WorldWideScience

Sample records for technology transfer commercialization

  1. Technology Transfer and Commercialization

    Science.gov (United States)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  2. Technology Transfer and Commercialization

    Science.gov (United States)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  3. Technology Transfer/Commercialization Report

    Science.gov (United States)

    2002-01-01

    Contents include the following: (1) Who we are. (2) Technology opportunities and successes in 2002: Hilbert-Huang transform; new sensors via sol-gel-filled fiber optics; hierarchical segmentation software. (3) Activities in 2002: encouraging researcher involvement; inventorying new technologies; patenting Goddard technologies; promoting Goddard technologies; establishing new agreements;seeking and bestowing awards. (4) How to reach Goddard's: technology commercialization office.

  4. Technology Transfer/Commercialization Report

    Science.gov (United States)

    2002-01-01

    Contents include the following: (1) Who we are. (2) Technology opportunities and successes in 2002: Hilbert-Huang transform; new sensors via sol-gel-filled fiber optics; hierarchical segmentation software. (3) Activities in 2002: encouraging researcher involvement; inventorying new technologies; patenting Goddard technologies; promoting Goddard technologies; establishing new agreements;seeking and bestowing awards. (4) How to reach Goddard's: technology commercialization office.

  5. Technology Transfer/Commercialization Report 2002

    Science.gov (United States)

    2002-01-01

    Contents include the following: 1. Technology opportunities and successes in 2002: Hilbert-Huang transform. New sensors via sol-gel-filled fiber optics. Hierarchical segmentation software. 2. Activity in 2002: encouraging researcher involvment. 10th annual new technology reporting award program. Commercial technology development program. 3. Inventorying new technologies: Sensors and detectors. Environmental systems. Information systems. Guidance, navigation, and control. Thermal and cryogenics. Optics. Patenting Goddard technologies. Striking gold with NASA technology transfer.

  6. Technology Transfer/Commercialization Report 2002

    Science.gov (United States)

    2002-01-01

    Contents include the following: 1. Technology opportunities and successes in 2002: Hilbert-Huang transform. New sensors via sol-gel-filled fiber optics. Hierarchical segmentation software. 2. Activity in 2002: encouraging researcher involvment. 10th annual new technology reporting award program. Commercial technology development program. 3. Inventorying new technologies: Sensors and detectors. Environmental systems. Information systems. Guidance, navigation, and control. Thermal and cryogenics. Optics. Patenting Goddard technologies. Striking gold with NASA technology transfer.

  7. Technology Transfer and Commercialization Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Michelle R. Blacker

    2008-12-01

    The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers

  8. Florida commercial space initiatives and technology transfer mechanisms

    Science.gov (United States)

    Moore, Roger L.

    1989-01-01

    This paper discusses commercial space policy for the State of Florida in the context of state initiatives for general technology and economic development. The paper also compares Florida's commercial space initiatives to national space policies and describes mechanisms for transferring space related technologies and research to Florida businesses for subsequent development and commercialization.

  9. Technology Transfer: From the Research Bench to Commercialization

    Directory of Open Access Journals (Sweden)

    Gail A. Van Norman, MD

    2017-02-01

    Full Text Available Progress in medicine hinges on the successful translation of basic science discoveries into new medical devices, diagnostics, and therapeutics. “Technology transfer” is the process by which new innovations flow from the basic research bench to commercial entities and then to public use. In academic institutions, intellectual property rights do not usually fall automatically to the individual inventor per se, but most often are the property of the institution. Technology transfer offices are tasked with seeing to it that such intellectual property rights are properly managed and commercialized. This 2-part series explores the technology transfer process from invention to commercialization. Part 1 reviews basic aspects of intellectual property rights, primarily patents and copyrights. Part 2 will discuss the ways in which inventions become commercialized through startup companies and licensing arrangements with industry players.

  10. Research in space commercialization, technology transfer, and communications

    Science.gov (United States)

    1982-01-01

    Research and internship programs in technology transfer, space commercialization, and information and communications policy are described. The intern's activities are reviewed. On-campus research involved work on the costs of conventional telephone technology in rural areas, an investigation of the lag between the start of a research and development project and the development of new technology, using NASA patent and patent waiver data, studies of the financial impact and economic prospects of a space operation center, a study of the accuracy of expert forecasts of uncertain quantities and a report on frequency coordination in the fixed and fixed satellite services at 4 and 6 GHz.

  11. The Commercialization of New Technologies Transfer from Laboratory to Firm.

    Science.gov (United States)

    1983-05-09

    immediate market introduction . A gap exists, which is a measure of technology maturity, that reflects the amount of additional research and development the...as successful commercialization. A failure occurs when a 15 potential innovation does not reach the point of market introduction for any reason. THE...ready for immediate * market introduction . A gap exists, which is a measure of technology maturity, that reflects the amount of additional

  12. Technology transfer and catch-up; Lessons from the commercial aircraft industry

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.; Heerkens, Johannes M.G.

    2007-01-01

    This paper analyses the technology development and technology transfer strategies in the aircraft manufacturing industry for four industrially developing countries. It is concluded from four case studies that technology catch-up is extremely difficult due to aircraft technology characteristics.

  13. Technology Transfer

    Science.gov (United States)

    Smith, Nanette R.

    1995-01-01

    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can

  14. Commercial objectives, technology transfer, and systems analysis for fusion power development

    Science.gov (United States)

    Dean, Stephen O.

    1988-03-01

    Fusion is an essentially inexhaustible source of energy that has the potential for economically attractive commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion-energy development program is the generation of centralstation electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high-energy neutrons suggests potentially unique applications. These include breeding of fissile fuels, production of hydrogen and other chemical products, transmutation or “burning” of various nuclear or chemical wastes, radiation processing of materials, production of radioisotopes, food preservation, medical diagnosis and medical treatment, and space power and space propulsion. In addition, fusion R&D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other hand, are the two primary criteria for setting long-range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R&D program toward practical applications. The transfer of fusion technology and skills from the national laboratories and universities to industry is the key to achieving the long-range objective of commercial fusion applications.

  15. Inside the triple helix: technology transfer and commercialization in the life sciences.

    Science.gov (United States)

    Campbell, Eric G; Powers, Joshua B; Blumenthal, David; Biles, Brian

    2004-01-01

    The transfer and subsequent application of academic research results has demonstrable benefits for health care, researchers, universities, companies, and local economies. Nonetheless, at least three general concerns exist: bias in the reporting of results, limited revenues from these activities, and the lack of data to evaluate technology transfer activities. Future efforts with regard to technology transfer in the life sciences will need to recognize its importance without ignoring concerns or overestimating benefits. Next steps include better monitoring of university-industry relationships, the development of a better data system, the dissemination of best practices in technology transfer management, and evaluation of national technology-transfer policies.

  16. Technology transfer and catch-up; Lessons from the commercial aircraft industry

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.; Heerkens, Hans

    2007-01-01

    This paper analyses the technology development and technology transfer strategies in the aircraft manufacturing industry for four industrially developing countries. It is concluded from four case studies that technology catch-up is extremely difficult due to aircraft technology characteristics. Base

  17. Technology transfer and other public policy implications of multi-national arrangements for the production of commercial airframes

    Science.gov (United States)

    Gellman, A. J.; Price, J. P.

    1978-01-01

    A study to examine the question of technology transfer through international arrangements for production of commercial transport aircraft is presented. The likelihood of such transfer under various representative conditions was determined and an understanding of the economic motivations for, effects of, joint venture arrangements was developed. Relevant public policy implications were also assessed. Multinational consortia with U.S. participation were focused upon because they generate the full range of pertinent public issues (including especially technology transfer), and also because of recognized trends toward such arrangements. An extensive search and analysis of existing literature to identify the key issues, and in-person interviews with executives of U.S. and European commercial airframe producers was reviewed. Distinctions were drawn among product-embodied, process, and management technologies in terms of their relative possibilities of transfer and the significance of such transfer. Also included are observations on related issues such as the implications of U.S. antitrust policy with respect to the formation of consortia and the competitive viability of the U.S. aircraft manufacturing industry.

  18. The Commtech Methodology: A Demand-Driven Approach to Efficient, Productive, and Measurable Technology Transfer and Commercialization

    Science.gov (United States)

    Horsham, Gary A. P.

    1999-01-01

    This paper presents a comprehensive review and assessment of a demonstration technology transfer and commercialization prouram called "CommTech". The pro-ram was conceived and initiated in early to mid-fiscal year 1995, and extended roughly three years into the future. Market research sources were used to initially gather primary technological problems and needs data from non-aerospace companies in three targeted industry sectors: environmental, surface transportation, and bioengineering. Company-supplied information served as input data to activate or start-up an internal, phased matchmaking process. This process was based on technical-level relationship exploration followed by business-level agreement negotiations. and culminated with project management and execution. Space Act Agreements represented near-term outputs. Company product or process commercialization derived from NASA Glenn support and measurable economic effects represented far-term outputs.

  19. Strategies on technology transfer and patents commercialization for nanotechnology at the Spanish National Research Council.

    Science.gov (United States)

    Maira, Javier; Etxabe, Javier; Serena, Pedro A

    2017-06-01

    Nanoscience and nanotechnology made their appearance in the scientific scene at a time when both the economy of Spain and the Spanish Research and Innovation System were experiencing strong growth. This circumstance resulted in a remarkable development of nanoscience and nanotechnology especially in universities and public research institutions such as the Spanish National Research Council (Consejo Superior de Investigaciones Científicas - CSIC). However, this development in academia has not been reflected in a similar increment in the transfer of knowledge to the productive sector despite several efforts and initiatives were launched. The CSIC, the main generator of scientific knowledge in Spain, has designed and implemented a series of actions in order to take advantage of the knowledge generated in nanotechnology by its research groups by mean of an appropriate transfer to both the Spanish and the international industry. This article describes the measures taken in last decade for the protection and commercialization of research results in the field of nanotechnology, as well as the results that were achieved. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Technology Commercialization Program 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

  1. Technology Transfer in HEIs: A Case Study of Bioscience Commercialization at the University of Warwick

    Science.gov (United States)

    Gohir, Tas; Palmer, Grier

    2005-01-01

    The UK's bioscience research base is one of the country's genuine long-term economic assets. It is critically important for the UK not to repeat past mistakes, when financial exploitation of innovative and groundbreaking bioresearch went overseas. This study reviews commercialization from the Department of Biological Sciences at Warwick University…

  2. Thermophotovoltaic Cell Technology Transferred to the Department of Energy Laboratory and a Commercial Manufacturer

    Science.gov (United States)

    Wilt, David M.

    1997-01-01

    Researchers in the NASA Lewis Research Center's Photovoltaic Branch have developed novel photovoltaic device, called a Monolithically Interconnected Module (MIM), for use in thermophotovoltaic (TPV) power systems. TPV power systems function by heating an emitter to produce light. This light is then converted into electricity by a photovoltaic device or a solar cell. Possible heat sources for the system include concentrated solar energy, the combustion of various fuels, and nuclear decay. NASA has an interest in TPV systems for deep space (nuclear-powered) and near-Sun (solar-powered) missions. There also are many commercial and military applications for TPV, given its potential for high efficiency, low noise, and reliable power. The Monolithically Interconnected Module consists of many small solar cells that are series-interconnected on a common substrate. The cells are fabricated from indium gallium arsenide (InGaAs), which can convert the near-infrared portion of the emitter output spectrum into electricity. The InGaAs devices are deposited on an indium phosphide (InP) substrate that provides electrical isolation. On the bottom the InP substrate is an infrared reflector that returns all the photons that are not converted by the InGaAs device back to the emitter where they are absorbed. This process helps maintain the emitter temperature and dramatically improves the system efficiency. Monolithically Interconnected Module InGaAs thermophotovoltaic cell developed by Lewis. Compared with conventional TPV cells, this TPV device has higher output voltages and lower resistive losses, higher output power density, simplified thermal management, improved reliability, and higher efficiency. The Monolithically Interconnected Module was initially developed under an internally funded effort (Director's Discretionary Fund). Development is now being funded by another government agency, and prototype devices are being produced by a commercial solar cell manufacturer.

  3. Networking as a Strategy for Technology Transfer and Commercialization from R&D Laboratories: Key Lessons from Case Studies in India

    Science.gov (United States)

    Roy, Santanu

    2006-01-01

    Managing R&D and the innovation process is closely linked with technology transfer and the commercialization of research results. This is especially so in the context of publicly-funded R&D laboratory systems in developing countries, such as India's Council of Scientific and Industrial Research (CSIR). Inefficiencies in the transfer…

  4. University Technology Transfer

    Directory of Open Access Journals (Sweden)

    Mike Cox

    2004-09-01

    Full Text Available This article describes the experiences and general observations of the author at Heriot-Watt University and concerns the transfer of university technology for the purposes of commercialisation. Full commercial exploitation of a university invention generally requires transferring that technology into the industrial arena, usually either by formation of a new company or licensing into an existing company. Commercialisation activities need to be carried out in unison with the prime activities of the university of research and teaching. Responsibility for commercialising university inventions generally rests with a specific group within the university, typically referred to as the technology transfer group. Each technology transfer should be considered individually and appropriate arrangements made for that particular invention. In general, this transfer process involves four stages: identification, evaluation, protection and exploitation. Considerations under these general headings are outlined from a university viewpoint. A phased approach is generally preferred where possible for the evaluation, protection and exploitation of an invention to balance risk with potential reward. Evaluation of the potential opportunity for a university invention involves essentially the same considerations as for an industrial invention. However, there are a range of commercial exploitation routes and potential deals so that only general guidelines can be given. Naturally, the final deal achieved is that which can be negotiated. The potential rewards for the university and inventor are both financial (via licensing income and equity realisation and non-financial.

  5. Technology transfer by multinationals

    OpenAIRE

    Kostyantyn Zuzik

    2003-01-01

    The paper analyses the issue of technology transfer by multinational corporations. The following questions are explored: (a) world market of technologies, the role of MNCs (b) Choice of the technology transfer mode, Dunning's OLI-theory as a factor of the choice of the mode of transfer (c) measurement and profitability of technology transfer (d) transfer of technology through partnerships, JVs, alliances and through M&As (e) aspects of technology transfer by services multinationals. Paper uti...

  6. Technology transfer by multinationals

    OpenAIRE

    2003-01-01

    The paper analyses the issue of technology transfer by multinational corporations. The following questions are explored: (a) world market of technologies, the role of MNCs (b) Choice of the technology transfer mode, Dunning's OLI-theory as a factor of the choice of the mode of transfer (c) measurement and profitability of technology transfer (d) transfer of technology through partnerships, JVs, alliances and through M&As (e) aspects of technology transfer by services multinationals. Paper uti...

  7. Dual Space Technology Transfer

    Science.gov (United States)

    Kowbel, W.; Loutfy, R.

    2009-03-01

    Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.

  8. Commercial aircraft composite technology

    CERN Document Server

    Breuer, Ulf Paul

    2016-01-01

    This book is based on lectures held at the faculty of mechanical engineering at the Technical University of Kaiserslautern. The focus is on the central theme of societies overall aircraft requirements to specific material requirements and highlights the most important advantages and challenges of carbon fiber reinforced plastics (CFRP) compared to conventional materials. As it is fundamental to decide on the right material at the right place early on the main activities and milestones of the development and certification process and the systematic of defining clear requirements are discussed. The process of material qualification - verifying material requirements is explained in detail. All state-of-the-art composite manufacturing technologies are described, including changes and complemented by examples, and their improvement potential for future applications is discussed. Tangible case studies of high lift and wing structures emphasize the specific advantages and challenges of composite technology. Finally,...

  9. Commercializing medical technology.

    Science.gov (United States)

    Scanlon, Kevin J; Lieberman, Mark A

    2007-04-01

    As medicine moves into the 21st century, life saving therapies will move from inception into medical products faster if there is a better synergy between science and business. Medicine appears to have 50-year innovative cycles of education and scientific discoveries. In the 1880's, the chemical industry in Germany was faced with the dilemma of modernization to exploit the new scientific discoveries. The solution was the spawning of novel technical colleges for training in these new chemical industries. The impact of those new employees and their groundbreaking compounds had a profound influence on medicine and medical education in Germany between 1880 and 1930. Germany dominated international science during this period and was a training center for scientists worldwide. This model of synergy between education and business was envied and admired in Europe, Asia and America. British science soon after evolved to dominate the field of science during the prewar and post World War (1930's-1970's) because the German scientists fled Hitler's government. These expatriated scientists had a profound influence on the teaching and training of British scientists, which lead to advances in medicine such as antibiotics. After the Second World War, the US government wisely funded the development of the medical infrastructure that we see today. British and German scientists in medicine moved to America because of this bountiful funding for their research. These expatriated scientists helped drive these medical advances into commercialized products by the 1980's. America has been the center of medical education and advances of biotechnology but will it continue? International scientists trained in America have started to return to Europe and Asia. These American-trained scientists and their governments are very aware of the commercial potential of biotechnology. Those governments are now more prepared to play an active role this new science. Germany, Ireland, Britain, Singapore

  10. Technology transfer for adaptation

    Science.gov (United States)

    Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia

    2014-09-01

    Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.

  11. Technology Transfer and Technology Transfer Intermediaries

    Science.gov (United States)

    Bauer, Stephen M.; Flagg, Jennifer L.

    2010-01-01

    A standard and comprehensive model is needed to evaluate and compare technology transfer systems and the stakeholders within these systems. The principle systems considered include federal laboratories, U.S. universities, the rehabilitation engineering research centers (RERCs), and large small business innovation research programs. An earlier…

  12. Technology transfer 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  13. Technology transfer and learning

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.

    2002-01-01

    Despite the fact that international technology transfer has been widely studied its management still encounters many difficulties. To fully understand the issues that are relevant to the process of transferring production technology, it is necessary to determine the important factors that influence

  14. Macroeconomic level of technology transfer

    Directory of Open Access Journals (Sweden)

    Smirnova Nadezhda

    2016-04-01

    Full Text Available World practice of economic management has proved that the best indicator of competitiveness is achieved by that economic system, the economic units of which timely and adequately update the resource and technical base, thus achieving higher financial and economic indicators. Ensuring that sustainable development becomes possible due to the transfer of technological innovations, namely the diffusion from the developer to the customer on both commercial and free of charge basis. The article focuses on functioning of technology transfer at the macro level, namely the creation of its domestic models.

  15. Strategy & Action Plan For Accelerating Technology Transfer (T2) and Commercialization of Federal Research in Support of High Growth Businesses

    Science.gov (United States)

    2012-10-04

    industry consortia , economic development entities, and State and local governments.” Specifically, increased efforts to facilitate commercialization...both the DoD and industry . Accurate and relevant data are essential in supporting analysis based on actual versus planned outcomes relative to...and industrial innovation are critical to the U.S economic, environmental, and social well-being. Establishes national authorities for T2 across the

  16. Inaugural Technology Transfer Showcase Aims to Increase Industry Partnerships and Commercialization of Cancer-Related Inventions | Poster

    Science.gov (United States)

    Science and business professionals from across the region will have an opportunity to learn about—and perhaps even commercialize—cutting-edge technologies being used to address some of the most urgent and intractable problems in the biomedical sciences at an upcoming event held at the Frederick National Laboratory for Cancer Research.

  17. Technology and technology transfer: some basic issues

    OpenAIRE

    Shamsavari, Ali; Adikibi, Owen; Taha, Yasser

    2002-01-01

    This paper addresses various issues relating to technology and transfer of technology such as technology and society, technology and science, channels and models of technology transfer, the role of multinational companies in transfer of technology, etc. The ultimate objective is to pose the question of relevance of some existing models and ideas like technological independence in an increasingly globalised world economy.

  18. Technology Transfer Issues and a New Technology Transfer Model

    Science.gov (United States)

    Choi, Hee Jun

    2009-01-01

    The following are major issues that should be considered for efficient and effective technology transfer: conceptions of technology, technological activity and transfer, communication channels, factors affecting transfer, and models of transfer. In particular, a well-developed model of technology transfer could be used as a framework for…

  19. [Technology transfer of building materials by ECOMAT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report discusses the plan for technology transfer of building materials developed by ECOMAT to the commercial private sector. Some of the materials are briefly discussed like foams, fiber reinforcement, fly ash development, and polymer fillers.

  20. Mississippi Technology Transfer Center

    Science.gov (United States)

    1987-01-01

    The Mississippi Technology Transfer Center at the John C. Stennis Space Center in Hancock County, Miss., was officially dedicated in 1987. The center is home to several state agencies as well as the Center For Higher Learning.

  1. Technology Transfer: A Contact Sport

    Science.gov (United States)

    Paynter, Nina P.

    1995-01-01

    Technology transfer is a dynamic process, involving dynamic people as the bridge between NASA Langley Research Center and the outside world. This bridge, for nonaerospace applications, is known as the Technology Applications Group. The introduction of new innovations and expertise where they are needed occurs through a 'push' and 'pull' process. A 'push' occurs when a new technology is first developed with high commercial potential and then a company is found to licence or further develop the technology. The 'pull' process occurs through problem statements. A company or group will submit a written statement of what they need and the shortcomings of commercially available technology. The Technology Transfer Team (T3) reviews these problem statements and decides where NASA LaRC can offer assistance. A researcher or group of researchers are then identified who can help solve the problem and they are put in contact with the company. Depending upon the situation in either method, a Space Act Agreement (SAA), or outline of the responsibilities for each party, is developed.

  2. Commercial Space with Technology Maturation

    Science.gov (United States)

    McCleskey, Carey M.; Rhodes, Russell E.; Robinson, John W.

    2013-01-01

    To provide affordable space transportation we must be capable of using common fixed assets and the infrastructure for multiple purposes simultaneously. The Space Shuttle was operated for thirty years, but was not able to establish an effective continuous improvement program because of the high risk to the crew on every mission. An unmanned capability is needed to provide an acceptable risk to the primary mission. This paper is intended to present a case where a commercial space venture could share the large fixed cost of operating the infrastructure with the government while the government provides new advanced technology that is focused on reduced operating cost to the common launch transportation system. A conceivable commercial space venture could provide educational entertainment for the country's youth that would stimulate their interest in the science, technology, engineering, and mathematics (STEM) through access at entertainment parks or the existing Space Visitor Centers. The paper uses this example to demonstrate how growing public-private space market demand will re-orient space transportation industry priorities in flight and ground system design and technology development, and how the infrastructure is used and shared.

  3. NASA Technology Applications Team: Commercial applications of aerospace technology

    Science.gov (United States)

    1994-01-01

    The Research Triangle Institute (RTI) Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies, that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. The RTI Team has been successful in the development of NASA/industry partnerships and commercialization of NASA technologies. RTI ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed and implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs. (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology. And (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994.

  4. What Is Technology Transfer? | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.

  5. What Is Technology Transfer? | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.

  6. Technology transfer 1995

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  7. Commercial Parts Technology Qualification Processes

    Science.gov (United States)

    Cooper, Mark S.

    2013-01-01

    Many high-reliability systems, including space systems, use selected commercial parts (including Plastic Encapsulated Microelectronics or PEMs) for unique functionality, small size, low weight, high mechanical shock resistance, and other factors. Predominantly this usage is subjected to certain 100% tests (typically called screens) and certain destructive tests usually (but not always) performed on the flight lot (typically called qualification tests). Frequently used approaches include those documented in EEE-INST-002 and JPL DocID62212 (which are sometimes modified by the particular aerospace space systems manufacturer). In this study, approaches from these documents and several space systems manufacturers are compared to approaches from a launch systems manufacturer (SpaceX), an implantable medical electronics manufacturer (Medtronics), and a high-reliability transport system process (automotive systems). In the conclusions section, these processes are outlined for all of these cases and presented in tabular form. Then some simple comparisons are made. In this introduction section, the PEM technology qualification process is described, as documented in EEE-INST-002 (written by the Goddard Space Flight Center, GSFC), as well as the somewhat modified approach employed at the Jet Propulsion Laboratory (JPL). Approaches used at several major NASA contractors are also described

  8. Risk Management in Biologics Technology Transfer.

    Science.gov (United States)

    Toso, Robert; Tsang, Jonathan; Xie, Jasmina; Hohwald, Stephen; Bain, David; Willison-Parry, Derek

    Technology transfer of biological products is a complex process that is important for product commercialization. To achieve a successful technology transfer, the risks that arise from changes throughout the project must be managed. Iterative risk analysis and mitigation tools can be used to both evaluate and reduce risk. The technology transfer stage gate model is used as an example tool to help manage risks derived from both designed process change and unplanned changes that arise due to unforeseen circumstances. The strategy of risk assessment for a change can be tailored to the type of change. In addition, a cross-functional team and centralized documentation helps maximize risk management efficiency to achieve a successful technology transfer. © PDA, Inc. 2016.

  9. License Agreements | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Since the government cannot engage in the development, manufacture, and sale of products, the NCI Technology Transfer Center (TTC) makes its discoveries (and discoveries from nine other NIH Institutes) available to organizations that can assist in the further development and commercialization of these basic science discoveries, to convert them into public health benefits. | [google6f4cd5334ac394ab.html

  10. Managerial technology transfer

    CERN Document Server

    2012-01-01

    Organisations need to think globally, but act locally - with a full appreciation of the diversity of local cultures. Major global companies must recognise that policies need to be managed with the broad context of business strategy and integrated into the work culture with the support of all elements of human resources management. Most currently, companies are accommodating national cultural differences while preserving work culture principals that encourage people to effectively execute the company's strategic objectives. Even to the casual observer, it is apparent that culture- a society's programming of the mind- has both a pervasive and changing influence on each national business environment. Global managers must recognise the influence of culture and be prepared to either respond to it or change it. This book examines current research in the study of managerial technology transfer.

  11. Technology Transition a Model for Infusion and Commercialization

    Science.gov (United States)

    McMillan, Vernotto C.

    2006-01-01

    The National Aeronautics and Space Administration has as part of its charter the mission of transferring technologies developed for the space program into the private sector for the purpose of affording back to the American people the economical and improved quality of life benefits associated with the technologies developed. In recent years considerable effort has been made to use this program for not only transitioning technologies out of the NASA Mission Directorate Programs, but also to transfer technologies into the Mission Directorate Programs and leverage the impact of government and private sector innovation. The objective of this paper is to outline an approach and the creation of a model that brings together industry, government, and commercialization strategies. When these elements are integrated, the probability of successful technology development, technology infusion into the Mission Programs, and commercialization into the private sector is increased. This model primarily addresses technology readiness levels between TRL 3 and TRL 6. This is typically a gap area known as the valley of death. This gap area is too low for commercial entities to invest heavily and not developed enough for major programs to actively pursue. This model has shown promise for increasing the probably of TRL advancement to an acceptable level for NASA programs and/or commercial entities to afford large investments toward either commercialization or infusion.

  12. Space commercialization and power system technology

    Science.gov (United States)

    Brandhorst, H., Jr.; Faymon, K. A.

    1987-01-01

    The development and application of power and energy technologies important to the commercialization of space is discussed, stressing the significance of these technologies to space transportation systems, on-orbit services and on-orbit commercial production and processing ventures. Energy conversion systems examined include solar photovoltaic systems, solar thermal dynamic power systems, and nuclear power systems. Energy storage systems include electrochemical systems, inertial storage systems, and magnetic energy storage systems. In addition, power management and distribution systems used in space commercialization and NASA programs for the commercial development of space are discussed.

  13. Space commercialization and power system technology

    Science.gov (United States)

    Brandhorst, H., Jr.; Faymon, K. A.

    1987-01-01

    The development and application of power and energy technologies important to the commercialization of space is discussed, stressing the significance of these technologies to space transportation systems, on-orbit services and on-orbit commercial production and processing ventures. Energy conversion systems examined include solar photovoltaic systems, solar thermal dynamic power systems, and nuclear power systems. Energy storage systems include electrochemical systems, inertial storage systems, and magnetic energy storage systems. In addition, power management and distribution systems used in space commercialization and NASA programs for the commercial development of space are discussed.

  14. Search Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  15. Available Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  16. Federal Technology Transfer Act (FTTA)

    Science.gov (United States)

    EPA's Federal Technology Transfer Act (FTTA) is a mechanism with which EPA can patent its inventions and license them to companies, through which innovative technologies can enter the marketplace to improve the environment and human health.

  17. Environmental management technology demonstration and commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H. [Energy & Environmental Research Center, Grand Forks, ND (United States)] [and others

    1995-10-01

    The Energy & Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD&C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE`s Office of Environmental Science and Technology (EM-50) under DOE`s EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies.

  18. Federal Technology Transfer Act Success Stories

    Science.gov (United States)

    Successful Federal Technology Transfer Act (FTTA) partnerships demonstrate the many advantages of technology transfer and collaboration. EPA and partner organizations create valuable and applicable technologies for the marketplace.

  19. Technology Transfer Annual Report Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Wendy Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to

  20. Technology evaluation report, commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1976-04-01

    Criteria are presented which are to be met by solar hardware for inclusion in the demonstration program. Assessments are made, based on a survey made of solar hardware manufacturers and developers, of when components, subsystems, and systems will be available for demonstration according to the technology status categories set forth in ERDA 23A. Task outlines are provided for development activity recommended to improve available systems or develop advanced systems for later demonstration cycles. (WDM)

  1. SHARED TECHNOLOGY TRANSFER PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  2. Japan acts to speed technology transfer from universities

    CERN Multimedia

    Saegusa, A

    1999-01-01

    A Japanese law will take effect in the autumn to promote technology transfer from universities and laboratories. The new measures aim to encourage collaborations with the commercial sector and allow industrial research partners to retain title to inventions (1 page).

  3. The Department of Defense Small Business Innovation Research and Small Business Technology Transfer Programs: Implementation of the Commercialization Pilot Program and Related Reforms

    Science.gov (United States)

    2011-06-01

    STTR RESEACH FOCUS ............................................................................................................22  1.  Alignment of...process of developing marketable products or services and producing and delivering products or services for sale (whether by the originating party or by...others) to Government or commercial markets .”7 SBIR/STTR commercialization includes sales to the government through public procurement prime contracts

  4. OPTIMIZING OUTCOME IN THE UNIVERSITY-INDUSTRY TECHNOLOGY TRANSFER PROJECTS

    Directory of Open Access Journals (Sweden)

    Hamed ALAVI

    2016-04-01

    Full Text Available Transferring inventions of academic scientists to private enterprises for the purpose of commercialization is long known as University-Industry (firm Technology Transfer While the importance of this phenomenon is simultaneously raising in public and private sector, only a part of patented academic inventions succeed in passing the process of commercialization. Despite the fact that formal Technology Transfer process and licencing of patented innovations to third party is the main legal tool for safeguarding rights of academic inventors in commercialization of their inventions, it is not sufficient for transmitting tacit knowledge which is necessary in exploitation of transferred technology. Existence of reciprocal and complementary relations between formal and informal technology transfer process has resulted in formation of different models for university-industry organizational collaboration or even integration where licensee firms keep contact with academic inventors after gaining legal right for commercialization of their patented invention. Current paper argues that despite necessity for patents to legally pass the right of commercialization of an invention, they are not sufficient for complete knowledge transmission in the process of technology transfer. Lack of efficiency of formal mechanism to end the Technology Transfer loop makes an opportunity to create innovative interpersonal and organizational connections among patentee and licensee company. With emphasize on need for further elaboration of informal mechanisms as critical and underappreciated aspect of technology transfer process, article will try to answer the questions of how to optimize knowledge transmission process in the framework of University-Industry Technology Transfer Projects? What is the theoretical basis for university-industry technology transfer process? What are organization collaborative models which can enhance overall performance by improving transmission of

  5. Technology Transfer: A Policy Model

    Science.gov (United States)

    1988-04-01

    34 Caveman Club-Without Nail." More serious scholars indicate that understand- ing how to start and maintain fires was the first tech- nology transfer of...others. From caveman clubs to hyper- velocity missiles, technology transfer has played a significant military role; it also has assisted imperialis- tic

  6. Hardness variability in commercial and hardened technologies

    Energy Technology Data Exchange (ETDEWEB)

    Shaneyfelt, M.R.; Winokur, P.S.; Meisenheimer, T.L.; Sexton, F.W.; Roeske, S.B.; Knoll, M.G.

    1994-03-01

    Over the past 10 years, there have been a number of advances in methods to assess and assure the radiation hardness of microelectronics in military and space applications. At the forefront of these is the Qualified Manufacturers List (QML) methodology, in which the hardness of product is ``built-in`` through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to varying radiation scenarios. At the same time, there has been renewed interest in the use of commercial technology -- with its enhanced performance, reduced cost, and higher reliability -- in military and space systems. In this paper, we initially demonstrate the application of QML techniques to assure and control the radiation response of hardened technologies. Through several examples, we demonstrate intra-die, wafer-to-wafer, and lot-to-lot variations in a hardened technology. We observe 10 to 30% variations in key technology parameters that result from variability in geometry, process, and design layout. Radiation-induced degradation is seen to mirror preirradiation characteristics. We then evaluate commercial technologies and report considerably higher variability in radiation hardness, i.e., variations by a factor of two to five. This variability is shown to arise from a lack of control of technology parameters relevant to the radiation response, which a commercial manufacturer has no interest in controlling in a normal process flow.

  7. Technological Entrepreneurship Framework for University Commercialization of Information Technology

    Directory of Open Access Journals (Sweden)

    Tamrin Amboala

    2016-05-01

    Full Text Available One effective way of accelerating the commercialization of university innovations (inventions is to execute a “Technological Entrepreneurship” framework that helps the execution of agreements between universities and industry for commercialization. Academics have been encouraged to commercialize their research and findings yet the level of success of commercialization of inventions (innovations in industry is questionable. As there is no agreed commercialization framework to guide the execution of processes to support inventions moving from laboratories to the right market. The lack of capabilities of appropriate processes have undermined the turning of innovation and products into wealth. The research questions are designed to identify the constraints and hindrances of commercialization and the characteristics of successful processes built from framework based on selected case studies of incubation capabilities within universities commercialization program.

  8. Ethical Considerations in Technology Transfer.

    Science.gov (United States)

    Froehlich, Thomas J.

    1991-01-01

    Examines ethical considerations involved in the transfer of appropriate information technology to less developed countries. Approaches to technology are considered; two philosophical frameworks for studying ethical considerations are discussed, i.e., the Kantian approach and the utilitarian perspective by John Stuart Mill; and integration of the…

  9. Ethical Considerations in Technology Transfer.

    Science.gov (United States)

    Froehlich, Thomas J.

    1991-01-01

    Examines ethical considerations involved in the transfer of appropriate information technology to less developed countries. Approaches to technology are considered; two philosophical frameworks for studying ethical considerations are discussed, i.e., the Kantian approach and the utilitarian perspective by John Stuart Mill; and integration of the…

  10. Commercial Refrigeration Technology. Florida Vocational Program Guide.

    Science.gov (United States)

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    The program guide for commercial refrigeration technology courses in Florida identifies primary considerations for the organization, operation, and evaluation of a vocational education program. Following an occupational description for the job title for refrigeration mechanic, and its Dictionary of Occupational Titles code, are six sections…

  11. Understanding University Technology Transfer

    Science.gov (United States)

    Association of American Universities, 2011

    2011-01-01

    Federal government agencies provide about $33 billion a year to universities to conduct scientific research. That continuing investment expands human knowledge and helps educate the next generation of science and technology leaders. New discoveries from university research also form the basis for many new products and processes that benefit the…

  12. Technology transfer trends in Indian space programme

    Science.gov (United States)

    Sridhara Murthi, K. R.; Shoba, T. S.

    2010-10-01

    Indian space programme, whose objectives involve acceleration of economic and social development through applications of space technology, has been engaged in the development of state-of-the-art satellite systems, launch vehicles and equipment necessary for applications. Even during the early phase of evolution of this Programme, deliberate policies have been adopted by the national space agency, namely, Indian Space Research Organisation (ISRO), to promote spin-off benefit from the technologies developed for the use of space projects. Consistently adhering to this policy, ISRO has transferred over 280 technologies till date, spanning a wide spectrum of disciplines. This has resulted in a fruitful two-way cooperation between a number of SMEs and the ISRO. In order to make the technology transfer process effective, ISRO has adopted a variety of functional and organizational policies that included awareness building measures, licensee selection methods, innovative contract systems, diverse transfer processes, post licencing services and feedback mechanisms. Besides analyzing these policies and their evolution, the paper discusses various models adopted for technology transfer and their impact on assessment. It also touches upon relevant issues relating to creating interface between public funded R&D and the private commercial enterprises. It suggests few models in which international cooperation could be pursued in this field.

  13. ERAST: Scientific Applications and Technology Commercialization

    Science.gov (United States)

    Hunley, John D. (Compiler); Kellogg, Yvonne (Compiler)

    2000-01-01

    This is a conference publication for an event designed to inform potential contractors and appropriate personnel in various scientific disciplines that the ERAST (Environmental Research Aircraft and Sensor Technology) vehicles have reached a certain level of maturity and are available to perform a variety of missions ranging from data gathering to telecommunications. There are multiple applications of the technology and a great many potential commercial and governmental markets. As high altitude platforms, the ERAST vehicles can gather data at higher resolution than satellites and can do so continuously, whereas satellites pass over a particular area only once each orbit. Formal addresses are given by Rich Christiansen, (Director of Programs, NASA Aerospace Technology Ent.), Larry Roeder, (Senior Policy Advisor, U.S. Dept. of State), and Dr. Marianne McCarthy, (DFRC Education Dept.). The Commercialization Workshop is chaired by Dale Tietz (President, New Vista International) and the Science Workshop is chaired by Steve Wegener, (Deputy Manager of NASA ERAST, NASA Ames Research Center.

  14. Sources of capabilities, integration and technology commercialization

    DEFF Research Database (Denmark)

    Zahra, Shaker A.; Nielsen, Anders

    2002-01-01

    of internal and external sources on multiple dimensions of successful technology commercialization (TC). The study also explores the moderating role of formal vs. informal integration mechanisms on these relationships. Applying a longitudinal design and data from 119 companies, the results show that internal...... human and technology-based manufacturing sources are positively associated with successful TC. Formal and informal integration mechanisms also significantly moderate the relationships observed between capability sources and TC. Copyright (C) 2002 John Wiley Sons, Ltd.......In recent years, companies have increased their use of internal and external sources in pursuit of a competitive advantage through the effective and timely commercialization of new technology. Grounded in the resource-based view of the firm, this study examines the effect of a company's use...

  15. Foundational Forces & Hidden Variables in Technology Commercialization

    Science.gov (United States)

    Barnett, Brandon

    2011-03-01

    The science of physics seems vastly different from the process of technology commercialization. Physics strives to understand our world through the experimental deduction of immutable laws and dependent variables and the resulting macro-scale phenomenon. In comparison, the~goal of business is to make a profit by addressing the needs, preferences, and whims of individuals in a market. It may seem that this environment is too dynamic to identify all the hidden variables and deduct the foundational forces that impact a business's ability to commercialize innovative technologies. One example of a business ``force'' is found in the semiconductor industry. In 1965, Intel co-founder Gordon Moore predicted that the number of transistors incorporated in a chip will approximately double every 24 months. Known as Moore's Law, this prediction has become the guiding principle for the semiconductor industry for the last 40 years. Of course, Moore's Law is not really a law of nature; rather it is the result of efforts by Intel and the entire semiconductor industry. A closer examination suggests that there are foundational principles of business that underlie the macro-scale phenomenon of Moore's Law. Principles of profitability, incentive, and strategic alignment have resulted in a coordinated influx of resources that has driven technologies to market, increasing the profitability of the semiconductor industry and optimizing the fitness of its participants. New innovations in technology are subject to these same principles. So, in addition to traditional market forces, these often unrecognized forces and variables create challenges for new technology commercialization. In this talk, I will draw from ethnographic research, complex adaptive theory, and industry data to suggest a framework with which to think about new technology commercialization. Intel's bio-silicon initiative provides a case study.

  16. 78 FR 48537 - Small Business Innovation Research and Small Business Technology Transfer Programs...

    Science.gov (United States)

    2013-08-08

    ... ADMINISTRATION Small Business Innovation Research and Small Business Technology Transfer Programs... Administration (SBA) is publishing the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program Commercialization Benchmark for the 11 participating agencies for public comment...

  17. Innovative technology transfer of nondestructive evaluation research

    Science.gov (United States)

    Brian Brashaw; Robert J. Ross; Xiping Wang

    2008-01-01

    Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...

  18. Software engineering technology transfer: Understanding the process

    Science.gov (United States)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  19. Progress towards commercialization of plastid transformation technology.

    Science.gov (United States)

    Maliga, Pal

    2003-01-01

    Tobacco chloroplasts are ready to be tested as a platform for the expression of recombinant proteins on a commercial scale. They hold the promise of reproducible yields of 5-25% of total soluble cellular protein in leaves and reliability has been achieved through refinement of an expression toolkit that includes vectors, recently developed expression cassettes and systems for marker gene removal. Implementation of plastid transformation technology in other crops, however, has met with difficulty and has delayed agronomic applications.

  20. NASA(Field Center Based) Technology Commercialization Centers

    Science.gov (United States)

    1995-01-01

    Under the direction of the IC(sup 2) Institute, the Johnson Technology Commercialization Center has met or exceeded all planned milestones and metrics during the first two and a half years of the NTCC program. The Center has established itself as an agent for technology transfer and economic development in- the Clear Lake community, and is positioned to continue as a stand-alone operation. This report presents data on the experimental JTCC program, including all objective measures tracked over its duration. While the metrics are all positive, the data indicates a shortage of NASA technologies with strong commercial potential, barriers to the identification and transfer of technologies which may have potential, and small financial return to NASA via royalty-bearing licenses. The Center has not yet reached the goal of self-sufficiency based on rental income, and remains dependent on NASA funding. The most important issues raised by the report are the need for broader and deeper community participation in the Center, technology sourcing beyond JSC, and the form of future funding which will be appropriate.

  1. Technology transfer and space science missions

    Science.gov (United States)

    Acuna, Mario

    1992-01-01

    Viewgraphs on technology transfer and space science missions are provided. Topics covered include: project scientist role within NASA; role of universities in technology transfer; role of government laboratories in research; and technology issues associated with science.

  2. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

  3. State of the Science in Technology Transfer: At the Confluence of Academic Research and Business Development--Merging Technology Transfer with Knowledge Translation to Deliver Value

    Science.gov (United States)

    Lane, Joseph P.

    2010-01-01

    The practice of technology transfer continues to evolve into a discipline. Efforts continue in the field of assistive technology (AT) to move technology-related prototypes, resulting from development in the academic sector, to product commercialization within the business sector. The article describes how technology transfer can be linked to…

  4. Mission & Role | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The NCI TTC serves as the focal point for implementing the Federal Technology Transfer Act to utilize patents as incentive for commercial development of technologies and to establish research collaborations and licensing among academia, federal laboratories, non-profit organizations, and industry. The TTC supports technology development activities for the National Cancer Institute and nine other NIH Institutes and Centers. TTC staff negotiate co-development agreements and licenses with universities, non-profit organizations, and pharmaceutical and biotechnology companies to ensure compliance with Federal statutes, regulations and the policies of the National Institutes of Health. TTC also reviews employee invention reports and makes recommendations concerning filing of domestic and foreign patent applications. | [google6f4cd5334ac394ab.html

  5. Planar pixel sensors in commercial CMOS technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany)

    2015-07-01

    For the upgrade of the ATLAS experiment at the high luminosity LHC, an all-silicon tracker is foreseen to cope with the increased rate and radiation levels. Pixel and strip detectors will have to cover an area of up to 200m2. To produce modules in high number at reduced costs, new sensor and bonding technologies have to be investigated. Commercial CMOS technologies on high resistive substrates can provide significant advantages in this direction. They offer cost effective, large volume sensor production. In addition to this, production is done on 8'' wafers allowing wafer-to-wafer bonding to the electronics, an interconnection technology substantially cheaper than the bump bonding process used for hybrid pixel detectors at the LHC. Both active and passive n-in-p pixel sensor prototypes have been submitted in a 150 nm CMOS technology on a 2kΩ cm substrate. The passive sensor design will be used to characterize sensor properties and to investigate wafer-to-wafer bonding technologies. This first prototype is made of a matrix of 36 x 16 pixels of size compatible with the FE-I4 readout chip (i.e. 50 μm x 250 μm). Results from lab characterization of this first submission are shown together with TCAD simulations. Work towards a full size FE-I4 sensor for wafer-to-wafer bonding is discussed.

  6. HPCC technology awareness program: Improved economic competitiveness through technology awareness, transfer and application. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    A need has been defined by Congress for the DOE National Laboratories to participate in various dual use and technology transfer programs. This requirement has spawned several technology transfer approaches at the DOE laboratories. These programs are designed to encourage large and small business to bring their problems and needs forward, and to allow the labs to transfer effective high performance computing technology to the commercial marketplace. This IG Technologies grant from the DOE was undertaken to address the issues and problems associated with technology transfer between the DOE National Laboratories and commercial industry. The key focus is to gain an understanding of how DOE and industry independently and collectively view the requirements and the missing elements that could allow DOE to facilitate HPCC technology transfer. At issue is HPCC Technology Transfer for the High Performance Computing industry and its relationship to the DOE National Laboratories. Several observations on this are addressed. The issue of a ``Technology Utilization Gap`` between the National Laboratories and Independent Software Vendors is discussed. This study addressed the HPCC Technology Transfer plans of all six DOE National Labs. Study team members briefed numerous industrial users of HPCC technology as to the feasibility of technology transfer for various applications. Significant findings of the effort are that the resistance to technology transfer is much higher than anticipated for both the National Labs and industry. Also, HPCC Technology Transfer is observed to be a large company`s dominion. Small businesses have a difficult time in addressing the requirements of technology transfer using Cooperative Research and Development Agreements (CRADA`s). Large businesses and the DOE National Labs however, often have requirements and objectives which are at cross purposes, making effective technology transfer difficult.

  7. NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners. With specialized teams, TTC guides the interactions of our partners from the point of discovery to patenting, from invention development to licensing. We play a key role in helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class researchers, facilities, and knowledge.

  8. DCC Technology and Its Commercial Experience

    Institute of Scientific and Technical Information of China (English)

    Li Zaiting; Jiang Fukang; Xie Chaogang; Xu Youhao

    2000-01-01

    DCC is a new technology derived from FCC for propylene production. The propylene yields can reach 23m% with paraffinic feed and around 17m% with intermediate base feed. A portion of DCC cracked naphtha recycled in a commercial unit resulted in a propylene yield increment of 3.5m% at some expense of naphtha. The total BTX in the 75 - 150℃ naphtha fraction was 57. 6v%, in which toluene and xylenes were 21.9v% and 30.3v%, respectively. DCC catalyst consists of a modified mesopore zeolite with pentasil structure for primary product of naphtha range to undergo secondary cracking for producing light olefins. A series of DCC catalysts was formulated for various objectives, such as maximum propylene, maximum isoolefins, and metal tolerance for residual oil processing, etc. Seven commercial units have been put into production since 1990 inside and outside China, in which three of them were revamped from existing FCCUs, and the other four were grassroots units including a 750kt/a unit in TPI Company, Thailand. Currently, the TPI unit is running in full design capacity with about 40m% of atmospheric residual oil in the feedstock. Although the feedstock is much heavier than design, the propylene yield still keeps around the design value. The commercial experiences of some units are presented.

  9. special issue: Technology transfer in United States universities

    OpenAIRE

    Ann-Charlotte Fridh; Bo Carlsson

    2002-01-01

    This paper examines the role of offices of technology transfer (OTT) in 12 U.S. universities in 1998 in commercializing research results in the form of patents, licenses, and start-ups of new companies. We study the organization and place of OTTs within the university structure, the process of technology transfer, and the staffing and funding of the office. Data were collected through a mail questionnaire followed up through telephone interviews. We also conducted a statistical analysis of da...

  10. University technology transfer: comparative study of US, European and Australian universities

    NARCIS (Netherlands)

    Vinig, T.; van Rijsbergen, P.; Malach-Pines, A.; Özbilgin, M.F.

    2010-01-01

    We studied the factors that influence university knowledge commercialization through university Technology Transfer Office (TTO). We analyzed the resources associated with commercialization performance as measured by patenting, licensing, and spin-off activities in a sample of 124 Australian, Europe

  11. The commercialization of genome-editing technologies.

    Science.gov (United States)

    Brinegar, Katelyn; K Yetisen, Ali; Choi, Sun; Vallillo, Emily; Ruiz-Esparza, Guillermo U; Prabhakar, Anand M; Khademhosseini, Ali; Yun, Seok-Hyun

    2017-11-01

    The emergence of new gene-editing technologies is profoundly transforming human therapeutics, agriculture, and industrial biotechnology. Advances in clustered regularly interspaced short palindromic repeats (CRISPR) have created a fertile environment for mass-scale manufacturing of cost-effective products ranging from basic research to translational medicine. In our analyses, we evaluated the patent landscape of gene-editing technologies and found that in comparison to earlier gene-editing techniques, CRISPR has gained significant traction and this has established dominance. Although most of the gene-editing technologies originated from the industry, CRISPR has been pioneered by academic research institutions. The spinout of CRISPR biotechnology companies from academic institutions demonstrates a shift in entrepreneurship strategies that were previously led by the industry. These academic institutions, and their subsequent companies, are competing to generate comprehensive intellectual property portfolios to rapidly commercialize CRISPR products. Our analysis shows that the emergence of CRISPR has resulted in a fivefold increase in genome-editing bioenterprise investment over the last year. This entrepreneurial movement has spurred a global biotechnology revolution in the realization of novel gene-editing technologies. This global shift in bioenterprise will continue to grow as the demand for personalized medicine, genetically modified crops and environmentally sustainable biofuels increases. However, the monopolization of intellectual property, negative public perception of genetic engineering and ambiguous regulatory policies may limit the growth of these market segments.

  12. TECHNOLOGY TRANSFER FOR CUCUMBER (Cucumis sativus ...

    African Journals Online (AJOL)

    Dell

    2011-11-07

    Nov 7, 2011 ... This technology transfer trials have shown the advantages and ... Key words: Cucumber production, protected agriculture tunnels, cost benefit ratio, technology transfer, ... Use of PA can increase production by more than five.

  13. EPA Reports to Congress on Technology Transfer

    Science.gov (United States)

    Agencies are required to report to the Congress annually on their technology transfer activities. These reports summarize technology transfer activities of the EPA’s federal laboratories, by fiscal year.

  14. Accelerating the transfer of improved production technologies ...

    African Journals Online (AJOL)

    Accelerating the transfer of improved production technologies: controlling African cassava mosaic ... African Crop Science Journal ... A national network of cassava workers (NANEC) was created to address the problem of technology transfer.

  15. Technology transfer within the telecare technology innovation system

    NARCIS (Netherlands)

    Vlies, R.D. van der; Felix, E.

    2013-01-01

    Telecare technology is not common yet, although it is perceived as promising. Most studies on telecare technology transfer present a case involving the use of a single methodology and approach during some steps of technology transfer. Technology transfer models cannot be sensibly constructed if they

  16. Technological transfer to the education

    Directory of Open Access Journals (Sweden)

    Enrique Melamed-Varela

    2016-12-01

    Full Text Available One of the most efficient strategies related to generation of differentiation factors which contribute to stability and sustainability in time as well as the  momentum of technological development in different territories is represented by the growth in scientific, technological and innovative development based on the structure of economic systems. Education is considered a fundamental element because it is the essence in the formation and fortification of the capacities, skills and competencies in human capital. This is needed for the management of research projects, development and innovation that will contribute to technology transfer and the progress of scientific knowledge that is encouraged from the inside of the organizational structures of the national economic sectors One of the most influential and conceptual tendencies of economic thinking in the countries (Gomez, Ibagón& Forero, 2014 are represented by the theories based on endogenous development in Latin America.  In addition,  the scientific development of a nation brewing from a process of internal learning and strengthening of the technical and technological capabilities that support the processes of education and research as generators of knowledge (Amar &Diazgranados, 2006, this principle is supported by Mazzucato´s (2014 theory,  who considers states as  capable of generating a platform for enabling capabilities of resources for the scientific and technological development entrepreneurs ;fact that are continuously supported by education. Starting from this series of concepts, the following question arises: do different levels of modern educational institutions use technological access? It must be taken into account that the scientific and technological progress results of the research, development and innovation (RDI is not indifferent for educational organizations, an activity that is mostly awarded to the universities and technological development centers (Ortiz, 2012

  17. Marketing for Oak Ridge technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Prosser, G.A.

    1989-06-15

    Martin Marietta Energy Systems, Inc., which manages major research and production facilities in Oak Ridge, Tennessee for the Department of Energy, has implemented a systematic approach to marketing for technology transfer. Unique mechanisms have been created to address the need for market research and analysis, strategy formulation, and the execution of plans designed to engender the broadest commercial use of government-funded technologies. Establishment of formal ties with the University of Tennessee Graduate School of Business has resulted in an expanded role for marketing in support of the Oak Ridge program. The creation of graduate research positions has enabled MBA students to contribute to, and learn from, a program which is at the forefront of an important national initiative.

  18. 75 FR 52378 - Transfer of Commercial Standard Mail Parcels to Competitive Product List

    Science.gov (United States)

    2010-08-25

    ... Commission to transfer commercial Standard Mail Parcels from the Mail Classification Schedule's Market... to transfer commercial Standard Mail Parcels from the Mail Classification Schedule's Market Dominant... Commercial Standard Mail Parcels to Competitive Product List AGENCY: Postal Service. TM ACTION:...

  19. Geo energy research and development: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Traeger, R.K.

    1982-03-01

    Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

  20. Laser Coating Technology; A Commercial Reality

    Science.gov (United States)

    Blake, Andrew G.; Mangaly, A. A.; Everett, M. A.; Hammeke, A. H.

    1988-10-01

    Commercial acceptance of laser coating technology suffered for many years due to questions about its economic viability. During this period, however, many companies, universities, and government research groups were busy developing the technology to overcome these questions. Today, laser coating technology is having a major impact as a high quality, economical method of hardfacing for wear and corrosion resistance in several key industries. This has occurred because of advances in five key areas: 1. High power laser design 2. Method of alloy deposition, and associated hardware 3. In-process feed back control system hardware/software development 4. Alloy systems 5. Marketing/sales sophistication High power lasers have improved in mode stability, power conversion efficiency, and optical flexibility (reflective vs. transmissive materials). This has enabled the process engineer to increase deposition efficiency, and maintain flexibility on the use of optics specifically designed for a user application. Improvements in the method of alloy deposition have led to developments such as the DPF system with specialized nozzles developed for specific user applications. Another effective technique includes the use of pre-fabricated cast alloy chips that are welded to the component surface on the specific area requiring protection. The development of feedback control systems that integrate process control software with hard tooling, the laser, and the alloy delivery system are greatly improving process reliability and product quality. Because of this, "in-process" quality control is becoming a viable alternative to traditional methods of quality control. Metallurgical evaluations of some of the most widely used hardfacing alloys and base materials have been investigated by numerous researchers. Analysis has confirmed that laser applied coatings are of high metallurgical quality, extremely low in dilution, and distort less due to low heat input. The technology can also be used to

  1. Gas turbine heat transfer and cooling technology

    CERN Document Server

    Han, Je-Chin; Ekkad, Srinath

    2012-01-01

    FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat

  2. Advanced metal-membrane technology-commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, D.J.

    1995-06-01

    The gasification of coal offers a potentially significant source of hydrogen for use in clean power generation and as a primary chemical feedstock. However, hydrogen derived from coal continues to be more expensive than hydrogen derived from natural gas or petroleum, due in large part to the expense of separating hydrogen from the mixture of gases produced during gasification. At Bend Research, we have been developing a novel hydrogen-permeable metal membrane that promises to be economical for hydrogen separation and purification, including the purification of hydrogen derived from gasifying coal. Furthermore, the membrane is ideally suited for use at high temperatures (200{degrees} to 500{degrees}C), making it feasible to produce pure hydrogen directly from hot gas streams. Through a partnership with Teledyne Wah Chang, we are proceeding with scale-up of prototype membrane modules and field tests to demonstrate the technology to potential users. Additionally, we are working with potential customers to estimate capital savings and operating costs for integrated systems. In this paper, we present some of the operating characteristics of the metal membrane, including its use to drive equilibrium-limited reactions toward complete conversion (e.g., the water-gas-shift reaction). We also describe our activities for commercializing this technology for a variety of applications.

  3. Biodegradability and ecotoxicity of commercially available geothermal heat transfer fluids

    Science.gov (United States)

    Schmidt, Kathrin R.; Körner, Birgit; Sacher, Frank; Conrad, Rachel; Hollert, Henner; Tiehm, Andreas

    2016-03-01

    Commercially available heat transfer fluids used in borehole heat exchangers were investigated for their composition, their biodegradability as well as their ecotoxicity. The main components of the fluids are organic compounds (often glycols) for freezing protection. Biodegradation of the fluids in laboratory studies caused high oxygen depletion as well as nitrate/iron(III) reduction under anaerobic conditions. Additives such as benzotriazoles for corrosion protection were persistent. Ecotoxicity data show that the commercially available fluids caused much higher ecotoxicity than their main organic constituents. Consequently, with regard to groundwater protection pure water as heat transfer medium is recommended. The second best choice is the usage of glycols without any additives. Effects on groundwater quality should be considered during ecological-economical cost-benefit-analyses of further geothermal energy strategies. The protection of groundwater as the most important drinking water resource must take priority over the energy gain from aquifers.

  4. OCT Technology Transfer and the OCT Market

    Science.gov (United States)

    Swanson, Eric A.

    The field of optical coherence tomography (OCT) has blossomed dramatically since the first studies by various researchers around the world began in the late 1980s and early 1990s. Since then cumulatively, there have been dozens of companies created, over a hundred research groups working on or with OCT, over a thousand OCT patents issued, over 10,000 research articles published, tens of millions of patients scanned with OCT, hundreds of millions of venture capital and corporate R&D dollars invested, hundreds of millions of dollars in company acquisitions, and over a billion of dollars of OCT system revenue. This chapter will describe some of the history and factors involved in OCT technology transfer and commercialization, give a snapshot of the current OCT market, and speculate on some future OCT issues.

  5. Technology transfer at NASA - A librarian's view

    Science.gov (United States)

    Buchan, Ronald L.

    1991-01-01

    The NASA programs, publications, and services promoting the transfer and utilization of aerospace technology developed by and for NASA are briefly surveyed. Topics addressed include the corporate sources of NASA technical information and its interest for corporate users of information services; the IAA and STAR abstract journals; NASA/RECON, NTIS, and the AIAA Aerospace Database; the RECON Space Commercialization file; the Computer Software Management and Information Center file; company information in the RECON database; and services to small businesses. Also discussed are the NASA publications Tech Briefs and Spinoff, the Industrial Applications Centers, NASA continuing bibliographies on management and patent abstracts (indexed using the NASA Thesaurus), the Index to NASA News Releases and Speeches, and the Aerospace Research Information Network (ARIN).

  6. Commercialization of aquifer thermal energy storage technology

    Energy Technology Data Exchange (ETDEWEB)

    Hattrup, M.P.; Weijo, R.O.

    1989-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. The purpose of the study was to develop and screen a list of potential entry market applications for aquifer thermal energy storage (ATES). Several initial screening criteria were used to identify promising ATES applications. These include the existence of an energy availability/usage mismatch, the existence of many similar applications or commercial sites, the ability to utilize proven technology, the type of location, market characteristics, the size of and access to capital investment, and the number of decision makers involved. The in-depth analysis identified several additional screening criteria to consider in the selection of an entry market application. This analysis revealed that the best initial applications for ATES are those where reliability is acceptable, and relatively high temperatures are allowable. Although chill storage was the primary focus of this study, applications that are good candidates for heat ATES were also of special interest. 11 refs., 3 tabs.

  7. Judging the international transfer of technology

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2000-01-01

    International transfer of technology is a widely discussed area in the scientific literature. Although many different factors are discussed in the literature that affect the transfer of technology, it is not clear how to judge the performance of companies involved in international technology

  8. Judging The International Transfer Of Technology

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.

    2000-01-01

    International transfer of technology is a widely discussed area in the scientific literature. Although many different factors are discussed in the literature that affect the transfer of technology, it is not clear how to judge the performance of companies involved in international technology transfe

  9. Accelerated technology transfer: the UK quantum initiative

    Science.gov (United States)

    Bennett, Simon D.

    2016-10-01

    A new generation of quantum technology based systems, exploiting effects such as superposition and entanglement, will enable widespread, highly disruptive applications which are expected to be of great economic significance. However, the technology is only just emerging from the physics laboratory and generally remains at low TRLs. The question is: where, and when, will this impact be first manifest? The UK, with substantial Government backing, has embarked on an ambitious national program to accelerate the process of technology transfer with the objective of seizing a significant and sustainable share of the future economic benefit for the UK. Many challenges and uncertainties remain but the combined and co-ordinated efforts of Government, Industry and Academia are making great progress. The level of collaboration is unusually high and the goal of embedding a "QT Ecosystem" in the UK looks to be attainable. This paper describes the UK national programme, its key players, and their respective roles. It will illustrate some of the likely first commercial applications and provide a status update. Some of the challenges that might prevent realisation of the goal will be highlighted.

  10. Ethics and technology transfer: patients, patents, and public trust.

    Science.gov (United States)

    Zucker, Deborah

    2011-06-01

    Universities and academic medical centers have been increasing their focus on technology transfer and research commercialization. With this shift in focus, academic-industry ties have become prevalent. These relationships can benefit academic researchers and help then to transform their research into tangible societal benefits. However, there also are concerns that these ties and the greater academic focus on commercialization might lead to conflicts of interest, especially financial conflicts of interest. This paper briefly explores some of these conflicts of interest, particularly relating to research and training. This paper also discusses some of the policies that have been, and are being, developed to try to mitigate and manage these conflicts so that academic involvement in technology transfer and commercialization can continue without jeopardizing academic work or the public's trust in them.

  11. A case of technology transfer in Macedonia

    Directory of Open Access Journals (Sweden)

    Nattacia Dabescki

    2014-11-01

    Full Text Available As a process of transferring skills, knowledge, technologies, methods of manufacturing and facilities among organizations, the transfer of technology is instrumental for boosting the economy through creation of competitive products, new jobs and a better quality of life. The stagnant environment for technology transfers in Macedonia in the post-privatisation era is a result of a combination of factors. Among them is the outdated educational system that does not boost entrepreneurial spirit and innovation thinking. Main purpose of this paper is to examine the current status, conditions, anomalies and challenges for technology transfer in the Republic of Macedonia, as well as the potential for development and possibilities for improvement of the process. Through a lens of the technology transfer paradigm, this exploratory study will present a case in which the Foundation Business Start-up Centre in Macedonia, as a technology transfer agent provided links and cooperative platform for creation of new technologies and innovations within the local SME ecosystem. The focus will be on a couple of initiatives for technology development and transfer in a domestic context. Results from the process of implementation of these initiatives will be discussed, along with their stimulating impact on the environment for technology transfer.

  12. Technology Transfer and Outreach for SNL/Rochester ALPHA Project.

    Energy Technology Data Exchange (ETDEWEB)

    Sinars, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    This report describes the next stage goals and resource needs for the joint Sandia and University of Rochester ARPA-E project. A key portion of this project is Technology Transfer and Outreach, with the goal being to help ensure that this project develops a credible method or tool that the magneto-inertial fusion (MIF) research community can use to broaden the advocacy base, to pursue a viable path to commercial fusion energy, and to develop other commercial opportunities for the associated technology. This report describes an analysis of next stage goals and resource needs as requested by Milestone 5.1.1.

  13. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Weakley, Steven A.

    2012-09-28

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents’ current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.

  14. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Weakley, Steven A.; Brown, Scott A.

    2011-09-29

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). To do this, Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify hydrogen- and fuel-cell-related patents that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of hydrogen- and fuel-cell-related grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs, and within the FCT portfolio.

  15. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-08-01

    This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies Program in the Office of Energy Efficiency and Renewable Energy.

  16. An integrated approach towards technology transfer

    NARCIS (Netherlands)

    Wal, L.F. van der; Eldering, C.J.J.; Putten, N.J. van

    2010-01-01

    In 2001 the European Space Agency (ESA), the Dutch Ministry of Economic Affairs and the Netherlands Organisation of applied scientific research TNO initiated the Dutch Technology Transfer Programme (DTTP). Since then, 'technology transfer' has been a relevant part of Dutch space policy. The DTTP aim

  17. An integrated approach towards technology transfer

    NARCIS (Netherlands)

    Wal, L.F. van der; Eldering, C.J.J.; Putten, N.J. van

    2010-01-01

    In 2001 the European Space Agency (ESA), the Dutch Ministry of Economic Affairs and the Netherlands Organisation of applied scientific research TNO initiated the Dutch Technology Transfer Programme (DTTP). Since then, 'technology transfer' has been a relevant part of Dutch space policy. The DTTP aim

  18. 48 CFR 970.2770 - Technology Transfer.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer....

  19. Technology commercialization: From generating ideas to creating economic value

    Directory of Open Access Journals (Sweden)

    Tayeb Dehghani

    2015-06-01

    Full Text Available Frequent changes in competitors' status, technology, and customer interests make it unwise and impossible for companies to rely on their products. Customers always seek to find new products. Consequently, companies should continuously produce and offer superior products to meet customer needs, tastes, and expectations. In fact, every company needs a development plan for its new products. Research has demonstrated that one of the major reasons for rapid development of technology in industrial countries is commercialization of research results. The basis of such commercialization is research-industry collaboration in converting research output into innovation. Today, technology commercialization and its outcomes can provide financial resources required for organizational longevity. The main objective of this article is to propose a model for commercializing research findings from idea generation to initial market entry. We believe that this article can, hopefully, contribute to commercialization literature by acting as a guide to local authorities involved in commercialization cycle.

  20. Technology Transfer brochure (Swedish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  1. Technology Transfer brochure (English version)

    CERN Multimedia

    Lefevre, C

    2007-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  2. Technology Transfer brochure (Polish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  3. Terra-Kleen Response Group, Inc. Solvent Extraction Technology Rapid Commercialization Initiative Report

    Science.gov (United States)

    Terra-Kleen Response Group Inc. (Terra-Kleen), has commercialized a solvent extraction technology that uses a proprietary extraction solvent to transfer organic constituents from soil to a liquid phase in a batch process at ambient temperatures. The proprietary solvent has a rel...

  4. Terra-Kleen Response Group, Inc. Solvent Extraction Technology Rapid Commercialization Initiative Report

    Science.gov (United States)

    Terra-Kleen Response Group Inc. (Terra-Kleen), has commercialized a solvent extraction technology that uses a proprietary extraction solvent to transfer organic constituents from soil to a liquid phase in a batch process at ambient temperatures. The proprietary solvent has a rel...

  5. Commercial Technology at the Tactical Edge

    Science.gov (United States)

    2013-06-01

    be encrypted with common methods, such as AES, since by the time an adversary decrypted the message, it would have little value. Another aspect of...Portability App Management App ecosystem 6 Hardened Smartphones, Tablets Sample Military Features -Ruggedized -Tactical Radio Interface - Encryption ... app stores, and new generations of cellular networks. Due to the initiatives of individual soldiers, commercial devices on the front lines are already

  6. Commercialization Development of Crop Straw Gasification Technologies in China

    Directory of Open Access Journals (Sweden)

    Zhengfeng Zhang

    2014-12-01

    Full Text Available Crop straw gasification technologies are the most promising biomass gasification technologies and have great potential to be further developed in China. However, the commercialization development of gasification technology in China is slow. In this paper, the technical reliability and practicability of crop straw gasification technologies, the economic feasibility of gas supply stations, the economic feasibility of crop straw gasification equipment manufacture enterprises and the social acceptability of crop straw gasification technologies are analyzed. The results show that presently both the atmospheric oxidation gasification technology and the carbonization pyrolysis gasification technology in China are mature and practical, and can provide fuel gas for households. However, there are still a series of problems associated with these technologies that need to be solved for the commercialization development, such as the high tar and CO content of the fuel gas. The economic feasibility of the gas supply stations is different in China. Parts of gas supply stations are unprofitable due to high initial investment, the low fuel gas price and the small numbers of consumers. In addition, the commercialization development of crop straw gasification equipment manufacture enterprises is hindered for the low market demand for gasification equipment which is related to the fund support from the government. The acceptance of the crop straw gasification technologies from both the government and the farmers in China may be a driving force of further commercialization development of the gasification technologies. Then, the crop straw gasification technologies in China have reached at the stage of pre-commercialization. At this stage, the gasification technologies are basically mature and have met many requirements of commercialization, however, some incentives are needed to encourage their further development.

  7. Technology transfer — bridging space and society

    Science.gov (United States)

    Students of Technology Transfer Design Project Team (ISU Summer Session 1997)

    Strategies, policies and methods by which technologies can be cross-fertilized between the space and non-space sectors were examined by students of the design project "Technology Transfer — Bridging Space and Society". This project was undertaken by students attending the 1997 10th Anniversary Summer Session Program of the International Space University. General issues relating to transfer of technology were discussed including definitions and mechanisms (push, pull, interactive and pro-active). As well as looking at case studies and the impact of national policies on space agencies, the design project also sought to look at technology transfer on a country-by-country basis, selecting various countries for scrutiny and reporting on their technology transfer status. The project report shows how transfer of technology varies between nations and when analyzed with the case studies identifies the general strategies, policies and methods in use and how they can be improved. Finally, the report seeks to recommend certain issues to governments, space agencies and industrial organizations to facilitate the transfer of technology. These include the development of a generic metrics system and the implementation of better appropriate procedures and mechanisms for a positive diffusion process between space and non-space sectors.

  8. 76 FR 13000 - Transfer of Commercial First-Class Mail Parcels to Competitive Product List

    Science.gov (United States)

    2011-03-09

    ... Commission to transfer commercial First-Class Mail Parcels from the Mail Classification Schedule's Market... to transfer commercial First-Class Mail Parcels from the Mail Classification Schedule's Market... place in two steps: First, commercial First-Class Mail Parcels would be removed from the...

  9. Commercialization of JPL Virtual Reality calibration and redundant manipulator control technologies

    Science.gov (United States)

    Kim, Won S.; Seraji, Homayoun; Fiorini, Paolo; Brown, Robert; Christensen, Brian; Beale, Chris; Karlen, James; Eismann, Paul

    1994-01-01

    Within NASA's recent thrust for industrial collaboration, JPL (Jet Propulsion Laboratory) has recently established two technology cooperation agreements in the robotics area: one on virtual reality (VR) calibration with Deneb Robotics, Inc., and the other on redundant manipulator control with Robotics Research Corporation (RRC). These technology transfer cooperation tasks will enable both Deneb and RRC to commercialize enhanced versions of their products that will greatly benefit both space and terrestrial telerobotic applications.

  10. The MIP Technology and Its Commercial Application

    Institute of Scientific and Technical Information of China (English)

    Cheng Congli; Xu Youhao

    2009-01-01

    This article introduces the specifics of the MIP technology involving respectively the case for production of clean gasoline, the case for producing clean gasoline coupled with production of diesel and the case for producing gasoline with increased output of propylene. The performance of the MIP units that were in operation was wrapped up. Test results have shown that the MIP technology is characterized by improved product distribution as evidenced by the reduced yields of dry gas and slurry and the increased total liquid yield; the upgraded product quality as evidenced by the reduced olefin and sulphur contents in gasoline; and the more ideal techno-economic indicators as evidenced by the reduced unit consumption of catalyst and the reduced energy consumption of the process unit.

  11. BMDO: New Mexico Technology Transfer Demonstration Project. Interim final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The BMDO-New Mexico Technology Transfer Demonstration Project(BMDO-NM) was a collaborative effort among the national laboratories to identify and evaluate the commercial potential of selected SDI-funded technologies. The project was funded by BMDO (formerly known as the Strategic Defense Initiative Office or SDIO), the Technology Enterprise Division (NM-TED) of the NM Economic Development Division, and the three National Laboratories. The project was managed and supervised by SAGE Management Partners of Albuquerque, and project funding was administered through the University of New Mexico. The BMDO-NM Demonstration Project focused on the development of a process to assist technology developers in the evaluation of selected BMDO technology programs so that commercialization decisions can be made in an accelerated manner. The project brought together BMDO, the NM-TED, the University of New Mexico, and three New Mexico Federal laboratories -- Los Alamos (DOE), Phillips (DOD) and Sandia (DOE). Each national laboratory actively participated throughout the project through its technology transfer offices. New Mexico was selected as the site for the Demonstration Program because of its three national and federal research laboratories engaged in BMDO programs, and the existing relationship among state govemment, the labs, universities and local economic development and business assistance organizations. Subsequent Commercialization and Implementation phases for the selected technologies from LANL and SNL were completed by SAGE and the Project Team. Funding for those phases was provided by the individual labs as well as BMDO and NM-TED in kind services. NM-TED played a proactive role in this New Mexico partnership. Its mandate is to promote technology-based economic development, with a commitment to facilitate the use of technology by industry and business statewide. TED assumed the role of program manager and executing agent for BMDO in this demonstration project.

  12. Join TTC! | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) offers a unique opportunity for training through the NCI TTC Fellowship program. TTC also has a unit dedicated to marketing these research opportunities and their underlying technologies to potential collaborators and licensees. | [google6f4cd5334ac394ab.html

  13. An analysis of the commercialization of eight conservation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.A.; Thurman, A.G.; Grover, S.E.

    1990-10-01

    The Office of Industrial Programs (OIP) of Battelle Pacific Northwest Laboratories has a long history of developing commercially successful technologies. This success is based on OIP's efforts to involve industry early in the technology development process and on the use of highly skilled technical staff. However, even the most technically successful products can fail to achieve widespread market acceptance. The objective of this work is to determine why some OIP-sponsored technologies are not being commercialized and to determine what OIP can do to promote commercial acceptance. OIP technologies evaluated in this study included: extraction of organics from water, fuel-cell membrane, fused salt catalyst, industrial humidity sensor, kiln dust/fly ash, machnozzle, membrane for solvent recovery, and spectral flame analyzer.

  14. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2006-09-29

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

  15. Development of Technology Transfer Economic Growth Metrics

    Science.gov (United States)

    Mastrangelo, Christina M.

    1998-01-01

    The primary objective of this project is to determine the feasibility of producing technology transfer metrics that answer the question: Do NASA/MSFC technical assistance activities impact economic growth? The data for this project resides in a 7800-record database maintained by Tec-Masters, Incorporated. The technology assistance data results from survey responses from companies and individuals who have interacted with NASA via a Technology Transfer Agreement, or TTA. The goal of this project was to determine if the existing data could provide indications of increased wealth. This work demonstrates that there is evidence that companies that used NASA technology transfer have a higher job growth rate than the rest of the economy. It also shows that the jobs being supported are jobs in higher wage SIC codes, and this indicates improvements in personal wealth. Finally, this work suggests that with correct data, the wealth issue may be addressed.

  16. Transferring federally-funded technologies: New strategies for success

    Energy Technology Data Exchange (ETDEWEB)

    Stenehjem, E.J.

    1993-02-01

    In almost every year of the post-war era, the federal government has spent more on research and development (R D) than has US industry. These expenditures have been divided largely among the nation's federal laboratories and universities and. contrary to widely held beliefs, devoted in greater measure to applied R D than basic research. As pointed out by Salvador, this federally-funded research has resulted in the development of market/application oriented'' technology that, for the most part, has failed to reach the commercial marketplace. This report discusses new strategies for a more success technology transfer.

  17. Transferring federally-funded technologies: New strategies for success

    Energy Technology Data Exchange (ETDEWEB)

    Stenehjem, E.J.

    1993-02-01

    In almost every year of the post-war era, the federal government has spent more on research and development (R&D) than has US industry. These expenditures have been divided largely among the nation`s federal laboratories and universities and. contrary to widely held beliefs, devoted in greater measure to applied R&D than basic research. As pointed out by Salvador, this federally-funded research has resulted in the development of ``market/application oriented`` technology that, for the most part, has failed to reach the commercial marketplace. This report discusses new strategies for a more success technology transfer.

  18. Small Business Innovation Research and Small Business Technology Transfer Programs

    Science.gov (United States)

    Garrison, Lynn; Jasper, Gwen

    2015-01-01

    The Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) programs fund the research, development, and demonstration of innovative technologies that fulfill NASA's needs as described in the annual Solicitations and have significant potential for successful commercialization. The only eligible participants are small business concern (SBC) with 500 or fewer employees or a nonprofit research institute such as a university or a research laboratory with ties to an SBC. These programs are potential sources of seed funding for the development of small business innovations.

  19. 2017 Technology Showcase | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The 2017 Technology Showcase is an inaugural, half-day event that will showcase technologies developed by the National Cancer Institute's Center for Cancer Research (CCR) and the Frederick National Laboratory for Cancer Research (FNLCR). The goal of the Showcase is to encourage startup company formation, technology licensing, and public-private collaborations. It will introduce the Frederick community to the regional technology development stakeholders, as well as highlight available resources. WHO SHOULD ATTEND: Prospective investors, established companies, educators, those looking to commercialize technologies, and all interested stakeholders. | [google6f4cd5334ac394ab.html

  20. Clean Cast Steel Technology - Machinability and Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    C. E. Bates; J. A. Griffin

    2000-05-01

    There were two main tasks in the Clean Cast Steel Technology - Machinability and Technology Transfer Project. These were (1) determine the processing facts that control the machinability of cast steel and (2) determine the ability of ladle stirring to homogenize ladle temperature, reduce the tap and pouring temperatures, and reduce casting scrap.

  1. Transferring diffractive optics from research to commercial applications: Part II - size estimations for selected markets

    Science.gov (United States)

    Brunner, Robert

    2014-04-01

    In a series of two contributions, decisive business-related aspects of the current process status to transfer research results on diffractive optical elements (DOEs) into commercial solutions are discussed. In part I, the focus was on the patent landscape. Here, in part II, market estimations concerning DOEs for selected applications are presented, comprising classical spectroscopic gratings, security features on banknotes, DOEs for high-end applications, e.g., for the semiconductor manufacturing market and diffractive intra-ocular lenses. The derived market sizes are referred to the optical elements, itself, rather than to the enabled instruments. The estimated market volumes are mainly addressed to scientifically and technologically oriented optical engineers to serve as a rough classification of the commercial dimensions of DOEs in the different market segments and do not claim to be exhaustive.

  2. NASA's southeast technology transfer alliance: A cooperative technology assistance initiative

    Science.gov (United States)

    Craft, Harry G.; Sheehan, William; Johnson, Anne

    1996-03-01

    Since 1958, NASA has been charged with actively assisting in the transfer of technologies derived from the United States space program into the industrial sector of the U.S. economy. This has historically been accomplished through technology transfer offices working independently at each NASA field center. NASA recently restructured the program to provide regional coordination, maximize efficiencies, eliminate redundancies, and capitalize on each center's fundamental technology strengths. The nation is divided into six NASA technology transfer geographical regions with each region containing one or more NASA field centers and a regional technology transfer center. The southeast region includes the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee. The NASA field centers in this region are: the Marshall Space Flight Center in Huntsville, Alabama; the Kennedy Space Center in Florida; and the Stennis Space Center in Bay St. Louis, Mississippi. The centers have teamed to focus primarily on regional industries and businesses, to provide a wide range of resources for U.S. industries, including access to unique government facilities, regional workshops, and technical problem solving. Hundreds of American businesses have benefited from this new regional initiative, as evidenced by reports of over 10,500 added or saved jobs and over 988 million worth of economic impacts as a result of their technology transfer activities.

  3. Technology commercialization in road infrastructure: how government affects the variation and appropriability of technology

    NARCIS (Netherlands)

    Caerteling, Jasper; Halman, Johannes I.M.; Doree, Andries G.

    2008-01-01

    Successful technology commercialization is important for business profitability, and government policies can help or hinder firms' success. As a regulator, government affects standard setting and the nature and scope of property rights. As a sponsor, government can empower technology

  4. Technology commercialization in road infrastructure: how government affects the variation and appropriability of technology

    NARCIS (Netherlands)

    Caerteling, Jasper; Halman, Johannes I.M.; Doree, Andries G.

    2008-01-01

    Successful technology commercialization is important for business profitability, and government policies can help or hinder firms' success. As a regulator, government affects standard setting and the nature and scope of property rights. As a sponsor, government can empower technology commercializati

  5. Technology Commercialization in Road Infrastructure: How Government Affects the Variation and Appropriability of Technology

    NARCIS (Netherlands)

    Caerteling, Jasper S.; Halman, Johannes I.M.; Dorée, André G.

    2008-01-01

    Successful technology commercialization is important for business profitability, and government policies can help or hinder firms' success. As a regulator, government affects standard setting and the nature and scope of property rights. As a sponsor, government can empower technology commercializati

  6. 76 FR 52670 - 2011 Technology Transfer Summit North America Conference

    Science.gov (United States)

    2011-08-23

    ... HUMAN SERVICES National Institutes of Health 2011 Technology Transfer Summit North America Conference...: The NIH Office of Technology Transfer extends invitations to attend the 2011 Technology Transfer... by the NIH Office of Technology Transfer, TTS Ltd. and regional host partners such as BIO Maryland...

  7. Imagining value, imagining users: academic technology transfer for health innovation.

    Science.gov (United States)

    Miller, Fiona Alice; Sanders, Carrie B; Lehoux, Pascale

    2009-04-01

    Governments have invested heavily in the clinical and economic promise of health innovation and express increasing concern with the efficacy and efficiency of the health innovation system. In considering strategies for 'better' health innovation, policy makers and researchers have taken a particular interest in the work of universities and related public research organizations: How do these organizations identify and transfer promising innovations to market, and do these efforts make best use of public sector investments? We conducted an ethnographic study of technology transfer offices (TTOs) in Ontario and British Columbia, Canada, to consider the place of health and health system imperatives in judgments of value in early-stage health innovation. Our analysis suggests that the valuation process is poorly specified as a set of task-specific judgments. Instead, we argue that technology transfer professionals are active participants in the construction of the innovation and assign value by 'imagining' the end product in its 'context of use'. Oriented as they are to the commercialization of health technology, TTOs understand users primarily as market players. The immediate users of TTOs' efforts are commercial partners (i.e., licensees, investors) who are capable of translating current discoveries into future commodities. The ultimate end users - patients, clinicians, health systems - are the future consumers of the products to be sold. Attention to these proximate and more distal users in the valuation process is a complex and constitutive feature of the work of health technology transfer. At the same time, judgements about individual technologies are made in relation to a broader imperative through which TTOs seek to imagine and construct sustainable innovation systems. Judgments of value are rendered sensible in relation to the logic of valuation for systems of innovation that, in turn, configure users of health innovation in systemic ways.

  8. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2014

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-02-01

    This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  9. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2015

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-08

    This FY 2015 report updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

  10. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2013

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-04-30

    This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  11. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program - 2012

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-09-01

    This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  12. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  13. Local R&D and Technology Transfers

    DEFF Research Database (Denmark)

    Aggarwal, Aradhna

    -2014. The propensity score matching (PSM) analysis reveals that the majority owned foreign companies spend less on R&D and more on technology transfers than their local counterparts. Overall, threshold equity holding and global conditions matter. A panel data regression analysis on matched sample confirms the findings...... and validates the PSM findings. A horizontal cluster analysis on 3-digit industry level data shows that foreign firms cluster in high technology industries....

  14. Commercializing Defense Technologies and Helping Defense Firms Succeed in Commercial Markets: A Report on the Objectives, Activities, and Accomplishments of the TAP-IN Program

    Science.gov (United States)

    1997-01-01

    Technology Access for Product Innovation (TAP-IN), the largest technology deployment project funded by TRP, was competitively selected through a national solicitation for proposals. TAP-IN was created to help companies access and apply defense technologies and help defense-dependent companies enter new commercial markets. Defense technologies included technologies developed by DoD, DOE, NASA, and their contractors. TAP-IN was structured to provide region-based technology access services that were able to draw on technology resources nationwide. TAP-IN provided expert assistance in all stages of the commercialization process from concept through prototype design to capital sourcing and marketing strategy. TAP-IN helped companies locate new technology, identify business partners, secure financing, develop ideas for new products, identify new markets, license technology, solve technical problems, and develop company-specific applications of federal technology. TAP-IN leveraged NASA's existing commercial technology network to create an integrated national network of organizations that assisted companies in every state. In addition to NASA's six regional technology transfer centers (RTTCs), TAP-IN included business and technology development organizations in every state, the Industrial Designers Society of America, and the Federal Laboratory Consortium (FLC).

  15. Development and Commercial Application of Resid Hydrotreating Technology--RHT

    Institute of Scientific and Technical Information of China (English)

    Dai Lishun; Yang Qinghe; Niu Chuanfeng; Nie Hong; Shi Yahua

    2004-01-01

    The RHT technology is developed by Research Institute of Petroleum Processing (RIPP) for residuum hydrotreating in order to produce good quality RFCC feed. The advantages of the RHT series catalysts are presented in this article, based on the results of activity tests and a 9500 hours service life test in pilot plants and the assessment on a commercial application.

  16. A New Strategic Approach to Technology Transfer

    Science.gov (United States)

    The principal goal of Federal research and development (R&D) is to solve problems for public benefit. Technology transfer, innovation, entrepreneurship: words and concepts that once belonged exclusively in the domain of private research enterprises, have quickly become part of everyday lexicon in Fe...

  17. About TTC | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners, and helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class facilities, resources, and discoveries. Contact us to learn more. | [google6f4cd5334ac394ab.html

  18. 10 CFR 32.21 - Radioactive drug: Manufacture, preparation, or transfer for commercial distribution of capsules...

    Science.gov (United States)

    2010-01-01

    ... for commercial distribution of capsules containing carbon-14 urea each for âin vivoâ diagnostic use..., preparation, or transfer for commercial distribution of capsules containing carbon-14 urea each for “in vivo... commercial distribution capsules containing 37 kBq (1 µCi) carbon-14 urea (allowing for nominal variation...

  19. Climate change scenarios and technology transfer protocols

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, Socrates; Turton, Hal [Energy Economics Group, Paul Scherrer Institute, Villigen PSI, CH-5232 (Switzerland)

    2011-02-15

    We apply a specific version of MERGE-ETL, an integrated assessment model, to study global climate policies supported by Technology Transfer Protocols (TTPs). We model a specific formulation of such a TTP where donor countries finance via carbon tax revenues, the diffusion of carbon-free technologies in developing countries (DCs) and quantify its benefits. Industrialized countries profit from increased technology exports, global diffusion of advanced technology (leading to additional technology learning and cost reductions) and reduced climate damages through the likelihood of greater global participation in a new international agreement. DCs experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and expected secondary benefits of carbon abatement (such as reduced local and regional air pollution). The analysis identifies potential candidate technologies that could be supported under a TTP, and the impact of a TTP on economic development (including the flow of transfer subsidies) and global emissions. Although a TTP may encourage additional participation, such a proposal is only likely to be successful if an increased willingness to pay to avoid climate damages is accepted, first by the present and future generations of the industrialized world and later on, when sufficient economic growth is accumulated, by today's developing countries. (author)

  20. Compound parabolic concentrator technology development to commercial solar detoxification applications

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J.; Malato, S.; Fernandez, P. [CIEMAT, Plataforma Solar de Almeria (ES)] (and others)

    1999-07-01

    An EC-DGXII BRITE-EURAM-III-financed project called Solar detoxification technology in the treatment of persistent non-biodegradable chlorinated industrial water contaminants' is described. The objectives are to develop a simple, efficient and commercially competitive solar water treatment technology based on compound parabolic collectors (CPC) enabling design and erection of turnkey installations. A European industrial consortium, SOLARDETOX, representing industry and research in Spain, Portugal, Germany and Italy has been created through this project. Some of the most up-to-date scientific and technological results are given, including the design of the first industrial European solar detoxification treatment plant, the main project deliverable. (author)

  1. Technology transfer of brain-computer interfaces as assistive technology: barriers and opportunities.

    Science.gov (United States)

    Nijboer, F

    2015-02-01

    This paper provides an analysis of perspectives from different stakeholders on the state-of-the-art of BCI. Three barriers for technology transfer of BCIs as access technologies are identified. First, BCIs are developed with a narrow focus on creating a reliable technology, while a broader focus on creating a usable technology is needed. Second, the potential target group, which could benefit from BCIs as access technologies is expected to be very small. Development costs are therefore high, while reimbursements are expected to be low, which challenges the commercial viability. Third, potential target users should be much more included in the design process of BCIs to ensure that the end-products meet technical, ethical, legal and social requirements. These three issues need to be urgently addressed so that target users may benefit from this promising technology.

  2. The current status and future of commercial embryo transfer in cattle.

    Science.gov (United States)

    Hasler, John F

    2003-12-15

    A commercially viable cattle embryo transfer (ET) industry was established in North America during the early 1970s, approximately 80 years after the first successful embryo transfer was reported in a mammal. Initially, techniques for recovering and transferring cattle embryos were exclusively surgical. However, by the late 1970s, most embryos were recovered and transferred nonsurgically. Successful cryopreservation of embryos was widespread by the early 1980s, followed by the introduction of embryo splitting, in vitro procedures, direct transfer of frozen embryos and sexing of embryos. The wide spread adoption of ethylene glycol as a cryoprotectant has simplified the thaw-transfer procedures for frozen embryos. The number of embryos recovered annually has not grown appreciably over the last 10 years in North America and Europe; however, there has been significant growth of commercial ET in South America. Within North America, ET activity has been relatively constant in Holstein cattle, whereas there has been a large ET increase in the Angus breed and a concomitant ET decrease in some other beef breeds. Although a number of new technologies have been adopted within the ET industry in the last decade, the basic procedure of superovulation of donor cattle has undergone little improvement over the last 20 years. The export-import of frozen cattle embryos has become a well-established industry, governed by specific health regulations. The international movement of embryos is subject to sudden and dramatic disturbances, as exemplified by the 2001 outbreak of foot and mouth disease in Great Britain. It is probable that there will be an increased influence of animal rights issues on the ET industry in the future. Several companies in North America are currently commercially producing cloned cattle. The sexing of bovine semen with the use of flow cytometry is extremely accurate and moderate pregnancy rates in heifers have been achieved in field trials, but sexed semen

  3. Potential for energy technologies in residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  4. Communication and Cultural Change in University Technology Transfer

    Science.gov (United States)

    Wright, David

    2013-01-01

    Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…

  5. Communication and Cultural Change in University Technology Transfer

    Science.gov (United States)

    Wright, David

    2013-01-01

    Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…

  6. A Technology Plan for Enabling Commercial Space Business

    Science.gov (United States)

    Lyles, Garry M.

    1997-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems

  7. Conceptual Model for Transfer of Technology in a Shipyard

    OpenAIRE

    Firmansyah, Mohammad Rizal; Djafar, Wihdat

    2017-01-01

    Transfer of technology is an important program to be done by a shipyard if the respective shipyard is to maintain and increase its competitiveness. But sometimes, some aspects that need to be considered in a transfer of technology program are ignored. Before any transfer of technology program is to be conducted in any shipyard, identification of the required technology to be transferred and why the changes in shipyard technology are needed must be done. These identifications will lead to the ...

  8. Validation of InnoSPICE for technology transfer

    OpenAIRE

    Mitašiūnas, Antanas; Besson, Jeremy Daniel; Boronowsky, Michael; Woronowicz, Tanja

    2015-01-01

    Innovation and technology transfer consist mainly of process-oriented activities and can be described in process-oriented terms by an innovation and technology transfer process capability model such as InnoSPICE. To verify such a thesis, an extended validation of the InnoSPICE adequacy for different factual innovation and technology transfer activities is needed. The purpose of this paper is to validate the InnoSPICE model for technology transfer led by a technology developer based on capabil...

  9. Domestic Technology Transfer versus Technology Export Control - The Emerging National Policies and the Role of the Bench Engineer

    Science.gov (United States)

    1984-01-01

    Defense Technology Transfer Fundamentals 10 B. Governmental Stimuli to Technology Transfer 1. Information Programs 2. Information Analysis Centers 3...networking. II. Domestic Technology Transfer A. Non- Defense Technology Transfer Fundamentals The nation’s technological reservoir is filled by

  10. Tropical medicine: Telecommunications and technology transfer

    Science.gov (United States)

    Legters, Llewellyn J.

    1991-01-01

    The potential for global outbreaks of tropical infectious diseases, and our ability to identify and respond to such outbreaks is a major concern. Rapid, efficient telecommunications is viewed as part of the solution to this set of problems - the means to link a network of epidemiological field stations via satellite with U.S. academic institutions and government agencies, for purposes of research, training in tropical medicine, and observation of and response to epidemic emergencies. At a workshop, telecommunications and technology transfer were addressed and applications of telecommunications technology in long-distance consultation, teaching and disaster relief were demonstrated. Applications in teaching and consultation in tropical infectious diseases is discussed.

  11. MHD Technology Transfer, Integration and Review Committee

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

  12. Technology and knowledge transfer for development

    CSIR Research Space (South Africa)

    Chakwizira, J

    2008-01-01

    Full Text Available . An indicative list of recommendations to turnaround the knowledge and technology transfer condition of Africa into a more resounding success than currently existing is indicated. A brief conclusion that includes critical percepts and thoughts on the future... growth and development. "Knowledge Management caters to the critical issues of organizational adaption, survival and competence in face of increasingly discontinuous environmental change. Essentially, it embodies organizational processes that seek...

  13. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  14. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  15. Maize transformation technology development for commercial event generation

    Directory of Open Access Journals (Sweden)

    Qiudeng eQue

    2014-08-01

    Full Text Available Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996 paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed.

  16. Curbing international transfers of arms and military technology

    Energy Technology Data Exchange (ETDEWEB)

    Vayrynen, R.

    1978-07-01

    The magnitude of the value and quantity of transfers of arms and military technology, the internationalization and commercialization of armaments industry (through vastly increased direct investments, through co-production, licensing and sub-contracting arrangements), the supply of training and technical services as adjuncts of arms supply, the blurring of the dividing line between military and civilian technology--all have made control measures infinitely more complicated and difficult. What compounds the difficulty is the fact that, since an overwhelmingly preponderant portion of arms transfers is made up of government-to-government transactions, control measures must emanate from supplying and/or receiving governments. But even if by some miracle these measures were forthcoming and proved effective, they will have touched only a small part of the problem of disarmament, because the share of international transfers of arms and military technology amounts to only 5 to 6% of the total world military expenditure. The other, far larger and more intractable, part relates to the staggering stockpiles of both conventional and nuclear weapon systems, almost wholly concentrated in the hands of the two superpowers. Both transfers and stockpiles of armaments are inextricably enmeshed in the existing international structure, epitomized in a dominance-dependency relationship. This paper examines the measures that the supplier nations and recipient nations can take unilaterally, bilaterally, and multilaterally to curb arms transfers, and comes to the conclusion that unilateral initiatives, especially on the part of receiving nations, are more feasible. Not to take such initiatives on the ground that they cannot succeed unless taken in concert is only an excuse for doing nothing.

  17. Technology transfer metrics: Measurement and verification of data/reusable launch vehicle business analysis

    Science.gov (United States)

    Trivoli, George W.

    1996-01-01

    Congress and the Executive Branch have mandated that all branches of the Federal Government exert a concentrated effort to transfer appropriate government and government contractor-developed technology to the industrial use in the U.S. economy. For many years, NASA has had a formal technology transfer program to transmit information about new technologies developed for space applications into the industrial or commercial sector. Marshall Space Flight Center (MSFC) has been in the forefront of the development of U.S. industrial assistance programs using technologies developed at the Center. During 1992-93, MSFC initiated a technology transfer metrics study. The MSFC study was the first of its kind among the various NASA centers. The metrics study is a continuing process, with periodic updates that reflect on-going technology transfer activities.

  18. New Ways in Technology Transfer from University Towards Industry.

    Science.gov (United States)

    van den Kroonenberg, H.H.

    1983-01-01

    Three approaches to technology transfer are described: passive, stimulative, and active. A condition for successful technology transfer to small- and medium-sized industry is the availability of "receivers" in the industries. Stimulating young engineers to start their own small company can affect technology transfer positively. (MSE)

  19. Technology review of commercial food service equipment - final report

    Energy Technology Data Exchange (ETDEWEB)

    Rahbar, S.; Krsikapa, S. [Canadian Gas Research Inst., Don Mills, ON (Canada); Fisher, D.; Nickel, J.; Ardley, S.; Zabrowski, D. [Fisher Consultants (Canada); Barker, R.F. [ed.

    1996-05-15

    Market and technical information on gas fired equipment used in the commercial food service sector in Canada and in each province or territory was presented. Results of a market study and technology review were integrated to establish energy consumption and energy saving potential in this sector. Eight categories of commercial cooking appliances were studied. They were: fryers, griddles, broilers, ranges, ovens, tilting skillets, steam kettles and steamers. Focus was on gas fired appliances, although electric appliances were also included. The total energy consumption of the appliances was estimated at 76,140.37 GBtu in 1994. Gas appliances accounted for 63 per cent of the total inventory and consumed 83 per cent of the total energy used. Cooking energy efficiencies for the gas fired commercial cooking equipment ranged from 10 per cent to 60 per cent. The electric appliances had cooking energy efficiencies ranging from 35 per cent to 95 per cent. A list of recommendations were made for the many opportunities to introduce higher efficiency commercial cooking appliances, essential to slow down or to stabilize the energy consumption of cooking appliances over the next decade. 66 refs., 14 tabs., 18 figs.

  20. Nonacid meat decontamination technologies: model studies and commercial applications.

    Science.gov (United States)

    Sofos, J N; Smith, G C

    1998-11-10

    Increased consumer awareness and concern about microbial foodborne diseases has resulted in intensified efforts to reduce contamination of raw meat, as evidenced by new meat and poultry inspection regulations being implemented in the United States. In addition to requiring operation of meat and poultry slaughtering and processing plants under the principles of the hazard analysis critical control point (HACCP) system, the new regulations have established microbiological testing criteria for Escherichia coli and Salmonella, as a means of evaluating plant performance. These developments have renewed and intensified interest in the development and commercial application of meat and poultry decontamination procedures. Technologies developed and evaluated for decontamination include live animal cleaning/washing, chemical dehairing, carcass knife-trimming to remove physical contaminants, steam/hot water-vacuuming for spot-cleaning/decontamination of carcasses, spray washing/rinsing of carcasses with water of low or high pressures and temperatures or chemical solutions, and exposure of carcass sides to pressurized steam. Under appropriate conditions, the technologies applied to carcasses may reduce mean microbiological counts by approximately one-three log colony forming units (cfu)/cm2, and some of them have been approved and are employed in commercial applications (i.e., steam-vacuuming; carcass spray-washing with water, chlorine, organic acid or trisodium phosphate solutions; hot water deluging/spraying/rinsing, and pressurized steam). The contribution of these decontamination technologies to the enhancement of food safety will be determined over the long term, as surveillance data on microbial foodborne illness are collected. This review examines carcass decontamination technologies, other than organic acids, with emphasis placed on recent advances and commercial applications.

  1. Moving Technologies from the Test Tube to Commercial Products

    Science.gov (United States)

    Bryant, Robert G.

    2013-01-01

    Successful technologies include objects, processes, and procedures that share a common theme; they are being used to generate new products that create economic growth. The foundation is the invention, but the invention is a small part of the overall effort. The pathway to success is understanding the competition, proper planning, record keeping, integrating a supply chain, understanding actual costs, intellectual property (IP), benchmarking, and timing. Additionally, there are obstacles that include financing, what to make, buy, and sell, and the division of labor i.e. recognizing who is best at what task. Over the past two decades, NASA Langley Research Center (LaRC) has developed several commercially available technologies. The approach to commercialization of three of these inventions; Langley Research Center-Soluble Imide (LaRC-SI, Imitec Inc.), the Thin Layer Unimorph Driver (THUNDER, FACE International), and the Macrofiber Composite (MFC, Smart Material Corp.) will be described, as well as some of the lessons learned from the process. What makes these three inventions interesting is that one was created in the laboratory; another was built using the previous invention as part of its process, and the last one was created by packaging commercial-off-the-shelf (COTS) materials thereby creating a new component.

  2. Commercial Demonstration of Oxy-Coal Combustion Clean Power Technology

    Energy Technology Data Exchange (ETDEWEB)

    K.J. McCauley; K.C. Alexander; D.K. McDonald; N. Perrin; J.-P. Tranier [Babcock & Wilcox Power Generation Group (United Kingdom)

    2009-07-01

    Oxy-Coal Combustion is an advanced clean coal-based power generation technology with carbon capture and storage that will be Near Zero Emissions (NZEP), will capture and safely store CO{sub 2} in a geologic formation, and generate clean power for sale. This sustainable technology will utilize natural resources and support energy security goals. The unique benefits of oxy-coal combustion allow for near zero emissions of coal combustion products. The emissions of particulate matter, sulfur dioxide, nitrogen oxides and mercury will not only be below regulated levels, but all will be within the uncertainty of current industry measurement methods, essentially zero. This advanced technology will demonstrate all these reduced levels and will lead to commercially available NZEP plants for power generation. Since 1991, with the support of the US-DOE, Babcock & Wilcox Power Generation Group, Inc. (B&W PGG) and Air Liquide (AL) have worked to bring an advanced technology to the market for Carbon Capture and Storage (CCS) for coal-fired electric power generation plants. Oxy-coal combustion is now ready for at-scale demonstration leading directly to full scale commercialization and availability in the power generation marketplace. This paper will discuss the follow up of the results of the 30 MWth large pilot test program completed in December, 2008. This oxy-coal combustion technology has been through small lab pilot testing, large pilot testing, and a rigorous bottom-up integration and optimization analysis. Our paper will describe incorporating the best technological thinking for the integration of a modern PC-fired boiler, environmental control equipment, air separation unit (ASU) and compression purification unit (CPU). 5 refs., 3 figs.

  3. Biomedical technology transfer: Applications of NASA science and technology

    Science.gov (United States)

    1976-01-01

    The major efforts of the Stanford Biomedical Applications Team Program at the Stanford University School of Medicine for the period from October 1, 1975 to September 31, 1976 are covered. A completed EMG biotelemetry system which monitors the physiological signals of man and animals in space related research is discussed. The results of a pilot study involving lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative pressure unit for evaluating heart patients. This technology utilizes vacuum chambers to stress the cardiovascular system during space flight. Laboratory tests of an intracranial pressure transducer, have been conducted. Extremely stable long term data using capacative pressure sensors has lead to the order of commercially manufactured monitoring systems base. Projects involving commercialization are: flexible medical electrodes, an echocardioscope, a miniature biotelemetry system, and an on-line ventricular contour detector.

  4. Commercial Instrumentation Technology Associates Inc. Biomedical Experiments Payload (CIBX-2)

    Science.gov (United States)

    Morrison, Dennis; Edmundson, Allen; Robinson, Keith (Technical Monitor)

    2002-01-01

    Experiments to find solutions for a range of biomedical issues are being hosted by the Commercial Instrumentation Technology Associates Inc. (ITA) Biomedical Experiments (CIBX-2) payload. This research encompasses more than 20 separate experiments including cancer research, commercial experiments and hands-on student experiments from 10 schools as part of ITA's ongoing University Among the Stars program. Protein crystal growth experiments will address the structure of urokinase - a protein that has been identified as a key enzyme in the spread of brain, lung, colon, prostate and breast cancers. Crystals of Bence Jones, a protein associated with bone cancer, will also be grown. Understanding their structures may help scientists develop treatments. In a related area, the Microencapsulation of Drugs (MEPS) is an anti-cancer drug delivery system, based on a 10-year partnership with NASA's Johnson Space Center. On this mission, the co-encapsulation of antibodies and immune stimulants will be made in submicron microcapsules to target pulmonary and bacterial infections.

  5. Identifying, Licensing, and Commercializing Technology: An Entrepreneur's View

    Science.gov (United States)

    Appel, Kris

    2013-03-01

    A linguist by trade, Kris Appel left government service to pursue entrepreneurship. She knew she wanted to start a company, but she did not have a business idea. After researching various technologies available for commercialization, she began to focus on a prototype medical device at the University of Maryland Medical School, which had been developed to help stroke survivors recover their arm movement. The device was based upon emerging science into brain re-training, and was backed by very convincing clinical trials. Working closely with University researchers, she licensed the rights to the device, developed a commercial version, and launched it in 2009. Today the device is used around the globe, and has helped thousands of stroke and brain injury survivors improve their arm function and way of life. Kris will tell the story of the device, and how it got from idea to prototype to successful rehabilitation product.

  6. TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-01-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during

  7. Progress report on technology transfer at CERN since December 1999

    CERN Document Server

    2000-01-01

    In March 1999 the Finance Committee endorsed the CERN Technology Transfer paper FC/4126 entitled "Technology Transfer Policy at CERN". In June 1999 Council took note of the plan to create a new Division, the Education and Technology Transfer Division, one of its essential aims being to enhance the Technology Transfer activities at CERN. A verbal activity report on Technology Transfer was given at the December 1999 meeting of the Finance Committee. Finally, in January 2000, ETT Division came into existence. This document contains a description of the current organisation of TT activities together with some relevant results and highlights for the year 2000.

  8. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the

  9. Cancer proteomics: developments in technology, clinical use and commercialization.

    Science.gov (United States)

    Yeat, Nai Chien; Lin, Charlotte; Sager, Monica; Lin, Jimmy

    2015-08-01

    In the last two decades, advances in genomic, transcriptomic and proteomic methods have enabled us to identify and classify cancers by their molecular profiles. Many anticipate that a molecular taxonomy of cancer will not only lead to more effective subtyping of cancers but also earlier diagnoses, more informative prognoses and more targeted treatments. This article reviews recent technological developments in the field of proteomics, recent discoveries in proteomic cancer biomarker research and trends in clinical use. Readers are also informed of examples of successful commercialization, and the future of proteomics in cancer diagnostics.

  10. EPA and the Federal Technology Transfer Act: Opportunity knocks

    Energy Technology Data Exchange (ETDEWEB)

    Gatchett, A.M.; Fradkin, L.; Moore, M.; Gorman, T.; Ehrlich, A. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    In 1986, the Federal Technology Transfer Act (FTTA) was established to promote a closer, collaborative relationship between federal government agencies and the private sector. With the increasing need for new cost-effective technologies to prevent and control pollution, both the US Environmental Protection Agency (EPA) and private industry are encouraged to facilitate the transfer of knowledge and technology under this Act. The FTTA removed several of the legal and institutional barriers to cooperative research that existed before the Act`s passage. Through the FTTA, the government strives to promote the movement of its products, processes, skills, and knowledge into the private sector for further development and commercialization by encouraging the exchange of technical personnel and the sharing of facilities and other resources. Collaborative efforts between industry, federal agencies, and academia are made possible through cooperative research and development agreements (CRADAs). Forty-two CRADAs and five licensing agreements have been initiated with EPA under this program. This paper provides an overview of this new and innovative program within the EPA. 1 fig., 2 tabs.

  11. Diffusion of Energy Efficient Technology in Commercial Buildings: An Analysis of the Commercial Building Partnerships Program

    Science.gov (United States)

    Antonopoulos, Chrissi Argyro

    This study presents findings from survey and interview data investigating replication of green building measures by Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, quantitative and qualitative data were gathered relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners' replication efforts of green building approaches used in the CBP project to the rest of the organization's building portfolio, and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States. Findings from this study provided insight into motivations and objectives CBP partners had for program participation. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The optimized approach to the CBP program allows partners to develop green building parameters that fit the specific uses of their building, resulting in greater motivation for replication. In addition, the diffusion model developed

  12. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  13. A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1993-09-01

    This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

  14. Commercialization of graphene-based technologies: a critical insight.

    Science.gov (United States)

    Ciriminna, Rosaria; Zhang, Nan; Yang, Min-Quan; Meneguzzo, Francesco; Xu, Yi-Jun; Pagliaro, Mario

    2015-04-28

    Carbon in its single layer atomic morphology has exceptional thermal, optical, electronic and mechanical properties, which may form the basis for several functional products and enhanced technologies that go from electricity storage to polymer nanocomposites of so far unsurpassed characteristics. Due to the high cost, however, the current global production of graphene does not exceed 120 tonnes. New chemical and physical methods to exfoliate graphite, however, were recently engineered and commercialized, which open the route to massive adoption of graphene as the "enabler" of numerous important technologies, including enhanced electricity storage. This feature article presents an updated, critical overview that will be useful to nanochemistry and nanotechnology research practitioners and to entrepreneurs in advanced materials.

  15. 75 FR 60266 - Federal Acquisition Regulation; Buy American Exemption for Commercial Information Technology...

    Science.gov (United States)

    2010-09-29

    ... Regulation; Buy American Exemption for Commercial Information Technology--Construction Material AGENCIES... Act for acquisition of information technology that is a commercial item. DATES: Effective Date... the Buy American Act for acquisition of information technology that is a commercial item. This...

  16. Profile of Clean Technology Commercialization in the U.S.

    Science.gov (United States)

    Mehta, Manish

    2010-04-01

    In 2009, the National Center for Manufacturing Sciences (NCMS) performed it third successive study of the growth and transition of nanotechnology into commercial products, under award from the National Science Foundation (NSF). Nanotechnology is a recently recognized cross-disciplinary field of a variety of potentially disruptive technologies that involves the creation and operation of objects at the nanoscale, up to 100 nanometers in size. Nanomanufacturing is the large-scale manipulation of matter at the nanoscale, to produce value-added components. Because of the economically significant new markets and breadth of applications that can benefit from the exploitation of these size-driven aspects, much international research and commercial effort is being expended to create revolutionary value-added products using the many capabilities and tools enabled by nanotechnology. In the context of Michigan and many other US states, startup and commercialization activity is especially important in market diversification and job growth initiatives. This trend has accelerated new applications of nanotechnology in industrial and consumer markets related to energy efficiency and environmentally conscious manufacturing, known as ``cleantech." Dr. Mehta’s presentation will illustrate the industry’s major trends, concerns and barriers across key strategic indicators, as well as highlight the characteristics of startup businesses and established players in this important field.

  17. Your idea and your university: issues in academic technology transfer.

    Science.gov (United States)

    Smith, Charles D

    2011-06-01

    Research discoveries may lead to products for commercial development. A central consideration for the researcher is how involved she or he will be in the commercialization process. In some cases, a university out-licenses the intellectual property, whereas in other cases, the investigator may want to be involved in the development process and choose to start his or her own company to develop and possibly to manufacture and sell the product. Before undertaking such a challenge, however, the investigator-turned-entrepreneur must consider a variety of issues, including career goals, financial and time commitments, potential conflicts of interest and/or commitment, start-up funding, and his or her ability to run a company or step aside to allow business experts to make necessary decisions. This paper discusses some personal considerations in deciding to start a spinout company and provides information on some of the available government grants to assist you should you decide to undertake your product's commercial development. In particular, the Small Business Innovative Research and Small Business Technology Transfer programs of federal funding agencies often are the source of early funding for new biomedical companies.

  18. Shredder and incinerator technology for treatment of commercial transuranic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oma, K.H.; Westsik, J.H. Jr.; Ross, W.A.

    1985-10-01

    This report describes the selection and evaluation of process equipment to accomplish the shredding and incineration of commercial TRU wastes. The primary conclusions derived from this study are: Shredding and incineration technology appears effective for converting simulated commercial TRU wastes to a noncombustible form. The gas-heated controlled-air incinerator received the highest technical ranking. On a scale of 1 to 10, the incinerator had a Figure-of-Merit (FOM) number of 7.0. This compares to an FOM of 6.1 for the electrically heated controlled-air incinerator and an FOM of 5.8 for the rotary kiln incienrator. The present worth costs of the incineration processes for a postulated commercial reprocessing plant were lowest for the electrically heated and gas-heated controlled-air incinerators with costs of $16.3 M and $16.9 M, respectively (1985 dollars). Due to higher capital and operating costs, the rotary kiln process had a present worth cost of $20.8 M. The recommended process from the three evaluated for the commercial TRU waste application is the gas-heated controlled-air incinerator with a single stage of shredding for feed pretreatment. This process had the best cost-effectiveness ratio of 1.0 (normalized). The electrically heated controller-air incinerator had a rating of 1.2 and the rotary kiln rated a 1.5. Most of the simulated wastes were easily processed by the low-speed shredders evaluated. The HEPA filters proved difficult to process, however. Wood-framed HEPA filters tended to ride on the cutter wheels and spacers without being gripped and shredded. The metal-framed HEPA filters and other difficult to shred items caused the shredders to periodically reach the torque limit and go into an automatic reversal cycle; however, the filters were eventually processed by the units. All three incinerators were ineffective for oxidizing the aluminum metal used as spacers in HEPA filters.

  19. Planning and Operation of Commercial Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Yeon; Kim, Kye Ryung; Lee, Tae Joon; Lee, Jae Hyeong; Park, Je Won; Lee, Jae Sang

    2003-06-15

    The objectives of this R and D project are as follows : First, transferring developed technologies to outside companies and operating technology market to vitalize technology transactions, Second, developing commercial application projects to transfer technologies for commercial purposes and to solve interface problems in commercial applications, Third, enhancing commercial utilizations of developed accelerator and beam utilization technologies, Finally. preparing infra-structures for the development of over 30 venture- businesses based on achieved technologies through the Proton Engineering Frontier Project.

  20. Hot demonstration of proposed commercial nuclide removal technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.D.; Travis, J.R.; Gibson, M.R. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    Cesium, strontium, and technetium radionuclides are a small fraction of the mainly sodium and potassium salts in storage tank supernatants at the Hanford, Oak Ridge, Savannah River, and Idaho sites that DOE must remediate. Radionuclide removal technologies supplied by the ESP-CP have been previously proposed and tested in small batch and column tests using simulated and a few actual supernatants. They must now be tested and the most appropriate ones selected using a flow system of a scale suitable to obtain engineering data that can be applied to the design of pilot-scale equipment. This task involves operation of an experimental unit designed and constructed to test radionuclide removal technologies during continuous operation on actual supernatants. The equipment diagram, consists of the tanks, pumps, tubing and fittings, filters, and intrumentation for testing radionuclide removal technologies in a continuous-flow system in an Oak Ridge National Laboratory (ORNL) hot cell. The task provides a test bed for investigating new technologies, such as 3M`s SLIG 644 WWL WEB and AEA Technology`s EIX electrochemical elution system, and complements ESP`s comprehensive supernatant task (TTPOR06C341) by using larger engineering-scale, continuous equipment to verify and expand that task`s batch studies. This task complements the Tanks Focus Area`s (TFA`s) Cesium Removal Demonstration (CsRD) at ORNL by providing sorbent selection information, evaluating and testing proposed sorbents, and providing operational experience and characteristics using the sorbent and supernatant to be used in the demonstration, followed by evaluating and comparing small-scale to demonstration-scale performance. The authors cooperate closely with other ESP-CP tasks and the TFA to ultimately transfer the technologies being developed to the end user.

  1. Technology and commercial supply of components for the LHC project

    CERN Document Server

    Faugeras, Paul E

    1998-01-01

    After a brief reminder of the motives and the outline of the Large Hadron Collider (LHC) project, one will review the technology and the hardware to be built up. The LHC calls for High Tech innovation s in superconductivity, cryogenics with superfluid helium, ultra high vacuum, surface treatments, etc. which have to be transferred to Industry and produced on a large scale. It will also make extensi ve use of more conventional technology, but because of the intrinsic complexity of the machine and of the international nature of its funding and procurement sources, it will require sophisticated man agement and logistics tools to minimize costs and installation time. The planning for the whole project will be given with an indication of the nature and time schedule of the major contracts.

  2. A Predictive Model of Technology Transfer Using Patent Analysis

    OpenAIRE

    Jaehyun Choi; Dongsik Jang; Sunghae Jun; Sangsung Park

    2015-01-01

    The rapid pace of technological advances creates many difficulties for R&D practitioners in analyzing emerging technologies. Patent information analysis is an effective tool in this situation. Conventional patent information analysis has focused on the extraction of vacant, promising, or core technologies and the monitoring of technological trends. From a technology management perspective, the ultimate purpose of R&D is technology commercialization. The core of technology commercializ...

  3. A Study of the Factors Associated with Successful Technology Transfer and their Applicability to Air Force Technology Transfers.

    Science.gov (United States)

    1995-09-01

    relay race, where one runner passes the baton to the next. Richard Dorf describes in "Models for Technology Transfer From Universities and Research...Meeting. 9. Dorf , Richard C. "Models for Technology Transfer From Universities and Research Laboratories," Technology Management Publication TM1.1988...both located at Wright- Patterson Air Force Base, Ohio. Namely, Tim Sharp, Chief, Technology Transfer Division and my faculty advisor, Major Richard

  4. A planning framework for transferring building energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  5. Technology transfers, foreign investment and productivity spillovers

    DEFF Research Database (Denmark)

    Newman, Carol; Rand, John; Talbot, Theodore Purdendu

    2015-01-01

    This paper explores the relationship between foreign direct investment (FDI) and the productivity of host country domestic firms. We rely on a specially designed survey of over 4000 manufacturing firms in Vietnam, and separate out productivity gains along the supply chain (obtained through direct...... transfers of knowledge/technology between linked firms) from productivity effects through indirect FDI spillovers. In addition to identifying indirect vertical productivity spillovers from FDI, our results show that there are productivity gains associated with direct linkages between foreign......-owned and domestic firms along the supply chain not captured by commonly used measures of spillovers. This includes evidence of productivity gains through forward linkages for domestic firms which receive inputs from foreign-owned firms....

  6. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the

  7. 76 FR 71562 - Emergint Technologies, Inc.; Transfer of Data

    Science.gov (United States)

    2011-11-18

    ... AGENCY Emergint Technologies, Inc.; Transfer of Data AGENCY: Environmental Protection Agency (EPA... claimed as Confidential Business Information (CBI) by the submitter, will be transferred to Emergint Technologies, Inc. in accordance with 40 CFR 2.307(h)(3) and 2.308(i)(2). Emergint Technologies, Inc. has...

  8. Current status and potential of embryo transfer and reproductive technology in dairy cattle.

    Science.gov (United States)

    Hasler, J F

    1992-10-01

    Significant use of embryo transfer in dairy cattle commenced with the introduction of nonsurgical embryo recovery in the mid-1970s and developed with the use of nonsurgical transfers in the late 1970s. Numbers of registered Holstein calves from embryo transfer doubled yearly through 1980, after which the rate of increase slowed; the total reached nearly 19,000 calves in 1990. However, the efficacy of superovulation procedures and commercial success rates of transferred fresh embryos have not improved the past 10 to 15 yr. Fertilization rates in superovulated donors remain low. Although embryo-splitting techniques were perfected in the early 1980s, they are not used widely. A practical, commercial embryo-sexing procedure remains unavailable. Recent significant improvement is apparent in the technology of ultrasound-guided oocyte collection and in vitro oocyte maturation, fertilization, and embryo culture. In the future, this technology may be used in conjunction with sperm separated by sex with a flow cytometer. Modest numbers of embryo clones have been produced in several commercial programs via nuclear transfer techniques. However, the efficiency of gene transfer experiments involving ova of cattle and other domestic species has been low. Recently, DNA probe technology has begun to provide genotype information for cattle and will ultimately be applied to embryos.

  9. Technology transfer of brain-computer interfaces as assistive technology: barriers and opportunities

    National Research Council Canada - National Science Library

    Nijboer, F

    2015-01-01

    .... Three barriers for technology transfer of BCIs as access technologies are identified. First, BCIs are developed with a narrow focus on creating a reliable technology, while a broader focus on creating a usable technology is needed...

  10. From concept to consumer -- The commercialization of technology

    Energy Technology Data Exchange (ETDEWEB)

    Bienert, W.B.; Eastman, G.Y.; Ernst, D.M.; Longsderff, R.W.; Scicchitano, E.A. [DTX Corp., Lancaster, PA (United States)

    1996-12-31

    This paper examines the commercialization of heat pipe technology as seen through the eyes of the authors, who themselves helped to make it happen. It covers the period from August 1962 to the present. This is the time span from the initial concept of the heat pipe, as reinvented by Dr. George M. Grover of the Los Alamos National Laboratory, to the present day production at DTX of more than 4,000 heat pipes per day. The initial application, Government-sponsored nuclear power in space, has not prospered. The present volume market lies in the cooling of CPU chips in notebook computers. The paper explores the personal, engineering, facilitation and market aspects of this transition.

  11. Accelerating the commercialization of university technologies for military healthcare applications: the role of the proof of concept process

    Science.gov (United States)

    Ochoa, Rosibel; DeLong, Hal; Kenyon, Jessica; Wilson, Eli

    2011-06-01

    The von Liebig Center for Entrepreneurism and Technology Advancement at UC San Diego (vonliebig.ucsd.edu) is focused on accelerating technology transfer and commercialization through programs and education on entrepreneurism. Technology Acceleration Projects (TAPs) that offer pre-venture grants and extensive mentoring on technology commercialization are a key component of its model which has been developed over the past ten years with the support of a grant from the von Liebig Foundation. In 2010, the von Liebig Entrepreneurism Center partnered with the U.S. Army Telemedicine and Advanced Technology Research Center (TATRC), to develop a regional model of Technology Acceleration Program initially focused on military research to be deployed across the nation to increase awareness of military medical needs and to accelerate the commercialization of novel technologies to treat the patient. Participants to these challenges are multi-disciplinary teams of graduate students and faculty in engineering, medicine and business representing universities and research institutes in a region, selected via a competitive process, who receive commercialization assistance and funding grants to support translation of their research discoveries into products or services. To validate this model, a pilot program focused on commercialization of wireless healthcare technologies targeting campuses in Southern California has been conducted with the additional support of Qualcomm, Inc. Three projects representing three different universities in Southern California were selected out of forty five applications from ten different universities and research institutes. Over the next twelve months, these teams will conduct proof of concept studies, technology development and preliminary market research to determine the commercial feasibility of their technologies. This first regional program will help build the needed tools and processes to adapt and replicate this model across other regions in the

  12. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature

  13. Department of Defense Laboratories: Finding a Future in Technology Transfer

    Science.gov (United States)

    1993-04-01

    investment. There is no mention of DoD even trying. This, then, presents a problem for Defense technology transfer management. The President expects both...effort, but nonetheless felt unable to express their effort quantitatively. The potential size and demand for Defense technology transfer calls for some... Defense technology transfer is taking place, it is doing so on the enthusiasm and drive of a few key individuals. Political demand and legislation

  14. Geo energy research and development: technology transfer update

    Energy Technology Data Exchange (ETDEWEB)

    Traeger, R.K.; Dugan, V.L.

    1983-01-01

    Sandia Geo Energy Programs in geothermal, coal, oil and gas, and synfuel technologies have been effective in transferring research concepts to applications in private industry. This report updates the previous summary (SAND82-0211, March 1982) to include recent technology transfers and to reflect recent changes in philosophy on technology transfer. Over 40 items transferred to industry have been identified in the areas of Hardware, Risk Removal and Understanding. Successful transfer is due largely to personal interactions between Sandia engineers and the technical staffs of private industry.

  15. Trade, Foreign Direct Investment, and International Technology Transfer: A Survey

    National Research Council Canada - National Science Library

    Kamal Saggi

    2002-01-01

    ...? Using these questions as motivation, this article surveys the recent trade literature on international technology transfer, paying particular attention to the role of foreign direct investment...

  16. 76 FR 31415 - Federal Acquisition Regulation; Buy American Exemption for Commercial Information Technology...

    Science.gov (United States)

    2011-05-31

    ... 9000-AL62 Federal Acquisition Regulation; Buy American Exemption for Commercial Information Technology... from the Buy American Act for acquisition of information technology that is a commercial item. DATES...., because the rule simplifies the treatment of construction material that is also a commercial...

  17. Dissemination of CERN's Technology Transfer: Added Value from Regional Transfer Agents

    Science.gov (United States)

    Hofer, Franz

    2005-01-01

    Technologies developed at CERN, the European Organization for Nuclear Research, are disseminated via a network of external technology transfer officers. Each of CERN's 20 member states has appointed at least one technology transfer officer to help establish links with CERN. This network has been in place since 2001 and early experiences indicate…

  18. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Schatzinger, Viola [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Chapman, Kathy [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Lovendahl, Kristi [Petroleum Tech. Transfer Council, Tulsa, OK (United States)

    2014-09-30

    The Petroleum Technology Transfer Council (PTTC) is a unique not-for-profit network that focuses on transferring Exploration and Production (E&P) technology to the domestic oil and natural gas producing industry. PTTC connects producers, technology providers and innovators, academia, research and development (R&D) consortiums and governments. Local affordable workshops delivered by Regional Lead Organizations (RLOs), which are typically a university or geological survey, are a primary tool. PTTC also maintains a website network, issues a national newsletter, provides a column in a major trade publication, and exhibits at major industry events. It also encourages industry to ask technology-related questions, striving to find relevant answers that will save questioners significant time. Working since late 1993, the PTTC network has a proven track record of providing industry with technology insights they can apply. Volunteers at the regional and national level provide key guidance regarding where to focus technical effort and help connect PTTC with industry. At historical funding levels, PTTC had been able to hold well more than 100 workshops per year, drawing 6,000+ attendees. As funding decreased in the early 2000s, the level of activity decreased and PTTC sought a merger with the American Association of Petroleum Geologists (AAPG), becoming an AAPG-managed organization at the start of FY08. This relationship with AAPG was terminated by mutual consent in May 2011 and PTTC once again operates independently. Chris Hall, California continued to serve as Chairman of the Board of Directors until December 2013. At the time PTTC reorganized into a RLO led organization with Mary Carr and Jeremy Viscomi as co-Executive Directors. Jerry Anderson became the Chairman of the PTTC Board of Directors and Chris Hall continues to serve on the Board. Workshop activity stabilized at 55-65 workshops per year averaging 3,100 attendees. FY14 represented the fifth year in a multi

  19. Technology commercialization cost model and component case study

    Science.gov (United States)

    1991-12-01

    Fuel cells seem poised to emerge as a clean, efficient, and cost competitive source of fossil fuel based electric power and thermal energy. Sponsors of fuel cell technology development need to determine the validity and the attractiveness of a technology to the market in terms of meeting requirements and providing value which exceeds the total cost of ownership. Sponsors of fuel cell development have addressed this issue by requiring the developers to prepare projections of the future production cost of their fuel cells in commercial quantities. These projected costs, together with performance and life projections, provide a preliminary measure of the total value and cost of the product to the customer. Booz-Allen & Hamilton Inc. and Michael A. Cobb & Company have been retained in several assignments over the years to audit these cost projections. The audits have gone well beyond a simple review of the numbers. They have probed the underlying technical and financial assumptions, the sources of data on material and equipment costs, and explored issues such as the realistic manufacturing yields which can be expected in various processes. Based on the experience gained from these audits, DOE gave Booz-Allen and Michael A. Cobb & company the task to develop a criteria to be used in the execution of future fuel cell manufacturing cost studies. It was thought that such a criteria would make it easier to execute such studies in the future as well as to cause such studies to be more understandable and comparable.

  20. Translating microfluidics: Cell separation technologies and their barriers to commercialization.

    Science.gov (United States)

    Shields, C Wyatt; Ohiri, Korine A; Szott, Luisa M; López, Gabriel P

    2017-03-01

    Advances in microfluidic cell sorting have revolutionized the ways in which cell-containing fluids are processed, now providing performances comparable to, or exceeding, traditional systems, but in a vastly miniaturized format. These technologies exploit a wide variety of physical phenomena to manipulate cells and fluid flow, such as magnetic traps, sound waves and flow-altering micropatterns, and they can evaluate single cells by immobilizing them onto surfaces for chemotherapeutic assessment, encapsulate cells into picoliter droplets for toxicity screenings and examine the interactions between pairs of cells in response to new, experimental drugs. However, despite the massive surge of innovation in these high-performance lab-on-a-chip devices, few have undergone successful commercialization, and no device has been translated to a widely distributed clinical commodity to date. Persistent challenges such as an increasingly saturated patent landscape as well as complex user interfaces are among several factors that may contribute to their slowed progress. In this article, we identify several of the leading microfluidic technologies for sorting cells that are poised for clinical translation; we examine the principal barriers preventing their routine clinical use; finally, we provide a prospectus to elucidate the key criteria that must be met to overcome those barriers. Once established, these tools may soon transform how clinical labs study various ailments and diseases by separating cells for downstream sequencing and enabling other forms of advanced cellular or sub-cellular analysis. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  1. The role of market research in the commercialization of technology

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, D.L.; Smith, S.A.

    1988-03-01

    The objectiv eof this report is to provide information on available empirical work that describes criteria used by the residential consumer market in selectign energy and energy-related products. This market is important to the US Department of Energy's (DOE) Office of Building and Community Services (OBCS), which sponsors the developement of many energy-conserving technologies ultimately used by the residential consumer. In this report, the consumer decision-making process is described, and case studies are presented to illustrate the importance of conducting systematic market research in the early stages of the technology-development process. Consumer decision making is examined through a discussion of the steps of the decision-making process: problem recognition, information search, evaluation of alternatives, and purchase decision. Post-purchase behavior and its implications to the OBCS and to commercial marketing research are also discussed. The four case studies that are presented in this report illustrate the importance of market research in building energy loss, lighting, water heating, and refrigeration: (1) low-emissivity (low-E) windows; (2) long life light bulbs; (3) heat pump water heaters; and (4) energy efficient refrigerator-freezer.

  2. Auto-disable syringes for immunization: issues in technology transfer.

    Science.gov (United States)

    Lloyd, J S; Milstien, J B

    1999-01-01

    WHO and its partners recommend the use of auto-disable syringes, "bundled" with the supply of vaccines when donor dollars are used, in all mass immunization campaigns, and also strongly advocate their use in routine immunization programmes. Because of the relatively high price of auto-disable syringes, WHO's Technical Network for Logistics in Health recommends that activities be initiated to encourage the transfer of production technology for these syringes as a means of promoting their use and enhancing access to the technology. The present article examines factors influencing technology transfer, including feasibility, corporate interest, cost, quality assurance, intellectual property considerations, and probable time frames for implementation. Technology transfer activities are likely to be complex and difficult, and may not result in lower prices for syringes. Guidelines are offered on technology transfer initiatives for auto-disable syringes to ensure the quality of the product, the reliability of the supply, and the feasibility of the technology transfer activity itself.

  3. How technology transfer issues are managed

    Energy Technology Data Exchange (ETDEWEB)

    Sink, C.H. [Dept. of Energy, Washington, DC (United States); Easley, K.R. [Waste Policy Inst. (United States)

    1991-12-31

    In 1989, Secretary of Energy James Watkins made a commitment to accelerate DOE compliance with all applicable laws and standards aimed at protecting human health and the environment. At a minimum, this pledge requires the remediation of the 1989 inventory of chemical, radioactive, and mixed wastes at DOE production sites by 2019. The 1989 Complex inventory consisted of more than 3,700 sites, encompassing more than 26,000 acres contaminated with radioactive, hazardous, and mixed wastes. In addition, over 500 surplus sites are awaiting decontamination and decommissioning (D and D), and approximately 5,000 peripheral properties have contaminated soils (e.g., uranium tailings). Moreover, these problems exist at both inactive sites, where the primary focus is on environmental restoration, and at active sites, where the major emphasis is on improved waste management techniques. Although some of DOE`s problems are considered unique due to radioactivity, most forms of contamination resident in the Complex are not; rather, contaminants such as waste chemicals (e.g., inorganics), organics (e.g., fuels and solvents), halogenated organics (e.g., PCBs) and heavy metals commonly result in conventional industrial processes. Although certain other forms of contamination are more unique to DOE operations (e.g., radioactive materials, explosives, and pyrophorics), they are not exclusive to DOE. As DOE develops innovative solutions to these and related waste problems, it is imperative that technology systems and lessons learned be transferred from DOE sites and its R and D laboratories to private industry to maximize the nation`s return on environmental management technology investments.

  4. An Experiment to Introduce Mass Transfer Concepts Using a Commercial Hollow Fiber Blood Oxygenator

    Science.gov (United States)

    McIver, Keith; Merrill, Thomas; Farrell, Stephanie

    2017-01-01

    A commercial hollow fiber blood oxygenation laboratory experiment was used to introduce lower level engineering students to mass balances in a two-phase system. Using measured values of concentration and flow rate, students calculated the rate of mass transfer from the gas phase and into the liquid phase, and compared the two values to determine…

  5. A model for technology assessment and commercialization for innovative disruptive technologies

    Energy Technology Data Exchange (ETDEWEB)

    KASSICIEH, SULEIMAN K.; WALSH, STEVE; MCWHORTER,PAUL J.; CUMMINGS JR.,JOHN C.; WILLIAMS,W. DAVID; ROMIG JR.,ALTON D.

    2000-05-17

    Disruptive technologies are scientific discoveries that break through the usual product technology capabilities and provide a basis for a new competitive paradigm as described by Anderson and Tushman [1990], Tushman and Rosenkopf [1992], and Bower and Christensen [1995]. Discontinuous innovations are products/processes/services that provide exponential improvements in the value received by the customer much in the same vein as Walsh [1996], Lynn, Morone and Paulson [1996], and Veryzer [1998]. For more on definitions of disruptive technologies and discontinuous innovations, see Walsh and Linton [1999] who provide a number of definitions for disruptive technologies and discontinuous innovations. Disruptive technologies and discontinuous innovations present a unique challenge and opportunity for R and D organizations seeking to build their commercialization efforts and to reinvent the corporation. These technologies do not have a proven path from scientific discovery to mass production and therefore require novel approaches. These critically important technologies are the wellspring of wealth creation and new competency generation but are not readily accepted by the corporate community. They are alternatively embraced and eschewed by the commercial community. They are finally accepted when the technology has already affected the industry or when the technological horse has already flown out of the hanger. Many firms, especially larger firms, seem reluctant to familiarize themselves with these technologies quickly. The trend seems to be that these firms prefer to react to a proven disruptive technology that has changed the product market paradigm. If true, then there is cause for concern. This paper will review the literature on disruptive technologies presenting a model of the progression from scientific idea to mass production for disruptive technologies contrasted to the more copious incremental technologies. The paper will then describe Sandia National Laboratories

  6. Research in space commercialization, technology transfer, and communications, volume 2

    Science.gov (United States)

    Dunn, D. A.; Agnew, C. E.

    1983-01-01

    Spectrum management, models for evaluating communication systems, the communications regulatory environment, expert prediction and consensus, remote sensing, and manned space operations research are discussed.

  7. Research in space commercialization, technology transfer and communications, vol. 2

    Science.gov (United States)

    Dunn, D. A.; Agnew, C. E.

    1983-01-01

    Spectrum management, models for evaluating communications systems, and implications of communications regulations for NASA are considered as major parts of communications policy. Marketing LANDSAT products in developing countries, a political systems analysis of LANDSAT, and private financing and operation of the space operations center (space station) are discussed. Investment requirements, risks, government support, and other primary business and management considerations are examined.

  8. Study on Commercial Application of FP-DSN Sulfur Transfer Additive in FCC Unit

    Institute of Scientific and Technical Information of China (English)

    Gao Siming; Han Rongxian; Chen Desheng

    2009-01-01

    The FCC unit with addition of various inventories of the FP-DSN type sulfur transfer additive was tested in a commercial scale. The effect of the sulfur transfer additive was analyzed by investigating the indicators related with the regenerator flue gas composition, the dry gas composition before desulfurization, the LPG composition before desulfurization, the acid gas, and the yield of gasoline and diesel. The test results indicated that the sulfur was trans-ferred fi'om the feed stream into the dry gas, LPG and acid gas, and the sulfur transfer effect was obvious only when the inventory of sulfur transfer additive exceeded over 2.0% of total FCC catalyst inventory.

  9. Introduction to the workshop on technology transfer in software engineering

    NARCIS (Netherlands)

    Harrison, Warren; Wieringa, Roelf J.

    The goal of the Workshop on Technology Transfer in Software Engineering is to increase our understanding of technology transfer in software engineering, and to learn from successful case studies. We wanted to bring researchers and practitioners together to create an inventory of problems in software

  10. A southern region conference on technology transfer and extension

    Science.gov (United States)

    Sarah F. Ashton; William G. Hubbard; H. Michael Rauscher

    2009-01-01

    Forest landowners and managers have different education and technology transfer needs and preferences. To be effective it is important to use a multi-faceted science delivery/technology transfer program to reach them. Multi-faceted science delivery programs can provide similar content over a wide range of mechanisms including printed publications, face-to-face...

  11. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact

    Science.gov (United States)

    Fraser, John

    2010-01-01

    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  12. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact

    Science.gov (United States)

    Fraser, John

    2010-01-01

    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  13. A comparison study of commercially-available column flotation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Mohanty, M.K.; Paul, B.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mining Engineering; Ho, K. [Illinois Clean Coal Inst., Carterville, IL (United States)

    1994-12-31

    A direct comparison of three commercially-available column flotation technologies, i.e., Jameson Cell, Microcel, and Packed-Column, has been conducted using a {minus}100 mesh Illinois No. 5 flotation feed coal sample. The separation performance of each flotation technology was optimized and their performance levels compared on the basis of both ash rejection, sulfur rejection, and throughput capacities. A parametric study using a statistically-designed experimental program was conducted to optimize the critical operating parameter values of each column. The ultimate performance curves for each column were generated by conducting additional tests using the optimized operating parameter values. The throughput capacity of each flotation cell was determined by conducting tests over a range of feed rates at the maximum superficial gas rate while maintaining the other parameters at their optimum values. The separation performance achieved by each of the three flotation cells was found to be comparable to the idealistic flotation performance predicted by release analysis. However, the fraction of wash water reporting to tailings (bias factor) was found to be critical in achieving the near idealistic performance. The bias factor required for the Packed-Column was found to be less than that required by the other two flotation cells. The sulfur rejection achieved by the Microcel and the Packed-Column were found to be greater than that achieved by the Jameson Cell and all three produced sulfur rejections exceeding the values obtained from release analysis. The throughput capacity, on the other hand, differed among the three flotation columns. The Jameson Cell and the Microcel were found to have comparable throughput capacities while the Packed-Column was found to have a lower capacity.

  14. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies.

    Science.gov (United States)

    Chaney, Rufus L; Angle, J Scott; Broadhurst, C Leigh; Peters, Carinne A; Tappero, Ryan V; Sparks, Donald L

    2007-01-01

    This paper reviews progress in phytoextraction of soil elements and illustrates the key role of hyperaccumulator plant species in useful phytoextraction technologies. Much research has focused on elements which are not practically phytoextracted (Pb); on addition of chelating agents which cause unacceptable contaminant leaching and are cost prohibitive; and on plant species which offer no useful phytoextraction capability (e.g., Brassica juncea Czern). Nickel phytoextraction by Alyssum hyperaccumulator species, which have been developed into a commercial phytomining technology, is discussed in more detail. Nickel is ultimately accumulated in vacuoles of leaf epidermal cells which prevents metal toxicity and provides defense against some insect predators and plant diseases. Constitutive up-regulation of trans-membrane element transporters appears to be the key process that allows these plants to achieve hyperaccumulation. Cadmium phytoextraction is needed for rice soils contaminated by mine wastes and smelter emissions with 100-fold more soil Zn than Cd. Although many plant species can accumulate high levels of Cd in the absence of Zn, when Cd/Zn>100, only Thlaspi caerulescens from southern France has demonstrated the ability to phytoextract useful amounts of Cd. Production of element-enriched biomass with value as ore or fertilizer or improved food (Se) or feed supplement may offset costs of phytoextraction crop production. Transgenic phytoextraction plants have been achieved for Hg, but not for other elements. Although several researchers have been attempting to clone all genes required for effective hyperaccumulation of several elements, success appears years away; such demonstrations will be needed to prove we have identified all necessary processes in hyperaccumulation.

  15. A model technology transfer program for independent operators

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1996-08-01

    In August 1992, the Energy Research Center (ERC) at the University of Kansas was awarded a contract by the US Department of Energy (DOE) to develop a technology transfer regional model. This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program.

  16. Technology transfer? The rise of China and India in green technology sectors

    DEFF Research Database (Denmark)

    Lema, Rasmus; Lema, Adrian

    2012-01-01

    International technology transfer is central to the debate about how to curb the carbon emissions from rapid economic growth in China and India. But given China and India's great progress in building innovation capabilities and green industries, how relevant is technology transfer...... transfer in these sectors in China and India. We argue that the emphasis should shift from transfer of mitigation technology to international collaboration and local innovation...

  17. Toward equality of biodiversity knowledge through technology transfer.

    Science.gov (United States)

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a

  18. Microfabricated Hydrogen Sensor Technology for Aerospace and Commercial Applications

    Science.gov (United States)

    Hunter, Gary W.; Bickford, R. L.; Jansa, E. D.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Powers, W. T.

    1994-01-01

    Leaks on the Space Shuttle while on the Launch Pad have generated interest in hydrogen leak monitoring technology. An effective leak monitoring system requires reliable hydrogen sensors, hardware, and software to monitor the sensors. The system should process the sensor outputs and provide real-time leak monitoring information to the operator. This paper discusses the progress in developing such a complete leak monitoring system. Advanced microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC) and Gencorp Aerojet (Aerojet). Changes in the hydrogen concentrations are detected using a PdAg on silicon Schottky diode structure. Sensor temperature control is achieved with a temperature sensor and heater fabricated onto the sensor chip. Results of the characterization of these sensors are presented. These sensors can detect low concentrations of hydrogen in inert environments with high sensitivity and quick response time. Aerojet is developing the hardware and software for a multipoint leak monitoring system designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Work has commenced on integrating the NASA LeRC-CWRU hydrogen sensors with the Aerojet designed monitoring system. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. Possible commercialization of the system will also be discussed.

  19. Microfabricated hydrogen sensor technology for aerospace and commercial applications

    Science.gov (United States)

    Hunter, Gary W.; Bickford, Randall L.; Jansa, E. D.; Makel, Darby B.; Liu, Chung-Chiun; Wu, Q. H.; Powers, William T.

    1994-10-01

    Leaks on the Space Shuttle while on the Launch Pad have generated interest in hydrogen leak monitoring technology. An effective leak monitoring system requires reliable hydrogen sensors, hardware, and software to monitor the sensors. The system should process the sensor outputs and provide real-time leak monitoring information to the operator. This paper discusses the progress in developing such a complete leak monitoring system. Advanced microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC) and Gencorp Aerojet (Aerojet). Changes in the hydrogen concentrations are detected using a PdAg on silicon Schottky diode structure. Sensor temperature control is achieved with a temperature sensor and heater fabricated onto the sensor chip. Results of the characterization of these sensors are presented. These sensors can detect low concentrations of hydrogen in inert environments with high sensitivity and quick response time. Aerojet is developing the hardware and software for a multipoint leak monitoring system designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Work has commenced on integrating the NASA LeRC-CWRU hydrogen sensors with the Aerojet designed monitoring system. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. Possible commercialization of the system will also be discussed.

  20. A New Approach to Commercialization of NASA's Human Research Program Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposal describes, "A New Approach to Commercialization of NASA's Human Research Program Technologies." NASA has a powerful research...

  1. Impact on technology transfer innovation processes: Ukrainian and foreign experience

    Directory of Open Access Journals (Sweden)

    Halyna Nahornyak

    2013-11-01

    Full Text Available The paper identified and reasonably effective mechanisms for technology transfer in Ukraine and several foreign countries. The analysis of the national and international technology transfer. It is shown that based on the experience of the transfer of innovative technologies in foreign countries, the priority areas of the state scientific and technical policy is to create conditions for innovation-based economic development and structural adjustment of industrial and technological sectors. The development of legislation affecting science and technology and innovation activity in Ukraine. Comparison of statistical data on the innovation process in the European Union and Ukraine. Investigated the technical and technological production in Ukraine, as well as the factors that hinder the development of innovations in the industry. Found effective mechanisms for technology transfer in foreign countries (USA, Germany, Japan, Russia. The role of technology transfer centres, public-private partnerships, long-term leasing of equipment, government contracts, the introduction of tax incentives to enterprises that carry out upgrading and development of new technologies. An effective means of technology transfer that will enhance innovation processes of enterprises in the innovation economy type.

  2. Analysis and technology transfer report, 1989 and 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    The buildings sector used 29.6 quadrillion Btus (quads) of energy in 1989, or 36 percent of the total primary energy consumed in the United States. The major uses are for space heating and cooling, water heating, refrigeration, and lighting. Electricity is the dominant fuel, followed by natural gas, petroleum, and other fuels. Although there were dramatic improvements in energy efficiency in this sector from 1975 to 1985, in recent years energy use has grown rapidly. The large growth expected in commercial building floor space and in residential units means that total building-sector energy consumption could increase dramatically by the year 2030. The mission of the US DOE's Office of Building Technologies (OBT) is to lead a national program supporting private sector efforts to improve the energy efficiency of the nation's buildings and to increase their utilization of renewable energy sources. The Office is also responsible for energy efficiency planning and management for Federal buildings as well as buildings-related associated information, financial incentives, and regulatory functions that are determined to be appropriate for the Federal government. To accomplish its goals, OBT plans and conducts research and development to make technologies available and provides information on their effectiveness. The selection and management of OBT research activities requires an understanding of where and how energy is used within the buildings sectors, how energy use is expected to change in the future, and the potential impact of new and emerging technologies on energy use. Analysis activities serve to collect energy use information, provide the analysis necessary to apply this information to research and development planning, and develop analysis tools which the program uses to set priorities for research projects. This report summarizes analysis and technology transfer activities undertaken by OBT during 1989 and 1990. 101 refs., 19 figs., 9 tabs.

  3. Renal Cancer Biomarkers | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute's Laboratory of Proteomics and Analytical Technologies is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize diagnostic, therapeutic and prognostic cancer biomarkers from clinical specimens.

  4. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  5. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  6. Licensing and {open_quotes}CRADA`s{close_quotes} in Oak Ridge technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Prosser, G.A.

    1993-10-01

    In the belief that effective technology transfer is a ``contact sport,`` Martin Marietta Energy Systems (Energy Systems), the Department of Energy`s (DOE`s) management contractor in Oak Ridge, Tennessee, encourages its research and engineering employees to directly interact with their commercial-sector counterparts. Over the years, relationships which have been initiated through such technical interactions have led to many of the patent licenses ad cooperative research and development agreements (CRADAs) which currently exist among Energy Systems, US companies, universities, and industrial consortia. The responsibility for creating and implementing Energy Systems policies and procedures to accomplish DOE`s technology transfer objectives in Oak Ridge lies with the Office of Technology Transfer (OTT). In addition, licensing executives within OTT are responsible for negotiating the terms and conditions of patent licenses and CRADAs for the commercialization of government-funded technologies and research expertise. Other technology transfer initiatives in Oak Ridge help companies in a wide range of industries overcome manufacturing obstacles, enabling them to retain existing jobs and to create new business opportunities.

  7. The impact of innovative commercial technologies on students’ behaviour of an economic university

    Directory of Open Access Journals (Sweden)

    Laurentiu-Dan Anghel

    2015-05-01

    Full Text Available In a dynamic business environment, implementing innovative commercial technologies facilitates the winning of new competitive advantages in the retail industry, given the manifested influence on consumer buying behaviour towards commercial units, as well as the significant contribution to the development of modern shops image. This paper presents the attitude of students from the Bucharest University of Economic Studies towards the adoption of innovative retail technologies within hypermarkets in Romania, based on a selective marketing research, conducted on a sample of 359 students from undergraduate and master cycles. The main objectives focused on identifying: the image of certain instruments belonging to the innovative commercial technologies in terms of usefulness in the process of buying; the intention to use innovative commercial technologies; the perception of the main advantages and disadvantages of using innovative commercial technologies in the buying process; the importance of commercial technologies in relation to other attributes underlying the development of a hypermarket image. Research results show a relatively low level of awareness among buyers, due to a reduced exposure to innovative commercial technologies, but a relatively high availability of acceptance in the purchasing process. Thus, there is a favourable assessment of the utility of commercial instruments in the buying process and a relatively high intention of use. The paper also highlights the influence of innovative commercial technologies on store image and loyalty of buyers.

  8. [Technology transfer to the facility for production of medicines].

    Science.gov (United States)

    Beregovykh, V V; Spitskiĭ, O P

    2013-01-01

    Innovation development of pharmaceutical industry is close connected to knowledge transfer going to each subsequent life cycle phase of medicinal product. Formal regulation of technology and knowledge transfer is essential for achievement high quality during production of medicines designed during development phase. Conceptual tools, approaches and requirements are considered that are necessary for knowledge and technology transfer across all the life cycle phases of medicines. They are based on scientific knowledge of medicinal products and take into account both international and Russian regulations in the area of development, production and distribution of medicines. Importance of taking into consideration all aspects related to quality of medicines in all steps of technology transfer is shown. An approach is described for technology transfer organization for Russian pharmaceutical manufacturers based on international guides in this area.

  9. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-08-01

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Cells and Infrastructure Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  10. Lessons learned: Transfer of the high-definition circulating tumor cell assay platform to development as a commercialized clinical assay platform.

    Science.gov (United States)

    Kuhn, P; Keating, S M; Baxter, G T; Thomas, K; Kolatkar, A; Sigman, C C

    2017-02-04

    Planning and transfer of a new technology platform developed in an academic setting to a start-up company for medical diagnostic product development may appear daunting and costly in terms of complexity, time, and resources. In this review we outline the key steps taken and lessons learned when a technology platform developed in an academic setting was transferred to a start-up company for medical diagnostic product development in the interest of elucidating development toolkits for academic groups and small start-up companies starting on the path to commercialization and regulatory approval.

  11. Effective Utilization of Commercial Wireless Networking Technology in Planetary Environments

    Science.gov (United States)

    Caulev, Michael (Technical Monitor); Phillip, DeLeon; Horan, Stephen; Borah, Deva; Lyman, Ray

    2005-01-01

    The purpose of this research is to investigate the use of commercial, off-the-shelf wireless networking technology in planetary exploration applications involving rovers and sensor webs. The three objectives of this research project are to: 1) simulate the radio frequency environment of proposed landing sites on Mars using actual topographic data, 2) analyze the performance of current wireless networking standards in the simulated radio frequency environment, and 3) propose modifications to the standards for more efficient utilization. In this annual report, we present our results for the second year of research. During this year, the effort has focussed on the second objective of analyzing the performance of the IEEE 802.11a and IEEE 802.1lb wireless networking standards in the simulated radio frequency environment of Mars. The approach builds upon our previous results which deterministically modelled the RF environment at selected sites on Mars using high-resolution topographical data. These results provide critical information regarding antenna coverage patterns, maximum link distances, effects of surface clutter, and multipath effects. Using these previous results, the physical layer of these wireless networking standards has now been simulated and analyzed in the Martian environment. We are looking to extending these results to the and medium access layer next. Our results give us critical information regarding the performance (data rates, packet error rates, link distances, etc.) of IEEE 802.1 la/b wireless networks. This information enables a critical examination of how these wireless networks may be utilized in future Mars missions and how they may be possibly modified for more optimal usage.

  12. The Evolutionary Business Valuation of Technology Transfer

    NARCIS (Netherlands)

    Leloux, M.S.; van der Sijde, Peter; Groen, Arend J.; Oakey, R.; Groen, A.; Cook, G.; van der Sijde, P.

    2009-01-01

    Conventional models for the business valuation of technology are usually financially oriented and only measure economic value. Several of these financially oriented approaches have been reviewed by Leloux and Groen (2007). Current monetary (financial) valuation methods for technology include

  13. Technology Transfer at CERN (english version)

    CERN Multimedia

    Marcastel, F

    2006-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  14. Technology Transfer at CERN (french version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    Abrief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  15. Food irradiation: Technology transfer in Asia, practical experiences

    Science.gov (United States)

    Kunstadt, Peter; Eng, P.

    1993-10-01

    Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the succesful conclusion of the world's first complete food irradiation technology transfer project.

  16. Exploring the influence of technology size on the duration of production technology transfer implementation

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2005-01-01

    This study explores the relationship between technology size and installation time in technology transfer projects. A literature study revealed that the installation time has so far not received much attention. Current studies address the effectiveness of technology transfer rather than efficiency.

  17. Advancing Green Economy through Technology Transfer

    African Journals Online (AJOL)

    This qualitative study explores the transfer of renewable energy ... Based on experiences from the projects, a literature review, site visits and ... generated sustainable ideas, and disseminating information on successes and lessons learnt.

  18. How Magnets Attract and Repel: Interessement in a Technology Commercialization Competition

    Science.gov (United States)

    Spinuzzi, Clay; Nelson, Scott; Thomson, Keela S.; Lorenzini, Francesca; French, Rosemary A.; Pogue, Gregory; London, Noelle

    2016-01-01

    K6015, a South Korean firm seeking to commercialize its magnet technology in the US market, entered a technology commercialization training program structured as a competition. Through this program, K6015 (and others in the program) used several genres to progressively interest different sets of stakeholders. To understand how K6015 applied these…

  19. How Magnets Attract and Repel: Interessement in a Technology Commercialization Competition

    Science.gov (United States)

    Spinuzzi, Clay; Nelson, Scott; Thomson, Keela S.; Lorenzini, Francesca; French, Rosemary A.; Pogue, Gregory; London, Noelle

    2016-01-01

    K6015, a South Korean firm seeking to commercialize its magnet technology in the US market, entered a technology commercialization training program structured as a competition. Through this program, K6015 (and others in the program) used several genres to progressively interest different sets of stakeholders. To understand how K6015 applied these…

  20. Ethernet Time Transfer through a U.S. Commercial Optical Telecommunications Network

    Science.gov (United States)

    2014-12-01

    Ethernet Time Transfer through a U.S. Commercial Optical Telecommunications Network M. Weiss, NIST Time and Frequency Division, mweiss... telecommunications and data networks through precision synchronization.” Marc founded and has led WSTS, the Workshop on Sync in Telecom Systems...signals through a telecommunication network. This experiment connects UTC(NIST) in Boulder, Colorado with UTC(USNO) at the Alternate Master Clock at

  1. Double-layered cell transfer technology for bone regeneration.

    Science.gov (United States)

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-09-14

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called "cell transfer technology", enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration.

  2. Creation of a European network dedicated to technology transfer

    CERN Multimedia

    2008-01-01

    The CERN Council recently approved the creation of a technology transfer network, whose aim will be to improve European industry’s access to the technologies developed by the particle physics community in the Member States. The gas detectors for the TOTEM experiment (GEM) offer potential for fruitful collaboration within the framework of the TT network. Many other technologies are going down the same road.The desire to set up a technology transfer network follows on from the European Strategy for Particle Physics, approved by the CERN Council on 14 July 2006 in Lisbon. In this context, special emphasis was laid on European industry’s participation in the implementation of particle physics programmes and, in particular, its access to the new technologies developed by the scientific community. It was recognised that effort needs to be put into improving the efficiency of technology transfer...

  3. Biological Semiconductors | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute's Cancer Diagnostic Program and the Food and Drug Administration's Center for Devices and Radiological Health is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize biological semiconductors as diagnostic sensors.

  4. Success Stories | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NIH’s world-class facilities, resources, and discoveries. Some of our partnerships have resulted in the commercialization of therapeutics, vaccines, diagnostics, medical devices and research tools that benefit patients worldwide. TTC is proud to share a few examples of our successful partnerships. | [google6f4cd5334ac394ab.html

  5. Applying commercial robotic technology to radioactive material processing

    Energy Technology Data Exchange (ETDEWEB)

    Grasz, E.L. (Lawrence Livermore National Lab., CA (USA)); Sievers, R.H. Jr. (Science Applications International Corp., San Diego, CA (USA))

    1990-11-01

    The development of robotic systems for glove box process automation is motivated by the need to reduce operator radiation dosage, minimize the generation of process waste, and to improve the security of nuclear materials. Commercial robotic systems are available with the required capabilities but are not compatible with a glove box environment. Alpha radiation, concentrated dust, a dry atmosphere and restricted work space result in the need for unique adaptations to commercial robotics. Implementation of these adaptations to commercial robotics require performance trade-offs. A design and development effort has been initiated to evaluate the feasibility of using a commercial overhead gantry robot for glove box processing. This paper will present the initial results and observations for this development effort. 1 ref.

  6. Collaborating with EPA through the Federal Technology Transfer Act

    Science.gov (United States)

    Under the Federal Technology Transfer Act (FTTA), EPA can collaborate with external parties on research projects, and share research materials. Learn more about the types of partnerships the EPA offers.

  7. Technology transfer in the space sector: an international perspective.

    Science.gov (United States)

    Hertzfeld, Henry R

    2002-12-01

    This article is an introduction to four articles in this issue, all related to the different policy objectives and approaches of technology transfer in space programs run by the United States, the European Space Agency, Canada, and Russia.

  8. Overcoming Barriers to the Transfer and Diffusion of Climate Technologies

    DEFF Research Database (Denmark)

    Nygaard, Ivan; Hansen, Ulrich Elmer

    This guidebook provides practical and operational guidance on how to assess and overcome barriersfacing the transfer and diffusion of technologies for climate change mitigation and adaptation.The guidebook is designed to support the analysis of specific technologies, rather than pursuing asectoral...... (e.g. transport) or technology group (e.g. renewable energy) approach.Given that there is no single solution to enhancing technology transfer and diffusion policies needbe tailored to country-specific context and interests. Therefore, the guidebook presents a flexibleapproach, identifying various...

  9. Determination of Royalty Rates in the International Technology Transfer Contracts

    OpenAIRE

    Kapitsa, Yu.; Aralova, N.

    2015-01-01

    The existing approaches used in determination of the royalty rates for technology transfer contracts and based on the experience of research institutions of the National Academy of Sciences of Ukraine, research organizations and universities in Europe and USA were reviewed. The analysis of the existing rates has been made as well as recommendations on determination of the royalty rates for technology transfer contracts between research institutions and foreign and domestic partners have been ...

  10. Determination of Royalty Rates in the International Technology Transfer Contracts

    Directory of Open Access Journals (Sweden)

    Kapitsa, Yu.

    2015-03-01

    Full Text Available The existing approaches used in determination of the royalty rates for technology transfer contracts and based on the experience of research institutions of the National Academy of Sciences of Ukraine, research organizations and universities in Europe and USA were reviewed. The analysis of the existing rates has been made as well as recommendations on determination of the royalty rates for technology transfer contracts between research institutions and foreign and domestic partners have been worked out.

  11. Climate Change and Requirement of Transfer of Environmentally Sound Technology

    DEFF Research Database (Denmark)

    of international environmental debates. This thesis addresses, firstly, the possible methods of technology transfer and secondly, how current international environmental laws play its role to facilitate the transfer. Accordingly, I have focused on the concerned provisions of Kyoto Protocol and its subsequent...

  12. International Water and Sanitation Technology Transfers, Experiences from Europe

    NARCIS (Netherlands)

    Krozer, Yoram; Hophmayer-Tockich, Sharon

    2016-01-01

    Possibilities of transferring cost-effective, innovative water and wastewater technologies on public water markets are discussed based on experiences of the Dutch water business cluster in the Central and Eastern European Countries. These transfers evolved under suitable conditions, among others fin

  13. International water and sanitation technology transfers, experiences from Europe

    NARCIS (Netherlands)

    Krozer, Yoram; Hophmayer Tokich, Sharon

    2016-01-01

    Possibilities of transferring cost-effective, innovative water and wastewater technologies on public water markets are discussed based on experiences of the Dutch water business cluster in the Central and Eastern European Countries. These transfers evolved under suitable conditions, among others fin

  14. Fruit Fly Liquid Larval Diet Technology Transfer and Update

    Science.gov (United States)

    Since October 2006, USDA-ARS has been implementing a fruit fly liquid larval diet technology transfer, which has proceeded according to the following steps: (1) Recruitment of interested groups through request; (2) Establishment of the Material Transfer Agreement (MTA) with ARS; (3) Fruit fly liquid...

  15. 76 FR 11498 - Submission for OMB Review; Comment Request; Generic Submission of Technology Transfer Center (TTC...

    Science.gov (United States)

    2011-03-02

    ... Submission of Technology Transfer Center (TTC) External Customer Satisfaction Surveys (NCI) SUMMARY: Under... control number. Proposed Collection: Title: Generic Submission of Technology Transfer Center (TTC... collaborations and alliances with the NIH. The needs of external technology transfer customers and stakeholders...

  16. Societal and economic valuation of technology-transfer deals

    Science.gov (United States)

    Holmes, Joseph S., Jr.

    2009-09-01

    The industrial adoption of concepts such as open innovation brings new legitimacy to activities technology-transfer professionals have conducted for over 20 years. This movement highlights the need for an increased understanding of the valuation of intellectual property (IP) and technology-transfer deals. Valuation, though a centerpiece of corporate finance, is more challenging when applied to the inherent uncertainty surrounding innovation. Technology-transfer professionals are often overwhelmed by the complexity and data requirements of valuation techniques and skeptical of their applicability to and utility for technology transfer. The market longs for an approach which bridges the gap between valuation fundamentals and technology-transfer realities. This paper presents the foundations of a simple, flexible, precise/accurate, and useful framework for considering the valuation of technology-transfer deals. The approach is predicated on a 12-factor model—a 3×4 value matrix predicated on categories of economic, societal, and strategic value. Each of these three categories consists of three core subcategories followed by a fourth "other" category to facilitate inevitable special considerations. This 12-factor value matrix provides a framework for harvesting data during deals and for the application of best-of-breed valuation techniques which can be employed on a per-factor basis. Future work will include framework implementation within a database platform.

  17. The GETE approach to facilitating the commercialization and use of DOE-developed environmental technologies

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, T.N. [Global Environment & Technology Foundation, Annandale, VA (United States)

    1995-10-01

    The Global Environmental Technology Enterprise (GETE) was conceived to develop and implement strategies to facilitate the commercialization of innovative, cost-effective Department of Energy (DOE)-developed environmental technologies. These strategies are needed to aid DOE`s clean-up mission; to break down barriers to commercialization; and to build partnerships between the federal government and private industry in order to facilitate the development and use of innovative environmental technologies.

  18. Development of Technological Profiles for Transfer of Energy- and Resource Saving Technologies

    Directory of Open Access Journals (Sweden)

    Lysenko, V.S.

    2015-01-01

    Full Text Available The article deals with the methodological foundations for the development of technological profiles for «System of Transfer of Energy- and Resource Saving Technologies». It is determined that a compliance with the methodology and standards of the European network «Relay Centers» (Innovation Relay Centers — IRC network, since 2008 — EEN, the Russian Technology Transfer Network RTTN and Uk rainian Technology Transfer Network UTTN is the main pri nciple of the development process of technological requests and offers.

  19. A Program Office Guide to Technology Transfer

    Science.gov (United States)

    1988-11-01

    maintenance is emphasized, interchan- tions. Second source component verification geability requirements are pushed lower to the activities often are...technology tiansfer risk, the program office considers the following: 10.7 THE TECNOLOGY TRANSFERPLAN * Schedule intensity and concurrency The

  20. Technology review of commercial food service equipment - final report

    Energy Technology Data Exchange (ETDEWEB)

    Rahbar, S.; Krsikapa, S. [Canadian Gas Research Inst., Don Mills, ON (Canada); Fisher, D.; Nickel, J.; Ardley, S.; Zabrowski, D. [Fisher Consultants (Canada); Barker, R.F. [ed.

    1996-05-15

    Technical information on commercial gas cooking appliances was presented. This second volume provided an appliance-by-appliance comprehensive assessment of the energy performance of commercial food service equipment. Energy assessments were made for the following categories of cooking equipment: fryers, griddles, broilers, ranges, Chinese ranges, ovens, steamers, steam kettles, and braising pans. Recommendations were made for improving the energy efficiency and overall performance of gas appliances to support of the Canadian gas utilities marketing and energy conservation initiatives. 71 refs., 37 tabs., 58 figs.

  1. Techno-Nationalism and the Construction of University Technology Transfer

    Science.gov (United States)

    Sá, Creso; Kretz, Andrew; Sigurdson, Kristjan

    2013-01-01

    Our historical study of Canada's main research university illuminates the overlooked influence of national identities and interests as forces shaping the institutionalization of technology transfer. Through the use of archival sources we trace the rise and influence of Canadian technological nationalism--a response to Canada's perceived…

  2. The Technology Transfer of the ICT Curriculum in Taiwan

    Science.gov (United States)

    Huang, Teng

    2015-01-01

    Focusing on the process of "technology transfer", this paper aims to critically examine the production and usage of the information and communication technology (ICT) curriculum, and discusses its possibilities. It is found that the goals in both of the two stages of the ICT curriculum in Taiwan were rather "rhetorical". Three…

  3. Techno-Nationalism and the Construction of University Technology Transfer

    Science.gov (United States)

    Sá, Creso; Kretz, Andrew; Sigurdson, Kristjan

    2013-01-01

    Our historical study of Canada's main research university illuminates the overlooked influence of national identities and interests as forces shaping the institutionalization of technology transfer. Through the use of archival sources we trace the rise and influence of Canadian technological nationalism--a response to Canada's perceived dependency…

  4. Techno-Nationalism and the Construction of University Technology Transfer

    Science.gov (United States)

    Sá, Creso; Kretz, Andrew; Sigurdson, Kristjan

    2013-01-01

    Our historical study of Canada's main research university illuminates the overlooked influence of national identities and interests as forces shaping the institutionalization of technology transfer. Through the use of archival sources we trace the rise and influence of Canadian technological nationalism--a response to Canada's perceived dependency…

  5. The Technology Transfer of the ICT Curriculum in Taiwan

    Science.gov (United States)

    Huang, Teng

    2015-01-01

    Focusing on the process of "technology transfer", this paper aims to critically examine the production and usage of the information and communication technology (ICT) curriculum, and discusses its possibilities. It is found that the goals in both of the two stages of the ICT curriculum in Taiwan were rather "rhetorical". Three…

  6. University Technology Transfer Factors as Predictors of Entrepreneurial Orientation

    Science.gov (United States)

    Kirkman, Dorothy M.

    2011-01-01

    University technology transfer is a collaborative effort between academia and industry involving knowledge sharing and learning. Working closely with their university partners affords biotechnology firms the opportunity to successfully develop licensed inventions and gain access to novel scientific and technological discoveries. These factors may…

  7. Technology Transfer: A Qualitative Analysis of Air Force Office of Research and Technology Applications

    Science.gov (United States)

    2006-06-01

    branch. Two, attending Department of Defense Technology Transfer Integrated Planning Team workshops. Three, attending two Federal Laboratory...Question 12 What database tools do you use to Perform ORTA duties? The number one database tool used was the Defense Technology Transfer Information

  8. Aerospace technology and commercial nuclear power; Proceedings of the Workshop Conference, Williamsburg, VA, November 18-20, 1981

    Science.gov (United States)

    Grey, J.

    An attempt has been made to compare the technologies, institutions and procedures of the aerospace and commercial nuclear power industries, in order to characterize similarities and contrasts as well as to identify the most fruitful means by which to transfer information, technology, and procedures between the two industries. The seven working groups involved in this study took as their topics powerplant design formulation and effectiveness, plant safety and operations, powerplant control technology and integration, economic and financial analyses, public relations, and the management of nuclear waste and spent fuel. Consequential differences are noted between the two industries in matters of certification and licencing procedures, assignment of responsibility for both safety and financial performance, and public viewpoint. Areas for beneficial interaction include systems management and control and safety system technology. No individual items are abstracted in this volume

  9. Innovative Technology Reduces Power Plant Emissions - Commercialization Success

    Science.gov (United States)

    Parrish, Clyde

    2004-01-01

    Emission control system development includes: (1) Development of new oxidizer scrubber system to eliminate NOx waste and produce fertilizer (2) Technology licensed and a 1 to 3 MWatt-scale prototype installed on. power plant (3) Development of method to oxidize NO. to N02 (4) Experience gained from licensing NASA technology

  10. Management challenges from technological development in commercial fisheries

    NARCIS (Netherlands)

    Eigaard, O.R.

    2010-01-01

    The major objective of this synthesis has been to throw light on how technological development in fisheries can complicate efforts to balance harvesting capacity and fish resources. The basis of achieving this objective has been the compilation of technological data from a selection of European fish

  11. Transfer of satellite applications and technology - The need for a U.S. initiative

    Science.gov (United States)

    Hudson, Heather E.

    In the brief history of satellite communications, the United States has passed through three major eras: the Era of Conjecture, the Era of Experiments and the Era of Services. NASA took the lead in the experimental era to demonstrate both technology and applications - and to ensure their transfer for commercial use. The developing world has also entered the Era of Services, but without the benefit of an experimental phase. Several developing countries now have their own domestic systems; others share regqional systems or lease domestic capacity from INTELSAT. However, the record of developmental applications of these satellites has been disappointing to date. Much capacity sits idle. The U.S. has a great deal to share with the developing world to assist in the effective utilization of this technology. A U.S. Satellite Applications and Technology Transfer (SATT) program is proposed.

  12. Advanced Manufacturing Technology: A Department of Energy technology transfer initiative

    Energy Technology Data Exchange (ETDEWEB)

    Steele, R.S. Jr.; Barkman, W.E.

    1990-02-01

    This paper describes a new initiative called the Advanced Manufacturing Technology (AMT) Program that is managed for the US Department of Energy (DOE) by Martin Marietta Energy Systems in Oak Ridge, Tennessee. The AMT Program seeks to assist the US manufacturing community regain some of the market share that it has lost to competiting companies in both Europe and the Far East. One key element to this program is the establishment of teaching and development facilities called manufacturing technology centers (MTCs) which will showcase unclassified DOE manufacturing technologies. This paper describes some of the precision flexible manufacturing system (PFMS) technology that is available through the Oak Ridge Y-12 Plant. This technology will be highlighted in the first of the MTCs that is being established. 4 figs.

  13. Ni{sub 3}Al technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Viswanathan, S.; Santella, M.L. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01

    Ductile Ni{sub 3}Al and Ni{sub 3}Al-based alloys have been identified for a range of applications. These applications require the use of material in a variety of product forms such as sheet, plate, bar, wire, tubing, piping, and castings. Although significant progress has been made in the melting, casting, and near-net-shape forming of nickel aluminides, some issues still remain. These include the need for: (1) high-strength castable composition for many applications that have been identified; (2) castability (mold type, fluidity, hot-shortness, porosity, etc.); (3) weld reparability of castings; and (4) workability of cast or powder metallurgy product to sheet, bar, and wire. The four issues listed above can be {open_quotes}show stoppers{close_quotes} for the commercial application of nickel aluminides. This report describes the work completed to address some of these issues during FY 1996.

  14. Ni{sub 3}Al technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Santella, M.L.; Alexander, D.J. [Oak Ridge National Laboratory, TN (United States)] [and others

    1995-05-01

    Ductile Ni{sub 3}Al and Ni{sub 3}Al-based alloys have been identified for a range of applications. These applications require the use of material in a variety of product forms such as sheet, plate, bar, tubing, piping, and castings. Although significant progress has been made in the melting, casting, and near-net-shape forming of nickel aluminides, some issues still remain. These include the need for (1)high-strength castable composition for turbochargers, furnace furniture, and hot-die applications; (2) castability (fluidity, hot-shortness, porosity, etc.); (3) weld reparability of castings; and (4) hot fabricability of cast ingots. All of the issues listed above can be {open_quotes}show stoppers{close_quotes} for the commercial application of nickel aluminides. This report describes work completed to address some of these issues during the fourth quarter of FY 1994.

  15. A framework for evaluation of technology transfer programs. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The objective of this volume is to describe a framework with which DOE can develop a program specific methodology to evaluate it`s technology transfer efforts. This approach could also be applied to an integrated private sector technology transfer organization. Several benefits will be realized from the application of this work. While the immediate effect will be to assist program managers in evaluating and improving program performance, the ultimate benefits will accrue to the producing industry, the states, and the nation in the form of sustained or increased domestic oil production. This benefit depends also, of course, on the effectiveness of the technology being transferred. The managers of the Technology Transfer program, and the larger federal oil and gas R&D programs, will be provided with a means to design and assess the effectiveness of program efforts as they are developed, tested and performed. The framework allows deficiencies in critical aspects of the program to be quickly identified, allowing for timely corrections and improvements. The actual process of developing the evaluation also gives the staff of the Oil R&D Program or Technology Transfer subprogram the opportunity to become oriented to the overall program goals. The structure and focus imposed by the evaluation paradigm will guide program staff in selecting activities which are consistent with achieving the goals of the overall R&D program.

  16. Uplifting developing communities through sustained technology transfer

    CSIR Research Space (South Africa)

    Mashiri, M

    2007-05-01

    Full Text Available feedback mechanisms to both the local Integrated Development Plan and the Provincial Growth and Development Strategy, was able to navigate potential conflict areas such as negotiating acceptable wage rates [below minimum wage] with the community... to mobilize and galvanize the community around the benefits of the project, as well as to explain and to iron out potential mine fields, such as the level of funding available, wage rate and payment policy, technology issues and project implementation...

  17. 2017 Technology Showcase Presentations | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Presentations from the 2017 Technology Showcase by NIH Intramural Research Program scientists held at Frederick National Laboratories for Cancer Research on June 7, 2017. | [google6f4cd5334ac394ab.html

  18. Exemplar Practices for Department of Defense Technology Transfer

    Science.gov (United States)

    2013-01-01

    as Amazon, Discovery Studios, Google, Under Armour , McCormick, and Cisco are invited to speak to researchers about innovation, how they manage it...commercialization and marketing strategies for each of the selected DoD technologies; • actively markets these technologies to industry...Publication This work was conducted by the Institute for Defense Analyses (IDA) under contract DASW01-04-C-0003, Task AI-6-3558 “Review of DoD

  19. Nuclear transfer technology in mammalian cloning.

    Science.gov (United States)

    Wolf, D P; Mitalipov, S; Norgren, R B

    2001-01-01

    The past several years have witnessed remarkable progress in mammalian cloning using nuclear transfer (NT). Until 1997 and the announcement of the successful cloning of sheep from adult mammary gland or fetal fibroblast cells, our working assumption was that cloning by NT could only be accomplished with relatively undifferentiated embryonic cells. Indeed, live offspring were first produced by NT over 15 years ago from totipotent, embryonic blastomeres derived from early cleavage-stage embryos. However, once begun, the progression to somatic cell cloning or NT employing differentiated cells as the source of donor nuclei was meteoric, initially involving differentiated embryonic cell cultures in sheep in 1996 and quickly thereafter, fetal or adult somatic cells in sheep, cow, mouse, goat, and pig. Several recent reviews provide a background for and discussion of these successes. Here we will focus on the potential uses of reproductive cloning along with recent activities in the field and a discussion concerning current interests in human reproductive and therapeutic cloning.

  20. Adaptation in the context of technology development and transfer

    DEFF Research Database (Denmark)

    Olhoff, Anne

    2015-01-01

    and transfer. It summarizes what technologies for adaptation are, how they relate to development, and what their role is in adaptation. It subsequently highlights a number of policy and research issues that could be important to inform future policy. The commentary has two key messages. First, it argues...... that informed policy decisions on technology development and transfer to enhance adaptation require systematic assessments of the findings in the theoretical and empirical literature. Second, in light of the potential for overlap between processes for adaptation and processes for technologies for adaptation......Starting from a summary of key developments under the United Nations Framework Convention on Climate Change (UNFCCC) related to adaptation and technologies, the commentary provides an initial review of the available literature relevant to adaptation in the context of technology development...

  1. Dual Use Space Technology Transfer Conference Paper

    Science.gov (United States)

    Orndoff, Evelyne

    1994-01-01

    New textile fibers have been developed or modified to meet the complex and constraining criteria of space applications. The most common of these criteria are light weight, nonflammability or flame retardancy, and high strength and durability in both deep space environment and the oxygen enriched crew bay area of the spacecraft. The fibers which successfully pass the tests of flammability and toxicity, and display the desired mechanical properties are selected for space applications. Such advanced fibers developed for the Crew and Thermal Systems Division (CTSD) at the Johnson Space Center include 'Beta' fiber, heat stabilized polybenzimidazole and polyimide, as well as modified aramid Durette(TM), multi-fibrous Ortho(TM) fabric, and flame resistant cotton. The physical, mechanical, and chemical properties of these fibers are briefly discussed. The testing capabilities in the CTSD laboratory to ascertain some of the properties of these and other fibrous materials are also discussed. Most of these materials developed for spacecraft, space suit, and flight equipment applications have found other commercial applications. These advanced textile fibers are used mostly for aircraft, transportation, public buildings, hospitals, and protective clothing applications.

  2. A DYNAMICAL SYSTEM APPROACH IN MODELING TECHNOLOGY TRANSFER

    Directory of Open Access Journals (Sweden)

    Hennie Husniah

    2016-05-01

    Full Text Available In this paper we discuss a mathematical model of two parties technology transfer from a leader to a follower. The model is reconstructed via dynamical system approach from a known standard Raz and Assa model and we found some important conclusion which have not been discussed in the original model. The model assumes that in the absence of technology transfer from a leader to a follower, both the leader and the follower have a capability to grow independently with a known upper limit of the development. We obtain a rich mathematical structure of the steady state solution of the model. We discuss a special situation in which the upper limit of the technological development of the follower is higher than that of the leader, but the leader has started earlier than the follower in implementing the technology. In this case we show a paradox stating that the follower is unable to reach its original upper limit of the technological development could appear whenever the transfer rate is sufficiently high.  We propose a new model to increase realism so that any technological transfer rate could only has a positive effect in accelerating the rate of growth of the follower in reaching its original upper limit of the development.

  3. Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

  4. A case study of technology transfer: Cardiology

    Science.gov (United States)

    Schafer, G.

    1974-01-01

    Research advancements in cardiology instrumentation and techniques are summarized. Emphasis is placed upon the following techniques: (1) development of electrodes which show good skin compatibility and wearer comfort; (2) contourography - a real time display system for showing the results of EKGs; (3) detection of arteriosclerosis by digital computer processing of X-ray photos; (4) automated, noninvasive systems for blood pressure measurement; (5) ultrasonoscope - a noninvasive device for use in diagnosis of aortic, mitral, and tricuspid valve disease; and (6) rechargable cardiac pacemakers. The formation of a biomedical applications team which is an interdisciplinary team to bridge the gap between the developers and users of technology is described.

  5. Local R&D and Technology Transfers

    DEFF Research Database (Denmark)

    Aggarwal, Aradhna

    This study examines how inter-firm heterogeneities in technology modes and intensities are linked to ownership of firms in India, using a panel dataset of 2000 odd Bombay Stock Exchange listed firms for the period from 2003 to 2014 drawn from the PROWESS database of CMIE. For the analysis, foreign...... ownership is categorised according to the control exercisable by them as defined under the Companies’ Act of India. A comparative analysis of domestic and different categories of foreign firms was conducted at two time periods: the global boom period of 2004-2008 and post crisis period of 2008...

  6. MORE THAN MONEY: THE EXPONENTIAL IMPACT OF ACADEMIC TECHNOLOGY TRANSFER.

    Science.gov (United States)

    McDevitt, Valerie Landrio; Mendez-Hinds, Joelle; Winwood, David; Nijhawan, Vinit; Sherer, Todd; Ritter, John F; Sanberg, Paul R

    2014-11-01

    Academic technology transfer in its current form began with the passage of the Bayh-Dole Act in 1980, which allowed universities to retain ownership of federally funded intellectual property. Since that time, a profession has evolved that has transformed how inventions arising in universities are treated, resulting in significant impact to US society. While there have been a number of articles highlighting benefits of technology transfer, now, more than at any other time since the Bayh-Dole Act was passed, the profession and the impacts of this groundbreaking legislation have come under intense scrutiny. This article serves as an examination of the many positive benefits and evolution, both financial and intrinsic, provided by academic invention and technology transfer, summarized in Table 1.

  7. Technology transfer and technological learning through CERN's procurement activity

    CERN Document Server

    Autio, Erkko; Hameri, Ari-Pekka; CERN. Geneva

    2003-01-01

    This report analyses the technological learning and innovation benefits derived from CERN's procurement activity during the period 1997-2001. The base population of our study, the technology-intensive suppliers to CERN, consisted of 629 companies out of 6806 companies during the same period, representing 1197 MCHF in procurement. The main findings from the study can be summarized as follows: the various learning and innovation benefits (e.g., technological learning, organizational capability development, market learning) tend to occur together. Learning and innovation benefits appear to be regulated by the quality of the supplier's relationship with CERN: the greater the amount of social capital built into the relationship, the greater the learning and innovation benefits. Regardless of relationship quality, virtually all suppliers derived significant marketing reference benefits from CERN. Many corollary benefits are associated with procurement activity. As an example, as many as 38% of the respondents devel...

  8. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

  9. NASA technology utilization applications. [transfer of medical sciences

    Science.gov (United States)

    1973-01-01

    The work is reported from September 1972 through August 1973 by the Technology Applications Group of the Science Communication Division (SCD), formerly the Biological Sciences Communication Project (BSCP) in the Department of Medical and Public Affairs of the George Washington University. The work was supportive of many aspects of the NASA Technology Utilization program but in particular those dealing with Biomedical and Technology Application Teams, Applications Engineering projects, new technology reporting and documentation and transfer activities. Of particular interest are detailed reports on the progress of various hardware projects, and suggestions and criteria for the evaluation of candidate hardware projects. Finally some observations about the future expansion of the TU program are offered.

  10. Some aspects of technology transfer and direct foreign investment

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, R.

    1978-05-01

    A model showing technology transfer to developing countries links questions of appropriations with the socio-economic reasons for technological change. The rate at which foreign capital is used is found to be directly related to after-tax profits. If the developing country raises taxes on foreign capital, the effect is to increase the proportion of domestic capital needed and to widen the technological gap between the two countries. The analysis also shows a higher gain from new techniques with increased demand volume and suggests large developing countries with similar capital to invest are more likely to generate intermediate technologies. 8 references.

  11. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned,...

  12. Hybrid-Electric and Distributed Propulsion Technologies for Large Commercial Transports: A NASA Perspective

    Science.gov (United States)

    Madavan, Nateri K.; Del Rosario, Ruben; Jankovsky, Amy L.

    2015-01-01

    Develop and demonstrate technologies that will revolutionize commercial transport aircraft propulsion and accelerate development of all-electric aircraft architectures. Enable radically different propulsion systems that can meet national environmental and fuel burn reduction goals for subsonic commercial aircraft. Focus on future large regional jets and single-aisle twin (Boeing 737- class) aircraft for greatest impact on fuel burn, noise and emissions. Research horizon is long-term but with periodic spinoff of technologies for introduction in aircraft with more- and all-electric architectures. Research aligned with new NASA Aeronautics strategic R&T thrusts in areas of transition to low-carbon propulsion and ultra-efficient commercial transports.

  13. Commercialization of LARC (TradeMark) -SI Polyimide Technology

    Science.gov (United States)

    Bryant, Robert G.

    2011-01-01

    LARC(TradeMark)-SI, Langley Research Center- Soluble Imide, was developed in 1992, with the first patent issuing in 1997, and then subsequent patents issued in 1998 and 2000. Currently, this polymer has been successfully licensed by NASA, and has generated revenues, at the time of this reporting, in excess of $1.4 million. The success of this particular polymer has been due to many factors and many lessons learned to the point that the invention, while important, is the least significant part in the commercialization of this material. Commercial LARC(TradeMark)-SI is a polyimide composed of two molar equivalents of dianhydrides: 4,4 -oxydiphthalic anhydride (ODPA), and 3,3 ,4,4 -biphenyltetracarboxylic dianhydride (BPDA) and 3,4 -oxydianiline (3,4 -ODA) as the diamine. The unique feature of this aromatic polyimide is that it remains soluble after solution imidization in high-boiling, polar aprotic solvents, even at solids contents of 50-percent by weight. However, once isolated and heated above its T(sub g) of 240 C, it becomes insoluble and exhibits high-temperature thermoplastic melt-flow behavior. With these unique structure property characteristics, it was thought this would be an advantage to have an aromatic polyimide that is both solution and melt processable in the imide form. This could potentially lead to lower cost production as it was not as equipment- or labor-intensive as other high-performance polyimide materials that either precipitate or are intractable. This unique combination of properties allowed patents with broad claim coverage and potential commercialization. After the U.S. Patent applications were filed, a Small Business Innovation Research (SBIR) contract was awarded to Imtec, Inc. to develop and supply the polyimide to NASA and the general public. Some examples of demonstration parts made with LARC(TradeMark)-SI ranged from aircraft wire and multilayer printed-circuit boards, to gears, composite panels, supported adhesive tape, composite

  14. Development and commercialization of emerging infrared radiation food processing technologies

    Science.gov (United States)

    In order to demonstrate a newly developed simultaneous infrared dry-blanching and dehydration (SIRDBD) technology on an industrial scale, a mobile and continuous IR heating system was built and tested to examine its performance for SIRDBD of sliced and diced potatoes. The mobile IR heating equipment...

  15. Testing of Commercial Cutting Heads for Abrasive Water Jet Technology

    OpenAIRE

    Klich, J. (Jiří); Hlaváček, P.; M. Zeleňák; Sitek, L. (Libor); Foldyna, J. (Josef)

    2013-01-01

    Five different cutting heads designed for cutting by high-speed abrasive water jet technology were tested from cutting ability point of view. Straight kerfs were cut in several metal materials by abrasive water jet. Material removal volume was determined as a measure of performance of specific cutting head. Quality of cutting surface was observed, too. Results are compared and discussed.

  16. Dynamic partnership: A new approach to EM technology commercialization and deployment

    Energy Technology Data Exchange (ETDEWEB)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H. [and others

    1996-12-31

    The task of restoring nuclear defense complex sites under the U.S. Department of Energy (DOE) Environmental Management (EM) Program presents an unprecedented challenge to the environmental restoration community. Effective and efficient cleanup requires the timely development or modification of novel cleanup technologies applicable to radioactive wastes. Fostering the commercialization of these innovative technologies is the mission of EM-50, the EM Program Office of Science and Technology. However, efforts are often arrested at the {open_quotes}valley of death,{close_quotes} the general term for barriers to demonstration, commercialization, and deployment. The Energy & Environmental Research Center (EERC), a not-for-profit, contract-supported organization focused on research, development, demonstration, and commercialization (RDD&C) of energy and environmental technologies, is in the second year of a cooperative agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) designed to deliver EM technologies into the commercial marketplace through a unique combination of technical support, real-world demonstration, and brokering. This paper profiles this novel approach, termed {open_quotes}Dynamic Partnership,{close_quotes} and reviews the application of this concept to the ongoing commercialization and deployment of four innovative cleanup technologies. 2 tabs.

  17. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Cartron, D.; Rhyne, T.; Schulze, M.; Welty, L.

    1997-06-01

    Over the past decade, numerous companies have been formed to commercialize research results from leading U.S. academic and research institutions. Emerging small businesses in areas such as Silicon Valley, Boston`s Route 128 corridor, and North Carolina`s Research Triangle have been especially effective in moving promising technologies from the laboratory bench to the commercial marketplace--creating new jobs and economic expansion in the process. Unfortunately, many of the U.S. national laboratories have not been major participants in this technology/commercialization activity, a result of a wide variety of factors which, until recently, acted against successful commercialization. This {open_quotes}commercialization gap{close_quotes} exists partly due to a lack, within Los Alamos in particular and the DOE in general, of in-depth expertise and experience in such business areas as new business development, securities regulation, market research and the determination of commercial potential, the identification of entrepreneurial management, marketing and distribution, and venture capital sources. The immediate consequence of these factors is the disappointingly small number of start-up companies based on technologies from Los Alamos National Laboratory that have been attempted, the modest financial return Los Alamos has received from these start-ups, and the lack of significant national recognition that Los Alamos has received for creating and commercializing these technologies.

  18. Low-carbon innovation and technology transfer in latecomer countries

    DEFF Research Database (Denmark)

    Lema, Rasmus; Lema, Adrian

    2016-01-01

    This paper examines the organizational arrangements for technology supply in solar photovoltaic projects in the Clean Development Mechanism (CDM). It shows that while lower middle-income countries typically import solar PV equipment into CDM projects, China, India and Thailand have begun to use new...... the future of the global climate regime. Technology transfer does not become less important as developing countries' capabilities mature, but the nature of technology transfer changes over time. This suggests a need to differentiate between countries at different levels of development. Lower middle-income...... countries may have greater needs for building technological capabilities whereas cooperative activities may be suitable for upper middle-income countries that already have capabilities to address climate change...

  19. Innovation Leads China's Worldleading DMTO Technology into Commercialization

    Institute of Scientific and Technical Information of China (English)

    XIN Ling

    2011-01-01

    Using coal to produce ethylene and propylene, which are the basic building blocks for petrochemicals, is becoming more and more important for China - a country relatively abundant in coal but short on oil reserves.Scientists with the Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) have devoted themselves to the research and development of such technologies for three decades.Joining hands with domestic engineers and entrepreneurs, they successfully pushed forward, for the first time in the world, the industrial demonstration of the methanol to light olefin technology (DMTO), which has been reportedly running in good condition since it was smoothly started up in North China on August 8, 2010.

  20. Hot demonstration of proposed commercial nuclide removal technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    This task covers the development and operation of an experimental test unit located in a Building 4501 hot cell within Building 4501 at Oak Ridge National Laboratory (ORNL). This equipment is designed to test radionuclides removal technologies under continuous operatoin on actual ORNL Melton Valley Storage Tank (MVST) supernatant, Savannah River high-level waste supernatant, and Hanford supernatant. The latter two may be simulated by adding the appropriate chemicals and/or nuclides to the MVST supernatant.

  1. THE COMMERCIAL POTENTIAL OF NEW DAIRY PRODUCTS FROM MEMBRANE TECHNOLOGY

    OpenAIRE

    Kim, Sung-Yong; Lalor, Alejandro; Siebert, John W.

    2001-01-01

    Membrane filtration technologies are capable of creating entirely new, more functional food products. In this regard, potential new dairy products include high-protein, low-lactose fluid milk, high-protein, low-lactose ice cream, and non-far yogurt made with fewer stabilizers. An initial survey of membrane manufacturing companies determined the added cost to produce such functional food products to be two to six percent of the existing retail price for similar standard dairy products. A subse...

  2. Technology transfer from NASA to targeted industries, volume 2

    Science.gov (United States)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure.

  3. Biomedical technology transfer. Applications of NASA science and technology

    Science.gov (United States)

    Harrison, D. C.

    1980-01-01

    Ongoing projects described address: (1) intracranial pressure monitoring; (2) versatile portable speech prosthesis; (3) cardiovascular magnetic measurements; (4) improved EMG biotelemetry for pediatrics; (5) ultrasonic kidney stone disintegration; (6) pediatric roentgen densitometry; (7) X-ray spatial frequency multiplexing; (8) mechanical impedance determination of bone strength; (9) visual-to-tactile mobility aid for the blind; (10) Purkinje image eyetracker and stabilized photocoalqulator; (11) neurological applications of NASA-SRI eyetracker; (12) ICU synthesized speech alarm; (13) NANOPHOR: microelectrophoresis instrument; (14) WRISTCOM: tactile communication system for the deaf-blind; (15) medical applications of NASA liquid-circulating garments; and (16) hip prosthesis with biotelemetry. Potential transfer projects include a person-portable versatile speech prosthesis, a critical care transport sytem, a clinical information system for cardiology, a programmable biofeedback orthosis for scoliosis a pediatric long-bone reconstruction, and spinal immobilization apparatus.

  4. Constructing Nanobusiness: The Role of Technology Framing in the Emergence of a Commercial Domain

    Science.gov (United States)

    Aten, Kathryn Jeanette

    2009-01-01

    Entrepreneurs seeking to commercialize science-based technologies face considerable challenges including uncertain environments, policy makers and investors' ignorance, and public opposition and ethical concerns. Most research exploring the emergence of technologies assumes the existence of accepted uses or products, despite the fact that efforts…

  5. Coal gasification systems engineering and analysis. Appendix G: Commercial design and technology evaluation

    Science.gov (United States)

    1980-01-01

    A technology evaluation of five coal gasifier systems (Koppers-Totzek, Texaco, Babcock and Wilcox, Lurgi and BGC/Lurgi) and procedures and criteria for evaluating competitive commercial coal gasification designs is presented. The technology evaluation is based upon the plant designs and cost estimates developed by the BDM-Mittelhauser team.

  6. 77 FR 46909 - Small Business Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR...

    Science.gov (United States)

    2012-08-06

    ... Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR) Program Policy Directives... Small Business Innovation Research (SBIR) and Small Business Technology Transfer Program (STTR) Policy... technology@sba.gov . SUPPLEMENTARY INFORMATION: I. Background Information SBA is publishing Policy Directives...

  7. Technology Commercialization as University Mission: Early Historical Developments at the University of Toronto.

    Science.gov (United States)

    Sá, Creso M; Kretz, Andrew

    2016-01-01

    Canadian universities are perceived as less vibrant and engaged generators of technologies with commercial value than their American counterparts, and such perceptions have driven science policy for decades. This paper shows that contrary to these prevailing views, Canada's largest university has a long history of experience in dealing with the technological gaps in national industry and in attempting to work with domestic firms. Three historical periods, particularly critical in shaping these interactions, are identified and discussed. By the time policy initiatives began emphasizing university-industry relationships, the university had already built essential organizational underpinnings for the commercialization of technologies.

  8. The Employee Invention Report (EIR) | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    After making a unique, non-obvious, and useful discovery, NIH researchers must immediately contact their Laboratory or Branch Chief and inform him or her of a possible invention, and then consult with your NCI TTC Technology Transfer Manager about submitting an Employee Invention Report (EIR) Form. | [google6f4cd5334ac394ab.html

  9. Transfer bonding technology for batch fabrication of SMA microactuators

    Science.gov (United States)

    Grund, T.; Guerre, R.; Despont, M.; Kohl, M.

    2008-05-01

    Currently, the broad market introduction of shape memory alloy (SMA) microactuators and sensors is hampered by technological barriers, since batch fabrication methods common to electronics industry are not available. The present study intends to overcome these barriers by introducing a wafer scale transfer process that allows the selective transfer of heat-treated and micromachined shape memory alloy (SMA) film or foil microactuators to randomly selected receiving sites on a target substrate. The technology relies on a temporary adhesive bonding layer between SMA film/foil and an auxiliary substrate, which can be removed by laser ablation. The transfer technology was tested for microactuators of a cold-rolled NiTi foil of 20 μm thickness, which were heat-treated in free-standing condition, then micromachined on an auxiliary substrate of glass, and finally selectively transferred to different target substrates of a polymer. For demonstration, the new technology was used for batch-fabrication of SMA-actuated polymer microvalves.

  10. THE EFFICIENCY OF TECHNOLOGY TRANSFER – THEORETICAL AND METHODOLOGICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Andreea-Clara MUNTEANU

    2006-06-01

    Full Text Available As the importance and complexity level of technological transfer increased, the need of adequate systems of assessing the efficiency of this process became the more obvious. Introducing sustainability criteria requires the creation of a complex framework for analysing and studying efficiency that would incorporate all other three dimensions of contemporary economic development: economic, social and environmental.

  11. Building Technology Transfer Capacity in Turkish Universities: A Critical Analysis

    Science.gov (United States)

    Ranga, Marina; Temel, Serdal; Ar, Ilker Murat; Yesilay, Rustem Baris; Sukan, Fazilet Vardar

    2016-01-01

    University technology transfer has been receiving significant government funding since 2012. Results of this major investment are now expected by the Turkish government and society, not only in terms of better teaching and research performance, but also of new jobs, new products and services, enhanced regional development and contribution to…

  12. Teacher Linguistic, Cultural, and Technological Awareness Development and Transfer

    Science.gov (United States)

    Wang, Congcong

    2012-01-01

    This dissertation includes two studies: a pilot study on native-English-speaking preservice teachers' perceptions of learning a foreign language online and a follow-up study on inservice teachers' perceptions of transferring teacher linguistic, cultural and technological awareness into teaching practice. Conducted in 2010, the pilot…

  13. Space spin-offs: is technology transfer worth it?

    Science.gov (United States)

    Bush, Lance B.

    Dual-uses, spin-offs, and technology transfer have all become part of the space lexicon, creating a cultural attitude toward space activity justification. From the very beginning of space activities in the late 1950's, this idea of secondary benefits became a major part of the space culture and its beliefs system. Technology transfer has played a central role in public and political debates of funding for space activities. Over the years, several studies of the benefits of space activities have been performed, with some estimates reaching as high as a 60:1 return to the economy for each dollar spent in space activities. Though many of these models claiming high returns have been roundly criticized. More recent studies of technology transfer from federal laboratories to private sector are showing a return on investment of 2.8:1, with little evidence of jobs increases. Yet, a purely quantitative analysis is not sufficient as there exist cultural and social benefits attainable only through case studies. Space projects tend to have a long life cycle, making it difficult to track metrics on their secondary benefits. Recent studies have begun to make inroads towards a better understanding of the benefits and drawbacks of investing in technology transfer activities related to space, but there remains significant analyses to be performed which must include a combination of quantitative and qualitative analyses.

  14. Venture Creation Programs: Bridging Entrepreneurship Education and Technology Transfer

    Science.gov (United States)

    Lackéus, Martin; Williams Middleton, Karen

    2015-01-01

    Purpose: The purpose of this paper is to explore how university-based entrepreneurship programs, incorporating real-life venture creation into educational design and delivery, can bridge the gap between entrepreneurship education and technology transfer within the university environment. Design/methodology/approach: Based on a literature review…

  15. Institutionalization of Technology Transfer Organizations in Chinese Universities

    Science.gov (United States)

    Cai, Yuzhuo; Zhang, Han; Pinheiro, Rómulo

    2015-01-01

    There is a lack of in-depth studies on how technology transfer organizations (TTOs) are organized and developed. This paper examines the evolution/institutionalization of TTOs in Tsinghua University (TU), as a microcosm of the development of TTOs in Chinese universities. It explores two issues in particular: what kinds of TTOs have been developed…

  16. Agile manufacturing and technology transfer to industrialising countries

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Boer, S.J.

    2003-01-01

    One of the requirements of agile manufacturing, the necessity to gain flexibility, can be reached by using a supplier network. A possible way to develop a supplier network is by subcontracting to parties in industrialising countries. In most cases, it is necessary to transfer technology. The

  17. Strategic Evaluation of University Knowledge and Technology Transfer Effectiveness

    Science.gov (United States)

    Tran, Thien Anh

    2013-01-01

    Academic knowledge and technology transfer has been growing in importance both in academic research and practice. A critical question in managing this activity is how to evaluate its effectiveness. The literature shows an increasing number of studies done to address this question; however, it also reveals important gaps that need more research.…

  18. Agile manufacturing and technology transfer to industrialising countries

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Boer, de Sirp

    2003-01-01

    One of the requirements of agile manufacturing, the necessity to gain flexibility, can be reached by using a supplier network. A possible way to develop a supplier network is by subcontracting to parties in industrialising countries. In most cases, it is necessary to transfer technology. The aircraf

  19. Venture Creation Programs: Bridging Entrepreneurship Education and Technology Transfer

    Science.gov (United States)

    Lackéus, Martin; Williams Middleton, Karen

    2015-01-01

    Purpose: The purpose of this paper is to explore how university-based entrepreneurship programs, incorporating real-life venture creation into educational design and delivery, can bridge the gap between entrepreneurship education and technology transfer within the university environment. Design/methodology/approach: Based on a literature review…

  20. Strategic Evaluation of University Knowledge and Technology Transfer Effectiveness

    Science.gov (United States)

    Tran, Thien Anh

    2013-01-01

    Academic knowledge and technology transfer has been growing in importance both in academic research and practice. A critical question in managing this activity is how to evaluate its effectiveness. The literature shows an increasing number of studies done to address this question; however, it also reveals important gaps that need more research.…

  1. Institutionalization of Technology Transfer Organizations in Chinese Universities

    Science.gov (United States)

    Cai, Yuzhuo; Zhang, Han; Pinheiro, Rómulo

    2015-01-01

    There is a lack of in-depth studies on how technology transfer organizations (TTOs) are organized and developed. This paper examines the evolution/institutionalization of TTOs in Tsinghua University (TU), as a microcosm of the development of TTOs in Chinese universities. It explores two issues in particular: what kinds of TTOs have been developed…

  2. Taxation and the transfer of technology by multinational firms

    NARCIS (Netherlands)

    Huizinga, H.P.

    1995-01-01

    This paper analyzes a multinational's transfer of technology to a foreign subsidiary for the case where there is a risk of expropriation. An expropriation is assumed to give rise to competition between the parts of the previous multinational enterprise. To reduce the benefit of expropriation, the

  3. 48 CFR 970.5227-3 - Technology transfer mission.

    Science.gov (United States)

    2010-10-01

    ... benefits to the U.S. domestic economy. The Contractor shall consider the following factors in all of its... shall establish subject to the approval of the contracting officer a policy for making awards or sharing... believes that the transfer of technology to the U.S. domestic economy will benefit from, or other...

  4. Building technology transfer within research universities an entrepreneurial approach

    CERN Document Server

    O'Shea, Rory P

    2014-01-01

    For the past number of years, academic entrepreneurship has become one of the most widely studied topics in the entrepreneurship literature. Yet, despite all the research that has been conducted to date, there has not been a systematic attempt to analyze critically the factors which lie behind successful business spin-offs from university research. In this book, a group of academic thought-leaders in the field of technology transfer examine a number of areas critical to the promotion of start-ups on campus. Through a series of case studies, they examine current policies, structures, program initiatives and practices of fourteen international universities to develop a theory of successful academic entrepreneurship, with the aim of helping other universities to enhance the quality of their university transfer programs. This book is a valuable resource for researchers and graduate students working on innovation, entrepreneurship and technology transfer, as well as senior managers and policymakers.

  5. Argonne National Laboratory study of the transfer of federal computational technology to manufacturing industry in the State of Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.J.

    1991-11-01

    This report describes a pilot study to develop, initiate the implementation, and document a process to identify computational technology capabilities resident within Argonne National Laboratory to small and medium-sized businesses in the State of Michigan. It is a derivative of a program entitled ``Technology Applications Development Process for the State of Michigan`` undertaken by the Industrial Technology Institute and MERRA under funding from the National Institute of Standards and Technology. The overall objective of the latter program is to develop procedures which can facilitate the discovery and commercialization of new technologies for the benefit of small and medium-size manufacturing firms. Federal laboratories such as Argonne, along with universities, have been identified by the Industrial Technology Institute as key sources of technology which can be profitably commercialized by the target firms. The scope of this study limited the investigation of technology areas for technology transfer to that of computational science and engineering featuring high performance computing. This area was chosen as the broad technological capability within Argonne to investigate for technology transfer to Michigan firms for several reasons. First, and most importantly, as a multidisciplinary laboratory, Argonne has the full range of scientific and engineering skills needed to utilize leading-edge computing capabilities in many areas of manufacturing.

  6. Argonne National Laboratory study of the transfer of federal computational technology to manufacturing industry in the State of Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.J.

    1991-11-01

    This report describes a pilot study to develop, initiate the implementation, and document a process to identify computational technology capabilities resident within Argonne National Laboratory to small and medium-sized businesses in the State of Michigan. It is a derivative of a program entitled Technology Applications Development Process for the State of Michigan'' undertaken by the Industrial Technology Institute and MERRA under funding from the National Institute of Standards and Technology. The overall objective of the latter program is to develop procedures which can facilitate the discovery and commercialization of new technologies for the benefit of small and medium-size manufacturing firms. Federal laboratories such as Argonne, along with universities, have been identified by the Industrial Technology Institute as key sources of technology which can be profitably commercialized by the target firms. The scope of this study limited the investigation of technology areas for technology transfer to that of computational science and engineering featuring high performance computing. This area was chosen as the broad technological capability within Argonne to investigate for technology transfer to Michigan firms for several reasons. First, and most importantly, as a multidisciplinary laboratory, Argonne has the full range of scientific and engineering skills needed to utilize leading-edge computing capabilities in many areas of manufacturing.

  7. Commercial Application of the MIP Technology in RFCC Unit

    Institute of Scientific and Technical Information of China (English)

    Sun Yanming; Guo Lichang

    2007-01-01

    PetroChina Jinxi Petrochemical Branch Company has applied the MIP technology in its RFCC unit to maximize the light distillate while using the paraffinic gas oil blended with resid and the coker gasoil as the feedstocks.The outcome of the unit operating according to the MIP mode has revealed that the olefin content in the stabilized gasoline could be reduced to less than 35% with its research octane number equivalent to and its motor octane number slightly higher than the octane rating of the FCC naphtha obtained by the former operational mode of the RFCC unit,and the diesel yield could reach over 30m%.The total liquid yield(LPG+gasoline+diesel)of the unit operating according to the MIP mode Was by over 1.5 percentage points higher than that achieved in the former RFCC unit.

  8. Transferring diffractive optics from research to commercial applications: Part I - progress in the patent landscape

    Science.gov (United States)

    Brunner, Robert

    2013-12-01

    In the last 20 years, diffractive optics experienced a strong research interest and was in the center of many development projects in applied optics. To offer a side view for optical engineers, here, we discuss selected, business-related aspects of the current status of the transfer process to bring diffractive optics into commercial products. The contribution is divided into two parts. Here, in part I, we focus on the patent landscape of diffractive optics with a closer look on the temporal development and the distribution over main players. As an important result, currently, new strong patent activities are observed especially in the context of imaging systems. In the second part, the business volumes of selected market segments are discussed.

  9. Study and Commercial Test on Technology for Deacidification of Distillate Oils

    Institute of Scientific and Technical Information of China (English)

    Tang Xiaodong; An Rong; Cui Yingxian; Du Hongyong

    2005-01-01

    A new kind of solvent for deacidification of distillate oils was introduced in this paper. After successful laboratory study this technology had been applied in commercial scale successfully. Compared to traditional caustic wash of distillate oils, this technology has a lot of merits, such as the broad range of distillates to be processed, low caustic consumption, recycle of deacidifying agent, absence of waste caustic discharge, and low equipment revamp expenses, which can have promising perspectives for exploitation and application of this technology.

  10. Commercial Demonstration of Wood Recovery, Recycling, and Value Adding Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Auburn Machinery, Inc.

    2004-07-15

    This commercial demonstration project demonstrated the technical feasibility of converting low-value, underutilized and waste stream solid wood fiber material into higher valued products. With a growing need to increase product/production yield and reduce waste in most sawmills, few recovery operations and practically no data existed to support the viability of recovery operations. Prior to our efforts, most all in the forest products industry believed that recovery was difficult, extremely labor intensive, not cost effective, and that recovered products had low value and were difficult to sell. This project provided an opportunity for many within the industry to see through demonstration that converting waste stream material into higher valued products does in fact offer a solution. Our work, supported by the U.S. Department of Energy, throughout the project aimed to demonstrate a reasonable approach to reducing the millions of recoverable solid wood fiber tons that are annually treated as and converted into low value chips, mulch and fuel. Consequently sawmills continue to suffer from reduced availability of forest resources, higher raw material costs, growing waste disposal problems, increased global competition, and more pressure to operate in an Environmentally Friendly manner. It is our belief (based upon the experience of this project) that the successful mainstreaming of the recovery concept would assist in alleviating this burden as well as provide for a realistically achievable economic benefit to those who would seriously pursue the concept and tap into the rapidly growing ''GREEN'' building marketplace. Ultimately, with participation and aggressive pursuit of the recovery concept, the public would benefit in that: (1) Landfill/disposal waste volume could be reduced adding greater life to existing municipal landfill sites thereby minimizing the need to prematurely license and open added facilities. Also, there would be a cost

  11. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Carton, D.; Rhyne, T. [and others

    1997-06-01

    Appendices are presented from a study performed on a concept model system for the commercialization of Los Alamos National Laboratory technologies via small businesses. Topics include a summary of information from the joint MCC/Los Alamos technology conference; a comparison of New Mexico infrastructure to other areas; a typical licensing agreement; technology screening guides; summaries of specific DOE/UC/Los Alamos documents; a bibliography; the Oak Ridge National Laboratory TCRD; The Ames Center for Advanced Technology Development; Los Alamos licensing procedures; presentation of slides from monthly MCC/Los Alamos review meetings; generalized entrepreneurship model; and a discussion on receiving equity for technology.

  12. BioServe space technologies: A NASA Center for the Commercial Development of Space

    Science.gov (United States)

    1992-01-01

    BioServe Space Technologies, a NASA Center for the Commercial Development of Space (CCDS), was established in 1987. As is characteristic of each CCDS designated by NASA, the goals of this commercial center are aimed at stimulating high technology research that takes advantage of the space environment and at leading in the development of new products and services which have commercial potential or that contribute to possible new commercial ventures. BioServe's efforts in these areas focus upon space life science studies and the development of enabling devices that will facilitate ground-based experiments as well as the conversion of such to the microgravity environment. A direct result of BioServe's hardware development and life sciences studies is the training of the next generation of bioengineers who will be knowledgeable and comfortable working with the challenges of the space frontier.

  13. Commentary: Emerging technologies oversight: research, regulation, and commercialization.

    Science.gov (United States)

    Johnson, Robbin

    2009-01-01

    This paper reviews the paper by Kuzma, Najmaie, and Larson that looks at what can be learned from the experience with genetically engineered organisms for oversight of emerging technologies more generally. That paper identifies key attributes of a good oversight system: promoting innovation, ensuring safety, identifying benefits, assessing costs, and doing so all while building public confidence. In commenting on that analysis, this paper suggests that looking at "oversight" in three phases - research and development, regulatory review, and market acceptance - can help to determine when certain of these attributes should take precedence over others and how to structure remedies when an error occurs. The result is an approach that is precautionary with respect to research and development, prudent and open to public input in the regulatory review stage, and purposefully persuasive once market acceptability is at stake, with remedies that are risk-containing in the first phase, risk-managing in the second, and risk-assuaging in the third. Combining the key attributes with the idea of three phases can help attune oversight to society's needs.

  14. Commercial use of space technologies for precision farming

    Science.gov (United States)

    May, George A.; Gilmore, Kenneth; Holmes, Bill

    1995-01-01

    Precision farming involves varying the application of fertilizers or chemicals within a field according to different homogeneous units contained within the field. Applying agricultural inputs using variable rate spreading technology relies heavily on the use of Global Positioning System (GPS), Geographic Information system (GIS) and remote sensing. Images obtained from satellites are used to locfate different soil fertility, disease infestation, or insect damage patterns within the field. Each of these patterns is assessed and treated as a stand along unit within the field. GPS is used to get exact location of soil sampling points and also coordinates of the field boundary. Satellite imagery, soil sample laboratory analyses, GPS coordinates, and other databases are input to a farm level GIS. For fertilizer, a modeling routine utilizes these various GIS layers to generate a prescription map for the field. The map contains numerous homogeneous units within the field with each unit prescribed for a specific amount of phosphorous, potassium, nitrogen, and other nutrients. This prescription map is input to an on-board computer inside the cab of the applicator vehicle. A GPS receiver on top the cab is used to monitor the exact location of the applicator as it transverses across the field. Precise application of fertilizer and agricultural chemicals allows the United States farmer to optimize his inputs, strive for maximum economic return, and also reduce environmental concerns.

  15. Demand Responsive and Energy Efficient Control Technologies andStrategies in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Kiliccote, Sila

    2006-09-01

    Commercial buildings account for a large portion of summer peak electric demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial buildings contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. The main objectives of the study were: (1) To evaluate the size of contributions of peak demand commercial buildings in the U.S.; (2) To understand how commercial building control systems support energy efficiency and DR; and (3) To disseminate the results to the building owners, facility managers and building controls industry. In order to estimate the commercial buildings contribution to peak demand, two sources of data are used: (1) Commercial Building Energy Consumption Survey (CBECS) and (2) National Energy Modeling System (NEMS). These two sources indicate that commercial buildings noncoincidental peak demand is about 330GW. The project then focused on technologies and strategies that deliver energy efficiency and also target 5-10% of this peak. Based on a building operations perspective, a demand-side management framework with three main features: (1) daily energy efficiency, (2) daily peak load management and (3) dynamic, event-driven DR are outlined. A general description of DR, its benefits, and nationwide DR potential in commercial buildings are presented. Case studies involving these technologies and strategies are described. The findings of this project are shared with building owners, building controls industry, researchers and government entities through a webcast and their input is requested. Their input is presented in the appendix section of this report.

  16. Research Funding, Patent Search Training and Technology Transfer: a collaboration

    KAUST Repository

    Tyhurst, Janis

    2016-01-01

    This paper will focus on the collaboration efforts of three different university departments to create, teach and evaluate the benefits of a joint patent training series, as well as the future directions this collaboration will take. KAUST has as one of its goals the diversification of the Saudi economy. There is a strong focus at the university on developing entrepreneurial ideas and commercializing research done. The University Library supports this goal through the provision of electronic resources and introductory patent search training skills. However, the patent training class offered by the University Library is only one step in a process that faculty and students need when starting or taking their research to the next level. In the Fall of 2015, I met with representatives of the two major stakeholders in the patent arena, the office of Sponsored Research (OSR) and the Technology Transfer Office (TTO), to develop a patent training program to meet the needs of researchers. The OSR provides funding to researchers who have demonstrated that their ideas have merit with potential applications, the TTO works with researchers who are at the point of needing IP protection. The resulting discussion led us to collaborate on creating a workshop series that benefit the researcher’s information needs and each of our departments as well. In the first of the series of three 2 hour workshops, the Manager of TTO and the Lead Integrative Specialist from the OSR presented a workshop on an overview of Intellectual Property and the patenting process. These presentations focused on when and how to determine whether research is potentially patentable, why a researcher needs to protect his/her research and how to go about protecting it. The second workshop focused on introductory patent search skills and tools, how to expand a literature search to include the information found in patents, and how this kind of research will improve not only the literature search but the research

  17. Managing knowledge: a technology transfer case study in IEN

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ana Gabriella Amorim Abreu [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil). Servico de Transferencia de Tecnologia], e-mail: agaap@ien.gov.br

    2009-07-01

    Knowledge management is paramount nowadays. In order to enable the members of an organization to deal with their current situations effectively it is mandatory to know and enhance its intellectual capital. Managing the organization knowledge is important to the extent that it allows and reinforce its mission (what we are trying to accomplish?), and performance (how do we deliver the results?). As a result of a knowledge management effort, the organization can create value for itself and for society as a whole. In this paper, we argue that a technology developed at a research institute and transferred to an industry is knowledge to be managed in order to create value, both for the society and for the Institute. In order to manage such knowledge, it is proposed an approach to enhance the value creation potential of a technology transfer. This paper propose an investigation to expand the understanding on how a public research institute and a private firm could introduce their value creation wishes into a technology transfer agreement in a way to reflect and provide the realization of those wishes. It is proposed that, from the identification of the organizations expectations it is possible to infer which agreement attributes will contribute to that value creation and to establish satisfactory agreement configurations. These configurations have the potential to generate those consequences, given that, through the transfer, each organization seeks to increase potential benefits and to reduce potential sacrifices. Supported by exchange flow and value creation models, by the knowledge management and the means-end theory, an approach to increase the value creation potential of a technology transfer is proposed. Evidences from a case study sustain the proposed approach. The case study unity is the Instituto de Engenharia Nuclear, a public research institute. (author)

  18. Tech transfer outreach. An informal proceedings of the first technology transfer/communications conference

    Energy Technology Data Exchange (ETDEWEB)

    Liebetrau, S. [ed.

    1992-10-01

    This document provides an informal summary of the conference workshop sessions. ``Tech Transfer Outreach!`` was originally designed as an opportunity for national laboratory communications and technology transfer staff to become better acquainted and to discuss matters of mutual interest. When DOE field office personnel asked if they could attend, and then when one of our keynote speakers became a participant in the discussions, the actual event grew in importance. The conference participants--the laboratories and DOE representatives from across the nation--worked to brainstorm ideas. Their objective: identify ways to cooperate for effective (and cost-effective) technology transfer outreach. Thus, this proceedings is truly a product of ten national laboratories and DOE, working together. It candidly presents the discussion of issues and the ideas generated by each working group. The issues and recommendations are a consensus of their views.

  19. Climate Change and Requirement of Transfer of Environmentally Sound Technology

    DEFF Research Database (Denmark)

    implementation measures. I have also taken in to account the decisions of the annual meetings of the Conference of the parties (COPs) of the UNFCCC. The thesis has also made a brief comparative discussion between the provisions of international environmental laws and the provisions of intellectual property...... of international environmental debates. This thesis addresses, firstly, the possible methods of technology transfer and secondly, how current international environmental laws play its role to facilitate the transfer. Accordingly, I have focused on the concerned provisions of Kyoto Protocol and its subsequent...

  20. TRIPS Agreement, International Technology Transfer and Least Developed Countries

    Directory of Open Access Journals (Sweden)

    Mark V. Shugurov

    2015-04-01

    Full Text Available The author examines the role of the trade-related aspects of intellectual property rights (TRIPS Agreement in facilitation the international technology transfer to least developed countries (LDCs. The primary purpose of this study is to investigate the new conditions of technology development of LDCs connected with TRIPS adoption. Special attention is paid to the potentials of Article 66.2 for solving the problem of LDCs capacity building. The article presents detailed analysis of the discussions on the impact of the TRIPS provisions concerning the strengthening of the intellectual property rights (IPRs and the protection of technology transfer to LDCs. An important finding of this study is the recognition of the need to take urgent measures for the transition unto a new model of partnership between developed countries and LDCs in area of technology transfer and IPRs protection. The study concluded that a new model needed to be elaborated at the international level should be based on the effective implementation of Article 66.2 of the TRIPS Agreement.

  1. Exploring student engagement and transfer in technology mediated environments

    Science.gov (United States)

    Sinha, Suparna

    Exploring student engagement and transfer of mechanistic reasoning skills in computer-supported learning environments by SUPARNA SINHA Dissertation Director: Cindy Hmelo-Silver Computer-supported environments designed on learning science principles aim to provide a rich learning experience for students. Students are given opportunities to collaborate, model their understanding, have access to real-time data and engage in hypotheses testing to solve authentic problems. That is to say that affordances of technologies make it possible for students to engage in mechanistic reasoning, a complex inquiry-oriented practice (Machamer, Craver & Darden, 2000; Russ et al., 2008). However, we have limited understanding of the quality of engagement fostered in these contexts. This calls for close observations of the activity systems that the students participate in. The situative perspective focuses on analyzing interactions of individuals (students) with other people, tools and materials within activity systems (Greeno, 2006). Importantly, as the central goal of education is to provide learning experiences that are useful beyond the specific conditions of initial learning, analysis of such interactions sheds light on key experiences that lead to transfer of mechanistic reasoning skills. This is made possible, as computer-supported contexts are activity systems that bring forth trends in students' engagement. From a curriculum design perspective, observing student engagement can be a useful tool to identify features of interactions (with technological tools, peers, curriculum materials) that lead to successful learning. Therefore, the purpose of the present studies is to explore the extent to which technological affordances influence students' engagement and subsequent transfer of reasoning skills. Specifically, the goal of this research is to address the following research questions: How do learners generalize understanding of mechanistic reasoning in computer

  2. Technology Transfer: A Case Study of Programs and Practices at NASA, DOD, DOC, and Academia

    Science.gov (United States)

    Blood, John R.

    2009-01-01

    Technology transfer is vital to humanity. It spurs innovation, promotes commerce, and provides technology-based goods and services. Technology transfer is also highly complex and interdependent in nature. This interdependence is exemplified principally by the various technology transfer interactions between government, industry, and academia. …

  3. Technology Transfer: A Case Study of Programs and Practices at NASA, DOD, DOC, and Academia

    Science.gov (United States)

    Blood, John R.

    2009-01-01

    Technology transfer is vital to humanity. It spurs innovation, promotes commerce, and provides technology-based goods and services. Technology transfer is also highly complex and interdependent in nature. This interdependence is exemplified principally by the various technology transfer interactions between government, industry, and academia. …

  4. The National Network forTechnology Entrepreneurship and Commercialization (N2TEC): Bringing New Technologies to Market

    Science.gov (United States)

    Allen, Kathleen

    2003-03-01

    N2TEC, the National Network for Technology Entrepreneurship and Commercialization, is a National Science Foundation "Partnerships for Innovation" initiative designed to raise the level of innovation and technology commercialization in colleges, universities, and communities across the nation. N2TEC is creating a network of people and institutions, and a set of technology tools that will facilitate the pooling of resources and knowledge and enable faculty and students to share those resources and collaborate without regard to geographic boundaries. N2TEC will become the backbone by which educational institutions across the nation can move their technologies into new venture startups. The ultimate goal is to create new wealth and strengthen local, regional and national economies.

  5. Technology Transfer, Labour and Local Learning Processes in Malaysian Industry

    DEFF Research Database (Denmark)

    Wangel, Arne

    1999-01-01

    The transfer of technologies by the foreign electronic industries operating in Malaysia involves training of workers for various purposes. The upgrading of skills to assimilate the transferred technology aims at increasing productivity and product quality. Communicating awareness about work hazards...... is meant to reduce breakdowns in production and workers' accidents. How do the training paradigms, which transnationals introduce in their subsidiaries in Malaysia, interact with the preconditions of learning with the local labour force? In shaping local learning processes, what is the scope for workers...... and trade unions to articulate their interests and define the issues, in particular with regard to the working environment and the external environment? The paper will discuss these questions by exploring the significance of labour market structures, labour-management relations, concepts of knowledge...

  6. ASSESSING THE IMPACT OF UNIVERSITY TECHNOLOGY TRANSFER ON FIRMS’ INNOVATION

    OpenAIRE

    Paola Cardamone; Valeria Pupo; Fernanda Ricotta

    2014-01-01

    This paper analyses the influence of universities on Italian firms’ probability to innovate. Using firm-level data, we focus on institutionalised technology transfer (TT) activities in universities, namely spin-offs, patents and research contracts. Results show that TT activities play a significant role in the probability to innovate by Italian manufacturing firms located in the same province as the university. Nevertheless, the effect is not uniform: the contribution of university TT activit...

  7. Optimising Gas Quenching Technology through Modelling of Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Florent Chaffotte; Linda L(e)fevre; Didier Domergue; Aymeric Goldsteinas; Xavier Doussot; Qingfei Zhang

    2004-01-01

    Gas Quenching represents an environmentally friendly alternative to more commonly-used oil quenching. Yet,the performances of this technology remain limited in terms of cooling rates reached compared to oil quenching. Distortion and process homogeneity also have to be controlled carefully. The efficiency of the gas quenching process fully depends on the heat transfer between the gas and the quenched parts. The goal of this study is the optimisation of the gas quenching process efficiency through a better understanding of the heat transfer phenomena involved. The study has been performed with modelling means and validated by an experimental approach. The configuration of the gas flow has a major influence on the heat transfer phenomena between the gas and the parts. The fluid dynamics modelling approach performed in this study allows to optimise the heat transfer phenomena. New gas quenching processes allowing enhanced gas quenching performance through higher cooling rates can be thereby identified. The new solutions have been validated in experimental and industrial conditions. Results obtained allow to expect significant improvement of high pressure gas quenching technology.

  8. Optimising Gas Quenching Technology through Modelling of Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    FiorentChaffotte; LindaLefevre; DidierDomergue; AymericGoidsteinas; XavierDoussot; QingfeiZhang

    2004-01-01

    Gas Quenching represents an environmentally friendly alternative to more commonly-used oil quenching. Yet,the performances of this technology remain limited in terms of cooling rates reached compared to oil quenching. Distortion and process homogeneity also have to be controlled carefully. The efficiency of the gas quenching process fully depends on the heat transfer between the gas and the quenched parts. The goal of this study is the optimisation of the gas quenching process efficiency through a better understanding of the heat transfer phenomena involved. The study has been performed with modelling means and validated by an experimental approach. ThE configuration of the gas flow has a major influence on the heat transfer phenomena between the gas and the parts. The fluid dynamics modelling approach performed in this study allows to optimise the heat transfer phenomena. New gas quenching processes allowing enhanced gas quenching performance through higher cooling rates can be thereby identified. The new solutions have been validated in experimental and industrial conditions. Results obtained allow to expect significant improvement of high pressure gas quenching technology.

  9. Comparative Characteristics of Technology Transfer in Developed Countries

    Directory of Open Access Journals (Sweden)

    Natalia Palii

    2013-08-01

    Full Text Available The research into innovation transfer in the global economy is a very urgent issue under the modern conditions of development of any country. Comparative characteristics of technology transfer in such countries and regions as the USA, EU, Asia, presented in the article, permit us to detect certain patterns of this process inherent both in developed and developing countries. The analysis made in the article can be useful for developing technology transfer processes in the Danube countries’ economy. The analytical method used in this research allowed us to determine the factor that is crucial for the growth of the world market of high-technology products and services. The analysis was conducted on several criteria such as the level of expenditure on R&D in the whole global economy, as well as in individual countries and regions. Besides, there were taken into account the added value of high-tech industries and the share of expenditure on R&D in total production costs. The conclusions regarding the effectiveness of funds allocated for scientific research and experimental development in the U.S. can be drawn on the basis of data presented in the paper on the amount of added value of the U.S. high-tech industries.

  10. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  11. [Application of risk-based approach for determination of critical factors in technology transfer of production of medicinal products].

    Science.gov (United States)

    Beregovykh, V V; Spitskiy, O R

    2014-01-01

    Risk-based approach is used for examination of impact of different factors on quality of medicinal products in technology transfer. A general diagram is offered for risk analysis execution in technology transfer from pharmaceutical development to production. When transferring technology to full- scale commercial production it is necessary to investigate and simulate production process application beforehand in new real conditions. The manufacturing process is the core factorfor risk analysis having the most impact on quality attributes of a medicinal product. Further importantfactors are linked to materials and products to be handled and manufacturing environmental conditions such as premises, equipment and personnel. Usage of risk-based approach in designing of multipurpose production facility of medicinal products is shown where quantitative risk analysis tool RAMM (Risk Analysis and Mitigation Matrix) was applied.

  12. E-Beam—a new transfer system for isolator technology

    Science.gov (United States)

    Sadat, Theo; Huber, Thomas

    2002-03-01

    In every aseptic filling application, the sterile transfer of goods into the aseptic area is a challenge, and there are many different ways to do it. With isolator technology a higher sterility assurance level (SAL) is achieved. This SAL is only as good as the weakest segment in the chain of manufacturing. The transfer of goods into and out of the isolator is one of these critical segments. Today different techniques, some already well established, others still very new, are available on the market like: dry heat tunnel, autoclave, pulsed light, rapid transfer systems (RTP), H 2O 2 tunnel, UV light, etc. all these systems are either not applicable for continuous transfer, only good for heat-compatible materials like glass, or do not guarantee a 6 log spore reduction. E-Beam opens new perspectives in this field. With E-beam technology it is possible to transfer heat-sensitive (plastic), pre-sterilised materials at high speed, continuously into an aseptic area. E-Beam unifies three different technologies, that result in a very efficient and high-speed decontamination machine designed for the pharmaceutical industry. First, there is the electron beam that decontaminates the goods and an accurate shielding that protects the surrounding from this beam. Second, there is the conveyor system that guarantees the output and the correct exposure time underneath the beam. And third, there is the isolator interface to provide correct differential pressure and clean air inside the tunnel as well as the decontamination of the tunnel with H 2O 2 prior to production. The E-beam is a low-energy electron beam, capable of decontaminating any kind of surface. It penetrates only a few micrometers into the material and therefore does not deform the packaging media. Currently, machines are being built to transfer pre-sterilised syringes, packed in plastic tubs with a Tyvek cover into an aseptic filling isolator with the following data: decontamination efficiency of 10 6 (6 log spore

  13. Technology transfer present and futures in the electronic arts

    Directory of Open Access Journals (Sweden)

    Brian Degger

    2008-01-01

    Full Text Available We are entering an era where creating the fantastical is possible in the arts. In the areas of mixed reality and biological arts, responsive works are created based on advances in basic science and technology. This is enabling scientists and artists to pose new questions. As the time between discovery and application is so short, artists need imaginative ways of accessing new technology in order to critique and use it.These are the new paints that the majority of artists cannot afford or access, technology to enable cloning of DNA, to print channels on a chip, to access proprietary 3G networks. Currently, partnerships or residencies are used to facilitate artist’s access to these technologies. What would they do if technology was available that enabled them to make any art work they so desire? Are the limitations in current technology an advantage rather than a disadvantage in some of their works? Does interaction with technologists make their work more robust? Are there disadvantages? How do they get access to the technology they require? Open source or proprietary? Or have they encountered the situation where their vision is greater than technology allows. When their work breaks because of this fact, is their art broken? Blast Theory (Brighton,UK, FoAM(Brussels, Belgium and Amsterdam, Netherlands, SymbioticA (Perth, Australia are organisations pushing technological boundaries in the service of art. This paper addresses some questions of technology transfer in relation to recent artworks, particularly I like Frank in Adelaide (Blast Theory, transient reality generators (trg (FoAM and Multi electrode array artist (MeART (SymbioticA.

  14. The development and commercialization of solar PV technology in the oil industry

    NARCIS (Netherlands)

    Pinkse, J.; van den Buuse, D.

    2012-01-01

    In diversifying energy supply, the transformation of the energy industry has been identified as a key challenge for a sustainable energy future. This suggests that incumbent firms in this industry have a vital role in the development and commercialization process of renewable energy technologies. Th

  15. Technology Commercialization Effects on the Conduct of Research in Higher Education

    Science.gov (United States)

    Powers, Joshua B.; Campbell, Eric G.

    2011-01-01

    The objective of this study was to investigate the effects of technology commercialization on researcher practice and productivity at U.S. universities. Using data drawn from licensing contract documents and databases of university-industry linkages and faculty research output, the study findings suggest that the common practice of licensing…

  16. Evaluating the Influence of University Organizational Characteristics and Attributes on Technology Commercialization

    Science.gov (United States)

    Goble, Lisa A.

    2013-01-01

    This dissertation project seeks to make a contribution to the growing body of literature on academic technology commercialization and the entrepreneurial efforts of faculty and students at US research universities. The academic environment across the United States has seen an increased emphasis on moving the results of academic research into the…

  17. The development and commercialization of solar PV technology in the oil industry

    NARCIS (Netherlands)

    Pinkse, J.; van den Buuse, D.

    2012-01-01

    In diversifying energy supply, the transformation of the energy industry has been identified as a key challenge for a sustainable energy future. This suggests that incumbent firms in this industry have a vital role in the development and commercialization process of renewable energy technologies.

  18. Technology Commercialization Effects on the Conduct of Research in Higher Education

    Science.gov (United States)

    Powers, Joshua B.; Campbell, Eric G.

    2011-01-01

    The objective of this study was to investigate the effects of technology commercialization on researcher practice and productivity at U.S. universities. Using data drawn from licensing contract documents and databases of university-industry linkages and faculty research output, the study findings suggest that the common practice of licensing…

  19. Evaluating the Influence of University Organizational Characteristics and Attributes on Technology Commercialization

    Science.gov (United States)

    Goble, Lisa A.

    2013-01-01

    This dissertation project seeks to make a contribution to the growing body of literature on academic technology commercialization and the entrepreneurial efforts of faculty and students at US research universities. The academic environment across the United States has seen an increased emphasis on moving the results of academic research into the…

  20. Commercialization of biopulping: an energy-saving and environmentally-friendly technology for the paper industry

    Science.gov (United States)

    Ross Swaney; Masood Akhtar; Eric Horn; Michael Lentz; Carl Houtman; John Klungness

    2003-01-01

    The biopulping process for treating wood chips prior to mechanical pulping has been scaled up through an extensive development program and has been demonstrated at 50 ton semicommercial scale. Detailed engineering analyses and design studies have been performed for full production-scale mill implementation, and the technology is ready for commercial use. This paper...

  1. Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Page, Janie; Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann; Chiu, Albert K.; Kellow, Bashar; Koch, Ed; Lipkin, Paul

    2011-07-01

    Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

  2. New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative

    Science.gov (United States)

    Mankins, John C.

    2000-01-01

    In FY 2001, NASA will undertake a new research and technology program supporting the goals of human exploration: the Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative (HTCI). The HTCI represents a new strategic approach to exploration technology, in which an emphasis will be placed on identifying and developing technologies for systems and infrastructures that may be common among exploration and commercial development of space objectives. A family of preliminary strategic research and technology (R&T) road maps have been formulated that address "technology for human exploration and development of space (THREADS). These road maps frame and bound the likely content of the HTCL Notional technology themes for the initiative include: (1) space resources development, (2) space utilities and power, (3) habitation and bioastronautics, (4) space assembly, inspection and maintenance, (5) exploration and expeditions, and (6) space transportation. This paper will summarize the results of the THREADS road mapping process and describe the current status and content of the HTCI within that framework. The paper will highlight the space resources development theme within the Initiative and will summarize plans for the coming year.

  3. New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative

    Science.gov (United States)

    Mankins, John C.

    2000-01-01

    In FY 2001, NASA will undertake a new research and technology program supporting the goals of human exploration: the Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative (HTCI). The HTCI represents a new strategic approach to exploration technology, in which an emphasis will be placed on identifying and developing technologies for systems and infrastructures that may be common among exploration and commercial development of space objectives. A family of preliminary strategic research and technology (R&T) road maps have been formulated that address "technology for human exploration and development of space (THREADS). These road maps frame and bound the likely content of the HTCL Notional technology themes for the initiative include: (1) space resources development, (2) space utilities and power, (3) habitation and bioastronautics, (4) space assembly, inspection and maintenance, (5) exploration and expeditions, and (6) space transportation. This paper will summarize the results of the THREADS road mapping process and describe the current status and content of the HTCI within that framework. The paper will highlight the space resources development theme within the Initiative and will summarize plans for the coming year.

  4. Vaccines for HIV | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The development of an effective HIV vaccine has been an ongoing area of research. The high variability in HIV-1 virus strains has represented a major challenge in successful development. Ideally, an effective candidate vaccine would provide protection against the majority of clades of HIV. Two major hurdles to overcome are immunodominance and sequence diversity. This vaccine utilizes a strategy for overcoming these two issues by identifying the conserved regions of the virus and exploiting them for use in a targeted therapy. NCI seeks licensees and/or research collaborators to commercialize this technology, which has been validated in macaque models.

  5. 76 FR 71048 - Sixth Annual Philip S. Chen, Jr. Distinguished Lecture on Innovation and Technology Transfer

    Science.gov (United States)

    2011-11-16

    ... Innovation and Technology Transfer AGENCY: National Institutes of Health, Public Health Service, HHS. ACTION....D. Distinguished Lecture on Innovation and Technology Transfer. DATES: Friday, December 9, 2011, at... Recombinant Immunotoxins: From Technology Transfer to the Patient.'' Dr. Pastan is an NIH Distinguished...

  6. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Science.gov (United States)

    2010-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission,...

  7. Strategies for Maximizing Successful Drug Substance Technology Transfer Using Engineering, Shake-Down, and Wet Test Runs.

    Science.gov (United States)

    Abraham, Sushil; Bain, David; Bowers, John; Larivee, Victor; Leira, Francisco; Xie, Jasmina

    2015-01-01

    The technology transfer of biological products is a complex process requiring control of multiple unit operations and parameters to ensure product quality and process performance. To achieve product commercialization, the technology transfer sending unit must successfully transfer knowledge about both the product and the process to the receiving unit. A key strategy for maximizing successful scale-up and transfer efforts is the effective use of engineering and shake-down runs to confirm operational performance and product quality prior to embarking on good manufacturing practice runs such as process performance qualification runs. We consider key factors to consider in making the decision to perform shake-down or engineering runs. We also present industry benchmarking results of how engineering runs are used in drug substance technology transfers alongside the main themes and best practices that have emerged. Our goal is to provide companies with a framework for ensuring the "right first time" technology transfers with effective deployment of resources within increasingly aggressive timeline constraints.

  8. Grid-Competitive Residential and Commercial Fully Automated PV Systems Technology: Final technical Report, August 2011

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Katie E.; Cousins, Peter; Culligan, Matt; Jonathan Botkin; DeGraaff, David; Bunea, Gabriella; Rose, Douglas; Bourne, Ben; Koehler, Oliver

    2011-08-26

    Under DOE's Technology Pathway Partnership program, SunPower Corporation developed turn-key, high-efficiency residential and commercial systems that are cost effective. Key program objectives include a reduction in LCOE values to 9-12 cents/kWh and 13-18 cents/kWh respectively for the commercial and residential markets. Target LCOE values for the commercial ground, commercial roof, and residential markets are 10, 11, and 13 cents/kWh. For this effort, SunPower collaborated with a variety of suppliers and partners to complete the tasks below. Subcontractors included: Solaicx, SiGen, Ribbon Technology, Dow Corning, Xantrex, Tigo Energy, and Solar Bridge. SunPower's TPP addressed nearly the complete PV value chain: from ingot growth through system deployment. Throughout the award period of performance, SunPower has made progress toward achieving these reduced costs through the development of 20%+ efficient modules, increased cell efficiency through the understanding of loss mechanisms and improved manufacturing technologies, novel module development, automated design tools and techniques, and reduced system development and installation time. Based on an LCOE assessment using NREL's Solar Advisor Model, SunPower achieved the 2010 target range, as well as progress toward 2015 targets.

  9. Security technologies and protocols for Asynchronous Transfer Mode networks

    Energy Technology Data Exchange (ETDEWEB)

    Tarman, T.D.

    1996-06-01

    Asynchronous Transfer Mode (ATM) is a new data communications technology that promises to integrate voice, video, and data traffic into a common network infrastructure. In order to fully utilize ATM`s ability to transfer real-time data at high rates, applications will start to access the ATM layer directly. As a result of this trend, security mechanisms at the ATM layer will be required. A number of research programs are currently in progress which seek to better understand the unique issues associated with ATM security. This paper describes some of these issues, and the approaches taken by various organizations in the design of ATM layer security mechanisms. Efforts within the ATM Forum to address the user communities need for ATM security are also described.

  10. A first thermodynamic interpretation of the technology transfer activities

    CERN Document Server

    Ripandelli, S

    2016-01-01

    In the last years new interdisciplinary approaches to economics and social science have been developed. A Thermodynamic approach to socio-economics has brought to a new interdisciplinary scientific field called econophysics. Why thermodynamic? Thermodynamic is a statistical theory for large atomic system under constraints of energy[1] and the economy can be considered a large system governed by complex rules. The present job proposes a new application, starting from econophysic, passing throughout the thermodynamic laws to interpret and to described the Technology Transfer (TT) activities. Using the definition of economy (i.e. economy[dictionary def.] = the process or system by which goods and services are produced, sold, and bought in a country or region) the TT can be considered an important sub-domain of the economy and a transversal new area of the scientific research. The TT is the process of transferring knowledge, that uses the results from the research to produce innovation and to ensure that scientif...

  11. Technology transfer: Half-way houses. No. 17

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, R.W.

    1995-05-01

    In the fall of 1993, 1 was asked by the Center for National Security Studies (CNSS) of the Los Alamos National Laboratory (LANL) to study the ways in which technology transfer and defense conversion had been accomplished at General Atomics (GA) and Science Applications International Corporation (SAIC) by interviewing Harold Agnew, who had served as director of Los Alamos before becoming president of General Atomics in 1979, and J. Robert Beyster, who had been a staff member at Los Alamos and at General Atomics before founding SAIC in 1969. Harold Agnew readily complied with my request for an interview and also suggested that I talk to Douglas Fouquet, who is in charge of public relations at General Atomics and is their unofficial historian. Robert Beyster was not available for an interview, but, through the courtesy of John C. Hopkins, a former director of CNSS, I was able to interview SAIC`s executive vice president, Donald M. Kerr, who is also a former director at Los Alamos, and Steven Rockwood, a sector vice president at SAIC who was formerly a staff member at the Laboratory Because Agnew, Kerr, and Rockwood are all familiar with LANL, as well as with their respective companies, the interviews becam exercises In comparative analyses of technology transfer. In what follows, I have tried to summarize both the interviews and some of the research which attended them. It is the historian`s hope that by use of comparative institutional analyses, Laboratory administrators may learn something of value in directing their efforts toward the transfer of technology to private industry and other government agencies.

  12. Strategies for the Commercialization and Deployment of Greenhouse Gas Intensity-Reducing Technologies and Practices

    Energy Technology Data Exchange (ETDEWEB)

    Committee on Climate Change Science and Technology Integration (CCCSTI)

    2009-01-01

    New technologies will be a critical component--perhaps the critical component--of our efforts to tackle the related challenges of energy security, climate change, and air pollution, all the while maintaining a strong economy. But just developing new technologies is not enough. Our ability to accelerate the market penetration of clean energy, enabling, and other climate-related technologies will have a determining impact on our ability to slow, stop, and reverse the growth in greenhouse gas (GHG) emissions. Title XVI, Subtitle A, of the Energy Policy Act of 2005 (EPAct 2005) directs the Administration to report on its strategy to promote the commercialization and deployment (C&D) of GHG intensity-reducing technologies and practices. The Act also requests the Administration to prepare an inventory of climate-friendly technologies suitable for deployment and to identify the barriers and commercial risks facing advanced technologies. Because these issues are related, they are integrated here within a single report that we, representing the Committee on Climate Change Science and Technology Integration (CCCSTI), are pleased to provide the President, the Congress, and the public. Over the past eight years, the Administration of President George W. Bush has pursued a series of policies and measures aimed at encouraging the development and deployment of advanced technologies to reduce GHG emissions. This report highlights these policies and measures, discusses the barriers to each, and integrates them within a larger body of other extant policy. Taken together, more than 300 policies and measures described in this document may be viewed in conjunction with the U.S. Climate Change Technology Program's (CCTP's) Strategic Plan, published in September 2006, which focuses primarily on the role of advanced technology and associated research and development (R&D) for mitigating GHG emissions. The CCTP, a multi-agency technology planning and coordination program

  13. Cast Metals Coalition Technology Transfer and Program Management Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people

  14. Technology transfer package on seismic base isolation - Volume III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume III contains supporting materials not included in Volumes I and II.

  15. Technology transfers, foreign investment and productivity spillovers: evidence from Vietnam

    DEFF Research Database (Denmark)

    Newman, Carol; Rand, John; Talbot, Theodore Purdendu

    This paper provides new evidence on the relationship between foreign direct investment (FDI) and the productivity of domestic firms. Using a specially designed survey on a sample of over 7,500 manufacturing firms in Vietnam we uncover some of the mechanisms that explain productivity spillovers from....... Productivity externalities from upstream sectors are associated with joint venture foreign investors while downstream sectors experience direct technology transfers from upstream wholly foreign owned investors. Spillovers from FDI through backward linkages are also detected but only when competition from...

  16. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xuemei [Cellana LLC; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  17. Sustainability Through Technology Licensing and Commercialization: Lessons Learned from the TRIAD Project.

    Science.gov (United States)

    Payne, Philip R O

    2014-01-01

    Ongoing transformation relative to the funding climate for healthcare research programs housed in academic and non-profit research organizations has led to a new (or renewed) emphasis on the pursuit of non-traditional sustainability models. This need is often particularly acute in the context of data management and sharing infrastructure that is developed under the auspices of such research initiatives. One option for achieving sustainability of such data management and sharing infrastructure is the pursuit of technology licensing and commercialization, in an effort to establish public-private or equivalent partnerships that sustain and even expand upon the development and dissemination of research-oriented data management and sharing technologies. However, the critical success factors for technology licensing and commercialization efforts are often unknown to individuals outside of the private sector, thus making this type of endeavor challenging to investigators in academic and non-profit settings. In response to such a gap in knowledge, this article will review a number of generalizable lessons learned from an effort undertaken at The Ohio State University to commercialize a prototypical research-oriented data management and sharing infrastructure, known as the Translational Research Informatics and Data Management (TRIAD) Grid. It is important to note that the specific emphasis of these lessons learned is on the early stages of moving a technology from the research setting into a private-sector entity and as such are particularly relevant to academic investigators interested in pursuing such activities.

  18. Heat transfer characteristics of porous sludge deposits and their impact on the performance of commercial steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Kreider, M.A.; White, G.A.; Varrin, R.D.; Ouzts, P.J.

    1998-12-01

    Steam generator (SG) fouling, in the form of corrosion deposits on the secondary sides of SG tubes, has been known to occur in almost all commercial US nuclear PWR (pressurized water reactor) plants. The level of fouling, as measured by the quantity of corrosion products that form, varies widely from plant to plant. In addition, the effect of SG fouling, as measured by a decrease in effective heat-transfer coefficient, has also varied substantially among commercial US plants. While some have observed large decreases in heat transfer, others have noted little change in performance despite the presence of significant quantities of secondary corrosion layers on their SG tubes. This observation has led to considerable confusion about what role secondary deposits play in causing heat-transfer degradation in SGs. As will become clear later in this report, secondary deposits can have a wide range of effects on heat transfer, from highly resistive to slightly enhancing (reflected by negative fouling). These different behaviors are the result of differences in deposit thickness, composition, and morphology. The main focus of this report is an investigation of the effects of secondary deposits on SG thermal performance. This investigation includes compilation of detailed information on the properties of tube scale at five commercial US nuclear plants and corresponding information characterizing SG thermal performance at these plants.

  19. Product and market study for Los Alamos National Laboratory. Building resources for technology commercialization: The SciBus Analytical, Inc. paradigm

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The study project was undertaken to investigate how entrepreneurial small businesses with technology licenses can develop product and market strategies sufficiently persuasive to attract resources and exploit commercialization opportunities. The study attempts to answer two primary questions: (1) What key business development strategies are likely to make technology transfers successful, and (2) How should the plan best be presented in order to attract resources (e.g., personnel, funding, channels of distribution)? In the opinion of the investigator, Calidex Corporation, if the business strategies later prove to be successful, then the plan model has relevance for any technology licensee attempting to accumulate resources and bridge from technology resident in government laboratories to the commercial marketplace. The study utilized SciBus Analytical, Inc. (SciBus), a Los Alamos National Laboratory CRADA participant, as the paradigm small business technology licensee. The investigator concluded that the optimum value of the study lay in the preparation of an actual business development plan for SciBus that might then have, hopefully, broader relevance and merit for other private sector technology transfer licensees working with various Government agencies.

  20. Evaluation of technology transferring: The experiences of the first Navy Domestic Technology Transfair. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    In August 1989 the Office of the Chief of Naval Research and the American Defense Preparedness Association conducted the first Navy Domestic Technology Transfair. The objective of the Transfair was to expose the US Navy`s years of solid experience across a broad span of technology to organizations outside of the Navy. It was an opportunity for private industry to capitalize on the Navy developed technology and this opening for industry was the primary focus of the Transfair. The event provided a unique forum to meet leading Navy scientific and engineering innovators face-to-face. Information was available concerning licensing of naval technology that was for sale to the private sector. Further, discussions covered opportunities for new cooperative research and development agreements with Navy laboratories and R&D activities. These agreements were authorized under the Federal Technology Transfer Act of 1986. The Transfair program was conducted in such a manner as to allow each Navy inventor, either scientist or engineer, to present a system, piece of hardware, or licensable concept in a formal paper presentation. Then, the Navy inventors were available in two, two-hour periods in which individual discussions were conducted, with attendees pursuing specific venues of cooperative agreements as desired. This report provides specifics concerning the technologies that were made available for transfer to the private sector during the Transfair. The Transfair concept sought to add special emphasis to the opening that the 1988 Technology Transfer Act brought to the marketplace. The experience was a step in the education of the possibilities for cooperation between the government and the private sector to share technology. Of additional significance is the economic enhancement for business expansion with the application of the technology to markets beyond defense.

  1. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies.

    Science.gov (United States)

    Ledley, F D; McNamee, L M; Uzdil, V; Morgan, I W

    2014-02-01

    This report examines the commercialization of gene therapy in the context of innovation theories that posit a relationship between the maturation of a technology through its life cycle and prospects for successful product development. We show that the field of gene therapy has matured steadily since the 1980s, with the congruent accumulation of >35 000 papers, >16 000 US patents, >1800 clinical trials and >$4.3 billion in capital investment in gene therapy companies. Gene therapy technologies comprise a series of dissimilar approaches for gene delivery, each of which has introduced a distinct product architecture. Using bibliometric methods, we quantify the maturation of each technology through a characteristic life cycle S-curve, from a Nascent stage, through a Growing stage of exponential advance, toward an Established stage and projected limit. Capital investment in gene therapy is shown to have occurred predominantly in Nascent stage technologies and to be negatively correlated with maturity. Gene therapy technologies are now achieving the level of maturity that innovation research and biotechnology experience suggest may be requisite for efficient product development. Asynchrony between the maturation of gene therapy technologies and capital investment in development-focused business models may have stalled the commercialization of gene therapy.

  2. Opportunities for the transfer of astronomical technology to medicine.

    Science.gov (United States)

    Hughes, S

    2007-12-01

    There are many examples of technology transfer from astronomy to medicine, for example algorithms for reconstructing X-ray CT images were first developed for processing radio astronomy images. In more recent times, X-ray detectors developed for the Hubble Space Telescope have been used in a fine-needle breast biopsy system. Software originally developed to mosaic planetary images has been incorporated into a system for detecting breast cancer. Australia has expertise in the development of instrumentation for producing radio images from an array of radio telescopes and in multi-object fibre systems for capturing the spectra of hundreds of stellar objects simultaneously. Two possible applications of these Australian technologies are suggested that may merit further exploration. A meeting between interested parties is suggested to discuss future directions and funding.

  3. Spinning-out university technologies: a role for students in the commercialization process

    DEFF Research Database (Denmark)

    Murdock, Karen; Johnsen, Lasse Emil; Ølund, Michael

    2015-01-01

    Universities engage in technology commercialization, based on different motivations including the goal of accomplishing sustainable innovation with economic and societal impact and diversifying income streams. The latter objectives are better realized from spinning out successful new companies......, which compared to licensing create advantages both for the university and the academic inventor. Although universities generally struggle to successfully commercialize research results as new firms, some universities are much better than others at spinning out companies. The research has not identified...... a singular formula to increase university spin-outs. A common theme in much of the empirical evidence is that academics/university researchers lack knowledge related to market development which must be supplemented for successful commercialization. This study analyses the role of non-research students...

  4. Spinning-out university technologies: a role for students in the commercialization process

    DEFF Research Database (Denmark)

    Murdock, Karen; Johnsen, Lasse Emil; Ølund, Michael;

    2015-01-01

    Universities engage in technology commercialization, based on different motivations including the goal of accomplishing sustainable innovation with economic and societal impact and diversifying income streams. The latter objectives are better realized from spinning out successful new companies......, which compared to licensing create advantages both for the university and the academic inventor. Although universities generally struggle to successfully commercialize research results as new firms, some universities are much better than others at spinning out companies. The research has not identified...... a singular formula to increase university spin-outs. A common theme in much of the empirical evidence is that academics/university researchers lack knowledge related to market development which must be supplemented for successful commercialization. This study analyses the role of non-research students...

  5. Formal and Informal Technology Transfer from Academia to Industry : Complementarity Effects and Innovation Performance

    OpenAIRE

    Grimpe, Christoph; Hussinger, Katrin

    2008-01-01

    Literature has identified formal and informal channels in university technology transfer. While formal technology transfer typically involves a legal contract on a patent or on collaborative research activities, informal transfer channels refer to personal contacts and hence to the tacit dimension of knowledge transfer. Research is, however, scarce regarding the interaction of formal and informal transfer mechanisms. In this paper, we analyze whether these activities are mutually reinforcing,...

  6. The role of technological transfer in the societies based on knowledge economy

    OpenAIRE

    2009-01-01

    The knowledge based economy is an economy based on innovation. Implementing innovation requires acquiring new technology, using the technique of technological transfer. The problems and the timing for implementing an emerging technology are under discussion in this paper.

  7. Enhanced Vision Flight Deck Technology for Commercial Aircraft Low-Visibility Surface Operations

    Science.gov (United States)

    Arthur, Jarvis J., III; Norman, R. Michael; Kramer, Lynda J.; Prinzel, Lawrence J., III; Ellis, Kyle K. E.; Harrison, Stephanie J.; Comstock, J. Ray

    2013-01-01

    NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) air field during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and mini cation effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.

  8. Autonomous rendezvous and docking: A commercial approach to on-orbit technology validation

    Science.gov (United States)

    Tchoryk, Peter, Jr.; Whitten, Raymond P.

    1991-01-01

    SpARC, in conjunction with its corporate affiliates, is planning an on-orbit validation of autonomous rendezvous and docking (ARD) technology. The emphasis in this program is to utilize existing technology and commercially available components wherever possible. The primary subsystems to be validated by this demonstration include GPS receivers for navigation, a video-based sensor for proximity operations, a fluid connector mechanism to demonstrate fluid resupply capability, and a compliant, single-point docking mechanism. The focus for this initial experiment will be ELV based and will make use of two residual Commercial Experiment Transporter (COMET) service modules. The first COMET spacecraft will be launched in late 1992 and will serve as the target vehicle. After the second COMET spacecraft has been launched in late 1994, the ARD demonstration will take place. The service module from the second COMET will serve as the chase vehicle.

  9. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  10. Reverse knowledge and technology transfer: imbalances caused by cognitive barriers in asymmetric relationships

    NARCIS (Netherlands)

    Millar-Schijf, Carla C.J.M.; Choi, Chong-Ju

    2009-01-01

    An imbalance exists in almost any type of knowledge and technology transfer due to the information asymmetry of the relationship. However, this is especially the case for reverse technology and knowledge transfer which is epitomised for us by "transfers from an MNC's subsidiary to its headquarters".

  11. FY05 Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-11-01

    Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions

  12. FY05 Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-11-01

    Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions

  13. Evaluation of advanced technologies for residential appliances and residential and commercial lighting

    Energy Technology Data Exchange (ETDEWEB)

    Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

    1995-01-01

    Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

  14. Does Technology Transfer Help Small and Medium Companies? Empirical Evidence from Korea

    Directory of Open Access Journals (Sweden)

    Dae-Hwan Kim

    2016-11-01

    Full Text Available We challenge the view that technology transfer from big companies to small and medium (SM size companies helps SM companies to prosper. With a large dataset of SM companies in Korea, we utilize the stochastic production frontier (SPF model to examine the productivity of inputs and the generalized linear model (GLM to compare business performance between two groups of SM companies: SM companies that receive technology transfer and those that do not receive technology transfer from big companies. The empirical results demonstrate that the transfer of technology from big companies to SM companies help SM companies to enjoy productivity of capital. Nonetheless, SM companies receiving technology transfer were found to underperform in terms of labor productivity and profit margin compared to their counterparts. We further investigate the reasons why SM companies receiving technology transfer from big companies underperform relative to their counterparts, and our findings shows that the former do not export much of their product and face more difficulties such as lower price for their products imposed by big companies than the latter. By identifying the negative rather than the conventionally assumed positive effect of technology transfer, this paper contributes to the literature on the relationship between technology transfer and SM companies’ prosperity in the case of Korea. Our findings have important implications for how SM companies should strategize and rethink about the clauses embedded in the transfer of technology that they receive from big companies because technology transfer plays as a barrier to their prosperity.

  15. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

    2008-05-15

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

  16. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, D.F. [SIMTECHE, Half Moon Bay, CA (United States)

    1997-12-31

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  17. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Science.gov (United States)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  18. Technology transfer significance of the International Safeguards Project Office

    Energy Technology Data Exchange (ETDEWEB)

    Marcuse, W.; Waligura, A.J.

    1988-06-01

    The safeguards implemented by the International Atomic Energy Agency (IAEA) are of major importance to the non-proliferation objectives of the United States of America and other nations of the world. Assurance of safeguards effectiveness is mandatory to continued peaceful use of nuclear power. To enhance the ability of the IAEA to apply safeguards effectively, and to ensure that the IAEA does not lack technical assistance in critical areas, the US Congress has made available a special authorization for a Program for Technical Assistance to IAEA Safeguards (POTAS). This substantial program of technology transfer was initiated in 1976. The United States Departments of State and Energy, the Arms control and Disarmament Agency and the Nuclear Regulatory Commission have each accepted responsibility for parts of the Program for Technical Assistance to IAEA Safeguards. Funding is provided by state through the Foreign Assistance Act. This report provides a discussion of this program.

  19. Technology transfer package on seismic base isolation - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume II contains the proceedings for the Short Course on Seismic Base Isolation held in Berkeley, California, August 10-14, 1992.

  20. Technology transfer package on seismic base isolation - Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume I contains the proceedings of the Workshop on Seismic Base Isolation for Department of Energy Facilities held in Marina Del Rey, California, May 13-15, 1992.

  1. Development and Commercial Application of Ultra-Low Pressure Naphtha Reforming Technology with Continuous Catalyst Regeneration

    Institute of Scientific and Technical Information of China (English)

    Ma Aizeng; Xu Youchun; Yang Dong; Zhang Xinkuan; Wang Jieguang

    2013-01-01

    The development history and major technological innovations of the ultra-low pressure naphtha reforming tech-nology with continuous catalyst regeneration in China were introduced. This technology had been adopted by the 1.0 Mt/a CCR unit at the Guangzhou Company. The appropriate catalyst was selected to meet the demand of the unit capacity, the feedstock, and the product slate. The design parameters, including the reaction pressure, the octane number of C5+ liquid product, the reaction temperature, the space velocity, the hydrogen/oil molar ratio, and the catalyst circulating rate, were chosen based on the study of process conditions and parameters. The commercial test results showed that the research oc-tane number of C5+ product reached 104 when the capacity of the CCR unit was 100% and 115% of the design value. The other technical targets attained or exceeded the expected value.

  2. Development of air conditioning technologies to reduce CO2 emissions in the commercial sector

    Science.gov (United States)

    Yoshida, Yukiko

    2006-01-01

    Background Architectural methods that take into account global environmental conservation generally concentrate on mitigating the heat load of buildings. Here, we evaluate the reduction of carbon dioxide (CO2) emissions that can be achieved by improving heating, ventilating, and air conditioning (HVAC) technologies. Results The Climate Change Research Hall (CCRH) of the National Institute for Environmental Studies (NIES) is used as a case study. CCRH was built in line with the "Green Government Buildings" program of the Government Buildings Department at the Ministry of Land, Infrastructure and Transport in Japan. We have assessed the technology used in this building, and found that there is a possibility to reduce energy consumption in the HVAC system by 30%. Conclusion Saving energy reduces CO2 emissions in the commercial sector, although emission factors depend on the country or region. Consequently, energy savings potential may serve as a criterion in selecting HVAC technologies with respect to emission reduction targets. PMID:17062161

  3. Development of air conditioning technologies to reduce CO2 emissions in the commercial sector

    Directory of Open Access Journals (Sweden)

    Yoshida Yukiko

    2006-10-01

    Full Text Available Abstract Background Architectural methods that take into account global environmental conservation generally concentrate on mitigating the heat load of buildings. Here, we evaluate the reduction of carbon dioxide (CO2 emissions that can be achieved by improving heating, ventilating, and air conditioning (HVAC technologies. Results The Climate Change Research Hall (CCRH of the National Institute for Environmental Studies (NIES is used as a case study. CCRH was built in line with the "Green Government Buildings" program of the Government Buildings Department at the Ministry of Land, Infrastructure and Transport in Japan. We have assessed the technology used in this building, and found that there is a possibility to reduce energy consumption in the HVAC system by 30%. Conclusion Saving energy reduces CO2 emissions in the commercial sector, although emission factors depend on the country or region. Consequently, energy savings potential may serve as a criterion in selecting HVAC technologies with respect to emission reduction targets.

  4. Development of air conditioning technologies to reduce CO2 emissions in the commercial sector.

    Science.gov (United States)

    Yoshida, Yukiko

    2006-10-25

    Architectural methods that take into account global environmental conservation generally concentrate on mitigating the heat load of buildings. Here, we evaluate the reduction of carbon dioxide (CO2) emissions that can be achieved by improving heating, ventilating, and air conditioning (HVAC) technologies. The Climate Change Research Hall (CCRH) of the National Institute for Environmental Studies (NIES) is used as a case study. CCRH was built in line with the "Green Government Buildings" program of the Government Buildings Department at the Ministry of Land, Infrastructure and Transport in Japan. We have assessed the technology used in this building, and found that there is a possibility to reduce energy consumption in the HVAC system by 30%. Saving energy reduces CO2 emissions in the commercial sector, although emission factors depend on the country or region. Consequently, energy savings potential may serve as a criterion in selecting HVAC technologies with respect to emission reduction targets.

  5. Information to Change the World--Fulfilling the Information Needs of Technology Transfer.

    Science.gov (United States)

    Duberman, Josh; Zeller, Martin

    1996-01-01

    Provides an introduction to fulfilling the information needs of technology transfer. Highlights include a definition of technology transfer; government and university involvement; industry's role; publishers; an annotated list of information sources and contacts; technology assessment, including patent searching, competitive intelligence, and…

  6. 78 FR 59410 - Small Business Innovation Research and Small Business Technology Transfer Programs...

    Science.gov (United States)

    2013-09-26

    ... ADMINISTRATION Small Business Innovation Research and Small Business Technology Transfer Programs... period for the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR... Street SW., Washington, DC 20416; or send an email to Technology@sba.gov . Highlight the information that...

  7. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    Science.gov (United States)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  8. Technical Demand of Commercial Paddy Farmers in the Context of Labor Transfer

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    On the basis of document research,we summed up factors of technical demand of commercial paddy farmers to four aspects:individual characteristics of farmers,natural endowment of resources,factors related to risks,and information factor.Then,we put forward relevant hypotheses.From survey results of 241 farmer households in 4 southwestern provinces(regions),by the binary logistic regression analysis method,we empirically studied influences of the above four factors on technical demand of commercial paddy farmers.Results show that commercial paddy farmers like simple and high yield cultivation technique best,while individual characteristics of farmers,natural endowment of resources,factors related to risks,and information factors are major factors influencing different agricultural technical demand of commercial paddy farmers.

  9. The Software Technology Center at Lawrence Livermore National Laboratory: Software engineering technology transfer in a scientific R&D laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Zucconi, L.

    1993-12-01

    Software engineering technology transfer for productivity and quality improvement can be difficult to initiate and sustain in a non-profit research laboratory where the concepts of profit and loss do not exist. In this experience report, the author discusses the approach taken to establish and maintain a software engineering technology transfer organization at a large R&D laboratory.

  10. Factors that Influence the Dissemination of Knowledge in Technology Transfer among Malaysian Manufacturing Employees

    Directory of Open Access Journals (Sweden)

    Mughaneswari ap Sahadevan

    2014-04-01

    Full Text Available The meaning of technology transfer is so wide but mostly involving some form of technology-re- lated exchange. However, in this particular paper, technology transfer is consider as a concept to examine the process of disseminating knowledge and skills that a person owned to another per- son in order to generate higher productivity with new approach of producing a particular prod- uct or service. Although, many researchers have explored the evolution of technology transfer, nonetheless some drivers are yet to be explored in a Malaysian manufacturing industry. This study, therefore attempts to determine the relationship between absorptive capacity, transfer capacity, communication motivation and learning intent and technology transfer performance. A survey methodology was used in a Japanese multinational company based in Klang Valley, Malaysia. A total of 117 questionnaires were received. Results show that absorptive capacity is the most signifi- cant to influence technology transfer performance.

  11. Technology Transfer Challenges in Indonesia: An Experience from Industry Turbine Overhaul

    Directory of Open Access Journals (Sweden)

    Subiakto Soekarno

    2012-01-01

    Full Text Available This paper discusses the problems and challenges that Indonesia faces in the process of its technology transfer. Matters discussed in this paper are based on the lead writer’s personal observation and experience of the technology transfer taking place in Indonesia’s turbine maintenance and overhaul industry.The first challenge faced is the lack of basic skills on the part of factory workers. The next challenge is the lack of supporting industries. Furthermore, the low level of English proficiency of the workforce has contribution to the technology transfer problems. Final challenges are the low credibility of the government entities that oversee the turbine maintenance industry in Indonesia. The steps undertaken in the technology transfer in the turbine maintenance and overhaul industry in Indonesia is done through several complex stages.Keywords: challenges in the transfer of technology, technology transfer in Indonesia, turbine maintenance and overhaul industry.

  12. Synthetic Vision System Commercial Aircraft Flight Deck Display Technologies for Unusual Attitude Recovery

    Science.gov (United States)

    Prinzel, Lawrence J., III; Ellis, Kyle E.; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel

    2017-01-01

    A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that the lack of external visual references was associated with a flight crew's loss of attitude awareness or energy state awareness in 17 of these events. Therefore, CAST recommended development and implementation of virtual day-Visual Meteorological Condition (VMC) display systems, such as synthetic vision systems, which can promote flight crew attitude awareness similar to a day-VMC environment. This paper describes the results of a high-fidelity, large transport aircraft simulation experiment that evaluated virtual day-VMC displays and a "background attitude indicator" concept as an aid to pilots in recovery from unusual attitudes. Twelve commercial airline pilots performed multiple unusual attitude recoveries and both quantitative and qualitative dependent measures were collected. Experimental results and future research directions under this CAST initiative and the NASA "Technologies for Airplane State Awareness" research project are described.

  13. Commercial Practice on Technology for High- Temperature Cracking of C4 Fraction to Increase Propylene Yield

    Institute of Scientific and Technical Information of China (English)

    Yu Darong; Zhang Zhigang

    2003-01-01

    This article refers to the results of small-scale and commercial tests on high-temperature cracking of C4 fraction in FCC unit to increase the propylene yield. The bench tests revealed that the conversion rate of C4 fraction during high-temperature cracking reached 37.38 % and propylene yield was equal to 15.60 % with the conversion rate of C4 olefins equating around 50%. The results of commercial application showed that adoption of the technology for high-temperature cracking of C4 fraction in FCC unit had led to an increase of propylene yield by 2.16 % with no remarkable changes in the yields and properties of other products.

  14. From technology transfer to local manufacturing: China's emergence in the global wind power industry

    Science.gov (United States)

    Lewis, Joanna Ingram

    This dissertation examines the development of China's large wind turbine industry, including the players, the status of the technology, and the strategies used to develop turbines for the Chinese market. The primary goals of this research project are to identify the models of international technology transfer that have been used among firms in China's wind power industry; examine to what extent these technology transfers have contributed to China's ability to locally manufacture large wind turbine technology; and evaluate China's ability to become a major player in the global wind industry. China is a particularly important place to study the opportunities for and dynamics of clean energy development due to its role in global energy consumption. China is the largest coal consuming and producing nation in the world, and consequently the second largest national emitter of carbon dioxide after only the United States. Energy consumption and carbon emissions are growing rapidly, and China is expected to surpass the US and become the largest energy consuming nation and carbon dioxide emitter in coming decades. The central finding of this dissertation is that even though each firm involved in the large wind turbine manufacturing industry in China has followed a very different pathway of technology procurement for the Chinese market, all of the firms are increasing the utilization of locally-manufactured components, and many are doing so without transferring turbine technology or the associated intellectual property. Only one fully Chinese-owned firm, Goldwind, has succeeded in developing a commercially available large wind turbine for the Chinese market. No Chinese firms or foreign firms are manufacturing turbines in China for export overseas, though many have stated plans to do so. There already exists a possible niche market for the smaller turbines that are currently being made in China, particularly in less developed countries that are looking for less expensive

  15. Analyzing the Impacts of an IPM Vegetable Technology Transfer in Bangladesh

    OpenAIRE

    McCarthy, Evan Tyler

    2015-01-01

    This study evaluates the effectiveness and impacts of USAID's IPM IL vegetable technology transfer subproject in Bangladesh. The effectiveness of the technology transfer is evaluated in four ways: IPM adoption rates and determinants of IPM adoption, measuring the impact of IPM adoption on vegetable yields, pest management costs, and the number of pesticide applications used, estimation of the economic impacts of IPM adoption and the technology transfer, and analysis of the relative efficienc...

  16. Technology Transfer: A Compilation of Varied Approaches to the Management of Innovation.

    Science.gov (United States)

    1982-12-01

    Intergovernmental Cooperation in Science and Tech- nology--J. E. Clark 89. Department of Defense Technology Transfer Consor- tium: An Overview--G. F...DEPARTMENT OF DEFENSE TECHNOLOGY TRANSFER CONSORTIUM: AN OVERVIEW George F. Linsteadt Abstract The federal R&D laboratories represent a large...agencies who have compatible requirements. The Department of Defense Technology Transfer Consortium, as a subset of the Federal Laboratory Consortium for

  17. Machine to machine (M2M) technology in demand responsive commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Watson, David S.; Piette, Mary Ann; Sezgen, Osman; Motegi, Naoya; ten Hope, Laurie

    2004-08-01

    Machine to Machine (M2M) is a term used to describe the technologies that enable computers, embedded processors, smart sensors, actuators and mobile devices to communicate with one another, take measurements and make decisions--often without human intervention. M2M technology was applied to five commercial buildings in a test. The goal was to reduce electric demand when a remote price signal rose above a predetermine price. In this system, a variable price signal was generated from a single source on the Internet and distributed using the meta-language, XML (Extensible Markup Language). Each of five commercial building sites monitored the common price signal and automatically shed site-specific electric loads when the price increased above predetermined thresholds. Other than price signal scheduling, which was set up in advance by the project researchers, the system was designed to operate without human intervention during the two-week test period. Although the buildings responded to the same price signal, the communication infrastructures used at each building were substantially different. This study provides an overview of the technologies used at each building site, the price generator/server, and each link in between. Network architecture, security, data visualization and site-specific system features are characterized. The results of the test are discussed, including: functionality at each site, measurement and verification techniques, and feedback from energy managers and building operators. Lessons learned from the test and potential implications for widespread rollout are provided.

  18. Preparation for commercial demonstration of biomass-to-ethanol conversion technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The objective of this program was to complete the development of a commercially viable process to produce fuel ethanol from renewable cellulosic biomass. The program focused on pretreatment, enzymatic hydrolysis, and fermentation technologies where Amoco has a unique proprietary position. Assured access to low-cost feedstock is a cornerstone of attractive economics for cellulose to ethanol conversion in the 1990s. Most of Amoco`s efforts in converting cellulosic feedstocks to ethanol before 1994 focused on using paper from municipal solid waste as the feed. However, while many municipalities and MSW haulers expressed interest in Amoco`s technology, none were willing to commit funding to process development. In May, 1994 several large agricultural products companies showed interest in Amoco`s technology, particularly for application to corn fiber. Amoco`s initial work with corn fiber was encouraging. The project work plan was designed to provide sufficient data on corn fiber conversion to convince a major agriculture products company to participate in the construction of a commercial demonstration facility.

  19. Advanced robotic technologies for transfer at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C.

    1994-10-01

    Hazardous operations which have in the past been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. As a result, remote systems are needed to accomplish many hazardous materials handling tasks such as the clean-up of waste sites in which the exposure of personnel to radiation, chemical, explosive and other hazardous constituents is unacceptable. Computer models augmented by sensing, and structured, modular computing environments are proving effective in automating many unstructured hazardous tasks. Work at Sandia National Laboratories (SNL) has focused on applying flexible automation (robotics) to meet the needs of the U.S. Department of Energy (USDOE). Dismantling facilities, environmental remediation, and materials handling in changing, hazardous environments lead to many technical challenges. Computer planning, monitoring and operator assistance shorten training cycles, reduce errors, and speed execution of operations. Robotic systems that re-use well-understood generic technologies can be much better characterized than robotic systems developed for a particular application, leading to a more reliable and safer systems. Further safety in robotic operations results from use of environmental sensors and knowledge of the task and environment. Collision detection and avoidance is achieved from such sensor integration and model-based control. This paper discusses selected technologies developed at SNL for use within the USDOE complex that have been or are ready for transfer to government and industrial suppliers. These technologies include sensors, sub-systems, and the design philosophy applied to quickly integrate them into a working robotic system. This paper represents the work of many people at the Intelligent Systems and Robotics Center at SNL, to whom the credit belongs.

  20. Summary tables of six commercially available entry control and contraband detection technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, John Anthony

    2005-07-01

    Existing contraband detection and entry control devices such as metal detectors, X-ray machines, and radiation monitors were investigated for their capability to operate in an automated environment. In addition, a limited number of new devices for detection of explosives, chemicals, and biological agents were investigated for their feasibility for inclusion in future physical security systems. The tables in this document resulted from this investigation, which was part of a conceptual design upgrade for the United States Mints. This summary of commercially available technologies was written to provide a reference for physical security upgrades at other sites.

  1. Satisfaction with Online Commercial Group Chat: The Influence of Perceived Technology Attributes, Chat Group Characteristics, and Advisor Communication Style

    NARCIS (Netherlands)

    van Dolen, W.M.; Dabholkar, P.A.; de Ruyter, J.C.

    2007-01-01

    This study examines online commercial group chat from a structuration theory perspective. The findings support the influence of perceived technology attributes (control, enjoyment, reliability, speed, and ease of use) and chat group characteristics (group involvement, similarity, and receptivity) on

  2. Development of Light Cycle Oil (LCO) Hydrocracking Technology over a Commercial W-Ni Based Catalyst

    Institute of Scientific and Technical Information of China (English)

    Peng Chong; Yang Xuejing; Fang Xiangchen; Huang Xinlu; Cheng Zhenmin; Zeng Ronghui; Guo Rong

    2015-01-01

    Because of its high density and low cetane number, the light cycle oil (LCO) containing heavy aromatics (60%—80%) can hardly be transformed through the conventional hydro-upgrading technology. In this report, a novel LCO hydrocracking technology (FD2G) was proposed for the utilization of LCO to manufacture high value-added products. Through the ingenious combination of hydroprocessing catalyst and the hydrocracking process, the high octane gasoline and the ultra-low sulfur diesel (ULSD) blendstocks were produced simultaneously. The inlfuence of catalyst type, reaction temperature, pressure, respectively, on the research octane number (RON) of produced gasoline was studied in a ifxed bed hydrogenation reactor. It indicated that high reaction temperature and medium pressurewould favor the production of high-octane gasoline through the conversion of bi-aromatic and tri-aromatic hydrocarbons. The typical results of FD2G tech-nology on commercial units showed that it could produce clean diesel with a sulfur content of less than 10 μg/g and clean gasoline with a research octane number (RON) of up to 92. It would be contributed to the achievement of the maximum proift of a reifnery, the FD2G technology could provide a higher economic efifciency than the other diesel quality upgrading technology under the current gasoline and diesel price system.

  3. Development of a Screening Tool to Facilitate Technology Transfer of an Innovative Technology to Treat Perchlorate-Contaminated Water

    Science.gov (United States)

    2008-03-01

    specific technology screening instrument, Mandalas et al. (1998) demonstrated that technology transfer can be facilitated by making available user...S. D., and Aly, O. M. (1998). Chemistry of Water Treatment, 2nd Edition. Boca Raton, Florida: Lewis Publishers. Goltz, M. N., Mandalas , G. C...McGraw-Hill. Mandalas , G., Christ, J., and Goltz, M. (1998). Software to Aid Transfer of an Innovative In Situ Bioremediation Technology

  4. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Erik

    2015-06-01

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  5. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  6. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  7. Feasibility Study For Use Of Commercial Cask Vendor Dry Transfer Systems To Unload Used Fuel Assemblies In L-Area

    Energy Technology Data Exchange (ETDEWEB)

    Krementz, Dan; Rose, David; Dunsmuir, Mike

    2014-02-06

    The purpose of this study is to determine whether a commercial dry transfer system (DTS) could be used for loading or unloading used nuclear fuel (UNF) in L-Basin and to determine if a DTS pool adapter could be made for L-Basin Transfer Pit #2 that could accommodate a variety of DTS casks and fuel baskets or canisters up to 24” diameter.[1, 2] This study outlines the technical feasibility of accommodating different vendor dry transfer systems in the L-Basin Transfer Bay with a general work scope. It identifies equipment needing development, facility modifications, and describes the needed analyses and calculations. After reviewing the L-Basin Transfer Bay area layout and information on the only DTS system currently in use for the Nuclear Assurance Corporation Legal Weight Truck cask (NAC LWT), the authors conclude that use of a dry transfer cask is feasible. AREVA was contacted and acknowledged that they currently do not have a design for a dry transfer cask for their new Transnuclear Long Cask (TN-LC) cask. Nonetheless, this study accounted for a potential future DTS from AREVA to handle fuel baskets up to 18” in diameter. Due to the layout of the Transfer Bay, it was determined that a DTS cask pool adapter designed specifically for spanning Pit #2 and placed just north of the 70 Ton Cask lid lifting superstructure would be needed. The proposed pool adapter could be used to transition a fuel basket up to 24” in diameter and ~11 feet long from a dry transfer cask to the basin. The 18” and 24” applications of the pool adapter are pending vendor development of dry transfer casks that accommodate these diameters. Once a fuel basket has been lowered into Pit #2 through a pool adapter, a basket cart could be used to move the basket out from under the pool adapter for access by the 5 Ton Crane. The cost to install a dry transfer cask handling system in L-Area capable of handling multiple vendor provided transport and dry transfer casks and baskets with

  8. From invention to innovation: Commercialization of new technology by independent and small business inventors

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-05-15

    This handbook emerged from the commitment of Energy-Related Inventions Program personnel to supporting the commercialization efforts of independent and small business inventors with new technologies. As you read this document, you will face questions that may seem far removed from technological concerns--questions about the market, your competition, your business structure, and about legal and regulatory requirements. These may seem peripheral to your present and future work. But, make no mistake, you must carefully and honestly consider and answer these if you expect to penetrate the market in sustained way and profit from your work. Over four hundred of your peers--some by success, others by failure--have shown us the lessons incorporated in this volume. By using it, and by commenting on it, you benefit from their collective experience, and make invaluable additions to it. 4 figs., 3 tabs.

  9. Commercial applications of speech interface technology: an industry at the threshold.

    Science.gov (United States)

    Oberteuffer, J A

    1995-10-24

    Speech interface technology, which includes automatic speech recognition, synthetic speech, and natural language processing, is beginning to have a significant impact on business and personal computer use. Today, powerful and inexpensive microprocessors and improved algorithms are driving commercial applications in computer command, consumer, data entry, speech-to-text, telephone, and voice verification. Robust speaker-independent recognition systems for command and navigation in personal computers are now available; telephone-based transaction and database inquiry systems using both speech synthesis and recognition are coming into use. Large-vocabulary speech interface systems for document creation and read-aloud proofing are expanding beyond niche markets. Today's applications represent a small preview of a rich future for speech interface technology that will eventually replace keyboards with microphones and loud-speakers to give easy accessibility to increasingly intelligent machines.

  10. Moving R&D to the Marketplace, A Guidebook for Technology Transfer Managers

    Energy Technology Data Exchange (ETDEWEB)

    Mock, John E.; Kenkeremath, Deepak C.; Janis, F. Timothy

    1993-01-01

    This Guidebook serves as an introduction as well as a refresher for technology transfer managers. It focuses on the question: What can the Technology Transfer manager do when confronted by complex situations and events? The main functional issues addressed here concern the conduct of technology transfer in Technology Utilization programs. These R&D programs whose primary mission is to develop technologies that will be used outside of the Federal sector. Renewable energy, health care, and agricultural advances are technologies of this type. The contents of this Guidebook will be of value to managers in a variety of Federal, State, university and industry technology development and transfer programs. The general area of transferring service innovations is not covered here. The Guidebook is primarily about the development and care of hardware. This Guidebook makes no attempt to judge the value of specific technologies in meeting societal needs. Rather, it addresses the improvement of the technology transfer process itself. It does, however, include reminders that ascertainment of the social value of specific technologies is one of the important yet difficult tasks of R&D and technology transfer programs. [DJE-2005

  11. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride

    NARCIS (Netherlands)

    Zomer, P. J.; Dash, S. P.; Tombros, N.; van Wees, B. J.

    2011-01-01

    We present electronic transport measurements of single and bilayer graphene on commercially available hexagonal boron nitride. We extract mobilities as high as 125 000 cm(2) V-1 s(-1) at room temperature and 275 000 cm(2) V-1 s(-1) at 4.2 K. The excellent quality is supported by the early developmen

  12. Final technical report: Commercialization of the Biofine technology for levulinic acid production from paper sludge

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, Stephen W.

    2002-04-23

    This project involved a three-year program managed by BioMetics, Inc. (Waltham, MA) to demonstrate the commercial feasibility of Biofine thermochemical process technology for conversion of cellulose-containing wastes or renewable materials into levulinic acid, a versatile platform chemical. The program, commencing in October 1995, involved the design, procurement, construction and operation of a plant utilizing the Biofine process to convert 1 dry ton per day of paper sludge waste. The plant was successfully designed, constructed, and commissioned in 1997. It was operated for a period of one year on paper sludge from a variety of source paper mills to collect data to verify the design for a commercial scale plant. Operational results were obtained for four different feedstock varieties. Stable, continuous operation was achieved for two of the feedstocks. Continuous operation of the plant at demonstration scale provided the opportunity for process optimization, development of operational protocols, operator training and identification of suitable materials of construction for scale up to commercial operation . Separated fiber from municipal waster was also successfully processed. The project team consisted of BioMetics Inc., Great Lakes Chemical Corporation (West Lafayette, IN), and New York State Energy Research and Development Authority (Albany, NY).

  13. Giving It Away : Free Technology Transfer to the Irish SME Sector

    OpenAIRE

    Kavanagh, Peter; Maguire, Andy; Casey, James J.

    2006-01-01

    One of Europe’s major weaknesses lies in its inferiority in terms of transforming the results of technological research and skills into innovations and competitive advantages. (European Commission, 1995, p. 8.) Technology transfer is a key aspect of economic development and research administration. These concerns are shared equally between academia and industry on both sides of the Atlantic. As technology is developed at a greater rate, concerns about the technology transfer will heighten....

  14. LAN technology transfer using the Naval Postgraduate School as a case study

    OpenAIRE

    1995-01-01

    In today's Department of Defense (DoD) environment, more emphasis is being placed on using computing resources to receive and process information. Local area networks (LANs) are used to access these computing resources by users. As new resources are added to networks, an effective mechanism is required to transfer this technology to the users. The effective transfer of technology requires user awareness of the technology and the ability of the user to use the technology. NA NA U.S. N...

  15. Biogas upgrading - Review of commercial technologies; Biogasuppgradering - Granskning av kommersiella tekniker

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Fredric; Hulteberg, Christian; Persson, Tobias; Tamm, Daniel

    2013-04-01

    Biogas production is growing and there is an increasing demand for upgraded biogas, to be used as vehicle fuel or injected to the natural gas grid. To enable the efficient use of biogas in these applications the gas must be upgraded, i.e. the carbon dioxide, which constitutes a large part of the raw biogas from the digester, must be separated from the methane. This report aims to evaluate the biogas upgrading technologies that are commercially available and in operation today: amine scrubbers, water scrubbers, PSA units, organic scrubbers and membrane units. The technologies are described in detail by presenting the theory behind the separation mechanism, the upgrading process as a complete system, operational issues and how these are solved, and finally the most important financial data. Furthermore, the best developed cryogenic technologies, which today are being used to purify landfill gas and biogas from some specific components and to liquefy biogas, are presented. Cryogenic upgrading is an interesting possibility, but as this report shows, the technology still has some important operational issues to resolve. Technologies which are especially focused on small-scale applications are finally presented, however not in as much detail as the other, more common technologies. The report shows that for mid-scale applications, the most common options are all viable. The scrubbing technologies all perform well and have similar costs of investment and operation. The simplicity and reliability of the water scrubber has made this the preferred choice in many applications, but the high purity and very low methane slip from amine scrubbers are important characteristics. Regarding PSA and membrane units, the investment cost for these are about the same as for scrubbers. Furthermore, recent developments of the membrane units have also made it possible to reach low methane slips with this technology. Biogas production is increasing, in Sweden and globally, and the interest for

  16. Determination of technology transfer requirements for enhanced oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T.D.; Scott, J.P.

    1980-09-01

    A detailed field study was conducted to determine the technical information needs of current and potential users of enhanced oil recovery data. Under the direction of the Bartlesville Energy Technology Center (BETC), the study (1) identifies groups which have a need for EOR-related information, (2) delineate the specific information needs of each user-group, and (3) outlines methods for improved transfer of appropriate information to the end users. This study also assesses attitudes toward the EOR-related efforts of the US Department of Energy (DOE) and the BETC, and the role each should play in facilitating the commercialization of EOR processes. More than 300 users and potential users of EOR information were surveyed. Included in the survey sample were representatives of major oil companies, independent oil companies, engineering consulting firms, university and private research organizations, financial institutions and federal, state, and local policy-making bodies. In-depth questionnaires were specifically designed for each group. This study analyzes each group's position pertaining to (1) current level of EOR activity or interest, (2) current and projected EOR information needs, (3) assessments of the BETC's current information services and suggestions for improvement, (4) delineation of technical and economic constraints to increased EOR activity, and (5) steps the DOE might take to enhance the attractiveness of commercial EOR operations.

  17. Conditions of the potential for commercialization of the patent: the implementation of a technology public offering system technology at CNEN; Condicionantes do potencial de exploracao comercial da patente: a implantacao de um sistema de oferta publica de tecnologia na CNEN

    Energy Technology Data Exchange (ETDEWEB)

    Archila, Daniela Lima Cerqueira

    2015-07-01

    This dissertation identifies the main factors which represent the conditions for the potential commercialization of patents aiming at the implementation of a system for technology public offering at CNEN as a strategy for creating licensing opportunities to the industrial sector. The method applied refers to an exploratory case study of a patented technology selected from a sample of CNEN's patent portfolio in the biopharmaceutical sector. The case study comprehends a field research of interviews conducted with two specialists in technology and innovation management, one researcher from CNEN and a biopharmaceutical company. The results show that among the nineteen main factors - related to technology, market, business and Science and Technology Organization (STO) - the market dynamics, the potential applications of the technology and an abstract of its main benefits compared to existing technologies are the major relevant information for each technology to be included in the public offering system. Other results indicate that the evaluation of such factors may be conducted by competent professionals to bring less uncertainty and risk to the early-stage of the innovation process, as well as enhance the potential interest of a company in the technology. On the other hand, the latter requires innovation capabilities to move the technology forward – additional R&D, scale-up, manufacturing and marketing - whilst the STO needs a entrepreneurial culture that mitigates its obstacles, creates more positive solutions for its routines and processes and gives sustainability to its Technology Transfer Office (TTO) through valuing its personnel in the long term. Finally, emphasis on technological partnerships with companies can be a motivating feature for directing the STO's patent strategy to the creation of proprietary technological platforms that reflect problems experienced by the commercial environment, as well as the development of this strategic patent

  18. Systems Integration, Analysis and Modeling Support to the HEDS Technology/Commercialization Initiative (HTCI)

    Science.gov (United States)

    Feingold, Harvey; ONeil, Dan (Technical Monitor)

    2002-01-01

    In response to a recommendation from OMB, NASA's Fiscal Year 2001 budget included a new program within the HEDS (Human Exploration and Development of Space) Enterprise called HEDS Technology/ Commercialization Initiative (HTCI). HTCI had three overarching goals: to support REDS analysis and planning for safe, affordable and effective future programs and projects that advance human exploration, scientific discovery, and the commercial development of space; to pursue research, development, and validation of breakthrough technologies and highly innovative systems concepts; and to advance die creation of strong partnerships within NASA, with U.S. industry and universities, and internationally. As part of its contracted effort, SAIC was to write a report contribution, describing die results of its task activities, to a final HTCI report prepared by MSFC. Unfortunately, government cancellation of the HTCI program in the summer of 2001 curtailed all efforts on the program including die Final HTCI report. In the absence of that report, SAIC has issued this final report in an attempt to document some of the technical material it produced. The report contains SAIC presentations for both HTCI workshops; a set of roadmap charts for the Systems Analysis, Integration and Modeling; and charts showing the evolution of the current TITAN modeling architecture.

  19. Estimating the economic and demographic impacts of solar technology commercialization on US regions

    Energy Technology Data Exchange (ETDEWEB)

    Kort, J.R.

    1980-12-01

    The purpose of this study is to develop a framework through which these regional economic and demographic impacts of solar technology commercialization can be analyzed. Two models comprise the basis of this framework - a national input/output model and an interregional econometric model, the National-Regional Impact Evaluation System (NRIES). These models are used to convert projected sales of solar energy systems to gross output concepts, and to evaluate the impacts associated with these sales. Analysis is provided for the nine census regions and 50 states and the District of Columbia for the years 1980 through 1990. Impacts on major economic aggregates such as output, employment, income, and population are described. The methodology used in this study is described. The economic and demographic impacts of solar technology commercialization on US regions and states are presented. The major conclusions of the study are summarized, and direction is provided for further research. Detailed tables of regional and state solar energy expenditures and their impacts appear in the Appendix.

  20. Report to Congress: Expressions of interest in commercial clean coal technology projects in foreign countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report was prepared in response to the guidance provided by the Congress in the course of the Fiscal Year 1995 appropriations process for the Department of Energy`s (DOE) Office of Fossil Energy (FE). As described in detail below, DOE was directed to make the international dissemination of Clean Coal Technologies (CCTs) an integral part of its policy to reduce greenhouse gas emissions in developing countries. Congress directed DOE to solicit ``Statements of Interest`` in commercial projects employing CCTs in countries projected to have significant growth in greenhouse gas emissions. Additionally, DOE was asked to submit to the Congress a report that analyzes the information contained in the Statements of Interest, and that identifies the extent to which various types of Federal incentives would accelerate the commercial availability of these technologies in an international context. In response to DOE`s solicitation of 18 November 1994, 77 Statements of Interest were received from 33 companies, as well as five additional materials. The contents of these submittals, including the requested Federal incentives, the CCTs proposed, the possible host countries, and the environmental aspects of the Statements of Interest, are described and analyzed in the chapters that follow.

  1. Systems Integration, Analysis and Modeling Support to the HEDS Technology/Commercialization Initiative (HTCI)

    Science.gov (United States)

    Feingold, Harvey; ONeil, Dan (Technical Monitor)

    2002-01-01

    In response to a recommendation from OMB, NASA's Fiscal Year 2001 budget included a new program within the HEDS (Human Exploration and Development of Space) Enterprise called HEDS Technology/ Commercialization Initiative (HTCI). HTCI had three overarching goals: to support REDS analysis and planning for safe, affordable and effective future programs and projects that advance human exploration, scientific discovery, and the commercial development of space; to pursue research, development, and validation of breakthrough technologies and highly innovative systems concepts; and to advance die creation of strong partnerships within NASA, with U.S. industry and universities, and internationally. As part of its contracted effort, SAIC was to write a report contribution, describing die results of its task activities, to a final HTCI report prepared by MSFC. Unfortunately, government cancellation of the HTCI program in the summer of 2001 curtailed all efforts on the program including die Final HTCI report. In the absence of that report, SAIC has issued this final report in an attempt to document some of the technical material it produced. The report contains SAIC presentations for both HTCI workshops; a set of roadmap charts for the Systems Analysis, Integration and Modeling; and charts showing the evolution of the current TITAN modeling architecture.

  2. The Effects of Absorptive Capacity and Recipient Collaborativeness as Technology Recipient Characteristics on Degree of Inter-Firm Technology Transfer

    Directory of Open Access Journals (Sweden)

    A. W. Sazali

    2009-01-01

    Full Text Available Problem statement: As an efficient means to increase global competitiveness, technological capabilities and potential for local innovation, organizations in the developing countries are working hard to collaborate, learn and internalize their foreign partner’s technological knowledge by forming strategic alliances or International Joint Ventures (IJVs. Technology recipient characteristics, as one of the important actors/facilitators of inter-firm technology transfer, have increasingly become crucial factors in determining the success or failure of inter-firm technology transfer within IJVs. Since the current issue on inter-firm Technology Transfer (TT in the developing countries is centered on the efficiency and effectiveness of the transfer process by the Multinationals (MNCs therefore the success is often associated with or measured by degree of technology transferred to local partners. Based on the underlying knowledge-based view and organizational learning perspective, this study aims to empirically examine the effects of two critical elements of technology recipient characteristics: Absorptive Capacity (ACAP and Recipient Collaborativeness (RCOL on degree of technology transfer: Degree of tacit and explicit knowledge in IJVs. Approach: Using the quantitative analytical approach, the theoretical model and hypotheses in this study were tested based on empirical data gathered from 128 joint venture companies registered with the Registrar of Companies Of Malaysia (ROC. Data obtained from the survey questionnaires were analyzed using the correlation coefficients and multiple linear regression analyses. Results: The results revealed that recipient collaborativeness as the critical element of technology recipient characteristics has strong significant effects on both degrees of tacit and explicit knowledge. Although absorptive capacity has been strongly emphasized of its significance effect, however, the results are not statistically significant

  3. Technology transfer at CERN a study on inter-organizational knowledge transfer within multi-national R&D collaborations

    CERN Document Server

    Huuse, H; Streit-Bianchi, M

    2004-01-01

    This study focus on the knowledge aspect of inter-organizational technology transfer projects. We have studied two large R&D collaborations where CERN is involved as one of several participating organizations, in order to reveal the causalities related to the knowledge transfer processes within these projects. The objective of the study is to understand how knowledge transfer happens, identify influencing factors to the process, and finally investigate the outcome of such processes. The study is founded on a thorough literature review where we examine different aspects of inter-organizational knowledge transfer. Based on the theory, we develop an analytic framework and establish different elements in the knowledge transfer process to study in more detail. This framework illustrates the relation between the different elements in a knowledge transfer process and provides the structure for our empirical foundation. We perform an explanatory embedded multiple case study and analyze our findings in terms of th...

  4. Using CASE to Exploit Process Modeling in Technology Transfer

    Science.gov (United States)

    Renz-Olar, Cheryl

    2003-01-01

    A successful business will be one that has processes in place to run that business. Creating processes, reengineering processes, and continually improving processes can be accomplished through extensive modeling. Casewise(R) Corporate Modeler(TM) CASE is a computer aided software engineering tool that will enable the Technology Transfer Department (TT) at NASA Marshall Space Flight Center (MSFC) to capture these abilities. After successful implementation of CASE, it could then go on to be applied in other departments at MSFC and other centers at NASA. The success of a business process is dependent upon the players working as a team and continuously improving the process. A good process fosters customer satisfaction as well as internal satisfaction in the organizational infrastructure. CASE provides a method for business process success through functions consisting of systems and processes business models; specialized diagrams; matrix management; simulation; report generation and publishing; and, linking, importing, and exporting documents and files. The software has an underlying repository or database to support these functions. The Casewise. manual informs us that dynamics modeling is a technique used in business design and analysis. Feedback is used as a tool for the end users and generates different ways of dealing with the process. Feedback on this project resulted from collection of issues through a systems analyst interface approach of interviews with process coordinators and Technical Points of Contact (TPOCs).

  5. Digital technology impacts on the Arnhem transfer hall structural design

    NARCIS (Netherlands)

    Van de Straat, R.; Hofman, S.; Coenders, J.L.; Paul, J.C.

    2015-01-01

    The new Transfer Hall in Arnhem is one of the key projects to prepare the Dutch railways for the increased future demands for capacity. UNStudio developed a master plan in 1996 for the station area of which the completion of the Transfer Hall in 2015 will be a final milestone. The Transfer Hall is a

  6. Digital technology impacts on the Arnhem transfer hall structural design

    NARCIS (Netherlands)

    Van de Straat, R.; Hofman, S.; Coenders, J.L.; Paul, J.C.

    2015-01-01

    The new Transfer Hall in Arnhem is one of the key projects to prepare the Dutch railways for the increased future demands for capacity. UNStudio developed a master plan in 1996 for the station area of which the completion of the Transfer Hall in 2015 will be a final milestone. The Transfer Hall is a

  7. Academic medical product development: an emerging alliance of technology transfer organizations and the CTSA.

    Science.gov (United States)

    Rose, Lynn M; Everts, Maaike; Heller, Caren; Burke, Christine; Hafer, Nathaniel; Steele, Scott

    2014-12-01

    To bring the benefits of science more quickly to patient care, the NIH National Center Advancing Translational Sciences (NCATS) supports programs that enhance the development, testing, and implementation of new medical products and procedures. The NCATS clinical and translational science award (CTSA) program is central to that mission; creating an academic home for clinical and translational science and supporting those involved in the discovery and development of new health-related inventions. The technology transfer Offices (TTO) of CTSA-funded universities can be important partners in the development process; facilitating the transfer of medical research to the commercial sector for further development and ultimately, distribution to patients. The Aggregating Intellectual Property (IP) Working Group (AWG) of the CTSA public private partnerships key function committee (PPP-KFC) developed a survey to explore how CTSA-funded institutions currently interface with their respective TTOs to support medical product development. The results suggest a range of relationships across institutions; approximately half have formal collaborative programs, but only a few have well-connected programs. Models of collaborations are described and provided as examples of successful CTSA/TTO partnerships that have increased the value of health-related inventions as measured by follow-on funding and industry involvement; either as a consulting partner or licensee.

  8. 10 CFR 32.72 - Manufacture, preparation, or transfer for commercial distribution of radioactive drugs containing...

    Science.gov (United States)

    2010-01-01

    ... radioactive drug; and the shielding provided by the packaging to show it is appropriate for the safe handling... following labeling requirements: (i) A label is affixed to each transport radiation shield, whether it is constructed of lead, glass, plastic, or other material, of a radioactive drug to be transferred for...

  9. Comparison of three commercially available hollow fiber oxygenators : Gas transfer performance and biocompatibility

    NARCIS (Netherlands)

    De Vroege, R; Wagemakers, M; Te Velthuis, H; Bulder, E; Paulus, R; Huybregts, R; Wildevuur, W; Eijsman, L; Van Oeveren, W; Wildevuur, C

    2001-01-01

    The new generation of oxygenators have improved blood flow pathways that enable reduction in priming volume and, thus, hemodilution during cardiopulmonary bypass (CPB). We evaluated three oxygenators and two sizes of venous reservoirs in relation to priming volume, gas transfer, and blood

  10. Public Relations and Technology Transfer Offices: An Assessment of US Universities' Relations with Media and Government

    Science.gov (United States)

    Haney, James M.; Cohn, Andrew

    2004-01-01

    This article discusses the importance for technology transfer offices of sound media and government relations strategies. It reports the results of a nationwide electronic survey in the USA and interviews with technology transfer managers on how they handle public relations issues in their offices. Strengths and weaknesses of their communication …

  11. Why NIH Scientists Need to Report an Invention | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    As an NIH scientist, you must report new inventions, including improvements of previously reported inventions, to the Technology Transfer Manager assigned to your Laboratory. If you do not know the name of your TTM, please call or email the Technology Transfer Center.  | [google6f4cd5334ac394ab.html

  12. A New Technology Transfer Paradigm: How State Universities Can Collaborate with Industry in the USA

    Science.gov (United States)

    Renault, Catherine S.; Cope, Jeff; Dix, Molly; Hersey, Karen

    2008-01-01

    In some US states, policy makers, pressed by local and regional industrial interests, are debating how to "reform" technology transfer at public universities. "Reform" in this context is generally understood to mean redirecting university technology transfer activities to increase the benefits of state-funded research to local industries.…

  13. Assessment of research and technology transfer needs for wood-frame housing

    Science.gov (United States)

    Kevin Powell; David Tilotta; Karen Martinson

    2008-01-01

    Improvements to housing will require both research and the transfer of that research to homebuilders, homebuyers, and others in need of technology. This report summarizes results of a national survey on research and technology transfer needs for housing and prioritizes those needs. Survey participants included academicians, builders, code officials, government...

  14. Introduction to the Workshop on Software Technology Transfer in Software Engineering

    NARCIS (Netherlands)

    Harrison, Warren; Wieringa, Roel

    2006-01-01

    The goal of the Workshop on Technology Transfer in Software Engineering is to increase our understanding of technology transfer in software engineering, and to learn from successful case studies. We wanted to bring researchers and practitioners together to create an inventory of problems in software

  15. A New Technology Transfer Paradigm: How State Universities Can Collaborate with Industry in the USA

    Science.gov (United States)

    Renault, Catherine S.; Cope, Jeff; Dix, Molly; Hersey, Karen

    2008-01-01

    In some US states, policy makers, pressed by local and regional industrial interests, are debating how to "reform" technology transfer at public universities. "Reform" in this context is generally understood to mean redirecting university technology transfer activities to increase the benefits of state-funded research to local industries.…

  16. The Status Quo and Prospect of Chinese-funded Enterprises Technology Transfer to Africa

    Institute of Scientific and Technical Information of China (English)

    Yang Guang; Li Xinfeng; Chen Mo

    2015-01-01

    Weak technical foundation is an important bottleneck to restrict economic growth of African countries. To promote the technological progress of Africa, the Chinese African strategy always encourages and supports Chinese-funded enterprises to transfer technology to Africa, but it is worth nothing that the critique by some African scholars and local communities on technology transfer to Africa by the Chinese-funded enterprises is spreading. In fact, in order to implement the "localization" strategy, develop African market or honor cooperation agreement on additional technical transfer, Chinese-funded enterprises always adhere to actively carrying out technology transfer to Africa, and have made certain achievements in improving the host countries’ technical environment, increasing labor income and others. In order to cope with the challenges and dispel the crisis of public opinion, China should uphold the concept of "teaching how to fish" and push forward the continuous upgrading and optimization of technology transfer to Africa all-dimensionally.

  17. Development and technology transfer of the BNL flame quality indicator for oil-fired applications: Project report

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Litzke, Wai Lin; McDonald, R.J.

    1994-09-01

    The purpose of a flame quality indicator is to continuously and closely monitor the quality of the flame to determine a heating system`s operating performance. The most efficient operation of a system is achieved under clean burning conditions at low excess air level. By adjusting a burner to function in such a manner, monitoring the unit to maintain these conditions can be accomplished with a simple, cheap and reliable device. This report details the development of the Flame Quality Indicator (FQI) at Brookhaven National Laboratory for residential oil-heating equipment. It includes information on the initial testing of the original design, field testing with other cooperating organizations, changes and improvements to the design, and finally technology transfer and commercialization activities geared towards the development of commercially available products designed for the oil heat marketplace. As a result of this work, a patent for the technology was obtained by the U.S. Department of Energy (DOE). Efforts to commercialize the technology have resulted in a high level of interest amongst industry members including boiler manufacturers, controls manufacturers, oil dealers, and service organizations. To date DOE has issued licenses to three different manufacturers, on a non-exclusive basis, to design, build, and sell FQIs.

  18. The role of Ethics in the process of Technology Transfer and Development of 206 Peugeot

    Directory of Open Access Journals (Sweden)

    Aliakbar Mazlomi

    2011-02-01

    Full Text Available Looking at the past history we find that the first phenomenon of technology transfer was taught by people who were traveling to another community and bring their technology, they move. After theindustrialization, transfer of knowledge from individuals to maintain their importance. However, now the situation for developing countries is controversial because it denied people with technical skills fromdeveloped countries to developing countries do not migrate, but the reverse is the professionals that are developing countries to developed countries loan go. Until developing countries can train your human resources specialist, they powerful companies overseas are the means of technology transfer, whether through direct investment, and whether through the sale of licenses and other means. (Noble, p. 105 - 106, 1367 Technology transfer is an important issue that should be given the capacity of countries to assess the possibility of application, absorption and its compatibility with local conditions to increase. Ie the transfer of technology and gain access to technology for its effective use for economic development and growth of countries relatively backward technology provides. (Archibugi, 2003 Today, the role of ethics in technology transfer and development is of great importance. The meaning of ethics and technology than are harvested, ethical values that have roles in the formation of modern technology. Another meaning of ethics and technology than is reached, that moral people who are dealing with technology, they must observe. It also includes technology to those that exist and sets it to those who apply and who are the analysis and criticism. In this article factors and ethical factors in the process of technology transfer and development for Peugeot 206 in Iran Khodro Company has been studied. For this purpose a questionnaire to determine and evaluate factors is designed and results are analyzed.

  19. Radiation tolerance study of a commercial 65 nm CMOS technology for high energy physics applications

    Science.gov (United States)

    Ding, Lili; Gerardin, Simone; Bagatin, Marta; Bisello, Dario; Mattiazzo, Serena; Paccagnella, Alessandro

    2016-09-01

    This paper reports the radiation tolerance study of a commercial 65 nm technology, which is a strong candidate for the Large Hadron Collider applications. After exposure to 3 MeV protons till 1 Grad dose, the 65 nm CMOS transistors, especially the pMOSFETs, showed severe long-term degradation mainly in the saturation drain currents. There were some differences between the degradation levels in the nMOSFETs and the pMOSFETs, which were likely attributed to the positive charges trapped in the gate spacers. After exposure to heavy ions till multiple strikes, the pMOSFETs did not show any sudden loss of drain currents, the degradations in the characteristics were negligible.

  20. Information systems and technology transfer programs on geothermal energy and other renewable sources of energy

    Energy Technology Data Exchange (ETDEWEB)

    Lippmann, M.J.; Antunez, E.

    1996-01-01

    In order to remain competitive, it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them, is also given.

  1. Developing Entrepreneurial and Technology Commercialization Policies to Promote Cooperative Ventures Between NIH and Industry

    Science.gov (United States)

    Rossomando, Edward F.

    2001-03-01

    The NIH has had a great influence in guiding the biological research agenda for the last half of the 20th century. This may change if the increases in research funding from the private sector that occurred in the last ten years continue into the 21st century. Ten years ago, industry supplied 55% of the US R&D funds. In 2000, industry support of R&D had increased to 76%, with industry carrying out 70% of the nations applied and 91% of its development research. Given this shift, one of the biggest challenges that NIH may face in coming years is sharing control of America's research agenda with industry. For this to occur policies that encourage cooperative ventures with industry are needed. In a unique experiment, I was invited to the National Institute of Dental and Craniofacial Research (NIDCR), one of the 25 NIH Institutes and Centers, to develop programs and policies that would promote interactions with industry. This talk will introduce the strategy and programs developed to commercialize products and technologies from basic science discoveries and introducing an entrepreneurial atmosphere within the Institute. The results of this experiment will be discussed by comparing differences between discovery-driven and customer-driven innovation. One outcome of this experience is a greater appreciation of the obstacles to introducing disruptive technologies into the market place and of the paradigms that serve as barriers to commercialization. One recommendation is that the NIDCR consider a policy that allows for some participation by industry in setting the research and training agenda of the Institute, and that a mechanism for industry input be introduced into its administrative organization.

  2. Working with TTC | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    There are many ways that inventors of the National Institutes of Health and the National Cancer Institute may contribute to the development and commercialization of their inventions | [google6f4cd5334ac394ab.html

  3. Manufacturing technology of AS-SOFC prepared with different commercially available precursors

    Directory of Open Access Journals (Sweden)

    Kawalec M.

    2016-01-01

    Full Text Available Fuel cells are devices converting the chemical energy into the electrical energy and heat as result of the electrochemical reaction between gaseous fuel and a gas oxidant in flameless combustion process. Because of omission of thermo-mechanical steps that are present in any traditional energy conversion technology (e.g. gas turbine fuel cells show increased efficiency in comparison. Compact sizes and modular scalability predestines this technology for distributed energy generation including but not limited to renewable energy sources (e.g. wind, solar. Fuel cells technology also addresses other very important part of distributed renewable energy generation. Because of the unreliable energy production rates and the usual for renewable energy sources mismatch between energy supply and demand, some sort of energy storage is needed to store surplus of produced energy and release it when needed. Reversible fuel cells, that generate hydrogen from available surplus of energy and then generate energy from that stored fuel when needed are cheaper and more ecologically friendly alternative to usually used batteries. This technology is still under development, including research at IEn OC CEREL. In the early development of reversible fuel cells, new types of nickel oxide and porosity forming carbon was evaluated for this task. This work compares the electrical and mechanical parameters of SOFC manufactured with JT Backer NiO and Carbon Polska carbon with cells made from other commercially available materials. Based on evaluated quality, purity, availability and cost, following materials were selected for comparison: Novamet NiO, 99,9 % pure, grain size 1-2 µm and Aldrich carbon with parameters similar to graphite used previously. Preliminary tests show clear changes in the microstructural, mechanical and electrical parameters.

  4. Information for Our Partners | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NCI TTC CRADA PAYMENT OPTIONS: Electronic Payments by Wire Transfer via Fedwire, Mail a check to the Institute or Center, or Automated Clearing House (ACH)/Electronic Funds Transfer (ETF) payments via Pay.gov (NCI ONLY). | [google6f4cd5334ac394ab.html

  5. A consortium approach to commercialized Westinghouse solid oxide fuel cell technology

    Science.gov (United States)

    Casanova, Allan

    Westinghouse is developing its tubular solid oxide fuel cells (SOFCs) for a variety of applications in stationary power generation markets. By pressurizing a SOFC and integrating it with a gas turbine (GT), power systems with efficiencies as high as 70-75% can be obtained. The first such system will be tested in 1998. Because of their extraordinarily high efficiency (60-70%) even in small sizes the first SOFC products to be offered are expected to be integrated SOFC/GT power systems in the 1-7 MW range, for use in the emerging distributed generation (DG) market segment. Expansion into larger sizes will follow later. Because of their modularity, environmental friendliness and expected cost effectiveness, and because of a worldwide thrust towards utility deregulation, a ready market is forecasted for baseload distributed generation. Assuming Westinghouse can complete its technology development and reach its cost targets, the integrated SOFC/GT power system is seen as a product with tremendous potential in the emerging distributed generation market. While Westinghouse has been a leader in the development of power generation technology for over a century, it does not plan to manufacture small gas turbines. However, GTs small enough to integrate with SOFCs and address the 1-7 MW market are generally available from various manufacturers. Westinghouse will need access to a new set of customers as it brings baseload plants to the present small market mix of emergency and peaking power applications. Small cogeneration applications, already strong in some parts of the world, are also gaining ground everywhere. Small GT manufacturers already serve this market, and alliances and partnerships can enhance SOFC commercialization. Utilities also serve the DG market, especially those that have set up energy service companies and seek to grow beyond the legal and geographical confines of their current regulated business. Because fuel cells in general are a new product, because small

  6. Follow-On Cooperative Research and Development Agreement: MFIX to FLUENT Technology Transfer and Validation Studies Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Syamlal, Madhava [US Department of Energy, Washington, DC (United States); Guenther, Chris [US Department of Energy, Washington, DC (United States); O' Brien, Thomas J. [US Department of Energy, Washington, DC (United States); Benyahia, Sofiane [Fluent Inc., New York, NY (United States); Shi, Shaoping [Fluent Inc., New York, NY (United States)

    2005-03-01

    This report summarizes the effort by NETL and Fluent on the Cooperative Research and Development Agreement No. 00-F039 signed in May 2000. The objective of the CRADA was to transfer technology from NETL's MFIX code into the commercial software FLUENT so as to increase the computational speed, accuracy, and utility of FLUENT. During the period of this CRADA MFIX was used to develop granular flow theories and used for simulating gas-solids chemical reactors. The FLUENT and MFIX predictions were compared with each other and with experimental data generated at NETL. The granular kinetic theory in FLUENT was improved as a result of this work, and a gas-solids reaction (ozone decomposition) was used as a test case for the gas-solids chemical reaction capability in FLUENT. Also, under a separate project, work has begun to transfer the coal combustion and gasification model in MFIX to FLUENT.

  7. The role of technological transfer in the societies based on knowledge economy

    Directory of Open Access Journals (Sweden)

    Daniela HÎNCU

    2009-12-01

    Full Text Available The knowledge based economy is an economy based on innovation. Implementing innovation requires acquiring new technology, using the technique of technological transfer. The problems and the timing for implementing an emerging technology are under discussion in this paper.

  8. Tools, courses, and learning pathways offered by the National Interagency Fuels, Fire, and Vegetation Technology Transfer

    Science.gov (United States)

    Eva K. Strand; Kathy H. Schon; Jeff Jones

    2010-01-01

    Technological advances in the area of fuel and wildland fire management have created a need for effective decision support tools and technology training. The National Interagency Fuels Committee and LANDFIRE have chartered a team to develop science-based learning tools for assessment of fire and fuels and to provide online training and technology transfer to help...

  9. What do we need from intermediaries for technology transfer to China?

    DEFF Research Database (Denmark)

    Li-Ying, Jason

    2012-01-01

    Cross-national technology transfer has been one of the most important vehicles by which firms in developed countries exploit the value of their technological innovations, and firms in developing countries gain access to technological and organizational knowledge from developed economies. To facil...

  10. An Empirical Analysis of Technology Transfer of National R&D Projects in South Korea

    Directory of Open Access Journals (Sweden)

    Mi-Sun Kim

    2015-01-01

    Full Text Available This study is aimed at seeking policy implications for the policy makers of South Korean government and finding a direction to support R&D institutions in performing R&D activities more efficiently, by analyzing the factors influencing technology transfer of the national R&D projects. The data retrieved from NTIS (National Science & Technology Information Service was used in analyzing the results of 575 projects with 1,903 cases of technology transfer, performed by the Ministry of Science, ICT and Future Planning, between 2002 and 2012. We found that there were significant differences between the government funded institutions and the universities and between basic R&D and applied ones. We also discovered that the government funded institutions did not necessarily take a better position than the universities in terms of the quantity of technology transfer. Lastly, the applied R&D of the universities was very vulnerable in terms of technology transfer.

  11. Heat transfer and heating rate of food stuffs in commercial shop ovens

    Indian Academy of Sciences (India)

    P Navaneethakrishnan; P S S Srinivasan; S Dhandapani

    2007-10-01

    The CFD analysis of flow and temperature distribution in heating ovens used in bakery shop, to keep the foodstuffs warm, is attempted using finite element technique. The oven is modelled as a two-dimensional steady state natural convection heat transfer problem. Effects of heater location and total heat input on temperature uniformity of foodstuffs are studied. Placing the heater at the bottom of the oven improves the air circulation rate by 17 times and 10 times than that at the top and side of the oven. But the top location provides better uniformity in foodstuff temperature than the other cases. Side location is not preferable. In the present ovens, the heating elements are located at the top. The analysis shows that if heaters are located at the bottom along with additional flow guidance arrangements, energy efficient oven configuration can be obtained.

  12. Bulk-Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization.

    Science.gov (United States)

    Kang, Hongkyu; Kim, Geunjin; Kim, Junghwan; Kwon, Sooncheol; Kim, Heejoo; Lee, Kwanghee

    2016-09-01

    The past two decades of vigorous interdisciplinary approaches has seen tremendous breakthroughs in both scientific and technological developments of bulk-heterojunction organic solar cells (OSCs) based on nanocomposites of π-conjugated organic semiconductors. Because of their unique functionalities, the OSC field is expected to enable innovative photovoltaic applications that can be difficult to achieve using traditional inorganic solar cells: OSCs are printable, portable, wearable, disposable, biocompatible, and attachable to curved surfaces. The ultimate objective of this field is to develop cost-effective, stable, and high-performance photovoltaic modules fabricated on large-area flexible plastic substrates via high-volume/throughput roll-to-roll printing processing and thus achieve the practical implementation of OSCs. Recently, intensive research efforts into the development of organic materials, processing techniques, interface engineering, and device architectures have led to a remarkable improvement in power conversion efficiencies, exceeding 11%, which has finally brought OSCs close to commercialization. Current research interests are expanding from academic to industrial viewpoints to improve device stability and compatibility with large-scale printing processes, which must be addressed to realize viable applications. Here, both academic and industrial issues are reviewed by highlighting historically monumental research results and recent state-of-the-art progress in OSCs. Moreover, perspectives on five core technologies that affect the realization of the practical use of OSCs are presented, including device efficiency, device stability, flexible and transparent electrodes, module designs, and printing techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Preliminary Weight Savings Estimate for a Commercial Transport Wing Using Rod-Stiffened Stitched Composite Technology

    Science.gov (United States)

    Lovejoy, Andrew E.

    2015-01-01

    A structural concept called pultruded rod stitched efficient unitized structure (PRSEUS) was developed by the Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration. While PRSEUS was an enabling technology for the pressurized HWB structure, limited investigation of PRSEUS for other aircraft structures, such as circular fuselages and wings, has been done. Therefore, a study was undertaken to investigate the potential weight savings afforded by using the PRSEUS concept for a commercial transport wing. The study applied PRSEUS to the Advanced Subsonic Technology (AST) Program composite semi-span test article, which was sized using three load cases. The initial PRSEUS design was developed by matching cross-sectional stiffnesses for each stringer/skin combination within the wing covers, then the design was modified to ensure that the PRSEUS design satisfied the design criteria. It was found that the PRSEUS wing design exhibited weight savings over the blade-stiffened composite AST Program wing of nearly 9%, and a weight savings of 49% and 29% for the lower and upper covers, respectively, compared to an equivalent metallic wing.

  14. Technologies for Lunar Surface Power Systems Power Beaming and Transfer

    Science.gov (United States)

    Marzwell, Neville; Pogorzelski, Ronald J.; Chang, Kai; Little, Frank

    2008-01-01

    Wireless power transmission within a given working area is required or enabling for many NASA Exploration Systems. Fields of application include robotics, habitats, autonomous rendezvous and docking, life support, EVA, and many others. In robotics applications, for example, the robots must move in the working area without being hampered by power cables and, meanwhile, obtain a continuous and constant power from a power transmitter. The development of modern technology for transmitting electric power over free space has been studied for several decades, but its use in a system has been mainly limited to low power, 1-2 Vdc output voltage at a transmission distance of few meters for which relatively less than 0.5 mW/cm2 is required (e.g., Radio frequency identification RFID). Most of the rectenna conversion efficiency research to date has concentrated in low GHz frequency range of 2.45 to 10 GHz, with some work at 35 GHz. However, for space application, atmospheric adsorbtion is irrelevant and higher frequency systems with smaller transmit and receive apertures may be appropriate. For high power, most of the work on rectennas has concentrated on optimizing the conversion efficiency of the microwave rectifier element; the highest power demonstrated was 35 kW of power over a distance of 1.5 km. The objective of this paper is to establish the manner in which a very large number of very low power microwave devices can be synchronized to provide a beam of microwaves that can be used to efficiently and safely transport a significant amount of power to a remote location where it can be converted to dc (or ac) power by a ``rectenna.'' The proposed system is based on spatial power combining of the outputs of a large number of devices synchronized by mutual injection locking. We have demonstrated at JPL that such power could be achieved by combining 25 sources in a configuration that allows for convenient steering of the resulting beam of microwaves. Retrodirective beam

  15. A hypertext-based Internet-assessable database for the MSFC Technology Transfer Office

    Science.gov (United States)

    Jackson, Jeff

    1994-01-01

    There exists a continuing need to disseminate technical information and facilities capabilities from NASA field centers in an effort to promote the successful transfer of technologies developed with public funds to the private sector. As technology transfer is a stated NASA mission, there exists a critical need for NASA centers to document technology capabilities and disseminate this information on as wide a basis as possible. Certainly local and regional dissemination is critical, but global dissemination of scientific and engineering facilities and capabilities gives NASA centers the ability to contribute to technology transfer on a much broader scale. Additionally, information should be disseminated in a complete and rapidly available form. To accomplish this information dissemination, the unique capabilities of the Internet are being exploited. The Internet allows widescale information distribution in a rapid fashion to aid in the accomplishment of technology transfer goals established by the NASA/MSFC Technology Transfer Office. Rapid information retrieval coupled with appropriate electronic feedback, allows the scientific and technical capabilities of Marshall Space Flight Center, often unique in the world, to be explored by a large number of potential benefactors of NASA (or NASA-derived) technologies. Electronic feedback, coupled with personal contact with the MSFC Technology Transfer Office personnel, allows rapid responses to technical requests from industry and academic personnel as well as private citizens. The remainder of this report gives a brief overview of the Mosaic software and a discussion of technology transfer office and laboratory facilities data that have been made available on the Internet to promote technology transfer.

  16. Analysis on the revision of the United States authorizing procedure for the transfer of unclassified nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sung-ho; Seo, Hana; Lee, Chansuh; Kim, Jong-sook [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    The DOE (Department Of Energy) has not comprehensively update 10CFR810 since 1986. Since then, the global civil nuclear market has expanded, particularly in China, the Middle East, and Eastern Europe, with vendors from France, Japan, the Republic of Korea, Russia, and Canada. In result, DOE issued revised 810 in respond to comments received from the public and commercial nuclear market changes. This regulation revision improves the efficiency of authorization process to promote national nuclear industry while maintaining nonproliferation control. Even though ROK has initiated a legal basis for Intangible technology transfer (ITT) for nuclear export control, working implementation system is not set up. This research proposes recommendable ITT implementation of the ROK according to the analysis result of the US regulation. In this revision, of 124 countries had been classified as general authorization under 10CFR810, 80 countries reclassified into the specific authorization. By remaining 'fast track' for specific authorization, in particular, time frames for internal DOE and interagency reviews are reduced. This means the US government actively copes with commercial nuclear market expands to promote their industry. Meanwhile, by remaining some of nuclear-weapon states (China, Russia, India) as specific authorization maintaining that the determinations are consistent with current US national security, diplomatic, and trade policy. By benchmarking the US regulation, Korea can improve the efficiency of the technology transfer authorization process easing the regulatory burden by reducing uncertainty and timelines while maintaining the highest level of nonproliferation control.

  17. [Nasal submicron emulsion of Scutellariae Radix extract preparation technology research based on phase transfer of solute technology].

    Science.gov (United States)

    Shi, Ya-jun; Shi, Jun-hui; Chen, Shi-bin; Yang, Ming

    2015-07-01

    Based on the demand of nasal drug delivery high drug loadings, using the unique phase transfer of solute, integrating the phospholipid complex preparation and submicron emulsion molding process of Scutellariae Radix extract, the study obtained the preparation of the high drug loadings submicron emulsion of Scutellariae Radix extract. In the study of drug solution dispersion method, the uniformity of drug dispersed as the evaluation index, the traditional mixing method, grinding, homogenate and solute phase transfer technology were investigated, and the solute phase transfer technology was adopted in the last. With the adoption of new technology, the drug loading capacity reached 1.33% (phospholipid complex was 4%). The drug loading capacity was improved significantly. The transfer of solute method and timing were studied as follows,join the oil phase when the volume of phospholipid complex anhydrous ethanol solution remaining 30%, the solute phase transfer was completed with the continued recycling of anhydrous ethanol. After drug dissolved away to oil phase, the preparation technology of colostrum was determined with the evaluation index of emulsion droplet form. The particle size of submicron emulsion, PDI and stability parameters were used as evaluation index, orthogonal methodology were adopted to optimize the submicron emulsion ingredient and main influential factors of high pressure homogenization technology. The optimized preparation technology of Scutellariae Radix extract nasal submicron emulsion is practical and stable.

  18. New research trends on high-precision time transfer technology

    Institute of Scientific and Technical Information of China (English)

    DONG; Ruifang; QUAN; Run’ai; HOU; Feiyan; WANG; Shaofeng; XIANG; Xiao; ZHOU; Conghua; WANG; Mengmeng; LIU; Tao; ZHANG; Shou’gang

    2015-01-01

    High-precision time transfer plays an important role in the areas of fundamental research and applications. Accompanying w ith the remarkable improvements in the ability of generating and measuring high-accuracy time-frequency signal,seeking for new time-transfer techniques betw een distant clocks w ith much further improved accuracy attracts attentions w orld-w idely. The time-transfer technique based on optical pulses has the highest precision presently,and the further improvement in the accuracy is heavily dependent on the time-domain properties of the pulse as w ell as the sensitivity of the applied measurement on the exchanged pulse. The application of optical frequency comb in time transfer for a precision up to femtosecond level are currently the focus of much interest,and has recently achieved many breakthroughs. Further investigations show that,utilizing quantum techniques,i.e. quantum measurement technique and quantum optical pulse source,can lead to a new limit on the measured timing information. Furthermore,it can be immune from atmospheric parameters,such as pressure,temperature,humidity and so on.Such quantum improvements on time-transfer have a bright prospect in the future applications requiring extremely high-accuracy timing and ranging. The potential achievements w ill form a technical basis for the future realization of sub-femtosecond time transfer system.

  19. Commercializing Biorefinery Technology: A Case for the Multi-Product Pathway to a Viable Biorefinery

    Directory of Open Access Journals (Sweden)

    Shijie Liu

    2011-11-01

    Full Text Available While there may be many reasons why very interesting science ideas never reach commercial practice, one of the more prevalent is that the reaction or process, which is scientifically possible, cannot be made efficient enough to achieve economic viability. One pathway to economic viability for many business sectors is the multi-product portfolio. Research, development, and deployment of viable biorefinery technology must meld sound science with engineering and business economics. It is virtually axiomatic that increased value can be generated by isolating relatively pure substances from heterogeneous raw materials. Woody biomass is a heterogeneous raw material consisting of the major structural components, cellulose, lignin, and hemicelluloses, as well as minor components, such as extractives and ash. Cellulose is a linear homopolymer of D-glucopyrano-units with β-D(1®4 connections and is the wood component most resistant to chemical and biological degradation. Lignin is a macromolecule of phenylpropanoid units, second to cellulose in bio-resistance, and is the key component that is sought for removal from woody biomass in chemical pulping. Hemicelluloses are a collection of heteropolysaccharides, comprised mainly of 5- and 6-carbon sugars. Extractives, some of which have high commercial value, are a collection of low molecular weight organic and inorganic woody materials that can be removed, to some extent, under mild conditions. Applied Biorefinery Sciences, LLC (a private, New York, USA based company is commercializing a value-optimization pathway (the ABS Process™ for generating a multi-product portfolio by isolating and recovering homogeneous substances from each of the above mentioned major and minor woody biomass components. The ABS Process™ incorporates the patent pending, core biorefinery technology, “hot water extraction”, as developed at the State University of New York College of Environmental Science and Forestry (SUNY

  20. Biomedical technology transfer: Bioinstrumentation for cardiology, neurology, and the circulatory system

    Science.gov (United States)

    1976-01-01

    Developments in applying aerospace medical technology to the design and production of medical equipment and instrumentation are reported. Projects described include intercranial pressure transducers, leg negative pressure devices, a synthetic speech prosthesis for victims of cerebral palsy, and a Doppler blood flow instrument. Commercialization activities for disseminating and utilizing NASA technology, and new biomedical problem areas are discussed.