Hilbert-Huang transform. New sensors via sol-gel-filled fiber optics. Hierarchical segmentation software. 2. Activity in 2002: encouraging researcher involvment. 10th annual new technology reporting award program. Commercial technology development program. 3. Inventorying new technologies: Sensors and detectors. Environmental systems. Information systems. Guidance, navigation, and control. Thermal and cryogenics. Optics. Patenting Goddard technologies. Striking gold with NASA technology transfer.

  6. An integrated approach towards technology transfer

    NARCIS (Netherlands)

    Wal, L.F. van der; Eldering, C.J.J.; Putten, N.J. van

    2010-01-01

    In 2001 the European Space Agency (ESA), the Dutch Ministry of Economic Affairs and the Netherlands Organisation of applied scientific research TNO initiated the Dutch Technology Transfer Programme (DTTP). Since then, 'technology transfer' has been a relevant part of Dutch space policy. The DTTP aim

  7. An integrated approach towards technology transfer

    NARCIS (Netherlands)

    Wal, L.F. van der; Eldering, C.J.J.; Putten, N.J. van

    2010-01-01

    In 2001 the European Space Agency (ESA), the Dutch Ministry of Economic Affairs and the Netherlands Organisation of applied scientific research TNO initiated the Dutch Technology Transfer Programme (DTTP). Since then, 'technology transfer' has been a relevant part of Dutch space policy. The DTTP aim

  8. 48 CFR 970.2770 - Technology Transfer.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer....

  9. Technology Transfer/Commercialization Report

    Science.gov (United States)

    2002-01-01

    Contents include the following: (1) Who we are. (2) Technology opportunities and successes in 2002: Hilbert-Huang transform; new sensors via sol-gel-filled fiber optics; hierarchical segmentation software. (3) Activities in 2002: encouraging researcher involvement; inventorying new technologies; patenting Goddard technologies; promoting Goddard technologies; establishing new agreements;seeking and bestowing awards. (4) How to reach Goddard's: technology commercialization office.

  10. Technology Transfer/Commercialization Report

    Science.gov (United States)

    2002-01-01

    Contents include the following: (1) Who we are. (2) Technology opportunities and successes in 2002: Hilbert-Huang transform; new sensors via sol-gel-filled fiber optics; hierarchical segmentation software. (3) Activities in 2002: encouraging researcher involvement; inventorying new technologies; patenting Goddard technologies; promoting Goddard technologies; establishing new agreements;seeking and bestowing awards. (4) How to reach Goddard's: technology commercialization office.

  11. HPCC technology awareness program: Improved economic competitiveness through technology awareness, transfer and application. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    A need has been defined by Congress for the DOE National Laboratories to participate in various dual use and technology transfer programs. This requirement has spawned several technology transfer approaches at the DOE laboratories. These programs are designed to encourage large and small business to bring their problems and needs forward, and to allow the labs to transfer effective high performance computing technology to the commercial marketplace. This IG Technologies grant from the DOE was undertaken to address the issues and problems associated with technology transfer between the DOE National Laboratories and commercial industry. The key focus is to gain an understanding of how DOE and industry independently and collectively view the requirements and the missing elements that could allow DOE to facilitate HPCC technology transfer. At issue is HPCC Technology Transfer for the High Performance Computing industry and its relationship to the DOE National Laboratories. Several observations on this are addressed. The issue of a ``Technology Utilization Gap`` between the National Laboratories and Independent Software Vendors is discussed. This study addressed the HPCC Technology Transfer plans of all six DOE National Labs. Study team members briefed numerous industrial users of HPCC technology as to the feasibility of technology transfer for various applications. Significant findings of the effort are that the resistance to technology transfer is much higher than anticipated for both the National Labs and industry. Also, HPCC Technology Transfer is observed to be a large company`s dominion. Small businesses have a difficult time in addressing the requirements of technology transfer using Cooperative Research and Development Agreements (CRADA`s). Large businesses and the DOE National Labs however, often have requirements and objectives which are at cross purposes, making effective technology transfer difficult.

  12. 75 FR 57252 - Designated Transfer Date

    Science.gov (United States)

    2010-09-20

    ... PROTECTION Designated Transfer Date AGENCY: Bureau of Consumer Financial Protection. ACTION: Notice. SUMMARY... designates July 21, 2011, as the date for the transfer of functions to the Bureau of Consumer Financial Protection (``CFPB''). On this ``designated transfer date,'' certain authorities will transfer from...

  13. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  14. Marketing for Oak Ridge technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Prosser, G.A.

    1989-06-15

    Martin Marietta Energy Systems, Inc., which manages major research and production facilities in Oak Ridge, Tennessee for the Department of Energy, has implemented a systematic approach to marketing for technology transfer. Unique mechanisms have been created to address the need for market research and analysis, strategy formulation, and the execution of plans designed to engender the broadest commercial use of government-funded technologies. Establishment of formal ties with the University of Tennessee Graduate School of Business has resulted in an expanded role for marketing in support of the Oak Ridge program. The creation of graduate research positions has enabled MBA students to contribute to, and learn from, a program which is at the forefront of an important national initiative.

  15. Food irradiation: Technology transfer in Asia, practical experiences

    Science.gov (United States)

    Kunstadt, Peter; Eng, P.

    1993-10-01

    Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the succesful conclusion of the world's first complete food irradiation technology transfer project.

  16. [Technology transfer to the facility for production of medicines].

    Science.gov (United States)

    Beregovykh, V V; Spitskiĭ, O P

    2013-01-01

    Innovation development of pharmaceutical industry is close connected to knowledge transfer going to each subsequent life cycle phase of medicinal product. Formal regulation of technology and knowledge transfer is essential for achievement high quality during production of medicines designed during development phase. Conceptual tools, approaches and requirements are considered that are necessary for knowledge and technology transfer across all the life cycle phases of medicines. They are based on scientific knowledge of medicinal products and take into account both international and Russian regulations in the area of development, production and distribution of medicines. Importance of taking into consideration all aspects related to quality of medicines in all steps of technology transfer is shown. An approach is described for technology transfer organization for Russian pharmaceutical manufacturers based on international guides in this area.

  17. Technology Transfer brochure (Swedish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  18. Technology Transfer brochure (English version)

    CERN Multimedia

    Lefevre, C

    2007-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  19. Technology Transfer brochure (Polish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  20. Overcoming Barriers to the Transfer and Diffusion of Climate Technologies

    DEFF Research Database (Denmark)

    Nygaard, Ivan; Hansen, Ulrich Elmer

    This guidebook provides practical and operational guidance on how to assess and overcome barriersfacing the transfer and diffusion of technologies for climate change mitigation and adaptation.The guidebook is designed to support the analysis of specific technologies, rather than pursuing asectoral...... (e.g. transport) or technology group (e.g. renewable energy) approach.Given that there is no single solution to enhancing technology transfer and diffusion policies needbe tailored to country-specific context and interests. Therefore, the guidebook presents a flexibleapproach, identifying various...

  1. Heat and mass transfer in building services design

    CERN Document Server

    Moss, Keith

    1998-01-01

    Building design is increasingly geared towards low energy consumption. Understanding the fundamentals of heat transfer and the behaviour of air and water movements is more important than ever before. Heat and Mass Transfer in Building Services Design provides an essential underpinning knowledge for the technology subjects of space heating, water services, ventilation and air conditioning. This new text: *provides core understanding of heat transfer and fluid flow from a building services perspective *complements a range of courses in building services engineering *

  2. [Technology transfer of building materials by ECOMAT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report discusses the plan for technology transfer of building materials developed by ECOMAT to the commercial private sector. Some of the materials are briefly discussed like foams, fiber reinforcement, fly ash development, and polymer fillers.

  3. Technology transfers, foreign investment and productivity spillovers

    DEFF Research Database (Denmark)

    Newman, Carol; Rand, John; Talbot, Theodore Purdendu

    2015-01-01

    This paper explores the relationship between foreign direct investment (FDI) and the productivity of host country domestic firms. We rely on a specially designed survey of over 4000 manufacturing firms in Vietnam, and separate out productivity gains along the supply chain (obtained through direct...... transfers of knowledge/technology between linked firms) from productivity effects through indirect FDI spillovers. In addition to identifying indirect vertical productivity spillovers from FDI, our results show that there are productivity gains associated with direct linkages between foreign......-owned and domestic firms along the supply chain not captured by commonly used measures of spillovers. This includes evidence of productivity gains through forward linkages for domestic firms which receive inputs from foreign-owned firms....

  4. Venture Creation Programs: Bridging Entrepreneurship Education and Technology Transfer

    Science.gov (United States)

    Lackéus, Martin; Williams Middleton, Karen

    2015-01-01

    Purpose: The purpose of this paper is to explore how university-based entrepreneurship programs, incorporating real-life venture creation into educational design and delivery, can bridge the gap between entrepreneurship education and technology transfer within the university environment. Design/methodology/approach: Based on a literature review…

  5. Venture Creation Programs: Bridging Entrepreneurship Education and Technology Transfer

    Science.gov (United States)

    Lackéus, Martin; Williams Middleton, Karen

    2015-01-01

    Purpose: The purpose of this paper is to explore how university-based entrepreneurship programs, incorporating real-life venture creation into educational design and delivery, can bridge the gap between entrepreneurship education and technology transfer within the university environment. Design/methodology/approach: Based on a literature review…

  6. Complexity in Design-Driven Innovation: A Case Study of Knowledge Transfer Flow in Subsea Seismic Sensor Technology and Design Education

    Science.gov (United States)

    Pavel, Nenad; Berg, Arild

    2015-01-01

    To the extent previously claimed, concept exploration is not the key to product innovation. However, companies that are design-focused are twice as innovative as those that are not. To study design-driven innovation and its occurrence in design education, two case studies are conducted. The first is an example of design practice which includes…

  7. Join TTC! | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) offers a unique opportunity for training through the NCI TTC Fellowship program. TTC also has a unit dedicated to marketing these research opportunities and their underlying technologies to potential collaborators and licensees. | [google6f4cd5334ac394ab.html

  8. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2006-09-29

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

  9. Development of Technology Transfer Economic Growth Metrics

    Science.gov (United States)

    Mastrangelo, Christina M.

    1998-01-01

    The primary objective of this project is to determine the feasibility of producing technology transfer metrics that answer the question: Do NASA/MSFC technical assistance activities impact economic growth? The data for this project resides in a 7800-record database maintained by Tec-Masters, Incorporated. The technology assistance data results from survey responses from companies and individuals who have interacted with NASA via a Technology Transfer Agreement, or TTA. The goal of this project was to determine if the existing data could provide indications of increased wealth. This work demonstrates that there is evidence that companies that used NASA technology transfer have a higher job growth rate than the rest of the economy. It also shows that the jobs being supported are jobs in higher wage SIC codes, and this indicates improvements in personal wealth. Finally, this work suggests that with correct data, the wealth issue may be addressed.

  10. The Design and Implementation of Technology Transfer Center System Based on WEB%基于WEB的技术转移中心系统设计与实现

    Institute of Scientific and Technical Information of China (English)

    陈帅

    2015-01-01

    针对高校技术成果转移信息壁垒问题,设计开发淮阴工学院技术转移中心系统,该系统包含专利信息、人才信息、校企合作等信息资源,是开展共性技术开发和扩散,加快高校科技成果变动和有关技术转移的重要平台。该文对系统的设计思想和实现方法作了详细阐述。%In view that there are lots of information barriers among university technology transfer, a technology transfer center system of huaiyin institute of technology was designed and developed. The system contains patent information, talent informa-tion, cooperative enterprise information and some other information. The system is an important platform to expand common technology development and diffusion, and also to accelerate the change of scientific and technological achievements and the transfer of Technology. This paper describes in detail the design idea and implementation method of the system.

  11. Clean Cast Steel Technology - Machinability and Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    C. E. Bates; J. A. Griffin

    2000-05-01

    There were two main tasks in the Clean Cast Steel Technology - Machinability and Technology Transfer Project. These were (1) determine the processing facts that control the machinability of cast steel and (2) determine the ability of ladle stirring to homogenize ladle temperature, reduce the tap and pouring temperatures, and reduce casting scrap.

  12. Technology Transfer and Commercialization Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Michelle R. Blacker

    2008-12-01

    The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers

  13. NASA's southeast technology transfer alliance: A cooperative technology assistance initiative

    Science.gov (United States)

    Craft, Harry G.; Sheehan, William; Johnson, Anne

    1996-03-01

    Since 1958, NASA has been charged with actively assisting in the transfer of technologies derived from the United States space program into the industrial sector of the U.S. economy. This has historically been accomplished through technology transfer offices working independently at each NASA field center. NASA recently restructured the program to provide regional coordination, maximize efficiencies, eliminate redundancies, and capitalize on each center's fundamental technology strengths. The nation is divided into six NASA technology transfer geographical regions with each region containing one or more NASA field centers and a regional technology transfer center. The southeast region includes the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee. The NASA field centers in this region are: the Marshall Space Flight Center in Huntsville, Alabama; the Kennedy Space Center in Florida; and the Stennis Space Center in Bay St. Louis, Mississippi. The centers have teamed to focus primarily on regional industries and businesses, to provide a wide range of resources for U.S. industries, including access to unique government facilities, regional workshops, and technical problem solving. Hundreds of American businesses have benefited from this new regional initiative, as evidenced by reports of over 10,500 added or saved jobs and over 988 million worth of economic impacts as a result of their technology transfer activities.

  14. 76 FR 52670 - 2011 Technology Transfer Summit North America Conference

    Science.gov (United States)

    2011-08-23

    ... HUMAN SERVICES National Institutes of Health 2011 Technology Transfer Summit North America Conference...: The NIH Office of Technology Transfer extends invitations to attend the 2011 Technology Transfer... by the NIH Office of Technology Transfer, TTS Ltd. and regional host partners such as BIO Maryland...

  15. Technology transfer trends in Indian space programme

    Science.gov (United States)

    Sridhara Murthi, K. R.; Shoba, T. S.

    2010-10-01

    Indian space programme, whose objectives involve acceleration of economic and social development through applications of space technology, has been engaged in the development of state-of-the-art satellite systems, launch vehicles and equipment necessary for applications. Even during the early phase of evolution of this Programme, deliberate policies have been adopted by the national space agency, namely, Indian Space Research Organisation (ISRO), to promote spin-off benefit from the technologies developed for the use of space projects. Consistently adhering to this policy, ISRO has transferred over 280 technologies till date, spanning a wide spectrum of disciplines. This has resulted in a fruitful two-way cooperation between a number of SMEs and the ISRO. In order to make the technology transfer process effective, ISRO has adopted a variety of functional and organizational policies that included awareness building measures, licensee selection methods, innovative contract systems, diverse transfer processes, post licencing services and feedback mechanisms. Besides analyzing these policies and their evolution, the paper discusses various models adopted for technology transfer and their impact on assessment. It also touches upon relevant issues relating to creating interface between public funded R&D and the private commercial enterprises. It suggests few models in which international cooperation could be pursued in this field.

  16. QUBIC Technological Design Report

    CERN Document Server

    Aumont, J; Battaglia, P; Battistelli, E S; Baù, A; Bélier, B; Bennett, D; Bergé, L; Bernard, J Ph; Bersanelli, M; Bigot-Sazy, M A; Bleurvacq, N; Bordier, G; Brossard, J; Bunn, E F; Buzi, D; Buzzelli, A; Cammilleri, D; Cavaliere, F; Chanial, P; Chapron, C; Coppi, G; Coppolecchia, A; Couchot, F; D'Agostino, R; D'Alessandro, G; de Bernardis, P; De Gasperis, G; De Petris, M; Decourcelle, T; Del Torto, F; Dumoulin, L; Etchegoyen, A; Franceschet, C; Garcia, B; Gault, A; Gayer, D; Gervasi, M; Ghribi, A; Giard, M; Giraud-Héraud, Y; Gradziel, M; Grandsire, L; Hamilton, J Ch; Harari, D; Haynes, V; Henrot-Versillé, S; Holtzer, N; Kaplan, J; Korotkov, A; Lande, J; Loucatos, S; Lowitz, A; Lukovic, V; Maffei, B; Marnieros, S; Martino, J; Masi, S; Medina, M C; McCulloch, M; May, A; Melhuish, S; Mennella, A; Montier, L; Murphy, A; Néel, D; Ng, M W; O'Sullivan, C; Pajot, F; Passerini, A; Pelosi, A; Perbost, C; Perdereau, O; Piacentini, F; Piat, M; Piccirillo, L; Pisano, G; Prêle, D; Puddu, R; Rambaud, D; Rigaut, O; Romero, G E; Salatino, M; Schillaci, A; Scully, S; Stolpovskiy, M; Tartari, A; Timbie, P; Tristram, M; Tucker, G; Viganò, D; Vittori, N; Voisin, F; Watson, B; Zannoni, M; Zullo, A

    2016-01-01

    QUBIC is an instrument aiming at measuring the B mode polarisation anisotropies at medium scales angular scales (30-200 multipoles). The search for the primordial CMB B-mode polarization signal is challenging, because of many difficulties: smallness of the expected signal, instrumental systematics that could possibly induce polarization leakage from the large E signal into B, brighter than anticipated polarized foregrounds (dust) reducing to zero the initial hope of finding sky regions clean enough to have a direct primordial B-modes observation. The QUBIC instrument is designed to address all aspects of this challenge with a novel kind of instrument, a Bolometric Interferometer, combining the background-limited sensitivity of Transition-Edge-Sensors and the control of systematics allowed by the observation of interference fringe patterns, while operating at two frequencies to disentangle polarized foregrounds from primordial B mode polarization. Its characteristics are described in details in this Technologi...

  17. Technology Transfer Annual Report Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Wendy Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to

  18. Local R&D and Technology Transfers

    DEFF Research Database (Denmark)

    Aggarwal, Aradhna

    -2014. The propensity score matching (PSM) analysis reveals that the majority owned foreign companies spend less on R&D and more on technology transfers than their local counterparts. Overall, threshold equity holding and global conditions matter. A panel data regression analysis on matched sample confirms the findings...... and validates the PSM findings. A horizontal cluster analysis on 3-digit industry level data shows that foreign firms cluster in high technology industries....

  19. License Agreements | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Since the government cannot engage in the development, manufacture, and sale of products, the NCI Technology Transfer Center (TTC) makes its discoveries (and discoveries from nine other NIH Institutes) available to organizations that can assist in the further development and commercialization of these basic science discoveries, to convert them into public health benefits. | [google6f4cd5334ac394ab.html

  20. A New Strategic Approach to Technology Transfer

    Science.gov (United States)

    The principal goal of Federal research and development (R&D) is to solve problems for public benefit. Technology transfer, innovation, entrepreneurship: words and concepts that once belonged exclusively in the domain of private research enterprises, have quickly become part of everyday lexicon in Fe...

  1. About TTC | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners, and helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class facilities, resources, and discoveries. Contact us to learn more. | [google6f4cd5334ac394ab.html

  2. A framework for evaluation of technology transfer programs. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The objective of this volume is to describe a framework with which DOE can develop a program specific methodology to evaluate it`s technology transfer efforts. This approach could also be applied to an integrated private sector technology transfer organization. Several benefits will be realized from the application of this work. While the immediate effect will be to assist program managers in evaluating and improving program performance, the ultimate benefits will accrue to the producing industry, the states, and the nation in the form of sustained or increased domestic oil production. This benefit depends also, of course, on the effectiveness of the technology being transferred. The managers of the Technology Transfer program, and the larger federal oil and gas R&D programs, will be provided with a means to design and assess the effectiveness of program efforts as they are developed, tested and performed. The framework allows deficiencies in critical aspects of the program to be quickly identified, allowing for timely corrections and improvements. The actual process of developing the evaluation also gives the staff of the Oil R&D Program or Technology Transfer subprogram the opportunity to become oriented to the overall program goals. The structure and focus imposed by the evaluation paradigm will guide program staff in selecting activities which are consistent with achieving the goals of the overall R&D program.

  3. Climate change scenarios and technology transfer protocols

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, Socrates; Turton, Hal [Energy Economics Group, Paul Scherrer Institute, Villigen PSI, CH-5232 (Switzerland)

    2011-02-15

    We apply a specific version of MERGE-ETL, an integrated assessment model, to study global climate policies supported by Technology Transfer Protocols (TTPs). We model a specific formulation of such a TTP where donor countries finance via carbon tax revenues, the diffusion of carbon-free technologies in developing countries (DCs) and quantify its benefits. Industrialized countries profit from increased technology exports, global diffusion of advanced technology (leading to additional technology learning and cost reductions) and reduced climate damages through the likelihood of greater global participation in a new international agreement. DCs experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and expected secondary benefits of carbon abatement (such as reduced local and regional air pollution). The analysis identifies potential candidate technologies that could be supported under a TTP, and the impact of a TTP on economic development (including the flow of transfer subsidies) and global emissions. Although a TTP may encourage additional participation, such a proposal is only likely to be successful if an increased willingness to pay to avoid climate damages is accepted, first by the present and future generations of the industrialized world and later on, when sufficient economic growth is accumulated, by today's developing countries. (author)

  4. How Technology Influences Interior Design.

    Science.gov (United States)

    McDavitt, Tish

    1999-01-01

    Examines telecommunication technology's influences on interior school design and effective learning, and discusses how to implement this technology into the school. Building the infrastructure to support telecommunications in an educational setting and the importance of effective lighting are discussed. (GR)

  5. How Technology Influences Interior Design.

    Science.gov (United States)

    McDavitt, Tish

    1999-01-01

    Examines telecommunication technology's influences on interior school design and effective learning, and discusses how to implement this technology into the school. Building the infrastructure to support telecommunications in an educational setting and the importance of effective lighting are discussed. (GR)

  6. Communication and Cultural Change in University Technology Transfer

    Science.gov (United States)

    Wright, David

    2013-01-01

    Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…

  7. Communication and Cultural Change in University Technology Transfer

    Science.gov (United States)

    Wright, David

    2013-01-01

    Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…

  8. Conceptual Model for Transfer of Technology in a Shipyard

    OpenAIRE

    Firmansyah, Mohammad Rizal; Djafar, Wihdat

    2017-01-01

    Transfer of technology is an important program to be done by a shipyard if the respective shipyard is to maintain and increase its competitiveness. But sometimes, some aspects that need to be considered in a transfer of technology program are ignored. Before any transfer of technology program is to be conducted in any shipyard, identification of the required technology to be transferred and why the changes in shipyard technology are needed must be done. These identifications will lead to the ...

  9. Validation of InnoSPICE for technology transfer

    OpenAIRE

    Mitašiūnas, Antanas; Besson, Jeremy Daniel; Boronowsky, Michael; Woronowicz, Tanja

    2015-01-01

    Innovation and technology transfer consist mainly of process-oriented activities and can be described in process-oriented terms by an innovation and technology transfer process capability model such as InnoSPICE. To verify such a thesis, an extended validation of the InnoSPICE adequacy for different factual innovation and technology transfer activities is needed. The purpose of this paper is to validate the InnoSPICE model for technology transfer led by a technology developer based on capabil...

  10. Domestic Technology Transfer versus Technology Export Control - The Emerging National Policies and the Role of the Bench Engineer

    Science.gov (United States)

    1984-01-01

    Defense Technology Transfer Fundamentals 10 B. Governmental Stimuli to Technology Transfer 1. Information Programs 2. Information Analysis Centers 3...networking. II. Domestic Technology Transfer A. Non- Defense Technology Transfer Fundamentals The nation’s technological reservoir is filled by

  11. Tropical medicine: Telecommunications and technology transfer

    Science.gov (United States)

    Legters, Llewellyn J.

    1991-01-01

    The potential for global outbreaks of tropical infectious diseases, and our ability to identify and respond to such outbreaks is a major concern. Rapid, efficient telecommunications is viewed as part of the solution to this set of problems - the means to link a network of epidemiological field stations via satellite with U.S. academic institutions and government agencies, for purposes of research, training in tropical medicine, and observation of and response to epidemic emergencies. At a workshop, telecommunications and technology transfer were addressed and applications of telecommunications technology in long-distance consultation, teaching and disaster relief were demonstrated. Applications in teaching and consultation in tropical infectious diseases is discussed.

  12. The Design of Intelligent Cable Transfer Box Based on Wireless Internet Technology%基于无线通信技术的智能光交控制系统设计

    Institute of Scientific and Technical Information of China (English)

    罗红艳

    2014-01-01

    In the tele-communication era of full-service operations,cable transfer box as the mainconnecting wiring layer and the backbone layer is the key to physical fiber network. This paper uses the wireless communication technology and sensor technology and presents an intelligent light control system design,which implements the intelligent network management and monitoring of cable transfer.%在通信全业务运营时代,光缆交接箱作为配线层与主干层的主要连接设备,是光纤物理网络的关键环节。利用无线通信技术和传感器技术,提出一种智能光交控制系统设计方案,实现对光交的智能网管监控。

  13. Technology design of composite parts

    OpenAIRE

    K. Karjust; R. Küttner; M. Pohlak

    2007-01-01

    Purpose: Purpose of this paper is to optimize the design of the manufacturing technology process of large composite plastic products. One of the key problems is how to integrate computer-based product design and planning of the technology process.Design/methodology/approach: In the current study the Neural Network meta-modelling technique has been used. The optimization of the plastic sheet and its strengthening layer thickness has been performed using the surrogate design model. For modeling...

  14. MHD Technology Transfer, Integration and Review Committee

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

  15. Technology and knowledge transfer for development

    CSIR Research Space (South Africa)

    Chakwizira, J

    2008-01-01

    Full Text Available . An indicative list of recommendations to turnaround the knowledge and technology transfer condition of Africa into a more resounding success than currently existing is indicated. A brief conclusion that includes critical percepts and thoughts on the future... growth and development. "Knowledge Management caters to the critical issues of organizational adaption, survival and competence in face of increasingly discontinuous environmental change. Essentially, it embodies organizational processes that seek...

  16. Inclusive Design for Assistive Technology

    DEFF Research Database (Denmark)

    Herriott, Richard

    2014-01-01

    Objectives/focus/background: Design for Assistive Technology (AT) requires a special focus on user-requirements during product development. Inclusive Design theory and methodology thus has been relevant to AT design processes. Research in AT design has both drawn from and added to the ID knowledge...... the question of whether AT design processes fit neatly into a model created for a different context . Semi-structured interviews were carried out with eight/nine designers of assistive technology. This provided raw data concerning the processes used by the designers in a range of products including...

  17. Mission & Role | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The NCI TTC serves as the focal point for implementing the Federal Technology Transfer Act to utilize patents as incentive for commercial development of technologies and to establish research collaborations and licensing among academia, federal laboratories, non-profit organizations, and industry. The TTC supports technology development activities for the National Cancer Institute and nine other NIH Institutes and Centers. TTC staff negotiate co-development agreements and licenses with universities, non-profit organizations, and pharmaceutical and biotechnology companies to ensure compliance with Federal statutes, regulations and the policies of the National Institutes of Health. TTC also reviews employee invention reports and makes recommendations concerning filing of domestic and foreign patent applications. | [google6f4cd5334ac394ab.html

  18. New Ways in Technology Transfer from University Towards Industry.

    Science.gov (United States)

    van den Kroonenberg, H.H.

    1983-01-01

    Three approaches to technology transfer are described: passive, stimulative, and active. A condition for successful technology transfer to small- and medium-sized industry is the availability of "receivers" in the industries. Stimulating young engineers to start their own small company can affect technology transfer positively. (MSE)

  19. Tech transfer outreach. An informal proceedings of the first technology transfer/communications conference

    Energy Technology Data Exchange (ETDEWEB)

    Liebetrau, S. [ed.

    1992-10-01

    This document provides an informal summary of the conference workshop sessions. ``Tech Transfer Outreach!`` was originally designed as an opportunity for national laboratory communications and technology transfer staff to become better acquainted and to discuss matters of mutual interest. When DOE field office personnel asked if they could attend, and then when one of our keynote speakers became a participant in the discussions, the actual event grew in importance. The conference participants--the laboratories and DOE representatives from across the nation--worked to brainstorm ideas. Their objective: identify ways to cooperate for effective (and cost-effective) technology transfer outreach. Thus, this proceedings is truly a product of ten national laboratories and DOE, working together. It candidly presents the discussion of issues and the ideas generated by each working group. The issues and recommendations are a consensus of their views.

  20. TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-01-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during

  1. Contemporary design and manufacturing technology

    CERN Document Server

    Wang, Taiyong; Zuo, Dunwen

    2013-01-01

    The special topic volume communicates the latest progress and research results of new theory, new technology, method, equipment and so on in Engineering Technology, and to grasp the updated technological and research trends in internationally. The major topics covered by the special volumes include Advanced Materials and Manufacturing Technologies, Control, Automation and Detection Systems, Advanced Design Technology, Optimization and Modeling. In 80 invited and peer-reviewed papers, mechanical and other engineers describe their recent and current research and results in advanced materials and

  2. Progress report on technology transfer at CERN since December 1999

    CERN Document Server

    2000-01-01

    In March 1999 the Finance Committee endorsed the CERN Technology Transfer paper FC/4126 entitled "Technology Transfer Policy at CERN". In June 1999 Council took note of the plan to create a new Division, the Education and Technology Transfer Division, one of its essential aims being to enhance the Technology Transfer activities at CERN. A verbal activity report on Technology Transfer was given at the December 1999 meeting of the Finance Committee. Finally, in January 2000, ETT Division came into existence. This document contains a description of the current organisation of TT activities together with some relevant results and highlights for the year 2000.

  3. Participatory Design & Health Information Technology

    DEFF Research Database (Denmark)

    Health Information Technology (HIT) continues to increase in importance as a component of healthcare provision, but designing HIT is complex. The creation of cooperative learning processes for future HIT users is not a simple task. The importance of engaging end users such as health professionals......, in collaboration with a wide range of people, a broad repertoire of methods and techniques to apply PD within multiple domains has been established. This book, Participatory Design & Health Information Technology, presents the contributions of researchers from 5 countries, who share their experience and insights......, patients and relatives in the design process is widely acknowledged, and Participatory Design (PD) is the primary discipline for directly involving people in the technological design process. Exploring the application of PD in HIT is crucial to all those involved in engaging end users in HIT design and...

  4. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the

  5. Exploring student engagement and transfer in technology mediated environments

    Science.gov (United States)

    Sinha, Suparna

    Exploring student engagement and transfer of mechanistic reasoning skills in computer-supported learning environments by SUPARNA SINHA Dissertation Director: Cindy Hmelo-Silver Computer-supported environments designed on learning science principles aim to provide a rich learning experience for students. Students are given opportunities to collaborate, model their understanding, have access to real-time data and engage in hypotheses testing to solve authentic problems. That is to say that affordances of technologies make it possible for students to engage in mechanistic reasoning, a complex inquiry-oriented practice (Machamer, Craver & Darden, 2000; Russ et al., 2008). However, we have limited understanding of the quality of engagement fostered in these contexts. This calls for close observations of the activity systems that the students participate in. The situative perspective focuses on analyzing interactions of individuals (students) with other people, tools and materials within activity systems (Greeno, 2006). Importantly, as the central goal of education is to provide learning experiences that are useful beyond the specific conditions of initial learning, analysis of such interactions sheds light on key experiences that lead to transfer of mechanistic reasoning skills. This is made possible, as computer-supported contexts are activity systems that bring forth trends in students' engagement. From a curriculum design perspective, observing student engagement can be a useful tool to identify features of interactions (with technological tools, peers, curriculum materials) that lead to successful learning. Therefore, the purpose of the present studies is to explore the extent to which technological affordances influence students' engagement and subsequent transfer of reasoning skills. Specifically, the goal of this research is to address the following research questions: How do learners generalize understanding of mechanistic reasoning in computer

  6. On Design Technology.

    Science.gov (United States)

    Pace, Glennellen; Larson, Connie

    1992-01-01

    Discusses a child-centered science project in which first-grade students integrate design drawing, construction, mathematics, and language arts to solve engineering problems related to constructing robots. Describes the construction of the robots, follow-up activities, and educational research that supports this approach to teaching. (10…

  7. Designing Real Time Assistive Technologies

    DEFF Research Database (Denmark)

    Sonne, Tobias; Obel, Carsten; Grønbæk, Kaj

    2015-01-01

    design criteria in relation to three core components (sensing, recognizing, and assisting) for designing real time assistive technologies for children with ADHD. Based on these design criteria, we designed the Child Activity Sensing and Training Tool (CASTT), a real time assistive prototype that captures...... activities and assists the child in maintaining attention. From a preliminary evaluation of CASTT with 20 children in several schools, we and found that: 1) it is possible to create a wearable sensor system for children with ADHD that monitors physical and physiological activities in real time; and that 2......) real time assistive technologies have potential to assist children with ADHD in regaining attention in critical school situations....

  8. Designing Real Time Assistive Technologies

    DEFF Research Database (Denmark)

    Sonne, Tobias; Obel, Carsten; Grønbæk, Kaj

    design criteria in relation to three core components (sensing, recognizing, and assisting) for designing real time assistive technologies for children with ADHD. Based on these design criteria, we designed the Child Activity Sensing and Training Tool (CASTT), a real time assistive prototype that captures...... activities and assists the child in maintaining attention. From a preliminary evaluation of CASTT with 20 children in several schools, we and found that: 1) it is possible to create a wearable sensor system for children with ADHD that monitors physical and physiological activities in real time; and that 2......) real time assistive technologies have potential to assist children with ADHD in regaining attention in critical school situations....

  9. A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1993-09-01

    This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

  10. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  11. Accelerated technology transfer: the UK quantum initiative

    Science.gov (United States)

    Bennett, Simon D.

    2016-10-01

    A new generation of quantum technology based systems, exploiting effects such as superposition and entanglement, will enable widespread, highly disruptive applications which are expected to be of great economic significance. However, the technology is only just emerging from the physics laboratory and generally remains at low TRLs. The question is: where, and when, will this impact be first manifest? The UK, with substantial Government backing, has embarked on an ambitious national program to accelerate the process of technology transfer with the objective of seizing a significant and sustainable share of the future economic benefit for the UK. Many challenges and uncertainties remain but the combined and co-ordinated efforts of Government, Industry and Academia are making great progress. The level of collaboration is unusually high and the goal of embedding a "QT Ecosystem" in the UK looks to be attainable. This paper describes the UK national programme, its key players, and their respective roles. It will illustrate some of the likely first commercial applications and provide a status update. Some of the challenges that might prevent realisation of the goal will be highlighted.

  12. A Study of the Factors Associated with Successful Technology Transfer and their Applicability to Air Force Technology Transfers.

    Science.gov (United States)

    1995-09-01

    relay race, where one runner passes the baton to the next. Richard Dorf describes in "Models for Technology Transfer From Universities and Research...Meeting. 9. Dorf , Richard C. "Models for Technology Transfer From Universities and Research Laboratories," Technology Management Publication TM1.1988...both located at Wright- Patterson Air Force Base, Ohio. Namely, Tim Sharp, Chief, Technology Transfer Division and my faculty advisor, Major Richard

  13. A planning framework for transferring building energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  14. OCT Technology Transfer and the OCT Market

    Science.gov (United States)

    Swanson, Eric A.

    The field of optical coherence tomography (OCT) has blossomed dramatically since the first studies by various researchers around the world began in the late 1980s and early 1990s. Since then cumulatively, there have been dozens of companies created, over a hundred research groups working on or with OCT, over a thousand OCT patents issued, over 10,000 research articles published, tens of millions of patients scanned with OCT, hundreds of millions of venture capital and corporate R&D dollars invested, hundreds of millions of dollars in company acquisitions, and over a billion of dollars of OCT system revenue. This chapter will describe some of the history and factors involved in OCT technology transfer and commercialization, give a snapshot of the current OCT market, and speculate on some future OCT issues.

  15. Technology transfer at NASA - A librarian's view

    Science.gov (United States)

    Buchan, Ronald L.

    1991-01-01

    The NASA programs, publications, and services promoting the transfer and utilization of aerospace technology developed by and for NASA are briefly surveyed. Topics addressed include the corporate sources of NASA technical information and its interest for corporate users of information services; the IAA and STAR abstract journals; NASA/RECON, NTIS, and the AIAA Aerospace Database; the RECON Space Commercialization file; the Computer Software Management and Information Center file; company information in the RECON database; and services to small businesses. Also discussed are the NASA publications Tech Briefs and Spinoff, the Industrial Applications Centers, NASA continuing bibliographies on management and patent abstracts (indexed using the NASA Thesaurus), the Index to NASA News Releases and Speeches, and the Aerospace Research Information Network (ARIN).

  16. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the

  17. Technology transfer of brain-computer interfaces as assistive technology: barriers and opportunities.

    Science.gov (United States)

    Nijboer, F

    2015-02-01

    This paper provides an analysis of perspectives from different stakeholders on the state-of-the-art of BCI. Three barriers for technology transfer of BCIs as access technologies are identified. First, BCIs are developed with a narrow focus on creating a reliable technology, while a broader focus on creating a usable technology is needed. Second, the potential target group, which could benefit from BCIs as access technologies is expected to be very small. Development costs are therefore high, while reimbursements are expected to be low, which challenges the commercial viability. Third, potential target users should be much more included in the design process of BCIs to ensure that the end-products meet technical, ethical, legal and social requirements. These three issues need to be urgently addressed so that target users may benefit from this promising technology.

  18. Technology design of composite parts

    Directory of Open Access Journals (Sweden)

    K. Karjust

    2007-06-01

    Full Text Available Purpose: Purpose of this paper is to optimize the design of the manufacturing technology process of large composite plastic products. One of the key problems is how to integrate computer-based product design and planning of the technology process.Design/methodology/approach: In the current study the Neural Network meta-modelling technique has been used. The optimization of the plastic sheet and its strengthening layer thickness has been performed using the surrogate design model. For modeling and structural analysis of derivative products CAE (ANSYS and CAD (Unigraphics systems are used. The Finite Element Analysis simulation was performed with optimal thickness values to verify the prediction accuracy of a surrogate model.Findings: The optimization model is proposed to control and analyze the calculated technology planning route, the optimal vacuum forming processes, the technology of post-forming operations, strengthening and assembling operations. The design of the new products is tightly integrated with manufacturing aspects. The product family of the large composite plastic products together with the derivate products and their production technologies is designed using proposed methodology. The optimization of the plastic sheet and its strengthening layer thickness has been performed.Practical implications: The most of the methods described in this study are now under development and industrial testing. Development of manufacturing (operation plans for a product family is of great practical importance with many significant cost implications. In design of derivative products for the product family, the nonlinear optimization is used and the detailed description of the product is established. The proposed approach is exemplified by the development of a family of products in Wellspa Inc.Originality/value: Value of this paper is that developed optimization model controls and analyzes the calculated technology planning route.

  19. 76 FR 71562 - Emergint Technologies, Inc.; Transfer of Data

    Science.gov (United States)

    2011-11-18

    ... AGENCY Emergint Technologies, Inc.; Transfer of Data AGENCY: Environmental Protection Agency (EPA... claimed as Confidential Business Information (CBI) by the submitter, will be transferred to Emergint Technologies, Inc. in accordance with 40 CFR 2.307(h)(3) and 2.308(i)(2). Emergint Technologies, Inc. has...

  20. Technology transfer of brain-computer interfaces as assistive technology: barriers and opportunities

    National Research Council Canada - National Science Library

    Nijboer, F

    2015-01-01

    .... Three barriers for technology transfer of BCIs as access technologies are identified. First, BCIs are developed with a narrow focus on creating a reliable technology, while a broader focus on creating a usable technology is needed...

  1. Department of Defense Laboratories: Finding a Future in Technology Transfer

    Science.gov (United States)

    1993-04-01

    investment. There is no mention of DoD even trying. This, then, presents a problem for Defense technology transfer management. The President expects both...effort, but nonetheless felt unable to express their effort quantitatively. The potential size and demand for Defense technology transfer calls for some... Defense technology transfer is taking place, it is doing so on the enthusiasm and drive of a few key individuals. Political demand and legislation

  2. Geo energy research and development: technology transfer update

    Energy Technology Data Exchange (ETDEWEB)

    Traeger, R.K.; Dugan, V.L.

    1983-01-01

    Sandia Geo Energy Programs in geothermal, coal, oil and gas, and synfuel technologies have been effective in transferring research concepts to applications in private industry. This report updates the previous summary (SAND82-0211, March 1982) to include recent technology transfers and to reflect recent changes in philosophy on technology transfer. Over 40 items transferred to industry have been identified in the areas of Hardware, Risk Removal and Understanding. Successful transfer is due largely to personal interactions between Sandia engineers and the technical staffs of private industry.

  3. TECHNOLOGY OF EDUCATIONAL EVENTS DESIGNING

    Directory of Open Access Journals (Sweden)

    N. V. Volkova

    2017-01-01

    Full Text Available The aim of the article is to prove and disclose the essence of the author’s technology of educational events designing.Methodology and methods of research. Methodological basis of work is humanitarian approach. The method of pedagogical modeling was used for the model development of educational events influence on pedagogical activity formation. The content analysis of texts descriptions, case-study method, expert estimations of event projects were applied as the main methods of efficiency confirmation of the technology of educational events design.Results and scientific novelty. The characteristics of an educational event are emphasized by means of an empirical way: opening (what a person opens for himself; generation (a result of a personal action; and participation in creation of something "new" (new communications, relations and experience. The structure of technology of educational events design including work with concepts (an educational event, substantial and procedural components is presented. The technology of educational events designing is considered as the process of the well-grounded choice of designing technologies, mutual activity, pedagogical communication, components of educational activity: contents, methods, means, and organizational forms depending on educational aims due to age-specific peculiarities of participants of the educational event. The main conditions providing successful use of the technology are the involvement into joint cognitive activity of all its participants and importance of the events for each of them that qualitatively change the nature of a cognitive process and generate real transformations of the reality.Practical significance. The author’s experience in teaching testifies to introduction of the module «Technology of Design of Educational Events» into the basic educational subject-module «Design Competence of the Teacher» (degree program «Pedagogical Education», considering this module as

  4. Trade, Foreign Direct Investment, and International Technology Transfer: A Survey

    National Research Council Canada - National Science Library

    Kamal Saggi

    2002-01-01

    ...? Using these questions as motivation, this article surveys the recent trade literature on international technology transfer, paying particular attention to the role of foreign direct investment...

  5. Dissemination of CERN's Technology Transfer: Added Value from Regional Transfer Agents

    Science.gov (United States)

    Hofer, Franz

    2005-01-01

    Technologies developed at CERN, the European Organization for Nuclear Research, are disseminated via a network of external technology transfer officers. Each of CERN's 20 member states has appointed at least one technology transfer officer to help establish links with CERN. This network has been in place since 2001 and early experiences indicate…

  6. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Schatzinger, Viola [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Chapman, Kathy [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Lovendahl, Kristi [Petroleum Tech. Transfer Council, Tulsa, OK (United States)

    2014-09-30

    The Petroleum Technology Transfer Council (PTTC) is a unique not-for-profit network that focuses on transferring Exploration and Production (E&P) technology to the domestic oil and natural gas producing industry. PTTC connects producers, technology providers and innovators, academia, research and development (R&D) consortiums and governments. Local affordable workshops delivered by Regional Lead Organizations (RLOs), which are typically a university or geological survey, are a primary tool. PTTC also maintains a website network, issues a national newsletter, provides a column in a major trade publication, and exhibits at major industry events. It also encourages industry to ask technology-related questions, striving to find relevant answers that will save questioners significant time. Working since late 1993, the PTTC network has a proven track record of providing industry with technology insights they can apply. Volunteers at the regional and national level provide key guidance regarding where to focus technical effort and help connect PTTC with industry. At historical funding levels, PTTC had been able to hold well more than 100 workshops per year, drawing 6,000+ attendees. As funding decreased in the early 2000s, the level of activity decreased and PTTC sought a merger with the American Association of Petroleum Geologists (AAPG), becoming an AAPG-managed organization at the start of FY08. This relationship with AAPG was terminated by mutual consent in May 2011 and PTTC once again operates independently. Chris Hall, California continued to serve as Chairman of the Board of Directors until December 2013. At the time PTTC reorganized into a RLO led organization with Mary Carr and Jeremy Viscomi as co-Executive Directors. Jerry Anderson became the Chairman of the PTTC Board of Directors and Chris Hall continues to serve on the Board. Workshop activity stabilized at 55-65 workshops per year averaging 3,100 attendees. FY14 represented the fifth year in a multi

  7. Technology transfer package on seismic base isolation - Volume III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume III contains supporting materials not included in Volumes I and II.

  8. Technology transfers, foreign investment and productivity spillovers: evidence from Vietnam

    DEFF Research Database (Denmark)

    Newman, Carol; Rand, John; Talbot, Theodore Purdendu

    This paper provides new evidence on the relationship between foreign direct investment (FDI) and the productivity of domestic firms. Using a specially designed survey on a sample of over 7,500 manufacturing firms in Vietnam we uncover some of the mechanisms that explain productivity spillovers from....... Productivity externalities from upstream sectors are associated with joint venture foreign investors while downstream sectors experience direct technology transfers from upstream wholly foreign owned investors. Spillovers from FDI through backward linkages are also detected but only when competition from...

  9. Auto-disable syringes for immunization: issues in technology transfer.

    Science.gov (United States)

    Lloyd, J S; Milstien, J B

    1999-01-01

    WHO and its partners recommend the use of auto-disable syringes, "bundled" with the supply of vaccines when donor dollars are used, in all mass immunization campaigns, and also strongly advocate their use in routine immunization programmes. Because of the relatively high price of auto-disable syringes, WHO's Technical Network for Logistics in Health recommends that activities be initiated to encourage the transfer of production technology for these syringes as a means of promoting their use and enhancing access to the technology. The present article examines factors influencing technology transfer, including feasibility, corporate interest, cost, quality assurance, intellectual property considerations, and probable time frames for implementation. Technology transfer activities are likely to be complex and difficult, and may not result in lower prices for syringes. Guidelines are offered on technology transfer initiatives for auto-disable syringes to ensure the quality of the product, the reliability of the supply, and the feasibility of the technology transfer activity itself.

  10. Security technologies and protocols for Asynchronous Transfer Mode networks

    Energy Technology Data Exchange (ETDEWEB)

    Tarman, T.D.

    1996-06-01

    Asynchronous Transfer Mode (ATM) is a new data communications technology that promises to integrate voice, video, and data traffic into a common network infrastructure. In order to fully utilize ATM`s ability to transfer real-time data at high rates, applications will start to access the ATM layer directly. As a result of this trend, security mechanisms at the ATM layer will be required. A number of research programs are currently in progress which seek to better understand the unique issues associated with ATM security. This paper describes some of these issues, and the approaches taken by various organizations in the design of ATM layer security mechanisms. Efforts within the ATM Forum to address the user communities need for ATM security are also described.

  11. How technology transfer issues are managed

    Energy Technology Data Exchange (ETDEWEB)

    Sink, C.H. [Dept. of Energy, Washington, DC (United States); Easley, K.R. [Waste Policy Inst. (United States)

    1991-12-31

    In 1989, Secretary of Energy James Watkins made a commitment to accelerate DOE compliance with all applicable laws and standards aimed at protecting human health and the environment. At a minimum, this pledge requires the remediation of the 1989 inventory of chemical, radioactive, and mixed wastes at DOE production sites by 2019. The 1989 Complex inventory consisted of more than 3,700 sites, encompassing more than 26,000 acres contaminated with radioactive, hazardous, and mixed wastes. In addition, over 500 surplus sites are awaiting decontamination and decommissioning (D and D), and approximately 5,000 peripheral properties have contaminated soils (e.g., uranium tailings). Moreover, these problems exist at both inactive sites, where the primary focus is on environmental restoration, and at active sites, where the major emphasis is on improved waste management techniques. Although some of DOE`s problems are considered unique due to radioactivity, most forms of contamination resident in the Complex are not; rather, contaminants such as waste chemicals (e.g., inorganics), organics (e.g., fuels and solvents), halogenated organics (e.g., PCBs) and heavy metals commonly result in conventional industrial processes. Although certain other forms of contamination are more unique to DOE operations (e.g., radioactive materials, explosives, and pyrophorics), they are not exclusive to DOE. As DOE develops innovative solutions to these and related waste problems, it is imperative that technology systems and lessons learned be transferred from DOE sites and its R and D laboratories to private industry to maximize the nation`s return on environmental management technology investments.

  12. E-Beam—a new transfer system for isolator technology

    Science.gov (United States)

    Sadat, Theo; Huber, Thomas

    2002-03-01

    In every aseptic filling application, the sterile transfer of goods into the aseptic area is a challenge, and there are many different ways to do it. With isolator technology a higher sterility assurance level (SAL) is achieved. This SAL is only as good as the weakest segment in the chain of manufacturing. The transfer of goods into and out of the isolator is one of these critical segments. Today different techniques, some already well established, others still very new, are available on the market like: dry heat tunnel, autoclave, pulsed light, rapid transfer systems (RTP), H 2O 2 tunnel, UV light, etc. all these systems are either not applicable for continuous transfer, only good for heat-compatible materials like glass, or do not guarantee a 6 log spore reduction. E-Beam opens new perspectives in this field. With E-beam technology it is possible to transfer heat-sensitive (plastic), pre-sterilised materials at high speed, continuously into an aseptic area. E-Beam unifies three different technologies, that result in a very efficient and high-speed decontamination machine designed for the pharmaceutical industry. First, there is the electron beam that decontaminates the goods and an accurate shielding that protects the surrounding from this beam. Second, there is the conveyor system that guarantees the output and the correct exposure time underneath the beam. And third, there is the isolator interface to provide correct differential pressure and clean air inside the tunnel as well as the decontamination of the tunnel with H 2O 2 prior to production. The E-beam is a low-energy electron beam, capable of decontaminating any kind of surface. It penetrates only a few micrometers into the material and therefore does not deform the packaging media. Currently, machines are being built to transfer pre-sterilised syringes, packed in plastic tubs with a Tyvek cover into an aseptic filling isolator with the following data: decontamination efficiency of 10 6 (6 log spore

  13. OPTIMIZING OUTCOME IN THE UNIVERSITY-INDUSTRY TECHNOLOGY TRANSFER PROJECTS

    Directory of Open Access Journals (Sweden)

    Hamed ALAVI

    2016-04-01

    Full Text Available Transferring inventions of academic scientists to private enterprises for the purpose of commercialization is long known as University-Industry (firm Technology Transfer While the importance of this phenomenon is simultaneously raising in public and private sector, only a part of patented academic inventions succeed in passing the process of commercialization. Despite the fact that formal Technology Transfer process and licencing of patented innovations to third party is the main legal tool for safeguarding rights of academic inventors in commercialization of their inventions, it is not sufficient for transmitting tacit knowledge which is necessary in exploitation of transferred technology. Existence of reciprocal and complementary relations between formal and informal technology transfer process has resulted in formation of different models for university-industry organizational collaboration or even integration where licensee firms keep contact with academic inventors after gaining legal right for commercialization of their patented invention. Current paper argues that despite necessity for patents to legally pass the right of commercialization of an invention, they are not sufficient for complete knowledge transmission in the process of technology transfer. Lack of efficiency of formal mechanism to end the Technology Transfer loop makes an opportunity to create innovative interpersonal and organizational connections among patentee and licensee company. With emphasize on need for further elaboration of informal mechanisms as critical and underappreciated aspect of technology transfer process, article will try to answer the questions of how to optimize knowledge transmission process in the framework of University-Industry Technology Transfer Projects? What is the theoretical basis for university-industry technology transfer process? What are organization collaborative models which can enhance overall performance by improving transmission of

  14. Introduction to the workshop on technology transfer in software engineering

    NARCIS (Netherlands)

    Harrison, Warren; Wieringa, Roelf J.

    The goal of the Workshop on Technology Transfer in Software Engineering is to increase our understanding of technology transfer in software engineering, and to learn from successful case studies. We wanted to bring researchers and practitioners together to create an inventory of problems in software

  15. A southern region conference on technology transfer and extension

    Science.gov (United States)

    Sarah F. Ashton; William G. Hubbard; H. Michael Rauscher

    2009-01-01

    Forest landowners and managers have different education and technology transfer needs and preferences. To be effective it is important to use a multi-faceted science delivery/technology transfer program to reach them. Multi-faceted science delivery programs can provide similar content over a wide range of mechanisms including printed publications, face-to-face...

  16. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact

    Science.gov (United States)

    Fraser, John

    2010-01-01

    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  17. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact

    Science.gov (United States)

    Fraser, John

    2010-01-01

    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  18. A model technology transfer program for independent operators

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1996-08-01

    In August 1992, the Energy Research Center (ERC) at the University of Kansas was awarded a contract by the US Department of Energy (DOE) to develop a technology transfer regional model. This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program.

  19. Technology transfer? The rise of China and India in green technology sectors

    DEFF Research Database (Denmark)

    Lema, Rasmus; Lema, Adrian

    2012-01-01

    International technology transfer is central to the debate about how to curb the carbon emissions from rapid economic growth in China and India. But given China and India's great progress in building innovation capabilities and green industries, how relevant is technology transfer...... transfer in these sectors in China and India. We argue that the emphasis should shift from transfer of mitigation technology to international collaboration and local innovation...

  20. Toward equality of biodiversity knowledge through technology transfer.

    Science.gov (United States)

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a

  1. Impact on technology transfer innovation processes: Ukrainian and foreign experience

    Directory of Open Access Journals (Sweden)

    Halyna Nahornyak

    2013-11-01

    Full Text Available The paper identified and reasonably effective mechanisms for technology transfer in Ukraine and several foreign countries. The analysis of the national and international technology transfer. It is shown that based on the experience of the transfer of innovative technologies in foreign countries, the priority areas of the state scientific and technical policy is to create conditions for innovation-based economic development and structural adjustment of industrial and technological sectors. The development of legislation affecting science and technology and innovation activity in Ukraine. Comparison of statistical data on the innovation process in the European Union and Ukraine. Investigated the technical and technological production in Ukraine, as well as the factors that hinder the development of innovations in the industry. Found effective mechanisms for technology transfer in foreign countries (USA, Germany, Japan, Russia. The role of technology transfer centres, public-private partnerships, long-term leasing of equipment, government contracts, the introduction of tax incentives to enterprises that carry out upgrading and development of new technologies. An effective means of technology transfer that will enhance innovation processes of enterprises in the innovation economy type.

  2. IPAD: A unique approach to government/industry cooperation for technology development and transfer

    Science.gov (United States)

    Fulton, Robert E.; Salley, George C.

    1985-01-01

    A key element to improved industry productivity is effective management of Computer Aided Design / Computer Aided Manufacturing (CAD/CAM) information. To stimulate advancement, a unique joint government/industry project designated Integrated Programs for Aerospace-Vehicle Design (IPAD) was carried out from 1971 to 1984. The goal was to raise aerospace industry productivity through advancement of computer based technology to integrate and manage information involved in the design and manufacturing process. IPAD research was guided by an Industry Technical Advisory Board (ITAB) composed of over 100 representatives from aerospace and computer companies. The project complemented traditional NASA/DOD research to develop aerospace design technology and the Air Force's Integrated Computer Aided Manufacturing (ICAM) program to advance CAM technology. IPAD had unprecedented industry support and involvement and served as a unique approach to government industry cooperation in the development and transfer of advanced technology. The IPAD project background, approach, accomplishments, industry involvement, technology transfer mechanisms and lessons learned are summarized.

  3. Building Design Guidelines for Solar Energy Technologies

    Science.gov (United States)

    Givoni, B.

    1989-01-01

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of "solar architecture" and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings.

  4. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  5. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  6. Aspects on Transfer of Aided - Design Files

    Science.gov (United States)

    Goanta, A. M.; Anghelache, D. G.

    2016-08-01

    At this stage of development of hardware and software, each company that makes design software packages has a certain type of file created and customized in time to distinguish that company from its competitors. Thus today are widely known the DWG files belonging AutoCAD, IPT / IAM belonging to Inventor, PAR / ASM of Solid Edge's, PRT from the NX and so on. Behind every type of file there is a mathematical model which is common to more types of files. A specific aspect of the computer -aided design is that all softwares are working with both individual parts and assemblies, but their approach is different in that some use the same type of file both for each part and for the whole (PRT ), while others use different types of files (IPT / IAM, PAR / ASM, etc.). Another aspect of the computer -aided design is to transfer files between different companies which use different software packages or even the same software package but in different versions. Each of these situations generates distinct issues. Thus, to solve the partial reading by a project different from the native one, transfer files of STEP and IGES type are used

  7. The role of Ethics in the process of Technology Transfer and Development of 206 Peugeot

    Directory of Open Access Journals (Sweden)

    Aliakbar Mazlomi

    2011-02-01

    Full Text Available Looking at the past history we find that the first phenomenon of technology transfer was taught by people who were traveling to another community and bring their technology, they move. After theindustrialization, transfer of knowledge from individuals to maintain their importance. However, now the situation for developing countries is controversial because it denied people with technical skills fromdeveloped countries to developing countries do not migrate, but the reverse is the professionals that are developing countries to developed countries loan go. Until developing countries can train your human resources specialist, they powerful companies overseas are the means of technology transfer, whether through direct investment, and whether through the sale of licenses and other means. (Noble, p. 105 - 106, 1367 Technology transfer is an important issue that should be given the capacity of countries to assess the possibility of application, absorption and its compatibility with local conditions to increase. Ie the transfer of technology and gain access to technology for its effective use for economic development and growth of countries relatively backward technology provides. (Archibugi, 2003 Today, the role of ethics in technology transfer and development is of great importance. The meaning of ethics and technology than are harvested, ethical values that have roles in the formation of modern technology. Another meaning of ethics and technology than is reached, that moral people who are dealing with technology, they must observe. It also includes technology to those that exist and sets it to those who apply and who are the analysis and criticism. In this article factors and ethical factors in the process of technology transfer and development for Peugeot 206 in Iran Khodro Company has been studied. For this purpose a questionnaire to determine and evaluate factors is designed and results are analyzed.

  8. The Evolutionary Business Valuation of Technology Transfer

    NARCIS (Netherlands)

    Leloux, M.S.; van der Sijde, Peter; Groen, Arend J.; Oakey, R.; Groen, A.; Cook, G.; van der Sijde, P.

    2009-01-01

    Conventional models for the business valuation of technology are usually financially oriented and only measure economic value. Several of these financially oriented approaches have been reviewed by Leloux and Groen (2007). Current monetary (financial) valuation methods for technology include

  9. Technology Transfer at CERN (english version)

    CERN Multimedia

    Marcastel, F

    2006-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  10. Technology Transfer at CERN (french version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    Abrief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  11. Biomedical technology transfer: Applications of NASA science and technology

    Science.gov (United States)

    1976-01-01

    The major efforts of the Stanford Biomedical Applications Team Program at the Stanford University School of Medicine for the period from October 1, 1975 to September 31, 1976 are covered. A completed EMG biotelemetry system which monitors the physiological signals of man and animals in space related research is discussed. The results of a pilot study involving lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative pressure unit for evaluating heart patients. This technology utilizes vacuum chambers to stress the cardiovascular system during space flight. Laboratory tests of an intracranial pressure transducer, have been conducted. Extremely stable long term data using capacative pressure sensors has lead to the order of commercially manufactured monitoring systems base. Projects involving commercialization are: flexible medical electrodes, an echocardioscope, a miniature biotelemetry system, and an on-line ventricular contour detector.

  12. Application of quality by design principles to the development and technology transfer of a major process improvement for the manufacture of a recombinant protein.

    Science.gov (United States)

    Looby, Mairead; Ibarra, Neysi; Pierce, James J; Buckley, Kevin; O'Donovan, Eimear; Heenan, Mary; Moran, Enda; Farid, Suzanne S; Baganz, Frank

    2011-01-01

    This study describes the application of quality by design (QbD) principles to the development and implementation of a major manufacturing process improvement for a commercially distributed therapeutic protein produced in Chinese hamster ovary cell culture. The intent of this article is to focus on QbD concepts, and provide guidance and understanding on how the various components combine together to deliver a robust process in keeping with the principles of QbD. A fed-batch production culture and a virus inactivation step are described as representative examples of upstream and downstream unit operations that were characterized. A systematic approach incorporating QbD principles was applied to both unit operations, involving risk assessment of potential process failure points, small-scale model qualification, design and execution of experiments, definition of operating parameter ranges and process validation acceptance criteria followed by manufacturing-scale implementation and process validation. Statistical experimental designs were applied to the execution of process characterization studies evaluating the impact of operating parameters on product quality attributes and process performance parameters. Data from process characterization experiments were used to define the proven acceptable range and classification of operating parameters for each unit operation. Analysis of variance and Monte Carlo simulation methods were used to assess the appropriateness of process design spaces. Successful implementation and validation of the process in the manufacturing facility and the subsequent manufacture of hundreds of batches of this therapeutic protein verifies the approaches taken as a suitable model for the development, scale-up and operation of any biopharmaceutical manufacturing process.

  13. Exploring the influence of technology size on the duration of production technology transfer implementation

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2005-01-01

    This study explores the relationship between technology size and installation time in technology transfer projects. A literature study revealed that the installation time has so far not received much attention. Current studies address the effectiveness of technology transfer rather than efficiency.

  14. Waveform Design for Wireless Power Transfer

    Science.gov (United States)

    Clerckx, Bruno; Bayguzina, Ekaterina

    2016-12-01

    Far-field Wireless Power Transfer (WPT) has attracted significant attention in recent years. Despite the rapid progress, the emphasis of the research community in the last decade has remained largely concentrated on improving the design of energy harvester (so-called rectenna) and has left aside the effect of transmitter design. In this paper, we study the design of transmit waveform so as to enhance the DC power at the output of the rectenna. We derive a tractable model of the non-linearity of the rectenna and compare with a linear model conventionally used in the literature. We then use those models to design novel multisine waveforms that are adaptive to the channel state information (CSI). Interestingly, while the linear model favours narrowband transmission with all the power allocated to a single frequency, the non-linear model favours a power allocation over multiple frequencies. Through realistic simulations, waveforms designed based on the non-linear model are shown to provide significant gains (in terms of harvested DC power) over those designed based on the linear model and over non-adaptive waveforms. We also compute analytically the theoretical scaling laws of the harvested energy for various waveforms as a function of the number of sinewaves and transmit antennas. Those scaling laws highlight the benefits of CSI knowledge at the transmitter in WPT and of a WPT design based on a non-linear rectenna model over a linear model. Results also motivate the study of a promising architecture relying on large-scale multisine multi-antenna waveforms for WPT. As a final note, results stress the importance of modeling and accounting for the non-linearity of the rectenna in any system design involving wireless power.

  15. Advancing Green Economy through Technology Transfer

    African Journals Online (AJOL)

    This qualitative study explores the transfer of renewable energy ... Based on experiences from the projects, a literature review, site visits and ... generated sustainable ideas, and disseminating information on successes and lessons learnt.

  16. PIP-II Transfer Line Design

    Energy Technology Data Exchange (ETDEWEB)

    Vivoli, A. [Fermilab

    2016-10-15

    The U.S. Particle Physics Project Prioritization Panel (P5) report encouraged the realization of Fermilab's Proton Improvement Plan II (PIP-II) to support future neutrino programs in the United States. PIP-II aims at enhancing the capabilities of the Fermilab existing accelerator complex while simultaneously providing a flexible platform for its future upgrades. The central part of PIP-II project is the construction of a new 800 MeV H- Superconducting (SC) Linac together with upgrades of the Booster and Main Injector synchrotrons. New transfer lines will also be needed to deliver beam to the down-stream accelerators and facilities. In this paper we present the recent development of the design of the transfer lines discussing the principles that guided their design, the constraints and requirements imposed by the existing accelerator complex and the following modifications implemented to comply with a better understanding of the limitations and further requirements that emerged during the development of the project.

  17. Double-layered cell transfer technology for bone regeneration.

    Science.gov (United States)

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-09-14

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called "cell transfer technology", enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration.

  18. Creation of a European network dedicated to technology transfer

    CERN Multimedia

    2008-01-01

    The CERN Council recently approved the creation of a technology transfer network, whose aim will be to improve European industry’s access to the technologies developed by the particle physics community in the Member States. The gas detectors for the TOTEM experiment (GEM) offer potential for fruitful collaboration within the framework of the TT network. Many other technologies are going down the same road.The desire to set up a technology transfer network follows on from the European Strategy for Particle Physics, approved by the CERN Council on 14 July 2006 in Lisbon. In this context, special emphasis was laid on European industry’s participation in the implementation of particle physics programmes and, in particular, its access to the new technologies developed by the scientific community. It was recognised that effort needs to be put into improving the efficiency of technology transfer...

  19. Japan acts to speed technology transfer from universities

    CERN Multimedia

    Saegusa, A

    1999-01-01

    A Japanese law will take effect in the autumn to promote technology transfer from universities and laboratories. The new measures aim to encourage collaborations with the commercial sector and allow industrial research partners to retain title to inventions (1 page).

  20. Collaborating with EPA through the Federal Technology Transfer Act

    Science.gov (United States)

    Under the Federal Technology Transfer Act (FTTA), EPA can collaborate with external parties on research projects, and share research materials. Learn more about the types of partnerships the EPA offers.

  1. Technology transfer in the space sector: an international perspective.

    Science.gov (United States)

    Hertzfeld, Henry R

    2002-12-01

    This article is an introduction to four articles in this issue, all related to the different policy objectives and approaches of technology transfer in space programs run by the United States, the European Space Agency, Canada, and Russia.

  2. special issue: Technology transfer in United States universities

    OpenAIRE

    Ann-Charlotte Fridh; Bo Carlsson

    2002-01-01

    This paper examines the role of offices of technology transfer (OTT) in 12 U.S. universities in 1998 in commercializing research results in the form of patents, licenses, and start-ups of new companies. We study the organization and place of OTTs within the university structure, the process of technology transfer, and the staffing and funding of the office. Data were collected through a mail questionnaire followed up through telephone interviews. We also conducted a statistical analysis of da...

  3. Determination of Royalty Rates in the International Technology Transfer Contracts

    OpenAIRE

    Kapitsa, Yu.; Aralova, N.

    2015-01-01

    The existing approaches used in determination of the royalty rates for technology transfer contracts and based on the experience of research institutions of the National Academy of Sciences of Ukraine, research organizations and universities in Europe and USA were reviewed. The analysis of the existing rates has been made as well as recommendations on determination of the royalty rates for technology transfer contracts between research institutions and foreign and domestic partners have been ...

  4. Determination of Royalty Rates in the International Technology Transfer Contracts

    Directory of Open Access Journals (Sweden)

    Kapitsa, Yu.

    2015-03-01

    Full Text Available The existing approaches used in determination of the royalty rates for technology transfer contracts and based on the experience of research institutions of the National Academy of Sciences of Ukraine, research organizations and universities in Europe and USA were reviewed. The analysis of the existing rates has been made as well as recommendations on determination of the royalty rates for technology transfer contracts between research institutions and foreign and domestic partners have been worked out.

  5. Climate Change and Requirement of Transfer of Environmentally Sound Technology

    DEFF Research Database (Denmark)

    of international environmental debates. This thesis addresses, firstly, the possible methods of technology transfer and secondly, how current international environmental laws play its role to facilitate the transfer. Accordingly, I have focused on the concerned provisions of Kyoto Protocol and its subsequent...

  6. International Water and Sanitation Technology Transfers, Experiences from Europe

    NARCIS (Netherlands)

    Krozer, Yoram; Hophmayer-Tockich, Sharon

    2016-01-01

    Possibilities of transferring cost-effective, innovative water and wastewater technologies on public water markets are discussed based on experiences of the Dutch water business cluster in the Central and Eastern European Countries. These transfers evolved under suitable conditions, among others fin

  7. International water and sanitation technology transfers, experiences from Europe

    NARCIS (Netherlands)

    Krozer, Yoram; Hophmayer Tokich, Sharon

    2016-01-01

    Possibilities of transferring cost-effective, innovative water and wastewater technologies on public water markets are discussed based on experiences of the Dutch water business cluster in the Central and Eastern European Countries. These transfers evolved under suitable conditions, among others fin

  8. Fruit Fly Liquid Larval Diet Technology Transfer and Update

    Science.gov (United States)

    Since October 2006, USDA-ARS has been implementing a fruit fly liquid larval diet technology transfer, which has proceeded according to the following steps: (1) Recruitment of interested groups through request; (2) Establishment of the Material Transfer Agreement (MTA) with ARS; (3) Fruit fly liquid...

  9. 76 FR 11498 - Submission for OMB Review; Comment Request; Generic Submission of Technology Transfer Center (TTC...

    Science.gov (United States)

    2011-03-02

    ... Submission of Technology Transfer Center (TTC) External Customer Satisfaction Surveys (NCI) SUMMARY: Under... control number. Proposed Collection: Title: Generic Submission of Technology Transfer Center (TTC... collaborations and alliances with the NIH. The needs of external technology transfer customers and stakeholders...

  10. Design4Society: morality and technology revisited

    NARCIS (Netherlands)

    Verbeek, P.P.C.C.

    2015-01-01

    The moral significance of technology has become a central theme in the ethics of technology: rather than being ethically neutral, technologies have an inherent moral dimension. How can designers deal with this moral dimension of the technologies they are developing? From the perspective of technolog

  11. Technology transfer package on seismic base isolation - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume II contains the proceedings for the Short Course on Seismic Base Isolation held in Berkeley, California, August 10-14, 1992.

  12. Technology transfer package on seismic base isolation - Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume I contains the proceedings of the Workshop on Seismic Base Isolation for Department of Energy Facilities held in Marina Del Rey, California, May 13-15, 1992.

  13. Societal and economic valuation of technology-transfer deals

    Science.gov (United States)

    Holmes, Joseph S., Jr.

    2009-09-01

    The industrial adoption of concepts such as open innovation brings new legitimacy to activities technology-transfer professionals have conducted for over 20 years. This movement highlights the need for an increased understanding of the valuation of intellectual property (IP) and technology-transfer deals. Valuation, though a centerpiece of corporate finance, is more challenging when applied to the inherent uncertainty surrounding innovation. Technology-transfer professionals are often overwhelmed by the complexity and data requirements of valuation techniques and skeptical of their applicability to and utility for technology transfer. The market longs for an approach which bridges the gap between valuation fundamentals and technology-transfer realities. This paper presents the foundations of a simple, flexible, precise/accurate, and useful framework for considering the valuation of technology-transfer deals. The approach is predicated on a 12-factor model—a 3×4 value matrix predicated on categories of economic, societal, and strategic value. Each of these three categories consists of three core subcategories followed by a fourth "other" category to facilitate inevitable special considerations. This 12-factor value matrix provides a framework for harvesting data during deals and for the application of best-of-breed valuation techniques which can be employed on a per-factor basis. Future work will include framework implementation within a database platform.

  14. Internet and technology transfer in acute care hospitals in the United States: survey-2000.

    Science.gov (United States)

    Hatcher, M

    2001-12-01

    This paper provides the results of the survey-2000 measuring technology transfer and, specifically, Internet usage. The purpose of the survey was to measure the levels of Internet and Intranet existence and usage in acute care hospitals. The depth of the survey includes e-commerce for both business-to-business and customers. These results are compared with responses to the same questions in survey-1997. Changes in response are noted and discussed. This information will provide benchmarks for hospitals to plan their network technology position and to set goals. This is the third of three articles based upon the results of the survey-2000. Readers are referred to prior articles by the author, which discuss the survey design and provide a tutorial on technology transfer in acute care hospitals. (1) Thefirst article based upon the survey results discusses technology transfer, system design approaches, user involvement, and decision-making purposes. (2)

  15. Development of Technological Profiles for Transfer of Energy- and Resource Saving Technologies

    Directory of Open Access Journals (Sweden)

    Lysenko, V.S.

    2015-01-01

    Full Text Available The article deals with the methodological foundations for the development of technological profiles for «System of Transfer of Energy- and Resource Saving Technologies». It is determined that a compliance with the methodology and standards of the European network «Relay Centers» (Innovation Relay Centers — IRC network, since 2008 — EEN, the Russian Technology Transfer Network RTTN and Uk rainian Technology Transfer Network UTTN is the main pri nciple of the development process of technological requests and offers.

  16. 2017 Technology Showcase | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The 2017 Technology Showcase is an inaugural, half-day event that will showcase technologies developed by the National Cancer Institute's Center for Cancer Research (CCR) and the Frederick National Laboratory for Cancer Research (FNLCR). The goal of the Showcase is to encourage startup company formation, technology licensing, and public-private collaborations. It will introduce the Frederick community to the regional technology development stakeholders, as well as highlight available resources. WHO SHOULD ATTEND: Prospective investors, established companies, educators, those looking to commercialize technologies, and all interested stakeholders. | [google6f4cd5334ac394ab.html

  17. A Program Office Guide to Technology Transfer

    Science.gov (United States)

    1988-11-01

    maintenance is emphasized, interchan- tions. Second source component verification geability requirements are pushed lower to the activities often are...technology tiansfer risk, the program office considers the following: 10.7 THE TECNOLOGY TRANSFERPLAN * Schedule intensity and concurrency The

  18. Building design guidelines for solar energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Givoni, B.

    1989-01-01

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of solar architecture'' and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings. 15 refs., 19 figs., 3 tabs.

  19. Florida commercial space initiatives and technology transfer mechanisms

    Science.gov (United States)

    Moore, Roger L.

    1989-01-01

    This paper discusses commercial space policy for the State of Florida in the context of state initiatives for general technology and economic development. The paper also compares Florida's commercial space initiatives to national space policies and describes mechanisms for transferring space related technologies and research to Florida businesses for subsequent development and commercialization.

  20. Techno-Nationalism and the Construction of University Technology Transfer

    Science.gov (United States)

    Sá, Creso; Kretz, Andrew; Sigurdson, Kristjan

    2013-01-01

    Our historical study of Canada's main research university illuminates the overlooked influence of national identities and interests as forces shaping the institutionalization of technology transfer. Through the use of archival sources we trace the rise and influence of Canadian technological nationalism--a response to Canada's perceived…

  1. The Technology Transfer of the ICT Curriculum in Taiwan

    Science.gov (United States)

    Huang, Teng

    2015-01-01

    Focusing on the process of "technology transfer", this paper aims to critically examine the production and usage of the information and communication technology (ICT) curriculum, and discusses its possibilities. It is found that the goals in both of the two stages of the ICT curriculum in Taiwan were rather "rhetorical". Three…

  2. Techno-Nationalism and the Construction of University Technology Transfer

    Science.gov (United States)

    Sá, Creso; Kretz, Andrew; Sigurdson, Kristjan

    2013-01-01

    Our historical study of Canada's main research university illuminates the overlooked influence of national identities and interests as forces shaping the institutionalization of technology transfer. Through the use of archival sources we trace the rise and influence of Canadian technological nationalism--a response to Canada's perceived dependency…

  3. Techno-Nationalism and the Construction of University Technology Transfer

    Science.gov (United States)

    Sá, Creso; Kretz, Andrew; Sigurdson, Kristjan

    2013-01-01

    Our historical study of Canada's main research university illuminates the overlooked influence of national identities and interests as forces shaping the institutionalization of technology transfer. Through the use of archival sources we trace the rise and influence of Canadian technological nationalism--a response to Canada's perceived dependency…

  4. The Technology Transfer of the ICT Curriculum in Taiwan

    Science.gov (United States)

    Huang, Teng

    2015-01-01

    Focusing on the process of "technology transfer", this paper aims to critically examine the production and usage of the information and communication technology (ICT) curriculum, and discusses its possibilities. It is found that the goals in both of the two stages of the ICT curriculum in Taiwan were rather "rhetorical". Three…

  5. University Technology Transfer Factors as Predictors of Entrepreneurial Orientation

    Science.gov (United States)

    Kirkman, Dorothy M.

    2011-01-01

    University technology transfer is a collaborative effort between academia and industry involving knowledge sharing and learning. Working closely with their university partners affords biotechnology firms the opportunity to successfully develop licensed inventions and gain access to novel scientific and technological discoveries. These factors may…

  6. The role of technology transfer for the development of a local wind component industry in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Pueyo, Ana, E-mail: anapueyo@hotmail.com [Technical University of Madrid (UPM)-Escuela Tecnica Superior de Ingenieros Industriales (ETSII), Madrid (Spain); Garcia, Rodrigo [Centro de Energias Renovables (CER), Santiago de Chile (Chile); Mendiluce, Maria [World Business Council for Sustainable Development (WBCSD), Geneva (Switzerland); Morales, Dario [InnovaChile-CORFO Chile, Santiago de Chile (Chile)

    2011-07-15

    This paper contributes to the debate about climate change technology transfer by analysing barriers and enablers for a Chilean company starting up the production of wind blades. Literature on the role of technology transfer for the development and deployment of local renewable energy technologies in developing countries often refers to success stories in Brazil, India and China. Instead, this case study highlights the different challenges faced by smaller emerging economies. The paper argues that successful technology transfer in a smaller economy like Chile requires: a minimum internal demand and access to regional markets to attract foreign knowledge providers; a focus in the types of technologies where the recipient country or company have a competitive advantage; and active learning processes by the recipient company. Lessons are drawn for improving the design and implementation of technology-push and market-pull policies in small or medium emerging economies. - Highlights: > We analyse the case of a Chilean company starting up wind blades production. > Technology transfer is required as the relevant knowledge is not available in the country. > We examine the factors that enable technology transfer to draw policy conclusions. > We highlight the particularities of medium sized developing countries.

  7. Transfer Function Design for Scientific Discovery

    Energy Technology Data Exchange (ETDEWEB)

    Jian Huang

    2008-12-08

    As computation scales beyond terascale, the scientific problems under study through computing are increasingly pushing the boundaries of human knowledge about the physical world. It is more pivotal than ever to quickly and reliably extract new knowledge from these complex simulations of ultra scale. In this project, the PI expanded the traditional notion of transfer function, which maps physical quantities to visual cues via table look-ups, to include general temporal as well as multivariate patterns that can be described procedurally through specialty mini programming languages. Their efforts aimed at answering a perpetual question of fundamental importance. That is "what a visualization should show". Instead of waiting for application scientists to initiate the process, the team at University of Tennessee worked closely with scientists at ORNL in a proactive role to envision and design elegant, powerful, and reliable tools that a user can use to specify "what is interesting". Their new techniques include visualization operators that revolve around correlation and graph properties, relative patterns in statistical distribution, temporal regular expressions, concurrent attribute subspaces and traditional compound boolean range queries. The team also paid special attention to ensure that all visualization operators are inherently designed with great parallel scalability to handle tera-scale datasets in both homogeneous and heterogeneous environments. Success has been demonstrated with leading edge computational science areas include climate modeling, combustion and systems genetics.

  8. Technology Transfer: A Qualitative Analysis of Air Force Office of Research and Technology Applications

    Science.gov (United States)

    2006-06-01

    branch. Two, attending Department of Defense Technology Transfer Integrated Planning Team workshops. Three, attending two Federal Laboratory...Question 12 What database tools do you use to Perform ORTA duties? The number one database tool used was the Defense Technology Transfer Information

  9. Designing Mobile Health Technology for Bipolar Disorder

    DEFF Research Database (Denmark)

    Bardram, JE; Frost, Mads; Szántó, Károly

    2013-01-01

    usefulness of the system was high. Based on this study, the paper discusses three HCI questions related to the design of personal health technologies; how to design for disease awareness and self-treatment, how to ensure adherence to personal health technologies, and the roles of different types...... of technology platforms....

  10. Advanced Manufacturing Technology: A Department of Energy technology transfer initiative

    Energy Technology Data Exchange (ETDEWEB)

    Steele, R.S. Jr.; Barkman, W.E.

    1990-02-01

    This paper describes a new initiative called the Advanced Manufacturing Technology (AMT) Program that is managed for the US Department of Energy (DOE) by Martin Marietta Energy Systems in Oak Ridge, Tennessee. The AMT Program seeks to assist the US manufacturing community regain some of the market share that it has lost to competiting companies in both Europe and the Far East. One key element to this program is the establishment of teaching and development facilities called manufacturing technology centers (MTCs) which will showcase unclassified DOE manufacturing technologies. This paper describes some of the precision flexible manufacturing system (PFMS) technology that is available through the Oak Ridge Y-12 Plant. This technology will be highlighted in the first of the MTCs that is being established. 4 figs.

  11. Emerging memory technologies design, architecture, and applications

    CERN Document Server

    2014-01-01

    This book explores the design implications of emerging, non-volatile memory (NVM) technologies on future computer memory hierarchy architecture designs. Since NVM technologies combine the speed of SRAM, the density of DRAM, and the non-volatility of Flash memory, they are very attractive as the basis for future universal memories. This book provides a holistic perspective on the topic, covering modeling, design, architecture and applications. The practical information included in this book will enable designers to exploit emerging memory technologies to improve significantly the performance/power/reliability of future, mainstream integrated circuits. • Provides a comprehensive reference on designing modern circuits with emerging, non-volatile memory technologies, such as MRAM and PCRAM; • Explores new design opportunities offered by emerging memory technologies, from a holistic perspective; • Describes topics in technology, modeling, architecture and applications; • Enables circuit designers to ex...

  12. Uplifting developing communities through sustained technology transfer

    CSIR Research Space (South Africa)

    Mashiri, M

    2007-05-01

    Full Text Available feedback mechanisms to both the local Integrated Development Plan and the Provincial Growth and Development Strategy, was able to navigate potential conflict areas such as negotiating acceptable wage rates [below minimum wage] with the community... to mobilize and galvanize the community around the benefits of the project, as well as to explain and to iron out potential mine fields, such as the level of funding available, wage rate and payment policy, technology issues and project implementation...

  13. 2017 Technology Showcase Presentations | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Presentations from the 2017 Technology Showcase by NIH Intramural Research Program scientists held at Frederick National Laboratories for Cancer Research on June 7, 2017. | [google6f4cd5334ac394ab.html

  14. Nuclear transfer technology in mammalian cloning.

    Science.gov (United States)

    Wolf, D P; Mitalipov, S; Norgren, R B

    2001-01-01

    The past several years have witnessed remarkable progress in mammalian cloning using nuclear transfer (NT). Until 1997 and the announcement of the successful cloning of sheep from adult mammary gland or fetal fibroblast cells, our working assumption was that cloning by NT could only be accomplished with relatively undifferentiated embryonic cells. Indeed, live offspring were first produced by NT over 15 years ago from totipotent, embryonic blastomeres derived from early cleavage-stage embryos. However, once begun, the progression to somatic cell cloning or NT employing differentiated cells as the source of donor nuclei was meteoric, initially involving differentiated embryonic cell cultures in sheep in 1996 and quickly thereafter, fetal or adult somatic cells in sheep, cow, mouse, goat, and pig. Several recent reviews provide a background for and discussion of these successes. Here we will focus on the potential uses of reproductive cloning along with recent activities in the field and a discussion concerning current interests in human reproductive and therapeutic cloning.

  15. Adaptation in the context of technology development and transfer

    DEFF Research Database (Denmark)

    Olhoff, Anne

    2015-01-01

    and transfer. It summarizes what technologies for adaptation are, how they relate to development, and what their role is in adaptation. It subsequently highlights a number of policy and research issues that could be important to inform future policy. The commentary has two key messages. First, it argues...... that informed policy decisions on technology development and transfer to enhance adaptation require systematic assessments of the findings in the theoretical and empirical literature. Second, in light of the potential for overlap between processes for adaptation and processes for technologies for adaptation......Starting from a summary of key developments under the United Nations Framework Convention on Climate Change (UNFCCC) related to adaptation and technologies, the commentary provides an initial review of the available literature relevant to adaptation in the context of technology development...

  16. A DYNAMICAL SYSTEM APPROACH IN MODELING TECHNOLOGY TRANSFER

    Directory of Open Access Journals (Sweden)

    Hennie Husniah

    2016-05-01

    Full Text Available In this paper we discuss a mathematical model of two parties technology transfer from a leader to a follower. The model is reconstructed via dynamical system approach from a known standard Raz and Assa model and we found some important conclusion which have not been discussed in the original model. The model assumes that in the absence of technology transfer from a leader to a follower, both the leader and the follower have a capability to grow independently with a known upper limit of the development. We obtain a rich mathematical structure of the steady state solution of the model. We discuss a special situation in which the upper limit of the technological development of the follower is higher than that of the leader, but the leader has started earlier than the follower in implementing the technology. In this case we show a paradox stating that the follower is unable to reach its original upper limit of the technological development could appear whenever the transfer rate is sufficiently high.  We propose a new model to increase realism so that any technological transfer rate could only has a positive effect in accelerating the rate of growth of the follower in reaching its original upper limit of the development.

  17. Technology Enhanced Learning in Design and Technology Education

    Science.gov (United States)

    Page, Tom; Thorsteinsson, Gisli

    2007-01-01

    The focus of this literature review addresses the opportunities that new media can have for design and technology education at the university level. Advances in public and technology interaction has changed drastically with the impact of New Media and Information and Communication Technologies (ICTs). This research investigates the role of New…

  18. A case study of technology transfer: Cardiology

    Science.gov (United States)

    Schafer, G.

    1974-01-01

    Research advancements in cardiology instrumentation and techniques are summarized. Emphasis is placed upon the following techniques: (1) development of electrodes which show good skin compatibility and wearer comfort; (2) contourography - a real time display system for showing the results of EKGs; (3) detection of arteriosclerosis by digital computer processing of X-ray photos; (4) automated, noninvasive systems for blood pressure measurement; (5) ultrasonoscope - a noninvasive device for use in diagnosis of aortic, mitral, and tricuspid valve disease; and (6) rechargable cardiac pacemakers. The formation of a biomedical applications team which is an interdisciplinary team to bridge the gap between the developers and users of technology is described.

  19. Local R&D and Technology Transfers

    DEFF Research Database (Denmark)

    Aggarwal, Aradhna

    This study examines how inter-firm heterogeneities in technology modes and intensities are linked to ownership of firms in India, using a panel dataset of 2000 odd Bombay Stock Exchange listed firms for the period from 2003 to 2014 drawn from the PROWESS database of CMIE. For the analysis, foreign...... ownership is categorised according to the control exercisable by them as defined under the Companies’ Act of India. A comparative analysis of domestic and different categories of foreign firms was conducted at two time periods: the global boom period of 2004-2008 and post crisis period of 2008...

  20. Sociomaterial-design bounding technologies in practice

    CERN Document Server

    Bjorn, Pernille

    2014-01-01

    Investigates theoretically and empirically what it means to design technological artefacts while embracing the large number of practices which practitioners engage with when handling technologies. The authors discusses the fields of design and sociomateriality through their shared interests towards the basic nature of work, collaboration, organization, technology, and human agency, striving to make the debates and concepts originating in each field accessible to each other, and thus moving sociomateriality closer to the practical concerns of design and providing a useful analytical toolbox to

  1. MORE THAN MONEY: THE EXPONENTIAL IMPACT OF ACADEMIC TECHNOLOGY TRANSFER.

    Science.gov (United States)

    McDevitt, Valerie Landrio; Mendez-Hinds, Joelle; Winwood, David; Nijhawan, Vinit; Sherer, Todd; Ritter, John F; Sanberg, Paul R

    2014-11-01

    Academic technology transfer in its current form began with the passage of the Bayh-Dole Act in 1980, which allowed universities to retain ownership of federally funded intellectual property. Since that time, a profession has evolved that has transformed how inventions arising in universities are treated, resulting in significant impact to US society. While there have been a number of articles highlighting benefits of technology transfer, now, more than at any other time since the Bayh-Dole Act was passed, the profession and the impacts of this groundbreaking legislation have come under intense scrutiny. This article serves as an examination of the many positive benefits and evolution, both financial and intrinsic, provided by academic invention and technology transfer, summarized in Table 1.

  2. Technology transfer and technological learning through CERN's procurement activity

    CERN Document Server

    Autio, Erkko; Hameri, Ari-Pekka; CERN. Geneva

    2003-01-01

    This report analyses the technological learning and innovation benefits derived from CERN's procurement activity during the period 1997-2001. The base population of our study, the technology-intensive suppliers to CERN, consisted of 629 companies out of 6806 companies during the same period, representing 1197 MCHF in procurement. The main findings from the study can be summarized as follows: the various learning and innovation benefits (e.g., technological learning, organizational capability development, market learning) tend to occur together. Learning and innovation benefits appear to be regulated by the quality of the supplier's relationship with CERN: the greater the amount of social capital built into the relationship, the greater the learning and innovation benefits. Regardless of relationship quality, virtually all suppliers derived significant marketing reference benefits from CERN. Many corollary benefits are associated with procurement activity. As an example, as many as 38% of the respondents devel...

  3. NASA technology utilization applications. [transfer of medical sciences

    Science.gov (United States)

    1973-01-01

    The work is reported from September 1972 through August 1973 by the Technology Applications Group of the Science Communication Division (SCD), formerly the Biological Sciences Communication Project (BSCP) in the Department of Medical and Public Affairs of the George Washington University. The work was supportive of many aspects of the NASA Technology Utilization program but in particular those dealing with Biomedical and Technology Application Teams, Applications Engineering projects, new technology reporting and documentation and transfer activities. Of particular interest are detailed reports on the progress of various hardware projects, and suggestions and criteria for the evaluation of candidate hardware projects. Finally some observations about the future expansion of the TU program are offered.

  4. Some aspects of technology transfer and direct foreign investment

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, R.

    1978-05-01

    A model showing technology transfer to developing countries links questions of appropriations with the socio-economic reasons for technological change. The rate at which foreign capital is used is found to be directly related to after-tax profits. If the developing country raises taxes on foreign capital, the effect is to increase the proportion of domestic capital needed and to widen the technological gap between the two countries. The analysis also shows a higher gain from new techniques with increased demand volume and suggests large developing countries with similar capital to invest are more likely to generate intermediate technologies. 8 references.

  5. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned,...

  6. Advanced robotic technologies for transfer at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C.

    1994-10-01

    Hazardous operations which have in the past been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. As a result, remote systems are needed to accomplish many hazardous materials handling tasks such as the clean-up of waste sites in which the exposure of personnel to radiation, chemical, explosive and other hazardous constituents is unacceptable. Computer models augmented by sensing, and structured, modular computing environments are proving effective in automating many unstructured hazardous tasks. Work at Sandia National Laboratories (SNL) has focused on applying flexible automation (robotics) to meet the needs of the U.S. Department of Energy (USDOE). Dismantling facilities, environmental remediation, and materials handling in changing, hazardous environments lead to many technical challenges. Computer planning, monitoring and operator assistance shorten training cycles, reduce errors, and speed execution of operations. Robotic systems that re-use well-understood generic technologies can be much better characterized than robotic systems developed for a particular application, leading to a more reliable and safer systems. Further safety in robotic operations results from use of environmental sensors and knowledge of the task and environment. Collision detection and avoidance is achieved from such sensor integration and model-based control. This paper discusses selected technologies developed at SNL for use within the USDOE complex that have been or are ready for transfer to government and industrial suppliers. These technologies include sensors, sub-systems, and the design philosophy applied to quickly integrate them into a working robotic system. This paper represents the work of many people at the Intelligent Systems and Robotics Center at SNL, to whom the credit belongs.

  7. Low-carbon innovation and technology transfer in latecomer countries

    DEFF Research Database (Denmark)

    Lema, Rasmus; Lema, Adrian

    2016-01-01

    This paper examines the organizational arrangements for technology supply in solar photovoltaic projects in the Clean Development Mechanism (CDM). It shows that while lower middle-income countries typically import solar PV equipment into CDM projects, China, India and Thailand have begun to use new...... the future of the global climate regime. Technology transfer does not become less important as developing countries' capabilities mature, but the nature of technology transfer changes over time. This suggests a need to differentiate between countries at different levels of development. Lower middle-income...... countries may have greater needs for building technological capabilities whereas cooperative activities may be suitable for upper middle-income countries that already have capabilities to address climate change...

  8. 48 CFR 970.5227-2 - Rights in data-technology transfer.

    Science.gov (United States)

    2010-10-01

    ... operations and (ii) data comprising source code listings, design details, algorithms, processes, flow charts... Research and Development Agreement (CRADA) information in accordance with Technology Transfer actions under... an abstract which is descriptive of the data and is suitable for dissemination purposes, (B) The...

  9. Technology transfer from NASA to targeted industries, volume 2

    Science.gov (United States)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure.

  10. Optimal screening designs for biomedical technology

    Energy Technology Data Exchange (ETDEWEB)

    Torney, D.C.; Bruno, W.J.; Knill, E. [and others

    1997-10-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Screening a large number of different types of molecules to isolate a few with desirable properties is essential in biomedical technology. For example, trying to find a particular gene in the Human genome could be akin to looking for a needle in a haystack. Fortunately, testing of mixtures, or pools, of molecules allows the desirable ones to be identified, using a number of experiments proportional only to the logarithm of the total number of experiments proportional only to the logarithm of the total number of types of molecules. We show how to capitalize upon this potential by using optimize pooling schemes, or designs. We propose efficient non-adaptive pooling designs, such as {open_quotes}random sets{close_quotes} designs and modified {open_quotes}row and column{close_quotes} designs. Our results have been applied in the pooling and unique-sequence screening of clone libraries used in the Human Genome Project and in the mapping of Human chromosome 16. This required the use of liquid-transferring robots and manifolds--for the largest clone libraries. Finally, we developed an efficient technique for finding the posterior probability each molecule has the desirable property, given the pool assay results. This technique works well, in practice, even if there are substantial rates of errors in the pool assay data. Both our methods and our results are relevant to a broad spectrum of research in modern biology.

  11. Biomedical technology transfer. Applications of NASA science and technology

    Science.gov (United States)

    Harrison, D. C.

    1980-01-01

    Ongoing projects described address: (1) intracranial pressure monitoring; (2) versatile portable speech prosthesis; (3) cardiovascular magnetic measurements; (4) improved EMG biotelemetry for pediatrics; (5) ultrasonic kidney stone disintegration; (6) pediatric roentgen densitometry; (7) X-ray spatial frequency multiplexing; (8) mechanical impedance determination of bone strength; (9) visual-to-tactile mobility aid for the blind; (10) Purkinje image eyetracker and stabilized photocoalqulator; (11) neurological applications of NASA-SRI eyetracker; (12) ICU synthesized speech alarm; (13) NANOPHOR: microelectrophoresis instrument; (14) WRISTCOM: tactile communication system for the deaf-blind; (15) medical applications of NASA liquid-circulating garments; and (16) hip prosthesis with biotelemetry. Potential transfer projects include a person-portable versatile speech prosthesis, a critical care transport sytem, a clinical information system for cardiology, a programmable biofeedback orthosis for scoliosis a pediatric long-bone reconstruction, and spinal immobilization apparatus.

  12. A design process for creative technology

    NARCIS (Netherlands)

    Mader, Angelika; Eggink, Wouter

    2014-01-01

    Creative Technology is a new bachelor programme at the University of Twente. Goal of Creative Technology is to design products and applications that improve the quality of daily life in its manifold aspects, building on Information and Communication Technology (ICT). The application domains range fr

  13. Using Aerospace Technology To Design Orthopedic Implants

    Science.gov (United States)

    Saravanos, D. A.; Mraz, P. J.; Davy, D. T.

    1996-01-01

    Technology originally developed to optimize designs of composite-material aerospace structural components used to develop method for optimizing designs of orthopedic implants. Development effort focused on designing knee implants, long-term goal to develop method for optimizing designs of orthopedic implants in general.

  14. Teachers as designers of technology enhanced learning

    NARCIS (Netherlands)

    Kali, Yael; McKenney, Susan; Sagy, Ornit

    2013-01-01

    Kali, Y., McKenney, S., & Sagy, O. (2012, 2-6 July). Teachers as designers of technology enhanced learning. Presentation at the Teachers as Designers of Technology Enhanced Learning pre-conference workshop in conjunction with the ISLS annual meeting, Sydney, Australia.

  15. An Assistive Technology Design Framework for ADHD

    DEFF Research Database (Denmark)

    Sonne, Tobias; Marshall, Paul; Obel, Carsten;

    In this paper, we present a design framework for ADHD assistive technologies that aims to give researchers grounding in the background research on the condition, to provide a lingua franca, and to highlight potential research directions for HCI researchers within assistive technology. The design...... framework couples ADHD patient challenge areas to technological opportunities and it provides a set of practical design strategies for developing successful assistive technologies for people with ADHD. The framework is based on empirical studies, ADHD research, and related work on assistive technologies. We...... map existing assistive technologies and potential new research efforts to the framework concepts. This way we show how it is used to support and advance the research and development of novel assistive technologies for the ADHD domain....

  16. An Assistive Technology Design Framework for ADHD

    DEFF Research Database (Denmark)

    Sonne, Tobias; Marshall, Paul; Obel, Carsten

    2016-01-01

    In this paper, we present a design framework for ADHD assistive technologies that aims to give researchers grounding in the background research on the condition, to provide a lingua franca, and to highlight potential research directions for HCI researchers within assistive technology. The design...... framework couples ADHD patient challenge areas to technological opportunities and it provides a set of practical design strategies for developing successful assistive technologies for people with ADHD. The framework is based on empirical studies, ADHD research, and related work on assistive technologies. We...... map existing assistive technologies and potential new research efforts to the framework concepts. This way we show how it is used to support and advance the research and development of novel assistive technologies for the ADHD domain....

  17. NASA Langley Research and Technology-Transfer Program in Formal Methods

    Science.gov (United States)

    Butler, Ricky W.; Caldwell, James L.; Carreno, Victor A.; Holloway, C. Michael; Miner, Paul S.; DiVito, Ben L.

    1995-01-01

    This paper presents an overview of NASA Langley research program in formal methods. The major goals of this work are to make formal methods practical for use on life critical systems, and to orchestrate the transfer of this technology to U.S. industry through use of carefully designed demonstration projects. Several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of five NASA civil servants and contractors from Odyssey Research Associates, SRI International, and VIGYAN Inc.

  18. 77 FR 46909 - Small Business Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR...

    Science.gov (United States)

    2012-08-06

    ... Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR) Program Policy Directives... Small Business Innovation Research (SBIR) and Small Business Technology Transfer Program (STTR) Policy... technology@sba.gov . SUPPLEMENTARY INFORMATION: I. Background Information SBA is publishing Policy Directives...

  19. The Employee Invention Report (EIR) | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    After making a unique, non-obvious, and useful discovery, NIH researchers must immediately contact their Laboratory or Branch Chief and inform him or her of a possible invention, and then consult with your NCI TTC Technology Transfer Manager about submitting an Employee Invention Report (EIR) Form. | [google6f4cd5334ac394ab.html

  20. Transfer bonding technology for batch fabrication of SMA microactuators

    Science.gov (United States)

    Grund, T.; Guerre, R.; Despont, M.; Kohl, M.

    2008-05-01

    Currently, the broad market introduction of shape memory alloy (SMA) microactuators and sensors is hampered by technological barriers, since batch fabrication methods common to electronics industry are not available. The present study intends to overcome these barriers by introducing a wafer scale transfer process that allows the selective transfer of heat-treated and micromachined shape memory alloy (SMA) film or foil microactuators to randomly selected receiving sites on a target substrate. The technology relies on a temporary adhesive bonding layer between SMA film/foil and an auxiliary substrate, which can be removed by laser ablation. The transfer technology was tested for microactuators of a cold-rolled NiTi foil of 20 μm thickness, which were heat-treated in free-standing condition, then micromachined on an auxiliary substrate of glass, and finally selectively transferred to different target substrates of a polymer. For demonstration, the new technology was used for batch-fabrication of SMA-actuated polymer microvalves.

  1. THE EFFICIENCY OF TECHNOLOGY TRANSFER – THEORETICAL AND METHODOLOGICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Andreea-Clara MUNTEANU

    2006-06-01

    Full Text Available As the importance and complexity level of technological transfer increased, the need of adequate systems of assessing the efficiency of this process became the more obvious. Introducing sustainability criteria requires the creation of a complex framework for analysing and studying efficiency that would incorporate all other three dimensions of contemporary economic development: economic, social and environmental.

  2. Building Technology Transfer Capacity in Turkish Universities: A Critical Analysis

    Science.gov (United States)

    Ranga, Marina; Temel, Serdal; Ar, Ilker Murat; Yesilay, Rustem Baris; Sukan, Fazilet Vardar

    2016-01-01

    University technology transfer has been receiving significant government funding since 2012. Results of this major investment are now expected by the Turkish government and society, not only in terms of better teaching and research performance, but also of new jobs, new products and services, enhanced regional development and contribution to…

  3. Teacher Linguistic, Cultural, and Technological Awareness Development and Transfer

    Science.gov (United States)

    Wang, Congcong

    2012-01-01

    This dissertation includes two studies: a pilot study on native-English-speaking preservice teachers' perceptions of learning a foreign language online and a follow-up study on inservice teachers' perceptions of transferring teacher linguistic, cultural and technological awareness into teaching practice. Conducted in 2010, the pilot…

  4. Space spin-offs: is technology transfer worth it?

    Science.gov (United States)

    Bush, Lance B.

    Dual-uses, spin-offs, and technology transfer have all become part of the space lexicon, creating a cultural attitude toward space activity justification. From the very beginning of space activities in the late 1950's, this idea of secondary benefits became a major part of the space culture and its beliefs system. Technology transfer has played a central role in public and political debates of funding for space activities. Over the years, several studies of the benefits of space activities have been performed, with some estimates reaching as high as a 60:1 return to the economy for each dollar spent in space activities. Though many of these models claiming high returns have been roundly criticized. More recent studies of technology transfer from federal laboratories to private sector are showing a return on investment of 2.8:1, with little evidence of jobs increases. Yet, a purely quantitative analysis is not sufficient as there exist cultural and social benefits attainable only through case studies. Space projects tend to have a long life cycle, making it difficult to track metrics on their secondary benefits. Recent studies have begun to make inroads towards a better understanding of the benefits and drawbacks of investing in technology transfer activities related to space, but there remains significant analyses to be performed which must include a combination of quantitative and qualitative analyses.

  5. Institutionalization of Technology Transfer Organizations in Chinese Universities

    Science.gov (United States)

    Cai, Yuzhuo; Zhang, Han; Pinheiro, Rómulo

    2015-01-01

    There is a lack of in-depth studies on how technology transfer organizations (TTOs) are organized and developed. This paper examines the evolution/institutionalization of TTOs in Tsinghua University (TU), as a microcosm of the development of TTOs in Chinese universities. It explores two issues in particular: what kinds of TTOs have been developed…

  6. Agile manufacturing and technology transfer to industrialising countries

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Boer, S.J.

    2003-01-01

    One of the requirements of agile manufacturing, the necessity to gain flexibility, can be reached by using a supplier network. A possible way to develop a supplier network is by subcontracting to parties in industrialising countries. In most cases, it is necessary to transfer technology. The

  7. Strategic Evaluation of University Knowledge and Technology Transfer Effectiveness

    Science.gov (United States)

    Tran, Thien Anh

    2013-01-01

    Academic knowledge and technology transfer has been growing in importance both in academic research and practice. A critical question in managing this activity is how to evaluate its effectiveness. The literature shows an increasing number of studies done to address this question; however, it also reveals important gaps that need more research.…

  8. Agile manufacturing and technology transfer to industrialising countries

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Boer, de Sirp

    2003-01-01

    One of the requirements of agile manufacturing, the necessity to gain flexibility, can be reached by using a supplier network. A possible way to develop a supplier network is by subcontracting to parties in industrialising countries. In most cases, it is necessary to transfer technology. The aircraf

  9. Strategic Evaluation of University Knowledge and Technology Transfer Effectiveness

    Science.gov (United States)

    Tran, Thien Anh

    2013-01-01

    Academic knowledge and technology transfer has been growing in importance both in academic research and practice. A critical question in managing this activity is how to evaluate its effectiveness. The literature shows an increasing number of studies done to address this question; however, it also reveals important gaps that need more research.…

  10. Institutionalization of Technology Transfer Organizations in Chinese Universities

    Science.gov (United States)

    Cai, Yuzhuo; Zhang, Han; Pinheiro, Rómulo

    2015-01-01

    There is a lack of in-depth studies on how technology transfer organizations (TTOs) are organized and developed. This paper examines the evolution/institutionalization of TTOs in Tsinghua University (TU), as a microcosm of the development of TTOs in Chinese universities. It explores two issues in particular: what kinds of TTOs have been developed…

  11. Taxation and the transfer of technology by multinational firms

    NARCIS (Netherlands)

    Huizinga, H.P.

    1995-01-01

    This paper analyzes a multinational's transfer of technology to a foreign subsidiary for the case where there is a risk of expropriation. An expropriation is assumed to give rise to competition between the parts of the previous multinational enterprise. To reduce the benefit of expropriation, the

  12. 48 CFR 970.5227-3 - Technology transfer mission.

    Science.gov (United States)

    2010-10-01

    ... benefits to the U.S. domestic economy. The Contractor shall consider the following factors in all of its... shall establish subject to the approval of the contracting officer a policy for making awards or sharing... believes that the transfer of technology to the U.S. domestic economy will benefit from, or other...

  13. Building technology transfer within research universities an entrepreneurial approach

    CERN Document Server

    O'Shea, Rory P

    2014-01-01

    For the past number of years, academic entrepreneurship has become one of the most widely studied topics in the entrepreneurship literature. Yet, despite all the research that has been conducted to date, there has not been a systematic attempt to analyze critically the factors which lie behind successful business spin-offs from university research. In this book, a group of academic thought-leaders in the field of technology transfer examine a number of areas critical to the promotion of start-ups on campus. Through a series of case studies, they examine current policies, structures, program initiatives and practices of fourteen international universities to develop a theory of successful academic entrepreneurship, with the aim of helping other universities to enhance the quality of their university transfer programs. This book is a valuable resource for researchers and graduate students working on innovation, entrepreneurship and technology transfer, as well as senior managers and policymakers.

  14. The Personal Health Technology Design Space

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Frost, Mads

    2016-01-01

    . To enable designers to make informed and well-articulated design decision, the authors propose a design space for personal health technologies. This space consists of 10 dimensions related to the design of data sampling strategies, visualization and feedback approaches, treatment models, and regulatory......Interest is increasing in personal health technologies that utilize mobile platforms for improved health and well-being. However, although a wide variety of these systems exist, each is designed quite differently and materializes many different and more or less explicit design assumptions...

  15. Research in space commercialization, technology transfer, and communications

    Science.gov (United States)

    1982-01-01

    Research and internship programs in technology transfer, space commercialization, and information and communications policy are described. The intern's activities are reviewed. On-campus research involved work on the costs of conventional telephone technology in rural areas, an investigation of the lag between the start of a research and development project and the development of new technology, using NASA patent and patent waiver data, studies of the financial impact and economic prospects of a space operation center, a study of the accuracy of expert forecasts of uncertain quantities and a report on frequency coordination in the fixed and fixed satellite services at 4 and 6 GHz.

  16. Using CASE to Exploit Process Modeling in Technology Transfer

    Science.gov (United States)

    Renz-Olar, Cheryl

    2003-01-01

    A successful business will be one that has processes in place to run that business. Creating processes, reengineering processes, and continually improving processes can be accomplished through extensive modeling. Casewise(R) Corporate Modeler(TM) CASE is a computer aided software engineering tool that will enable the Technology Transfer Department (TT) at NASA Marshall Space Flight Center (MSFC) to capture these abilities. After successful implementation of CASE, it could then go on to be applied in other departments at MSFC and other centers at NASA. The success of a business process is dependent upon the players working as a team and continuously improving the process. A good process fosters customer satisfaction as well as internal satisfaction in the organizational infrastructure. CASE provides a method for business process success through functions consisting of systems and processes business models; specialized diagrams; matrix management; simulation; report generation and publishing; and, linking, importing, and exporting documents and files. The software has an underlying repository or database to support these functions. The Casewise. manual informs us that dynamics modeling is a technique used in business design and analysis. Feedback is used as a tool for the end users and generates different ways of dealing with the process. Feedback on this project resulted from collection of issues through a systems analyst interface approach of interviews with process coordinators and Technical Points of Contact (TPOCs).

  17. Technology Transfer: From the Research Bench to Commercialization

    Directory of Open Access Journals (Sweden)

    Gail A. Van Norman, MD

    2017-02-01

    Full Text Available Progress in medicine hinges on the successful translation of basic science discoveries into new medical devices, diagnostics, and therapeutics. “Technology transfer” is the process by which new innovations flow from the basic research bench to commercial entities and then to public use. In academic institutions, intellectual property rights do not usually fall automatically to the individual inventor per se, but most often are the property of the institution. Technology transfer offices are tasked with seeing to it that such intellectual property rights are properly managed and commercialized. This 2-part series explores the technology transfer process from invention to commercialization. Part 1 reviews basic aspects of intellectual property rights, primarily patents and copyrights. Part 2 will discuss the ways in which inventions become commercialized through startup companies and licensing arrangements with industry players.

  18. West Valley transfer cart control system design description

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, E.C.; Crutcher, R.I.; Halliwell, J.W.; Hileman, M.S.; Moore, M.R.; Nodine, R.N.; Ruppel, F.R.; Vandermolen, R.I.

    1993-01-01

    Detail design of the control system for the West Valley Nuclear Services Vitrification Facility transfer cart has been completed by Oak Ridge National Laboratory. This report documents the requirements and describes the detail design of that equipment and control software. Copies of significant design documents including analysis and testing reports and design drawings are included in the Appendixes.

  19. State of the Science in Technology Transfer: At the Confluence of Academic Research and Business Development--Merging Technology Transfer with Knowledge Translation to Deliver Value

    Science.gov (United States)

    Lane, Joseph P.

    2010-01-01

    The practice of technology transfer continues to evolve into a discipline. Efforts continue in the field of assistive technology (AT) to move technology-related prototypes, resulting from development in the academic sector, to product commercialization within the business sector. The article describes how technology transfer can be linked to…

  20. Designing Interactive Technology for Teens

    DEFF Research Database (Denmark)

    Read, Janet; Iversen, Ole Sejer; Horton, Matthew

    2012-01-01

    This half-day workshop builds upon previous work by the authors in understanding and designing for teenagers where the initial concern was to understand cool. Expanding out from this work, the workshop proposers now seek to better understand all the activities around designing for teenagers – the...

  1. Biomedical Optical Imaging Technologies Design and Applications

    CERN Document Server

    2013-01-01

    This book provides an introduction to design of biomedical optical imaging technologies and their applications. The main topics include: fluorescence imaging, confocal imaging, micro-endoscope, polarization imaging, hyperspectral imaging, OCT imaging, multimodal imaging and spectroscopic systems. Each chapter is written by the world leaders of the respective fields, and will cover: principles and limitations of optical imaging technology, system design and practical implementation for one or two specific applications, including design guidelines, system configuration, optical design, component requirements and selection, system optimization and design examples, recent advances and applications in biomedical researches and clinical imaging. This book serves as a reference for students and researchers in optics and biomedical engineering.

  2. Inclusive Design for Assistive Technology

    DEFF Research Database (Denmark)

    Herriott, Richard

    2014-01-01

    base. However, the conditions under which mainstream ID operates are not the same as those for AT. The scale of projects is smaller as tend to be the organisations that do such work. The models for ID design processes are designed for commercially-driven, medium-to-large scale concerns. This raises...... a wheelchair for children, a washbasin system, a rollator and breathing apparatus for patients with chronic obstructive pulmonary disorder. The interviews conducted showed that there was required a different emphasis in the means by which users´ requirements were incorporated into the design process...

  3. Managing knowledge: a technology transfer case study in IEN

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ana Gabriella Amorim Abreu [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil). Servico de Transferencia de Tecnologia], e-mail: agaap@ien.gov.br

    2009-07-01

    Knowledge management is paramount nowadays. In order to enable the members of an organization to deal with their current situations effectively it is mandatory to know and enhance its intellectual capital. Managing the organization knowledge is important to the extent that it allows and reinforce its mission (what we are trying to accomplish?), and performance (how do we deliver the results?). As a result of a knowledge management effort, the organization can create value for itself and for society as a whole. In this paper, we argue that a technology developed at a research institute and transferred to an industry is knowledge to be managed in order to create value, both for the society and for the Institute. In order to manage such knowledge, it is proposed an approach to enhance the value creation potential of a technology transfer. This paper propose an investigation to expand the understanding on how a public research institute and a private firm could introduce their value creation wishes into a technology transfer agreement in a way to reflect and provide the realization of those wishes. It is proposed that, from the identification of the organizations expectations it is possible to infer which agreement attributes will contribute to that value creation and to establish satisfactory agreement configurations. These configurations have the potential to generate those consequences, given that, through the transfer, each organization seeks to increase potential benefits and to reduce potential sacrifices. Supported by exchange flow and value creation models, by the knowledge management and the means-end theory, an approach to increase the value creation potential of a technology transfer is proposed. Evidences from a case study sustain the proposed approach. The case study unity is the Instituto de Engenharia Nuclear, a public research institute. (author)

  4. Tutorial on technology transfer and survey design and data collection for measuring Internet and Intranet existence, usage, and impact (survey-2000) in acute care hospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    2001-02-01

    This paper provides a tutorial of technology transfer for management information systems in health care. Additionally it describes the process for a national survey of acute care hospitals using a random sample of 813 hospitals. The purpose of the survey was to measure the levels of Internet and Intranet existence and usage in acute care hospitals. The depth of the survey includes e-commerce for both business to business and with customers. The relationships with systems approaches, user involvement, user satisfaction and decision-making will be studied. Changes with results of a prior survey conducted in 1997 can be studied and enabling and inhabiting factors identified. This information will provide benchmarks for hospitals to plan their network technology position and to set goals.

  5. Designing Interactive Technology for Teens

    DEFF Research Database (Denmark)

    Read, Janet; Iversen, Ole Sejer; Horton, Matthew;

    2012-01-01

    This half-day workshop builds upon previous work by the authors in understanding and designing for teenagers where the initial concern was to understand cool. Expanding out from this work, the workshop proposers now seek to better understand all the activities around designing for teenagers – the...... space around teenagers whilst also distilling the similarities and differences in terms of similar approaches for children and adults....

  6. Climate Change and Requirement of Transfer of Environmentally Sound Technology

    DEFF Research Database (Denmark)

    implementation measures. I have also taken in to account the decisions of the annual meetings of the Conference of the parties (COPs) of the UNFCCC. The thesis has also made a brief comparative discussion between the provisions of international environmental laws and the provisions of intellectual property...... of international environmental debates. This thesis addresses, firstly, the possible methods of technology transfer and secondly, how current international environmental laws play its role to facilitate the transfer. Accordingly, I have focused on the concerned provisions of Kyoto Protocol and its subsequent...

  7. TRIPS Agreement, International Technology Transfer and Least Developed Countries

    Directory of Open Access Journals (Sweden)

    Mark V. Shugurov

    2015-04-01

    Full Text Available The author examines the role of the trade-related aspects of intellectual property rights (TRIPS Agreement in facilitation the international technology transfer to least developed countries (LDCs. The primary purpose of this study is to investigate the new conditions of technology development of LDCs connected with TRIPS adoption. Special attention is paid to the potentials of Article 66.2 for solving the problem of LDCs capacity building. The article presents detailed analysis of the discussions on the impact of the TRIPS provisions concerning the strengthening of the intellectual property rights (IPRs and the protection of technology transfer to LDCs. An important finding of this study is the recognition of the need to take urgent measures for the transition unto a new model of partnership between developed countries and LDCs in area of technology transfer and IPRs protection. The study concluded that a new model needed to be elaborated at the international level should be based on the effective implementation of Article 66.2 of the TRIPS Agreement.

  8. Imagining value, imagining users: academic technology transfer for health innovation.

    Science.gov (United States)

    Miller, Fiona Alice; Sanders, Carrie B; Lehoux, Pascale

    2009-04-01

    Governments have invested heavily in the clinical and economic promise of health innovation and express increasing concern with the efficacy and efficiency of the health innovation system. In considering strategies for 'better' health innovation, policy makers and researchers have taken a particular interest in the work of universities and related public research organizations: How do these organizations identify and transfer promising innovations to market, and do these efforts make best use of public sector investments? We conducted an ethnographic study of technology transfer offices (TTOs) in Ontario and British Columbia, Canada, to consider the place of health and health system imperatives in judgments of value in early-stage health innovation. Our analysis suggests that the valuation process is poorly specified as a set of task-specific judgments. Instead, we argue that technology transfer professionals are active participants in the construction of the innovation and assign value by 'imagining' the end product in its 'context of use'. Oriented as they are to the commercialization of health technology, TTOs understand users primarily as market players. The immediate users of TTOs' efforts are commercial partners (i.e., licensees, investors) who are capable of translating current discoveries into future commodities. The ultimate end users - patients, clinicians, health systems - are the future consumers of the products to be sold. Attention to these proximate and more distal users in the valuation process is a complex and constitutive feature of the work of health technology transfer. At the same time, judgements about individual technologies are made in relation to a broader imperative through which TTOs seek to imagine and construct sustainable innovation systems. Judgments of value are rendered sensible in relation to the logic of valuation for systems of innovation that, in turn, configure users of health innovation in systemic ways.

  9. Technology Transfer: A Case Study of Programs and Practices at NASA, DOD, DOC, and Academia

    Science.gov (United States)

    Blood, John R.

    2009-01-01

    Technology transfer is vital to humanity. It spurs innovation, promotes commerce, and provides technology-based goods and services. Technology transfer is also highly complex and interdependent in nature. This interdependence is exemplified principally by the various technology transfer interactions between government, industry, and academia. …

  10. Technology Transfer: A Case Study of Programs and Practices at NASA, DOD, DOC, and Academia

    Science.gov (United States)

    Blood, John R.

    2009-01-01

    Technology transfer is vital to humanity. It spurs innovation, promotes commerce, and provides technology-based goods and services. Technology transfer is also highly complex and interdependent in nature. This interdependence is exemplified principally by the various technology transfer interactions between government, industry, and academia. …

  11. BMDO: New Mexico Technology Transfer Demonstration Project. Interim final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The BMDO-New Mexico Technology Transfer Demonstration Project(BMDO-NM) was a collaborative effort among the national laboratories to identify and evaluate the commercial potential of selected SDI-funded technologies. The project was funded by BMDO (formerly known as the Strategic Defense Initiative Office or SDIO), the Technology Enterprise Division (NM-TED) of the NM Economic Development Division, and the three National Laboratories. The project was managed and supervised by SAGE Management Partners of Albuquerque, and project funding was administered through the University of New Mexico. The BMDO-NM Demonstration Project focused on the development of a process to assist technology developers in the evaluation of selected BMDO technology programs so that commercialization decisions can be made in an accelerated manner. The project brought together BMDO, the NM-TED, the University of New Mexico, and three New Mexico Federal laboratories -- Los Alamos (DOE), Phillips (DOD) and Sandia (DOE). Each national laboratory actively participated throughout the project through its technology transfer offices. New Mexico was selected as the site for the Demonstration Program because of its three national and federal research laboratories engaged in BMDO programs, and the existing relationship among state govemment, the labs, universities and local economic development and business assistance organizations. Subsequent Commercialization and Implementation phases for the selected technologies from LANL and SNL were completed by SAGE and the Project Team. Funding for those phases was provided by the individual labs as well as BMDO and NM-TED in kind services. NM-TED played a proactive role in this New Mexico partnership. Its mandate is to promote technology-based economic development, with a commitment to facilitate the use of technology by industry and business statewide. TED assumed the role of program manager and executing agent for BMDO in this demonstration project.

  12. Designing Work, Technology, Organizations and Vice Versa

    DEFF Research Database (Denmark)

    link work and organisation to the use of artefacts and technological systems (and vice versa), exploring by means of different cases of organizational and design research articulations and disarticulations of daily work and design; the doing of objects and technologies in everyday organizational life...... of design has been ‘black-boxed’ and easily implied as an updated (and more fashionable) version of the traditional idea of structuring organizational processes. At the same time, working and organizing seem to be embedded nowadays in increasingly complex and situated technologies and practices....... If the spreading of information and communication technologies (ICTs) has changed workplaces (and even the very meaning of 'workplace' as an area marked by the physical presence of different human actors), working and organizing mobilizes the joint action of humans, technologies and knowledges. The aim of the book...

  13. The ADAPT design model: towards instructional control of transfer

    NARCIS (Netherlands)

    Jelsma, Otto; Merrienboer, van Jeroen J.G.; Bijlstra, Jim P.

    1990-01-01

    This paper presents a detailed description of the ADAPT (Apply Delayed Automatization for Positive Transfer) design model. ADAPT is based upon production system models of learning and provides guidelines for developing instructional systems that offer transfer of leamed skills. The model suggests th

  14. Design Criteria for Bagless Transfer System (BTS) Packaging System

    Energy Technology Data Exchange (ETDEWEB)

    RISENMAY, H.R.

    2000-04-26

    This document provides the criteria for the design and installation of a Bagless Transfer System (BTS); Blend, Sieve and Balance Equipment; and Supercritical Fluid Extraction System (SFE). The project consists of 3 major modules: (1) Bagless Transfer System (BTS) Module; (2) Blend, Sieve and Balance Equipment; and (3) Supercritical Fluid Extraction (SFE) Module.

  15. The Design of Large Technological Systems

    DEFF Research Database (Denmark)

    Pineda, Andres Felipe Valderrama

    This is a study of the processes of design of large technological systems based on a two-case study: the rapid transit bus system, Transmilenio, in Bogotá, Colombia, and the urban rail system, Metro, in Copenhagen, Denmark. The research focused especially on the process by which designers define...... material scripts during the conception, construction, implementation and operation of large technological systems. The main argument is that designers define scripts in a process in which three parallel developments are at play: first, a reading takes place of the history (past, present, future...... dynamics involved in the design processes of large technological systems by revealing how their constitution produces a reconfiguration of the arena of development of urban transport. This dynamic substantiates the co-evolution of technological systems and the city....

  16. Teacher Design Knowledge for Technology Enhanced Learning

    NARCIS (Netherlands)

    McKenney-Jensh, Susan E.

    2014-01-01

    This presentation shares a framework for investigating the knowledge teachers need to be able to design technology-enhanced learning. Specific activities are undertaken to consider elements within the framework

  17. Curbing international transfers of arms and military technology

    Energy Technology Data Exchange (ETDEWEB)

    Vayrynen, R.

    1978-07-01

    The magnitude of the value and quantity of transfers of arms and military technology, the internationalization and commercialization of armaments industry (through vastly increased direct investments, through co-production, licensing and sub-contracting arrangements), the supply of training and technical services as adjuncts of arms supply, the blurring of the dividing line between military and civilian technology--all have made control measures infinitely more complicated and difficult. What compounds the difficulty is the fact that, since an overwhelmingly preponderant portion of arms transfers is made up of government-to-government transactions, control measures must emanate from supplying and/or receiving governments. But even if by some miracle these measures were forthcoming and proved effective, they will have touched only a small part of the problem of disarmament, because the share of international transfers of arms and military technology amounts to only 5 to 6% of the total world military expenditure. The other, far larger and more intractable, part relates to the staggering stockpiles of both conventional and nuclear weapon systems, almost wholly concentrated in the hands of the two superpowers. Both transfers and stockpiles of armaments are inextricably enmeshed in the existing international structure, epitomized in a dominance-dependency relationship. This paper examines the measures that the supplier nations and recipient nations can take unilaterally, bilaterally, and multilaterally to curb arms transfers, and comes to the conclusion that unilateral initiatives, especially on the part of receiving nations, are more feasible. Not to take such initiatives on the ground that they cannot succeed unless taken in concert is only an excuse for doing nothing.

  18. Ethics and technology transfer: patients, patents, and public trust.

    Science.gov (United States)

    Zucker, Deborah

    2011-06-01

    Universities and academic medical centers have been increasing their focus on technology transfer and research commercialization. With this shift in focus, academic-industry ties have become prevalent. These relationships can benefit academic researchers and help then to transform their research into tangible societal benefits. However, there also are concerns that these ties and the greater academic focus on commercialization might lead to conflicts of interest, especially financial conflicts of interest. This paper briefly explores some of these conflicts of interest, particularly relating to research and training. This paper also discusses some of the policies that have been, and are being, developed to try to mitigate and manage these conflicts so that academic involvement in technology transfer and commercialization can continue without jeopardizing academic work or the public's trust in them.

  19. Technology Transfer, Labour and Local Learning Processes in Malaysian Industry

    DEFF Research Database (Denmark)

    Wangel, Arne

    1999-01-01

    The transfer of technologies by the foreign electronic industries operating in Malaysia involves training of workers for various purposes. The upgrading of skills to assimilate the transferred technology aims at increasing productivity and product quality. Communicating awareness about work hazards...... is meant to reduce breakdowns in production and workers' accidents. How do the training paradigms, which transnationals introduce in their subsidiaries in Malaysia, interact with the preconditions of learning with the local labour force? In shaping local learning processes, what is the scope for workers...... and trade unions to articulate their interests and define the issues, in particular with regard to the working environment and the external environment? The paper will discuss these questions by exploring the significance of labour market structures, labour-management relations, concepts of knowledge...

  20. Transferring federally-funded technologies: New strategies for success

    Energy Technology Data Exchange (ETDEWEB)

    Stenehjem, E.J.

    1993-02-01

    In almost every year of the post-war era, the federal government has spent more on research and development (R D) than has US industry. These expenditures have been divided largely among the nation's federal laboratories and universities and. contrary to widely held beliefs, devoted in greater measure to applied R D than basic research. As pointed out by Salvador, this federally-funded research has resulted in the development of market/application oriented'' technology that, for the most part, has failed to reach the commercial marketplace. This report discusses new strategies for a more success technology transfer.

  1. Transferring federally-funded technologies: New strategies for success

    Energy Technology Data Exchange (ETDEWEB)

    Stenehjem, E.J.

    1993-02-01

    In almost every year of the post-war era, the federal government has spent more on research and development (R&D) than has US industry. These expenditures have been divided largely among the nation`s federal laboratories and universities and. contrary to widely held beliefs, devoted in greater measure to applied R&D than basic research. As pointed out by Salvador, this federally-funded research has resulted in the development of ``market/application oriented`` technology that, for the most part, has failed to reach the commercial marketplace. This report discusses new strategies for a more success technology transfer.

  2. Technology Transfer and Outreach for SNL/Rochester ALPHA Project.

    Energy Technology Data Exchange (ETDEWEB)

    Sinars, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    This report describes the next stage goals and resource needs for the joint Sandia and University of Rochester ARPA-E project. A key portion of this project is Technology Transfer and Outreach, with the goal being to help ensure that this project develops a credible method or tool that the magneto-inertial fusion (MIF) research community can use to broaden the advocacy base, to pursue a viable path to commercial fusion energy, and to develop other commercial opportunities for the associated technology. This report describes an analysis of next stage goals and resource needs as requested by Milestone 5.1.1.

  3. Small Business Innovation Research and Small Business Technology Transfer Programs

    Science.gov (United States)

    Garrison, Lynn; Jasper, Gwen

    2015-01-01

    The Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) programs fund the research, development, and demonstration of innovative technologies that fulfill NASA's needs as described in the annual Solicitations and have significant potential for successful commercialization. The only eligible participants are small business concern (SBC) with 500 or fewer employees or a nonprofit research institute such as a university or a research laboratory with ties to an SBC. These programs are potential sources of seed funding for the development of small business innovations.

  4. Designing Corporate Databases to Support Technology Innovation

    Science.gov (United States)

    Gultz, Michael Jarett

    2012-01-01

    Based on a review of the existing literature on database design, this study proposed a unified database model to support corporate technology innovation. This study assessed potential support for the model based on the opinions of 200 technology industry executives, including Chief Information Officers, Chief Knowledge Officers and Chief Learning…

  5. From Assigning to Designing Technological Agency

    NARCIS (Netherlands)

    Waelbers, Katinka

    2009-01-01

    In What Things Do, Verbeek (What things do: philosophical reflections on technology, agency and design. Penn State University Press, University Park, 2005a) develops a vocabulary for understanding the social role of technological artifacts in our culture and in our daily lives. He understands this r

  6. Energy efficient building design. A transfer guide for local governments

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The fundamental concepts of the building design process, energy codes and standards, and energy budgets are introduced. These tools were combined into Energy Design Guidelines and design contract requirements. The Guidelines were repackaged for a national audience and a videotape for selling the concept to government executives. An effort to test transfer of the Guidelines to outside agencies is described.

  7. ASSESSING THE IMPACT OF UNIVERSITY TECHNOLOGY TRANSFER ON FIRMS’ INNOVATION

    OpenAIRE

    Paola Cardamone; Valeria Pupo; Fernanda Ricotta

    2014-01-01

    This paper analyses the influence of universities on Italian firms’ probability to innovate. Using firm-level data, we focus on institutionalised technology transfer (TT) activities in universities, namely spin-offs, patents and research contracts. Results show that TT activities play a significant role in the probability to innovate by Italian manufacturing firms located in the same province as the university. Nevertheless, the effect is not uniform: the contribution of university TT activit...

  8. Optimising Gas Quenching Technology through Modelling of Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Florent Chaffotte; Linda L(e)fevre; Didier Domergue; Aymeric Goldsteinas; Xavier Doussot; Qingfei Zhang

    2004-01-01

    Gas Quenching represents an environmentally friendly alternative to more commonly-used oil quenching. Yet,the performances of this technology remain limited in terms of cooling rates reached compared to oil quenching. Distortion and process homogeneity also have to be controlled carefully. The efficiency of the gas quenching process fully depends on the heat transfer between the gas and the quenched parts. The goal of this study is the optimisation of the gas quenching process efficiency through a better understanding of the heat transfer phenomena involved. The study has been performed with modelling means and validated by an experimental approach. The configuration of the gas flow has a major influence on the heat transfer phenomena between the gas and the parts. The fluid dynamics modelling approach performed in this study allows to optimise the heat transfer phenomena. New gas quenching processes allowing enhanced gas quenching performance through higher cooling rates can be thereby identified. The new solutions have been validated in experimental and industrial conditions. Results obtained allow to expect significant improvement of high pressure gas quenching technology.

  9. Optimising Gas Quenching Technology through Modelling of Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    FiorentChaffotte; LindaLefevre; DidierDomergue; AymericGoidsteinas; XavierDoussot; QingfeiZhang

    2004-01-01

    Gas Quenching represents an environmentally friendly alternative to more commonly-used oil quenching. Yet,the performances of this technology remain limited in terms of cooling rates reached compared to oil quenching. Distortion and process homogeneity also have to be controlled carefully. The efficiency of the gas quenching process fully depends on the heat transfer between the gas and the quenched parts. The goal of this study is the optimisation of the gas quenching process efficiency through a better understanding of the heat transfer phenomena involved. The study has been performed with modelling means and validated by an experimental approach. ThE configuration of the gas flow has a major influence on the heat transfer phenomena between the gas and the parts. The fluid dynamics modelling approach performed in this study allows to optimise the heat transfer phenomena. New gas quenching processes allowing enhanced gas quenching performance through higher cooling rates can be thereby identified. The new solutions have been validated in experimental and industrial conditions. Results obtained allow to expect significant improvement of high pressure gas quenching technology.

  10. Comparative Characteristics of Technology Transfer in Developed Countries

    Directory of Open Access Journals (Sweden)

    Natalia Palii

    2013-08-01

    Full Text Available The research into innovation transfer in the global economy is a very urgent issue under the modern conditions of development of any country. Comparative characteristics of technology transfer in such countries and regions as the USA, EU, Asia, presented in the article, permit us to detect certain patterns of this process inherent both in developed and developing countries. The analysis made in the article can be useful for developing technology transfer processes in the Danube countries’ economy. The analytical method used in this research allowed us to determine the factor that is crucial for the growth of the world market of high-technology products and services. The analysis was conducted on several criteria such as the level of expenditure on R&D in the whole global economy, as well as in individual countries and regions. Besides, there were taken into account the added value of high-tech industries and the share of expenditure on R&D in total production costs. The conclusions regarding the effectiveness of funds allocated for scientific research and experimental development in the U.S. can be drawn on the basis of data presented in the paper on the amount of added value of the U.S. high-tech industries.

  11. Design Technology for Heterogeneous Embedded Systems

    CERN Document Server

    O'Connor, Ian; Piguet, Christian

    2012-01-01

    Designing technology to address the problem of heterogeneous embedded systems, while remaining compatible with standard “More Moore” flows, i.e. capable of handling simultaneously both silicon complexity and system complexity, represents one of the most important challenges facing the semiconductor industry today. While the micro-electronics industry has built its own specific design methods to focus mainly on the management of complexity through the establishment of abstraction levels, the emergence of device heterogeneity requires new approaches enabling the satisfactory design of physically heterogeneous embedded systems for the widespread deployment of such systems. This book, compiled largely from a set of contributions from participants of past editions of the Winter School on Heterogeneous Embedded Systems Design Technology (FETCH), proposes a broad and holistic overview of design techniques used to tackle the various facets of heterogeneity in terms of technology and opportunities at the physical ...

  12. Technology transfer and catch-up; Lessons from the commercial aircraft industry

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.; Heerkens, Johannes M.G.

    2007-01-01

    This paper analyses the technology development and technology transfer strategies in the aircraft manufacturing industry for four industrially developing countries. It is concluded from four case studies that technology catch-up is extremely difficult due to aircraft technology characteristics.

  13. Technology transfer present and futures in the electronic arts

    Directory of Open Access Journals (Sweden)

    Brian Degger

    2008-01-01

    Full Text Available We are entering an era where creating the fantastical is possible in the arts. In the areas of mixed reality and biological arts, responsive works are created based on advances in basic science and technology. This is enabling scientists and artists to pose new questions. As the time between discovery and application is so short, artists need imaginative ways of accessing new technology in order to critique and use it.These are the new paints that the majority of artists cannot afford or access, technology to enable cloning of DNA, to print channels on a chip, to access proprietary 3G networks. Currently, partnerships or residencies are used to facilitate artist’s access to these technologies. What would they do if technology was available that enabled them to make any art work they so desire? Are the limitations in current technology an advantage rather than a disadvantage in some of their works? Does interaction with technologists make their work more robust? Are there disadvantages? How do they get access to the technology they require? Open source or proprietary? Or have they encountered the situation where their vision is greater than technology allows. When their work breaks because of this fact, is their art broken? Blast Theory (Brighton,UK, FoAM(Brussels, Belgium and Amsterdam, Netherlands, SymbioticA (Perth, Australia are organisations pushing technological boundaries in the service of art. This paper addresses some questions of technology transfer in relation to recent artworks, particularly I like Frank in Adelaide (Blast Theory, transient reality generators (trg (FoAM and Multi electrode array artist (MeART (SymbioticA.

  14. 78 FR 48537 - Small Business Innovation Research and Small Business Technology Transfer Programs...

    Science.gov (United States)

    2013-08-08

    ... ADMINISTRATION Small Business Innovation Research and Small Business Technology Transfer Programs... Administration (SBA) is publishing the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program Commercialization Benchmark for the 11 participating agencies for public comment...

  15. Mastering Technologies in Design-Driven Innovation

    DEFF Research Database (Denmark)

    Dell'era, Claudio; Marchesi, Alessio; Verganti, Roberto

    2010-01-01

    and semantic dimensions of a product. Case studies of two leading Italian companies in the furniture industry--Kartell and Luceplan--illustrate two principal interpretations of the role of technology in radical design-driven innovation: technology as an enabler of new product meanings for the customer......Only a few companies have mastered the design-driven approach to innovation. This paper examines what it means to make design a central part of the business process, able to add value to products and create new markets. More specifically, it focuses on the interplay between the functional......, and the importance of supply networks that allow manufacturers to change product technologies quickly and experiment with new technologies....

  16. Nanocluster technologies for electronics design

    CERN Document Server

    Parker, A J

    2001-01-01

    based electronic systems. The work presented in this thesis covers an investigation into the use of metal nanoclusters in nanoelectronics design. Initial studies explored the interactions of the dodecanethiol passivated gold nanocluster, held in solution with toluene, and the native oxide covered silicon surface. Deposition of the clusters is achieved by pippetting mu-litre quantities of the solution onto the surface, and allowing the solvent to evaporate leaving the clusters as residue. Patterning of the surface with micron scale photoresist structures prior to cluster exposure, led to the selective aggregation of cluster deposits along the resist boundaries. An extension of this technique, examined the flow of the cluster solution along photoresist structures which extended beyond the solution droplet. Investigation into the electronic properties of nanocluster arrays generated non-linear current-voltage curves, which are explained in terms of two very simple models. These results cast doubt over the suitab...

  17. Mill Designed Bio bleaching Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Institute of Paper Science Technology

    2004-01-30

    A key finding of this research program was that Laccase Mediator Systems (LMS) treatments on high-kappa kraft could be successfully accomplished providing substantial delignification (i.e., > 50%) without detrimental impact on viscosity and significantly improved yield properties. The efficiency of the LMS was evident since most of the lignin from the pulp was removed in less than one hour at 45 degrees C. Of the mediators investigated, violuric acid was the most effective vis-a-vis delignification. A comparative study between oxygen delignification and violuric acid revealed that under relatively mild conditions, a single or a double LMS{sub VA} treatment is comparable to a single or a double O stage. Of great notability was the retention of end viscosity of LMS{sub VA} treated pulps with respect to the end viscosity of oxygen treated pulps. These pulps could then be bleached to full brightness values employing conventional ECF bleaching technologies and the final pulp physical properties were equal and/or better than those bleached in a conventional ECF manner employing an aggressively O or OO stage initially. Spectral analyses of residual lignins isolated after LMS treated high-kappa kraft pulps revealed that similar to HBT, VA and NHA preferentially attack phenolic lignin moieties. In addition, a substantial decrease in aliphatic hydroxyl groups was also noted, suggesting side chain oxidation. In all cases, an increase in carboxylic acid was observed. Of notable importance was the different selectivity of NHA, VA and HBT towards lignin functional groups, despite the common N-OH moiety. C-5 condensed phenolic lignin groups were overall resistant to an LMS{sub NHA, HBT} treatments but to a lesser extent to an LMS{sub VA}. The inactiveness of these condensed lignin moieties was not observed when low-kappa kraft pulps were biobleached, suggesting that the LMS chemistry is influenced by the extent of delignification. We have also demonstrated that the current

  18. Teachers as designers of technology enhanced learning

    NARCIS (Netherlands)

    Kali, Yael; McKenney, Susan; Sagy, Ornit; Voogt, Joke

    2015-01-01

    Design of (technology-enhanced) learning activities and materials is one fruitful process through which teachers learn and become professionals. To facilitate this process, research is needed to understand how teachers learn through design, how this process may be supported, and how teacher involvem

  19. Teachers as designers of technology enhanced learning

    NARCIS (Netherlands)

    Kali, Yael; McKenney, Susan; Sagy, Ornit; Voogt, Joke

    2015-01-01

    Design of (technology-enhanced) learning activities and materials is one fruitful process through which teachers learn and become professionals. To facilitate this process, research is needed to understand how teachers learn through design, how this process may be supported, and how teacher involvem

  20. Study on the key technologies of the Transfer Equipment Cask for Tokamak Equator Port Plug

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Buyun, E-mail: ayun@iim.ac.cn [Department of Automation, University of Science and Technology of China, Hefei, Anhui 230027 (China); Robot Sensors and Human-Machine Interaction Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Gao, Lifu [Department of Automation, University of Science and Technology of China, Hefei, Anhui 230027 (China); Robot Sensors and Human-Machine Interaction Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Cao, Huibin; Sun, Jian [Robot Sensors and Human-Machine Interaction Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Sun, Yuxiang; Song, Quanjun; Ma, Chengxue; Chang, Li; Shuang, Feng [Department of Automation, University of Science and Technology of China, Hefei, Anhui 230027 (China); Robot Sensors and Human-Machine Interaction Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2014-12-15

    Highlights: • Design on Intelligent Air Transfer System (IATS) for Transfer Equipment Cask (TECA). • A rhombic-like parallel robot for docking with minimum misalignment. • Design on electro-hydraulic servo system of the TECA for Tokamak Equator Port Plug (TEPP) manipulation. • A control architecture with several algorithms and information acquired from sensors could be used by the TECA for Remote Handling (RH). - Abstract: The Transfer Equipment Cask (TECA) is a key solution for Remote Handling (RH) in Tokamak Equator Port Plug (TEPP) operations. From the perspectives of both engineering and technical designs of effective experiments on the TEPP, key technologies on these topics covering the TECA are required. According to conditions in ITER (International Thermonuclear Experimental Reactor) and features of the TEPP, this paper introduces the design of an Intelligent Air Transfer System (IATS) with an adaptive attitude and high precision positioning that transports a cask system of more than 30 tons from the Tokamak Building (TB) to the Hot Cell Building (HCB). Additionally, different actuators are discussed, and the hydraulic power drive is eventually selected and designed. A rhombic-like parallel robot is capable of being used for docking with minimum misalignment. Practical mechanisms of the cask system are presented for hostile environments. A control architecture with several algorithms and information acquired from sensors could be used by the TECA. These designs yield realistic and extended applications for the RH of ITER.

  1. Solar sail time-optimal interplanetary transfer trajectory design

    Institute of Scientific and Technical Information of China (English)

    Sheng-Ping Gong; Yun-Feng Gao; Jun-Feng Li

    2011-01-01

    The fuel consumption associated with some interplanetary transfer trajectories using chemical propulsion is not affordable.A solar sail is a method of propulsion that does not consume fuel.Transfer time is one of the most pressing problems of solar sail transfer trajectory design.This paper investigates the time-optimal interplanetary transfer trajectories to a circular orbit of given inclination and radius.The optimal control law is derived from the principle of maximization.An indirect method is used to solve the optimal control problem by selecting values for the initial adjoint variables,which are normalized within a unit sphere.The conditions for the existence of the time-optimal transfer are dependent on the lightness number of the sail and the inclination and radius of the target orbit.A numerical method is used to obtain the boundary values for the time-optimal transfer trajectories.For the cases where no time-optimal transfer trajectories exist,first-order necessary conditions of the optimal control are proposed to obtain feasible solutions.The results show that the transfer time decreases as the minimum distance from the Sun decreases during the transfer duration.For a solar sail with a small lightness number,the transfer time may be evaluated analytically for a three-phase transfer trajectory.The analytical results are compared with previous results and the associated numerical results.The transfer time of the numerical result here is smaller than the transfer time from previous results and is larger than the analytical result.

  2. 76 FR 71048 - Sixth Annual Philip S. Chen, Jr. Distinguished Lecture on Innovation and Technology Transfer

    Science.gov (United States)

    2011-11-16

    ... Innovation and Technology Transfer AGENCY: National Institutes of Health, Public Health Service, HHS. ACTION....D. Distinguished Lecture on Innovation and Technology Transfer. DATES: Friday, December 9, 2011, at... Recombinant Immunotoxins: From Technology Transfer to the Patient.'' Dr. Pastan is an NIH Distinguished...

  3. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Science.gov (United States)

    2010-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission,...

  4. Optimal Selection Method of Process Patents for Technology Transfer Using Fuzzy Linguistic Computing

    Directory of Open Access Journals (Sweden)

    Gangfeng Wang

    2014-01-01

    Full Text Available Under the open innovation paradigm, technology transfer of process patents is one of the most important mechanisms for manufacturing companies to implement process innovation and enhance the competitive edge. To achieve promising technology transfers, we need to evaluate the feasibility of process patents and optimally select the most appropriate patent according to the actual manufacturing situation. Hence, this paper proposes an optimal selection method of process patents using multiple criteria decision-making and 2-tuple fuzzy linguistic computing to avoid information loss during the processes of evaluation integration. An evaluation index system for technology transfer feasibility of process patents is designed initially. Then, fuzzy linguistic computing approach is applied to aggregate the evaluations of criteria weights for each criterion and corresponding subcriteria. Furthermore, performance ratings for subcriteria and fuzzy aggregated ratings of criteria are calculated. Thus, we obtain the overall technology transfer feasibility of patent alternatives. Finally, a case study of aeroengine turbine manufacturing is presented to demonstrate the applicability of the proposed method.

  5. The Cryogenic Propellant Storage and Transfer Technology Demonstration Mission:. [Progress and Transition

    Science.gov (United States)

    Meyer, Michael L.; Taylor, William J.; Ginty, Carol A.; Melis, Matthew E.

    2014-01-01

    This presentation provides an overview of the Cryogenic Propellant Storage and Transfer (CPST) Mission from formulation through Systems Requirements Review and into preparation for Preliminary Design Review. Accomplishments of the technology maturation phase of the project are included. The presentation then summarizes the transition, due to Agency budget constraints, of CPST from a flight project into a ground project titled evolvable Cryogenics (eCryo).

  6. Development of mechanical design technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1999-03-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose application such as small capacity power generation, co-generation and sea water desalination. With this in mind, an integral reactor SMART is under development. Design concepts, system layout and types of equipment of integral reactor are significantly different from those of loop type reactor. Conceptual design development of mechanical structures of integral reactor SMART is completed through the first stage of the project. Efforts were endeavored for the establishment of design basis and evaluation of applicable codes and standards. Design and functional requirements of major structural components were setup, and three dimensional structural modelling of SMART reactor vessel assembly was prepared. Also, maintenance and repair scheme as well as preliminary fabricability evaluation were carried out. Since small integral reactor technology includes sensitive technologies and know-how's, it is hard to achieve systematic and comprehensive technology transfer from nuclear-advanced countries. Thus, it is necessary to develop the related design technology and to verify the adopted methodologies through test and experiments in order to assure the structural integrity of reactor system. (author)

  7. Matrix Transfer Function Design for Flexible Structures: An Application

    Science.gov (United States)

    Brennan, T. J.; Compito, A. V.; Doran, A. L.; Gustafson, C. L.; Wong, C. L.

    1985-01-01

    The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure.

  8. EPA and the Federal Technology Transfer Act: Opportunity knocks

    Energy Technology Data Exchange (ETDEWEB)

    Gatchett, A.M.; Fradkin, L.; Moore, M.; Gorman, T.; Ehrlich, A. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    In 1986, the Federal Technology Transfer Act (FTTA) was established to promote a closer, collaborative relationship between federal government agencies and the private sector. With the increasing need for new cost-effective technologies to prevent and control pollution, both the US Environmental Protection Agency (EPA) and private industry are encouraged to facilitate the transfer of knowledge and technology under this Act. The FTTA removed several of the legal and institutional barriers to cooperative research that existed before the Act`s passage. Through the FTTA, the government strives to promote the movement of its products, processes, skills, and knowledge into the private sector for further development and commercialization by encouraging the exchange of technical personnel and the sharing of facilities and other resources. Collaborative efforts between industry, federal agencies, and academia are made possible through cooperative research and development agreements (CRADAs). Forty-two CRADAs and five licensing agreements have been initiated with EPA under this program. This paper provides an overview of this new and innovative program within the EPA. 1 fig., 2 tabs.

  9. A first thermodynamic interpretation of the technology transfer activities

    CERN Document Server

    Ripandelli, S

    2016-01-01

    In the last years new interdisciplinary approaches to economics and social science have been developed. A Thermodynamic approach to socio-economics has brought to a new interdisciplinary scientific field called econophysics. Why thermodynamic? Thermodynamic is a statistical theory for large atomic system under constraints of energy[1] and the economy can be considered a large system governed by complex rules. The present job proposes a new application, starting from econophysic, passing throughout the thermodynamic laws to interpret and to described the Technology Transfer (TT) activities. Using the definition of economy (i.e. economy[dictionary def.] = the process or system by which goods and services are produced, sold, and bought in a country or region) the TT can be considered an important sub-domain of the economy and a transversal new area of the scientific research. The TT is the process of transferring knowledge, that uses the results from the research to produce innovation and to ensure that scientif...

  10. Open Source Radiation Hardened by Design Technology

    Science.gov (United States)

    Shuler, Robert

    2016-01-01

    The proposed technology allows use of the latest microcircuit technology with lowest power and fastest speed, with minimal delay and engineering costs, through new Radiation Hardened by Design (RHBD) techniques that do not require extensive process characterization, technique evaluation and re-design at each Moore's Law generation. The separation of critical node groups is explicitly parameterized so it can be increased as microcircuit technologies shrink. The technology will be open access to radiation tolerant circuit vendors. INNOVATION: This technology would enhance computation intensive applications such as autonomy, robotics, advanced sensor and tracking processes, as well as low power applications such as wireless sensor networks. OUTCOME / RESULTS: 1) Simulation analysis indicates feasibility. 2)Compact voting latch 65 nanometer test chip designed and submitted for fabrication -7/2016. INFUSION FOR SPACE / EARTH: This technology may be used in any digital integrated circuit in which a high level of resistance to Single Event Upsets is desired, and has the greatest benefit outside low earth orbit where cosmic rays are numerous.

  11. Technology transfer: Half-way houses. No. 17

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, R.W.

    1995-05-01

    In the fall of 1993, 1 was asked by the Center for National Security Studies (CNSS) of the Los Alamos National Laboratory (LANL) to study the ways in which technology transfer and defense conversion had been accomplished at General Atomics (GA) and Science Applications International Corporation (SAIC) by interviewing Harold Agnew, who had served as director of Los Alamos before becoming president of General Atomics in 1979, and J. Robert Beyster, who had been a staff member at Los Alamos and at General Atomics before founding SAIC in 1969. Harold Agnew readily complied with my request for an interview and also suggested that I talk to Douglas Fouquet, who is in charge of public relations at General Atomics and is their unofficial historian. Robert Beyster was not available for an interview, but, through the courtesy of John C. Hopkins, a former director of CNSS, I was able to interview SAIC`s executive vice president, Donald M. Kerr, who is also a former director at Los Alamos, and Steven Rockwood, a sector vice president at SAIC who was formerly a staff member at the Laboratory Because Agnew, Kerr, and Rockwood are all familiar with LANL, as well as with their respective companies, the interviews becam exercises In comparative analyses of technology transfer. In what follows, I have tried to summarize both the interviews and some of the research which attended them. It is the historian`s hope that by use of comparative institutional analyses, Laboratory administrators may learn something of value in directing their efforts toward the transfer of technology to private industry and other government agencies.

  12. Open Technology Approaches to Geospatial Interface Design

    Science.gov (United States)

    Crevensten, B.; Simmons, D.; Alaska Satellite Facility

    2011-12-01

    What problems do you not want your software developers to be solving? Choosing open technologies across the entire stack of software development-from low-level shared libraries to high-level user interaction implementations-is a way to help ensure that customized software yields innovative and valuable tools for Earth Scientists. This demonstration will review developments in web application technologies and the recurring patterns of interaction design regarding exploration and discovery of geospatial data through the Vertex: ASF's Dataportal interface, a project utilizing current open web application standards and technologies including HTML5, jQueryUI, Backbone.js and the Jasmine unit testing framework.

  13. Cast Metals Coalition Technology Transfer and Program Management Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people

  14. Technologies and Designs for Electronic Nanocomputers

    Science.gov (United States)

    Montemerlo, Michael S.; Love, J. Christopher; Opiteck, Gregory J.; Goldhaber, David J.; Ellenbogen, James C.

    1995-01-01

    Diverse space-related applications have been proposed for microscopic and sub-microscopic structures, mechanisms, and 'organisms'. To govern their functions, many of these tiny systems will require even smaller, nanometer-scale programmable computers, i.e. 'nanocomputers' on-board. This paper provides an overview of the results of a nearly two-year study of the technologies and designs that presently are in development for electronic nanocomputers. Strengths and weaknesses of the various technologies and designs are discussed, as well as promising directions for remedying some of the present research issues in this area. The presentation is a synopsis of a longer MITRE review article on the same subject.

  15. Evaluation of technology transferring: The experiences of the first Navy Domestic Technology Transfair. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    In August 1989 the Office of the Chief of Naval Research and the American Defense Preparedness Association conducted the first Navy Domestic Technology Transfair. The objective of the Transfair was to expose the US Navy`s years of solid experience across a broad span of technology to organizations outside of the Navy. It was an opportunity for private industry to capitalize on the Navy developed technology and this opening for industry was the primary focus of the Transfair. The event provided a unique forum to meet leading Navy scientific and engineering innovators face-to-face. Information was available concerning licensing of naval technology that was for sale to the private sector. Further, discussions covered opportunities for new cooperative research and development agreements with Navy laboratories and R&D activities. These agreements were authorized under the Federal Technology Transfer Act of 1986. The Transfair program was conducted in such a manner as to allow each Navy inventor, either scientist or engineer, to present a system, piece of hardware, or licensable concept in a formal paper presentation. Then, the Navy inventors were available in two, two-hour periods in which individual discussions were conducted, with attendees pursuing specific venues of cooperative agreements as desired. This report provides specifics concerning the technologies that were made available for transfer to the private sector during the Transfair. The Transfair concept sought to add special emphasis to the opening that the 1988 Technology Transfer Act brought to the marketplace. The experience was a step in the education of the possibilities for cooperation between the government and the private sector to share technology. Of additional significance is the economic enhancement for business expansion with the application of the technology to markets beyond defense.

  16. Opportunities for the transfer of astronomical technology to medicine.

    Science.gov (United States)

    Hughes, S

    2007-12-01

    There are many examples of technology transfer from astronomy to medicine, for example algorithms for reconstructing X-ray CT images were first developed for processing radio astronomy images. In more recent times, X-ray detectors developed for the Hubble Space Telescope have been used in a fine-needle breast biopsy system. Software originally developed to mosaic planetary images has been incorporated into a system for detecting breast cancer. Australia has expertise in the development of instrumentation for producing radio images from an array of radio telescopes and in multi-object fibre systems for capturing the spectra of hundreds of stellar objects simultaneously. Two possible applications of these Australian technologies are suggested that may merit further exploration. A meeting between interested parties is suggested to discuss future directions and funding.

  17. Design and User Evaluation of a Wheelchair Mounted Robotic Assisted Transfer Device

    Directory of Open Access Journals (Sweden)

    Garrett G. Grindle

    2015-01-01

    Full Text Available Purpose. The aim of this study is to describe the robotic assisted transfer device (RATD and an initial focus group evaluation by end users. The purpose of the device is to aid in the transfers of people with disabilities to and from their electric powered wheelchair (EPW onto other surfaces. The device can be used for both stand-pivot transfers and fully dependent transfers, where the person being transferred is in a sling and weight is fully on the robot. The RATD is fixed to an EPW to allow for its use in community settings. Method. A functional prototype of the RATD was designed and fabricated. The prototype was presented to a group of 16 end users and feedback on the device was obtained via a survey and group discussion. Results. Thirteen out of sixteen (83% participants agreed that it was important to develop this type of technology. They also indicated that user, caregiver, and robotic controls were important features to be included in the device. Conclusions. Participants in this study suggested that they would be accepting the use of robotic technology for transfers and a majority did not feel that they would be embarrassed to use this technology.

  18. Design and user evaluation of a wheelchair mounted robotic assisted transfer device.

    Science.gov (United States)

    Grindle, Garrett G; Wang, Hongwu; Jeannis, Hervens; Teodorski, Emily; Cooper, Rory A

    2015-01-01

    The aim of this study is to describe the robotic assisted transfer device (RATD) and an initial focus group evaluation by end users. The purpose of the device is to aid in the transfers of people with disabilities to and from their electric powered wheelchair (EPW) onto other surfaces. The device can be used for both stand-pivot transfers and fully dependent transfers, where the person being transferred is in a sling and weight is fully on the robot. The RATD is fixed to an EPW to allow for its use in community settings. A functional prototype of the RATD was designed and fabricated. The prototype was presented to a group of 16 end users and feedback on the device was obtained via a survey and group discussion. Thirteen out of sixteen (83%) participants agreed that it was important to develop this type of technology. They also indicated that user, caregiver, and robotic controls were important features to be included in the device. Participants in this study suggested that they would be accepting the use of robotic technology for transfers and a majority did not feel that they would be embarrassed to use this technology.

  19. Integrated collaborative building design using Internet technology

    OpenAIRE

    Roshani, D.M.R.

    2005-01-01

    Communication between the parties in a project of an integrated collaborative engineering system has been the subject of active research for many years. The construction industry has a long tradition of collaborative working between the members of the construction team. At the design stage, this has traditionally been based on physical meetings between representatives of the principal design team members. To aid these meetings, the information and communication technologies that are currently...

  20. Formal and Informal Technology Transfer from Academia to Industry : Complementarity Effects and Innovation Performance

    OpenAIRE

    Grimpe, Christoph; Hussinger, Katrin

    2008-01-01

    Literature has identified formal and informal channels in university technology transfer. While formal technology transfer typically involves a legal contract on a patent or on collaborative research activities, informal transfer channels refer to personal contacts and hence to the tacit dimension of knowledge transfer. Research is, however, scarce regarding the interaction of formal and informal transfer mechanisms. In this paper, we analyze whether these activities are mutually reinforcing,...

  1. The role of technological transfer in the societies based on knowledge economy

    OpenAIRE

    2009-01-01

    The knowledge based economy is an economy based on innovation. Implementing innovation requires acquiring new technology, using the technique of technological transfer. The problems and the timing for implementing an emerging technology are under discussion in this paper.

  2. Teaching creativity in a technological design context

    NARCIS (Netherlands)

    van Overveld, Kees; Ahn, René; Reymen, Isabelle; Ivashkov, Maxim

    2003-01-01

    We want to teach creativity techniques to prospective technological designers in a domainindependent way. To facilitate this, we adopt a format and nomenclature that is close to the terminology used by engineers. Central notions are concepts, attributes and values. A crucial role is played by, what

  3. Teaching creativity in a technological design context

    NARCIS (Netherlands)

    Overveld, van Kees; Ahn, René; Reymen, Isabelle; Ivashkov, Maxim

    2003-01-01

    We want to teach creativity techniques to prospective technological designers in a domainindependent way. To facilitate this, we adopt a format and nomenclature that is close to the terminology used by engineers. Central notions are concepts, attributes and values. A crucial role is played by, what

  4. Teachers as designers of technology enhanced learning

    NARCIS (Netherlands)

    Kali, Yael; McKenney, Susan

    2012-01-01

    Kali, Y., & McKenney, S. (2012). Teachers as designers of technology enhanced learning. In J. van Aalst, K. Thompson, M. J. Jacobson, & P. Reimann (Eds.), The future of learning: Proceedings of the 10th international conference of the learning sciences (Vol. 2, pp. 582-583). Sydney, NSW, Australia:

  5. RFIC and MMIC design and technology

    CERN Document Server

    Robertson, I D

    2001-01-01

    This book gives an in-depth account of GaAs, InP and SiGe, technologies and describes all the key techniques for the design of amplifiers,ranging from filters and data converters to image oscillators, mixers, switches, variable attenuators, phase shifters, integrated antennas and complete monolithic transceivers.

  6. Teaching Design of Emerging Embodied Technologies

    DEFF Research Database (Denmark)

    Majgaard, Gunver

    2014-01-01

    How does design of emerging embodied technologies enrich the HCI learning processes? We introduce a model for embodied interaction and use it in the development of a painting app for children, based on the motion sensor Asus Xtion Pro (similar to Kinect). The development of the app was part...

  7. Biometric systems technology, design and performance evaluation

    CERN Document Server

    Wayman, James; Maltoni, Davide

    2005-01-01

    A reference book for anyone involved in the design, management or implementation of biometric systems, and provides all the information needed to a build reliable system. It focuses on the four most widely used types of biometric technology - speech, fingerprint, iris and face recognition.

  8. Impact of design research on industrial practice tools, technology, and training

    CERN Document Server

    Lindemann, Udo

    2016-01-01

    Showcasing exemplars of how various aspects of design research were successfully transitioned into and influenced, design practice, this book features chapters written by eminent international researchers and practitioners from industry on the Impact of Design Research on Industrial Practice. Chapters written by internationally acclaimed researchers of design analyse the findings (guidelines, methods and tools), technologies/products and educational approaches that have been transferred as tools, technologies and people to transform industrial practice of engineering design, whilst the chapters that are written by industrial practitioners describe their experience of how various tools, technologies and training impacted design practice. The main benefit of this book, for educators, researchers and practitioners in (engineering) design, will be access to a comprehensive coverage of case studies of successful transfer of outcomes of design research into practice; as well as guidelines and platforms for successf...

  9. Development and technology transfer of Haemophilus influenzae type b conjugate vaccines for developing countries.

    Science.gov (United States)

    Beurret, Michel; Hamidi, Ahd; Kreeftenberg, Hans

    2012-07-13

    This paper describes the development of a Haemophilus influenzae type b (Hib) conjugate vaccine at the National Institute for Public Health and the Environment/Netherlands Vaccine Institute (RIVM/NVI, Bilthoven, The Netherlands), and the subsequent transfer of its production process to manufacturers in developing countries. In 1998, at the outset of the project, the majority of the world's children were not immunized against Hib because of the high price and limited supply of the conjugate vaccines, due partly to the fact that local manufacturers in developing countries did not master the Hib conjugate production technology. To address this problem, the RIVM/NVI has developed a robust Hib conjugate vaccine production process based on a proven model, and transferred this technology to several partners in India, Indonesia, Korea and China. As a result, emerging manufacturers in developing countries acquired modern technologies previously unavailable to them. This has in turn facilitated their approach to producing other conjugate vaccines. As an additional spin-off from the project, a World Health Organization (WHO) Hib quality control (QC) course was designed and conducted at the RIVM/NVI, resulting in an increased regulatory capacity for conjugate vaccines in developing countries at the National Regulatory Authority (NRA) level. For the local populations, this has translated into an increased and sustainable supply of affordable Hib conjugate-containing combination vaccines. During the course of this project, developing countries have demonstrated their ability to produce large quantities of high-quality modern vaccines after a successful transfer of the technology.

  10. Biomedical technical transfer. Applications of NASA science and technology

    Science.gov (United States)

    1976-01-01

    Lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative unit for evaluating heart patients. This technology is based on NASA research, using vacuum chambers to stress the cardiovascular system during space flight. Additional laboratory tests of an intracranial pressure transducer, have been conducted. Three new biomedical problems to which NASA technology is applicable are also identified. These are: a communication device for the speech impaired, the NASA development liquid-cooled garment, and miniature force transducers for heart research.

  11. Engineering, Trade, and Technical Cluster. Task Analyses. Drafting and Design Technology, Precision Machining Technology, Electronics Technology.

    Science.gov (United States)

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum and Resource Center.

    Developed in Virginia, this publication contains task analysis guides to support selected tech prep programs that prepare students for careers in the engineering, trade, and technical cluster. Three occupations are profiled: drafting and design technology, precision machining technology, and electronics technology. Each guide contains the…

  12. NASA's CSTI Earth-to-Orbit Propulsion Program - On-target technology transfer to advanced space flight programs

    Science.gov (United States)

    Escher, William J. D.; Herr, Paul N.; Stephenson, Frank W., Jr.

    1990-01-01

    NASA's Civil Space Technology Initiative encompasses among its major elements the Earth-to-Orbit Propulsion Program (ETOPP) for future launch vehicles, which is budgeted to the extent of $20-30 million/year for the development of essential technologies. ETOPP technologies include, in addition to advanced materials and processes and design/analysis computational tools, the advanced systems-synthesis technologies required for definition of highly reliable LH2 and hydrocarbon fueled rocket engines to be operated at significantly reduced levels of risk and cost relative to the SSME. Attention is given to the technology-transfer services of ETOPP.

  13. Inside the triple helix: technology transfer and commercialization in the life sciences.

    Science.gov (United States)

    Campbell, Eric G; Powers, Joshua B; Blumenthal, David; Biles, Brian

    2004-01-01

    The transfer and subsequent application of academic research results has demonstrable benefits for health care, researchers, universities, companies, and local economies. Nonetheless, at least three general concerns exist: bias in the reporting of results, limited revenues from these activities, and the lack of data to evaluate technology transfer activities. Future efforts with regard to technology transfer in the life sciences will need to recognize its importance without ignoring concerns or overestimating benefits. Next steps include better monitoring of university-industry relationships, the development of a better data system, the dissemination of best practices in technology transfer management, and evaluation of national technology-transfer policies.

  14. Reverse knowledge and technology transfer: imbalances caused by cognitive barriers in asymmetric relationships

    NARCIS (Netherlands)

    Millar-Schijf, Carla C.J.M.; Choi, Chong-Ju

    2009-01-01

    An imbalance exists in almost any type of knowledge and technology transfer due to the information asymmetry of the relationship. However, this is especially the case for reverse technology and knowledge transfer which is epitomised for us by "transfers from an MNC's subsidiary to its headquarters".

  15. Design of auto-tuning capacitive power transfer system for wireless power transfer

    Science.gov (United States)

    Lu, Kai; Kiong Nguang, Sing

    2016-09-01

    This paper presents the design of capacitive wireless power transfer systems based on a Class-E inverter approach. The main reason for adopting the Class-E inverter approach is because of its high efficiency, theoretically 100%. However, the operation of a Class-E inverter is highly sensitive to its circuit's parameters. In a typical capacitive wireless power transfer application, the capacitive coupling distance between plates is subject to changes, and hence its power transfer efficiency is greatly affected if the Class-E inverter is properly tuned. This drawback motivates us to develop an auto frequency tuning algorithm for a Class-E inverter which maintains its power transfer efficiency in spite of the variations of capacitive coupling distances between plates and circuit's parameters. Finally, simulation and experiment are carried out to verify the effectiveness of the auto frequency tuning algorithm.

  16. FY05 Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-11-01

    Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions

  17. FY05 Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-11-01

    Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions

  18. Designing Assistive Technologies for the ADHD Domain

    DEFF Research Database (Denmark)

    Sonne, Tobias; Grønbæk, Kaj

    (ADHD). In this paper, we identify a set of challenges that children with ADHD typically experience, which provides an empirical foundation for pervasive health researchers to address the ADHD domain. The work is grounded in extensive empirical studies and it is contextualized using literature on ADHD....... Based on these studies, we also present lessons learned that are relevant to consider when designing assistive technology to support children with ADHD. Finally, we provide an example (CASTT) of our own work to illustrate how the presented findings can frame research activities and be used to develop...... novel assistive technology to empower children with ADHD and improve their wellbeing....

  19. A flight test facility design for examining digital information transfer

    Science.gov (United States)

    Knox, Charles E.

    1990-01-01

    Information is given in viewgraph form on a flight test facility design for examining digital information transfer. Information is given on aircraft/ground exchange, data link research activities, data link display format, a data link flight test, and the flight test setup.

  20. Does Technology Transfer Help Small and Medium Companies? Empirical Evidence from Korea

    Directory of Open Access Journals (Sweden)

    Dae-Hwan Kim

    2016-11-01

    Full Text Available We challenge the view that technology transfer from big companies to small and medium (SM size companies helps SM companies to prosper. With a large dataset of SM companies in Korea, we utilize the stochastic production frontier (SPF model to examine the productivity of inputs and the generalized linear model (GLM to compare business performance between two groups of SM companies: SM companies that receive technology transfer and those that do not receive technology transfer from big companies. The empirical results demonstrate that the transfer of technology from big companies to SM companies help SM companies to enjoy productivity of capital. Nonetheless, SM companies receiving technology transfer were found to underperform in terms of labor productivity and profit margin compared to their counterparts. We further investigate the reasons why SM companies receiving technology transfer from big companies underperform relative to their counterparts, and our findings shows that the former do not export much of their product and face more difficulties such as lower price for their products imposed by big companies than the latter. By identifying the negative rather than the conventionally assumed positive effect of technology transfer, this paper contributes to the literature on the relationship between technology transfer and SM companies’ prosperity in the case of Korea. Our findings have important implications for how SM companies should strategize and rethink about the clauses embedded in the transfer of technology that they receive from big companies because technology transfer plays as a barrier to their prosperity.

  1. Research on localization and alignment technology for transfer cask

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingchuan, E-mail: jchwang@sjtu.edu.cn [Department of Automation, Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai (China); Yang, Ming; Chen, Weidong [Department of Automation, Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai (China)

    2015-10-15

    Highlights: • A method for the alignment between TB and HCB based on localizability is proposed. • A localization method based on the localizability estimation is proposed to realize the cask's localization accurately and ensures the transfer cask's accurate docking in the front of the window of Tokmak Building. • The experimental results show that the proposed algorithm works well in the indoor simulation environment. This system will be test in EAST of China. - Abstract: According to the long length characteristics of transfer cask compared to the environment space between Tokmak Building (TB) and HCB (Hot Cell Building), this paper proposes an autonomous localization and alignment method for the internal components transportation and replacement. A localization method based on the localizability estimation is used to realize the cask's localization and navigation accurately. Once the cask arrives at the front of the TB window, the position and attitude measurement system is used to detect the relative alignment error between the seal door of pallet and the window of TB real-time. The alignment between seal door and TB window could be realized based on this offset. The simulation experiment based on the real model is designed according to the real TB situation. The experiment results show that the proposed localization and alignment method can be used for transfer cask.

  2. Optimal Design and Analysis of the Stepped Core for Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Xiu Zhang

    2016-01-01

    Full Text Available The key of wireless power transfer technology rests on finding the most suitable means to improve the efficiency of the system. The wireless power transfer system applied in implantable medical devices can reduce the patients’ physical and economic burden because it will achieve charging in vitro. For a deep brain stimulator, in this paper, the transmitter coil is designed and optimized. According to the previous research results, the coils with ferrite core can improve the performance of the wireless power transfer system. Compared with the normal ferrite core, the stepped core can produce more uniform magnetic flux density. In this paper, the finite element method (FEM is used to analyze the system. The simulation results indicate that the core loss generated in the optimal stepped ferrite core can reduce about 10% compared with the normal ferrite core, and the efficiency of the wireless power transfer system can be increased significantly.

  3. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Science.gov (United States)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  4. 2nd Topical Workshop on Laser Technology and Optics Design

    CERN Document Server

    2013-01-01

    Lasers have a variety of applications in particle accelerator operation and will play a key role in the development of future particle accelerators by improving the generation of high brightness electron and exotic ion beams and through increasing the acceleration gradient. Lasers will also make an increasingly important contribution to the characterization of many complex particle beams by means of laser-based beam diagnostics methods. The second LANET topical workshop will address the key aspects of laser technology and optics design relevant to laser application to accelerators. The workshop will cover general optics design, provide an overview of different laser sources and discuss methods to characterize beams in details. Participants will be able to choose from a range of topical areas that go deeper in more specific aspects including tuneable lasers, design of transfer lines, noise sources and their elimination and non-linear optics effects. The format of the workshop will be mainly training-based wit...

  5. Technology transfer significance of the International Safeguards Project Office

    Energy Technology Data Exchange (ETDEWEB)

    Marcuse, W.; Waligura, A.J.

    1988-06-01

    The safeguards implemented by the International Atomic Energy Agency (IAEA) are of major importance to the non-proliferation objectives of the United States of America and other nations of the world. Assurance of safeguards effectiveness is mandatory to continued peaceful use of nuclear power. To enhance the ability of the IAEA to apply safeguards effectively, and to ensure that the IAEA does not lack technical assistance in critical areas, the US Congress has made available a special authorization for a Program for Technical Assistance to IAEA Safeguards (POTAS). This substantial program of technology transfer was initiated in 1976. The United States Departments of State and Energy, the Arms control and Disarmament Agency and the Nuclear Regulatory Commission have each accepted responsibility for parts of the Program for Technical Assistance to IAEA Safeguards. Funding is provided by state through the Foreign Assistance Act. This report provides a discussion of this program.

  6. Analysis and technology transfer report, 1989 and 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    The buildings sector used 29.6 quadrillion Btus (quads) of energy in 1989, or 36 percent of the total primary energy consumed in the United States. The major uses are for space heating and cooling, water heating, refrigeration, and lighting. Electricity is the dominant fuel, followed by natural gas, petroleum, and other fuels. Although there were dramatic improvements in energy efficiency in this sector from 1975 to 1985, in recent years energy use has grown rapidly. The large growth expected in commercial building floor space and in residential units means that total building-sector energy consumption could increase dramatically by the year 2030. The mission of the US DOE's Office of Building Technologies (OBT) is to lead a national program supporting private sector efforts to improve the energy efficiency of the nation's buildings and to increase their utilization of renewable energy sources. The Office is also responsible for energy efficiency planning and management for Federal buildings as well as buildings-related associated information, financial incentives, and regulatory functions that are determined to be appropriate for the Federal government. To accomplish its goals, OBT plans and conducts research and development to make technologies available and provides information on their effectiveness. The selection and management of OBT research activities requires an understanding of where and how energy is used within the buildings sectors, how energy use is expected to change in the future, and the potential impact of new and emerging technologies on energy use. Analysis activities serve to collect energy use information, provide the analysis necessary to apply this information to research and development planning, and develop analysis tools which the program uses to set priorities for research projects. This report summarizes analysis and technology transfer activities undertaken by OBT during 1989 and 1990. 101 refs., 19 figs., 9 tabs.

  7. Biomimetics for architecture & design nature, analogies, technology

    CERN Document Server

    Pohl, Göran

    2015-01-01

    This book provides the readers with a timely guide to the application of biomimetic principles in architecture and engineering design. As a result of a combined effort by two internationally recognized authorities, the biologist Werner Nachtigall and the architect Göran Pohl, the book describes the principles which can be used to compare nature and technology, and at the same time it presents detailed explanations and examples showing how biology can be used as a source of inspiration and “translated” in building and architectural solutions (biomimicry). Even though nature cannot be directly copied, the living world can provide architects and engineers with a wealth of analogues and inspirations for their own creative designs. But how can analysis of natural entities give rise to advanced and sustainable design? By reporting on the latest bionic design methods and using extensive artwork, the book guides readers through the field of nature-inspired architecture, offering an extraordinary resource for pro...

  8. Information to Change the World--Fulfilling the Information Needs of Technology Transfer.

    Science.gov (United States)

    Duberman, Josh; Zeller, Martin

    1996-01-01

    Provides an introduction to fulfilling the information needs of technology transfer. Highlights include a definition of technology transfer; government and university involvement; industry's role; publishers; an annotated list of information sources and contacts; technology assessment, including patent searching, competitive intelligence, and…

  9. 78 FR 59410 - Small Business Innovation Research and Small Business Technology Transfer Programs...

    Science.gov (United States)

    2013-09-26

    ... ADMINISTRATION Small Business Innovation Research and Small Business Technology Transfer Programs... period for the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR... Street SW., Washington, DC 20416; or send an email to Technology@sba.gov . Highlight the information that...

  10. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    Science.gov (United States)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  11. Technological Design in a multidisciplinary, sensory, context

    Directory of Open Access Journals (Sweden)

    Stephen Emmitt

    2011-11-01

    Full Text Available Architecture involves measurable (tangible and immeasurable (intangible elements, which makes the pursuit of good architecture a constant challenge for all project contributors. It is often the immeasurable aspects, the intuition and feel for a project and the way in which actors interact, which help to bring about exciting, creative and functional buildings that reflect the best of humanity, time and place. In this article the author explores the role of technological design within an environmentally responsible age. The narrative moves through the sustainable vernacular to the constructive link between design and construction, concluding with some reflections on the shape of things to come.

  12. The Software Technology Center at Lawrence Livermore National Laboratory: Software engineering technology transfer in a scientific R&D laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Zucconi, L.

    1993-12-01

    Software engineering technology transfer for productivity and quality improvement can be difficult to initiate and sustain in a non-profit research laboratory where the concepts of profit and loss do not exist. In this experience report, the author discusses the approach taken to establish and maintain a software engineering technology transfer organization at a large R&D laboratory.

  13. Factors that Influence the Dissemination of Knowledge in Technology Transfer among Malaysian Manufacturing Employees

    Directory of Open Access Journals (Sweden)

    Mughaneswari ap Sahadevan

    2014-04-01

    Full Text Available The meaning of technology transfer is so wide but mostly involving some form of technology-re- lated exchange. However, in this particular paper, technology transfer is consider as a concept to examine the process of disseminating knowledge and skills that a person owned to another per- son in order to generate higher productivity with new approach of producing a particular prod- uct or service. Although, many researchers have explored the evolution of technology transfer, nonetheless some drivers are yet to be explored in a Malaysian manufacturing industry. This study, therefore attempts to determine the relationship between absorptive capacity, transfer capacity, communication motivation and learning intent and technology transfer performance. A survey methodology was used in a Japanese multinational company based in Klang Valley, Malaysia. A total of 117 questionnaires were received. Results show that absorptive capacity is the most signifi- cant to influence technology transfer performance.

  14. Technology Transfer Challenges in Indonesia: An Experience from Industry Turbine Overhaul

    Directory of Open Access Journals (Sweden)

    Subiakto Soekarno

    2012-01-01

    Full Text Available This paper discusses the problems and challenges that Indonesia faces in the process of its technology transfer. Matters discussed in this paper are based on the lead writer’s personal observation and experience of the technology transfer taking place in Indonesia’s turbine maintenance and overhaul industry.The first challenge faced is the lack of basic skills on the part of factory workers. The next challenge is the lack of supporting industries. Furthermore, the low level of English proficiency of the workforce has contribution to the technology transfer problems. Final challenges are the low credibility of the government entities that oversee the turbine maintenance industry in Indonesia. The steps undertaken in the technology transfer in the turbine maintenance and overhaul industry in Indonesia is done through several complex stages.Keywords: challenges in the transfer of technology, technology transfer in Indonesia, turbine maintenance and overhaul industry.

  15. Analyzing the Impacts of an IPM Vegetable Technology Transfer in Bangladesh

    OpenAIRE

    McCarthy, Evan Tyler

    2015-01-01

    This study evaluates the effectiveness and impacts of USAID's IPM IL vegetable technology transfer subproject in Bangladesh. The effectiveness of the technology transfer is evaluated in four ways: IPM adoption rates and determinants of IPM adoption, measuring the impact of IPM adoption on vegetable yields, pest management costs, and the number of pesticide applications used, estimation of the economic impacts of IPM adoption and the technology transfer, and analysis of the relative efficienc...

  16. Technology Transfer: A Compilation of Varied Approaches to the Management of Innovation.

    Science.gov (United States)

    1982-12-01

    Intergovernmental Cooperation in Science and Tech- nology--J. E. Clark 89. Department of Defense Technology Transfer Consor- tium: An Overview--G. F...DEPARTMENT OF DEFENSE TECHNOLOGY TRANSFER CONSORTIUM: AN OVERVIEW George F. Linsteadt Abstract The federal R&D laboratories represent a large...agencies who have compatible requirements. The Department of Defense Technology Transfer Consortium, as a subset of the Federal Laboratory Consortium for

  17. The Impact of Virtual Collaboration and Collaboration Technologies on Knowledge Transfer and Team Performance in Distributed Organizations

    Science.gov (United States)

    Ngoma, Ngoma Sylvestre

    2013-01-01

    Virtual teams are increasingly viewed as a powerful determinant of competitive advantage in geographically distributed organizations. This study was designed to provide insights into the interdependencies between virtual collaboration, collaboration technologies, knowledge transfer, and virtual team performance in an effort to understand whether…

  18. The Impact of Virtual Collaboration and Collaboration Technologies on Knowledge Transfer and Team Performance in Distributed Organizations

    Science.gov (United States)

    Ngoma, Ngoma Sylvestre

    2013-01-01

    Virtual teams are increasingly viewed as a powerful determinant of competitive advantage in geographically distributed organizations. This study was designed to provide insights into the interdependencies between virtual collaboration, collaboration technologies, knowledge transfer, and virtual team performance in an effort to understand whether…

  19. Design Considerations for Space Transfer Vehicles Using Solar Thermal Propulsion

    Science.gov (United States)

    Emrich, William J.

    1995-01-01

    The economical deployment of satellites to high energy earth orbits is crucial to the ultimate success of this nations commerical space ventures and is highly desirable for deep space planetary missions requiring earth escape trajectories. Upper stage space transfer vehicles needed to accomplish this task should ideally be simple, robust, and highly efficient. In this regard, solar thermal propulsion is particularly well suited to those missions where high thrust is not a requirement. The Marshall Space Flight Center is , therefore, currently engaged in defining a transfer vehicle employing solar thermal propulsion capable of transferring a 1000 lb. payload from low Earth orbit (LEO) to a geostationary Earth orbit (GEO) using a Lockheed launch vehicle (LLV3) with three Castors and a large shroud. The current design uses liquid hydrogen as the propellant and employs two inflatable 16 x 24 feet eliptical off-axis parabolic solar collectors to focus sunlight onto a tungsten/rhenium windowless black body type absorber. The concentration factor on this design is projected to be approximately 1800:1 for the primary collector and 2.42:1 for the secondary collector for an overall concentration factor of nearly 4400:1. The engine, which is about twice as efficient as the best currently available chemical engines, produces two pounds of thrust with a specific impulse (Isp) of 860 sec. Transfer times to GEO are projected to be on the order of one month. The launch and deployed configurations of the solar thermal upper stage (STUS) are depicted.

  20. Development of a Screening Tool to Facilitate Technology Transfer of an Innovative Technology to Treat Perchlorate-Contaminated Water

    Science.gov (United States)

    2008-03-01

    specific technology screening instrument, Mandalas et al. (1998) demonstrated that technology transfer can be facilitated by making available user...S. D., and Aly, O. M. (1998). Chemistry of Water Treatment, 2nd Edition. Boca Raton, Florida: Lewis Publishers. Goltz, M. N., Mandalas , G. C...McGraw-Hill. Mandalas , G., Christ, J., and Goltz, M. (1998). Software to Aid Transfer of an Innovative In Situ Bioremediation Technology

  1. Designing Serious Games for getting transferable skills in training settings

    Directory of Open Access Journals (Sweden)

    Félix Buendía-García

    2014-02-01

    Full Text Available Nowadays, serious games are present in almost every educational context. The current work deals with the design of serious games oriented towards getting transferable skills in different kinds of training settings. These games can be a valuable way of engaging citizens and workers in the learning process by means of metaphors or similar mechanisms close to their user experience. They also contain an encouragement factor to uptake generic job competencies. An approach is proposed to develop this type of game by mixing traditional design steps with an instructional strategy to provide structured learning bites in training settings. Several game prototypes have been developed to test this approach in the context of courses for public employees. The obtained outcomes reveal the wider possibilities of serious games as educational resources, as well as the use of game achievements to evaluate the acquisition of transferable skills.

  2. Zero assignment and loop transfer recovery in LQG design

    Science.gov (United States)

    Shafai, B.; Beale, S.; Keel, L. H.

    1990-01-01

    The problem of loop transfer recovery (LTR) in linear quadratic Gaussian (LQG) design via observers is discussed. The LTR for both minimum and nonminimum phase systems is considered. For minimum phase systems, perfect recovery approaches are provided based on Luenberger proportional observer and proportional integral observer. For nonminimum phase systems, recent LTR approaches are summarized and the possibility of a new technique based on zero assignment is examined.

  3. Transferring Lens Prescriptions Between Lens-Design Programs

    Science.gov (United States)

    Stacy, John E.; Wooley, Laura; Carlin, Brian

    1989-01-01

    Optical Lens Prescription Data Formatter computer program enables user to transfer complicated lens prescriptions quickly and easily from one major optical-design program to another and back again. One can take advantage of inherent strength of either program. Programs are ACCOS V from Scientific Calculations, Inc., of Fishers, NY, and CODE V from Optical Research Associates of Pasadena, CA. VAX version written in FORTRAN.

  4. How do digital platforms for ideas, technologies, and knowledge transfer act as enablers for digital transformation?

    DEFF Research Database (Denmark)

    Hossain, Mokter; Lassen, Astrid Heidemann

    2017-01-01

    for research and development (R&D), idea generation, prediction, freelance work, peer production, co-creation, product design, and public engagement, to name but a few. For example, Dell’s IdeaStorm (Hossain & Islam, 2015a) and Starbucks’ MyStarbucksIdea (Hossain & Islam, 2015b) are two digital crowdsourcing...... are undertaking today (Berman, 2012). Despite the high significance of various digital platforms, there is limited knowledge in the extant literature about the effect of digital platforms on the organization. Thus, here we discuss how digital platforms for ideas, technologies, and knowledge transfer act...

  5. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  6. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  7. Designing institutions for climate change: Why rational design involves technology

    Energy Technology Data Exchange (ETDEWEB)

    Coninck, H. de [Energy Research Centre of the Netherlands, Petten (Netherlands)

    2008-09-30

    This paper aims to explore how to augment the institutional solutions offered by current political theory for addressing the unprecedented problem of climate change. Although steering directly at emission reductions in an international treaty has benefits in terms of cost-effectiveness, the paper arrives at the conclusion that considerations around technological development should be drawn into the treaty equation in order to generate sufficient reciprocity to have a politically feasible international regime. It then argues that the benefits of technology agreements for climate change mitigation may be larger than commonly assumed, as they - if properly designed - could lead to real emission reductions and provide more flexibility to reach agreement in post-2012 negotiations than proposals modelled exclusively on the Kyoto Protocol or other types of absolute emission targets. Based on rational design of international institutions for environmental governance, and attempting to take into account considerations of technological dynamics and the 'sociotechnical system', contours of a possible environmentally effective and politically feasible international climate change agreements are sketched.

  8. Moving R&D to the Marketplace, A Guidebook for Technology Transfer Managers

    Energy Technology Data Exchange (ETDEWEB)

    Mock, John E.; Kenkeremath, Deepak C.; Janis, F. Timothy

    1993-01-01

    This Guidebook serves as an introduction as well as a refresher for technology transfer managers. It focuses on the question: What can the Technology Transfer manager do when confronted by complex situations and events? The main functional issues addressed here concern the conduct of technology transfer in Technology Utilization programs. These R&D programs whose primary mission is to develop technologies that will be used outside of the Federal sector. Renewable energy, health care, and agricultural advances are technologies of this type. The contents of this Guidebook will be of value to managers in a variety of Federal, State, university and industry technology development and transfer programs. The general area of transferring service innovations is not covered here. The Guidebook is primarily about the development and care of hardware. This Guidebook makes no attempt to judge the value of specific technologies in meeting societal needs. Rather, it addresses the improvement of the technology transfer process itself. It does, however, include reminders that ascertainment of the social value of specific technologies is one of the important yet difficult tasks of R&D and technology transfer programs. [DJE-2005

  9. Giving It Away : Free Technology Transfer to the Irish SME Sector

    OpenAIRE

    Kavanagh, Peter; Maguire, Andy; Casey, James J.

    2006-01-01

    One of Europe’s major weaknesses lies in its inferiority in terms of transforming the results of technological research and skills into innovations and competitive advantages. (European Commission, 1995, p. 8.) Technology transfer is a key aspect of economic development and research administration. These concerns are shared equally between academia and industry on both sides of the Atlantic. As technology is developed at a greater rate, concerns about the technology transfer will heighten....

  10. LAN technology transfer using the Naval Postgraduate School as a case study

    OpenAIRE

    1995-01-01

    In today's Department of Defense (DoD) environment, more emphasis is being placed on using computing resources to receive and process information. Local area networks (LANs) are used to access these computing resources by users. As new resources are added to networks, an effective mechanism is required to transfer this technology to the users. The effective transfer of technology requires user awareness of the technology and the ability of the user to use the technology. NA NA U.S. N...

  11. Wind turbine technology principles and design

    CERN Document Server

    Adaramola, Muyiwa

    2014-01-01

    IntroductionPart I: AerodynamicsWind Turbine Blade Design; Peter J. Schubel and Richard J. CrossleyA Shrouded Wind Turbine Generating High Output Power with Wind-Lens Technology; Yuji Ohya and Takashi KarasudaniEcomoulding of Composite Wind Turbine Blades Using Green Manufacturing RTM Process; Brahim AttafAerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution; Travis J. Carrigan, Brian H. Dennis, Zhen X. Han, and Bo P. WangPart II: Generators and Gear Systems

  12. [Application of risk-based approach for determination of critical factors in technology transfer of production of medicinal products].

    Science.gov (United States)

    Beregovykh, V V; Spitskiy, O R

    2014-01-01

    Risk-based approach is used for examination of impact of different factors on quality of medicinal products in technology transfer. A general diagram is offered for risk analysis execution in technology transfer from pharmaceutical development to production. When transferring technology to full- scale commercial production it is necessary to investigate and simulate production process application beforehand in new real conditions. The manufacturing process is the core factorfor risk analysis having the most impact on quality attributes of a medicinal product. Further importantfactors are linked to materials and products to be handled and manufacturing environmental conditions such as premises, equipment and personnel. Usage of risk-based approach in designing of multipurpose production facility of medicinal products is shown where quantitative risk analysis tool RAMM (Risk Analysis and Mitigation Matrix) was applied.

  13. New technology for vitrification and field (microscope-free) warming and transfer of small ruminant embryos.

    Science.gov (United States)

    Isachenko, Vladimir; Alabart, Jose Luis; Dattena, Maria; Nawroth, Frank; Cappai, Pietro; Isachenko, Eugenia; Cocero, Maria Jesus; Olivera, Julio; Roche, Alberto; Accardo, Carla; Krivokharchenko, Alexander; Folch, Jose

    2003-03-01

    This study was designed to test the efficiency of recently developed vitrification technology followed by microscope-free thawing and transfer of sheep embryos. In a first set of experiments, in vivo derived embryos at the morula to blastocyst stage were frozen in an automated freezer in ethylene glycol, and after thawing and removal of cryoprotectants, were transferred to recipient ewes according to a standard protocol (control group). A second group of embryos were loaded into open-pulled straws (OPS) and plunged into liquid nitrogen after exposure at room temperature to the media: 10% glycerol (G) for 5 min, 10% G+20% ethylene glycol (EG) for 5 min, 25% G+25% EG for 30s; or 10% EG+10% DMSO for 3 min, 20% EG+20% DMSO+0.3M trehalose for 30s. The OPS were thawed by plunging into tubes containing 0.5M trehalose. After this rapid thawing, the embryos were directly transferred using OPS as the catheter for the transplantation process. In a second set of experiments, in vivo derived and in vitro produced expanded blastocysts were vitrified in OPS and then transferred as described above. The lambing rates recorded (59% for the conventionally cryopreserved in vivo derived embryos, 56% for the vitrified in vivo derived embryos, and 20% for the vitrified in vitro produced embryos), suggest the suitability of the vitrification technique for the transfer of embryos obtained both in vivo and in vitro. This simple technology gives rise to a high embryo survival rate and will no doubt have applications in rearing sheep or other small ruminants.

  14. The Effects of Absorptive Capacity and Recipient Collaborativeness as Technology Recipient Characteristics on Degree of Inter-Firm Technology Transfer

    Directory of Open Access Journals (Sweden)

    A. W. Sazali

    2009-01-01

    Full Text Available Problem statement: As an efficient means to increase global competitiveness, technological capabilities and potential for local innovation, organizations in the developing countries are working hard to collaborate, learn and internalize their foreign partner’s technological knowledge by forming strategic alliances or International Joint Ventures (IJVs. Technology recipient characteristics, as one of the important actors/facilitators of inter-firm technology transfer, have increasingly become crucial factors in determining the success or failure of inter-firm technology transfer within IJVs. Since the current issue on inter-firm Technology Transfer (TT in the developing countries is centered on the efficiency and effectiveness of the transfer process by the Multinationals (MNCs therefore the success is often associated with or measured by degree of technology transferred to local partners. Based on the underlying knowledge-based view and organizational learning perspective, this study aims to empirically examine the effects of two critical elements of technology recipient characteristics: Absorptive Capacity (ACAP and Recipient Collaborativeness (RCOL on degree of technology transfer: Degree of tacit and explicit knowledge in IJVs. Approach: Using the quantitative analytical approach, the theoretical model and hypotheses in this study were tested based on empirical data gathered from 128 joint venture companies registered with the Registrar of Companies Of Malaysia (ROC. Data obtained from the survey questionnaires were analyzed using the correlation coefficients and multiple linear regression analyses. Results: The results revealed that recipient collaborativeness as the critical element of technology recipient characteristics has strong significant effects on both degrees of tacit and explicit knowledge. Although absorptive capacity has been strongly emphasized of its significance effect, however, the results are not statistically significant

  15. Technology transfer at CERN a study on inter-organizational knowledge transfer within multi-national R&D collaborations

    CERN Document Server

    Huuse, H; Streit-Bianchi, M

    2004-01-01

    This study focus on the knowledge aspect of inter-organizational technology transfer projects. We have studied two large R&D collaborations where CERN is involved as one of several participating organizations, in order to reveal the causalities related to the knowledge transfer processes within these projects. The objective of the study is to understand how knowledge transfer happens, identify influencing factors to the process, and finally investigate the outcome of such processes. The study is founded on a thorough literature review where we examine different aspects of inter-organizational knowledge transfer. Based on the theory, we develop an analytic framework and establish different elements in the knowledge transfer process to study in more detail. This framework illustrates the relation between the different elements in a knowledge transfer process and provides the structure for our empirical foundation. We perform an explanatory embedded multiple case study and analyze our findings in terms of th...

  16. Your idea and your university: issues in academic technology transfer.

    Science.gov (United States)

    Smith, Charles D

    2011-06-01

    Research discoveries may lead to products for commercial development. A central consideration for the researcher is how involved she or he will be in the commercialization process. In some cases, a university out-licenses the intellectual property, whereas in other cases, the investigator may want to be involved in the development process and choose to start his or her own company to develop and possibly to manufacture and sell the product. Before undertaking such a challenge, however, the investigator-turned-entrepreneur must consider a variety of issues, including career goals, financial and time commitments, potential conflicts of interest and/or commitment, start-up funding, and his or her ability to run a company or step aside to allow business experts to make necessary decisions. This paper discusses some personal considerations in deciding to start a spinout company and provides information on some of the available government grants to assist you should you decide to undertake your product's commercial development. In particular, the Small Business Innovative Research and Small Business Technology Transfer programs of federal funding agencies often are the source of early funding for new biomedical companies.

  17. Technology transfer and catch-up; Lessons from the commercial aircraft industry

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.; Heerkens, Hans

    2007-01-01

    This paper analyses the technology development and technology transfer strategies in the aircraft manufacturing industry for four industrially developing countries. It is concluded from four case studies that technology catch-up is extremely difficult due to aircraft technology characteristics. Base

  18. Integrating Instructional Technology with Information Technology and Its Implications for Designing Electronic Learning Systems.

    Science.gov (United States)

    Abdelraheem, Ahmed Yousif

    2005-01-01

    In this paper the concepts of technology, instructional technology, and information technology are presented. The integration of instructional technology, and information technology is established and its implications for electronic learning systems design are discussed. One can say that: information and instructional designers can design…

  19. A Predictive Model of Technology Transfer Using Patent Analysis

    OpenAIRE

    Jaehyun Choi; Dongsik Jang; Sunghae Jun; Sangsung Park

    2015-01-01

    The rapid pace of technological advances creates many difficulties for R&D practitioners in analyzing emerging technologies. Patent information analysis is an effective tool in this situation. Conventional patent information analysis has focused on the extraction of vacant, promising, or core technologies and the monitoring of technological trends. From a technology management perspective, the ultimate purpose of R&D is technology commercialization. The core of technology commercializ...

  20. Essential Concepts of Engineering Design Curriculum in Secondary Technology Education

    Science.gov (United States)

    Wicklein, Robert; Smith, Phillip Cameron, Jr.; Kim, Soo Jung

    2009-01-01

    Technology education is a field of study that seeks to promote technological literacy for all students. Wright and Lauda defined technology education as a program designed to help students "develop an understanding and competence in designing, producing, and using technological products and systems, and in assessing the appropriateness of…

  1. Target selection and transfer trajectories design for exploring asteroid mission

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Technique of target selection and profiles of transfer trajectory for Chinese asteroid exploring mission are studied systemically.A complete set of approaches to selecting mission targets and designing the transfer trajectory is proposed.First,when selecting a target for mission,some factors regarded as the scientific motivations are discussed.Then,when analyzing the accessibility of targets,instead of the classical strategy,the multiple gravity-assist strategy is provided.The suitable and possible targets,taking into account scientific value and technically feasible,are obtained via selection and estimation.When designing the transfer trajectory for exploring asteroid mission,an approach to selecting gravity-assist celestial body is proposed.Finally,according to the mission constraints,the trajectory profile with 2-years △V-EGA for exploring asteroid is presented.Through analyzing the trajectory profile,unexpected result that the trajectory would pass by two main-belts asteroids is found.So,the original proposal is extended to the multiple flybys mission.It adds the scientific return for asteroid mission.

  2. Public Relations and Technology Transfer Offices: An Assessment of US Universities' Relations with Media and Government

    Science.gov (United States)

    Haney, James M.; Cohn, Andrew

    2004-01-01

    This article discusses the importance for technology transfer offices of sound media and government relations strategies. It reports the results of a nationwide electronic survey in the USA and interviews with technology transfer managers on how they handle public relations issues in their offices. Strengths and weaknesses of their communication …

  3. Why NIH Scientists Need to Report an Invention | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    As an NIH scientist, you must report new inventions, including improvements of previously reported inventions, to the Technology Transfer Manager assigned to your Laboratory. If you do not know the name of your TTM, please call or email the Technology Transfer Center.  | [google6f4cd5334ac394ab.html

  4. A New Technology Transfer Paradigm: How State Universities Can Collaborate with Industry in the USA

    Science.gov (United States)

    Renault, Catherine S.; Cope, Jeff; Dix, Molly; Hersey, Karen

    2008-01-01

    In some US states, policy makers, pressed by local and regional industrial interests, are debating how to "reform" technology transfer at public universities. "Reform" in this context is generally understood to mean redirecting university technology transfer activities to increase the benefits of state-funded research to local industries.…

  5. Assessment of research and technology transfer needs for wood-frame housing

    Science.gov (United States)

    Kevin Powell; David Tilotta; Karen Martinson

    2008-01-01

    Improvements to housing will require both research and the transfer of that research to homebuilders, homebuyers, and others in need of technology. This report summarizes results of a national survey on research and technology transfer needs for housing and prioritizes those needs. Survey participants included academicians, builders, code officials, government...

  6. Introduction to the Workshop on Software Technology Transfer in Software Engineering

    NARCIS (Netherlands)

    Harrison, Warren; Wieringa, Roel

    2006-01-01

    The goal of the Workshop on Technology Transfer in Software Engineering is to increase our understanding of technology transfer in software engineering, and to learn from successful case studies. We wanted to bring researchers and practitioners together to create an inventory of problems in software

  7. A New Technology Transfer Paradigm: How State Universities Can Collaborate with Industry in the USA

    Science.gov (United States)

    Renault, Catherine S.; Cope, Jeff; Dix, Molly; Hersey, Karen

    2008-01-01

    In some US states, policy makers, pressed by local and regional industrial interests, are debating how to "reform" technology transfer at public universities. "Reform" in this context is generally understood to mean redirecting university technology transfer activities to increase the benefits of state-funded research to local industries.…

  8. The Status Quo and Prospect of Chinese-funded Enterprises Technology Transfer to Africa

    Institute of Scientific and Technical Information of China (English)

    Yang Guang; Li Xinfeng; Chen Mo

    2015-01-01

    Weak technical foundation is an important bottleneck to restrict economic growth of African countries. To promote the technological progress of Africa, the Chinese African strategy always encourages and supports Chinese-funded enterprises to transfer technology to Africa, but it is worth nothing that the critique by some African scholars and local communities on technology transfer to Africa by the Chinese-funded enterprises is spreading. In fact, in order to implement the "localization" strategy, develop African market or honor cooperation agreement on additional technical transfer, Chinese-funded enterprises always adhere to actively carrying out technology transfer to Africa, and have made certain achievements in improving the host countries’ technical environment, increasing labor income and others. In order to cope with the challenges and dispel the crisis of public opinion, China should uphold the concept of "teaching how to fish" and push forward the continuous upgrading and optimization of technology transfer to Africa all-dimensionally.

  9. Introducing economic parameters in industrial flotation dimensionless models used for intra-factory technology transfer

    Science.gov (United States)

    Batzias, Dimitris; Ifanti, Konstantina

    2012-12-01

    In this work, intra-factory technology transfer is realized by means of scale-up procedures, including the formation of a representative original set of dimensionless groups, when know-how obtained in the laboratory is transferred progressively (in successive steps) into industrial scale. For saving resources (highly skilled manpower, time, materials, energy) a Knowledge Base (KB) is designed/developed to maintain experience in flotation and select relevant information from other Data/Information/Knowledge Bases. Of significant importance is the introduction of economic parameters referring to investment and operation of the industrial unit, thus taking into account the capital and operating cost of output, respectively. We have proved that this introduction causes several problems since new technological dimensions should be also introduced (so that the economic parameters become meaningful) resulting by dimensional analysis to a new solution set that is incompatible to the original one. We solved this problem by keeping the original set and incorporating into it only the new dimensionless groups (eliminating all additional technological dimensions introduced ad hoc).

  10. Technology transfer metrics: Measurement and verification of data/reusable launch vehicle business analysis

    Science.gov (United States)

    Trivoli, George W.

    1996-01-01

    Congress and the Executive Branch have mandated that all branches of the Federal Government exert a concentrated effort to transfer appropriate government and government contractor-developed technology to the industrial use in the U.S. economy. For many years, NASA has had a formal technology transfer program to transmit information about new technologies developed for space applications into the industrial or commercial sector. Marshall Space Flight Center (MSFC) has been in the forefront of the development of U.S. industrial assistance programs using technologies developed at the Center. During 1992-93, MSFC initiated a technology transfer metrics study. The MSFC study was the first of its kind among the various NASA centers. The metrics study is a continuing process, with periodic updates that reflect on-going technology transfer activities.

  11. Information systems and technology transfer programs on geothermal energy and other renewable sources of energy

    Energy Technology Data Exchange (ETDEWEB)

    Lippmann, M.J.; Antunez, E.

    1996-01-01

    In order to remain competitive, it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them, is also given.

  12. Liquid metal reactor development. Development of LMR design technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Cheol; Kim, Y. I.; Kim, Y. G.; Kim, E. K.; Song, H.; Chung, H. T.; Sim, Y. S.; Min, B. T.; Kim, Y. S.; Wi, M. H.; Yoo, B.; Lee, J. H.; Lee, H. Y.; Kim, J. B.; Koo, G. H.; Hahn, D. H.; Na, B. C.; Hwang, W.; Nam, C.; Ryu, W. S.; Lim, G. S.; Kim, D. H.; Kim, J. D.; Gil, C. S.

    1997-07-01

    This project was performed in five parts, the scope and contents of which are as follows: The nuclear data processing system was established and the KFS group constant library was improved and verified. Basic computation system was constructed by either developing or adding its function. Input/output (I/O) interface processing was developed to establish an integrated calculation system for LMR core nuclear rand thermal-hydraulic design and analysis. An experimental data analysis was performed to validate the constructed core neutronic calculation system. Using the established core calculation system and design technology, preliminary core design and performance analysis on the domestic LMR core design concept were carried out. To develop the basic technology of the LMR system analysis, LMR system behavior characteristics evaluation, thermal -fluid system analysis in the reactor pool, preliminary overall plant analysis and computer codes development have been performed. A porous model and simple one-dimensional model have been evaluated for the reactor pool analysis. The evaluation of the residual heat removal system on different design concepts has been also conducted. For the development of high temperature structural analysis, the heat transfer and thermal stress analyses were performed using finite element program with user subroutine that has been developed with an implementation of the Chaboche constitutive model for inelastic analysis capability, and the evaluation of creep-fatigue and ratcheting behavior of high temperature structure was carried out using this program. for development of the seismic isolation system and to predict the shear behavior for the laminated rubber bearing were established. And the behavior tests of isolation bearing and rubber specimens were carried out, and the seismic response tests for the isolation model structure were performed using the 30 ton shaking table. (author). 369 refs., 119 tabs., 320 figs.

  13. An empirical research on relationships between subjective judgement, technology acceptance tendency and knowledge transfer

    Science.gov (United States)

    Dai, Chien-Yun; Chen, Hsiao-Ming; Chen, Wan-Fei; Wu, Chia-Huei; Li, Guodong; Wang, Jiangtao

    2017-01-01

    The purpose of this study was to explore the relationships among employees' usage intention pertaining to mobile information devices, focusing on subjective judgement, technology acceptance tendency, information sharing behavior and information transfer. A research model was established to verify several hypotheses. The research model based on integrated concepts of knowledge management and technology acceptance modeling. Participants were employees of enterprises in Taiwan, selected by combining snowball and convenience sampling. Data obtained from 779 e-surveys. Multiple-regression analysis was employed for hypothesis verification. The results indicate that perceived ease-of-use of mobile devices was affected by computer self-efficacy and computer playfulness directly; meanwhile, perceived ease-of-use directly affects perceived usefulness. In addition, perceived ease-of-use and perceived usefulness can predict information-sharing behavior in a positive manner, and impact knowledge transfer as well. Based on the research findings, it suggested that enterprises should utilize mobile information devices to create more contact with customers and enrich their service network. In addition, it is recommended that managers use mobile devices to transmit key information to their staff and that they use these devices for problem-solving and decision-making. Further, the staff’s skills pertaining to the operation of mobile information devices and to fully implement their features are reinforced in order to inspire the users' knowledge transfer. Enhancing the playfulness of the interface is also important. In general, it is useful to promote knowledge transfer behavior within an organization by motivating members to share information and ideas via mobile information devices. In addition, a well-designed interface can facilitate employees' use of these devices. PMID:28886088

  14. An empirical research on relationships between subjective judgement, technology acceptance tendency and knowledge transfer.

    Science.gov (United States)

    Yuan, Yu-Hsi; Tsai, Sang-Bing; Dai, Chien-Yun; Chen, Hsiao-Ming; Chen, Wan-Fei; Wu, Chia-Huei; Li, Guodong; Wang, Jiangtao

    2017-01-01

    The purpose of this study was to explore the relationships among employees' usage intention pertaining to mobile information devices, focusing on subjective judgement, technology acceptance tendency, information sharing behavior and information transfer. A research model was established to verify several hypotheses. The research model based on integrated concepts of knowledge management and technology acceptance modeling. Participants were employees of enterprises in Taiwan, selected by combining snowball and convenience sampling. Data obtained from 779 e-surveys. Multiple-regression analysis was employed for hypothesis verification. The results indicate that perceived ease-of-use of mobile devices was affected by computer self-efficacy and computer playfulness directly; meanwhile, perceived ease-of-use directly affects perceived usefulness. In addition, perceived ease-of-use and perceived usefulness can predict information-sharing behavior in a positive manner, and impact knowledge transfer as well. Based on the research findings, it suggested that enterprises should utilize mobile information devices to create more contact with customers and enrich their service network. In addition, it is recommended that managers use mobile devices to transmit key information to their staff and that they use these devices for problem-solving and decision-making. Further, the staff's skills pertaining to the operation of mobile information devices and to fully implement their features are reinforced in order to inspire the users' knowledge transfer. Enhancing the playfulness of the interface is also important. In general, it is useful to promote knowledge transfer behavior within an organization by motivating members to share information and ideas via mobile information devices. In addition, a well-designed interface can facilitate employees' use of these devices.

  15. Secure, Mobile, Wireless Network Technology Designed, Developed, and Demonstrated

    Science.gov (United States)

    Ivancic, William D.; Paulsen, Phillip E.

    2004-01-01

    The inability to seamlessly disseminate data securely over a high-integrity, wireless broadband network has been identified as a primary technical barrier to providing an order-of-magnitude increase in aviation capacity and safety. Secure, autonomous communications to and from aircraft will enable advanced, automated, data-intensive air traffic management concepts, increase National Air Space (NAS) capacity, and potentially reduce the overall cost of air travel operations. For the first time ever, secure, mobile, network technology was designed, developed, and demonstrated with state-ofthe- art protocols and applications by a diverse, cooperative Government-industry team led by the NASA Glenn Research Center. This revolutionary technology solution will make fundamentally new airplane system capabilities possible by enabling secure, seamless network connections from platforms in motion (e.g., cars, ships, aircraft, and satellites) to existing terrestrial systems without the need for manual reconfiguration. Called Mobile Router, the new technology autonomously connects and configures networks as they traverse from one operating theater to another. The Mobile Router demonstration aboard the Neah Bay, a U.S. Coast Guard vessel stationed in Cleveland, Ohio, accomplished secure, seamless interoperability of mobile network systems across multiple domains without manual system reconfiguration. The Neah Bay was chosen because of its low cost and communications mission similarity to low-Earth-orbiting satellite platforms. This technology was successfully advanced from technology readiness level (TRL) 2 (concept and/or application formation) to TRL 6 (system model or prototype demonstration in a relevant environment). The secure, seamless interoperability offered by the Mobile Router and encryption device will enable several new, vehicle-specific and systemwide technologies to perform such things as remote, autonomous aircraft performance monitoring and early detection and

  16. How Design Experiments Can Inform a Rethinking of Transfer and Vice Versa.

    Science.gov (United States)

    Lobato, Joanne

    2003-01-01

    Proposes that the theoretical assumptions underlying a researcher's model of transfer affect how design decisions are made. Discusses limitations with the two most common approaches to transfer in design experiments, exploring how design experiments can challenge the basic assumptions underlying transfer models, and illustrating this point by…

  17. Information for Our Partners | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NCI TTC CRADA PAYMENT OPTIONS: Electronic Payments by Wire Transfer via Fedwire, Mail a check to the Institute or Center, or Automated Clearing House (ACH)/Electronic Funds Transfer (ETF) payments via Pay.gov (NCI ONLY). | [google6f4cd5334ac394ab.html

  18. Outline of Initial Design of the Structured Hypertext Transfer Protocol

    Institute of Scientific and Technical Information of China (English)

    SWEN Bin(孙斌)

    2003-01-01

    This paper presents an introduction to the initial design of the Structured Hyper-text Transfer Protocol (STTP), a compatible extension to the HTTP. It includes a new message setfor the control of resource transmission, and the Structured Hypertext Markup Language (STML)for describing the structural information of Web pages. Experimental tests show that STTP canbe significantly faster than HTTP, with the improvement of transmission time being around 70%to 400% and the same magnitude of packet savings, which is among the best performance improve-ment ever reported. The paper discusses the basic idea and major design considerations of thesecomponents, as well as a few important issues in developing STTP servers and clients.

  19. Business model design through a designer's lens: Translating, transferring and transforming cognitive configurations into action

    NARCIS (Netherlands)

    Simonse, W.L.; Badke-Schaub, P.G.

    2015-01-01

    Strategic managers are challenged to take advantage of digitalisation opportunities related to services of social media and web 2.0 technologies. Business innovations such as crowd sourcing platforms require a new way of integrating business to technology, articulated in a new business model designs

  20. Some ethical issues in technology transfer and applications

    Science.gov (United States)

    Shine, Kenneth I.

    1995-10-01

    Health care systems all around the world are struggling to provide care in an era of limited resources. In an article entitled, 'Straight Talk About Rationing,' Arthur Kaplan reviews the work of the Swedish Commission designed to prioritize health care for that country. The commission identified three core principles that they felt should underlie decisions about priorities for health care. Those principles were (1) all human beings are equally valuable; (2) society must pay special attention to the needs of the weakest and most vulnerable; and (3) all other things being equal, cost efficiency in gaining the greatest return for the amount of money spent must prevail. These are three extremely useful principles which can be helpful to us as we consider many of the issues confronted in this country about the allocation of resources for health. I would like to consider three major issues. The first issue is the current evolving nature of health care and the ethical dilemmas that exist in the present system. In balancing increased access to care with decreasing cost, particularly in managed care, all of us are concerned about ethical issues. I would like to emphasize that the current system -- the system that we have lived with and is changing -- has inherent in it a series of ethical dilemmas. Secondly, I would like to consider issues related to productivity and its measurement in relation to technology. This relates to the third item in the Swedish Commission, which is the principle that we ought to spend money in the most cost-efficient way. Finally, I would like to discuss the dilemma of decision making about health and how that impacts upon the ethics of health care in the application of technology.

  1. Neuroeducational Research in the Design and Use of a Learning Technology

    Science.gov (United States)

    Howard-Jones, Paul; Holmes, Wayne; Demetriou, Skevi; Jones, Carol; Tanimoto, Eriko; Morgan, Owen; Perkins, David; Davies, Neil

    2015-01-01

    Many have warned against a direct "brain scan to lesson plan" approach when attempting to transfer insights from neuroscience to the classroom. Similarly, in the effective design and implementation of learning technology, a judicious interrelation of insights associated with diverse theoretical perspectives (e.g., neuroscientific,…

  2. The role of technological transfer in the societies based on knowledge economy

    Directory of Open Access Journals (Sweden)

    Daniela HÎNCU

    2009-12-01

    Full Text Available The knowledge based economy is an economy based on innovation. Implementing innovation requires acquiring new technology, using the technique of technological transfer. The problems and the timing for implementing an emerging technology are under discussion in this paper.

  3. Tools, courses, and learning pathways offered by the National Interagency Fuels, Fire, and Vegetation Technology Transfer

    Science.gov (United States)

    Eva K. Strand; Kathy H. Schon; Jeff Jones

    2010-01-01

    Technological advances in the area of fuel and wildland fire management have created a need for effective decision support tools and technology training. The National Interagency Fuels Committee and LANDFIRE have chartered a team to develop science-based learning tools for assessment of fire and fuels and to provide online training and technology transfer to help...

  4. What do we need from intermediaries for technology transfer to China?

    DEFF Research Database (Denmark)

    Li-Ying, Jason

    2012-01-01

    Cross-national technology transfer has been one of the most important vehicles by which firms in developed countries exploit the value of their technological innovations, and firms in developing countries gain access to technological and organizational knowledge from developed economies. To facil...

  5. An Empirical Analysis of Technology Transfer of National R&D Projects in South Korea

    Directory of Open Access Journals (Sweden)

    Mi-Sun Kim

    2015-01-01

    Full Text Available This study is aimed at seeking policy implications for the policy makers of South Korean government and finding a direction to support R&D institutions in performing R&D activities more efficiently, by analyzing the factors influencing technology transfer of the national R&D projects. The data retrieved from NTIS (National Science & Technology Information Service was used in analyzing the results of 575 projects with 1,903 cases of technology transfer, performed by the Ministry of Science, ICT and Future Planning, between 2002 and 2012. We found that there were significant differences between the government funded institutions and the universities and between basic R&D and applied ones. We also discovered that the government funded institutions did not necessarily take a better position than the universities in terms of the quantity of technology transfer. Lastly, the applied R&D of the universities was very vulnerable in terms of technology transfer.

  6. Research Funding, Patent Search Training and Technology Transfer: a collaboration

    KAUST Repository

    Tyhurst, Janis

    2016-01-01

    This paper will focus on the collaboration efforts of three different university departments to create, teach and evaluate the benefits of a joint patent training series, as well as the future directions this collaboration will take. KAUST has as one of its goals the diversification of the Saudi economy. There is a strong focus at the university on developing entrepreneurial ideas and commercializing research done. The University Library supports this goal through the provision of electronic resources and introductory patent search training skills. However, the patent training class offered by the University Library is only one step in a process that faculty and students need when starting or taking their research to the next level. In the Fall of 2015, I met with representatives of the two major stakeholders in the patent arena, the office of Sponsored Research (OSR) and the Technology Transfer Office (TTO), to develop a patent training program to meet the needs of researchers. The OSR provides funding to researchers who have demonstrated that their ideas have merit with potential applications, the TTO works with researchers who are at the point of needing IP protection. The resulting discussion led us to collaborate on creating a workshop series that benefit the researcher’s information needs and each of our departments as well. In the first of the series of three 2 hour workshops, the Manager of TTO and the Lead Integrative Specialist from the OSR presented a workshop on an overview of Intellectual Property and the patenting process. These presentations focused on when and how to determine whether research is potentially patentable, why a researcher needs to protect his/her research and how to go about protecting it. The second workshop focused on introductory patent search skills and tools, how to expand a literature search to include the information found in patents, and how this kind of research will improve not only the literature search but the research

  7. Technologies for Lunar Surface Power Systems Power Beaming and Transfer

    Science.gov (United States)

    Marzwell, Neville; Pogorzelski, Ronald J.; Chang, Kai; Little, Frank

    2008-01-01

    Wireless power transmission within a given working area is required or enabling for many NASA Exploration Systems. Fields of application include robotics, habitats, autonomous rendezvous and docking, life support, EVA, and many others. In robotics applications, for example, the robots must move in the working area without being hampered by power cables and, meanwhile, obtain a continuous and constant power from a power transmitter. The development of modern technology for transmitting electric power over free space has been studied for several decades, but its use in a system has been mainly limited to low power, 1-2 Vdc output voltage at a transmission distance of few meters for which relatively less than 0.5 mW/cm2 is required (e.g., Radio frequency identification RFID). Most of the rectenna conversion efficiency research to date has concentrated in low GHz frequency range of 2.45 to 10 GHz, with some work at 35 GHz. However, for space application, atmospheric adsorbtion is irrelevant and higher frequency systems with smaller transmit and receive apertures may be appropriate. For high power, most of the work on rectennas has concentrated on optimizing the conversion efficiency of the microwave rectifier element; the highest power demonstrated was 35 kW of power over a distance of 1.5 km. The objective of this paper is to establish the manner in which a very large number of very low power microwave devices can be synchronized to provide a beam of microwaves that can be used to efficiently and safely transport a significant amount of power to a remote location where it can be converted to dc (or ac) power by a ``rectenna.'' The proposed system is based on spatial power combining of the outputs of a large number of devices synchronized by mutual injection locking. We have demonstrated at JPL that such power could be achieved by combining 25 sources in a configuration that allows for convenient steering of the resulting beam of microwaves. Retrodirective beam

  8. A hypertext-based Internet-assessable database for the MSFC Technology Transfer Office

    Science.gov (United States)

    Jackson, Jeff

    1994-01-01

    There exists a continuing need to disseminate technical information and facilities capabilities from NASA field centers in an effort to promote the successful transfer of technologies developed with public funds to the private sector. As technology transfer is a stated NASA mission, there exists a critical need for NASA centers to document technology capabilities and disseminate this information on as wide a basis as possible. Certainly local and regional dissemination is critical, but global dissemination of scientific and engineering facilities and capabilities gives NASA centers the ability to contribute to technology transfer on a much broader scale. Additionally, information should be disseminated in a complete and rapidly available form. To accomplish this information dissemination, the unique capabilities of the Internet are being exploited. The Internet allows widescale information distribution in a rapid fashion to aid in the accomplishment of technology transfer goals established by the NASA/MSFC Technology Transfer Office. Rapid information retrieval coupled with appropriate electronic feedback, allows the scientific and technical capabilities of Marshall Space Flight Center, often unique in the world, to be explored by a large number of potential benefactors of NASA (or NASA-derived) technologies. Electronic feedback, coupled with personal contact with the MSFC Technology Transfer Office personnel, allows rapid responses to technical requests from industry and academic personnel as well as private citizens. The remainder of this report gives a brief overview of the Mosaic software and a discussion of technology transfer office and laboratory facilities data that have been made available on the Internet to promote technology transfer.

  9. Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process.

    Science.gov (United States)

    Buckland, Barry; Boulanger, Robert; Fino, Mireli; Srivastava, Indresh; Holtz, Kathy; Khramtsov, Nikolai; McPherson, Clifton; Meghrous, Jamal; Kubera, Paul; Cox, Manon M J

    2014-09-22

    Multiple different hemagglutinin (HA) protein antigens have been reproducibly manufactured at the 650L scale by Protein Sciences Corporation (PSC) based on an insect cell culture with baculovirus infection. Significantly, these HA protein antigens were produced by the same Universal Manufacturing process as described in the biological license application (BLA) for the first recombinant influenza vaccine approved by the FDA (Flublok). The technology is uniquely designed so that a change in vaccine composition can be readily accommodated from one HA protein antigen to another one. Here we present a vaccine candidate to combat the recently emerged H7N9 virus as an example starting with the genetic sequence for the required HA, creation of the baculovirus and ending with purified protein antigen (or vaccine component) at the 10L scale accomplished within 38 days under GMP conditions. The same process performance is being achieved at the 2L, 10L, 100L, 650L and 2500L scale. An illustration is given of how the technology was transferred from the benchmark 650L scale facility to a retrofitted microbial facility at the 2500L scale within 100 days which includes the time for facility engineering changes. The successful development, technology transfer and scale-up of the Flublok process has major implications for being ready to make vaccine rapidly on a worldwide scale as a defense against pandemic influenza. The technology described does not have the same vulnerability to mutations in the egg adapted strain, and resulting loss in vaccine efficacy, faced by egg based manufacture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A low-frequency versatile wireless power transfer technology for biomedical implants.

    Science.gov (United States)

    Jiang, Hao; Zhang, Junmin; Lan, Di; Chao; Liou, Shyshenq; Shahnasser, Hamid; Fechter, Richard; Hirose, Shinjiro; Harrison, Michael; Roy, Shuvo

    2013-08-01

    Implantable biomedical sensors and actuators are highly desired in modern medicine. In many cases, the implant's electrical power source profoundly determines its overall size and performance . The inductively coupled coil pair operating at the radio-frequency (RF) has been the primary method for wirelessly delivering electrical power to implants for the last three decades . Recent designs significantly improve the power delivery efficiency by optimizing the operating frequency, coil size and coil distance . However, RF radiation hazard and tissue absorption are the concerns in the RF wireless power transfer technology (RF-WPTT) , . Also, it requires an accurate impedance matching network that is sensitive to operating environments between the receiving coil and the load for efficient power delivery . In this paper, a novel low-frequency wireless power transfer technology (LF-WPTT) using rotating rare-earth permanent magnets is demonstrated. The LF-WPTT is able to deliver 2.967 W power at  ∼ 180 Hz to an 117.1 Ω resistor over 1 cm distance with 50% overall efficiency. Because of the low operating frequency, RF radiation hazard and tissue absorption are largely avoided, and the power delivery efficiency from the receiving coil to the load is independent of the operating environment. Also, there is little power loss observed in the LF-WPTT when the receiving coil is enclosed by non-magnetic implant-grade stainless steel.

  11. [Nasal submicron emulsion of Scutellariae Radix extract preparation technology research based on phase transfer of solute technology].

    Science.gov (United States)

    Shi, Ya-jun; Shi, Jun-hui; Chen, Shi-bin; Yang, Ming

    2015-07-01

    Based on the demand of nasal drug delivery high drug loadings, using the unique phase transfer of solute, integrating the phospholipid complex preparation and submicron emulsion molding process of Scutellariae Radix extract, the study obtained the preparation of the high drug loadings submicron emulsion of Scutellariae Radix extract. In the study of drug solution dispersion method, the uniformity of drug dispersed as the evaluation index, the traditional mixing method, grinding, homogenate and solute phase transfer technology were investigated, and the solute phase transfer technology was adopted in the last. With the adoption of new technology, the drug loading capacity reached 1.33% (phospholipid complex was 4%). The drug loading capacity was improved significantly. The transfer of solute method and timing were studied as follows,join the oil phase when the volume of phospholipid complex anhydrous ethanol solution remaining 30%, the solute phase transfer was completed with the continued recycling of anhydrous ethanol. After drug dissolved away to oil phase, the preparation technology of colostrum was determined with the evaluation index of emulsion droplet form. The particle size of submicron emulsion, PDI and stability parameters were used as evaluation index, orthogonal methodology were adopted to optimize the submicron emulsion ingredient and main influential factors of high pressure homogenization technology. The optimized preparation technology of Scutellariae Radix extract nasal submicron emulsion is practical and stable.

  12. New research trends on high-precision time transfer technology

    Institute of Scientific and Technical Information of China (English)

    DONG; Ruifang; QUAN; Run’ai; HOU; Feiyan; WANG; Shaofeng; XIANG; Xiao; ZHOU; Conghua; WANG; Mengmeng; LIU; Tao; ZHANG; Shou’gang

    2015-01-01

    High-precision time transfer plays an important role in the areas of fundamental research and applications. Accompanying w ith the remarkable improvements in the ability of generating and measuring high-accuracy time-frequency signal,seeking for new time-transfer techniques betw een distant clocks w ith much further improved accuracy attracts attentions w orld-w idely. The time-transfer technique based on optical pulses has the highest precision presently,and the further improvement in the accuracy is heavily dependent on the time-domain properties of the pulse as w ell as the sensitivity of the applied measurement on the exchanged pulse. The application of optical frequency comb in time transfer for a precision up to femtosecond level are currently the focus of much interest,and has recently achieved many breakthroughs. Further investigations show that,utilizing quantum techniques,i.e. quantum measurement technique and quantum optical pulse source,can lead to a new limit on the measured timing information. Furthermore,it can be immune from atmospheric parameters,such as pressure,temperature,humidity and so on.Such quantum improvements on time-transfer have a bright prospect in the future applications requiring extremely high-accuracy timing and ranging. The potential achievements w ill form a technical basis for the future realization of sub-femtosecond time transfer system.

  13. Transfer knowledge and technology in Madrid; La transferencia de conocimiento y tecnologia en la comunidad de Madrid

    Energy Technology Data Exchange (ETDEWEB)

    Vicente Oliva, M. de; Manera Bassa, J.; Martin del Peso, M.

    2010-07-01

    This paper aims to establish a typology of business behaviour patterns related to Knowledge and Technology Transfer (KTT), as well as an assessment of the situation of the transference process from the Madrid Region companies point of view. Working with data obtained from a survey designed and carried out by the authors to the companies registered in Madrid database and, as a consequence, knowing KTT, we have built groups of enterprises with different behaviours. To obtain the groups we have used cluster techniques over the factors resulting from a correspondence analysis. (Author) 24 refs.

  14. Some Big Questions about Design in Educational Technology

    Science.gov (United States)

    Gibbons, Andrew S.

    2016-01-01

    This article asks five questions that lead us to the foundations of design practice in educational technology. Design processes structure time, space, place, activity, role, goal, and resource. For educational technology to advance in its understanding of design practice, it must question whether we have clear conceptions of how abstract…

  15. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Science.gov (United States)

    2010-04-01

    ... technology transfer work programs? 420.207 Section 420.207 Highways FEDERAL HIGHWAY ADMINISTRATION..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a...

  16. Design and experiment of wireless power transfer systems via electromagnetic field near-zone region

    Science.gov (United States)

    Wang, Wensong; Chen, Yinchao; Yang, Shuhui; Chan, Allan; Wang, Yi; Cao, Qunsheng

    2016-10-01

    This paper presents the fundamental principle, circuit implementation and measurement of wireless power transfer (WPT) technology through both Colpitts and Hartley oscillation prototype circuits. The Colpitts and Hartley oscillation prototypes are used to convert DC voltages into AC ones. Meanwhile, both half- and full-wave rectification circuits are designed correspondingly for AC/DC voltage conversion. In addition, the orientation and distance effects between the transmitting and receiving coils are investigated. The self-inductance, mutual-inductance and coupling coefficient for the coupled inductors are extracted as a function of distance and frequency by using an equivalent T-circuit network and a derived Z-parameter matrix. The proposed WPT systems operate at around 3.6 MHz and the transferred voltage is measured at the WPT receiving terminal. The measured results indicate that the two proposed WPT systems can operate properly for potential short-distance applications.

  17. A Framework Theorizing Design of Human Technologies

    DEFF Research Database (Denmark)

    Nielsen, Jørgen Lerche; Riis, Søren; Simonsen, Jesper;

    Design is increasingly becoming a part of the university curriculum and research agenda. It is argued that it is in the interest of many design communities – also the DASTS community – to engage in theorizing design, on the basis of our understanding of design and design practices.......Design is increasingly becoming a part of the university curriculum and research agenda. It is argued that it is in the interest of many design communities – also the DASTS community – to engage in theorizing design, on the basis of our understanding of design and design practices....

  18. Transfer cask system design activities: status and plan

    Energy Technology Data Exchange (ETDEWEB)

    Locke, D., E-mail: darren.locke@f4e.europa.eu [Fusion for Energy Agency (F4E), Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Gutierrez, C. Gonzalez; Damiani, C.; Gracia, V. [Fusion for Energy Agency (F4E), Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Friconneau, J.-P.; Martins, J.-P.; Blight, J. [ITER Organisation, CS 90 046, 13067St. Paul Lez Durance Cedex (France)

    2011-10-15

    The ITER Cask and Plug Remote Handling System (CPRHS), a.k.a. Transfer Cask System, is a critical element of the ITER Remote Maintenance System (IRMS) devoted to transportation of components between the Tokamak building and Hot Cell. Due to the necessary confinement of contaminated components the CPRHS is defined as Safety Importance Class 1 (SIC-1) plus the mobile nature of the CPRHS brings with it a significant number of complex interfaces with other ITER sub-systems. With a total CPRHS fleet in excess of 20 units, including seven typologies, the management of design and procurement needs to be carefully planned and implemented to ensure compliance with ITER's requirements. Fusion for Energy (F4E) and its beneficiaries/contractors are currently working under ITER Task Agreements (ITAs) on the conceptual design of the CPRHS and, following the signing of the Procurement Arrangement (PA) in mid 2012, will take responsibility for the entire CPRHS fleet. F4E must, therefore, develop a robust strategy to meet the needs of both ITER machine assembly (for which a number of CPRHS units will be utilised) and the remote maintenance of ITER. Within this context this paper will present the status of the current CPRHS design activities, highlight some of the significant issues which will be faced during procurement and present the overall strategy which is being implemented by F4E in order to meet these challenging objectives.

  19. University technology transfer: comparative study of US, European and Australian universities

    NARCIS (Netherlands)

    Vinig, T.; van Rijsbergen, P.; Malach-Pines, A.; Özbilgin, M.F.

    2010-01-01

    We studied the factors that influence university knowledge commercialization through university Technology Transfer Office (TTO). We analyzed the resources associated with commercialization performance as measured by patenting, licensing, and spin-off activities in a sample of 124 Australian, Europe

  20. Report of the workshop on transferring X-ray Lithography Synchrotron (XLS) technology to industry

    Energy Technology Data Exchange (ETDEWEB)

    Marcuse, W.

    1987-01-01

    This paper reports on plans to develop an x-ray synchrotron for use in lithography. The primary concern of the present paper is technology transfer from national laboratories to private industry. (JDH)

  1. Technology transfer of large aggregate mix base [LAMBS] on Johannesburg roads.

    CSIR Research Space (South Africa)

    Horak, E

    1994-10-01

    Full Text Available done by the Department of Transport. The need for structural strengthening of the M2-Motorway in Johannesburg during its rehabilitation afforded opportunity of transferring the technology to the road construction industry. LAMBS were selected...

  2. Federal Laboratory Consortium Recognizes Unituxin Collaborators with Excellence in Technology Transfer Awards | Poster

    Science.gov (United States)

    The Federal Laboratory Consortium (FLC) presented an Excellence in Technology Transfer award to the group that collaborated to bring Unituxin (dinutuximab, also known as ch14.18), an immunotherapy for neuroblastoma, to licensure.

  3. Technology Transfer In Rural Industries of Thailand: The Case of Dessert And Palm Tree Industries

    Directory of Open Access Journals (Sweden)

    Apisek Pansuwan

    2013-07-01

    Full Text Available In last decade, the small industrial sector has increasingly received attention from Thai policy makers. This study investigates the relationship between small industries and community in rural area in term of technology transfer. In the research area, knowledge and experience gathered from workplace as an employee and family businesses are the core resources to establish and run busineSses. Technically, technology transfer is divided into 2 characteristics; intra-enterprise and inter-enterprise. Intra-enterprise technology transfer comes from employers to employees, emphasizing production development. Beside, technology transfer of inter-enterprise has two directions. Firstly, direction points from the entrepreneur to material suppliers aiming to secure raw material quality. Secondly direction points from consumers to the entrepreneur aiming to put a great emphasis on product development, quality control and management.

  4. Federal Laboratory Consortium Recognizes Unituxin Collaborators with Excellence in Technology Transfer Awards | Poster

    Science.gov (United States)

    The Federal Laboratory Consortium (FLC) presented an Excellence in Technology Transfer award to the group that collaborated to bring Unituxin (dinutuximab, also known as ch14.18), an immunotherapy for neuroblastoma, to licensure.

  5. Fundamental Research on Convective Heat Transfer in Electronic Cooling Technology

    Institute of Scientific and Technical Information of China (English)

    C.F.Ma; Y.P.Gan; 等

    1992-01-01

    During the past six years comprehensive research programs have been conducted at the Beijing Polytechnic University to provide a better understanding of heat transfer characteristics of existing and condidate cooling techniques for electronic and microelestanding of heat transfer characteristics of existing and condidate cooling techniques for electronic and microleectronic devices.This paper provides a review and summary of the programs with emphasis on direct liquid cooling.Included in this review are the heat transfer investigations related to the following cooling modes:liquid free,mixed and forced convection.liquid jet impingement,flowing liquid film cooling,pool boiling,spray cooling,foreign gas jet impingement in liquid pool,and forced convection air-cooling.

  6. Inward technology transfer as an interactive process: A case study of ICI.

    OpenAIRE

    Trott, Paul

    1993-01-01

    This thesis sets out to explore the area of inward technology transfer and in particular the notion of "receptivity". A conceptual framework is developed which identifies four major components of the inward technology transfer process. These are: "Awareness"- "Association"-"Assimilation"-"Application". Using this conceptual device a series of investigations are undertaken into three of these components. These studies are conducted within a number of businesses within ICI Che...

  7. The Relevance of Career Aspirations for Transfer Students Persisting in Science, Technology, Engineering and Math Disciplines

    Science.gov (United States)

    Coyote, Ruthann T.

    2013-01-01

    This qualitative study utilizes data acquired from interviews with 18 community college transfer students in Science, Technology, Engineering and Math (STEM) majors and 7 university staff people who work in direct student services with this student population. This study explores the experiences of transfer students in STEM majors regarding what…

  8. Technology and Knowledge Transfer in the Graz Region Ten Years of Experience

    Science.gov (United States)

    Hofer, Franz; Adametz, Christoph; Holzer, Franz

    2004-01-01

    Technology and knowledge transfer from universities to small and medium-sized enterprises (SMEs) is seen as one way to strengthen a region's innovation capability. But what if SMEs do not want to play along? Looking back at some 10 years' experience of supporting SMEs, the authors describe in detail the 'Active Knowledge Transfer' programme, which…

  9. The Relevance of Career Aspirations for Transfer Students Persisting in Science, Technology, Engineering and Math Disciplines

    Science.gov (United States)

    Coyote, Ruthann T.

    2013-01-01

    This qualitative study utilizes data acquired from interviews with 18 community college transfer students in Science, Technology, Engineering and Math (STEM) majors and 7 university staff people who work in direct student services with this student population. This study explores the experiences of transfer students in STEM majors regarding what…

  10. Health care technology transfer in Latin America and the Caribbean

    NARCIS (Netherlands)

    Coe, G.A.; Banta, H.D.

    1992-01-01

    The greatest problem concerning health care technology for developing countries is that they are dependent upon the industrialized world for technology. The only short-term solution to this problem is to improve the choices that are available to them. This goal will require changes in the structure

  11. Technology transfer: how to remove obstacles in advancing employment growth

    NARCIS (Netherlands)

    Nijkamp, P.; Geenhuizen, van M.

    1995-01-01

    It has become increasingly evident that technology is a major determinant of thecompetitiveness of cities and regions nowadays. The availability of new technologyessentially reduces the amount of uncertainty with which companies deal in their dailyoperations. In addition, new technology is a basis f

  12. Influenza vaccine production for Brazil: a classic example of successful North-South bilateral technology transfer.

    Science.gov (United States)

    Miyaki, Cosue; Meros, Mauricio; Precioso, Alexander R; Raw, Isaias

    2011-07-01

    Technology transfer is a promising approach to increase vaccine production at an affordable price in developing countries. In the case of influenza, it is imperative that developing countries acquire the technology to produce pandemic vaccines through the transfer of know-how, as this will be the only way for the majority of these countries to face the huge demand for vaccine created by influenza pandemics. Access to domestically produced influenza vaccine in such health crises is thus an important national defence strategy. However, technology transfer is not a simple undertaking. It requires a committed provider who is willing to transfer a complete production process, and not just the formulation and fill-finish parts of the process. It requires a recipient with established experience in vaccine production for human use and the ability to conduct research into new developments. In addition, the country of the recipient should preferably have sufficient financial resources to support the undertaking, and an internal market for the new vaccine. Technology transfer should create a solid partnership that results in the joint development of new competency, improvements to the product, and to further innovation. The Instituto Butantan-sanofi pasteur partnership can be seen as a model for successful technology transfer and has led to the technological independence of the Instituto Butantan in the use a strategic public health tool.

  13. Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Chojnacki, Kent

    2013-01-01

    Objectives: 1) Store cryogenic propellants in a manner that maximizes their availability for use regardless of mission duration. 2) Efficiently transfer conditioned cryogenic propellant to an engine or tank situated in a microgravity environment. 3) Accurately monitor and gauge cryogenic propellants situated in a microgravity environment.

  14. An edge-on charge-transfer design for energy-resolved x-ray detection.

    Science.gov (United States)

    Shi, Zaifeng; Yang, Haoyu; Cong, Wenxiang; Wang, Ge

    2016-06-01

    As an x-ray beam goes through the human body, it will collect important information via interaction with tissues. Since this interaction is energy-sensitive, the state-of-the-art spectral CT technologies provide higher quality images of biological tissues with x-ray energy information (or spectral information). With existing energy-integrating technologies, a large fraction of energy information is ignored in the x-ray detection process. Although the recently proposed photon-counting technology promises to achieve higher image quality at a lower radiation dose, it suffers from limitations in counting rate, performance uniformity, and fabrication cost. In this paper, we focus on an alternative approach to resolve the energy distribution of transmitted x-ray photons. First, we analyze the x-ray attenuation in a silicon substrate and describe a linear approximation model for x-ray detection. Then, we design an edge-on architecture based on the proposed energy-resolving model. In our design, the x-ray-photon-induced charges are transferred sequentially resembling the working process of a CCD camera. Finally, we numerically evaluate the linear approximation of x-ray attenuation and derive the energy distribution of x-ray photons. Our simulation results show that the proposed energy-sensing approach is feasible and has the potential to complement the photon-counting technology.

  15. An edge-on charge-transfer design for energy-resolved x-ray detection

    Science.gov (United States)

    Shi, Zaifeng; Yang, Haoyu; Cong, Wenxiang; Wang, Ge

    2016-06-01

    As an x-ray beam goes through the human body, it will collect important information via interaction with tissues. Since this interaction is energy-sensitive, the state-of-the-art spectral CT technologies provide higher quality images of biological tissues with x-ray energy information (or spectral information). With existing energy-integrating technologies, a large fraction of energy information is ignored in the x-ray detection process. Although the recently proposed photon-counting technology promises to achieve higher image quality at a lower radiation dose, it suffers from limitations in counting rate, performance uniformity, and fabrication cost. In this paper, we focus on an alternative approach to resolve the energy distribution of transmitted x-ray photons. First, we analyze the x-ray attenuation in a silicon substrate and describe a linear approximation model for x-ray detection. Then, we design an edge-on architecture based on the proposed energy-resolving model. In our design, the x-ray-photon-induced charges are transferred sequentially resembling the working process of a CCD camera. Finally, we numerically evaluate the linear approximation of x-ray attenuation and derive the energy distribution of x-ray photons. Our simulation results show that the proposed energy-sensing approach is feasible and has the potential to complement the photon-counting technology.

  16. The Analysis of the Relationship between Clean Technology Transfer and Chinese Intellectual Property Countering the Climate Changes

    DEFF Research Database (Denmark)

    Min, Hao

    This report discusses the relationship between the Chinese intellectual property systems which counter with the climate change and the transfer of clean technology, and states how to encourage the developed countries transfer the clean technology to the developing countries according...... to the relative international climate convention program. The report also proposes the current hindrances and developing strategies according to Chinese current situation at this field. The report is mainly divided into three subjects: the relationship between clean technology transfer and the intellectual...... property countering the climate changes; the analysis of current technology transfer modes relating to the climate; the difficulties of Chinese countering climate changes technology transfer and strategic thinking....

  17. Underpinning the STEM Agenda through Technological Textiles? An Exploration of Design Technology Teachers' Attitudes

    Science.gov (United States)

    Hughes, Chris; Bell, Dawne

    2011-01-01

    This paper discusses ongoing research into the role of design and technology education in emerging post industrial economies. Previous work (Hughes et al., 2010) focused on the changing characteristics of textiles technology in modern times and discussed how this could inform a design and technology curriculum related to the needs of a modern…

  18. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  19. Development of fluid and I and C systems design technology

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Yoon Sub; Park, C. K.; Kim, S. O. [and others

    2000-05-01

    LMR is the reactor type that makes utilization of uranium resource very efficiently and the necessity of construction of a LMR in 2020's has been raised. However, the design technology required for construction has not been secured domestically. To fulfill the necessity, study has been made for the LMR system design technology and conceptual design of KALIMER systems for fluid, instrumentation, control, and protection have been developed. Also the computer code systems for the design and analysis of the KALIMER fluid systems have been developed. These study results are to used as the starting point of the next phase LMR design technology development research.

  20. Renal Cancer Biomarkers | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute's Laboratory of Proteomics and Analytical Technologies is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize diagnostic, therapeutic and prognostic cancer biomarkers from clinical specimens.

  1. Exemplar Practices for Department of Defense Technology Transfer

    Science.gov (United States)

    2013-01-01

    as Amazon, Discovery Studios, Google, Under Armour , McCormick, and Cisco are invited to speak to researchers about innovation, how they manage it...commercialization and marketing strategies for each of the selected DoD technologies; • actively markets these technologies to industry...Publication This work was conducted by the Institute for Defense Analyses (IDA) under contract DASW01-04-C-0003, Task AI-6-3558 “Review of DoD

  2. The Commercialization of New Technologies Transfer from Laboratory to Firm.

    Science.gov (United States)

    1983-05-09

    immediate market introduction . A gap exists, which is a measure of technology maturity, that reflects the amount of additional research and development the...as successful commercialization. A failure occurs when a 15 potential innovation does not reach the point of market introduction for any reason. THE...ready for immediate * market introduction . A gap exists, which is a measure of technology maturity, that reflects the amount of additional

  3. A Conceptual Decision Methodology for High Technology Transfer Assessment.

    Science.gov (United States)

    1982-05-01

    review and provide input within given time periods on selected technologies. The basic industrial export control mechanism continues to be centered in...Department of Commerce is the center of the export control system, it is by no means predominate in the control of all exports. True, it is a key...Department of State endorsed the venture as, "in the national interest." The technology was promised during the Nixon- Pompidou Summit in the Azores. Without

  4. Brazilian university technology transfer to rural areas Transferência de tecnologia de universidades brasileiras na área rural

    Directory of Open Access Journals (Sweden)

    Enio Marchesan

    2010-10-01

    Full Text Available In agriculture, there is a difference between average yield obtained by farmers and crop potential. There is technology available to increase yields, but not all farmers have access to it and/or use this information. This clearly characterizes an extension and technology transference problem. There are several technology transfer systems, but there is no system to fit all conditions. Therefore, it is necessary to create extension solutions according to local conditions. Another rural extension challenge is efficiency, despite continuous funding reductions. One proposal that has resulted from extension reform worldwide has suggested integration between the public and private sectors. The public universities could play the role of training and updating technical assistance of human resources, which is the one of the main aspects that has limited technology transfer. The objective of this study was to identify approaches to promote technology transfer generated in Brazilian public universities to rural areas through literature review. An experimental approach of technology transfer is presented here where a Brazilian university extension Vice-chancellor incorporates professionals from consolidated research groups according to demand. In this way, public universities take part of their social functions, by integrating teaching, research, and extension.Em agricultura, há diferenças entre a produtividade média obtida pelos produtores e o potencial produtivo dos cultivos. Há informação tecnológica disponível para aumentar a produtividade, mas nem todos os produtores têm acesso e/ou usam a informação. Isso caracteriza claramente um problema de extensão e transferência de tecnologia. Há vários sistemas de transferência de tecnologia, mas, como não há sistema que se ajuste a todas as condições, é necessário criar alternativas adequadas às condições de cada local. Outro desafio da extensão rural é ser eficiente, apesar da cont

  5. Technology Transfer Challenges for High-Assurance Software Engineering Tools

    Science.gov (United States)

    Koga, Dennis (Technical Monitor); Penix, John; Markosian, Lawrence Z.

    2003-01-01

    In this paper, we describe our experience with the challenges thar we are currently facing in our effort to develop advanced software verification and validation tools. We categorize these challenges into several areas: cost benefits modeling, tool usability, customer application domain, and organizational issues. We provide examples of challenges in each area and identrfj, open research issues in areas which limit our ability to transfer high-assurance software engineering tools into practice.

  6. Asynchronous Transfer Mode (ATM) Switch Technology and Vendor Survey

    Science.gov (United States)

    Berry, Noemi

    1995-01-01

    Asynchronous Transfer Mode (ATM) switch and software features are described and compared in order to make switch comparisons meaningful. An ATM switch's performance cannot be measured solely based on its claimed switching capacity; traffic management and congestion control are emerging as the determining factors in an ATM network's ultimate throughput. Non-switch ATM products and experiences with actual installations of ATM networks are described. A compilation of select vendor offerings as of October 1994 is provided in chart form.

  7. International Scientist Mobility and the Locus of Knowledge and Technology Transfer

    DEFF Research Database (Denmark)

    Edler, Jakob; Fier, Hedie; Grimpe, Christoph

    2011-01-01

    Despite the growing interest of scholars and policymakers to better understand the determinants for researchers in public science to transfer knowledge and technology to firms, little is known how temporary international mobility of scientists affects both their propensity to engage in knowledge ...... circulation”. The article contributes to the growing strand of the literature on scientist mobility and on the determinants of industry–science linkages at the individual level.Scientist......Despite the growing interest of scholars and policymakers to better understand the determinants for researchers in public science to transfer knowledge and technology to firms, little is known how temporary international mobility of scientists affects both their propensity to engage in knowledge...... and technology transfer (KTT) as well as the locus of such transfer. Based on a sample of more than 950 German academics from science and engineering faculties, we investigate how the duration and the frequency of scientists’ visits at research institutions outside their home country affect KTT activities. We...

  8. Impact of Computer Technology on Design and Craft Education

    Science.gov (United States)

    Thorsteinsson, Gisli

    2014-01-01

    This research aims to answer the question, "How has the use of computer technology benefited the compulsory education system, focusing on Design and Technology?" In order to reply this question, it was necessary to focus on interactive whiteboards, e-portfolios and digital projectors as the main technology formats. An initial literature…

  9. Teachers' Purposeful Design of Effective Technology Learning Activities

    Science.gov (United States)

    Morgan, John Andrew Kerlin

    2014-01-01

    The goal of this study was to explore how exemplary teachers design learning activities that incorporate the use of technology. Teachers at three schools in a school district in Southern California were solicited for a survey regarding their use of technology in the classroom. Based on the surveys, high and low technology implementers were…

  10. M-Learning Systems Design--Technology and Pedagogy Aspects

    Science.gov (United States)

    Gourova, Elissaveta; Asenova, Asya; Dulev, Pavlin

    2013-01-01

    Technology developments face universities with many challenges--to integrate technologies in educational processes, design new electronic materials, change teaching styles, and better meet the demands of the technology-savvy generation. The paper considers problems of m-learning adoption in Bulgaria at one Faculty of the Technical…

  11. Innovation, Technology Transfer and Labor Productivity Linkages: Evidence from a Panel of Manufacturing Industries

    NARCIS (Netherlands)

    Apergis, N.; Economidou, C.; Filippidis, I.

    2008-01-01

    The paper explores the linkages between labor productivity, innovation and technology spillovers in a panel of manufacturing industries. The roles of R&D, human capital and international trade are considered in stimulating innovation and/or facilitating technology transfer. Using panel-based unit ro

  12. Technology Transfer Strategies for Creating Growth Opportunities in Frontier Markets of Sub-Saharan Africa

    DEFF Research Database (Denmark)

    Nielsen, Ulrik B.

    be the new growth frontier. Evidence has shown that if countries in SSA where using the same level of technology utilized by industrial countries, income levels in SSA would be significantly higher. The paper aims to address this issue, and study how Danish agriculture firms can use technology transfer...... to create growth opportunities in Frontier Markets of Sub-Saharan Africa....

  13. Technology Transfer Activities of NASA/MSFC: Enhancing the Southeast Region's Production Capabilities

    Science.gov (United States)

    Trivoli, George W.

    1998-01-01

    The researcher was charged with the task of developing a simplified model to illustrate the impact of how NASA/MSFC technology transfer activities contribute to shifting outward the Southeast region's and the nation's productive capacity. The report is a background of the impact of technological growth on the nation's production possibility frontier (ppf).

  14. Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector.

    Science.gov (United States)

    Creighton, J. W., Ed.; And Others

    This report reviews a joint attempt of the United States Forest Service and the Naval Service to enhance the utilization of research results and the new technologies through improved effectiveness of technology transfer efforts. It consists of an introduction by J. W. Creighton and seven papers: (1) "Management for Change" by P. A.…

  15. Investigating Practices in Teacher Education That Promote and Inhibit Technology Integration Transfer in Early Career Teachers

    Science.gov (United States)

    Brenner, Aimee M.; Brill, Jennifer M.

    2016-01-01

    The purpose of this study was to identify instructional technology integration strategies and practices in preservice teacher education that contribute to the transfer of technology integration knowledge and skills to the instructional practices of early career teachers. This study used a two-phase, sequential explanatory strategy. Data were…

  16. Technology Transfer and Climate Change: Additional Considerations for Implementation under the UNFCCC

    Directory of Open Access Journals (Sweden)

    Karen Sullivan

    2011-06-01

    Full Text Available Technology transfer is recognised as playing a central and critical role in the global response to climate change, as embodied in the Unite Nations Framework Convention on Climate Change (UNFCCC. However, technology transfer is a complex process, and despite numerous attempts to prescribe approaches to optimisation, there remain serious obstacles to its effective operation. The breadth of technologies and range of would-be recipient territories under the climate change regime serve to complicate things even further. Against this background, the Expert Group on Technology Transfer have produced a robust Strategy, which it will now fall to the Technology Mechanism announced in Cancun to implement. However, despite the rigour with which the technology transfer strategy was produced, it is never possible to cover all possible eventualities. It is on this basis that this article presents a number of tactical and strategic issues which may merit further consideration as the implementation process moves forward. At the operational level, such issues include a possible role for a centralised or regional technology procurement effort, the need for greater emphasis on sectoral specific approaches to technology transfer, and a pragmatic approach to reducing the impact of some barriers to transactions by the expedient use of insurance to reduce risk, as opposed to the longer term approach of international standardisation. At the strategic level, there are major issues with regard to prioritisation of resources applied to technology transfer, and in particular the resolution of the tensions existing between achieving sustainable development and the time critical need to achieve climate stabilisation.

  17. Designing a Learning Curriculum and Technology's Role in It

    Science.gov (United States)

    Gerber, Sue; Scott, Logan

    2007-01-01

    This paper presents a case study of the design and implementation of a master's level research course. Factors that defined the curriculum design problem included the subject matter, a view of learning as a change in identity, and the role of technology in curriculum design. Both the design process and results of research on the implementation of…

  18. BASELINE DESIGN/ECONOMICS FOR ADVANCED FISCHER-TROPSCH TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-04-01

    Bechtel, along with Amoco as the main subcontractor, developed a Baseline design, two alternative designs, and computer process simulation models for indirect coal liquefaction based on advanced Fischer-Tropsch (F-T) technology for the U. S. Department of Energy's (DOE's) Federal Energy Technology Center (FETC).

  19. Technological Challenges: Designing Large Compressed Video and Multimedia Classrooms.

    Science.gov (United States)

    Hart, Russ A.; Parker, Roger

    Designing a distance learning classroom requires integration of educational goals and philosophy with technology and ergonomics. The technological challenge and key to designing effective distance learning and multimedia classrooms is creating an environment in which the participants--students, and teacher--may easily interact with instructional…

  20. Do we need teachers as designers of technology enhanced learning?

    NARCIS (Netherlands)

    Kirschner, Paul A.

    2016-01-01

    In this special issue, five teams of researchers discuss different aspects of the teacher as designer of technology enhanced learning situations. This final contribution critically discusses if and how teachers as designers of technology enhanced learning might (not) be feasible or even desirable. T

  1. Design and Construction of a Multimedia Technology Cart.

    Science.gov (United States)

    Hofstetter, Fred T.; And Others

    1993-01-01

    Describes a mobile classroom presentation cart for multimedia technology that was designed and constructed at the University of Delaware's Instructional Technology Center. Design goals are discussed; the physical layout is explained; equipment choices are described, including computer, audio system, and projection system; and future development is…

  2. Aircraft propulsion systems technology and design

    National Research Council Canada - National Science Library

    Oates, Gordon C

    1989-01-01

    ... propulsion technology planned by Gordon C. Gates. Other titles: Aerothermodynamics of gas turbine and rocket propulsion (c!988); Aerothermodynamics of aircraft engine com.ponents (c!985). Includes b...

  3. Design Thinking and Metacognitive Reflective Scaffolds: A Graphic Design-Industrial Design Transfer Case Study

    Science.gov (United States)

    Lee, Chien-Sing; Wong, Kuok-Shoong Daniel

    2015-01-01

    Scaffolding is crucial as transfer of learning does not occur naturally and teaching-learning strategies found to be effective for experts may not be suitably adopted as is for novice learners. Furthermore, opportunities are often "found" or "made." The quality of solutions, however, is mediated by different conceptualizations…

  4. Poverty Alleviation and Environmental Sustainability through Improved Regimes of Technology Transfer

    Directory of Open Access Journals (Sweden)

    Klaus Bosselmann

    2006-06-01

    Full Text Available To achieve the Millennium Development Goals, international technology transfer can play a major role for poverty alleviation and environmental sustainability. At present, there are economic, social and legal (rather than technical barriers preventing the transfer of environmentally sound technology (EST from a wider use in international regimes. Removing these barriers requires greater political and regulatory efforts both domestically and internationally. To enable EST transfer, developed States need to improve domestic market conditions such as removal of negative subsidies and barriers to foreign investment, targeted fiscal incentives and law reforms favouring sustainable production and use of energy. There is no realistic perspective for international EST transfer as long as it is disadvantaged domestically. A coherent EST transfer regime is only possible through greater governmental intervention at the national and international level, including environmental regulations, national systems of innovation, and creating an enabling environment for EST. Such intervention should include effective public-private partnerships, both within and between States. Partnerships, if guided by law, could ensure EST innovation more efficiently than purely State-driven or market-driven EST transfers. In search for a model, the EST transfer regime under the Vienna Ozone Layer Convention and the Montreal Protocol deserves recognition. For example, the clean development mechanism under the Kyoto Protocol allows for considerable scope for EST transfer. The potential of EST transfer for climate change and for meeting the Millennium Development Goals has yet to be realized.

  5. Millimeter-Wave Wireless Power Transfer Technology for Space Applications

    Science.gov (United States)

    Chattopadhyay, Goutam; Manohara, Harish; Mojarradi, Mohammad M.; Vo, Tuan A.; Mojarradi, Hadi; Bae, Sam Y.; Marzwell, Neville

    2008-01-01

    In this paper we present a new compact, scalable, and low cost technology for efficient receiving of power using RF waves at 94 GHz. This technology employs a highly innovative array of slot antennas that is integrated on substrate composed of gold (Au), silicon (Si), and silicon dioxide (SiO2) layers. The length of the slots and spacing between them are optimized for a highly efficient beam through a 3-D electromagnetic simulation process. Antenna simulation results shows a good beam profile with very low side lobe levels and better than 93% antenna efficiency.

  6. Anaerobic digestion: technology transfer, engineering performance and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cecchi, F.; Traverso, P.G.; Ganapini, W.

    1987-10-01

    The chemical, technological and process aspects of anaerobic digestion process are analysed on the basis of the Authors' experience and of scientific literature. Emphasis is put on the necessity of integrating the presentation of experimental data and some suggestions are common to those of the EEC to improve the knowledge of the process. An analysis of the types of full-scale digesters used in Europe and in the USA is supplied and suggestions are proposed on the future development of anaerobic technology with the aim of improving performance and efficiency.

  7. Mash-up of techniques between data crawling/transfer, data preservation/stewardship and data processing/visualization technologies on a science cloud system designed for Earth and space science: a report of successful operation and science projects of the NICT Science Cloud

    Science.gov (United States)

    Murata, K. T.

    2014-12-01

    Data-intensive or data-centric science is 4th paradigm after observational and/or experimental science (1st paradigm), theoretical science (2nd paradigm) and numerical science (3rd paradigm). Science cloud is an infrastructure for 4th science methodology. The NICT science cloud is designed for big data sciences of Earth, space and other sciences based on modern informatics and information technologies [1]. Data flow on the cloud is through the following three techniques; (1) data crawling and transfer, (2) data preservation and stewardship, and (3) data processing and visualization. Original tools and applications of these techniques have been designed and implemented. We mash up these tools and applications on the NICT Science Cloud to build up customized systems for each project. In this paper, we discuss science data processing through these three steps. For big data science, data file deployment on a distributed storage system should be well designed in order to save storage cost and transfer time. We developed a high-bandwidth virtual remote storage system (HbVRS) and data crawling tool, NICTY/DLA and Wide-area Observation Network Monitoring (WONM) system, respectively. Data files are saved on the cloud storage system according to both data preservation policy and data processing plan. The storage system is developed via distributed file system middle-ware (Gfarm: GRID datafarm). It is effective since disaster recovery (DR) and parallel data processing are carried out simultaneously without moving these big data from storage to storage. Data files are managed on our Web application, WSDBank (World Science Data Bank). The big-data on the cloud are processed via Pwrake, which is a workflow tool with high-bandwidth of I/O. There are several visualization tools on the cloud; VirtualAurora for magnetosphere and ionosphere, VDVGE for google Earth, STICKER for urban environment data and STARStouch for multi-disciplinary data. There are 30 projects running on the NICT

  8. Designing Technology for Active Spectator Experiences at Sporting Events

    DEFF Research Database (Denmark)

    Veerasawmy, Rune; Ludvigsen, Martin

    2010-01-01

    behaviour in the context. The work presented also argues for a need to overcome the inclination to designing technological systems that imitate or compete with the experience of watching the television broadcast of the game. Experiments such as the presented BannerBattle are cornerstones in our exploratory......This paper explores the active spectator experience at sporting events, by presenting and reflecting upon a design experiment carried out at a number of football1 events. The initial hypothesis of the design process, leading to the design experiment has been that the spectator experience...... research-through-design approach to designing technologies for social experiences....

  9. New Perspectives: Technology Teacher Education and Engineering Design

    OpenAIRE

    Hill, Roger B.

    2006-01-01

    Initiatives to integrate engineering design within the field of technology education are increasingly evident (Lewis, 2005; Wicklein, 2006). Alliances between technology education and engineering were prominent in the development of the Standards for Technological Literacy (International Technology Education Association, 2000), and leaders from both disciplines have expressed support for the outcomes described in the Standards (Bybee, 2000; Council of the National Academy of Engineering, 2000...

  10. An Examination of Technology Transfer as a Tool for Management.

    Science.gov (United States)

    1986-03-01

    Berlo , R. K., Lamert, J. B., and Mertz, R. J., "Dimensions of Evaluating the Acceptability of Message Source", Public Opinion Quarterl, Vol. 33, 1979...1966. Carr-Harris, G. G. M., "The Information Scientist: Industry’s Link With Science and Technology", Industrial Canada, March 1964. Clark, David L

  11. Low-carbon innovation and technology transfer in latecomer countries

    DEFF Research Database (Denmark)

    Lema, Adrian; Lema, Rasmus

    2016-01-01

    This paper examines the organizational arrangements for technology supply in solar photovoltaic projects in the Clean Development Mechanism (CDM). It shows that while lower middle-income countries typically import solar PV equipment into CDM projects, China, India and Thailand have begun to use n...

  12. Managing Technology Transfer in the Korean Military Establishment

    Science.gov (United States)

    1979-12-01

    Horticulture : Field crop production, I cultivation of orchards, gardens, nurseries, etc. For plant anatomy, physiology, etc. 991 Animal Husbandry...technology, physical therapy , and prosthesis. Environmental Biology: External influences on the V biological processes of organism. Ecology...and particle radiation. Dosimetry, health .physics, radiation injury. Prophylaxis and i therapy of nuclear radiation sickness and injury. Stress

  13. An Action Research on Open Knowledge and Technology Transfer

    Science.gov (United States)

    Ramos, Isabel; Cardoso, Margarida; Carvalho, João Vidal; Graça, José Ismael

    R&D has always been considered a strategic asset of companies. Traditionally, companies that have their own R&D function are better prepared to compete in the globalized economy because they are able to produce the knowledge and technology required to advance products and services. SMEs also need to become highly innovative and competitive in order to be successful. Nevertheless, their ability to have an internal R&D function that effectively meets their innovation needs is usually very weak. Open innovation provides access to a vast amount of new ideas and technologies at lower costs than closed innovation. This paper presents an action research study being carried out at University of Minho to develop a business model and technology platform for an innovation brokering service connecting ideas and technologies being developed at Universities with the specific innovation needs of SMEs. The expected contributions of the study include the empirical investigation of the effectiveness and risks of crowdsourcing innovation when applied in the socio-economic context of a European developing country where SMEs represent 99,6% of the businesses.

  14. Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

  15. Co-Development Agreements | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute's TTC uses three different co-development agreements to help industry and academia interact and partner with National Institutes of Health laboratories and scientists to support technology development activities. | [google6f4cd5334ac394ab.html

  16. Effects of Critical Knowledge Characteristics on Degree of Inter-Firm Technology Transfer

    Directory of Open Access Journals (Sweden)

    A. W. Sazali

    2009-01-01

    Full Text Available Problem statement: The current issue on inter-firm technology transfer in the developing countries is centered on the efficiency and effectiveness of the transfer process by the Multinationals (MNCs. Thus, organizations in the developing countries are striving hard to collaborate, learn and internalize their foreign partner’s technological knowledge by forming strategic alliances or International Joint Ventures (IJVs as an efficient mean to increase their competitiveness, technological capabilities and potential for local innovation. Knowledge as the critical element underlying technology has become one of the main factors that affects the success and failure of inter-firm technology transfer within IJVs which is measured by the degree of technology transferred. Based on the underlying knowledge-based view perspective, this paper aims to empirically examine the effect of three critical knowledge characteristics: Tacitness, complexity and specificity on degree of technology transfer and its two dimensions: Degree of tacit and explicit knowledge. Approach: The theoretical model and hypotheses in this study were tested using empirical data gathered from 128 joint venture companies registered with the Registrar of Companies of Malaysia. Data obtained from the survey questionnaires were analyzed using the correlation coefficients and multiple linear regression analyses. Results: The results revealed that tacitness and complexity as two critical elements of knowledge characteristics have significant effects on both degrees of tacit and explicit knowledge; with complexity recording slightly stronger effect than tacitness. However, although specificity has a strong theoretical foundation, it did not record significant effect. Conclusion: The study has bridged the literature gaps in such that it provides empirical evidence on the effects of three generic knowledge attributes: Tacitness, complexity and specificity on degree of inter-firm technology

  17. The Influence of Technology Transfers on the Development of Innovations in the Process Industry of Croatia (Istrian County Case

    Directory of Open Access Journals (Sweden)

    Marinko Škare

    2015-06-01

    Full Text Available This paper studies the influence of technology transfers on the development of innovations in the process industry in Croatia (Istrian County case. The technological regime identifies characteristics of the learning processes, sources of knowledge and the nature of knowledge bases linked to the innovative process in the company happening as part of production activities. The research supports Schumpeter’s standpoint in his theory of creative destruction. When a new and more efficient design for the production of a commodity is created, the enterprise that first starts using the new design conquer a part of its competitors’ market. The competition reacts either by introducing the same design or one even newer or completely loses the market, as this is the case in the process industry in Croatia.

  18. Transfer of adapted water supply technologies through a demonstration and teaching facility

    Science.gov (United States)

    Nestmann, F.; Oberle, P.; Ikhwan, M.; Stoffel, D.; Blaß, H. J.; Töws, D.; Schmidt, S.

    2016-09-01

    Water scarcity can be defined as a lack of sufficient water resources or as the limited or even missing access to a safe water supply. Latter can be classified as `economic water scarcity' which among others can commonly be met in tropical and subtropical karst regions of emerging and developing countries. Karst aquifers, mostly consisting of limestone and carbonate rock, show high infiltration rates which leads to a lack of above ground storage possibilities. Thus, the water will drain rapidly into the underground and evolve vast river networks. Considering the lack of appropriate infrastructure and limited human capacities in the affected areas, these underground water resources cannot be exploited adequately. Against this, background innovative and adapted technologies are required to utilize hard-to-access water resources in a sustainable way. In this context, the German-Indonesian joint R&D project "Integrated Water Resources Management (IWRM) Indonesia" dealt with the development of highly adaptable water technologies and management strategies. Under the aegis of the Karlsruhe Institute of Technology (KIT) and funded by the German Ministry of Education and Research (BMBF), these innovative technical concepts were exemplarily implemented to remedy this deficiency in the model region Gunung Sewu, a karst area situated on the southern coast of Java Island, Indonesia. The experiences gained through the interdisciplinary joint R&D activities clearly showed that even in the case of availability of appropriate technologies, a comprising transfer of knowhow and the buildup of capabilities (Capacity Development) is inevitable to sustainably implement and disseminate new methods. In this context, an adapted water supply facility was developed by KIT which hereafter shall serve for demonstration, teaching, and research purposes. The plant's functionality, its teaching and research concept, as well as the design process, which was accomplished in collaboration with the

  19. Transformation of Scientific and Technological Achievements of the University Technology Transfer Centers and Technology Transfer Analysis%高校技术转移中心科技成果转化及技术转移现状分析

    Institute of Scientific and Technical Information of China (English)

    崔岩; 郑帆帆; 朱继国

    2012-01-01

    Transformation of scientific and technological achievements and technology transfer in university technology transfer center is an important part of the field of technology transfer. However, conversion rate of scientific and technological achievements of our colleges and universities is low, and service capacity of technology transfer centers is not strong. Based on this, we will study and analyze the status of scientific and technological achievements transformation and technology transfer in domestic universities to provide reference for its future development and research.%高校技术转移中心的科技成果转化及技术转移是技术转移领域的重要组成部分.但是,我国高校的科技成果转化率很低,技术转移中心的服务能力不强.基于此,本文将研究分析国内高校科技成果转化及技术转移的现状,为其今后的发展和研究提供参考.

  20. Design and test of the time transfer by laser link (T2L2) optical subsystem

    Science.gov (United States)

    Vrancken, Patrick; Samain, Etienne; Guillemot, Philippe

    2008-04-01

    We report on the design and test of the optical subsystem of the T2L2 (Time Transfer by Laser Link) space instrument. The T2L2 experiment, developed by OCA and CNES is a next generation optical time transfer system that will allow an improvement1,2 by one to two orders of magnitude as compared to the performances of existing microwave time transfer systems like GPS or Two-Way. The principle is derived from satellite laser ranging (SLR) technology with dedicated space equipment embarked on the satellite Jason 2, scheduled for launch in mid-2008. Satellite Laser Ranging stations (connected to the clocks to be synchronized) emit short laser pulses towards the satellite where they are equally reflected and dated by an onboard event timer. The departure and return of the laser pulses are also timed in the laser stations. The time transfer is derived aposteriori from the data triplets (departure, satellite, return) acquired on the satellite and the respective laser stations. The T2L2 instrument consists of an optical and an electronic subsystem. The optical subsystem is designed such that its field of view (FOV) covers the whole earth for the Jason 2 orbit. It features a linear and a non-linear channel consisting of optical elements and avalanche photodiodes; the linear channel's purpose is threefold: it triggers the whole timing system and measures both the background light and the laser pulse energy. The non-linear channel is for precise timing. We report on the detailed construction of the optical assembly and an exhaustive calibration and performance test campaign in terms of metrology. This test campaign was performed in the clean-room facilities at CNES, Toulouse in March/April 2007 with a dedicated test bed featuring a mode locked laser, variable geometry for different incidence angles and a reference timing system.

  1. Assisted Reproductive Technology and Newborn Size in Singletons Resulting from Fresh and Cryopreserved Embryos Transfer

    Science.gov (United States)

    Holzman, Claudia; Zhang, Yujia; Talge, Nicole M.; Li, Chenxi; Todem, David; Boulet, Sheree L.; McKane, Patricia; Kissin, Dmitry M.; Copeland, Glenn; Bernson, Dana; Diamond, Michael P.

    2017-01-01

    Objectives and Study Design The aim of this study was two-fold: to investigate the association of Assisted Reproductive Technology (ART) and small newborn size, using standardized measures; and to examine within strata of fresh and cryopreserved embryos transfer, whether this association is influenced by parental infertility diagnoses. We used a population-based retrospective cohort from Michigan (2000–2009), Florida and Massachusetts (2000–2010). Our sample included 28,946 ART singletons conceived with non-donor oocytes and 4,263,846 non-ART singletons. Methods Regression models were used to examine the association of ART and newborn size, measured as small for gestational age (SGA) and birth-weight-z-score, among four mutually exclusive infertility groups: female infertility only, male infertility only, combined female and male infertility, and unexplained infertility, stratified by fresh and cryopreserved embryos transfer. Results We found increased SGA odds among ART singletons from fresh embryos transfer compared with non-ART singletons, with little difference by infertility source [adjusted odds-ratio for SGA among female infertility only: 1.18 (95% CI 1.10, 1.26), male infertility only: 1.20 (95% CI 1.10, 1.32), male and female infertility: 1.18 (95% CI 1.06, 1.31) and unexplained infertility: 1.24 (95% CI 1.10, 1.38)]. Conversely, ART singletons, born following cryopreserved embryos transfer, had lower SGA odds compared with non-ART singletons, with mild variation by infertility source [adjusted odds-ratio for SGA among female infertility only: 0.56 (95% CI 0.45, 0.71), male infertility only: 0.64 (95% CI 0.47, 0.86), male and female infertility: 0.52 (95% CI 0.36, 0.77) and unexplained infertility: 0.71 (95% CI 0.47, 1.06)]. Birth-weight-z-score was significantly lower for ART singletons born following fresh embryos transfer than non-ART singletons, regardless of infertility diagnoses. PMID:28114395

  2. Development of core design technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kim Young In; Kim, Young Il; Kim, Y. G.; Kim, S. J.; Song, H.; Kim, T. K.; Kim, W. S.; Hwang, W.; Lee, B. O.; Park, C. K.; Joo, H. K.; Yoo, J. W.; Kang, H. Y.; Park, W. S

    2000-05-01

    For the development of KALIMER (150 MWe) core conceptual design, design evolution and optimization for improved economics and safety enhancement was performed in the uranium metallic fueled equilibrium core design which uses U-Zr binary fuel not in excess of 20 percent enrichment. Utilizing results of the uranium ,metallic fueled core design, the breeder equilibrium core design with breeding ratio being over 1.1 was developed. In addition, utilizing LMR's excellent neutron economy, various core concepts for minor actinide burnup, inherent safety, economics and non-proliferation were realized and its optimization studies were performed. A code system for the LMR core conceptual design has been established through the implementation of needed functions into the existing codes and development of codes. To improve the accuracy of the core design, a multi-dimensional nodal transport code SOLTRAN, a three-dimensional transient code analysis code STEP, MATRA-LMR and ASSY-P for T/H analysis are under development. Through the automation of design calculations for efficient core design, an input generator and several interface codes have been developed. (author)

  3. Robot technologies, autism and designs for learning

    DEFF Research Database (Denmark)

    Hansbøl, Mikala

    2015-01-01

    in the future, with a focus on children and young people diagnosed with autism spectrum disorders, their ICT interests and engagement in innovative and creative learning. The paper draws on international research and examples from the author’s own research into education for children and young people diagnosed...... technologies involves several very different educational approaches to supporting young people’s learning and development. The paper discusses how robot technologies as learning resources have been related to the field of autism and education, and argues for a need to further expand the areas of application...... with autism spectrum disorders, drawing on teachers’ and the students’ interests in working with ICT (e.g. robot technology)....

  4. Air Force Domestic Technology Transfer: Is It Effective

    Science.gov (United States)

    1992-04-01

    Solow , Robert M., and Thurow, Lester C., "Toward a New Industrial America," Scientific American, June 1989, Vol. 260, No. 6, p. 42. ’ National...pp. 1, 2. " Berger, Suzanne, Dertouzos, Michael L., Lester, Richard K., Solow , Robert M., and Thurow, Lester C., "Toward a New Industrial America...American industries, but the inability to bring " Inman, B.R., and Burton, Daniel F., Jr, "Technology and Competitiveness: The New Policy Frontier

  5. Designing Tasks to Promote and Assess Mathematical Transfer in Primary School Children

    Science.gov (United States)

    Clark, Julie; Page, Shaileigh; Thornton, Steve

    2013-01-01

    This study aims to design learning situations and tasks that promote and assess the capacity of primary school children to transfer mathematical knowledge to new contexts. We discuss previous studies investigating mathematical transfer, and particularly the strengths and limitations of tasks used to assess transfer in these studies. We describe…

  6. Methodology and Technology for Design to Cost

    Institute of Scientific and Technical Information of China (English)

    姜华; 曾庆良; 熊光楞

    2001-01-01

    Product cost is one of the most important factors affectingproduct market share. Traditionally, product costs are estimated after they are manufactured. However, in this way, the best opportunity to control product cost is lost. In this paper, a method trying to reduce product cost at the design stage is proposed. This method is called Design to Cost (DTC). According to this method, product structure can be optimized with the application of value engineering and Design for Manufacturing/Assembly (DFMA) criteria in the conceptual stage of product design. During embodiment design, products are evaluated economically on the basis of the product model which includes manufacturing, assembly and test cost information. According to the results, products are redesigned before manufacture, and the production cost is reduced.

  7. Circuit design in organic semiconductor technologies

    NARCIS (Netherlands)

    Heremans, P.; Dehaene, W.; Steyaert, M.; Myny, K.; Mariën, H.; Genoe, J.; Gelinck, G.H.; Veenendaal, E. van

    2011-01-01

    In this paper, we review the state of the art of digital and analog circuits that have been shown in recent years in organic thin-film transistor technology on flexible plastic foil. The transistors are developed for backplanes of displays, and therefore have the characteristics to be unipolar and t

  8. Designing a new MSA biodiesel technology MBT

    Energy Technology Data Exchange (ETDEWEB)

    Ingendoh, Axel [Lanxess Deutschland GmbH, Leverkusen (Germany)

    2013-06-01

    The new MBT Technology was developed at Lanxess and eliminates all these constraints of the alkaline transesterification technology. The acidic transesterification uses Methane sulfonic acid catalysis. Due to the acidic nature of the MBT process formation of soaps is made impossible, sterylglycosides are completely cleaved into soluble product, free fatty acids up to 10% are tolerated, higher alcohols like ethanol and butanol do react equally well and waxes are completely converted into biodiesel. Phase separation of biodiesel and glycerol is dramatically enhanced due to the lack of methanol in this stage. Surprisingly, even water up to 5% does not affect the overall yield and product quality of the MBT Process. Cost savings in biodiesel production may be achieved by using low quality oils with high free fatty acids, use of algae oil, and cost savings at oil raffination due to no need of drying. The Technology is lean and requires less apparatus and less operational steps. The catalyst may be completely recycled by recovering it from the glycerol phase using Lewatit ion exchange technology of Lanxess. (orig.)

  9. Designing Personalization in Technology-Based Services

    Science.gov (United States)

    Lee, Min Kyung

    2013-01-01

    Personalization technology has the potential to optimize service for each person's unique needs and characteristics. One way to optimize service is to allow people to customize the service themselves; another is to proactively tailor services based on information provided by people or inferred from their past behaviors. These approaches function…

  10. Teacher and Technology, New Designs for Learning.

    Science.gov (United States)

    Trow, William Clark

    Technological devices present a challenge that educators cannot afford to ignore. Properly incorporated into a controlled environment, these tools need not bring about any dehumanization of the schools. Traditional teaching methods, promotion policies, marking practices, and classrooms organized by grade level may allow control over what is…

  11. Technology Transfer at Edgar Mine: Phase 1; October 2016

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Chad R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bauer, Stephen [Sandia National Laboratory; Nakagawa, Masami [Colorado School of Mines; Zhou, Wendy [Colorado School of Mines

    2017-09-14

    The objective of this project is to study the flow of fluid through the fractures and to characterize the efficiency of heat extraction (heat transfer) from the test rock mass in the Edgar Mine, managed by Colorado School of Mines in Idaho Springs, CO. The experiment consists of drilling into the wall of the mine and fracturing the rock, characterizing the size and nature of the fracture network, circulating fluid through the network, and measuring the efficiency of heat extraction from the 'reservoir' by monitoring the temperature of the 'produced' fluid with time. This is a multi-year project performed as a collaboration between the National Renewable Energy Laboratory, Colorado School of Mines and Sandia National Laboratories and carried out in phases. This report summarizes Phase 1: Selection and characterization of the location for the experiment, and outlines the steps for Phase 2: Circulation Experiments.

  12. Heat transfer technology for internal passages of air-cooled blades for heavy-duty gas turbines.

    Science.gov (United States)

    Weigand, B; Semmler, K; von Wolfersdorf, J

    2001-05-01

    The present review paper, although far from being complete, aims to give an overview about the present state of the art in the field of heat transfer technology for internal cooling of gas turbine blades. After showing some typical modern cooled blades, the different methods to enhance heat transfer in the internal passages of air-cooled blades are discussed. The complicated flows occurring in bends are described in detail, because of their increasing importance for modern cooling designs. A short review about testing of cooling design elements is given, showing the interaction of the different cooling features as well. The special focus of the present review has been put on the cooling of blades for heavy-duty gas turbines, which show several differences compared to aero-engine blades.

  13. Reactor and process design in sustainable energy technology

    CERN Document Server

    Shi, Fan

    2014-01-01

    Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. Emphasis on reactor engineering in sustainable energy techn...

  14. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Denninger, Kate; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Bell, Sean; Jacobs, Amelia; Nagandran, Uneshddarann; Tilley, Mitch; Quick, Ralph

    2015-09-02

    There is a significant amount of financial risk associated with geothermal drilling. This study of drilling operations seeks opportunities to improve upon current practices and technologies. The scope of this study included analyzing 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'Perfect Well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.) and poor data collection practices An online software database was used to format drilling data to IADC coded daily drilling reports and generate figures for analysis. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/ equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averaged 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million was spent on non-productive time in the 21 geothermal wells, compared with only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry using Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.

  15. Design-led approach for transferring the embodied skills of puppet stop-motion animators into haptic workspaces

    OpenAIRE

    Dima, Maria

    2013-01-01

    This design-led research investigates the transfer of puppet stop-motion animators’ embodied skills from the physical workspace into a digital environment. The approach is to create a digital workspace that evokes an embodied animating experience and allows puppet stop-motion animators to work in it unencumbered. The insights and outcomes of the practical explorations are discussed from the perspective of embodied cognition. The digital workspace employs haptic technology, an a...

  16. Vaccines for HIV | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The development of an effective HIV vaccine has been an ongoing area of research. The high variability in HIV-1 virus strains has represented a major challenge in successful development. Ideally, an effective candidate vaccine would provide protection against the majority of clades of HIV. Two major hurdles to overcome are immunodominance and sequence diversity. This vaccine utilizes a strategy for overcoming these two issues by identifying the conserved regions of the virus and exploiting them for use in a targeted therapy. NCI seeks licensees and/or research collaborators to commercialize this technology, which has been validated in macaque models.

  17. Designing Teaching Materials for Learning Problem Solving in Technology Education

    NARCIS (Netherlands)

    Doornekamp, B.G.

    2001-01-01

    In the process of designing teaching materials for learning problem solving in technology education, domain-specific design specifications are considered important elements to raise learning outcomes with these materials. Two domain-specific design specifications were drawn up using a four-step proc

  18. Designing Teaching Materials for Learning Problem Solving in Technology Education

    NARCIS (Netherlands)

    Doornekamp, B.G.

    2001-01-01

    In the process of designing teaching materials for learning problem solving in technology education, domain-specific design specifications are considered important elements to raise learning outcomes with these materials. Two domain-specific design specifications were drawn up using a four-step proc

  19. Designing Teaching Materials for Learning Problem Solving in Technology Education

    NARCIS (Netherlands)

    Doornekamp, B.G.

    In the process of designing teaching materials for learning problem solving in technology education, domain-specific design specifications are considered important elements to raise learning outcomes with these materials. Two domain-specific design specifications were drawn up using a four-step

  20. Communications technology satellite output-tube design and development

    Science.gov (United States)

    Connolly, D. J.; Forman, R.; Jones, C. L.; Kosmahl, H.; Sharp, G. R.

    1977-01-01

    The design and development of a 200-watt-output, traveling-wave tube (TWT) for the Communications Technology Satellite (CTS) is discussed, with emphasis on the design evolution during the manufacturing phase of the development program. Possible further improvements to the tube design are identified.