WorldWideScience

Sample records for technology transfer applications

  1. NASA technology utilization applications. [transfer of medical sciences

    Science.gov (United States)

    1973-01-01

    The work is reported from September 1972 through August 1973 by the Technology Applications Group of the Science Communication Division (SCD), formerly the Biological Sciences Communication Project (BSCP) in the Department of Medical and Public Affairs of the George Washington University. The work was supportive of many aspects of the NASA Technology Utilization program but in particular those dealing with Biomedical and Technology Application Teams, Applications Engineering projects, new technology reporting and documentation and transfer activities. Of particular interest are detailed reports on the progress of various hardware projects, and suggestions and criteria for the evaluation of candidate hardware projects. Finally some observations about the future expansion of the TU program are offered.

  2. Technology transfer of Cornell university

    International Nuclear Information System (INIS)

    Yoo, Wan Sik

    2010-01-01

    This book introduces technology transfer of Cornell university which deals with introduction of Cornell university, composition of organization and practice of technology transfer : a research contract, research perform, invention report, evaluation and succession of invention, a patent application and management, marketing, negotiation and writing contract, management of contract, compensation, result of technology transfer, cases of success on technical commercialization and daily life of technology transfer center.

  3. Evaluating Technology Transfer and Diffusion.

    Science.gov (United States)

    Bozeman, Barry; And Others

    1988-01-01

    Four articles discuss the evaluation of technology transfer and diffusion: (1) "Technology Transfer at the U.S. National Laboratories: A Framework for Evaluation"; (2) "Application of Social Psychological and Evaluation Research: Lessons from Energy Information Programs"; (3) "Technology and Knowledge Transfer in Energy R and D Laboratories: An…

  4. Technology transfer by multinational firms: the resource cost of transferring technological know-how

    Energy Technology Data Exchange (ETDEWEB)

    Teece, D J

    1977-06-01

    The essence of modern economic growth is the increase in the stock of useful knowledge and the extension of its application. Since the origins of technical and social innovations have never been confined to the borders of any one nation, the economic growth of all countries depends to some degree on the successful application of a transnational stock of knowledge. Nevertheless, economists have been remarkably slow in addressing themselves to the economics of international technology transfer. This paper addresses itself to this need. The starting-point is Arrow's suggestion (Am. Econ. Review, 52: 29-35 (May 1969)) that the cost of communication, or information transfer, is a fundamental factor influencing the world-wide diffusion of technology. The purpose of the paper is to examine the level and determinants of the costs involved in transferring technology. The value of the resources that have to be utilized to accomplish the successful transfer of a given manufacturing technology is used as a measure of the cost of transfer. The resource cost concept is therefore designed to reflect the ease or difficulty of transferring technological know-how from manufacturing plants in one country to manufacturing plants in another. 32 references.

  5. Federal Technology Transfer Act Success Stories

    Science.gov (United States)

    Successful Federal Technology Transfer Act (FTTA) partnerships demonstrate the many advantages of technology transfer and collaboration. EPA and partner organizations create valuable and applicable technologies for the marketplace.

  6. Technology Transfer Report

    Science.gov (United States)

    2000-01-01

    Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.

  7. Enabling cleanup technology transfer

    International Nuclear Information System (INIS)

    Ditmars, J. D.

    2002-01-01

    Technology transfer in the environmental restoration, or cleanup, area has been challenging. While there is little doubt that innovative technologies are needed to reduce the times, risks, and costs associated with the cleanup of federal sites, particularly those of the Departments of Energy (DOE) and Defense, the use of such technologies in actual cleanups has been relatively limited. There are, of course, many reasons why technologies do not reach the implementation phase or do not get transferred from developing entities to the user community. For example, many past cleanup contracts provided few incentives for performance that would compel a contractor to seek improvement via technology applications. While performance-based contracts are becoming more common, they alone will not drive increased technology applications. This paper focuses on some applications of cleanup methodologies and technologies that have been successful and are illustrative of a more general principle. The principle is at once obvious and not widely practiced. It is that, with few exceptions, innovative cleanup technologies are rarely implemented successfully alone but rather are implemented in the context of enabling processes and methodologies. And, since cleanup is conducted in a regulatory environment, the stage is better set for technology transfer when the context includes substantive interactions with the relevant stakeholders. Examples of this principle are drawn from Argonne National Laboratory's experiences in Adaptive Sampling and Analysis Programs (ASAPs), Precise Excavation, and the DOE Technology Connection (TechCon) Program. The lessons learned may be applicable to the continuing challenges posed by the cleanup and long-term stewardship of radioactive contaminants and unexploded ordnance (UXO) at federal sites

  8. Technology transfer from nuclear research

    International Nuclear Information System (INIS)

    1989-01-01

    A number of processes, components and instruments developed at the Bhabha Atomic Research Centre, (BARC), Bombay, find application in industry and are available for transfer to private or public sector undertakings for commercial exploitation. The Technology Transfer Group (TTG) constituted in January 1980 identifies such processes and prototypes which can be made available for transfer. This catalogue contains brief descriptions of such technologies and they are arranged under three groups, namely, Group A containing descriptions of technologies already transferred, Group B containing descriptions of technologies ready for transfer and Group C containing descriptions of technology transfer proposals being processed. The position in the above-mentioned groups is as on 1 March 1989. The BARC has also set up a Technology Corner where laboratory models and prototypes of instruments, equipment and components are displayed. These are described in the second part of the catalogue. (M.G.B.)

  9. Technology Transfer: Marketing Tomorrow's Technology

    Science.gov (United States)

    Tcheng, Erene

    1995-01-01

    The globalization of the economy and the end of the Cold War have triggered many changes in the traditional practices of U.S. industry. To effectively apply the resources available to the United States, the federal government has firmly advocated a policy of technology transfer between private industry and government labs, in this case the National Aeronautics and Space Administration (NASA). NASA Administrator Daniel Goldin is a strong proponent of this policy and has organized technology transfer or commercialization programs at each of the NASA field centers. Here at Langley Research Center, the Technology Applications Group (TAG) is responsible for facilitating the transfer of Langley developed research and technology to U.S. industry. Entering the program, I had many objectives for my summer research with TAG. Certainly, I wanted to gain a more thorough understanding of the concept of technology transfer and Langley's implementation of a system to promote it to both the Langley community and the community at large. Also, I hoped to become more familiar with Langley's research capabilities and technology inventory available to the public. More specifically, I wanted to learn about the technology transfer process at Langley. Because my mentor is a member of Materials and Manufacturing marketing sector of the Technology Transfer Team, another overriding objective for my research was to take advantage of his work and experience in materials research to learn about the Advanced Materials Research agency wide and help market these developments to private industry. Through the various projects I have been assigned to work on in TAG, I have successfully satisfied the majority of these objectives. Work on the Problem Statement Process for TAG as well as the development of the Advanced Materials Research Brochure have provided me with the opportunity to learn about the technology transfer process from the outside looking in and the inside looking out. Because TAG covers

  10. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    OpenAIRE

    Durán-García Martín Enrique

    2014-01-01

    Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the ...

  11. Applications of aerospace technology in industry. A technology transfer profile: Food technology

    Science.gov (United States)

    Murray, D. M.

    1971-01-01

    Food processing and preservation technologies are reviewed, expected technological advances are considered including processing and market factors. NASA contributions to food technology and nutrition are presented with examples of transfer from NASA to industry.

  12. A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1993-09-01

    This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

  13. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    International Nuclear Information System (INIS)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described

  14. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    Directory of Open Access Journals (Sweden)

    Durán-García Martín Enrique

    2014-07-01

    Full Text Available Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the transfer of chemical technology requires technological-environmental criteria defining, in conjunction with other criteria, an adequate process for the selection, acquisition and incorporation of technology in a holistic perspective, so it provides feasible solutions the chemical industry in pursuit of their goals. Then the criterion becomes a benchmark for assessing an appropriate technology transfer process. We performed a theoretical analysis of the technological and environmental criteria, proposing thirty-six (36 technological-environmental criteria interrelated under a systemic approach in the process of transfer of chemical technology, focused on a methodological cycle first run, based primarily on the research-action method. Future research is expected to make a refinement of the criteria from the formulation and validation of metrics so that necessary adjustments are made to optimize the process of transfer of chemical technology.

  15. Technology Transfer

    Science.gov (United States)

    Smith, Nanette R.

    1995-01-01

    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can

  16. Technology Transfer Issues and a New Technology Transfer Model

    Science.gov (United States)

    Choi, Hee Jun

    2009-01-01

    The following are major issues that should be considered for efficient and effective technology transfer: conceptions of technology, technological activity and transfer, communication channels, factors affecting transfer, and models of transfer. In particular, a well-developed model of technology transfer could be used as a framework for…

  17. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

  18. A Study of the Factors Associated with Successful Technology Transfer and their Applicability to Air Force Technology Transfers.

    Science.gov (United States)

    1995-09-01

    transfer project. (D) 8a Organization has a technology transfer organization. (D,A) 10a Marketing and advertising of technologies targeted to relevant...Entrepreneurial (D) Developer: 10A: Marketing and advertising of technologies targeted to relevant industries. Most developers indicate that they marketed...regard to marketing and advertising . 10B: Technology maturation supported by internal units or by contracting out. Technology maturation is the

  19. International technology transfer

    International Nuclear Information System (INIS)

    Kwon, Won Gi

    1991-11-01

    This book introduces technology progress and economic growth, theoretical consideration of technology transfer, policy and mechanism on technology transfer of a developed country and a developing country, reality of international technology transfer technology transfer and industrial structure in Asia and the pacific region, technology transfer in Russia, China and Eastern Europe, cooperation of science and technology for development of Northeast Asia and strategy of technology transfer of Korea.

  20. The transfer of accelerator technology to industry

    International Nuclear Information System (INIS)

    Favale, A.

    1992-01-01

    The national laboratories and universities are sources for innovative accelerator technology developments. With the growing application of accelerators in such fields as semiconductor manufacturing, medical therapy isotope production, nuclear waste transmutation, materials testing, bomb detection, pure science, etc., it is becoming more important to transfer these technologies and build an accelerator industrial base. In this talk the methods of technology transfer, the issues involved in working with the labs and examples of successful technology transfers are discussed. (Author)

  1. Technology transfer from research and development to European industry

    International Nuclear Information System (INIS)

    Conrads, H.; Theenhaus, R.

    1989-01-01

    This paper gives an overview of technology transfer, i.e. the transfer of knowledge, insights and technologies from research and development to practical application, especially in the Federal Republic of Germany. Some examples and perspectives of technology transfer for nuclear fusion are given. (author). 7 refs.; 5 figs

  2. Technology Transfer: A Contact Sport

    Science.gov (United States)

    Paynter, Nina P.

    1995-01-01

    Technology transfer is a dynamic process, involving dynamic people as the bridge between NASA Langley Research Center and the outside world. This bridge, for nonaerospace applications, is known as the Technology Applications Group. The introduction of new innovations and expertise where they are needed occurs through a 'push' and 'pull' process. A 'push' occurs when a new technology is first developed with high commercial potential and then a company is found to licence or further develop the technology. The 'pull' process occurs through problem statements. A company or group will submit a written statement of what they need and the shortcomings of commercially available technology. The Technology Transfer Team (T3) reviews these problem statements and decides where NASA LaRC can offer assistance. A researcher or group of researchers are then identified who can help solve the problem and they are put in contact with the company. Depending upon the situation in either method, a Space Act Agreement (SAA), or outline of the responsibilities for each party, is developed.

  3. A planning framework for transferring building energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  4. Technology transfer 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  5. Societal and economic valuation of technology-transfer deals

    Science.gov (United States)

    Holmes, Joseph S., Jr.

    2009-09-01

    The industrial adoption of concepts such as open innovation brings new legitimacy to activities technology-transfer professionals have conducted for over 20 years. This movement highlights the need for an increased understanding of the valuation of intellectual property (IP) and technology-transfer deals. Valuation, though a centerpiece of corporate finance, is more challenging when applied to the inherent uncertainty surrounding innovation. Technology-transfer professionals are often overwhelmed by the complexity and data requirements of valuation techniques and skeptical of their applicability to and utility for technology transfer. The market longs for an approach which bridges the gap between valuation fundamentals and technology-transfer realities. This paper presents the foundations of a simple, flexible, precise/accurate, and useful framework for considering the valuation of technology-transfer deals. The approach is predicated on a 12-factor model—a 3×4 value matrix predicated on categories of economic, societal, and strategic value. Each of these three categories consists of three core subcategories followed by a fourth "other" category to facilitate inevitable special considerations. This 12-factor value matrix provides a framework for harvesting data during deals and for the application of best-of-breed valuation techniques which can be employed on a per-factor basis. Future work will include framework implementation within a database platform.

  6. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  7. DOE/EPA sludge irradiation technology transfer program

    International Nuclear Information System (INIS)

    Ahlstrom, S.B.

    1980-01-01

    The cesium-137 sludge irradiation program has successfully progressed through the phases of technology development and pilot plant evaluation and has entered the technology transfer phase. Initial technology transfer activities have identified a growing interest among wastewater engineers and public officials to learn more about the application of irradiation in sludge treatment. As a result, a formal technology transfer program has been developed. As a major activity of this program, it is planned that the US Department of Energy, working with the US Environmental Protection Agency, state and local governments, will support the placement of five to 10 sludge irradiators at selected wastewater treatment facilities throughout the United States. Facilities which may best benefit from this process technology are being identified. Technology transfer will be stimulated as engineers and wastewater officials become familiar with the evaluation and implementation of sludge irradiation at these sites

  8. Technology transfer by multinationals

    OpenAIRE

    Kostyantyn Zuzik

    2003-01-01

    The paper analyses the issue of technology transfer by multinational corporations. The following questions are explored: (a) world market of technologies, the role of MNCs (b) Choice of the technology transfer mode, Dunning's OLI-theory as a factor of the choice of the mode of transfer (c) measurement and profitability of technology transfer (d) transfer of technology through partnerships, JVs, alliances and through M&As (e) aspects of technology transfer by services multinationals. Paper uti...

  9. Technology transfer trends in Indian space programme

    Science.gov (United States)

    Sridhara Murthi, K. R.; Shoba, T. S.

    2010-10-01

    Indian space programme, whose objectives involve acceleration of economic and social development through applications of space technology, has been engaged in the development of state-of-the-art satellite systems, launch vehicles and equipment necessary for applications. Even during the early phase of evolution of this Programme, deliberate policies have been adopted by the national space agency, namely, Indian Space Research Organisation (ISRO), to promote spin-off benefit from the technologies developed for the use of space projects. Consistently adhering to this policy, ISRO has transferred over 280 technologies till date, spanning a wide spectrum of disciplines. This has resulted in a fruitful two-way cooperation between a number of SMEs and the ISRO. In order to make the technology transfer process effective, ISRO has adopted a variety of functional and organizational policies that included awareness building measures, licensee selection methods, innovative contract systems, diverse transfer processes, post licencing services and feedback mechanisms. Besides analyzing these policies and their evolution, the paper discusses various models adopted for technology transfer and their impact on assessment. It also touches upon relevant issues relating to creating interface between public funded R&D and the private commercial enterprises. It suggests few models in which international cooperation could be pursued in this field.

  10. NASA technology applications team: Applications of aerospace technology

    Science.gov (United States)

    1993-01-01

    This report covers the activities of the Research Triangle Institute (RTI) Technology Applications Team for the period 1 October 1992 through 30 September 1993. The work reported herein was supported by the National Aeronautics and Space Administration (NASA), Contract No. NASW-4367. Highlights of the RTI Applications Team activities over the past year are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. Appendix B includes Technology Opportunity Announcements and Spinoff! Sheets prepared by the Team while Appendix C contains a series of technology transfer articles prepared by the Team.

  11. A continuing program for technology transfer to the apparel industry

    Science.gov (United States)

    Clingman, W. H.

    1971-01-01

    A six month program has been carried out to investigate various mechanisms for transferring technology to industry. This program has focused on transfer to the apparel industry through the Apparel Research Foundation. The procedure was to analyze the problem, obtain potentially relevant aerospace technology, and then transfer this technology to the industry organization. This was done in a specific case. Technology was identified relevant to stitchless joining, and this technology was transferred to the Apparel Research Foundation. The feasibility and ground rules for carrying out such activities on a broader scale were established. A specific objective was to transfer new technology from the industry organization to the industry itself. This required the establishment of an application engineering program. Another transfer mechanism tested was publication of solutions to industry problems in a format familiar to the industry. This is to be distinguished from circulating descriptions of new technology. Focus is on the industry problem and the manager is given a formula for solving it that he can follow. It was concluded that this mechanism can complement the problem statement approach to technology transfer. It is useful in achieving transfer when a large amount of application engineering is not necessary. A wide audience is immediately exposed to the technology. On the other hand, the major manufacturing problems which require a sophisticated technical solution integrating many innovations are less likely to be helped.

  12. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  13. TRIUMF: Technology transfer

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In our occasional series highlighting the increasingly important area of technology transfer and industrial spinoff from high energy physics, this month the CERN Courier focuses on TRIUMF in Vancouver, Canada's major national facility for research in subatomic physics, a particularly illustrative example of the rewards and challenges involved. TRIUMF is based on a 520 MeV negative hydrogen ion cyclotron meson factory operated by a consortium of Canadian universities. Although the primary funding from the Canadian government is earmarked for support of basic research, the laboratory has always fostered applications of the technologies available, supporting them with funds from other sources. At first this ''applied programme'' involved simply the provision of particle beams for other scientific, medical and industrial uses - protons for the development of neutrondeficient radioisotopes, neutrons for activation analysis, pions for cancer therapy, and muons for chemistry and condensed-matter physics. Twenty five years on, the technology transfer process has resulted not only in a significantly expanded internal applied programme, with many areas of activity quite independent of the big cyclotron, but also in a number of successful commercial operations in the Vancouver area. Radioisotope production has been a particularly fruitful source for technology transfer, the early development work leading to two important initiatives - the establishment of a commercial radioisotope production facility on site and the inauguration of a positron emission tomography (PET) program at the University of British Columbia nearby. In 1979 Atomic Energy of Canada Ltd's isotope production division (now Nordion International Inc.) decided to establish a western Canadian facility at TRIUMF, to produce the increasingly important neutron-deficient radioisotopes obtainable with accelerator beams, primarily for medical applications. This would complement their

  14. Space benefits: The secondary application of aerospace technology in other sectors of the economy. [(information dissemination and technology transfer from NASA programs)

    Science.gov (United States)

    1974-01-01

    Space Benefits is a publication that has been prepared for the NASA Technology Utilization Office by the Denver Research Institute's Program for Transfer Research and Impact Studies, to provide the Agency with accurate, convenient, and integrated resource information on the transfer of aerospace technology to other sectors of the U.S. economy. The technological innovations derived from NASA space programs and their current applications in the following areas are considered: (1) manufacturing consumer products, (2) manufacturing capital goods, (3) new consumer products and retailing, (4) electric utilities, (5) environmental quality, (6) food production and processing, (7) government, (8) petroleum and gas, (9) construction, (10) law enforcement, and (11) highway transportation.

  15. Pakistan's experience in transfer of nuclear technology

    International Nuclear Information System (INIS)

    Ahmad Khan, Nunir

    1977-01-01

    Of all technologies, nuclear technology is perhaps the most interdisciplinary in character as it encompasses such varied fields as nuclear physics, reactor physics, mechanical, electrical electronics controls, metallurgical and even civil and geological engineering. When we speak of transfer of acquisition of nuclear technology we imply cumulative know-how in many fields, most of which are not nuclear per se but are essential for building the necessry infrastructure and back-up facilities for developing and implementing any nuclear energy program. In Pakistan, efforts on utilization of nuclear energy for peaceful applications were initiated about twenty years ago. During these years stepwise development of nuclear technology has taken place. The experience gained by Pakistan so far in transfer of nuclear technology is discussed. Suggestions have been made for continuing the transfer of this most essential technology from the advanced to the developing countries while making sure that necessary safeguard requirements are fullfilled

  16. The process for technology transfer in Baltimore

    Science.gov (United States)

    Golden, T. S.

    1978-01-01

    Ingredients essential for a successful decision process relative to proper technological choices for a large city were determined during four years of experience in the NASA/Baltimore Applications Project. The general approach, rationale, and process of technology transfer are discussed.

  17. A case history of technology transfer

    Science.gov (United States)

    1981-01-01

    A sequence of events, occurring over the last 25 years, are described that chronicle the evolution of ion-bombardment electric propulsion technology. Emphasis is placed on the latter phases of this evolution, where special efforts were made to pave the way toward the use of this technology in operational space flight systems. These efforts consisted of a planned program to focus the technology toward its end applications and an organized process that was followed to transfer the technology from the research-technology NASA Center to the user-development NASA Center and its industry team. Major milestones in this evolution, which are described, include the development of thruster technology across a large size range, the successful completion of two space electric rocket tests, SERT I and SERT II, development of power-processing technology for electric propulsion, completion of a program to make the technology ready for flight system development, and finally the technology transfer events.

  18. Technology Applications Team: Applications of aerospace technology

    Science.gov (United States)

    1993-01-01

    Highlights of the Research Triangle Institute (RTI) Applications Team activities over the past quarter are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. The authors gratefully acknowledge the contributions of many individuals to the RTI Technology Applications Team program. The time and effort contributed by managers, engineers, and scientists throughout NASA were essential to program success. Most important to the program has been a productive working relationship with the NASA Field Center Technology Utilization (TU) Offices. The RTI Team continues to strive for improved effectiveness as a resource to these offices. Industry managers, technical staff, medical researchers, and clinicians have been cooperative and open in their participation. The RTI Team looks forward to continuing expansion of its interaction with U.S. industry to facilitate the transfer of aerospace technology to the private sector.

  19. Dual Space Technology Transfer

    Science.gov (United States)

    Kowbel, W.; Loutfy, R.

    2009-03-01

    Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.

  20. Industrial technology transfer

    International Nuclear Information System (INIS)

    Bulger, W.

    1982-06-01

    The transfer of industrial technology is an essential part of the CANDU export marketing program. Potential customers require the opportunity to become self-sufficient in the supply of nuclear plant and equipment in the long term and they require local participation to the maximum extent possible. The Organization of CANDU Industries is working closely with Atomic Energy of Canada Ltd. in developing comprehensive programs for the transfer of manufacturing technology. The objectives of this program are: 1) to make available to the purchasing country all nuclear component manufacturing technology that exists in Canada; and 2) to assure that the transfer of technology takes place in an efficient and effective way. Technology transfer agreements may be in the form of joint ventures or license agreements, depending upon the requirements of the recipient

  1. Transfer of industry-oriented nuclear technology at NUCOR

    International Nuclear Information System (INIS)

    De Jesus, A.S.M.

    1983-10-01

    The transfer of industry-oriented nuclear technology at the Nuclear Development Corporation of South Africa (Pty) Ltd (NUCOR) is centred in a few divisions only, as most of the NUCOR's program is internally oriented. The industry-oriented activities include radiation technology, production of radioisotopes and application of nuclear techniques in solving problems of industry. The study is concerned mainly with the last of these activities. The general problem of transferring innovative technology is reviewed and a systems approach is used to analyse the transfer process at NUCOR, in terms of the organisation itself and its environment. Organisational strengths and weaknesses are identified and used as a basis to determine opportunities and threats. Possible objectives are formulated and a strategy to meet them is suggested. 'Demand-pull' as opposed to 'technology-push' is advanced as the main triggering mechanism in the transfer of industry-oriented nuclear technology. The importance of marketing this technology, as well as its commercialization, are discussed

  2. Sustainable technology transfer

    NARCIS (Netherlands)

    Punter, H.T.; Krikhaar, R.L.; Bril, R.J.

    2006-01-01

    In this position paper we address the issue of transferring a technology from research into an industrial organization by presenting a refined process for technology transfer. Based on over two decades of industrial experience, we identified the need for a dedicated technology engineering phase for

  3. Night vision and electro-optics technology transfer, 1972 - 1981

    Science.gov (United States)

    Fulton, R. W.; Mason, G. F.

    1981-09-01

    The purpose of this special report, 'Night Vision and Electro-Optics Technology Transfer 1972-1981,' is threefold: To illustrate, through actual case histories, the potential for exploiting a highly developed and available military technology for solving non-military problems. To provide, in a layman's language, the principles behind night vision and electro-optical devices in order that an awareness may be developed relative to the potential for adopting this technology for non-military applications. To obtain maximum dollar return from research and development investments by applying this technology to secondary applications. This includes, but is not limited to, applications by other Government agencies, state and local governments, colleges and universities, and medical organizations. It is desired that this summary of Technology Transfer activities within Night Vision and Electro-Optics Laboratory (NV/EOL) will benefit those who desire to explore one of the vast technological resources available within the Defense Department and the Federal Government.

  4. NASA programs in technology transfer and their relation to remote sensing education

    Science.gov (United States)

    Weinstein, R. H.

    1980-01-01

    Technology transfer to users is a central feature of NASA programs. In each major area of responsibility, a variety of mechanisms was established to provide for this transfer of operational capability to the proper end user, be it a Federal agency, industry, or other public sector users. In addition, the Technology Utilization program was established to cut across all program areas and to make available a wealth of 'spinoff' technology (i.e., secondary applications of space technology to ground-based use). The transfer of remote sensing technology, particularly to state and local users, presents some real challenges in application and education for NASA and the university community. The agency's approach to the transfer of remote sensing technology and the current and potential role of universities in the process are considered.

  5. Transfer of Canadian nuclear regulatory technology

    International Nuclear Information System (INIS)

    Harvie, J.D.

    1985-10-01

    This paper discusses the Canadian approach to the regulation of nuclear power reactors, and its possible application to CANDU reactors in other countries. It describes the programs which are in place to transfer information on licensing matters to egulatory agencies in other countries, and to offer training on nuclear safety regulation as it is practised in Canada. Experience to date in the transfer of regulatory technology is discussed. 5 refs

  6. Robot, Eye, and ROI: Technology Transformation Versus Technology Transfer

    OpenAIRE

    Sacerdoti, Earl

    1985-01-01

    I want to discuss two aspects of technology transfer. First I've been asked to present a brief perspective on how AI is fitting into a particular application area: Industrial automation. Then I want to give my two cents worth on AI as a business activity.

  7. Technology Transfer: Use of Federally Funded Research and Development

    National Research Council Canada - National Science Library

    Schacht, Wendy H

    2007-01-01

    .... These applications can result from technology transfer, a process by which technology developed in one organization, in one area, or for one purpose is applied in another organization, in another...

  8. Technology transfer for adaptation

    Science.gov (United States)

    Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia

    2014-09-01

    Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.

  9. Transfer of radiation technology to developing countries

    Science.gov (United States)

    Markovic, Vitomir; Ridwan, Mohammad

    1993-10-01

    Transfer of technology is a complex process with many facets, options and constraints. While the concept is an important step in bringing industrialization process to agricultural based countries, it is clear, however, that a country will only benefit from a new technology if it addresses a real need, and if it can be absorbed and adapted to suit the existing cultural and technological base. International Atomic Energy Agency, as UN body, has a mandate to promote nuclear applicationsand assist Member States in transfer of technology for peaceful applications. This mandate has been pursued by many different mechanisms developed in the past years: technical assistance, coordinated research programmes, scientific and technical meetings, publications, etc. In all these activities the Agency is the organizer and initiator, but main contributions come from expert services from developed countries and, increasingly, from developing countries themselves. The technical cooperation among developing coutries more and more becomes part of different programmes. In particular, regional cooperation has been demonstrated as an effective instrument for transfer of technology from developed and among developing countries. Some examples of actual programmes are given.

  10. Technology transfer and the Argentina-German cooperation agreement

    International Nuclear Information System (INIS)

    Di Primio, J.C.

    1977-01-01

    The transfer of technology from developed countries is usually done through industrial enterprises. The local industrialization of imported technology does not necessary imply that full benefit is extracted from its application. A pre-established scientific and technical infrastructure is needed to understand and incorporate it, and to develop methods for improvement and use at the industrial level, in the frame of national conditions. The transference of nuclear technology has shown recently new concepts for the implementation. It is becoming a rule that massive industrial nuclear technology transfer to developing nations is conditioned by the latter requirement for simulataneous assistance to create or promote that infrastructure. An example of international cooperation to meet the requirement explained above is the Argentine-German agreement for the peaceful applications of nuclear energy. Since 1971 it has been used to strengthen the scientific and technical programs of the Argentine Atomic Energy Commission, by application to fields relevant by its industrial implications. The objectives and implementation of the agreement are described: cooperative actions where initially directed to the infrastructure needed to support the nuclear fuel cycle industry. The results achieved during the period 1971-76 are critically analyzed. This analysis has influenced the selection of future cooperative projects as well as the extension of the cooperation to other nuclear fields of common interest [es

  11. The development of nuclear technology transfer

    International Nuclear Information System (INIS)

    Nack-chung Sung

    1987-01-01

    Korea, as a recipient of nuclear technology transfer, has good experience of progressively building up its indigeneous capability of nuclear technology through three stages of technology transfer, namely: technology transfer under the turnkey approach, component approach, and integrated technology transfer with a local prime contractor. Here, each stage of experience of technology transfer, with Korea as a recipient, is presented. (author)

  12. Introduction of Capacitive Power Transfer Technology

    OpenAIRE

    Hattori, Reiji

    2017-01-01

    Wireless power transfer (WPT) technology is expected for eliminating troublesomeness of connecting an electronic cable. The development of WPT technology has a long history since Nikola Tesla built up Wardenclyffe Tower located in Long Island, New York for developing a WPT system in the early 1980’s. But it cannot be said that WPT technology is widely spread in a current human life space enough. The reason is that it cannot find the specific application which only WPT can achieve yet. There a...

  13. Improving NASA's technology transfer process through increased screening and evaluation in the information dissemination program

    Science.gov (United States)

    Laepple, H.

    1979-01-01

    The current status of NASA's technology transfer system can be improved if the technology transfer process is better understood. This understanding will only be gained if a detailed knowledge about factors generally influencing technology transfer is developed, and particularly those factors affecting technology transfer from government R and D agencies to industry. Secondary utilization of aerospace technology is made more difficult because it depends on a transfer process which crosses established organizational lines of authority and which is outside well understood patterns of technical applications. In the absence of a sound theory about technology transfer and because of the limited capability of government agencies to explore industry's needs, a team approach to screening and evaluation of NASA generated technologies is proposed which calls for NASA, and other organizations of the private and public sectors which influence the transfer of NASA generated technology, to participate in a screening and evaluation process to determine the commercial feasibility of a wide range of technical applications.

  14. A Review on the Recent Development of Capacitive Wireless Power Transfer Technology

    Directory of Open Access Journals (Sweden)

    Fei Lu

    2017-11-01

    Full Text Available Capacitive power transfer (CPT technology is an effective and important alternative to the conventional inductive power transfer (IPT. It utilizes high-frequency electric fields to transfer electric power, which has three distinguishing advantages: negligible eddy-current loss, relatively low cost and weight, and excellent misalignment performance. In recent years, the power level and efficiency of CPT systems has been significantly improved and has reached the power level suitable for electric vehicle charging applications. This paper reviews the latest developments in CPT technology, focusing on two key technologies: the compensation circuit topology and the capacitive coupler structure. The comparison with the IPT system and some critical issues in practical applications are also discussed. Based on these analyses, the future research direction can be developed and the applications of the CPT technology can be promoted.

  15. Applications of aerospace technology in biomedicine. A technology transfer profile: Patient monitoring

    Science.gov (United States)

    Murray, D. M.

    1971-01-01

    NASA contributions to cardiovascular monitoring are described along with innovations in intracardiac blood pressure monitoring. A brief overview of the process of NASA technology transfer in patient monitoring is presented and a list of bioinstrumentation tech briefs and the number of requests for technical support is included.

  16. NASA Technology Transfer System

    Science.gov (United States)

    Tran, Peter B.; Okimura, Takeshi

    2017-01-01

    NTTS is the IT infrastructure for the Agency's Technology Transfer (T2) program containing 60,000+ technology portfolio supporting all ten NASA field centers and HQ. It is the enterprise IT system for facilitating the Agency's technology transfer process, which includes reporting of new technologies (e.g., technology invention disclosures NF1679), protecting intellectual properties (e.g., patents), and commercializing technologies through various technology licenses, software releases, spinoffs, and success stories using custom built workflow, reporting, data consolidation, integration, and search engines.

  17. Technology transfer

    International Nuclear Information System (INIS)

    1998-01-01

    On the base of technological opportunities and of the environmental target of the various sectors of energy system this paper intend to conjugate the opportunity/objective with economic and social development through technology transfer and information dissemination [it

  18. Technology transfer in CANDU marketing

    International Nuclear Information System (INIS)

    Pon, G.A.

    1982-06-01

    The author discusses how the CANDU system lends itself to technology transfer, the scope of CANDU technology transfer, and the benefits and problems associated with technology transfer. The establishment of joint ventures between supplier and client nations offers benefits to both parties. Canada can offer varying technology transfer packages, each tailored to a client nation's needs and capabilities. Such a package could include all the hardware and software necessary to develop a self-sufficient nuclear infrastructure in the client nation

  19. Technology Transfer and Technology Transfer Intermediaries

    Science.gov (United States)

    Bauer, Stephen M.; Flagg, Jennifer L.

    2010-01-01

    A standard and comprehensive model is needed to evaluate and compare technology transfer systems and the stakeholders within these systems. The principle systems considered include federal laboratories, U.S. universities, the rehabilitation engineering research centers (RERCs), and large small business innovation research programs. An earlier…

  20. Technology development and transfer in environmental management

    International Nuclear Information System (INIS)

    Katz, J.; Karnovitz, A.; Yarbrough, M.

    1994-01-01

    Federal efforts to develop and employ the innovative technologies needed to clean up contaminated facilities would greatly benefit from a greater degree of interaction and integration with the energies and resources of the private sector. Yet there are numerous institutional, economic, and regulatory obstacles to the transfer and commercialization of environmental restoration and waste management technologies. These obstacles discourage private sector involvement and investment in Federal efforts to develop and use innovative technologies. A further effect is to impede market development even where private sector interest is high. Lowering these market barriers will facilitate the commercialization of innovative environmental cleanup technologies and expedite the cleanup of contaminated Federal and private facilities. This paper identifies the major barriers to transfer and commercialization of innovative technologies and suggests possible strategies to overcome them. Emphasis is placed on issues particularly relevant to the Department of Energy's Environmental Restoration and Waste Management (EM) program, but which are applicable to other Federal agencies confronting complex environmental cleanup problems

  1. International co-operation and the transfer of nuclear technology

    International Nuclear Information System (INIS)

    di Primio, J.C.

    1977-01-01

    The transfer of technology from developed countries is usually done through industrial enterprises. The local industrialization of imported technology does not necessarily imply that full benefit is extracted from its application. A pre-established scientific and technical infrastructure is needed to understand and incorporate it, and to develop methods for improvement and use at the industrial level, in the frame of national conditions. The transference of nuclear technology has recently shown new concepts for implementation. It is becoming a rule that massive industrial nuclear technology transfer to developing nations is tied to a requirement for simultaneous assistance in creating or promoting the infrastructure. An example of international co-operation to meet this requirement is the Argentine-German Agreement for the Peaceful Applications of Nuclear Energy. Since 1971 this has been used to strengthen the scientific and technical programmes of the Argentine Atomic Energy Commission in the relevant fields of industrial applications. The objectives and implementation of the agreement are described: co-operative actions were initially directed to the infrastructure needed to support the nuclear fuel cycle industry. The results achieved during the period 1971-1976 are critically analysed. This analysis has influenced the selection of future co-operative projects as well as the extension of the co-operation to other nuclear fields of common interest. (author)

  2. Technology transfer quality assurance

    International Nuclear Information System (INIS)

    Hood, F.C.

    1991-03-01

    The results of research conducted at Pacific Northwest Laboratory (PNL) for the DOE are regularly transferred from the laboratory to the private sector. The principal focus of PNL is on environmental research and waste management technology; other programs of emphasis include molecular science research. The technology transfer process is predicated on Quality to achieve its objectives effectively. Total quality management (TQM) concepts and principles readily apply to the development and translation of new scientific concepts into commercial products. The concept of technology transfer epitomizes the TQM tenet of continuous improvement: always striving for a better way to do things and always satisfying the customer. A successful technology transfer process adds value to society by providing new or enhanced processes, products, and services to government and commercial customers, with a guarantee of product pedigree and process validity. 2 refs

  3. Resonance Energy Transfer Molecular Imaging Application in Biomedicine

    Directory of Open Access Journals (Sweden)

    NIE Da-hong1,2;TANG Gang-hua1,3

    2016-11-01

    Full Text Available Resonance energy transfer molecular imaging (RETI can markedly improve signal intensity and tissue penetrating capacity of optical imaging, and have huge potential application in the deep-tissue optical imaging in vivo. Resonance energy transfer (RET is an energy transition from the donor to an acceptor that is in close proximity, including non-radiative resonance energy transfer and radiative resonance energy transfer. RETI is an optical imaging technology that is based on RET. RETI mainly contains fluorescence resonance energy transfer imaging (FRETI, bioluminescence resonance energy transfer imaging (BRETI, chemiluminescence resonance energy transfer imaging (CRETI, and radiative resonance energy transfer imaging (RRETI. RETI is the hot field of molecular imaging research and has been widely used in the fields of biology and medicine. This review mainly focuses on RETI principle and application in biomedicine.

  4. Technology transfer to Africa: constraints for CDM operations

    International Nuclear Information System (INIS)

    Karani, Patrick

    2002-01-01

    It is practically difficult to design, implement and manage Clean Development Mechanism (CDM) projects in Africa without a provision for capacity building that will enable the application of modern technologies and techniques. Existing institutions need strengthening, human capacity needs to be developed and new markets need to be promoted. The author outlines institutional and market constraints in relation to technology transfer (e.g renewable energy technologies) and development in Africa. (Author)

  5. Cell-printing and transfer technology applications for bone defects in mice.

    Science.gov (United States)

    Tsugawa, Junichi; Komaki, Motohiro; Yoshida, Tomoko; Nakahama, Ken-ichi; Amagasa, Teruo; Morita, Ikuo

    2011-10-01

    Bone regeneration therapy based on the delivery of osteogenic factors and/or cells has received a lot of attention in recent years since the discovery of pluripotent stem cells. We reported previously that the implantation of capillary networks engineered ex vivo by the use of cell-printing technology could improve blood perfusion. Here, we developed a new substrate prepared by coating glass with polyethylene glycol (PEG) to create a non-adhesive surface and subsequent photo-lithography to finely tune the adhesive property for efficient cell transfer. We examined the cell-transfer efficiency onto amniotic membrane and bone regenerative efficiency in murine calvarial bone defect. Cell transfer of KUSA-A1 cells (murine osteoblasts) to amniotic membrane was performed for 1 h using the substrates. Cell transfer using the substrate facilitated cell engraftment onto the amniotic membrane compared to that by direct cell inoculation. KUSA-A1 cells transferred onto the amniotic membrane were applied to critical-sized calvarial bone defects in mice. Micro-computed tomography (micro-CT) analysis showed rapid and effective bone formation by the cell-equipped amniotic membrane. These results indicate that the cell-printing and transfer technology used to create the cell-equipped amniotic membrane was beneficial for the cell delivery system. Our findings support the development of a biologically stable and effective bone regeneration therapy. Copyright © 2011 John Wiley & Sons, Ltd.

  6. University Technology Transfer

    Directory of Open Access Journals (Sweden)

    Mike Cox

    2004-09-01

    Full Text Available This article describes the experiences and general observations of the author at Heriot-Watt University and concerns the transfer of university technology for the purposes of commercialisation. Full commercial exploitation of a university invention generally requires transferring that technology into the industrial arena, usually either by formation of a new company or licensing into an existing company. Commercialisation activities need to be carried out in unison with the prime activities of the university of research and teaching. Responsibility for commercialising university inventions generally rests with a specific group within the university, typically referred to as the technology transfer group. Each technology transfer should be considered individually and appropriate arrangements made for that particular invention. In general, this transfer process involves four stages: identification, evaluation, protection and exploitation. Considerations under these general headings are outlined from a university viewpoint. A phased approach is generally preferred where possible for the evaluation, protection and exploitation of an invention to balance risk with potential reward. Evaluation of the potential opportunity for a university invention involves essentially the same considerations as for an industrial invention. However, there are a range of commercial exploitation routes and potential deals so that only general guidelines can be given. Naturally, the final deal achieved is that which can be negotiated. The potential rewards for the university and inventor are both financial (via licensing income and equity realisation and non-financial.

  7. Development of a Technology Transfer Score for Evaluating Research Proposals: Case Study of Demand Response Technologies in the Pacific Northwest

    Science.gov (United States)

    Estep, Judith

    Investment in Research and Development (R&D) is necessary for innovation, allowing an organization to maintain a competitive edge. The U.S. Federal Government invests billions of dollars, primarily in basic research technologies to help fill the pipeline for other organizations to take the technology into commercialization. However, it is not about just investing in innovation, it is about converting that research into application. A cursory review of the research proposal evaluation criteria suggests that there is little to no emphasis placed on the transfer of research results. This effort is motivated by a need to move research into application. One segment that is facing technology challenges is the energy sector. Historically, the electric grid has been stable and predictable; therefore, there were no immediate drivers to innovate. However, an aging infrastructure, integration of renewable energy, and aggressive energy efficiency targets are motivating the need for research and to put promising results into application. Many technologies exist or are in development but the rate at which they are being adopted is slow. The goal of this research is to develop a decision model that can be used to identify the technology transfer potential of a research proposal. An organization can use the model to select the proposals whose research outcomes are more likely to move into application. The model begins to close the chasm between research and application--otherwise known as the "valley of death". A comprehensive literature review was conducted to understand when the idea of technology application or transfer should begin. Next, the attributes that are necessary for successful technology transfer were identified. The emphasis of successful technology transfer occurs when there is a productive relationship between the researchers and the technology recipient. A hierarchical decision model, along with desirability curves, was used to understand the complexities of the

  8. Search Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  9. Available Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  10. Technological entrepreneurship : technology transfer from academia to new firms

    NARCIS (Netherlands)

    Prodan, I.

    2007-01-01

    This doctoral dissertation aims to do the following: 1. Develop the conceptual model of technological entrepreneurship 2. Position technology transfer from academia to new firms in a newly developed conceptual model of technological entrepreneurship 3. Develop the model of technology transfer from

  11. Potential commercial applications of centrifuge technology

    International Nuclear Information System (INIS)

    1985-08-01

    As part of an effort to prevent the loss of and maximize the use of unique developments of the centrifuge program, this document identifies and briefly describes unclassified technologies potentially available for transfer. In addition, this document presents a preliminary plan for action needed to carry out the transfer activity. Continuing efforts will provide additional descriptions of technologies which have applications that are not as apparent or as obvious as those presented here. Declassification of some of the program information, now classified as restricted data, would permit the descriptions of additional technologies which have significant commercial potential. The following are major areas of technology where transfer opportunities exist: biomedical; separation; motors and control systems; materials; vacuum; dynamics and balancing; and diagnostics and instrumentation

  12. Remote sensing education in NASA's technology transfer program

    Science.gov (United States)

    Weinstein, R. H.

    1981-01-01

    Remote sensing is a principal focus of NASA's technology transfer program activity with major attention to remote sensing education the Regional Program and the University Applications Program. Relevant activities over the past five years are reviewed and perspective on future directions is presented.

  13. Software engineering technology transfer: Understanding the process

    Science.gov (United States)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  14. Technology transfer - north/south

    Energy Technology Data Exchange (ETDEWEB)

    Ercan, Y [Gazi University, Ankara (Turkey). Faculty of Engineering and Architecture

    1991-01-01

    Technology transfer is needed to the developing countries in the fields of fuel, combustion equipment, and operations to maximise combustion efficiency and minimise the harmful emissions. Channels of technology transfer available include: direct foreign investment, joint ventures, patent and licence purchases, industrial co-operation and technical aid, importation of technical goods, and turn-key projects. Dependency on totally imported technology and equipment both in boilers and flue gas treatment systems, however, results in high investment costs and may limit extensive use of power plants based on coal. If technologies to improve the efficiencies and emission behaviour of coal utilizing facilities are transferred to developing countries, a business scheme mutually beneficial both to the developing countries and the coal producing countries can be reached, which will boost the industrialization of the developing countries. 11 refs., 3 figs., 1 tab.

  15. Innovative technology transfer of nondestructive evaluation research

    Science.gov (United States)

    Brian Brashaw; Robert J. Ross; Xiping Wang

    2008-01-01

    Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...

  16. Technology transfer: The CANDU approach

    International Nuclear Information System (INIS)

    Hart, R.S.

    1998-01-01

    The many and diverse technologies necessary for the design, construction licensing and operation of a nuclear power plant can be efficiently assimilated by a recipient country through an effective technology transfer program supported by the firm long term commitment of both the recipient country organizations and the supplier. AECL's experience with nuclear related technology transfer spans four decades and includes the construction and operation of CANDU plants in five countries and four continents. A sixth country will be added to this list with the start of construction of two CANDU 6 plants in China in early 1997. This background provides the basis for addressing the key factors in the successful transfer of nuclear technology, providing insights into the lessons learned and introducing a framework for success. This paper provides an overview of AECL experience relative to the important factors influencing technology transfer, and reviews specific country experiences. (author)

  17. A dynamic approach to technology transfer

    International Nuclear Information System (INIS)

    Shave, D.F.; Kent, G.F.; Giambusso, A.; Jacobs, S.B.

    1987-01-01

    Stone and Webster Engineering Corporation has developed a systematic program for achieving efficient, effective technology transfer. This program is based on transferring both know-why and know-how. The transfer of know-why and know-how is achieved most effectively by working in partnership with the recipient of the technology; by employing five primary transfer mechanisms, according to the type of learning required; by treating the technology transfer as a designed process rather than an isolated event; and by using a project management approach to control and direct the process. This paper describes the philosophy, process, and training mechanisms that have worked for Stone and Webster, as well as the project management approach needed for the most effective transfer of technology. (author)

  18. E-Beam - a new transfer system for isolator technology

    International Nuclear Information System (INIS)

    Sadat, Theo; Huber, Thomas

    2002-01-01

    In every aseptic filling application, the sterile transfer of goods into the aseptic area is a challenge, and there are many different ways to do it. With isolator technology a higher sterility assurance level (SAL) is achieved. This SAL is only as good as the weakest segment in the chain of manufacturing. The transfer of goods into and out of the isolator is one of these critical segments. Today different techniques, some already well established, others still very new, are available on the market like: dry heat tunnel, autoclave, pulsed light, rapid transfer systems (RTP), H 2 O 2 tunnel, UV light, etc. all these systems are either not applicable for continuous transfer, only good for heat-compatible materials like glass, or do not guarantee a 6 log spore reduction. E-Beam opens new perspectives in this field. With E-beam technology it is possible to transfer heat-sensitive (plastic), pre-sterilised materials at high speed, continuously into an aseptic area. E-Beam unifies three different technologies, that result in a very efficient and high-speed decontamination machine designed for the pharmaceutical industry. First, there is the electron beam that decontaminates the goods and an accurate shielding that protects the surrounding from this beam. Second, there is the conveyor system that guarantees the output and the correct exposure time underneath the beam. And third, there is the isolator interface to provide correct differential pressure and clean air inside the tunnel as well as the decontamination of the tunnel with H 2 O 2 prior to production. The E-beam is a low-energy electron beam, capable of decontaminating any kind of surface. It penetrates only a few micrometers into the material and therefore does not deform the packaging media. Currently, machines are being built to transfer pre-sterilised syringes, packed in plastic tubs with a Tyvek cover into an aseptic filling isolator with the following data: decontamination efficiency of 10 6 (6 log spore

  19. Technology transfer metrics: Measurement and verification of data/reusable launch vehicle business analysis

    Science.gov (United States)

    Trivoli, George W.

    1996-01-01

    Congress and the Executive Branch have mandated that all branches of the Federal Government exert a concentrated effort to transfer appropriate government and government contractor-developed technology to the industrial use in the U.S. economy. For many years, NASA has had a formal technology transfer program to transmit information about new technologies developed for space applications into the industrial or commercial sector. Marshall Space Flight Center (MSFC) has been in the forefront of the development of U.S. industrial assistance programs using technologies developed at the Center. During 1992-93, MSFC initiated a technology transfer metrics study. The MSFC study was the first of its kind among the various NASA centers. The metrics study is a continuing process, with periodic updates that reflect on-going technology transfer activities.

  20. ICAT and the NASA technology transfer process

    Science.gov (United States)

    Rifkin, Noah; Tencate, Hans; Watkins, Alison

    1993-01-01

    This paper will address issues related to NASA's technology transfer process and will cite the example of using ICAT technologies in educational tools. The obstacles to effective technology transfer will be highlighted, viewing the difficulties in achieving successful transfers of ICAT technologies.

  1. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    Science.gov (United States)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  2. What Is Technology Transfer? | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.

  3. Application of artificial neural networks to improve power transfer ...

    African Journals Online (AJOL)

    Application of artificial neural networks to improve power transfer capability through OLTC. ... International Journal of Engineering, Science and Technology ... Numerical results show that the setting of OLTC transformer in terms of the load model has a major effect on the maximum power transfer in power systems and the ...

  4. Technology transfer and localization: A Framatome perspective

    International Nuclear Information System (INIS)

    Preneuf, R. de

    2000-01-01

    Localization and technology transfer have been important factors influencing the decision-making process in countries embarking on a nuclear power programme. It seems natural that relationships between donors and recipients of technology, beginning with sub-contracting, should evolve towards technology transfers and cooperation on an equal footing. France was both a receiver and a donor of technology transfer in the area of nuclear power. This paper describes the French experience in technology transfer and the lesson learned therefrom. (author)

  5. JPL Robotics Technology Applicable to Agriculture

    Science.gov (United States)

    Udomkesmalee, Suraphol Gabriel; Kyte, L.

    2008-01-01

    This slide presentation describes several technologies that are developed for robotics that are applicable for agriculture. The technologies discussed are detection of humans to allow safe operations of autonomous vehicles, and vision guided robotic techniques for shoot selection, separation and transfer to growth media,

  6. Technology transfer and development: a preliminary look at Chinese technology in Guyana

    Energy Technology Data Exchange (ETDEWEB)

    Long, F

    1982-05-01

    Technology is regarded as a vital ingredient for development. Since developing countries can hardly fill their technological requirements indigenously, such countries tend to acquire the bulk of technology applied to their production systems from abroad. However, the transfer of technology tends to be associated with a series of problems: foreign exchange, inappropriateness, the generation of limited inter-sectorial linkages, limited use of raw materials, and other inputs associated with technology dependency. The study points to the fact that technology transfer need not necessarily be associated with the disadvantages identified in the literature. The study which essentially looks at the use of Chinese technology in clay-brick manufacturing in Guyana, shows that the country was able to reap several development benefits from the technology-transfer arrangement. At the same time, certain problems arising from the technology-transfer package such as the transfer of critical skills in key areas of production, and maintenance and servicing, are discussed. But these, the author argues, are not a function of restrictive conditions found in technology-transfer clauses, but rather of improper technology-transfer management. 2 tables.

  7. Interregional technology transfer on advanced materials and renewable energy systems

    International Nuclear Information System (INIS)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M.

    2008-01-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems

  8. Interregional technology transfer on advanced materials and renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M. [Department of Mechanical Engineering, Technological Educational Institute of Serres, Serres (Greece)

    2008-07-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems.

  9. Sustainability of University Technology Transfer: Mediating Effect of Inventor’s Technology Service

    Directory of Open Access Journals (Sweden)

    Fang Li

    2018-06-01

    Full Text Available Based on the perspective of knowledge transfer and the technology acceptance model (TAM, this paper constructs a university technology transfer sustainable development model that considers the inventor’s technology service from the perspective of the long-term cooperation of enterprise, and analyzes the mediating effect of the inventor’s technology service on university technology transfer sustainability. By using 270 questionnaires as survey data, it is found that the availability of an inventor’s technology service has a significant positive impact on the attitude tendency and practice tendency of enterprise long-term technological cooperation; enterprise technology absorption capacity and trust between a university and an enterprise also have significant influence on an inventor’s technical service availability. Therefore, the inventor’s technology service acts as a mediator in the relationship between university technology transfer sustainability and influence factors. Universities ought to establish the technology transfer model, which focuses on the inventor’s tacit knowledge transfer service, and promotes the sustainable development of the university.

  10. Heat transfer and fluid flow in biological processes advances and applications

    CERN Document Server

    Becker, Sid

    2015-01-01

    Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid...

  11. Assessing technology transfer in the Clean Development Mechanism

    OpenAIRE

    Cools, Sara Lena Yri

    2007-01-01

    This paper presents an operational definition of technology transfer, to be applied in studies of technology transfer in projects under the Kyoto Protocol’s Clean Development Mechanism (CDM). Although the CDM has never been given an explicit mandate for transferring technologies, its contribution in this respect has both been hoped for and exacted. The discussions of technology transfer in CDM projects are however blurred by widely varying conceptions of what technology transfer is. Qu...

  12. Toward equality of biodiversity knowledge through technology transfer.

    Science.gov (United States)

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a

  13. Technology transfer at TRIUMF

    International Nuclear Information System (INIS)

    Gardner, P.

    1994-06-01

    TRIUMF is Canada's major national research centre for sub-atomic physics. For the past five or six years, there has been an increasing emphasis on commercializing the technology that has emanated from the scientific research at the facility. This emphasis on technology transfer reflects a national policy trend of the Canadian federal government, which is the funding source for the majority of the research performed at TRIUMF. In TRIUMF's case, however, the initiative and funding for the commercialization office came from the provincial, or local government. This paper will describe the evolution of technology transfer at the TRIUMF facility, identifying the theory, policies and practical procedures that have been developed and followed. It will also include TRIUMF's experiences in finding exploitable technologies, protecting those technologies, and locating and linking with suitable industry partners to commercialize the technologies. There will be a discussion of resource allocation, and how TRIUMF has endeavoured to establish a portfolio of projects of assorted risks and expected returns. (author). 15 refs

  14. Technology transfer - the role of AEA Technology

    International Nuclear Information System (INIS)

    Hughes, A.E.; Bullough, R.; Mason, J.P.

    1989-01-01

    This paper concentrates mostly on examples of spin offs which have arisen from the more basic research carried out by the AEA. However, it should not be inferred from this that the only examples of successful technology transfer by the AEA are of a similar, often unforeseen nature. The most outstanding example of technology transfer by the AEA must surely be that achieved through the applied research which has enabled the establishment of a successful civil nuclear power programme in the UK. The natural transfer of technology here, achieved by virtue of the unique bridging position of the AEA with respect to universities and the nuclear industry, means that its success can easily be overlooked; to do so would be a mistake. However, by including spin off examples, we hope to illustrate how the AEA has also succeeded in bridging to more difficult areas where the special relationship which it shares with the nuclear industry is absent. (author)

  15. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1989-01-01

    The US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decontaminated and dismantled the world's first nuclear-fueled, commercial-size electric power plant. The SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. The objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper sets out access and availability directions for SSDP technology acquisition. Discusses are technology transfer definition; technology transfer products including topical and other project reports, professional-technical society presentations, other project liaison and media relations, visual documentation, and technology transfer data base; and retrieving SSDP information

  16. Development of nuclear technology transfer - Korea as a recipient

    International Nuclear Information System (INIS)

    Sung, N.C.

    1988-01-01

    Korea, as a recipient of nuclear technology transfer, has good experience of progressively building up its indigenous capability of nuclear technology through three stages of technology transfer, namely: technology transfer under the turn-key approach, component approach, and integrated technology transfer with a local prime contractor. Here, each stage of experience of technology transfer, with Korea as a recipient, is presented

  17. A Teacher Action Research Study: Enhancing Student Critical Thinking Knowledge, Skills, Dispositions, Application and Transfer in a Higher Education Technology Course

    Science.gov (United States)

    Phelan, Jack Gordon

    2012-01-01

    This study examined the effects of a critical thinking instructional intervention in a higher education technology course with the purpose of determining the extent to which the intervention enhanced student critical thinking knowledge, skills, dispositions, application and transfer abilities. Historically, critical thinking has been considered…

  18. Industrial applications of low energy accelerator technologies

    International Nuclear Information System (INIS)

    Park, Jae Won; Kim, Hyung Jin; Kim, Jun Yeon; Lee, Jae Sang; Yeo, Sun Mog; Lee, Ji Ah

    2008-05-01

    Industrial application researches utilizing a beam extracting unit and an accelerator with an energy less than 3 MeV have been conducted. Although a number of industrial application areas exist, a few research items had been selected for this project, which include the gemstone coloration and the surface modifications of metals/polymers. In the case of gemstone coloration, the green/yellow colored diamond by a proton beam irradiation and blue color emitting sapphire utilizing Co ion implantation are being evaluated as the high potential for commercialization. And, the band gap structures as a result of impurities' doping was calculated with density functional theory (DFT) and it was found to be well consistent with experimental results. The surface modification of stainless juice extracting gears have been successful and patented, resulting in a technology transfer to the company. The reduction in the detachment of the metallic elements during juice extracting as a results of ion beam surface modification is expected to be broadly applicable to the other relevant industrial materials and parts. In the case of gemstone coloration, it is estimated to be one of the highest commercially valuable items because of its extremely low processing expense. The research results have been successful and is worth while transferring the technologies to the industrial sectors. During the second phase research, 6 SCI papers have been published and 9 patents have been submitted and 3 patents have been registered. 1 technology has been transferred to the company for industrialization and 1 technology is pending for a transference

  19. Technology transfer from accelerator laboratories (challenges and opportunities)

    International Nuclear Information System (INIS)

    Verma, V.K.; Gardner, P.L.

    1994-06-01

    It is becoming increasingly evident that technology transfer from research laboratories must be a key element of their comprehensive strategic plans. Technology transfer involves using a verified and organized knowledge and research to develop commercially viable products. Management of technology transfer is the art of organizing and motivating a team of scientists, engineers and manufacturers and dealing intelligently with uncertainties. Concurrent engineering is one of the most effective approaches to optimize the process of technology transfer. The challenges, importance, opportunities and techniques of transferring technology from accelerator laboratories are discussed. (author)

  20. Transfer of nuclear technology from Spain

    International Nuclear Information System (INIS)

    Madrid, G.

    1985-01-01

    Technology transfer from Spain is possible in several fields of nuclear technology ranging from the head end of the fuel cycle (ENUSA) to the back end (ENRESA). The advantages of such a transfer are emphasized

  1. Understanding the CDM's contribution to technology transfer

    International Nuclear Information System (INIS)

    Schneider, Malte; Holzer, Andreas; Hoffmann, Volker H.

    2008-01-01

    Developing countries are increasingly contributing to global greenhouse gas emissions and, consequently, climate change as a result of their rapid economic growth. In order to reduce their impact, the private sector needs to be engaged in the transfer of low-carbon technology to those countries. The Clean Development Mechanism (CDM) is currently the only market mechanism aimed at triggering changes in the pattern of emissions-intensive activities in developing countries and is likely to play a role in future negotiations. In this paper, we analyse how the CDM contributes to technology transfer. We first develop a framework from the literature that delineates the main factors which characterise technology transfer. Second, we apply this framework to the CDM by assessing existing empirical studies and drawing on additional expert interviews. We find that the CDM does contribute to technology transfer by lowering several technology-transfer barriers and by raising the transfer quality. On the basis of this analysis, we give preliminary policy recommendations

  2. Communication and Cultural Change in University Technology Transfer

    Science.gov (United States)

    Wright, David

    2013-01-01

    Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…

  3. Energy technology transfer to developing countries

    International Nuclear Information System (INIS)

    Butera, F.; Farinelli, U.

    1992-01-01

    With the use of critical analyses of some examples of technology transfer by industrialized to third world countries, this paper illustrates the importance, in technology transfer, of giving due consideration to the specific social and marketing contexts of the targeted developing country and its physical and financial capability to acquire all the technology necessary to make the total realization of a desired industrial scheme feasible from the economic, technical and social points of view. It also indicates that the most effective transfers are those in which efforts are made to optimize local work force learning levels, process scheme efficiency and cost through the careful integration of innovative with conventional technologies

  4. Dissemination of CERN's Technology Transfer: Added Value from Regional Transfer Agents

    Science.gov (United States)

    Hofer, Franz

    2005-01-01

    Technologies developed at CERN, the European Organization for Nuclear Research, are disseminated via a network of external technology transfer officers. Each of CERN's 20 member states has appointed at least one technology transfer officer to help establish links with CERN. This network has been in place since 2001 and early experiences indicate…

  5. System analysis for technology transfer readiness assessment of horticultural postharvest

    Science.gov (United States)

    Hayuningtyas, M.; Djatna, T.

    2018-04-01

    Availability of postharvest technology is becoming abundant, but only a few technologies are applicable and useful to a wider community purposes. Based on this problem it requires a significant readiness level of transfer technology approach. This system is reliable to access readiness a technology with level, from 1-9 and to minimize time of transfer technology in every level, time required technology from the selection process can be minimum. Problem was solved by using Relief method to determine ranking by weighting feasible criteria on postharvest technology in each level and PERT (Program Evaluation Review Technique) to schedule. The results from ranking process of post-harvest technology in the field of horticulture is able to pass level 7. That, technology can be developed to increase into pilot scale and minimize time required for technological readiness on PERT with optimistic time of 7,9 years. Readiness level 9 shows that technology has been tested on the actual conditions also tied with estimated production price compared to competitors. This system can be used to determine readiness of technology innovation that is derived from agricultural raw materials and passes certain stages.

  6. Technology transfer around the corner?

    International Nuclear Information System (INIS)

    Willis, R.B.; Rowell, D.; Patchen, D.

    1994-01-01

    This paper will describe how the Oil and Gas industry can become involved in shaping a new national program to aid in the transfer of technology from a variety of sources to the hands of the local independents. Technology Transfer has been a ''buzzword'' in the Oil and Gas Industry for some time now. Most of them might admit that it has been more of a ''buzzword'' and less of an activity. While most of the operators in the Appalachian Basin want to apply the latest in technology to their exploration and production activities is has quite often been difficult to find the appropriate technology. The Department of Energy, realizing that much of the technology which exists involving Oil and Gas is seldom applied by those who work so hard to produce it efficiently, has instigated the Petroleum Technology Transfer Council (PTTC). The PTTC will be a national ''umbrella'' organization formed by the Independent Petroleum Association of America (IPAA), in cooperation with the state and regional oil and gas producer associations, the Gas Research Institute (GRI), the Interstate Oil and Gas Compact Commission (IOGGCC), and other groups. The mission of the PTTC is to foster the effective transfer of exploration and production technology to domestic producers in all regions of the country. One of the most important functions of the program will be to provide a feedback loop so that the needs and concerns of producers can be communicated effectively to the entire research community and to the Department of Energy

  7. Mission & Role | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The NCI TTC serves as the focal point for implementing the Federal Technology Transfer Act to utilize patents as incentive for commercial development of technologies and to establish research collaborations and licensing among academia, federal laboratories, non-profit organizations, and industry. The TTC supports technology development activities for the National Cancer Institute and nine other NIH Institutes and Centers. TTC staff negotiate co-development agreements and licenses with universities, non-profit organizations, and pharmaceutical and biotechnology companies to ensure compliance with Federal statutes, regulations and the policies of the National Institutes of Health. TTC also reviews employee invention reports and makes recommendations concerning filing of domestic and foreign patent applications. | [google6f4cd5334ac394ab.html

  8. 48 CFR 970.2770 - Technology Transfer.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  9. Technology transfer: the key to fusion commercialization

    International Nuclear Information System (INIS)

    Burnett, S.C.

    1981-01-01

    The paper brings to light some of the reasons why technology transfer is difficult in fusion, examines some of the impediments to the process, and finally looks at a successful example of technology transfer. The paper considers some subjective features of fusion - one might call them the sociology of fusion - that are none the less real and that serve as impediments to technology transfer

  10. Technology transfer in the Clean Development Mechanism

    International Nuclear Information System (INIS)

    De Coninck, H.C.; Haake, F.; Van der Linden, N.H.

    2007-01-01

    Technology transfer is often mentioned as an ancillary benefit of the Kyoto Protocol's Clean Development Mechanism (CDM), but this claim has never been researched or substantiated. The question of technology transfer is important from two perspectives: for host countries, whether the CDM provides a corridor for foreign, climate-friendly technologies and investment, and for industrialised countries as it provides export potential for climate-friendly technologies developed as a consequence of stringent greenhouse gas targets. In order to better understand whether technology transfer from the EU and elsewhere is occurring through the CDM, and what is the value of the associated foreign investment, this paper examines technology transfer in the 63 CDM projects that were registered on January 1st, 2006. Technology originates from outside the host country in almost 50% of the evaluated projects. In the projects in which the technology originates from outside the host country, 80% use technology from the European Union. Technologies used in non-CO2 greenhouse gas and wind energy projects, and a substantial share of the hydropower projects, use technology from outside the host country, but biogas, agricultural and biomass projects mainly use local technology. The associated investment value with the CDM projects that transferred technology is estimated to be around 470 million Euros, with about 390 coming from the EU. As the non-CO2 greenhouse gas projects had very low capital costs, the investment value was mostly in the more capital-intensive wind energy and hydropower projects

  11. Technology transfer from Canadian nuclear laboratories

    International Nuclear Information System (INIS)

    MacDonald, R.D.; Evans, W.; MacEwan, J.R.; Melvin, J.G.

    1985-09-01

    Canada has developed a unique nuclear power system, the CANDU reactor. AECL - Research Company (AECL-RC) has played a key role in the CANDU program by supplying its technology to the reactor's designers, constructors and operators. This technology was transferred from our laboratories to our sister AECL companies and to domestic industries and utilities. As CANDUs were built overseas, AECL-RC made its technology available to foreign utilities and agencies. Recently the company has embarked on a new transfer program, commercial R and D for nuclear and non-nuclear customers. During the years of CANDU development, AECL-RC has acquired the skills and technology that are especially valuable to other countries embarking on their own nuclear programs. This report describes AECL-RC's thirty years' experience with the transfer of technology

  12. An integrated approach towards technology transfer

    NARCIS (Netherlands)

    Wal, L.F. van der; Eldering, C.J.J.; Putten, N.J. van

    2010-01-01

    In 2001 the European Space Agency (ESA), the Dutch Ministry of Economic Affairs and the Netherlands Organisation of applied scientific research TNO initiated the Dutch Technology Transfer Programme (DTTP). Since then, 'technology transfer' has been a relevant part of Dutch space policy. The DTTP

  13. Technological economics: innovation, project management, and technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, F R

    1981-06-01

    The relationship between economics and technology, as well as their interaction in production, productivity, project management, and in technology transfer processes are reviewed. Over the last two decades there has been an increasing interest by economists in the technologist's view of technical change and its mechanisms. The author looks at the zone between technology and economics, the technological economics, and discusses the theory of innovation recently sketched out by Nelson and Winter. The relevance to project management and technology transfer of contemporary writing by economists leads to the view that there are welcome signs of a convergence of the conceptual models now emerging and the practical problems of technology management and movement. Economists now seem more willing to come to terms with technology than technologists with economics. The economic significance of the multitudes of technically unglamorous activities in development work is seriously neglected as a result of over-emphasis on the spectacular technological break. If economic elegance were to be admitted to the criteria of success, one might get a significant improvement in the engineering of technological change. 29 references, 4 figure.

  14. Radiation technology in emerging industrial applications. Proceedings

    International Nuclear Information System (INIS)

    2003-01-01

    In many industrial applications radiation processing has proven to be a technology of choice either because of its economic competitiveness or its technical superiority. Although the chemical effects of ionizing radiation have been known for more than a century, its industrial applications became possible only after the availability of reliable gamma sources and powerful electron accelerators during the last couple of decades.The programmes of the International Atomic Energy Agency (IAEA) in radiation processing are implemented through the Department of Nuclear Sciences and Applications and the Department of Technical Co-operation. The IAEA has been active in this field for many years, contributing to new developments, training, promotion and transfer of technology. In September 1997, the IAEA held an international symposium in Zakopane, Poland on the 'Use of radiation technology for the conservation of environment' where the status of current developments and of applications of radiation processing in the control of environmental pollution was reviewed (IAEA-TECDOC-1023, 1998). Recent developments and achievements in various aspects of radiation processing have been assessed continuously through the organization of consultants meetings, advisory group meetings and research co-ordination meetings. Worldwide growing interest in the use of radiation technology in various new industrial applications, as exemplified by the reports and presentations made at these meetings, has led the IAEA to organize a symposium to cover every aspect of radiation processing and, exclusively, the emerging industrial applications of radiation technology. The International Symposium on Radiation Technology in Emerging Industrial Applications was convened in November 2000 in Beijing, China. Its main purpose was to bring scientists,technologists, industrialists and regulatory authorities together with a view of exchanging information and reviewing the status of current developments and

  15. Radiation technology in emerging industrial applications. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-01

    In many industrial applications radiation processing has proven to be a technology of choice either because of its economic competitiveness or its technical superiority. Although the chemical effects of ionizing radiation have been known for more than a century, its industrial applications became possible only after the availability of reliable gamma sources and powerful electron accelerators during the last couple of decades.The programmes of the International Atomic Energy Agency (IAEA) in radiation processing are implemented through the Department of Nuclear Sciences and Applications and the Department of Technical Co-operation. The IAEA has been active in this field for many years, contributing to new developments, training, promotion and transfer of technology. In September 1997, the IAEA held an international symposium in Zakopane, Poland on the 'Use of radiation technology for the conservation of environment' where the status of current developments and of applications of radiation processing in the control of environmental pollution was reviewed (IAEA-TECDOC-1023, 1998). Recent developments and achievements in various aspects of radiation processing have been assessed continuously through the organization of consultants meetings, advisory group meetings and research co-ordination meetings. Worldwide growing interest in the use of radiation technology in various new industrial applications, as exemplified by the reports and presentations made at these meetings, has led the IAEA to organize a symposium to cover every aspect of radiation processing and, exclusively, the emerging industrial applications of radiation technology. The International Symposium on Radiation Technology in Emerging Industrial Applications was convened in November 2000 in Beijing, China. Its main purpose was to bring scientists,technologists, industrialists and regulatory authorities together with a view of exchanging information and reviewing the status of current developments and

  16. Optimal Selection Method of Process Patents for Technology Transfer Using Fuzzy Linguistic Computing

    Directory of Open Access Journals (Sweden)

    Gangfeng Wang

    2014-01-01

    Full Text Available Under the open innovation paradigm, technology transfer of process patents is one of the most important mechanisms for manufacturing companies to implement process innovation and enhance the competitive edge. To achieve promising technology transfers, we need to evaluate the feasibility of process patents and optimally select the most appropriate patent according to the actual manufacturing situation. Hence, this paper proposes an optimal selection method of process patents using multiple criteria decision-making and 2-tuple fuzzy linguistic computing to avoid information loss during the processes of evaluation integration. An evaluation index system for technology transfer feasibility of process patents is designed initially. Then, fuzzy linguistic computing approach is applied to aggregate the evaluations of criteria weights for each criterion and corresponding subcriteria. Furthermore, performance ratings for subcriteria and fuzzy aggregated ratings of criteria are calculated. Thus, we obtain the overall technology transfer feasibility of patent alternatives. Finally, a case study of aeroengine turbine manufacturing is presented to demonstrate the applicability of the proposed method.

  17. The transfer of nuclear technology: necessities and limitations

    International Nuclear Information System (INIS)

    Haunschild, H.-H.

    1978-01-01

    Political and economical importance of the transfer of nuclear technologies to less developed countries is examined. Energy needs of the world create the necessity of technology transfer. Three levels are distinguished: 1) Basic elements of cooperation are agreed between the two Governments, 2) scientific cooperation and 3) industrial cooperation. Technology transfer is more than mere technology export. Limitations of nuclear technology transfer are: the lack of infrastructure, the high price of a nuclear power station but above all the problem of proliferation. In conclusion the solution of international problems of nuclear energy is the concept of cooperation on the basis of equal rights

  18. Aerospace technology transfer to the public sector; Proceedings of the Conference, Crystal City, Va., November 9-11, 1977

    Science.gov (United States)

    Grey, J. (Editor); Newman, M.

    1978-01-01

    The dynamics of aerospace technology transfer is discussed with reference to the agencies which facilitate the transfer to both the public and private sectors. Attention is given to NASA's Technology Utilization Program, and to specific applications of aerospace technology spinoff in the daily life of Americans.

  19. Development of Technological Profiles for Transfer of Energy- and Resource Saving Technologies

    Directory of Open Access Journals (Sweden)

    Lysenko, V.S.

    2015-01-01

    Full Text Available The article deals with the methodological foundations for the development of technological profiles for «System of Transfer of Energy- and Resource Saving Technologies». It is determined that a compliance with the methodology and standards of the European network «Relay Centers» (Innovation Relay Centers — IRC network, since 2008 — EEN, the Russian Technology Transfer Network RTTN and Uk rainian Technology Transfer Network UTTN is the main pri nciple of the development process of technological requests and offers.

  20. EPA Reports to Congress on Technology Transfer

    Science.gov (United States)

    Agencies are required to report to the Congress annually on their technology transfer activities. These reports summarize technology transfer activities of the EPA’s federal laboratories, by fiscal year.

  1. The Change Book: A Blueprint for Technology Transfer.

    Science.gov (United States)

    Addiction Technology Transfer Centers.

    This document was developed by the Addiction Technology Transfer Center (ATTC) National Network to improve understanding about how valuable effective technology transfer is to the fields of substance abuse treatment and prevention. Technology transfer involves creating a mechanism by which a desired change is accepted, incorporated, and reinforced…

  2. A model technology transfer program for independent operators

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1996-08-01

    In August 1992, the Energy Research Center (ERC) at the University of Kansas was awarded a contract by the US Department of Energy (DOE) to develop a technology transfer regional model. This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program.

  3. Success in nuclear technology transfer: A Canadian perspective

    International Nuclear Information System (INIS)

    Lawson, D.S.; Stevens, J.E.S.; Boulton, J.

    1986-10-01

    Technology transfer has played a significant part in the expansion of nuclear power to many countries of the world. Canada's involvement in nuclear technology transfer spans four decades. The experience gained through technology transfer, initially to Canadian industry and then to other countries in association with the construction of CANDU nuclear power plants, forms a basis from which to assess the factors which contribute to successful technology transfer. A strong commitment from all parties, in terms of both financial and human resources, is essential to success. Detailed planning of both the scope and timing of the technology transfer program is also required together with an assessment of the impact of the introduction of nuclear power on other sectors of the economy. (author)

  4. The Clean Development Mechanism and Technology Transfer

    DEFF Research Database (Denmark)

    Aggarwal, Aradhna

    2017-01-01

    This study assesses the impact of the Clean Development Mechanism (CDM) on the transfer of clean technology in India. The reason this study is unique is because firstly, it adopts an outcome-oriented approach to define ‘technology transfer’, which means that technology transfer occurs if firms...

  5. The Spanish technology transfer. Diagnostic and perspectives

    International Nuclear Information System (INIS)

    Rodriguez Pomeda, J.; Casani Fernandez de Navarrete, F.

    2007-01-01

    After a non exhaustive literature review of technology transfer in Spain, the authors offer a synthetic view of it. The main aspects reviewed are as follows: general ideas on technology transfer and their links with universities third mission; obstacles and success factors, and, lastly, support structures and transfer tools. (Author) 58 refs

  6. Mechanisms for international technology exchange, privatization, and transfer

    International Nuclear Information System (INIS)

    Mayfield, T.

    1993-01-01

    An environmental technology transfer business assistance program is needed to encourage collaboration and technology transfer within the international community. This program helped to find appropriate mechanisms to facilitate the transfer of these technologies for use by DOE environmental restoration and waste management (ER/WM) programs while assisting U.S. private industry (especially small and medium size business) in commercializing the technologies nationally and abroad

  7. Technology transfer

    International Nuclear Information System (INIS)

    Boury, C.

    1986-01-01

    This paper emphasizes in the specific areas of design, engineering and component production. This paper presents what Framatome has to offer in these areas and its export oriented philosophy. Then, a typical example of this technology transfer philosophy is the collaboration with the South Korean firm, Korea Heavy Industries Corporation (KHIC) for the supply of KNU 9 and KNU 10 power stations

  8. Technology transfer packages

    International Nuclear Information System (INIS)

    Mizon, G.A.; Bleasdale, P.A.

    1994-01-01

    Nuclear power is firmly established in many developed countries'energy policies and is being adopted by emerging nations as an attractive way of gaining energy self sufficiency. The early users of nuclear power had to develop the technology that they needed, which now, through increasing world wide experience, has been rationalised to meet demanding economic and environmental pressures. These justifiable pressures, can lead to existing suppliers of nuclear services to consider changing to more appropriate technologies and for new suppliers to consider licensing proven technology rather then incurring the cost of developing new alternatives. The transfer of technology, under license, is made more straight forward if the owner conveniently groups appropriate technology into packages. This paper gives examples of 'Technology Packages' and suggests criteria for the specification, selection and contractual requirements to ensure successful licensing

  9. Canadian Experience in Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Boulton, J.

    1987-01-01

    Technology transfer has and will continue to play a major role in the development of nuclear power programs. From the early beginnings of the development of the peaceful uses of nuclear power by just a few nations in the mid-1940s there has been a considerable transfer of technology and today 34 countries have nuclear programs in various stages of development. Indeed, some of the major nuclear vendors achieves their present position through a process of technology transfer and subsequent development. Canada, one of the early leaders in the development of nuclear power, has experience with a wide range of programs bout within its own borders and with other countries. This paper briefly describes this experience and the lessons learned from Canada's involvement in the transfer of nuclear power technology. Nuclear technology is complex and diverse and yet it can be assimilated by a nation given a fire commitment of both suppliers and recipients of technology to achieve success. Canada has reaped large benefits from its nuclear program and we believe this has been instrumentally linked to the sharing of goals and opportunity for participation over extended periods of time by many interests within the Canadian infrastructure. While Canada has accumulated considerable expertise in nuclear technology transfer, we believe there is still much for US to learn. Achieving proficiency in any of the many kinds of nuclear related technologies will place a heavy burden on the financial and human resources of a nation. Care must be taken to plan carefully the total criteria which will assure national benefits in industrial and economic development. Above all, effective transfer of nuclear technology requires a long term commitment by both parties

  10. The transfer of dual-use outer space technologies: confrontation or co-operation ?

    OpenAIRE

    Gasparini Alves, Péricles; Gasteyger, Curt

    2005-01-01

    The right of any State to develop outer space technologies is, in principle, unquestionable. In practice, problems arise when technology development approaches the very fine line between civil and military application, largely because most the technologies can be used for dual military and civil purposes. This dichotomy has raised a series of political, military, and other concerns which affect the transfer of outer space technologies, and particularly between established and emerging space-c...

  11. Optimizing Outcome in the University-Industry Technology Transfer Projects

    Science.gov (United States)

    Alavi, Hamed; Hąbek, Patrycja

    2016-06-01

    Transferring inventions of academic scientists to private enterprises for the purpose of commercialization is long known as University-Industry (firm) Technology Transfer While the importance of this phenomenon is simultaneously raising in public and private sector, only a part of patented academic inventions succeed in passing the process of commercialization. Despite the fact that formal Technology Transfer process and licencing of patented innovations to third party is the main legal tool for safeguarding rights of academic inventors in commercialization of their inventions, it is not sufficient for transmitting tacit knowledge which is necessary in exploitation of transferred technology. Existence of reciprocal and complementary relations between formal and informal technology transfer process has resulted in formation of different models for university-industry organizational collaboration or even integration where licensee firms keep contact with academic inventors after gaining legal right for commercialization of their patented invention. Current paper argues that despite necessity for patents to legally pass the right of commercialization of an invention, they are not sufficient for complete knowledge transmission in the process of technology transfer. Lack of efficiency of formal mechanism to end the Technology Transfer loop makes an opportunity to create innovative interpersonal and organizational connections among patentee and licensee company. With emphasize on need for further elaboration of informal mechanisms as critical and underappreciated aspect of technology transfer process, article will try to answer the questions of how to optimize knowledge transmission process in the framework of University-Industry Technology Transfer Projects? What is the theoretical basis for university-industry technology transfer process? What are organization collaborative models which can enhance overall performance by improving transmission of knowledge in

  12. KBTAC [Knowledge-Based Technology Application Center] - The EPRI [Electric Power Research Institute]-sponsored knowledge-based technology application center

    International Nuclear Information System (INIS)

    Meyer, W.; Wood, R.M.; Scherer, J.

    1990-01-01

    The Electric Power Research Institute (EPRI) has announced the establishment of the Knowledge-Based Technology Application Center (KBTAC), whose goal is to assist member utilities with expert system technology and applications. The center, established November 7, 1989, is located on the campus of Syracuse University, Syracuse, New York, and will be operated jointly by Kaman Sciences Corporation and the university. The mission of the KBTAC is to assist EPRI member utilities to develop, test, and transfer expert systems into nuclear power plant operations, maintenance, and administration

  13. Technology transfer? The rise of China and India in green technology sectors

    DEFF Research Database (Denmark)

    Lema, Rasmus; Lema, Adrian

    2012-01-01

    International technology transfer is central to the debate about how to curb the carbon emissions from rapid economic growth in China and India. But given China and India's great progress in building innovation capabilities and green industries, how relevant is technology transfer...... for these countries? This paper seeks insights from three green technology sectors in both countries: wind power, solar energy and electric and hybrid vehicles. We find that, conventional technology transfer mechanisms such as foreign direct investments and licensing, were important for industry formation and take...

  14. Transfer of technology to developing countries: unilateral and multilateral policy options

    International Nuclear Information System (INIS)

    Hockman, B.M.; Maskus, K.E.; Saggi, K.

    2005-01-01

    This paper analyzes national and international policy options to encourage the international transfer of technology, distinguishing between four major channels of such transfer: trade in products, trade in knowledge and technology, foreign direct investment, and intranational and international movement of people. A typology of countries and appropriate policy rules of thumb are developed as a guide to both national policymakers and multilateral rule making in the WTO. We argue that the optimal policy mix varies across countries and that there is a need for differentiation in the design and application of rules in trade agreements as well as for a more explicit focus on evaluation of the impacts of policies. (author)

  15. Technology Transfer, Foreign Direct Investment and International Trade

    OpenAIRE

    Leonard K. Cheng

    2000-01-01

    By developing a Ricardian trade model that features technology transfer via foreign direct investment (FDI), we show that technology transfer via multinational enterprises (MNEs) increases world output and trade in goods and services. When there are many goods a continuous reduction in the cost of technology transfer will cause increasingly more technologically advanced goods to go through the product cycle, i.e., goods initially produced in the advanced North are later produced in the backwa...

  16. Macrosystems management approach to nuclear technology transfer

    International Nuclear Information System (INIS)

    Angelo, J.A. Jr.; Maultsby, T.E.

    1978-01-01

    The world of the 1980s will be a world of diminishing resources, shifting economic bases, rapidly changing cultural and societal structures, and an ever increasing demand for energy. A major driving function in this massive redistribution of global power is man's ability to transfer technology, including nuclear technology, to the developing nations. The major task facing policy makers in planning and managing technology transfer is to avoid the difficulties inherent in such technology exploitation, while maximizing the technical, economic, social, and cultural benefits brought about by the technology itself. But today's policy makers, using industrial-style planning, cannot adequately deal with all the complex, closely-coupled issues involved in technology transfer. Yet, policy makers within the developing nations must be capable of tackling the full spectrum of issues associated with technology transfer before committing to a particular course of action. The transfer and acceptance of complex technology would be significantly enhanced if policy makers followed a macrosystems management approach. Macrosystems management is a decision making methodology based on the techniques of macrosystems analysis. Macrosystems analysis combines the best quantitative methods in systems analysis with the best qualitative evaluations provided by multidisciplined task teams. These are focused in a project management structure to produce solution-oriented advice to the policy makers. The general relationships and management approach offered by macrosystems analysis are examined. Nowhere are the nuclear power option problems and issues more complex than in the transfer of this technology to developing nations. Although many critical variables of interest in the analysis are generic to a particular importer/exporter relationship, two specific issues that have universally impacted the nuclear power option, namely the fuel cycle, and manpower and training, are examined in the light of

  17. OPTIMIZING OUTCOME IN THE UNIVERSITY-INDUSTRY TECHNOLOGY TRANSFER PROJECTS

    Directory of Open Access Journals (Sweden)

    Hamed ALAVI

    2016-04-01

    Full Text Available Transferring inventions of academic scientists to private enterprises for the purpose of commercialization is long known as University-Industry (firm Technology Transfer While the importance of this phenomenon is simultaneously raising in public and private sector, only a part of patented academic inventions succeed in passing the process of commercialization. Despite the fact that formal Technology Transfer process and licencing of patented innovations to third party is the main legal tool for safeguarding rights of academic inventors in commercialization of their inventions, it is not sufficient for transmitting tacit knowledge which is necessary in exploitation of transferred technology. Existence of reciprocal and complementary relations between formal and informal technology transfer process has resulted in formation of different models for university-industry organizational collaboration or even integration where licensee firms keep contact with academic inventors after gaining legal right for commercialization of their patented invention. Current paper argues that despite necessity for patents to legally pass the right of commercialization of an invention, they are not sufficient for complete knowledge transmission in the process of technology transfer. Lack of efficiency of formal mechanism to end the Technology Transfer loop makes an opportunity to create innovative interpersonal and organizational connections among patentee and licensee company. With emphasize on need for further elaboration of informal mechanisms as critical and underappreciated aspect of technology transfer process, article will try to answer the questions of how to optimize knowledge transmission process in the framework of University-Industry Technology Transfer Projects? What is the theoretical basis for university-industry technology transfer process? What are organization collaborative models which can enhance overall performance by improving transmission of

  18. Federal Technology Transfer Act (FTTA)

    Science.gov (United States)

    EPA's Federal Technology Transfer Act (FTTA) is a mechanism with which EPA can patent its inventions and license them to companies, through which innovative technologies can enter the marketplace to improve the environment and human health.

  19. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    Pasquini, L.A.

    1986-01-01

    The purpose of the Shippingport Station Decommissioning Project (SSDP) is to place the Shippingport Atomic Power Station in a long-term radiologically safe condition following defueling of the reactor, to perform decommissioning in such a manner as to demonstrate to the nuclear industry the application of decommissioning procedures to a large scale nuclear power plant, and to provide useful planning data for future decommissioning projects. This paper describes the Technology Transfer Program for collecting and archiving the decommissioning data base and its availability to the nuclear industry

  20. Charge transfer devices and their application in physics

    Energy Technology Data Exchange (ETDEWEB)

    Soroko, L M [Joint Inst. for Nuclear Research, Dubna (USSR)

    1979-01-01

    Physical properties and technical specifications of charge transfer devices (CTD) are reviewed. The CTD are semiconductor devices based on silicon single crystals. The limiting charge density of the CTD, their efficiency of charge transfer, the background noise and radiation effects are considered. Fast response and low energy consumption are characteristic features of the devices. The application of the CTD in storage devices, real time spectral data processing systems and in streamer chambers is described. The algorithms of topological transformations in the stage of scanning particle track images, which can be realized with the help of the CTD are shortly considered. It is pointed out that applications of the CTD in different fields of science and technology are numerous and expanding.

  1. Macroeconomic level of technology transfer

    Directory of Open Access Journals (Sweden)

    Smirnova Nadezhda

    2016-04-01

    Full Text Available World practice of economic management has proved that the best indicator of competitiveness is achieved by that economic system, the economic units of which timely and adequately update the resource and technical base, thus achieving higher financial and economic indicators. Ensuring that sustainable development becomes possible due to the transfer of technological innovations, namely the diffusion from the developer to the customer on both commercial and free of charge basis. The article focuses on functioning of technology transfer at the macro level, namely the creation of its domestic models.

  2. Energy from Biomass Research and Technology Transfer Program

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dorin

    2015-12-31

    The purpose of CPBR is to foster and facilitate research that will lead to commercial applications. The goals of CPBR’s Energy from Biomass Research and Technology Transfer Program are to bring together industry, academe, and federal resources to conduct research in plant biotechnology and other bio-based technologies and to facilitate the commercialization of the research results to: (1) improve the utilization of plants as energy sources; (2) reduce the cost of renewable energy production; (3) facilitate the replacement of petroleum by plant-based materials; (4) create an energy supply that is safer in its effect on the environment, and (5) contribute to U.S. energy independence.

  3. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2006-09-29

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

  4. Effective Methods of Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Shave, D. F.; Kent, G. F.; Giambusso, A.

    1987-01-01

    An effective technology transfer program is a necessary and significant step towards independence in nuclear power technology. Attaining success in the conduct of such a program is a result of a) the donor and recipient jointly understanding the fundamental concepts of the learning process, b) sharing a mutual philosophy involving a partnership relationship, c) joint and careful planning, d) rigorous adherence to proven project management techniques, and e) presence of adequate feedback to assure continuing success as the program proceeds. Several years ago, KEPCO President Park, Jung-KI presented a paper on technology in which he stated, 'Nuclear technology is an integration of many unit disciplines, and thus requires extensive investment and training in order to establish the base for efficient absorption of transferred technology.' This paper addresses President Park's observations by discussing the philosophy, approach, and mechanisms that are necessary to support an efficient and effective process of nuclear power technology transfer. All technical content and presentation methods discussed are based on a technology transfer program developed by Stone and Webster, as an Engineer/Constructor for nuclear power plants, and are designed and implemented to promote the primary program goal - the ability of the trainees and the organization to perform specific nuclear power related multi-discipline function independently and competitively

  5. The transfer of technologies for biomass energy utilization

    International Nuclear Information System (INIS)

    Schneiders, H.H.

    1995-01-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  6. The transfer of technologies for biomass energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Schneiders, H H [German Agency for Technical Cooperation (GTZ), Eschborn (Germany)

    1995-12-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  7. Technology transfer

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Illustrated by the example of the FRG's nuclear energy exports, it is shown that the nuclear technology transfer leads to new dimensions of intergovernmental relations, which hold within themselves on account of multiple state-to-state, scientific, industrial and - last but not least - personal contacts the chance of far-reaching friendships between countries and people. If the chance is taken, this can also be seen as an important contribution towards maintaining the peace. (orig.) [de

  8. Technology transfer: Half-way houses. No. 17

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, R.W.

    1995-05-01

    In the fall of 1993, 1 was asked by the Center for National Security Studies (CNSS) of the Los Alamos National Laboratory (LANL) to study the ways in which technology transfer and defense conversion had been accomplished at General Atomics (GA) and Science Applications International Corporation (SAIC) by interviewing Harold Agnew, who had served as director of Los Alamos before becoming president of General Atomics in 1979, and J. Robert Beyster, who had been a staff member at Los Alamos and at General Atomics before founding SAIC in 1969. Harold Agnew readily complied with my request for an interview and also suggested that I talk to Douglas Fouquet, who is in charge of public relations at General Atomics and is their unofficial historian. Robert Beyster was not available for an interview, but, through the courtesy of John C. Hopkins, a former director of CNSS, I was able to interview SAIC`s executive vice president, Donald M. Kerr, who is also a former director at Los Alamos, and Steven Rockwood, a sector vice president at SAIC who was formerly a staff member at the Laboratory Because Agnew, Kerr, and Rockwood are all familiar with LANL, as well as with their respective companies, the interviews becam exercises In comparative analyses of technology transfer. In what follows, I have tried to summarize both the interviews and some of the research which attended them. It is the historian`s hope that by use of comparative institutional analyses, Laboratory administrators may learn something of value in directing their efforts toward the transfer of technology to private industry and other government agencies.

  9. Technology transfer and innovation

    International Nuclear Information System (INIS)

    Ashworth, Graham; Thornton, Anna

    1987-01-01

    The aims of the conference were advice, assistance and action for all those with technology to licence or inventions to patent, and for people seeking financial help and advice. There was a free exchange of ideas and information. Of the forty or so papers collected together, many are concerned with the financial aspects of new ventures, others look at technology transfer from academic institutes and schemes which support technological problems. One paper on fast reactor collaboration in Europe, is indexed separately. (U.K.)

  10. Partnering Events | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  11. Industrial scale application of irradiation technologies in Turkey

    International Nuclear Information System (INIS)

    Siyakus, G.

    2001-01-01

    Sufficient and safer foods, better health care, cleaner environment and higher life standards are the shared objectives and desires of the humankind. The rapid increase in the world population necessitates the development and application of new technologies in order to meet these desires. The need for such technologies is more important for developing countries, when it is thought that the major share of the population increase is originating from that regions. Irradiation technology, as a rather new one, may have a considerable contribution in this respect, providing that proper application . Although, a wide range of application areas, changing from flue gas treatment to polymer production, exists in this respect, transferring or developing new technologies requires time, trained personnel and equipment

  12. Energy technology transfer to developing countries

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1991-01-01

    This paper gives some examples of how technology transfer can successfully be given to third world countries to allow them to benefit in their quest for economic growth and better standards of living through reduced energy consumption and environmental pollution. It also suggests methods by which obstacles such as high investment costs, lack of information, market demand, etc., can be overcome in order to motivate technological transfer by industrialized countries

  13. Evaluation of technology transferring: The experiences of the first Navy Domestic Technology Transfair. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    In August 1989 the Office of the Chief of Naval Research and the American Defense Preparedness Association conducted the first Navy Domestic Technology Transfair. The objective of the Transfair was to expose the US Navy`s years of solid experience across a broad span of technology to organizations outside of the Navy. It was an opportunity for private industry to capitalize on the Navy developed technology and this opening for industry was the primary focus of the Transfair. The event provided a unique forum to meet leading Navy scientific and engineering innovators face-to-face. Information was available concerning licensing of naval technology that was for sale to the private sector. Further, discussions covered opportunities for new cooperative research and development agreements with Navy laboratories and R&D activities. These agreements were authorized under the Federal Technology Transfer Act of 1986. The Transfair program was conducted in such a manner as to allow each Navy inventor, either scientist or engineer, to present a system, piece of hardware, or licensable concept in a formal paper presentation. Then, the Navy inventors were available in two, two-hour periods in which individual discussions were conducted, with attendees pursuing specific venues of cooperative agreements as desired. This report provides specifics concerning the technologies that were made available for transfer to the private sector during the Transfair. The Transfair concept sought to add special emphasis to the opening that the 1988 Technology Transfer Act brought to the marketplace. The experience was a step in the education of the possibilities for cooperation between the government and the private sector to share technology. Of additional significance is the economic enhancement for business expansion with the application of the technology to markets beyond defense.

  14. People transfer-sinequanon for nuclear technology transfer

    International Nuclear Information System (INIS)

    Ahmed, M.

    1977-01-01

    The main obstacles facing the developing countries which wish to adopt sophisticated nuclear technology can be the following: lack of trained personnel, lack of entrepreneurs and capital, and bureaucracy. Of these the greatest problem is undoubtedly the lack of trained manpower. Urgently required skilled manpower may be obtained through training of selected persons in foreign countries on a crash program of nuclear energy. Exchange of expertise can also take place among the developing countries themselves. Another problem particularly peculiar to the poor developing countries is the lack of entrepreneurs and capital. It therefore becomes necessary to attract entrepreneurs from abroad with all the benefit of managerial know-how and capital transfer that it entails. Exchange of scientist, teachers, managerial and administrative personnel between the developed and developing countries and also among the developing countries themselves is therefore essential for an effective transfer of nuclear technology

  15. Modeling of InP HBTs in Transferred-Substrate Technology for Millimeter-Wave Applications

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Rudolph, Matthias; Jensen, Thomas

    2013-01-01

    In this paper, the modeling of InP heterojunction bipolar transistors (HBTs) in transferred substrate (TS) technology is investigated. At first, a direct parameter extraction methodology dedicated to III-V based HBTs is employed to determine the small-signal equivalent circuit parameters from...

  16. Knowledge and Technology Transfer in Materials Science and Engineering in Europe

    OpenAIRE

    Bressler, Patrick; Dürig, Urs; González-Elipe, Agustin; Quandt, Eckhard; Ritschkoff, Anne-Christine; Vahlas, Constantin

    2015-01-01

    Advanced Materials is one of the Key Enabling 3 Technologies identified by the European Commission1. Together with Advanced Manufacturing it underpins almost all other Key Enabling and Industrial Technologies. The basic science and engineering research that results in the development of Advanced Materials lies within the field of Materials Science and Engineering (MSE). The transfer of knowledge from basic research into final products and applications in the field of MSE involves certain MSE-...

  17. Technology transfer for development

    International Nuclear Information System (INIS)

    Abraham, D.

    1990-07-01

    The IAEA has developed a multifaceted approach to ensure that assistance to Member States results in assured technology transfer. Through advice and planning, the IAEA helps to assess the costs and benefits of a given technology, determine the basic requirements for its efficient use in conditions specific to the country, and prepare a plan for its introduction. This report describes in brief the Technical Co-operation Programmes

  18. TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-01-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during

  19. The competence accumulation process in the technology transference strategy

    OpenAIRE

    Souza, André Silva de; Segatto-Mendes, Andréa Paula

    2008-01-01

    The present article evaluates and measures the technological competence accumulation in an automation area enterprise to distribution centers, Knapp Sudamérica Logistic and Automation Ltd, in the interval of the technology transference process previous period (1998-2001) and during the technology transference process (2002-2005). Therefore, based on an individual case study, the study identified the technology transference strategy and mechanism accorded between the head office and the branch...

  20. The World Wide Web and Technology Transfer at NASA Langley Research Center

    Science.gov (United States)

    Nelson, Michael L.; Bianco, David J.

    1994-01-01

    NASA Langley Research Center (LaRC) began using the World Wide Web (WWW) in the summer of 1993, becoming the first NASA installation to provide a Center-wide home page. This coincided with a reorganization of LaRC to provide a more concentrated focus on technology transfer to both aerospace and non-aerospace industry. Use of the WWW and NCSA Mosaic not only provides automated information dissemination, but also allows for the implementation, evolution and integration of many technology transfer applications. This paper describes several of these innovative applications, including the on-line presentation of the entire Technology Opportunities Showcase (TOPS), an industrial partnering showcase that exists on the Web long after the actual 3-day event ended. During its first year on the Web, LaRC also developed several WWW-based information repositories. The Langley Technical Report Server (LTRS), a technical paper delivery system with integrated searching and retrieval, has proved to be quite popular. The NASA Technical Report Server (NTRS), an outgrowth of LTRS, provides uniform access to many logically similar, yet physically distributed NASA report servers. WWW is also the foundation of the Langley Software Server (LSS), an experimental software distribution system which will distribute LaRC-developed software with the possible phase-out of NASA's COSMIC program. In addition to the more formal technology distribution projects, WWW has been successful in connecting people with technologies and people with other people. With the completion of the LaRC reorganization, the Technology Applications Group, charged with interfacing with non-aerospace companies, opened for business with a popular home page.

  1. ForistomApp a Web application for scientific and technological information management of Forsitom foundation

    Science.gov (United States)

    Saavedra-Duarte, L. A.; Angarita-Jerardino, A.; Ruiz, P. A.; Dulce-Moreno, H. J.; Vera-Rivera, F. H.; V-Niño, E. D.

    2017-12-01

    Information and Communication Technologies (ICT) are essential in the transfer of knowledge, and the Web tools, as part of ICT, are important for institutions seeking greater visibility of the products developed by their researchers. For this reason, we implemented an application that allows the information management of the FORISTOM Foundation (Foundation of Researchers in Science and Technology of Materials). The application shows a detailed description, not only of all its members also of all the scientific production that they carry out, such as technological developments, research projects, articles, presentations, among others. This application can be implemented by other entities committed to the scientific dissemination and transfer of technology and knowledge.

  2. Legal aspects of the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Sartorelli, C.

    1980-03-01

    The paper stresses the importance of nuclear technology transfer and describes the legal instruments for transfer of technical and scientific technology, particularly from the contractual viewpoint. A description follows of the setting-up of national joint ventures for nuclear power plant projects with emphasis on technological know-how to enable operation of plants in compliance with safety standards. The possibility is discussed of the export of nuclear technology, and finally mention is made of a proposal for a 'code of conduct' on such transfers in the framework of the United Nations, having regard to the 'London agreements' on nuclear exports. (NEA) [fr

  3. Ethical Considerations in Technology Transfer.

    Science.gov (United States)

    Froehlich, Thomas J.

    1991-01-01

    Examines ethical considerations involved in the transfer of appropriate information technology to less developed countries. Approaches to technology are considered; two philosophical frameworks for studying ethical considerations are discussed, i.e., the Kantian approach and the utilitarian perspective by John Stuart Mill; and integration of the…

  4. Clean Cast Steel Technology - Machinability and Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    C. E. Bates; J. A. Griffin

    2000-05-01

    There were two main tasks in the Clean Cast Steel Technology - Machinability and Technology Transfer Project. These were (1) determine the processing facts that control the machinability of cast steel and (2) determine the ability of ladle stirring to homogenize ladle temperature, reduce the tap and pouring temperatures, and reduce casting scrap.

  5. Technology transfer considerations for the collider dipole magnet

    International Nuclear Information System (INIS)

    Goodzeit, C.; Fischer, R.

    1991-03-01

    The R ampersand D program at the national laboratories has resulted in significant advances in design and fabrication methods for the Collider Dipole Magnets. The status of the transfer of the technology developed by the laboratories is reviewed. The continuation of the technology transfer program is discussed with a description of: (1) the relation of technology transfer activities to collider dipole product development; (2) content of the program relating to key magnet performance issues; and (3) methods to implement the program. 5 refs

  6. Transferability of economic evaluations of medical technologies: a new technology for orthopedic surgery.

    Science.gov (United States)

    Steuten, Lotte; Vallejo-Torres, Laura; Young, Terry; Buxton, Martin

    2008-05-01

    Transferring results of economic evaluations across countries or jurisdictions can potentially save scarce evaluation resources while helping to make market access and reimbursement decisions in a timely fashion. This article points out why transferring results of economic evaluations is particularly important in the field of medical technologies. It then provides an overview of factors that are previously identified in the literature as affecting transferability of economic evaluations, as well as methods for transferring results in a scientifically sound way. As the current literature almost exclusively relates to transferability of pharmacoeconomic evaluations, this article highlights those factors and methodologies that are of particular relevance to transferring medical technology assessments. Considering the state-of-the-art literature and a worked, real life, example of transferring an economic evaluation of a product used in orthopedic surgery, we provide recommendations for future work in this important area of medical technology assessment.

  7. Technology transfer 1995

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  8. An ISM approach for analyzing the factors in technology transfer

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdavi Mazdeh

    2015-07-01

    Full Text Available Technology transfer, from research and technology organizations (RTOs toward local industries, is considered as one of important and significant strategies for countries' industrial development. In addition to recover the enormous costs of research and development for RTOs, successful technology transfer from RTOs toward local firms forms technological foundations and develops the ability to enhance the competitiveness of firms. Better understanding of factors influencing process of technology transfer helps RTOs and local firms prioritize and manage their resources in an effective and efficient way to maximize the success of technology transfer. This paper aims to identify important effective factors in technology transfer from Iranian RTOs and provides a comprehensive model, which indicate the interactions of these factors. In this regard, first, research background is reviewed and Cummings and Teng’s model (2003 [Cummings, J. L., & Teng, B.-S. (2003. Transferring R&D knowledge: The key factors affecting knowledge transfer success. Journal of Engineering and Technology Management, 20(1-2, 39-68.] was selected as the basic model in this study and it was modified through suggesting new factors identified from literature of inter-organizational knowledge and technology transfer and finally a Delphi method was applied for validation of modified model. Then, research conducted used Interpretive Structural Modeling (ISM to evaluate the relationship between the factors of final proposed model. Results indicate that there were twelve factors influencing on technology transfer process from Iranian RTOs to local firms and also the intensity of absorption capability in transferee could influence on the intensity of desorption capability in transferor.

  9. Solar Electric Propulsion Technologies Being Designed for Orbit Transfer Vehicle Applications

    Science.gov (United States)

    Sarver-Verhey, Timothy R.; Hoffman, David J.; Kerslake, Thomas W.; Oleson, Steven R.; Falck, Robert D.

    2002-01-01

    There is increasing interest in employing Solar Electric Propulsion (SEP) for new missions requiring transfer from low Earth orbit to the Earth-Moon Lagrange point, L1. Mission architecture plans place the Gateway Habitat at L1 in the 2011 to 2016 timeframe. The Gateway Habitat is envisioned to be used for Lunar exploration, space telescopes, and planetary mission staging. In these scenarios, an SEP stage, or "tug," is used to transport payloads to L1--such as the habitat module, lunar excursion and return vehicles, and chemical propellant for return crew trips. SEP tugs are attractive because they are able to efficiently transport large (less than 10,000 kg) payloads while minimizing propellant requirements. To meet the needs of these missions, a preliminary conceptual design for a general-purpose SEP tug was developed that incorporates several of the advanced space power and in-space propulsion technologies (such as high-power gridded ion and Hall thrusters, high-performance thin-film photovoltaics, lithium-ion batteries, and advanced high-voltage power processing) being developed at the NASA Glenn Research Center. A spreadsheet-based vehicle system model was developed for component sizing and is currently being used for mission planning. This model incorporates a low-thrust orbit transfer algorithm to make preliminary determinations of transfer times and propellant requirements. Results from this combined tug mass estimation and orbit transfer model will be used in a higher fidelity trajectory model to refine the analysis.

  10. Survey into basics, concepts, applications, security and simulation of DHT and applications based on DHT technologies

    OpenAIRE

    Aaltonen, Petri

    2017-01-01

    Distributed architectures have emerged as a significant area of computing affecting the consumer domain more and more. Distributed data transfer has proven to be a suitable and convenient technology for efficiently transferring files across multiple peers interested in obtaining an identical copy of the same data – for example entertainment or a block of application data. Current technology when discussing decentralized distributed systems are based on the Distributed Hash Table structures. F...

  11. An Effective Method For Nuclear Technology Transfer

    International Nuclear Information System (INIS)

    Jeon, Jan Pung

    1987-01-01

    Three basic entities involved in the implementation of nuclear projects are the Owner, Regulatory Authority and Nuclear Industry. Their ultimate objective is to secure the safe, reliable and economical nuclear energy. For s successful nuclear power program, the owner should maintain a good relationship with the other entities and pursue an optimization of the objectives. On the other hand, he should manage projects along the well - planned paths in order to effectively learn the nuclear technology. One of the problems in the nuclear projects of developing countries was the absence of long - term technology development program, a limited local participation and the technical incapability. For the effective technology transfer, a motivation of the technology supplier and a readiness of the recipient to accommodate such technologies are required. Advanced technology is usually developed at considerable expense with the expectation that the developer will use it in furthering his own business. Therefore, he tends to be reluctant to transfer it to the others, particularly, to the potential competitors. There is a disinclination against further technology transfer beyond the minimum contractual obligation or the requirements by Government Regulatory. So, an additional commercial incentive must be provided to the developer

  12. Food irradiation: Technology transfer in Asia, practical experiences

    Science.gov (United States)

    Kunstadt, Peter; Eng, P.

    1993-10-01

    Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the succesful conclusion of the world's first complete food irradiation technology transfer project.

  13. Food irradiation: technology transfer in Asia, practical experiences

    International Nuclear Information System (INIS)

    Kunstadt, P.

    1993-01-01

    Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the successful conclusion of the world's first complete food irradiation technology transfer project. (Author)

  14. University-to-industry advanced technology transfer. A case study

    Energy Technology Data Exchange (ETDEWEB)

    Goldhor, R S; Lung, R T

    1983-06-01

    This case study examines the events in the transfer of an advanced technology (a text-to-speech reading machine) from the university group that developed the technology to an industrial firm seeking to exploit the innovation. After a brief history of the six-year project, the paper discusses the roles of the participants, markets, and time and cost considerations. A model of technology transfer is presented and policy implications derived from the case are discussed. Emphasis is placed on the need for matching technical competence between donor and recipient, and on the function of a transfer agent in facilitating the social process of technology transfer. 42 references, 6 figures, 4 tables.

  15. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1988-01-01

    US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decommissioned, decontaminated, and dismantled the world's first, nuclear fueled, commercial size, electric power plant. SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. Objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper presents a working definition for technology transfer. Direction is provided for access and availability for SSDP technology acquisition

  16. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Science.gov (United States)

    2010-10-01

    ... cooperative research and development agreements with public and private entities for purposes of conducting research and development and transferring technology to the private sector. In implementing the NCTTA, DOE....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of...

  17. Application of World Wide Web (W3) Technologies in Payload Operations

    Science.gov (United States)

    Sun, Charles; Windrem, May; Picinich, Lou

    1996-01-01

    World Wide Web (W3) technologies are considered in relation to their application to space missions. It is considered that such technologies, including the hypertext transfer protocol and the Java object-oriented language, offer a powerful and relatively inexpensive framework for distributed application software development. The suitability of these technologies for payload monitoring systems development is discussed, and the experience gained from the development of an insect habitat monitoring system based on W3 technologies is reported.

  18. DESY: Technology transfer on show

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    As well as exploring the unknown, fundamental physics research, with its continual demands for special conditions and precision measurements, makes special demands on frontier technology. One of the most prolific areas of this technology transfer, superconductivity and cryogenics, was highlighted by a recent exhibition at DESY organized by the International Cryogenic Engineering Committee

  19. DESY: Technology transfer on show

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-12-15

    As well as exploring the unknown, fundamental physics research, with its continual demands for special conditions and precision measurements, makes special demands on frontier technology. One of the most prolific areas of this technology transfer, superconductivity and cryogenics, was highlighted by a recent exhibition at DESY organized by the International Cryogenic Engineering Committee.

  20. [Technology transfer to the facility for production of medicines].

    Science.gov (United States)

    Beregovykh, V V; Spitskiĭ, O P

    2013-01-01

    Innovation development of pharmaceutical industry is close connected to knowledge transfer going to each subsequent life cycle phase of medicinal product. Formal regulation of technology and knowledge transfer is essential for achievement high quality during production of medicines designed during development phase. Conceptual tools, approaches and requirements are considered that are necessary for knowledge and technology transfer across all the life cycle phases of medicines. They are based on scientific knowledge of medicinal products and take into account both international and Russian regulations in the area of development, production and distribution of medicines. Importance of taking into consideration all aspects related to quality of medicines in all steps of technology transfer is shown. An approach is described for technology transfer organization for Russian pharmaceutical manufacturers based on international guides in this area.

  1. BUSINESS MODELS FOR INCREASING TECHNOLOGICAL TRANSFER EFFECTIVENESS

    Directory of Open Access Journals (Sweden)

    Simina FULGA

    2016-05-01

    Full Text Available The present paper is devoted to analyze the appropriate recommendations to increase the effectiveness of technology transfer organizations (centers from ReNITT, by using the specific instruments of Business Model Canvas, associated to the technological transfer value chain for the value added services addressed to their clients and according to a continuously improved competitive strategy over competition analysis.

  2. NASA Technology Applications Team: Commercial applications of aerospace technology

    Science.gov (United States)

    1994-01-01

    The Research Triangle Institute (RTI) Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies, that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. The RTI Team has been successful in the development of NASA/industry partnerships and commercialization of NASA technologies. RTI ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed and implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs. (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology. And (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994.

  3. Development of Technology Transfer Economic Growth Metrics

    Science.gov (United States)

    Mastrangelo, Christina M.

    1998-01-01

    The primary objective of this project is to determine the feasibility of producing technology transfer metrics that answer the question: Do NASA/MSFC technical assistance activities impact economic growth? The data for this project resides in a 7800-record database maintained by Tec-Masters, Incorporated. The technology assistance data results from survey responses from companies and individuals who have interacted with NASA via a Technology Transfer Agreement, or TTA. The goal of this project was to determine if the existing data could provide indications of increased wealth. This work demonstrates that there is evidence that companies that used NASA technology transfer have a higher job growth rate than the rest of the economy. It also shows that the jobs being supported are jobs in higher wage SIC codes, and this indicates improvements in personal wealth. Finally, this work suggests that with correct data, the wealth issue may be addressed.

  4. Exploring the influence of technology size on the duration of production technology transfer implementation

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2005-01-01

    This study explores the relationship between technology size and installation time in technology transfer projects. A literature study revealed that the installation time has so far not received much attention. Current studies address the effectiveness of technology transfer rather than efficiency.

  5. Technology transfer in a horizontally differentiated product-market

    NARCIS (Netherlands)

    Mukherjee, A.; Balasubramanian, N.

    1999-01-01

    This paper considers technology transfer in a Cournot-duopoly market where the firms produce horizontally differentiated products. It turns out that without the threat of imitation from the licensee, the licenser always transfers its best technology. However, the patent licensing contract consists

  6. Technology transfer for women entrepreneurs: issues for consideration.

    Science.gov (United States)

    Everts, S I

    1998-01-01

    This article discusses the effectiveness of technology transfers to women entrepreneurs in developing countries. Most women's enterprises share common characteristics: very small businesses, employment of women owners and maybe some family members, limited working capital, low profit margins, and flexible or part-time work. Many enterprises do not plan for growth. Women tend to diversify and use risk-avoidance strategies. Support for women's enterprises ignores the characteristics of women's enterprises. Support mechanisms could be offered that would perfect risk-spreading strategies and dynamic enterprise management through other means than growth. Many initiatives, since the 1970s, have transferred technologies to women. Technologies were applied to only a few domains and were viewed as appropriate based on their small size, low level of complexity, low cost, and environmental friendliness. Technology transfers may not be viewed by beneficiaries as the appropriate answer to needs. The bottleneck in transfers to women is not in the development of prototypes, but in the dissemination of technology that is sustainable, appropriate, and accessible. Key features for determining appropriateness include baseline studies, consumer linkages, and a repetitive process. Institutional factors may limit appropriateness. There is a need for long-term outputs, better links with users, training in use of the technology, grouping of women into larger units, and technology availability in quantities large enough to meet demand. Guidelines need to be developed that include appropriate content and training that ensures transfer of knowledge to practice.

  7. On transferring the grid technology to the biomedical community.

    Science.gov (United States)

    Mohammed, Yassene; Sax, Ulrich; Dickmann, Frank; Lippert, Joerg; Solodenko, Juri; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto

    2010-01-01

    Natural scientists such as physicists pioneered the sharing of computing resources, which resulted in the Grid. The inter domain transfer process of this technology has been an intuitive process. Some difficulties facing the life science community can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies that have achieved certain stability. Grid and Cloud solutions are technologies that are still in flux. We illustrate how Grid computing creates new difficulties for the technology transfer process that are not considered in Bozeman's model. We show why the success of health Grids should be measured by the qualified scientific human capital and opportunities created, and not primarily by the market impact. With two examples we show how the Grid technology transfer theory corresponds to the reality. We conclude with recommendations that can help improve the adoption of Grid solutions into the biomedical community. These results give a more concise explanation of the difficulties most life science IT projects are facing in the late funding periods, and show some leveraging steps which can help to overcome the "vale of tears".

  8. Technology transfer and the management of radioactive waste

    International Nuclear Information System (INIS)

    Bonne, A.; Chan-Sands, C.

    1998-01-01

    One of the IAEA's fundamental roles is to act as a centre for the transfer of nuclear technologies, including those for managing radioactive wastes. In the area of waste management technology, the Agency is actively working to improve and develop new and efficient means to fulfill that responsibility. Recognizing its responsibilities and challenges, IAEA efforts related to radioactive waste management technologies into the next century are framed around three major areas: the development and implementation of mechanisms for better technology transfer and information exchange; the promotion of sustainable and safer processes and procedures; and the provision of peer reviews and direct technical assistance that help facilitate bilateral and multinational efforts. To illustrate some specific elements of the overall programme, this article reviews selected technology-transfer activities that have been initiated in the field

  9. Applications of radiation technology and isotopes in industry

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo [International Atomic Energy Agency, Vienna (Austria)

    1994-12-31

    This paper reports the current status of applications of radiation technology and radioisotopes in industries, environmental conservation and medical products. The topics discussed are radiation processing - features and advantages, radiation sources, polymeric products, radiation cross-linking and grafting of polymers, radiation curing of surface coating, new developments; sterilization of medical products, applications for environmental protection i.e. cleaning the flue gases, disinfection of sewage and its recycling; nucleonic control system (NCS); major mechanisms of implementation of the Agency`s programme for technology transfer - research contract programme, model projects and technical cooperation projects.

  10. Applications of radiation technology and isotopes in industry

    International Nuclear Information System (INIS)

    Sueo Machi

    1994-01-01

    This paper reports the current status of applications of radiation technology and radioisotopes in industries, environmental conservation and medical products. The topics discussed are radiation processing - features and advantages, radiation sources, polymeric products, radiation cross-linking and grafting of polymers, radiation curing of surface coating, new developments; sterilization of medical products, applications for environmental protection i.e. cleaning the flue gases, disinfection of sewage and its recycling; nucleonic control system (NCS); major mechanisms of implementation of the Agency's programme for technology transfer - research contract programme, model projects and technical cooperation projects

  11. Technology Transfer and Commercialization Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Michelle R. Blacker

    2008-12-01

    The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers

  12. Regional Cooperation Agreement for Asia and the Pacific (RCA). A mechanism for nuclear technology transfer

    International Nuclear Information System (INIS)

    Bin Muslim, N.

    1993-01-01

    The paper presents the regional cooperation programs of the IAEA which have as purpose to promote the applications of peaceful uses of atomic energy and to transfer technology to the developing countries. The paper focusses on the (RCA) program for Asia and the Pacific, it is considered the most important mechanism for genuine technology transfer. The annex no 1 lists the full text of the Regional Cooperative Agreement for Research, Development and Training Related to Nuclear Science and Technology, 1987 (13 articles). The annex no.3 lists also the full text of the African Regional Cooperative Agreement for Research, Development and training Related to Nuclear Science and Technology (14 articles). 11 refs., 17 tabs

  13. Technology transfer potential of an automated water monitoring system. [market research

    Science.gov (United States)

    Jamieson, W. M.; Hillman, M. E. D.; Eischen, M. A.; Stilwell, J. M.

    1976-01-01

    The nature and characteristics of the potential economic need (markets) for a highly integrated water quality monitoring system were investigated. The technological, institutional and marketing factors that would influence the transfer and adoption of an automated system were studied for application to public and private water supply, public and private wastewater treatment and environmental monitoring of rivers and lakes.

  14. Technology transfer, a two-way street

    International Nuclear Information System (INIS)

    Martin, H.L.

    1994-01-01

    Technology transfer through the Pollution Prevention ampersand Control Conferences, which have been cosponsored by the Environmental Protection Agency and by the professional societies of industry, greatly improved the environmental projects of the Department of Energy at Savannah River Site (SRS) in the mid-1980's. Those technologies, used in the liquid effluent treatment of the metal finishing liquid effluents from aluminum cleaning and nickel plating of fuel and targets for the nuclear production reactors, have been enhanced by the research and development of SRS engineers and scientists. The technology transfer has now become a two-way street to the benefit of our Nation's environment as these enhancements are being adopted in the metal finishing industry. These success stories are examples of the achievements anticipated in the 1990's as technology development in the federal facilities is shared with commercial industry

  15. A Conceptual Model of Technology Transfer for Public Universities in Mexico

    Directory of Open Access Journals (Sweden)

    Hugo Necoechea

    2013-12-01

    Full Text Available Technology transfer from academic and scientific institutions has been transformed into a strategic variable for companies and nations who wish to cope with the challenges of a global economy. Since the early 1970s, many technology transfer models have tried to introduce key factors in the process. Previous studies have shown that technology transfer is influenced by various elements. This study is based on a review of two recent technology transfer models that we have used as basic concepts for developing our own conceptual model. Researcher–firm networks have been considered as key elements in the technology transfer process between public universities and firms. The conceptual model proposed could be useful to improve the efficiency of existing technology transfer mechanisms.

  16. A DYNAMICAL SYSTEM APPROACH IN MODELING TECHNOLOGY TRANSFER

    Directory of Open Access Journals (Sweden)

    Hennie Husniah

    2016-05-01

    Full Text Available In this paper we discuss a mathematical model of two parties technology transfer from a leader to a follower. The model is reconstructed via dynamical system approach from a known standard Raz and Assa model and we found some important conclusion which have not been discussed in the original model. The model assumes that in the absence of technology transfer from a leader to a follower, both the leader and the follower have a capability to grow independently with a known upper limit of the development. We obtain a rich mathematical structure of the steady state solution of the model. We discuss a special situation in which the upper limit of the technological development of the follower is higher than that of the leader, but the leader has started earlier than the follower in implementing the technology. In this case we show a paradox stating that the follower is unable to reach its original upper limit of the technological development could appear whenever the transfer rate is sufficiently high.  We propose a new model to increase realism so that any technological transfer rate could only has a positive effect in accelerating the rate of growth of the follower in reaching its original upper limit of the development.

  17. Key policy considerations for facilitating low carbon technology transfer to developing countries

    International Nuclear Information System (INIS)

    Ockwell, David G.; Watson, Jim; MacKerron, Gordon; Pal, Prosanto; Yamin, Farhana

    2008-01-01

    Based on Phase I of a UK-India collaborative study, this paper analyses two case studies of low carbon technologies-hybrid vehicles and coal-fired power generation via integrated gasification combined cycle (IGCC). The analysis highlights the following six key considerations for the development of policy aimed at facilitating low carbon technology transfer to developing countries: (1) technology transfer needs to be seen as part of a broader process of sustained, low carbon technological capacity development in recipient countries; (2) the fact that low carbon technologies are at different stages of development means that low carbon technology transfer involves both vertical transfer (the transfer of technologies from the R and D stage through to commercialisation) and horizontal transfer (the transfer from one geographical location to another). Barriers to transfer and appropriate policy responses often vary according to the stage of technology development as well as the specific source and recipient country contexts; (3) less integrated technology transfer arrangements, involving, for example, acquisition of different items of plant from a range of host country equipment manufacturers, are more likely to involve knowledge exchange and diffusion through recipient country economies; (4) recipient firms that, as part of the transfer process, strategically aim to obtain technological know-how and knowledge necessary for innovation during the transfer process are more likely to be able to develop their capacity as a result; (5) whilst access to Intellectual Property Rights (IPRs) may sometimes be a necessary part of facilitating technology transfer, it is not likely to be sufficient in itself. Other factors such as absorptive capacity and risks associated with new technologies must also be addressed; (6) there is a central role for both national and international policy interventions in achieving low carbon technology transfer. The lack of available empirical analysis

  18. Technology Transfer: A Third World Perspective.

    Science.gov (United States)

    Akubue, Anthony I.

    2002-01-01

    Technology transfer models are based on assumptions that do not reflect Third-World realities. Obstacles to building indigenous technology capacity include multinational corporations' control of innovations, strings attached to foreign aid, and indigenous reluctance to undertake research. Four areas of development include foreign direct…

  19. Spin-transfer torque magnetoresistive random-access memory technologies for normally off computing (invited)

    International Nuclear Information System (INIS)

    Ando, K.; Yuasa, S.; Fujita, S.; Ito, J.; Yoda, H.; Suzuki, Y.; Nakatani, Y.; Miyazaki, T.

    2014-01-01

    Most parts of present computer systems are made of volatile devices, and the power to supply them to avoid information loss causes huge energy losses. We can eliminate this meaningless energy loss by utilizing the non-volatile function of advanced spin-transfer torque magnetoresistive random-access memory (STT-MRAM) technology and create a new type of computer, i.e., normally off computers. Critical tasks to achieve normally off computers are implementations of STT-MRAM technologies in the main memory and low-level cache memories. STT-MRAM technology for applications to the main memory has been successfully developed by using perpendicular STT-MRAMs, and faster STT-MRAM technologies for applications to the cache memory are now being developed. The present status of STT-MRAMs and challenges that remain for normally off computers are discussed

  20. License Agreements | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NCI Technology Transfer Center (TTC) licenses the discoveries of NCI and nine other NIH Institutes so new technologies can be developed and commercialized, to convert them into public health benefits.

  1. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Science.gov (United States)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  2. Technology transfer in the national laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Yonas, G.

    1991-08-01

    The title of this paper might unfairly provoke readers if it conjures up visions of vast stores of high-tech gadgets in several hundred technology warehouses'' (also known as federal laboratories) around the country, open for browsing by those in search of a bargain. That vision, unfortunately, is a mirage. The term technology transfer'' is not really as accurate as is the term technology team-work,'' a process of sharing ideas and knowledge rather than widgets. In addition, instead of discussing the efforts of more than 700 federal labs in the US, I mean to address only those nine government-owned, contractor-operated multiprogram labs run by the Department of Energy. Nevertheless, the topic of technology team-work opportunities with DOE multiprogram national lab is of significance to those concerned with increasing economic competitiveness and finding technological solutions to a host of national problems. A significant fraction of US R D capabilities rests in the nine DOE multiprogram national laboratories -- and these labs have only just begun to join the other federal laboratories in these efforts due to the passage and recent implementation of the National Competitiveness Technology Transfer Act of 1989.

  3. Effective technology transfer through regional information teams

    International Nuclear Information System (INIS)

    Wicks, D.E.; Gahan, B.; Hoyle, G.

    1997-01-01

    Communication and the transfer of technical information is critical to the international gas industry. The technical research results developed through Gas Research Institute's natural gas supply program have been disseminated through a number of vehicles. Two primary vehicles are GRI's Information Centers and Regional Technology Transfer Agents (RTTA). The Information Centers serve as repositories for GRI information as well as provide no-cost literature searching expertise. The RTTAs actively communicate and interface with area producers, introducing potential technology adopters with GRI technology managers and/or the appropriate licensed product or service distributors. The combination of Information Centers and RTTAs continues to help independent producers break through the barriers of technology and accelerate the benefits of lower cost natural gas recovery. (au)

  4. Technology Transfer: Technocultures, Power and Communication--The Australian Experience.

    Science.gov (United States)

    More, Elizabeth; Irwin, Harry

    1995-01-01

    Discusses issues of communication and power in the organizational dimensions of international technology transfer, including technoculture differences and strategic political alliances. Theoretical discussion is supplemented by analysis of international technology transfer activities involving Australian participation in the aerospace and…

  5. Differences in technology transfer between science-based and development-based industries : transfer mechanisms and barriers

    NARCIS (Netherlands)

    Gilsing, V.A.; Bekkers, R.N.A.; Bodas Freitas, I.M.; Steen, van der M.

    2011-01-01

    Although several studies in the wide body of literature on technology transfer have hinted at differences across industries, this still remains an understudied issue. Our study addresses this topic and considers to what degree technology transfer processes differ across different industrial sectors.

  6. Creation of a European network dedicated to technology transfer

    CERN Multimedia

    2008-01-01

    The CERN Council recently approved the creation of a technology transfer network, whose aim will be to improve European industry’s access to the technologies developed by the particle physics community in the Member States. The gas detectors for the TOTEM experiment (GEM) offer potential for fruitful collaboration within the framework of the TT network. Many other technologies are going down the same road.The desire to set up a technology transfer network follows on from the European Strategy for Particle Physics, approved by the CERN Council on 14 July 2006 in Lisbon. In this context, special emphasis was laid on European industry’s participation in the implementation of particle physics programmes and, in particular, its access to the new technologies developed by the scientific community. It was recognised that effort needs to be put into improving the efficiency of technology transfer...

  7. Modularization and nuclear power. Report by the Technology Transfer Modularization Task Team

    International Nuclear Information System (INIS)

    1985-06-01

    This report describes the results of the work performed by the Technology Transfer Task Team on Modularization. This work was performed as part of the Technology Transfer work being performed under Department of Energy Contract 54-7WM-335406, between December, 1984 and February, 1985. The purpose of this task team effort was to briefly survey the current use of modularization in the nuclear and non-nuclear industries and to assess and evaluate the techniques available for potential application to nuclear power. A key conclusion of the evaluation was that there was a need for a study to establish guidelines for the future development of Light Water Reactor, High Temperature Gas Reactor and Liquid Metal Reactor plants. The guidelines should identify how modularization can improve construction, maintenance, life extension and decommissioning

  8. State of the Science in Technology Transfer: At the Confluence of Academic Research and Business Development--Merging Technology Transfer with Knowledge Translation to Deliver Value

    Science.gov (United States)

    Lane, Joseph P.

    2010-01-01

    The practice of technology transfer continues to evolve into a discipline. Efforts continue in the field of assistive technology (AT) to move technology-related prototypes, resulting from development in the academic sector, to product commercialization within the business sector. The article describes how technology transfer can be linked to…

  9. Moving R&D to the Marketplace, A Guidebook for Technology Transfer Managers

    Energy Technology Data Exchange (ETDEWEB)

    Mock, John E.; Kenkeremath, Deepak C.; Janis, F. Timothy

    1993-01-01

    This Guidebook serves as an introduction as well as a refresher for technology transfer managers. It focuses on the question: What can the Technology Transfer manager do when confronted by complex situations and events? The main functional issues addressed here concern the conduct of technology transfer in Technology Utilization programs. These R&D programs whose primary mission is to develop technologies that will be used outside of the Federal sector. Renewable energy, health care, and agricultural advances are technologies of this type. The contents of this Guidebook will be of value to managers in a variety of Federal, State, university and industry technology development and transfer programs. The general area of transferring service innovations is not covered here. The Guidebook is primarily about the development and care of hardware. This Guidebook makes no attempt to judge the value of specific technologies in meeting societal needs. Rather, it addresses the improvement of the technology transfer process itself. It does, however, include reminders that ascertainment of the social value of specific technologies is one of the important yet difficult tasks of R&D and technology transfer programs. [DJE-2005

  10. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China.

    Science.gov (United States)

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-11-01

    Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the

  11. Transferring technology to the public sector.

    Science.gov (United States)

    Alper, M. E.

    1972-01-01

    Approximately four years ago the Jet Propulsion Laboratory, under NASA sponsorship, began to devote some of its resources to examining ways to transfer space technology to the civil sector. As experience accumulated under this program, certain principles basic to success in technology transfer became apparent. An adequate definition of each problem must be developed before any substantial effort is expended on a solution. In most instances, a source of funds other than the potential user is required to support the problem definition phase of the work. Sensitivity to the user's concerns and effective interpersonal communications between the user and technical personnel are essential to success.

  12. Application of Electro-Technologies in Processing of Flax Fiber

    Directory of Open Access Journals (Sweden)

    G. S. Vijaya Raghavan

    2013-08-01

    Full Text Available Flax fibers used for various applications are obtained from flax stems. Retting followed by drying and mechanical separation leads to the production of fibers. This review article discusses the application of electro-technologies in the production of bast fibers from the flax stem. In these technologies, flax stems harvested from the field are subjected to microwave assisted retting, followed by electro–osmotic dewatering which reduces the water content of the stems. Dewatered stems are transferred to a microwave chamber for further drying, thus retted stems are obtained for further processing.

  13. Nuclear energy technology transfer: the security barriers

    International Nuclear Information System (INIS)

    Rinne, R.L.

    1975-08-01

    The problems presented by security considerations to the transfer of nuclear energy technology are examined. In the case of fusion, the national security barrier associated with the laser and E-beam approaches is discussed; for fission, the international security requirements, due to the possibility of the theft or diversion of special nuclear materials or sabotage of nuclear facilities, are highlighted. The paper outlines the nuclear fuel cycle and terrorist threat, examples of security barriers, and the current approaches to transferring technology. (auth)

  14. Two perspectives on a successful lab/industry technology transfer

    International Nuclear Information System (INIS)

    MacArthur, D.W.; Ulbrich, R.

    1995-01-01

    Technology transfer from government laboratories to private business is of increasing concern in today's marketplace. Some prospective partners (on both sides) believe that technology transfer is a relatively simple process requiring little or no extra effort from the participants. In the authors experience this is not true and, in fact, positive results from a collaboration are directly proportional to the effort that both parties invest in the relationship. Communication, both between prospective partners before an agreement and between partners following the agreement, is essential. Neither technology nor marketing can stand by itself; it is the combination of the two that can produce a useful and available product. Laboratories and industries often have very different ways of looking at almost everything. Misunderstandings arising from these differences can short-circuit the transfer process or result in the production of a product that is unsalable. The authors will cover some of their experiences, potential problems, and their solutions. Examples discussed here is transfer of technology for long-range alpha detection developed at Los Alamos National Laboratory and transferred to Eberline Instrument Corporation

  15. Volpe Center Office of Research and Technology Applications (ORTA) : FY 2013 Annual Report

    Science.gov (United States)

    2013-12-01

    Technology transfer activities performed by the Volpe National Transportation Systems Center during fiscal year 2013 in fulfillment of statutory Office of Research and Technology Applications (ORTA) responsibilities are summarized in this report. Dur...

  16. Technology Transfer Annual Report Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Wendy Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to

  17. Climate change scenarios and Technology Transfer Protocols

    International Nuclear Information System (INIS)

    Kypreos, Socrates; Turton, Hal

    2011-01-01

    We apply a specific version of MERGE-ETL, an integrated assessment model, to study global climate policies supported by Technology Transfer Protocols (TTPs). We model a specific formulation of such a TTP where donor countries finance via carbon tax revenues, the diffusion of carbon-free technologies in developing countries (DCs) and quantify its benefits. Industrialized countries profit from increased technology exports, global diffusion of advanced technology (leading to additional technology learning and cost reductions) and reduced climate damages through the likelihood of greater global participation in a new international agreement. DCs experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and expected secondary benefits of carbon abatement (such as reduced local and regional air pollution). The analysis identifies potential candidate technologies that could be supported under a TTP, and the impact of a TTP on economic development (including the flow of transfer subsidies) and global emissions. Although a TTP may encourage additional participation, such a proposal is only likely to be successful if an increased willingness to pay to avoid climate damages is accepted, first by the present and future generations of the industrialized world and later on, when sufficient economic growth is accumulated, by today's developing countries. - Research Highlights: → Climate policy scenarios are assessed with differentiated commitments in carbon emission control supported by Technology Transfer Protocols. → Donor countries finance, via carbon-tax revenues, the exports of carbon-free technologies in developing countries helping to get a new international agreement. → Developing countries experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and secondary benefits. → Under Technology Protocols alone and

  18. International nuclear technology transfer

    International Nuclear Information System (INIS)

    Cartwright, P.; Rocchio, J.P.

    1978-01-01

    Light water reactors (LWRs), originally developed in the United States, became the nuclear workhorses for utilities in Europe and Japan largely because the U.S. industry was willing and able to transfer its nuclear know-how abroad. In this international effort, the industry had the encouragement and support of the U.S. governement. In the case of the boiling water reactor (BWR) the program for technology transfer was developed in response to overseas customer demands for support in building local designs and manufacturing capabilities. The principal vehicles have been technology exchange agreements through which complete engineering and manufacturing information is furnished covering BWR systems and fuel. Agreements are held with companies in Germany, Japan, Italy, and Sweden. In recent years, a comprehensive program of joint technology development with overseas manufacturers has begun. The rapidly escalating cost of nuclear research and development make it desirable to minimize duplication of effort. These joint programs provide a mechanism for two or more parties jointly to plan a development program, assign work tasks among themselves, and exchange test results. Despite a slower-than-hoped-for start, nuclear power today is playing a significant role in the economic growth of some developing countries, and can continue to do so. Roughly half of the 23 free world nations that have adopted LWRs are developing countries

  19. Technology transfer and commercialization of in situ vitrification technology

    International Nuclear Information System (INIS)

    Williams, L.D.; Hansen, J.E.

    1992-01-01

    In situ vitrification (ISV) technology was conceived and an initial proof-of-principle test was conducted in 1980 by Battelle Memorial Institute for the U.S. Department of Energy (DOE) at Pacific Northwest Laboratory (PNL). The technology was rapidly developed through bench, engineering pilot, and large scales in the following years. In 1986, DOE granted rights to the basic ISV patent to Battelle in exchange for a commitment to commercialize the technology. Geosafe Corporation was established as the operating entity to accomplish the commercialization objective. This paper describes and provides status information on the technology transfer and commercialization effort

  20. Does Technology Transfer Help Small and Medium Companies? Empirical Evidence from Korea

    Directory of Open Access Journals (Sweden)

    Dae-Hwan Kim

    2016-11-01

    Full Text Available We challenge the view that technology transfer from big companies to small and medium (SM size companies helps SM companies to prosper. With a large dataset of SM companies in Korea, we utilize the stochastic production frontier (SPF model to examine the productivity of inputs and the generalized linear model (GLM to compare business performance between two groups of SM companies: SM companies that receive technology transfer and those that do not receive technology transfer from big companies. The empirical results demonstrate that the transfer of technology from big companies to SM companies help SM companies to enjoy productivity of capital. Nonetheless, SM companies receiving technology transfer were found to underperform in terms of labor productivity and profit margin compared to their counterparts. We further investigate the reasons why SM companies receiving technology transfer from big companies underperform relative to their counterparts, and our findings shows that the former do not export much of their product and face more difficulties such as lower price for their products imposed by big companies than the latter. By identifying the negative rather than the conventionally assumed positive effect of technology transfer, this paper contributes to the literature on the relationship between technology transfer and SM companies’ prosperity in the case of Korea. Our findings have important implications for how SM companies should strategize and rethink about the clauses embedded in the transfer of technology that they receive from big companies because technology transfer plays as a barrier to their prosperity.

  1. [INVITED] Laser-induced forward transfer: A high resolution additive manufacturing technology

    Science.gov (United States)

    Delaporte, Philippe; Alloncle, Anne-Patricia

    2016-04-01

    Among the additive manufacturing techniques, laser-induced forward transfer addresses the challenges of printing thin films in solid phase or small volume droplets in liquid phase with very high resolution. This paper reviews the physics of this process and explores the pros and cons of this technology versus other digital printing technologies. The main field of applications are printed electronics, organic electronics and tissue engineering, and the most promising short terms ones concern digital laser printing of sensors and conductive tracks. Future directions and emerging areas of interest are discussed such as printing solid from a liquid phase and 3D digital nanomanufacturing.

  2. Siemens technology transfer and cooperation in the nuclear fuel area

    International Nuclear Information System (INIS)

    Holley, H.-P.; Fuchs, J. H.; Rothenbuecher, R. A.

    1997-01-01

    Siemens is a full-range supplier in the area of nuclear power generation with broad experience and activities in the field of nuclear fuel. Siemens has developed advanced fuel technology for all types fuel assemblies used throughout the world and has significant experience worldwide in technology transfer in the field of nuclear fuel. Technology transfer and cooperation has ranged between the provision of mechanical design advice for a specific fuel design and the erection of complete fabrication plants for commercial operation in 3 countries. In the following the wide range of Siemens' technology transfer activities for both fuel design and fuel fabrication technologies are shown

  3. Airlie House Pollution Prevention Technology Transfer pilot projects

    Energy Technology Data Exchange (ETDEWEB)

    Thuot, J.R.; Myron, H.; Gatrone, R.; McHenry, J.

    1996-08-01

    The projects were a series of pilot projects developed for DOE with the intention of transferring pollution prevention technology to private industry. The concept was to develop small technology transfer initiatives in partnership with the private sector. Argonne National Laboratory developed three projects: the microscale chemistry in education program, the microscale cost benefit study, and the Bethel New Life recycling trainee program. The two microscale chemistry projects focused on introducing microscale chemistry technologies to secondary and college education. These programs were inexpensive to develop and received excellent evaluations from participants and regulators. The recycle trainee project provided training for two participants and identified recycling and source reduction opportunities in Argonne`s solid waste stream. The pilot projects demonstrated that technology transfer initiatives can be developed and implemented with a small budget and within a short period of time. The essential components of the pilot projects were identification of target technologies that were already available, identification of target audiences, and a focus of effort to achieve a limited but defined objective.

  4. Blind Technology Transfer or Technological Knowledge Leakage: a Case Study from the South

    Directory of Open Access Journals (Sweden)

    Dario Codner

    2012-07-01

    Full Text Available Blurring boundaries between science and technology is a new phenomenon especially in fields such as biotechnology. The present work shows the fate of biotech research papers on foreign patents produced during the last decade in Quilmes National University. It aims at recognizing the flow of scientific knowledge developed at a public university towards foreign companies and organizations as well as reflecting on its technological value, the role of technology transfer management, the institutional significance of technology transfer processes and the need to develop innovative public policies for solving structural failures caused by industrial underdevelopment

  5. University Technology Transfer Information Processing from the Attention Based View

    Science.gov (United States)

    Hamilton, Clovia

    2015-01-01

    Between 2005 and 2011, there was no substantial growth in licenses executed by university technology transfer offices. Since the passage of the Bayh Dole Act of 1980, universities have owned technological inventions afforded by federal research funding. There are still university technology transfer offices that struggle with increasing their…

  6. Perinatal outcomes among singletons after assisted reproductive technology with single-embryo or double-embryo transfer versus no assisted reproductive technology.

    Science.gov (United States)

    Martin, Angela S; Chang, Jeani; Zhang, Yujia; Kawwass, Jennifer F; Boulet, Sheree L; McKane, Patricia; Bernson, Dana; Kissin, Dmitry M; Jamieson, Denise J

    2017-04-01

    To examine outcomes of singleton pregnancies conceived without assisted reproductive technology (non-ART) compared with singletons conceived with ART by elective single-embryo transfer (eSET), nonelective single-embryo transfer (non-eSET), and double-embryo transfer with the establishment of 1 (DET -1) or ≥2 (DET ≥2) early fetal heartbeats. Retrospective cohort using linked ART surveillance data and vital records from Florida, Massachusetts, Michigan, and Connecticut. Not applicable. Singleton live-born infants. None. Preterm birth (PTB score score approach, we found that singletons conceived after eSET were less likely to have a 5-minute Apgar Reproductive Medicine. All rights reserved.

  7. CONDITIONS FOR TECHNOLOGY TRANSFER IN THE AGRICULTURE OF CONGO REPUBLIC*

    Directory of Open Access Journals (Sweden)

    Katarzyna Andrzejczak

    2017-03-01

    Full Text Available The majority of the population in Sub-Saharan Africa is employed in agriculture. Nevertheless, the productivity of the sector is relatively low in comparison with other regions of the world. Based on convergence theory, technology transfer can enhance growth. However, the effective transfer of technology requires a certain absorption capacity from the recipient. Based on the qualitative research on cassava production in Congo Brazzaville, we identified key factors that influence the transfer process. These factors have been divided into four key areas: market, institutions, technology, and social capability. Cassava production value chain in Ignie region served as a case study for the evaluation of technology transfer absorptive capacity in Congo agriculture. We learned that the lack of agro-technical education, shortages in infrastructure, unavailability of business services, and market structure are among the main barriers of the intensification of technology use in agriculture.

  8. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  9. Technology transference in soybean culture – COPACOL experience / Transferência de tecnologia para a cultura da soja – a experiência da COPACOL

    Directory of Open Access Journals (Sweden)

    Maria de Fátima Guimarães

    2008-08-01

    Full Text Available This paper analyzed the technology transfer methodology, the Training and Visit System (T&V, applied by Agroindustrial Cooperative of Consolata – COPACOL. The objective was to demonstrate that the continuous and holistic application of a technology transfer system may speed up the awareness and the adoption of these technologies by the farmers and result in positive outcomes for all actors and institutions involved in the process. The methodology of technology transfer analyzed, the T&V System, is already used by Embrapa Soybean, a branch of Brazilian Agricultural Research Corporation – EMBRAPA, Rural Extension and Technical Assistance Corporation - EMATER, Agronomic institute of Parana - IAPAR and Cooperative Organization of Parana – OCEPAR as partners. It was concluded that the T&V System may be an important tool for improvement of the validation and transfer of technologies generated by research institutions. In the COPACOL, the T&V contributed with the technological development of the technicians and farmers. It contributed also, with the growth of the profit obtained by the farmers who participated of the T&V as compared with the average growth obtained by the other farmers, members of the cooperative. Finally, it was observed that the time of adoption of new technologies was decreased with the application of the T&V System.Este trabalho analisou a metodologia Sistema de Treino e Visita (T&V aplicada pela Cooperativa Agroindustrial Consolata – COPACOL na transferência de tecnologia, tendo como objetivo mostrar que um processo de transferência de tecnologia, quando desenvolvido de forma contínua e sistêmica, pode dinamizar a chegada e adoção dessas tecnologias ao produtor rural com resultados positivos para todos os participantes do sistema. A análise focou o Sistema T&V, que é uma metodologia já utilizada pela EMBRAPA Soja, unidade da Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA, em parceria com o Instituto

  10. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    Science.gov (United States)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  11. Volpe Center Office of Research and Technology Applications (ORTA) : fiscal year 2014 annual report

    Science.gov (United States)

    2014-12-01

    Technology transfer activities performed by the Volpe National Transportation Systems Center during fiscal year 2014 in fulfillment of statutory Office of Research and Technology Applications (ORTA) responsibilities are summarized in this report.

  12. Legislation on university technology transfer and research management 2012

    International Nuclear Information System (INIS)

    2012-02-01

    This book deals with legislation on university technology transfer in 2012, which includes invention promotion act, legislation on technology transfer and promotion of industrialization, legislation on industrial education and industrial cooperation, and special legislation on venture business. It lists the legislation related research and development by government department : fundamental law of scientific technique, law on evaluation and management of domestic research development business, national science and technology council and the patent office.

  13. Technology transfer at NASA - A librarian's view

    Science.gov (United States)

    Buchan, Ronald L.

    1991-01-01

    The NASA programs, publications, and services promoting the transfer and utilization of aerospace technology developed by and for NASA are briefly surveyed. Topics addressed include the corporate sources of NASA technical information and its interest for corporate users of information services; the IAA and STAR abstract journals; NASA/RECON, NTIS, and the AIAA Aerospace Database; the RECON Space Commercialization file; the Computer Software Management and Information Center file; company information in the RECON database; and services to small businesses. Also discussed are the NASA publications Tech Briefs and Spinoff, the Industrial Applications Centers, NASA continuing bibliographies on management and patent abstracts (indexed using the NASA Thesaurus), the Index to NASA News Releases and Speeches, and the Aerospace Research Information Network (ARIN).

  14. A southern region conference on technology transfer and extension

    Science.gov (United States)

    Sarah F. Ashton; William G. Hubbard; H. Michael Rauscher

    2009-01-01

    Forest landowners and managers have different education and technology transfer needs and preferences. To be effective it is important to use a multi-faceted science delivery/technology transfer program to reach them. Multi-faceted science delivery programs can provide similar content over a wide range of mechanisms including printed publications, face-to-face...

  15. International technology transfer to support the environmental restoration needs of the DOE complex

    International Nuclear Information System (INIS)

    DuCharme, A.R.; Jimenez, R.D.; Roberds, W.J.

    1992-01-01

    One of the principal objectives of the International Technology Exchange Program (ITEP) is the exchange of waste management and environmental restoration (WM/ER) technologies between the US and other nations. The current emphasis of ITEP is the transfer of technologies to the US that could provide better, faster, cheaper, or safer solutions to the needs of the DOE complex. The 10 candidate technologies that have been identified thus far by ITEP are discussed. The highlights of preliminary evaluations of these technologies through a systems approach are also described. The technologies have been evaluated by a screening process to determine their applicability to the leading WM/ER needs of the DOE complex. The technologies have been qualitatively compared with the known or anticipated capabilities of domestic, base case technologies

  16. Current status and applications of somatic cell nuclear transfer in dogs.

    Science.gov (United States)

    Jang, Goo; Kim, Min Kyu; Lee, Byeong Chun

    2010-11-01

    Although somatic cell nuclear transfer (SCNT) technology and applications are well developed in most domesticated and laboratory animals, their use in dogs has advanced only slowly. Many technical difficulties had to be overcome before preliminary experiments could be conducted. First, due to the very low efficiency of dog oocyte maturation in vitro, in vivo matured oocytes were generally used. The nucleus of an in vivo matured oocyte was removed and a donor cell (from fetal or adult fibroblasts) was injected into the oocyte. Secondly, fusion of the reconstructed oocytes was problematic, and it was found that a higher electrical voltage was necessary, in comparison to other mammalian species. By transferring the resulting fused oocytes into surrogate females, several cloned offspring were born. SCNT was also used for producing cloned wolves, validating reproductive technologies for aiding conservation of endangered or extinct breeds. Although examples of transgenesis in canine species are very sparse, SCNT studies are increasing, and together with the new field of gene targeting technology, they have been applied in many fields of veterinary or bio-medical science. This review summarizes the current status of SCNT in dogs and evaluates its potential future applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Why not stop transfer of technology

    Energy Technology Data Exchange (ETDEWEB)

    Baumer, J M

    1979-01-01

    One of the crucial themes in the dialogue between rich and poor nations is the nature and volume of the transfer of technology from the industrialized to the developing world. In contrast to the demand of overcoming the technology gap, Prof. Baumer argues that the postulate should rather be formulated as reduction of technological dependence. Industrialized countries say without technology, there is no growth; they say modern technology is the right technology. They are indeed against a cutting of costs and basically against simplifying the getting hold of their technology. Of prime importance is the development of technology at the site of the problems themselves. Problems can be solved in technically quite different ways - from simple to very complicated - and drawer-technology is only in the rarest cases the best solution. (MCW)

  18. A hypertext-based Internet-assessable database for the MSFC Technology Transfer Office

    Science.gov (United States)

    Jackson, Jeff

    1994-01-01

    There exists a continuing need to disseminate technical information and facilities capabilities from NASA field centers in an effort to promote the successful transfer of technologies developed with public funds to the private sector. As technology transfer is a stated NASA mission, there exists a critical need for NASA centers to document technology capabilities and disseminate this information on as wide a basis as possible. Certainly local and regional dissemination is critical, but global dissemination of scientific and engineering facilities and capabilities gives NASA centers the ability to contribute to technology transfer on a much broader scale. Additionally, information should be disseminated in a complete and rapidly available form. To accomplish this information dissemination, the unique capabilities of the Internet are being exploited. The Internet allows widescale information distribution in a rapid fashion to aid in the accomplishment of technology transfer goals established by the NASA/MSFC Technology Transfer Office. Rapid information retrieval coupled with appropriate electronic feedback, allows the scientific and technical capabilities of Marshall Space Flight Center, often unique in the world, to be explored by a large number of potential benefactors of NASA (or NASA-derived) technologies. Electronic feedback, coupled with personal contact with the MSFC Technology Transfer Office personnel, allows rapid responses to technical requests from industry and academic personnel as well as private citizens. The remainder of this report gives a brief overview of the Mosaic software and a discussion of technology transfer office and laboratory facilities data that have been made available on the Internet to promote technology transfer.

  19. JAERI Nuclear Engineering School and technology transfer

    International Nuclear Information System (INIS)

    Nishimura, Kazuaki; Kawaguchi, Chiyoji

    1978-01-01

    A method is introduced to evaluate the degree of nuclear technology transfer; that is, the output powers of Japanese nuclear reactors constructed in these 20 years are chronologically plotted in a semi-log figure. All reactors plotted are classified into imported and domestic ones according to a value of domestication factor. A space between two historical trajectories of reactor construction may be interpreted as one of the measures indicating the degree of nuclear technology transfer. In connection with this method, historical change of educational and training courses in Nuclear Engineering School of Japan Atomic Energy Research Institute is reviewed in this report. (author)

  20. Polymer solidification: Technology transfer to DOE and industry

    International Nuclear Information System (INIS)

    Kalb, P.D.; Strand, G.

    1994-01-01

    In keeping with the congressional mandate for technology transfer between federal research and development institutions and U.S. industry, the Brookhaven National Laboratory (BNL) Environmental and Waste Technology Center is pursuing industrial partnership with industry. These efforts, supported by the Department of Energy's Office of Environmental Restoration and Waste Management involve both the transfer of BNL developed technology to industry and the use of commercially developed technologies as part of an integrated waste treatment system. A Cooperative Research and Development Agreement has been established with VECTRA Technologies, Inc. (formerly Pacific Nuclear), a U.S. company that provides waste treatment and other services to the commercial nuclear power industry. The agreement involves investigation of polyethylene encapsulation for treatment of ion exchange resin wastes. In addition, other avenues of cooperation are being investigated including use of a VECTRA Technologies volume reduction pre-treatment process for use with the polyethylene technology in treating aqueous radioactive, hazardous, and mixed wastes

  1. Learning transfer of geospatial technologies in secondary science and mathematics core areas

    Science.gov (United States)

    Nielsen, Curtis P.

    The purpose of this study was to investigate the transfer of geospatial technology knowledge and skill presented in a social sciences course context to other core areas of the curriculum. Specifically, this study explored the transfer of geospatial technology knowledge and skill to the STEM-related core areas of science and mathematics among ninth-grade students. Haskell's (2001) research on "levels of transfer" provided the theoretical framework for this study, which sought to demonstrate the experimental group's higher ability to transfer geospatial skills, higher mean assignment scores, higher post-test scores, higher geospatial skill application and deeper levels of transfer application than the control group. The participants of the study consisted of thirty ninth-graders enrolled in U.S. History, Earth Science and Integrated Mathematics 1 courses. The primary investigator of this study had no previous classroom experiences with this group of students. The participants who were enrolled in the school's existing two-section class configuration were assigned to experimental and control groups. The experimental group had ready access to Macintosh MacBook laptop computers, and the control group had ready access to Macintosh iPads. All participants in U.S. History received instruction with and were required to use ArcGIS Explorer Online during a Westward Expansion project. All participants were given the ArcGIS Explorer Online content assessment following the completion of the U.S. History project. Once the project in U.S. History was completed, Earth Science and Integrated Mathematics 1 began units of instruction beginning with a multiple-choice content pre-test created by the classroom teachers. Experimental participants received the same unit of instruction without the use or influence of ArcGIS Explorer Online. At the end of the Earth Science and Integrated Math 1 units, the same multiple-choice test was administered as the content post-test. Following the

  2. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact

    Science.gov (United States)

    Fraser, John

    2010-01-01

    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  3. The Competence Accumulation Process in the Technology Transference Strategy

    Directory of Open Access Journals (Sweden)

    André Silva de Souza

    2008-04-01

    Full Text Available The present article evaluates and measures the technological competence accumulation in an automation area enterprise to distribution centers, Knapp Sudamérica Logistic and Automation Ltd, in the interval of the technology transference process previous period (1998-2001 and during the technology transference process(2002-2005. Therefore, based on an individual case study, the study identified the technology transference strategy and mechanism accorded between the head office and the branch office, the technological functions and activities developed by the receiver and, at last, the critical factors present in this process. The echnological competences accumulation exam was accomplished based on an analytical structure existent in the literature that was adapted to the researched segment analysis. The obtained results showed that the planed, organized, controlled and continuous effort to generating and disseminating knowledge allowed the enterprise to speed up the accumulation process of technological competences promoting the converting of this process from individual level to the organizational one: besides, it also allowed the identification of barriers and facilitators involved in this process.

  4. Determinants of International Technology Transfer: an Empirical Analysis of the Enterprise Europe Network

    Directory of Open Access Journals (Sweden)

    Carina Araújo

    2014-09-01

    Full Text Available This paper explores the key factors that foster technology transfer within the triad university-industry-government in an international context, i.e., the Enterprise Europe Network (EEN. Based on 71 technological Partnership Agreements (PAs, estimation results indicate that PAs associated to partners that provide their collaborators with the appropriate training in technology transfer-related issues, present substantial past experience in international or technological projects, and participate in extensive networks, are those that achieve better performances in terms of international technology transfer. High levels of formal schooling per se are not a key determinant of international technology transfer; the critical factor is highly educated human resources who receive complementary training in technology transfer issues.

  5. Distance technology transfer course content development.

    Science.gov (United States)

    2013-06-01

    The Illinois Department of Transportation (IDOT) offers multiple technology transfer courses for engineering, : project design, and safety training for state and local agency personnel. These courses are often essential to the : agency mission. Becau...

  6. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China

    International Nuclear Information System (INIS)

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-01-01

    steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.

  7. Atomic layer deposition assisted pattern transfer technology for ultra-thin block copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wenhui; Luo, Jun; Meng, Lingkuan; Li, Junjie; Xiang, Jinjuan; Li, Junfeng; Wang, Wenwu; Chen, Dapeng; Ye, Tianchun; Zhao, Chao

    2016-08-31

    As an emerging developing technique for next-generation lithography, directed self-assembly (DSA) of block copolymer (BCP) has attracted numerous attention and has been a potential alternative to supplement the intrinsic limitations of conventional photolithography. In this work, the self-assembling properties of a lamellar diblock copolymer poly(styrene-b-methylmethacrylate) (PS-b-PMMA, 22k-b-22k, L{sub 0} = 25 nm) on Si substrate and an atomic layer deposition (ALD)-assisted pattern transfer technology for the application of DSA beyond 16/14 nm complementary metal oxide semiconductor (CMOS) technology nodes, were investigated. Firstly, two key processing parameters of DSA, i.e. annealing temperatures and durations of BCP films, were optimized to achieve low defect density and high productivity. After phase separation of BCP films, self-assembling patterns of low defect density should be transferred to the substrate. However, due to the nano-scale thickness and the weak resistance of BCP films to dry etching, it is nearly impossible to transfer the BCP patterns directly to the substrate. Therefore, an ALD-based technology was explored in this work, in which deposited Al{sub 2}O{sub 3} selectively reacts with PMMA blocks thus hardening the PMMA patterns. After removing PS blocks by plasma etching, hardened PMMA patterns were left and transferred to underneath SiO{sub 2} hard mask layer. Using this patterned hard mask, nanowire array of 25 nm pitch were realized on Si substrate. From this work, a high-throughput DSA baseline flow and related ALD-assisted pattern transfer technique were developed and proved to have good capability with the mainstream CMOS technology. - Highlights: • Optimization on self-assembly process for high productivity and low defectivity • Enhancement of etching ratio and resistance by atomic layer deposition (ALD) • A hard mask was used for pattern quality improvement and contamination control.

  8. Introduction to the workshop on technology transfer in software engineering

    NARCIS (Netherlands)

    Harrison, Warren; Wieringa, Roelf J.

    The goal of the Workshop on Technology Transfer in Software Engineering is to increase our understanding of technology transfer in software engineering, and to learn from successful case studies. We wanted to bring researchers and practitioners together to create an inventory of problems in software

  9. User Interface Technology Transfer to NASA's Virtual Wind Tunnel System

    Science.gov (United States)

    vanDam, Andries

    1998-01-01

    Funded by NASA grants for four years, the Brown Computer Graphics Group has developed novel 3D user interfaces for desktop and immersive scientific visualization applications. This past grant period supported the design and development of a software library, the 3D Widget Library, which supports the construction and run-time management of 3D widgets. The 3D Widget Library is a mechanism for transferring user interface technology from the Brown Graphics Group to the Virtual Wind Tunnel system at NASA Ames as well as the public domain.

  10. Technology Transfer: From the Research Bench to Commercialization

    Directory of Open Access Journals (Sweden)

    Gail A. Van Norman, MD

    2017-02-01

    Full Text Available Summary: Progress in medicine hinges on the successful translation of basic science discoveries into new medical devices, diagnostics, and therapeutics. “Technology transfer” is the process by which new innovations flow from the basic research bench to commercial entities and then to public use. In academic institutions, intellectual property rights do not usually fall automatically to the individual inventor per se, but most often are the property of the institution. Technology transfer offices are tasked with seeing to it that such intellectual property rights are properly managed and commercialized. This 2-part series explores the technology transfer process from invention to commercialization. Part 1 reviews basic aspects of intellectual property rights, primarily patents and copyrights. Part 2 will discuss the ways in which inventions become commercialized through startup companies and licensing arrangements with industry players. Key Words: copyright, intellectual property, patent, technology transfer

  11. Technological transfer to the education

    Directory of Open Access Journals (Sweden)

    Enrique Melamed-Varela

    2016-12-01

    Full Text Available One of the most efficient strategies related to generation of differentiation factors which contribute to stability and sustainability in time as well as the  momentum of technological development in different territories is represented by the growth in scientific, technological and innovative development based on the structure of economic systems. Education is considered a fundamental element because it is the essence in the formation and fortification of the capacities, skills and competencies in human capital. This is needed for the management of research projects, development and innovation that will contribute to technology transfer and the progress of scientific knowledge that is encouraged from the inside of the organizational structures of the national economic sectors One of the most influential and conceptual tendencies of economic thinking in the countries (Gomez, Ibagón& Forero, 2014 are represented by the theories based on endogenous development in Latin America.  In addition,  the scientific development of a nation brewing from a process of internal learning and strengthening of the technical and technological capabilities that support the processes of education and research as generators of knowledge (Amar &Diazgranados, 2006, this principle is supported by Mazzucato´s (2014 theory,  who considers states as  capable of generating a platform for enabling capabilities of resources for the scientific and technological development entrepreneurs ;fact that are continuously supported by education. Starting from this series of concepts, the following question arises: do different levels of modern educational institutions use technological access? It must be taken into account that the scientific and technological progress results of the research, development and innovation (RDI is not indifferent for educational organizations, an activity that is mostly awarded to the universities and technological development centers (Ortiz, 2012

  12. Symposium on computational fluid dynamics: technology and applications

    International Nuclear Information System (INIS)

    1988-01-01

    A symposium on the technology and applications of computational fluid dynamics (CFD) was held in Pretoria from 21-23 Nov 1988. The following aspects were covered: multilevel adaptive methods and multigrid solvers in CFD, a symbolic processing approach to CFD, interplay between CFD and analytical approximations, CFD on a transfer array, the application of CFD in high speed aerodynamics, numerical simulation of laminar blood flow, two-phase flow modelling in nuclear accident analysis, and the finite difference scheme for the numerical solution of fluid flow

  13. Transfer of nuclear technology: A designer-contractor's perspective

    International Nuclear Information System (INIS)

    See Hoye, D.; Hedges, K.R.; Hink, A.D.

    2000-01-01

    The paper presents the successful Canadian experience in developing a nuclear power technology - CANDU - and exporting it. Consideration is paid to technology that has to be transferred, receiver country objectives and mechanisms and organizational framework. (author)

  14. NREL Solar Cell Wins Federal Technology Transfer Prize | News | NREL

    Science.gov (United States)

    Solar Cell Wins Federal Technology Transfer Prize News Release: NREL Solar Cell Wins Federal Technology Transfer Prize May 7, 2009 A new class of ultra-light, high-efficiency solar cells developed by the U.S. Department of Energy's National Renewable Energy Laboratory has been awarded a national prize

  15. Blending addiction research and practice: strategies for technology transfer.

    Science.gov (United States)

    Condon, Timothy P; Miner, Lucinda L; Balmer, Curtis W; Pintello, Denise

    2008-09-01

    Consistent with traditional conceptions of technology transfer, efforts to translate substance abuse and addiction research into treatment practice have typically relied on the passive dissemination of research findings. The large gap between addiction research and practice, however, indicates that there are many barriers to successful technology transfer and that dissemination alone is not sufficient to produce lasting changes in addiction treatment. To accelerate the translation of research into practice, the National Institute on Drug Abuse launched the Blending Initiative in 2001. In part a collaboration with the Substance Abuse and Mental Health Services Administration/Center for Substance Abuse Treatment's Addiction Technology Transfer Center program, this initiative aims to improve the development, effectiveness, and usability of evidence-based practices and reduce the obstacles to their timely adoption and implementation.

  16. Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology.

    Science.gov (United States)

    Tian, He; Chen, Hong-Yu; Ren, Tian-Ling; Li, Cheng; Xue, Qing-Tang; Mohammad, Mohammad Ali; Wu, Can; Yang, Yi; Wong, H-S Philip

    2014-06-11

    Laser scribing is an attractive reduced graphene oxide (rGO) growth and patterning technology because the process is low-cost, time-efficient, transfer-free, and flexible. Various laser-scribed rGO (LSG) components such as capacitors, gas sensors, and strain sensors have been demonstrated. However, obstacles remain toward practical application of the technology where all the components of a system are fabricated using laser scribing. Memory components, if developed, will substantially broaden the application space of low-cost, flexible electronic systems. For the first time, a low-cost approach to fabricate resistive random access memory (ReRAM) using laser-scribed rGO as the bottom electrode is experimentally demonstrated. The one-step laser scribing technology allows transfer-free rGO synthesis directly on flexible substrates or non-flat substrates. Using this time-efficient laser-scribing technology, the patterning of a memory-array area up to 100 cm(2) can be completed in 25 min. Without requiring the photoresist coating for lithography, the surface of patterned rGO remains as clean as its pristine state. Ag/HfOx/LSG ReRAM using laser-scribing technology is fabricated in this work. Comprehensive electrical characteristics are presented including forming-free behavior, stable switching, reasonable reliability performance and potential for 2-bit storage per memory cell. The results suggest that laser-scribing technology can potentially produce more cost-effective and time-effective rGO-based circuits and systems for practical applications.

  17. Activities of the NASA sponsored SRI technology applications team in transferring aerospace technology to the public sector

    Science.gov (United States)

    Berke, J. G.

    1971-01-01

    The organization and functions of an interdisciplinary team for the application of aerospace generated technology to the solution of discrete technological problems within the public sector are presented. The interdisciplinary group formed at Stanford Research Institute, California is discussed. The functions of the group are to develop and conduct a program not only optimizing the match between public sector technological problems in criminalistics, transportation, and the postal services and potential solutions found in the aerospace data base, but ensuring that appropriate solutions are acutally utilized. The work accomplished during the period from July 1, 1970 to June 30, 1971 is reported.

  18. Key Findings and Recommendations for Technology Transfer at the ITS JPO

    Science.gov (United States)

    2011-03-18

    This report provides key findings and recommendations for technology transfer at the Intelligent Transportation Systems Joint Program Office (ITS JPO) based upon an assessment of best practices in technology transfer in other industries, such as nati...

  19. Waste minimization and pollution prevention technology transfer : the Airlie House Projects

    International Nuclear Information System (INIS)

    Gatrone, R.; McHenry, J.; Myron, H.; Thout, J. R.

    1998-01-01

    The Airlie House Pollution Prevention Technology Transfer Projects were a series of pilot projects developed for the US Department of Energy with the intention of transferring pollution prevention technology to the private sector. The concept was to develop small technology transfer initiatives in partnership with the private sector. Argonne National Laboratory developed three projects: the microscale chemistry in education project, the microscale cost benefit study project, and the Bethel New Life recycling trainee project. The two microscale chemistry projects focused on introducing microscale chemistry technologies to secondary and college education. These programs were inexpensive to develop and received excellent evaluations from participants and regulators. The Bethel New Life recycling trainee project provided training for two participants who helped identify recycling and source reduction opportunities in Argonne National Laboratory's solid waste stream. The pilot projects demonstrated that technology transfer initiatives can be developed and implemented with a small budget and within a short period of time. The essential components of the pilot projects were identifying target technologies that were already available, identifying target audiences, and focusing on achieving a limited but defined objective

  20. A practical approach to the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Segerberg, F.

    1978-01-01

    The paper deals specifically with the transfer of light-water reactor technology to a developing country. The technology transfer scheme presented assumes that Sweden is the supplier of this technology. The basis of the proposed approach is that hardware deliveries for nuclear power plants in the recipient country should constitute an activity in parallel with the general technology transfer. It is pointed out that the developing countries form a very heterogeneous group with respect to industrial capability. On the other hand the supplier nations are not a homogeneous group. Sweden's most relevant characteristics as supplier nation can be summarized under the following headings: (i) fairly small and highly industrialized country; (ii) concentration on nuclear power to cover increasing electricity demands; (iii) independent reactor technology; (iv) well-established infrastructure with regard to component manufacturing; (v) political neutrality. It follows that each combination of two countries constitutes a unique example. The nuclear technology transfer schemes must consequently be extremely flexible. The paper outlines a 'modular' system. This concept means that the supplier offers a great variety of independent courses, training opportunities, facilities etc. which can then be combined into a package meeting the wishes of the recipient nation. The components in a Swedish package of this kind are elaborated. The paper ends with the general conclusion that Sweden has so far been successful in combining high national ambitions with limited manpower and limited financial resources. The underlying efficiency and flexibility will hopefully make Sweden an attractive partner for developing countries. (author)

  1. Experience in transfer of nuclear technology

    International Nuclear Information System (INIS)

    Beckurts, K.H.

    1977-01-01

    Nuclear energy development in the Federal Republic of Germany was initiated in 1955. In spite of this late start, the country now has a broad potential in all branches of peaceful nuclear technology. Turkey nuclear power plants are erected by German industry, and the country has the basic technology at its disposal for all stages of the nuclear fuel cycle. In the areas of uranium enrichment and reprocessing, multilateral joint ventures with European countries have been formed. The country also has an active development program for advanced reactors. In general areas of technology transfer and development aid, in the nuclear field, there are interrelated activities of both government and industry. The government has concluded bilateral agreements with a number of countires e.g. Argentina, Brazil, India, Iran and Pakistan, covering the general field of nuclear science; in the framework of these agreements, which are being carried out mainly by the nuclear research centers at Juelich and Karlsruhe, active cooperation in research, development, education, and training are being pursued. The nonproliferation of nuclear weapons is a major objective of the Federal government which strongly affects its policies for international nuclear trade. The paper describes the nuclear technology potential available in the Federal Republic of Germany and reviews experience gathered in cooperation with developing countries. Future policies for nuclear technology transfer are discussed with special reference to the role of national R and D laboratories

  2. Technology transfer of nuclear techniques and nucleonic control systems in the mineral industry

    International Nuclear Information System (INIS)

    1990-11-01

    Among the many beneficial applications of radiation and radioisotopes in industry which are now well established in advanced countries, the applications of nuclear techniques and nucleonic control systems in the mineral industry have great potential for developing Member States. The use of nucleonic on-stream analyzers in the coal industry has resulted in enormous technical and economic benefits in addition to minimization of environmental pollution. Large savings have also resulted from the use of such analyzers in the processing of other minerals. Nuclear borehole logging techniques have demonstrated great potential in oil and gas evaluation. Radiotracer investigations have led to process optimisation and trouble shooting in various stages in ore processing and metallurgy. Though the technical and economic benefits of applications of nuclear techniques in the mineral industry are well recognised, technology transfer in these areas has been hampered by a variety of factors. In order to review the status and trends in nuclear techniques and nucleonic control systems in the mineral industry and the problems and considerations in their technology transfer to developing Member States, the IAEA convened an Advisory Group Meeting in Bombay, India, 15-19 January 1990. The present publication is based on the 7 contributions presented at this meeting. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  3. SHARED TECHNOLOGY TRANSFER PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  4. Adaptation in the context of technology development and transfer

    DEFF Research Database (Denmark)

    Olhoff, Anne

    2015-01-01

    and transfer. It summarizes what technologies for adaptation are, how they relate to development, and what their role is in adaptation. It subsequently highlights a number of policy and research issues that could be important to inform future policy. The commentary has two key messages. First, it argues...... that informed policy decisions on technology development and transfer to enhance adaptation require systematic assessments of the findings in the theoretical and empirical literature. Second, in light of the potential for overlap between processes for adaptation and processes for technologies for adaptation......Starting from a summary of key developments under the United Nations Framework Convention on Climate Change (UNFCCC) related to adaptation and technologies, the commentary provides an initial review of the available literature relevant to adaptation in the context of technology development...

  5. Technology Transfer: From the Research Bench to Commercialization

    Directory of Open Access Journals (Sweden)

    Gail A. Van Norman, MD

    2017-04-01

    Full Text Available Summary: Technology transfer (TT encompasses a variety of activities that move academic discoveries into the public sector. Part 1 of this 2-part series explored steps in acquisition of intellectual property (IP rights (e.g., patents and copyrights. Part 2 focuses on processes of commercialization, including the technology transfer office, project development toward commercialization, and licensing either through the establishment of startup companies (venture capital–backed or otherwise or directly to industry. In private industry, TT often occurs through the sale of IP, products, or services, but in universities, the majority of TT occurs through the licensing of IP. Key Words: commercialization, licensing, technology transfer, venture capital

  6. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  7. Summary of the National Technology Transfer and Advancement Act

    Science.gov (United States)

    Provides a summary of the National Technology Transfer and Advancement Act which pomote economic, environmental, and social well-being by bringing technology and industrial innovation to the marketplace

  8. Considerations on technology transfer process in nuclear power industry for developing countries

    International Nuclear Information System (INIS)

    Castro, I.P.

    2000-01-01

    Nuclear know-how cannot possibly be developed globally in developing countries, so technology transfer is the only conceivable way to make nuclear power accessible to these countries. Technology transfer process accounts for three mayor steps, namely acquisition, assimilation and diffusion, so a serious nuclear power program should comprise all of them. Substantial national efforts should be made by developing countries in financial, industrial, scientific, organizational and many other aspects in order to succeed a profitable technology transfer, but developing countries cannot make it by themselves. Finance is the biggest problem for developing world nuclear power projects. Human resource qualification is another important aspect of the nuclear power technology transfer, where technology receptor countries should prepare thousands of professionals in domestic and foreign schools. Challenge for nuclear power deployment is economical, but also social and political. Developed countries should be open to cooperate with developing countries in meeting their needs for nuclear power deployment that should be stimulated and coordinated by an international body which should serve as mediator for nuclear power technology transfer. This process must be carried out on the basis of mutual benefits, in which the developed world can exploit the fast growing market of energy in the developing world, but with the necessary condition of the previous preparation of our countries for this technology transfer. (author)

  9. Technology transfer program at the Morgantown Energy Technology Center: FY 87 program report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.A.; Lessing, K.B.

    1987-10-01

    The Morgantown Energy Technology Center (METC), located in Morgantown, West Virginia, is an energy research center of the US Department of Energy's (DOE's) Office of Fossil Energy. The research and development work is different from research work conducted by other Government agencies. In DOE research, the Government is not the ultimate ''customer'' for the technologies developed; the ''customer'' is business and industry in the private sector. Thus, tehcnology transfer is a fundamental goal of the DOE. The mission of the Fossil Energy program is to enhance the use of the nations's fossil energy resources. METC's mission applies to certain technologies within the broad scope of technologies encompassed by the Office of Fossil Energy. The Government functions as an underwriter of risk and as a catalyst to stimulate the development of technologies and technical information that might otherwise proceed at a slower pace because of the high-risk nature of the research involved. The research programs and priorities are industry driven; the purpose is to address the perceived needs of industry such that industry will ultimately bring the technologies to the commercial market. As evidenced in this report, METC has an active and effective technology transfer program that is incorporated into all aspects of project planning and execution. Technology transfer at METC is a way of life---a part of everyday activities to further this goal. Each person has a charge to communicate the ideas from within METC to those best able to utilize that information. 4 figs., 20 tabs.

  10. R&D and Technology Transfer: Firm-Level Evidence from Chinese Industry

    OpenAIRE

    Albert G. Z. Hu; Gary H. Jefferson; Qian Jinchang

    2005-01-01

    In bridging the technology gap with the OECD nations, developing economies have access to three avenues of technological advance: domestic R&D, technology transfer, and foreign direct investment. This paper examines the contributions of each of these avenues, as well as their interactions, to productivity within Chinese industry. Based on a large data set for China's large and medium-size enterprises, the estimation results show that in-house R&D significantly complements technology transfer-...

  11. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Science.gov (United States)

    2010-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  12. Technology Transfer and Climate Change: Additional Considerations for Implementation under the UNFCCC

    Directory of Open Access Journals (Sweden)

    Karen Sullivan

    2011-06-01

    Full Text Available Technology transfer is recognised as playing a central and critical role in the global response to climate change, as embodied in the Unite Nations Framework Convention on Climate Change (UNFCCC. However, technology transfer is a complex process, and despite numerous attempts to prescribe approaches to optimisation, there remain serious obstacles to its effective operation. The breadth of technologies and range of would-be recipient territories under the climate change regime serve to complicate things even further. Against this background, the Expert Group on Technology Transfer have produced a robust Strategy, which it will now fall to the Technology Mechanism announced in Cancun to implement. However, despite the rigour with which the technology transfer strategy was produced, it is never possible to cover all possible eventualities. It is on this basis that this article presents a number of tactical and strategic issues which may merit further consideration as the implementation process moves forward. At the operational level, such issues include a possible role for a centralised or regional technology procurement effort, the need for greater emphasis on sectoral specific approaches to technology transfer, and a pragmatic approach to reducing the impact of some barriers to transactions by the expedient use of insurance to reduce risk, as opposed to the longer term approach of international standardisation. At the strategic level, there are major issues with regard to prioritisation of resources applied to technology transfer, and in particular the resolution of the tensions existing between achieving sustainable development and the time critical need to achieve climate stabilisation.

  13. Transfer of NPP technology from Finland fo Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Varis, M. V.K. [Imatran Voima Oy, Vantaa (Finland); Frigyesi, F. [Paksi Atomeroemue Vallalat (Hungary)

    1989-07-15

    Imatran Voima Oy (IVO), which accounts for 45% of the total Finnish electricity supply, have their own architect-engineering capacity. This know-how is also available internationally (IVO International). This report explains how technology is transferred to the client's organisation using the advantages of the client's own organization culture, supplemented by IVO's experience. The technology transferred to the Hungarian Paks Nuclear Power Company (PAV) regarding project management services is a good example. A materials management example explains the method. The customer is familiarized via wall chart on which the useful features in IVO's system are added.

  14. Proceedings: international conference on transfer of forest science knowledge and technology.

    Science.gov (United States)

    Cynthia Miner; Ruth Jacobs; Dennis Dykstra; Becky Bittner

    2007-01-01

    This proceedings compiles papers presented by extensionists, natural resource specialists, scientists, technology transfer specialists, and others at an international conference that examined knowledge and technology transfer theories, methods, and case studies. Theory topics included adult education, applied science, extension, diffusion of innovations, social...

  15. Factors that Influence the Dissemination of Knowledge in Technology Transfer among Malaysian Manufacturing Employees

    Directory of Open Access Journals (Sweden)

    Mughaneswari ap Sahadevan

    2014-05-01

    Full Text Available The meaning of technology transfer is so wide but mostly involving some form of technology-related exchange. However, in this particular paper, technology transfer is consider as a concept to examine the process of  disseminating knowledge and skills that a person owned to another person in order to generate higher productivity with new approach of producing a particular product or service. Although, many researchers have explored the evolution of technology transfer, nonetheless some drivers are yet to be explored in a Malaysian manufacturing industry. This study, therefore attempts to determine the relationship between absorptive capacity, transfer capacity, communication motivation and learning intent and technology transfer performance. A survey methodology was used in a Japanese multinational company based in Klang Valley, Malaysia. A total of 117 questionnaires were received. Results show that absorptive capacity is the most significant to influence technology transfer performance. Normal 0 false false false IN X-NONE X-NONE Key words: Technology transfer, absorptive capacity, Malaysia.   Normal 0 false false false IN X-NONE X-NONE Nuclear technology transfer adapted to the needs of developing countries

    International Nuclear Information System (INIS)

    Martin, A.; Nentwich, D.

    1983-01-01

    The paper explains the build-up of nuclear know-how in the Federal Republic of Germany after 1955, when activities in the nuclear field became permitted. Furthermore, it shows the development of nuclear technology transfer via the increasing number of nuclear power plants exported. The inevitable interrelationship between the efficient transfer of know-how and long-term nuclear co-operation is demonstrated. Emphasis is put on the adaptation of nuclear technology transfer to the needs of the recipient countries. Guidelines to achieve the desired goal are given. (author)

  16. Requirements for effective technology transfer for engineering and project management. The views of the recipient country and the technology supplier

    International Nuclear Information System (INIS)

    Backhaus, K.W.

    1986-04-01

    Technology transfer in the area of engineering and project management for nuclear power plant projects is considered a rather complex and sophisticated matter. Therefore only within a long-term nuclear co-operation a meaningful transfer of such a multifaceted technology can reasonably be achieved. A long-term nuclear co-operation anticipates a nuclear power plant program consisting of a few nuclear power plants of a certain type and size in order to achieve the indispensable effect ''learning by doing''. The objectives of nuclear technology transfer may be in general or in particular; absorption of a foreign nuclear technology and its adaptation to the conditions and needs of the receiver's country; built-up of industrial infrastructure for planning, construction and operation of nuclear power plants; raising of the general industrial level and achieve a spin-off effect; creation of a basis for independent development of nuclear technology. The technology transfer on one side and the construction program of nuclear power plants on the other side cannot be practiced by two parallel but separated event, however, they form one unit. Contrary to the import of industrial equipment in terms of ''black box'', by means of a nuclear technology transfer the introduction of new dependencies will be prevented. The technology transfer can remarkably be facilitated by forming a joint venture engineering company in the recipient country. The required know-how potential within a certain time period determines the intensity of the technology transfer and consequently the man power to be involved. The realization of such technology transfer is demonstrated by means of practical examples. (author). 12 figs

  17. TECHNOLOGY TRANSFER NETWORKS ON PAPAYA PRODUCTION WITH TRANSITIONAL GROWERS

    Directory of Open Access Journals (Sweden)

    Octavio Cano-Reyes

    2012-11-01

    Full Text Available Social networks analysis applied to rural innovation processes becomes a very useful technology transfer tool, since it helps to understand the complexity of social relationships among people and/or institutions in their environment, and it also defines those innovation networks given in specific working groups or regions. This study was conducted from April to May 2011 to determine those networks and key players present in the group of growers associated as “Productora y Comercializadora de Papaya de Cotaxtla S.P.R. de R.L.”, that influence the technology transfer process in Cotaxtla, Veracruz, Mexico. Data were analyzed using UCINET 6 software. Three centrality measures were obtained: range, degree of mediation and closeness. Of 32 network players, 27 actively diffuse innovations according to their interests; alliances must be established with them to transfer technology. Four growers stand out as central actors, which along with the Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias, the Colegio de Postgraduados and the growers’ organization itself, could be the most appropriate actors to establish a technology transfer program to accelerate the diffusion and adoption of innovations. Wholesalers, middlemen and credit institutions do not participate in this process, but having capital they could be incorporated in the innovation diffusion process.

  18. MORE THAN MONEY: THE EXPONENTIAL IMPACT OF ACADEMIC TECHNOLOGY TRANSFER.

    Science.gov (United States)

    McDevitt, Valerie Landrio; Mendez-Hinds, Joelle; Winwood, David; Nijhawan, Vinit; Sherer, Todd; Ritter, John F; Sanberg, Paul R

    2014-11-01

    Academic technology transfer in its current form began with the passage of the Bayh-Dole Act in 1980, which allowed universities to retain ownership of federally funded intellectual property. Since that time, a profession has evolved that has transformed how inventions arising in universities are treated, resulting in significant impact to US society. While there have been a number of articles highlighting benefits of technology transfer, now, more than at any other time since the Bayh-Dole Act was passed, the profession and the impacts of this groundbreaking legislation have come under intense scrutiny. This article serves as an examination of the many positive benefits and evolution, both financial and intrinsic, provided by academic invention and technology transfer, summarized in Table 1.

  19. [Nasal submicron emulsion of Scutellariae Radix extract preparation technology research based on phase transfer of solute technology].

    Science.gov (United States)

    Shi, Ya-jun; Shi, Jun-hui; Chen, Shi-bin; Yang, Ming

    2015-07-01

    Based on the demand of nasal drug delivery high drug loadings, using the unique phase transfer of solute, integrating the phospholipid complex preparation and submicron emulsion molding process of Scutellariae Radix extract, the study obtained the preparation of the high drug loadings submicron emulsion of Scutellariae Radix extract. In the study of drug solution dispersion method, the uniformity of drug dispersed as the evaluation index, the traditional mixing method, grinding, homogenate and solute phase transfer technology were investigated, and the solute phase transfer technology was adopted in the last. With the adoption of new technology, the drug loading capacity reached 1.33% (phospholipid complex was 4%). The drug loading capacity was improved significantly. The transfer of solute method and timing were studied as follows,join the oil phase when the volume of phospholipid complex anhydrous ethanol solution remaining 30%, the solute phase transfer was completed with the continued recycling of anhydrous ethanol. After drug dissolved away to oil phase, the preparation technology of colostrum was determined with the evaluation index of emulsion droplet form. The particle size of submicron emulsion, PDI and stability parameters were used as evaluation index, orthogonal methodology were adopted to optimize the submicron emulsion ingredient and main influential factors of high pressure homogenization technology. The optimized preparation technology of Scutellariae Radix extract nasal submicron emulsion is practical and stable.

  1. Project approach helps technology transfer

    International Nuclear Information System (INIS)

    Walcher, M.W.

    1982-01-01

    The placing of the contract by the National Power Corporation with Westinghouse for the Philippines nuclear power plant (PNPP-1) is described. Maximised use of Philippine contractors under Westinghouse supervision was provided for. Technology transfer is an important benefit of the contract arrangements, since National Power Corporation project management acquires considerable nuclear plant experience during plant construction through consultation with technical personnel. (U.K.)

  2. Technology transfer and knowledge management in cooperation networks: the Airzone case

    International Nuclear Information System (INIS)

    Benavides Velasco, C. A.; Quintana Garcia, C.

    2007-01-01

    This paper highlights the importance of cooperation networks between the public system of R and D and industry to promote technology transfer, knowledge management, and the consolidation and growth of new technology firms. Through the case of Air zone,his paper shows the significance of collaboration agreements between University and industry to enhance technology transfer and the success of entrepreneurial projects. (Author) 28 refs

  3. International water and sanitation technology transfers, experiences from Europe

    NARCIS (Netherlands)

    Krozer, Yoram; Hophmayer Tokich, Sharon

    2016-01-01

    Possibilities of transferring cost-effective, innovative water and wastewater technologies on public water markets are discussed based on experiences of the Dutch water business cluster in the Central and Eastern European Countries. These transfers evolved under suitable conditions, among others

  4. THE MANAGEMENT OF MAINTENANCE TECHNOLOGY TRANSFER IN THE SOUTH AFRICAN AVIATION INDUSTRY

    Directory of Open Access Journals (Sweden)

    L.I. Le Grange

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper reports on research into the technology transfer activities of South African aviation industry companies. The technologies surrounding the maintenance function were investigated, since this is one of the main functions in this industry. The investigation shows the extent to which technology is transferred from external sources to the individual companies. The investigation was also extended to cover internal technology transfer. The result of the investigation indicated the sources of technology, the mechanisms used for transfer, and the barriers to the transfer process both for internal and external technology transfer. The paper concludes with a look into what the future may hold for maintenance in the aviation industry given the current trend in technology development.

    AFRIKAANSE OPSOMMING: Hierdie artikel beskryf navorsing oor die tegnologie-oordrag aktiwiteite van Suid-Afrikaanse lugvaartnywerheidmaatskappye. Die tegnologieë wat verband hou met die onderhoudfunksie is ondersoek, aangesien dit een van die hooffunksies in dié nywerheidsektor is. Die ondersoek toon die omvang van tegnologie-oordrag van eksterne bronne na individuele maatskappye. Die ondersoek is uitgebrei om ook interne tegnologie-oordrag in te sluit. Die resultaat van die ondersoek het die bronne van tegnologie, die oordrag-meganismes en die versperrings tot interne en eksterne oordrag, geïdentifiseer. Die artikel sluit af met ‘n toekomsblik vir instandhouding vir die lugvaartnywerheid in die lig van huidige neigings in tegnologiese ontwikkeling.

  5. Technology transfer by CDM projects: A comparison of Brazil, China, India and Mexico

    International Nuclear Information System (INIS)

    Dechezlepretre, Antoine; Glachant, Matthieu; Meniere, Yann

    2009-01-01

    In a companion paper [Dechezlepretre, A., Glachant, M., Meniere, Y., 2008. The Clean Development Mechanism and the international diffusion of technologies: An empirical study, Energy Policy 36, 1273-1283], we gave a general description of technology transfers by Clean Development Mechanism (CDM) projects and we analyzed their drivers. In this paper, we use the same data and similar econometric models to explain inter-country differences. We focus on 4 countries gathering about 75% of the CDM projects: Brazil, China, India and Mexico. Sixty eight percent of Mexican projects include an international transfer of technology. The rates are, respectively, 12%, 40% and 59% for India, Brazil and China. Our results show that transfers to Mexico and Brazil are mainly related to the strong involvement of foreign partners and good technological capabilities. Besides a relative advantage with respect to these factors, the higher rate of international transfers in Mexico seems to be due to a sector-composition effect. The involvement of foreign partners is less frequent in India and China, where investment opportunities generated by fast growing economies seem to play a more important role in facilitating international technology transfers through the CDM. International transfers are also related to strong technology capabilities in China. In contrast, the lower rate of international transfer (12%) in India may be due to a better capability to diffuse domestic technologies

  6. Role of a national research organization in the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Ahmad, Ishaq

    1977-01-01

    Nuclear technology holds great promise for developing countries because it can contribute to national development. The developing countries, however, lack the resources and expertise to develop nuclear technology through their own efforts. A national research organization devoted to the promotion and utilization of nucler technology can provide an effective channel for the transfer of nuclear technology. The problems which the national research organization is likely to face in executing its tasks as an agent for the transfer of technology are discussed. An appreciation of these problems would enable the organization to restructure its priorities so as to achieve maximum effectiveness. The various ways by which the national research organization can speed up the task of transfer of technology are also discussed

  7. Medical and surgical applications of space biosensor technology

    Science.gov (United States)

    Hines, J. W.

    1996-01-01

    Researchers in space life sciences are rapidly approaching a technology impasse. Many of the critical questions on the impact of spaceflight on living systems simply cannot be answered with the limited available technologies. Research subjects, particularly small animal models like the rat, must be allowed to function relatively untended and unrestrained for long periods to fully reflect the impact of microgravity and spaceflight on their behavior and physiology. These requirements preclude the use of present hard-wired instrumentation techniques and limited data acquisition systems. Implantable sensors and miniaturized biotelemetry are the only means of capturing the fundamental and critical data. This same biosensor and biotelemetry technology has direct application to Earth-based medicine and surgery. Continuous, on-line data acquisition and improved measurement capabilities combined with the ease and flexibility offered by automated, wireless, and portable instruments and data systems, should provide a boon to the health care industry. Playing a key role in this technology revolution is the Sensors 2000! (S2K!) Program at NASA Ames Research Center. S2K!, in collaboration with space life sciences researchers and managers, provides an integrated capability for sensor technology development and applications, including advanced biosensor technology development, spaceflight hardware development, and technology transfer and commercialization. S2K! is presently collaborating on several spaceflight projects with dual-use medical applications. One prime example is a collaboration with the Fetal Treatment Center (FTC) at the University of California at San Francisco. The goal is to develop and apply implantable chemical sensor and biotelemetry technology to continuously monitor fetal patients during extra-uterine surgery, replacement into the womb, through birth and beyond. Once validated for ground use, the method will be transitioned to spaceflight applications to

  8. Medical and surgical applications of space biosensor technology

    Science.gov (United States)

    Hines, John W.

    1996-02-01

    Researchers in space life sciences are rapidly approaching a technology impasse. Many of the critical questions on the impact of spaceflight on living systems simply cannot be answered with the limited available technologies. Research subjects, particularly small animal models like the rat, must be allowed to function relatively untended and unrestrained for long periods to fully reflect the impact of microgravity and spaceflight on their behavior and physiology. These requirements preclude the use of present hard-wired instrumentation techniques and limited data acquisition systems. Implantable sensors and miniaturized biotelemetry are the only means of capturing the fundamental and critical data. This same biosensor and biotelemetry technology has direct application to Earth-based medicine and surgery. Continuous, on-line data acquisition and improved measurement capabilities combined with the ease and flexibility offered by automated, wireless, and portable instruments and data systems, should provide a boon to the health care industry. Playing a key role in this technology revolution is the Sensors 2000! (S2K!) Program at NASA Ames Research Center. S2K!, in collaboration with space life sciences researchers and managers, provides an integrated capability for sensor technology development and applications, including advanced biosensor technology development, spaceflight hardware development, and technology transfer and commercialization. S2K! is presently collaborating on several spaceflight projects with dual-use medical applications. One prime example is a collaboration with the Fetal Treatment Center (FTC) at the University of California at San Francisco. The goal is to develop and apply implantable chemical sensor and biotelemetry technology to continuously monitor fetal patients during extra-uterine surgery, replacement into the womb, through birth and beyond. Once validated for ground use, the method will be transitioned to spaceflight applications to

  9. Perspectives of heat transfer enhancement in nuclear reactors toward nanofluids applications

    International Nuclear Information System (INIS)

    Rocha, Marcelo S.; Cabral, Eduardo L.L.; Sabundjian, Gaiane

    2013-01-01

    Nanofluids are colloidal suspensions of nanoparticles in a base fluid with interesting physical properties and large potential for heat transfer enhancement in thermal systems among other applications. There are an increasing number of nanofluids investigations concerning many aspects of synthesis and fabrication technologies, physical properties, and special applications. Results demonstrate that physical properties like high thermal conductivities and high critical heat flux (CHF) of some nanofluids classifies them as potential working fluids for high heat flux transportation in special systems, including thermal management of microelectronic devices (MEMS) and nuclear reactors. Understanding the importance of such investigations for the knowledge development of nuclear engineering a new research is being conducted at the Nuclear Engineering Center (CEN) of the Nuclear and Energy Research Institute (IPEN/CNEN-SP) to analyze the application potentiality of some nanofluids in nuclear systems for heat transfer enhancement under ionizing radiation influence. In this work a revision of theoretical and experimental studies of nanofluids is performed and its potentiality for using in future generations of nuclear reactors is highlighted showing the status of the research at present. (author)

  10. Contemporary Aspects of Marketing in Clinical Trials Including Segments of IT and Technology Transfer

    Science.gov (United States)

    Stamenovic, Milorad; Dobraca, Amra; Smajlovic, Mersiha

    2018-01-01

    Introduction: The aim of this paper is to present the marketing strategy and the application of management (marketing management) and advertising in order to increase the efficiency of innovative approach in clinical trials that include and involve the use of new technologies and transfer of technologies. Material and Methods: This paper has a descriptive character and represents a narrative review of the literature and new model implementation. Results: Marketing models are primarily used to improve the inclusion of a larger (and appropriate) number of patients, but they can be credited for the stay and monitoring of patients in the trial. Regulatory mechanisms play an important role in the application of various marketing strategies within clinical trials. The value for the patient as the most important stakeholder is defined in the field of clinical trials according to Kotler’s value model for the consumer. Conclusion: In order to achieve the best results it is important to adequately examine all the elements of clinical trials and apply this knowledge in creation of a marketing plan that will be made in accordance with the legal regulations defined globally and locally. In this paper, two challenges have been highlighted for the adequate application of marketing tools in the field of clinical trials, namely: defining business elements in order to provide an adequate marketing approach for clinical trials and technology transfer and ensuring uniformity and regulatory affirmation of marketing attitudes in clinical trials in all regions in which they are carried out in accordance with ICH-GCP and valid regulations. PMID:29719318

  11. Contemporary Aspects of Marketing in Clinical Trials Including Segments of IT and Technology Transfer.

    Science.gov (United States)

    Stamenovic, Milorad; Dobraca, Amra; Smajlovic, Mersiha

    2018-01-01

    The aim of this paper is to present the marketing strategy and the application of management (marketing management) and advertising in order to increase the efficiency of innovative approach in clinical trials that include and involve the use of new technologies and transfer of technologies. This paper has a descriptive character and represents a narrative review of the literature and new model implementation. Marketing models are primarily used to improve the inclusion of a larger (and appropriate) number of patients, but they can be credited for the stay and monitoring of patients in the trial. Regulatory mechanisms play an important role in the application of various marketing strategies within clinical trials. The value for the patient as the most important stakeholder is defined in the field of clinical trials according to Kotler's value model for the consumer. In order to achieve the best results it is important to adequately examine all the elements of clinical trials and apply this knowledge in creation of a marketing plan that will be made in accordance with the legal regulations defined globally and locally. In this paper, two challenges have been highlighted for the adequate application of marketing tools in the field of clinical trials, namely: defining business elements in order to provide an adequate marketing approach for clinical trials and technology transfer and ensuring uniformity and regulatory affirmation of marketing attitudes in clinical trials in all regions in which they are carried out in accordance with ICH-GCP and valid regulations.

  12. Factors that Influence the Dissemination of Knowledge in Technology Transfer among Malaysian Manufacturing Employees

    Directory of Open Access Journals (Sweden)

    Mughaneswari ap Sahadevan

    2014-04-01

    Full Text Available The meaning of technology transfer is so wide but mostly involving some form of technology-re- lated exchange. However, in this particular paper, technology transfer is consider as a concept to examine the process of disseminating knowledge and skills that a person owned to another per- son in order to generate higher productivity with new approach of producing a particular prod- uct or service. Although, many researchers have explored the evolution of technology transfer, nonetheless some drivers are yet to be explored in a Malaysian manufacturing industry. This study, therefore attempts to determine the relationship between absorptive capacity, transfer capacity, communication motivation and learning intent and technology transfer performance. A survey methodology was used in a Japanese multinational company based in Klang Valley, Malaysia. A total of 117 questionnaires were received. Results show that absorptive capacity is the most signifi- cant to influence technology transfer performance.

  13. Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications

    International Nuclear Information System (INIS)

    Hussien, Ahmed A.; Abdullah, Mohd Z.; Al-Nimr, Moh’d A.

    2016-01-01

    Highlights: • Review recent experimental and numerical studies on heat transfer in micro/minichannels and nanofluids. • Display the new applications of using nanofluids and micro/minichannels to enhance thermal performance. • Explain the factors affecting the thermal conductivity enhancement ratio of nanofluids. • The challenges of using the mini/microchannels and nanofluids. - Abstract: New cooling techniques are being explored for the dissipation of heat fluxes. Many recent studies on heat transfer in micro/minichannels (M/MCs) with nanofluids have focused on combining the advantages of both, for the purpose of obtaining higher single-phase enhancement of heat transfer. Developing of many applications such as cooling electronic device, solar cell, and automotive technology is highly demanded now a day to obtain high efficiency and reduce the operating cost. This review article summarizes recent studies, with a focus on two main topics: The first part contains the main concepts such as scaling effects of M/MCs, physical properties and convective heat transfer. The second part displays the main recent applications of M/MCs with nanofluids with the challenges to be widely used. The purpose of this article to provide exhaustive and comprehensive review of updated works published in this new area, with general conclusions.

  14. Extending Nuclear Technology Applications to Heavy Industry-Sharing BTI Years of Experience

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim

    2012-01-01

    In his speech, the presenter outlined several topics regarding the establishment of Industrial Technology Division since 1980 until 2012. The first topic was to relate the justification or reasonable of establishing this division with the national condition at 1980s. The need to explore nuclear technology on industrial application like nondestructive testing (NDT) and plant assessment were attract the Malaysian Nuclear Agency to do research in that fields. The establishment of division to do that research were responsible to Industrial Technology Division. Until now, this division succeed in doing research regarding industrial application and transferred it to industrial players along the nation and also international level. (author)

  15. Technology transfer present and futures in the electronic arts

    Directory of Open Access Journals (Sweden)

    Brian Degger

    2008-01-01

    Full Text Available We are entering an era where creating the fantastical is possible in the arts. In the areas of mixed reality and biological arts, responsive works are created based on advances in basic science and technology. This is enabling scientists and artists to pose new questions. As the time between discovery and application is so short, artists need imaginative ways of accessing new technology in order to critique and use it.These are the new paints that the majority of artists cannot afford or access, technology to enable cloning of DNA, to print channels on a chip, to access proprietary 3G networks. Currently, partnerships or residencies are used to facilitate artist’s access to these technologies. What would they do if technology was available that enabled them to make any art work they so desire? Are the limitations in current technology an advantage rather than a disadvantage in some of their works? Does interaction with technologists make their work more robust? Are there disadvantages? How do they get access to the technology they require? Open source or proprietary? Or have they encountered the situation where their vision is greater than technology allows. When their work breaks because of this fact, is their art broken? Blast Theory (Brighton,UK, FoAM(Brussels, Belgium and Amsterdam, Netherlands, SymbioticA (Perth, Australia are organisations pushing technological boundaries in the service of art. This paper addresses some questions of technology transfer in relation to recent artworks, particularly I like Frank in Adelaide (Blast Theory, transient reality generators (trg (FoAM and Multi electrode array artist (MeART (SymbioticA.

  16. Design and application of mathematical model for strategic planning of technology transfer in Iran's packaging industries company (I.P.I.C)

    International Nuclear Information System (INIS)

    Aliahmadi, A.

    2001-01-01

    Selecting right strategies for technology transfer and R and D projects is vital for developing countries. A number of researchers have di sussed the problem and applied different techniques, such as Engineering Economics Analysis, Ranking Methods, Goal Programming, Integer Programming and Analytical Hierarchy Process, to this problem. They haven't discussed the problems of developing countries in their models from a strategic planning point of view. In this paper the model of Moore and Ghand-Foruch is used and developed to improve the strategic planning for technology acquisition in developing countries. The proposed model consists of two phases, in which the first phase deals with calculating the utility of different strategies, policies and programs by considering critical, quantitative and qualitative factors. The second phase optimizes the total utility of strategic planning by using Mixed Integer Linear Programming while considering the constraints on budget, manpower, time etc. At the end, the result of application of the model in an Iranian industry (Iran's Packaging Industries Company) is discussed

  17. NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners. With specialized teams, TTC guides the interactions of our partners from the point of discovery to patenting, from invention development to licensing. We play a key role in helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class researchers, facilities, and knowledge.

  18. Fruit Fly Liquid Larval Diet Technology Transfer and Update

    Science.gov (United States)

    Since October 2006, USDA-ARS has been implementing a fruit fly liquid larval diet technology transfer, which has proceeded according to the following steps: (1) Recruitment of interested groups through request; (2) Establishment of the Material Transfer Agreement (MTA) with ARS; (3) Fruit fly liquid...

  19. Climate friendly technology transfer in the energy sector: A case study of Iran

    International Nuclear Information System (INIS)

    Talaei, Alireza; Ahadi, Mohammad Sadegh; Maghsoudy, Soroush

    2014-01-01

    The energy sector is the biggest contributor of anthropogenic emissions of greenhouse gases into the atmosphere in Iran. However, abundant potential for implementing low-carbon technologies offers considerable emissions mitigation potential in this sector, and technology transfer is expected to play an important role in the widespread roll-out of these technologies. In the current work, globally existing low-carbon energy technologies that are compatible with the energy sector of Iran are identified and then prioritised against different criteria (i.e. Multi Criteria Decision Analysis). Results of technology prioritisation and a comprehensive literature review were then applied to conduct a SWOT analysis and develop a policy package aiming at facilitating the transfer of low carbon technologies to the country. Results of technology prioritisation suggest that the transport, oil and gas and electricity sectors are the highest priority sectors from technological needs perspective. In the policy package, while fuel price reform and environmental regulations are categorised as high priority policies, information campaigns and development of human resources are considered to have moderate effects on the process of technology transfer. - Highlights: • We examined the process of technology transfer in the energy sector of Iran. • Multi Criteria Decision Analysis techniques are used to prioritise the technological needs of the country. • Transportation, electricity and oil and gas sectors are found as recipients of new technologies. • A policy package was designed for facilitating technology transfer in the energy sector

  20. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    2001-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization

  1. Alpha radioactivity measurement technology with ionized air type measurement. Applicability evaluation to verification of the clearance level

    International Nuclear Information System (INIS)

    Mita, Yutaka; Matsumura, Toshihiro; Yokoyama, Kaoru; Sugitsue, Noritake

    2008-10-01

    The purpose of this test is to evaluate the applicability of the clearance level measuring system by Ionized Air Type Measurement after decontaminated by sulfuric acid sample. In Ningyo-toge Environmental Engineering Center. The equipment and radioactive waste which were contaminated with uranium are generated so much in future dismantling stage. In our plan, some of equipments and radioactive waste are contaminated to a clearance level, and cut down on decommission and disposal expense. This plan needs the alpha-rays measurement technology of the very low level. We think that ionized Air transfer measurement technology is promising as of clearance verification technology. The ionized Air transfer measurement technology applied to the Ionized Air Type Measurement can measure plan radioactivity of a very low level. Moreover, as compared with a direct survey, there is the merit which can be measured in a short time. However ionized Air transfer measurement technology is new technology. Therefore, there is almost no measurement track record. Furthermore, the date about the influence of a background, a detection limit, measurement performance, and reliability is insufficient. So, this measurement test estimated applicability as clearance level verification of an Ionized Air Type Measurement. (author)

  2. Some ethical issues in technology transfer and applications

    Science.gov (United States)

    Shine, Kenneth I.

    1995-10-01

    Health care systems all around the world are struggling to provide care in an era of limited resources. In an article entitled, 'Straight Talk About Rationing,' Arthur Kaplan reviews the work of the Swedish Commission designed to prioritize health care for that country. The commission identified three core principles that they felt should underlie decisions about priorities for health care. Those principles were (1) all human beings are equally valuable; (2) society must pay special attention to the needs of the weakest and most vulnerable; and (3) all other things being equal, cost efficiency in gaining the greatest return for the amount of money spent must prevail. These are three extremely useful principles which can be helpful to us as we consider many of the issues confronted in this country about the allocation of resources for health. I would like to consider three major issues. The first issue is the current evolving nature of health care and the ethical dilemmas that exist in the present system. In balancing increased access to care with decreasing cost, particularly in managed care, all of us are concerned about ethical issues. I would like to emphasize that the current system -- the system that we have lived with and is changing -- has inherent in it a series of ethical dilemmas. Secondly, I would like to consider issues related to productivity and its measurement in relation to technology. This relates to the third item in the Swedish Commission, which is the principle that we ought to spend money in the most cost-efficient way. Finally, I would like to discuss the dilemma of decision making about health and how that impacts upon the ethics of health care in the application of technology.

  3. Technology Transfer: A Case Study of Programs and Practices at NASA, DOD, DOC, and Academia

    Science.gov (United States)

    Blood, John R.

    2009-01-01

    Technology transfer is vital to humanity. It spurs innovation, promotes commerce, and provides technology-based goods and services. Technology transfer is also highly complex and interdependent in nature. This interdependence is exemplified principally by the various technology transfer interactions between government, industry, and academia. …

  4. TECHNOLOGY TRANSFER FROM THE UNIVERSITY OF MINNESOTA ESTIMATING THE ECONOMIC IMPACT

    OpenAIRE

    Ruttan, Vernon W.

    2001-01-01

    There is strong synergy among research, education, technology development and technology transfer. Examples of successful public-private technology transfer linkage institutions are provided. But efforts to document the benefits of research conducted at the University of Minnesota to the state have rarely been conducted with the rigor that would be required to meet the test of professional credibility. A program of research to develop more rigorous evidence on economic benefits to the State i...

  5. Technology Applications that Support Space Exploration

    Science.gov (United States)

    Henderson, Edward M.; Holderman, Mark L.

    2011-01-01

    Several enabling technologies have been identified that would provide significant benefits for future space exploration. In-Space demonstrations should be chosen so that these technologies will have a timely opportunity to improve efficiencies and reduce risks for future spaceflight. An early window exists to conduct ground and flight demonstrations that make use of existing assets that were developed for the Space Shuttle and the Constellation programs. The work could be mostly performed using residual program civil servants, existing facilities and current commercial launch capabilities. Partnering these abilities with the emerging commercial sector, along with other government agencies, academia and with international partners would provide an affordable and timely approach to get the launch costs down for these payloads, while increasing the derived benefits to a larger community. There is a wide scope of varied technologies that are being considered to help future space exploration. However, the cost and schedule would be prohibitive to demonstrate all these in the near term. Determining which technologies would yield the best return in meeting our future space needs is critical to building an achievable Space Architecture that allows exploration beyond Low Earth Orbit. The best mix of technologies is clearly to be based on our future needs, but also must take into account the availability of existing assets and supporting partners. Selecting those technologies that have complimentary applications will provide the most knowledge, with reasonable cost, for future use The plan is to develop those applications that not only mature the technology but actually perform a useful task or mission. These might include such functions as satellite servicing, a propulsion stage, processing lunar regolith, generating and transmitting solar power, cryogenic fluid transfer and storage and artificial gravity. Applications have been selected for assessment for future

  6. Technology transfer in the CNEA: Between 'supply-slide' and nuclear plan

    International Nuclear Information System (INIS)

    Enriquez, Santiago N

    2012-01-01

    This paper reflects on linkage activities and technology transfer of Atomic Energy National Commission (CNEA). Given that the CNEA was a S and T institution, which was pioneer in activities to reach out the productive sector; it will show that, since 1961, the year of the creation of the Service of Technical Assistance to Industry (SATI) -; until today -where the Law 23.877 of Promotion of the Technological Innovation is fully implemented, different modes of technology transfer based on certain S and T policies are detected. First, it will describe the characteristics of the technology transfer made by SATI, and its connection with the political decisions made by the Department of Metallurgy of CNEA to relate the domestic industry and the Nuclear Plan. In a second instance, it will describe the effects on the technology transfer after the disabling of the Nuclear Plan in 1994, the enforcement of Law 23,877 in CNEA and progressive deactivation of SATI. Finally, it will reflect on the two main stages of technology transfer in CNEA for potential S and T policies (author)

  7. Space technology transfer to developing countries: opportunities and difficulties

    Science.gov (United States)

    Leloglu, U. M.; Kocaoglan, E.

    Space technology, with its implications on science, economy and security, is mostly chosen as one of the priority areas for technological development by developing countries. Most nations aspiring to begin playing in the space league prefer technology transfer programs as a first step. Decreasing initial costs by small satellite technology made this affordable for many countries. However, there is a long way from this first step to establishment of a reliable space industry that can both survive in the long term with limited financial support from the government and meet national needs. This is especially difficult when major defense companies of industrialized countries are merging to sustain their competitiveness. The prerequisites for the success are implementation of a well-planned space program and existence of industrialization that can support basic testing and manufacturing activities and supply qualified manpower. In this study, the difficulties to be negotiated and the vicious circles to be broken for latecomers, that is, developing countries that invest on space technologies are discussed. Especially, difficulties in the technology transfer process itself, brain drain from developing countries to industrialized countries, strong competition from big space companies for domestic needs, costs of establishing and maintaining an infrastructure necessary for manufacturing and testing activities, and finally, the impact of export control will be emphasized. We will also try to address how and to what extent collaboration can solve or minimize these problems. In discussing the ideas mentioned above, lessons learned from the BILSAT Project, a technology transfer program from the UK, will be referred.

  8. Reverse knowledge and technology transfer: imbalances caused by cognitive barriers in asymmetric relationships

    NARCIS (Netherlands)

    Millar-Schijf, Carla C.J.M.; Choi, Chong-Ju

    2009-01-01

    An imbalance exists in almost any type of knowledge and technology transfer due to the information asymmetry of the relationship. However, this is especially the case for reverse technology and knowledge transfer which is epitomised for us by "transfers from an MNC's subsidiary to its headquarters".

  9. Technology transfer in Activities Implemented Jointly (AIJ)

    Energy Technology Data Exchange (ETDEWEB)

    Usher, P.E.O. [United Nations Environment Programme (Cayman Islands)

    1998-08-01

    The agreed objective of the United Nations Framework Convention on Climate Change is to bring about early and significant reductions in greenhouse gas emissions. For many, the most attractive option for promoting this end is joint implementation. Indivisible from this is the transfer of current and innovative technology, though technology transfer is not conditional on joint implementation. The somewhat ad hoc nature of Activities Implemented Jointly (AIJ) and the failure to establish ground rules at the outset is considered. Common action can contribute to cost-effective mitigation of climate change through a sharing of the costs, benefits and risks of R and D, cross fertilisation of ideas among countries, economies of scale for new technologies, and clear signals to the international market. Potential problems include: the reluctance of national private industry to share proprietary information which might compromise competitiveness; premature convergence on technical standards that might inhibit the emergence of more developed technology; specific national circumstances which mean that solutions satisfactory to others are inappropriate in its case. This latter issue is of particular relevance to developing countries. AIJ needs to be approached in a systematic way taking into account lessons learned from evaluating the pilot phase if it is to be seen to be working effectively. (UK)

  10. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  11. The technology transfer and the Laguna Verde power plants

    International Nuclear Information System (INIS)

    Garza, R.F. de La

    1991-01-01

    The process of technology transfer to the construction of Laguna Verde Nuclear Power Plants, Mexico, is described. The options and the efforts for absorbing the technology of Nuclear Power Plant design and construction by the mexican engineers are emphasized. (author)

  12. Managing knowledge: a technology transfer case study in IEN

    International Nuclear Information System (INIS)

    Pereira, Ana Gabriella Amorim Abreu

    2009-01-01

    Knowledge management is paramount nowadays. In order to enable the members of an organization to deal with their current situations effectively it is mandatory to know and enhance its intellectual capital. Managing the organization knowledge is important to the extent that it allows and reinforce its mission (what we are trying to accomplish?), and performance (how do we deliver the results?). As a result of a knowledge management effort, the organization can create value for itself and for society as a whole. In this paper, we argue that a technology developed at a research institute and transferred to an industry is knowledge to be managed in order to create value, both for the society and for the Institute. In order to manage such knowledge, it is proposed an approach to enhance the value creation potential of a technology transfer. This paper propose an investigation to expand the understanding on how a public research institute and a private firm could introduce their value creation wishes into a technology transfer agreement in a way to reflect and provide the realization of those wishes. It is proposed that, from the identification of the organizations expectations it is possible to infer which agreement attributes will contribute to that value creation and to establish satisfactory agreement configurations. These configurations have the potential to generate those consequences, given that, through the transfer, each organization seeks to increase potential benefits and to reduce potential sacrifices. Supported by exchange flow and value creation models, by the knowledge management and the means-end theory, an approach to increase the value creation potential of a technology transfer is proposed. Evidences from a case study sustain the proposed approach. The case study unity is the Instituto de Engenharia Nuclear, a public research institute. (author)

  13. Comparative Characteristics of Technology Transfer in Developed Countries

    Directory of Open Access Journals (Sweden)

    Natalia Palii

    2013-08-01

    Full Text Available The research into innovation transfer in the global economy is a very urgent issue under the modern conditions of development of any country. Comparative characteristics of technology transfer in such countries and regions as the USA, EU, Asia, presented in the article, permit us to detect certain patterns of this process inherent both in developed and developing countries. The analysis made in the article can be useful for developing technology transfer processes in the Danube countries’ economy. The analytical method used in this research allowed us to determine the factor that is crucial for the growth of the world market of high-technology products and services. The analysis was conducted on several criteria such as the level of expenditure on R&D in the whole global economy, as well as in individual countries and regions. Besides, there were taken into account the added value of high-tech industries and the share of expenditure on R&D in total production costs. The conclusions regarding the effectiveness of funds allocated for scientific research and experimental development in the U.S. can be drawn on the basis of data presented in the paper on the amount of added value of the U.S. high-tech industries.

  14. Innovation, technology transfer and development: the spin-off companies

    Directory of Open Access Journals (Sweden)

    Teodoro Valente

    2014-05-01

    Full Text Available The article starts from the identification of the reasons why Italy is less prone to technology transfer than other countries, and indicates some key issues for the diffusion of technological innovations and the development of human capital. In particular, technology transfer is not a generic form of exploitation of outcome of the research, it involves specific actions that have impact on economic production, such as the patenting and the creation of new companies (spin-offs. The author discusses the various forms of spin-offs of university research, the evolution of the phenomenon in the structures of the uni- versities, the stages of development of a spin-off company and the current fund- ing arrangements and to be promoted.

  15. Modern wind energy technology for Russian applications. Main report

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Winther-Jensen, Martin; Bindner, Henrik W.

    1999-01-01

    The general objective of the project is to establish a technical foundation for an intensified application of wind energy in Russia with medium to large wind turbines and transfer/adaptation of Danish and European wind turbine technology as a basis forfuture joint ventures and technology exports...... climate and in-land sites of Russia. As part of this work it is necessary to clarify the types of operationalconditions and requirements that are to be met by wind turbines operating in such conditions, and to outline suitable test procedures and test set-up’s for verifications of such adapted...

  16. Technology transfer - insider protection workshop (Safeguards Evaluation Method - Insider Threat)

    International Nuclear Information System (INIS)

    Strait, R.S.; Renis, T.A.

    1986-01-01

    The Safeguards Evaluation Method - Insider Threat, developed by Lawrence Livermore National Laboratory, is a field-applicable tool to evaluate facility safeguards against theft or diversion of special nuclear material (SNM) by nonviolent insiders. To ensure successful transfer of this technology from the laboratory to DOE field offices and contractors, LLNL developed a three-part package. The package includes a workbook, user-friendly microcomputer software, and a three-day training program. The workbook guides an evaluation team through the Safeguards Evaluation Method and provides forms for gathering data. The microcomputer software assists in the evaluation of safeguards effectiveness. The software is designed for safeguards analysts with no previous computer experience. It runs on an IBM Personal Computer or any compatible machine. The three-day training program is called the Insider Protection Workshop. The workshop students learn how to use the workbook and the computer software to assess insider vulnerabilities and to evaluate the benefits and costs of potential improvements. These activities increase the students' appreciation of the insider threat. The workshop format is informal and interactive, employing four different instruction modes: classroom presentations, small-group sessions, a practical exercise, and ''hands-on'' analysis using microcomputers. This approach to technology transfer has been successful: over 100 safeguards planners and analysts have been trained in the method, and it is being used at facilities through the DOE complex

  17. The Widening Gulf between Genomics Data Generation and Consumption: A Practical Guide to Big Data Transfer Technology

    Science.gov (United States)

    Feltus, Frank A.; Breen, Joseph R.; Deng, Juan; Izard, Ryan S.; Konger, Christopher A.; Ligon, Walter B.; Preuss, Don; Wang, Kuang-Ching

    2015-01-01

    In the last decade, high-throughput DNA sequencing has become a disruptive technology and pushed the life sciences into a distributed ecosystem of sequence data producers and consumers. Given the power of genomics and declining sequencing costs, biology is an emerging “Big Data” discipline that will soon enter the exabyte data range when all subdisciplines are combined. These datasets must be transferred across commercial and research networks in creative ways since sending data without thought can have serious consequences on data processing time frames. Thus, it is imperative that biologists, bioinformaticians, and information technology engineers recalibrate data processing paradigms to fit this emerging reality. This review attempts to provide a snapshot of Big Data transfer across networks, which is often overlooked by many biologists. Specifically, we discuss four key areas: 1) data transfer networks, protocols, and applications; 2) data transfer security including encryption, access, firewalls, and the Science DMZ; 3) data flow control with software-defined networking; and 4) data storage, staging, archiving and access. A primary intention of this article is to orient the biologist in key aspects of the data transfer process in order to frame their genomics-oriented needs to enterprise IT professionals. PMID:26568680

  18. Training transfer: scientific background and insights for practical application.

    Science.gov (United States)

    Issurin, Vladimir B

    2013-08-01

    Training transfer as an enduring, multilateral, and practically important problem encompasses a large body of research findings and experience, which characterize the process by which improving performance in certain exercises/tasks can affect the performance in alternative exercises or motor tasks. This problem is of paramount importance for the theory of training and for all aspects of its application in practice. Ultimately, training transfer determines how useful or useless each given exercise is for the targeted athletic performance. The methodological background of training transfer encompasses basic concepts related to transfer modality, i.e., positive, neutral, and negative; the generalization of training responses and their persistence over time; factors affecting training transfer such as personality, motivation, social environment, etc. Training transfer in sport is clearly differentiated with regard to the enhancement of motor skills and the development of motor abilities. The studies of bilateral skill transfer have shown cross-transfer effects following one-limb training associated with neural adaptations at cortical, subcortical, spinal, and segmental levels. Implementation of advanced sport technologies such as motor imagery, biofeedback, and exercising in artificial environments can facilitate and reinforce training transfer from appropriate motor tasks to targeted athletic performance. Training transfer of motor abilities has been studied with regard to contralateral effects following one limb training, cross-transfer induced by arm or leg training, the impact of strength/power training on the preparedness of endurance athletes, and the impact of endurance workloads on strength/power performance. The extensive research findings characterizing the interactions of these workloads have shown positive transfer, or its absence, depending on whether the combinations conform to sport-specific demands and physiological adaptations. Finally, cross

  19. Technology transfer: federal legislation that helps businesses and universities

    Science.gov (United States)

    Oaks, Bill G.

    1992-05-01

    In 1980, Congress enacted the Stevenson-Wydler Technology Innovation Act to encourage federal laboratories to `spin off' their technology to industry, universities, and state and local governments. The law reflected Congressional concern for the economic well-being of the nation and the need for the United States to maintain its technological superiority. Almost half the nation's research is conducted in federal laboratories. Other legislation, the Small Business Innovation Development Act of 1982 and the National Cooperative Research Act of 1984, was followed by the Technology Transfer Act of 1986 that strengthened and consolidated policy concerning the technology transfer responsibilities of the federal labs. The law allows the labs to directly license their patents and permits the issuance of exclusive licenses. It allows the labs to enter into cooperative research and development agreements with industry, universities, and state and local governments. It institutionalized the Federal Laboratory consortium which, to that point in time, had been a formal but largely unrecognized body. Under the provisions of the law, the United States Air Force Rome Laboratory located in Rome, New York, as the Air Force lead laboratory in photonics research entered into an agreement with the Governor of the State of New York to collaborate in photonics research and development. Subsequent to that agreement, the state established the not-for-profit New York State Photonics Development Corporation in Rome to facilitate business access to Rome Laboratory's photonics research facilities and technologies. Rome Laboratory's photonics research and development program is described in this paper. The Technology Transfer Act of 1986 is summarized, and the roles and missions of the New York State Photonics Development Corporation is explained.

  20. The Role of Empirical Evidence for Transferring a New Technology to Industry

    Science.gov (United States)

    Baldassarre, Maria Teresa; Bruno, Giovanni; Caivano, Danilo; Visaggio, Giuseppe

    Technology transfer and innovation diffusion are key success factors for an enterprise. The shift to a new software technology involves, on one hand, inevitable changes to ingrained and familiar processes and, on the other, requires training, changes in practices and commitment on behalf of technical staff and management. Nevertheless, industry is often reluctant to innovation due to the changes it determines. The process of innovation diffusion is easier if the new technology is supported by empirical evidence. In this sense our conjecture is that Empirical Software Engineering (ESE) serves as means for validating and transferring a new technology within production processes. In this paper, the authors report their experience of a method, Multiview Framework, defined in the SERLAB research laboratory as support for designing and managing a goal oriented measurement program that has been validated through various empirical studies before being transferred to an Italian SME. Our discussion points out the important role of empirical evidence for obtaining management commitment and buy-in on behalf of technical staff, and for making technological transfer possible.

  1. Technology transfer assessment in the nuclear agreement Brazil-Germany

    International Nuclear Information System (INIS)

    Cecchi, J.C.

    1985-04-01

    The three main arguments utilized in the Nuclear Brazil-Germany Agreement celebrated in 1975 were the following: a) the low Brazilian hydroelectric potential insufficient to attend the increasing of electrical energy demand; b) the low cost of nuclear energy related to hydroelectric energy: c) and finally, the nuclear technology transfer, involving inclusive the fuel cycle and that could permit to Brazil self-sufficiency in the nuclear energy field. Thus, this work intends to describe and discussing the 'technology transfer strategy' trying to understand and showing which are its main characteristics, and also which are the real actuals results. (author) [pt

  2. Multigigabit wireless transfer of trigger data through millimetre wave technology

    International Nuclear Information System (INIS)

    Brenner, R; Cheng, S

    2010-01-01

    The amount of data that can be transferred from highly granular tracking detectors with several million channels is today limited by the available bandwidth in the readout links which again is limited by power budget, mass and the available space for services. The low bandwidth prevents the tracker from being fully read out in real time which is a requirement for becomming a part of the first level trigger. To get the tracker to contribute to the fast trigger decision the data transfer bandwidth from the tracker has either to be increased for all data to be read out in real time or the quantity of the data to be reduced by improving the quality of the data or a combination of the two. A higher data transfer rate can be achieved by increasing the the number of data links, the data transfer speed or a combination of both. The quantity of data read out from the detector can be reduced by introducing on-detector intelligence. Next generation multigigabit wireless technology has several features that makes the technology attractive for use in future trackers. The technology can provide both higher bandwidth for data readout and means to build on-detector intelligence to improve the quality of data. The emerging millimetre wave technology offers components that are small size,low power and mass thus well suited for integration in trackers. In this paper the feasibility of wireless transfer of trigger data using 60 GHz radio in the future upgraded tracker at the Super Large Hadron Collider (SLHC) is investigated.

  3. Mode of foreign entry, technology transfer, and foreign direct investment policy

    OpenAIRE

    Mattoo, Aaditya; Olarreaga, Marcelo; Saggi, Kamal

    2001-01-01

    Foreign direct investment can take place through the direct entry of foreign firms or the acquisition of existing domestic firms. Mattoo, Olarreaga, and Saggi examine the preferences of a foreign firm and the host country government with respect to these two modes of foreign direct investment in the presence of costly technology transfer. The tradeoff between technology transfer and market...

  4. Managerial technology transfer

    CERN Document Server

    2012-01-01

    Organisations need to think globally, but act locally - with a full appreciation of the diversity of local cultures. Major global companies must recognise that policies need to be managed with the broad context of business strategy and integrated into the work culture with the support of all elements of human resources management. Most currently, companies are accommodating national cultural differences while preserving work culture principals that encourage people to effectively execute the company's strategic objectives. Even to the casual observer, it is apparent that culture- a society's programming of the mind- has both a pervasive and changing influence on each national business environment. Global managers must recognise the influence of culture and be prepared to either respond to it or change it. This book examines current research in the study of managerial technology transfer.

  5. University Technology Transfer Factors as Predictors of Entrepreneurial Orientation

    Science.gov (United States)

    Kirkman, Dorothy M.

    2011-01-01

    University technology transfer is a collaborative effort between academia and industry involving knowledge sharing and learning. Working closely with their university partners affords biotechnology firms the opportunity to successfully develop licensed inventions and gain access to novel scientific and technological discoveries. These factors may…

  6. Artificial intelligence and nuclear power. Report by the Technology Transfer Artificial Intelligence Task Team

    International Nuclear Information System (INIS)

    1985-06-01

    The Artificial Intelligence Task Team was organized to review the status of Artificial Intelligence (AI) technology, identify guidelines for AI work, and to identify work required to allow the nuclear industry to realize maximum benefit from this technology. The state of the nuclear industry was analyzed to determine where the application of AI technology could be of greatest benefit. Guidelines and criteria were established to focus on those particular problem areas where AI could provide the highest possible payoff to the industry. Information was collected from government, academic, and private organizations. Very little AI work is now being done to specifically support the nuclear industry. The AI Task Team determined that the establishment of a Strategic Automation Initiative (SAI) and the expansion of the DOE Technology Transfer program would ensure that AI technology could be used to develop software for the nuclear industry that would have substantial financial payoff to the industry. The SAI includes both long and short term phases. The short-term phase includes projects which would demonstrate that AI can be applied to the nuclear industry safely, and with substantial financial benefit. The long term phase includes projects which would develop AI technologies with specific applicability to the nuclear industry that would not be developed by people working in any other industry

  7. The Role of IAEA in Coordinating Research and Transferring Technology in Radiation Chemistry and Processing of Polymers

    International Nuclear Information System (INIS)

    Haji Saeid, M.

    2006-01-01

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through Technical Cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The CRP brings together typically 10 - 15 groups of participants to share and complement core competencies and work on specific areas of development needed to benefit from an emerging radiation technique and its applications. The technical cooperation (TC) programme helps Member States realize their development priorities through the application of appropriate radiation technology. TC builds national capacities through training, expert advice and delivery of equipment. The impact of the IAEA's efforts is visible by the progress noticeable in adoption of radiation technology and/or growth in the range of activities in several MS in different regions. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. A number of technical cooperation projects have been implemented in this field to strengthen the capability of developing Member States and to create awareness in the industries about the technical

  8. International Scientist Mobility and the Locus of Knowledge and Technology Transfer

    DEFF Research Database (Denmark)

    Edler, Jakob; Fier, Hedie; Grimpe, Christoph

    2011-01-01

    Despite the growing interest of scholars and policymakers to better understand the determinants for researchers in public science to transfer knowledge and technology to firms, little is known how temporary international mobility of scientists affects both their propensity to engage in knowledge ...... circulation”. The article contributes to the growing strand of the literature on scientist mobility and on the determinants of industry–science linkages at the individual level.Scientist......Despite the growing interest of scholars and policymakers to better understand the determinants for researchers in public science to transfer knowledge and technology to firms, little is known how temporary international mobility of scientists affects both their propensity to engage in knowledge...... and technology transfer (KTT) as well as the locus of such transfer. Based on a sample of more than 950 German academics from science and engineering faculties, we investigate how the duration and the frequency of scientists’ visits at research institutions outside their home country affect KTT activities. We...

  9. Transfer Efficiency Analysis of Wireless Power Transfer System under Frequency Drift

    DEFF Research Database (Denmark)

    Huang, Shoudao; Li, Zhongqi; Lu, Kaiyuan

    2015-01-01

    Magnetic resonant wireless power transfer (WPT) is an emerging technology that may create new applications for wireless power charging. However, low efficiency resulting from resonant frequency drift is a main obstructing factor for promoting this technology. In this paper, the system efficiency...

  10. Technology transfer and catch-up; Lessons from the commercial aircraft industry

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.; Heerkens, Johannes M.G.

    2007-01-01

    This paper analyses the technology development and technology transfer strategies in the aircraft manufacturing industry for four industrially developing countries. It is concluded from four case studies that technology catch-up is extremely difficult due to aircraft technology characteristics.

  11. A New Strategic Approach to Technology Transfer

    Science.gov (United States)

    The principal goal of Federal research and development (R&D) is to solve problems for public benefit. Technology transfer, innovation, entrepreneurship: words and concepts that once belonged exclusively in the domain of private research enterprises, have quickly become part of everyday lexicon in Fe...

  12. Techno-Nationalism and the Construction of University Technology Transfer

    Science.gov (United States)

    Sá, Creso; Kretz, Andrew; Sigurdson, Kristjan

    2013-01-01

    Our historical study of Canada's main research university illuminates the overlooked influence of national identities and interests as forces shaping the institutionalization of technology transfer. Through the use of archival sources we trace the rise and influence of Canadian technological nationalism--a response to Canada's perceived dependency…

  13. Commercial objectives, technology transfer, and systems analysis for fusion power development

    Science.gov (United States)

    Dean, Stephen O.

    1988-09-01

    Fusion is an inexhaustible source of energy that has the potential for economic commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion energy development program is the generation of central station electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high energy neutrons suggests potentially unique applications. In addition, fusion R and D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other, are the two primary criteria for setting long range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R and D program toward practical applications. The transfer of fusion technology and skills from the national labs and universities to industry is the key to achieving the long range objective of commercial fusion applications.

  14. Convexity of oligopoly games without transferable technologies

    NARCIS (Netherlands)

    Driessen, Theo; Meinhardt, Holger I.

    2005-01-01

    We present sufficient conditions involving the inverse demand function and the cost functions to establish the convexity of oligopoly TU-games without transferable technologies. For convex TU-games it is well known that the core is relatively large and that it is generically nonempty. The former

  15. Bridge Scour Technology Transfer

    Science.gov (United States)

    2018-01-24

    Scour and flooding are the leading causes of bridge failures in the United States and therefore should be monitored. New applications of tools and technologies are being developed, tested, and implemented to reduce bridge scour risk. The National Coo...

  16. Technology transfer and national participation. Key issue paper no. 3

    International Nuclear Information System (INIS)

    Chernilin, Y.F.

    2000-01-01

    Nuclear technology was developed in industrialized countries and largely remains in a few industrialized countries. Non-nuclear countries today find it necessary to import this technology. Some aspects of technology transfer: legal and institutional structure; different type of agreements; arrangements; and national participation are presented in this paper. (author)

  17. Climate Change and Requirement of Transfer of Environmentally Sound Technology

    DEFF Research Database (Denmark)

    Uddin, Mahatab

    that developed the technology, to another that adopts, adapts, and uses it. As different kinds of threats posed by climate change are continuously increasing all over the world the issue of “technology transfer” especially the transfer of environmentally sound technologies has become one of the key topics...

  18. A Holistic Approach for Addressing the Issue of Effective Technology Transfer in the Frame of Climate Change

    Directory of Open Access Journals (Sweden)

    Charikleia Karakosta

    2016-06-01

    Full Text Available Climate change policy and sustainable development issues and goals are closely intertwined. Recognizing the dual relationship between sustainable development and climate change points to a need for the exploration of actions that jointly address sustainable development and climate change. Technology transfer is considered an issue with growing interest worldwide and has been recognized as the key in supporting countries to achieve sustainable development, while addressing climate change challenges. This study presents an integrated decision support methodological framework for the formulation and evaluation of activities to promote technology transfer, as well as the provision of clear recommendations and strategies for framing specific policy in the context of climate change. The philosophy of the proposed approach, under the name: assess-identify-define (AID, consists of three components, where each one focuses on a particular problem. The methodology is integrated using appropriate tools in the information decision support system for effective technology transfer (DSS-ΕTT. The pilot application of the proposed methodology, in five representative developing countries, provided the possibility to evaluate the characteristics of the adopted methodology in terms of completeness, usability, extensionality, as well as analysis of results reliability.

  19. Technology Transfer, Labour and Local Learning Processes in Malaysian Industry

    DEFF Research Database (Denmark)

    Wangel, Arne

    1999-01-01

    The transfer of technologies by the foreign electronic industries operating in Malaysia involves training of workers for various purposes. The upgrading of skills to assimilate the transferred technology aims at increasing productivity and product quality. Communicating awareness about work hazards...... is meant to reduce breakdowns in production and workers' accidents. How do the training paradigms, which transnationals introduce in their subsidiaries in Malaysia, interact with the preconditions of learning with the local labour force? In shaping local learning processes, what is the scope for workers...

  20. Technology transfer from biomedical research to clinical practice: measuring innovation performance.

    Science.gov (United States)

    Balas, E Andrew; Elkin, Peter L

    2013-12-01

    Studies documented 17 years of transfer time from clinical trials to practice of care. Launched in 2002, the National Institutes of Health (NIH) translational research initiative needs to develop metrics for impact assessment. A recent White House report highlighted that research and development productivity is declining as a result of increased research spending while the new drugs output is flat. The goal of this study was to develop an expanded model of research-based innovation and performance thresholds of transfer from research to practice. Models for transfer of research to practice have been collected and reviewed. Subsequently, innovation pathways have been specified based on common characteristics. An integrated, intellectual property transfer model is described. The central but often disregarded role of research innovation disclosure is highlighted. Measures of research transfer and milestones of progress have been identified based on the Association of University Technology Managers 2012 performance reports. Numeric milestones of technology transfer are recommended at threshold (top 50%), target (top 25%), and stretch goal (top 10%) performance levels. Transfer measures and corresponding target levels include research spending to disclosure (0.81), patents to start-up (>0.1), patents to licenses (>2.25), and average per license income (>$48,000). Several limitations of measurement are described. Academic institutions should take strategic steps to bring innovation to the center of scholarly discussions. Research on research, particularly on pathways to disclosures, is needed to improve R&D productivity. Researchers should be informed about the technology transfer performance of their institution and regulations should better support innovators.

  1. Building technology transfer within research universities an entrepreneurial approach

    CERN Document Server

    O'Shea, Rory P

    2014-01-01

    For the past number of years, academic entrepreneurship has become one of the most widely studied topics in the entrepreneurship literature. Yet, despite all the research that has been conducted to date, there has not been a systematic attempt to analyze critically the factors which lie behind successful business spin-offs from university research. In this book, a group of academic thought-leaders in the field of technology transfer examine a number of areas critical to the promotion of start-ups on campus. Through a series of case studies, they examine current policies, structures, program initiatives and practices of fourteen international universities to develop a theory of successful academic entrepreneurship, with the aim of helping other universities to enhance the quality of their university transfer programs. This book is a valuable resource for researchers and graduate students working on innovation, entrepreneurship and technology transfer, as well as senior managers and policymakers.

  2. 75 FR 80830 - Proposed Collection; Comment Request; Technology Transfer Center External Customer Satisfaction...

    Science.gov (United States)

    2010-12-23

    ... Request; Technology Transfer Center External Customer Satisfaction Survey (NCI) SUMMARY: In compliance...: Technology Transfer Center External Customer Satisfaction Survey (NCI). Type of Information Collection...: Obtain information on the satisfaction of TTC's external customers with TTC customer services; collect...

  3. Helping transfer technology to developing countries

    International Nuclear Information System (INIS)

    Masters, R.

    1978-01-01

    Manpower planning and training are an increasingly important part of the activities of the IAEA which organises a number of courses for engineers and administrators from developing countries. The Agency supports the view of these countries that there should be a real transfer of nuclear technology and not just the import of equipment and services. A Construction and Operation Management course held at Karlsruhe, is reviewed. (author)

  4. A conceptual model of transference and its psychotherapeutic application.

    Science.gov (United States)

    Corradi, Richard B

    2006-01-01

    The tendency to repeat formative human relationships in later life, a universal developmental characteristic, is referred to as transference when it occurs in the doctor-patient relationship. Its systematic therapeutic application in psychiatry has historically been associated with classical psychoanalysis. As psychoanalysis has lost its cachet, and as drug treatment has replaced psychotherapy as psychiatry's major treatment modality, the therapeutic potential of transference risks being neglected. This is to the great detriment of psychiatric patients. Knowledge of the power of transference and expertise in its clinical use in psychotherapy should be the most powerful tool in the psychiatric therapeutic armamentarium. This article discusses a concept of transference that the author has found effective, both in clinical practice and in teaching about transference to psychiatric residents. The article delineates a psychology of transference, discusses its universal applicability to the whole of the psychotherapeutic process, and utilizes case material to illustrate principles of its application.

  5. The Technology Transfer of the ICT Curriculum in Taiwan

    Science.gov (United States)

    Huang, Teng

    2015-01-01

    Focusing on the process of "technology transfer", this paper aims to critically examine the production and usage of the information and communication technology (ICT) curriculum, and discusses its possibilities. It is found that the goals in both of the two stages of the ICT curriculum in Taiwan were rather "rhetorical". Three…

  6. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the

  7. Advanced Life Support Research and Technology Transfer at the University of Guelph

    Directory of Open Access Journals (Sweden)

    Dixon M.

    2017-02-01

    Full Text Available Research and technology developments surrounding Advanced Life-Support (ALS began at the University of Guelph in 1992 as the Space and Advanced Life Support Agriculture (SALSA program, which now represents Canada’s primary contribution to ALS research. The early focus was on recycling hydroponic nutrient solutions, atmospheric gas analysis and carbon balance, sensor research and development, inner/intra-canopy lighting and biological filtration of air in closed systems. With funding from federal, provincial and industry partners, a new generation of technology emerged to address the challenges of deploying biological systems as fundamental components of life-support infrastructure for long-duration human space exploration. Accompanying these advances were a wide range of technology transfer opportunities in the agri-food and health sectors, including air and water remediation, plant and environment sensors, disinfection technologies, recyclable growth substrates and advanced light emitting diode (LED lighting systems. This report traces the evolution of the SALSA program and catalogues the benefits of ALS research for terrestrial and non-terrestrial applications.

  8. Research to commercialization: Technology transfer gaharu oil extraction to people of Orang Asli Kampung Kedaik, Rompin, Pahang

    International Nuclear Information System (INIS)

    Mohd Fajri Osman; Shyful Azizi Abdul Rahman; Chong, Saw Peng; Muhammad Lebai Juri; Mat Rasol Awang

    2010-01-01

    Nuclear Malaysia has been involved in research related to gaharu since 2004 again. Studies conducted in the fields of agronomy, breeding, inoculation, grading, processing and development of quality agar wood products. Agar wood research involves application of nuclear technology and related technologies according to the expertise of researchers in the Malaysian Nuclear Agency in the developing industrial modernization and technology goals gaharu in Malaysia. In a study of the development process and product quality of agar wood, sandalwood oil processing technologies have been researched and developed at Nuclear Malaysia. Demand for sandalwood oil extraction technology development is very high because of sandalwood oil is very high-value products with the price can go up to RM 60,000.00 per kilogram. With the knowledge, technology innovation resulting from research and experience, the Malaysian Nuclear Agency was to transfer technology and knowledge of processing sandalwood oil to the community through a project of Development Projects in Agar wood Oil Extraction Plant Relocation Plan Aboriginal Kg Kedaik, Rompin, Pahang financial assistance from the Ministry of Science, Technology and Innovation under grant Community Innovation Fund (CIF). Technology transfer and travel through the various steps of the project which involves the preparation of papers, technology feasibility study to the community, the strength of community, sustainability research projects, effectiveness, success and benefits gained. (author)

  9. Program for transfer research and impact studies

    Science.gov (United States)

    Rusnak, J. J.; Freeman, J. E.; Hartley, J. M.; Kottenstette, J. P.; Staskin, E. R.

    1973-01-01

    Research activities conducted under the Program for Transfer Research and Impact Studies (TRIS) during 1972 included: (1) preparation of 10,196 TSP requests for TRIS application analysis; (2) interviews with over 500 individuals concerning the technical, economic, and social impacts of NASA-generated technology; (3) preparation of 38 new technology transfer example files and 101 new transfer cases; and (4) maintenance of a technology transfer library containing more than 2,900 titles. Six different modes of technology utilization are used to illustrate the pervasiveness of the transfer and diffusion of aerospace innovations. These modes also provide a basis for distinguishing the unique characteristics of the NASA Technology Utilization Program. An examination is reported of the ways in which NASA-generated technology is contributing to beneficial social change in five major areas of human concern: health, environment, safety, transportation, and communication.

  10. Transfer of biofuel technologies in private and commercial sectors in western India

    International Nuclear Information System (INIS)

    Saxena, S.C.; Vasudevan, P.

    1991-01-01

    The energy crisis all over the world has stimulated a lot of interest in renewable energies and indigenously produced fuels. Biofuels falls potentially into both these categories, hence biofuel technologies have attracted both scientists and practicing engineers in R ampersand D and transfer. Most of the biofuel technologies in India do not form part of the market economy, owing to unfavorable economic returns, but need large scale transfer due to their importance in the overall scenario of meeting growing energy requirements, calling for innovative approaches. In this paper an attempt has been made to analyze the gaps in transfer of biofuel technologies and describe an alternate model evolved by the authors. The experiences in the form of case studies are given, with a view to throw light on the A-B-C model's efficacy in terms of linkages and employment generation potential. Select reference to attempts made by other institutions in technology transfer to commercial sectors has also been made to focus attention on some key issues having policy implications

  11. Transfer of technology in the French-Iranian study for a nuclear research center in Iran

    International Nuclear Information System (INIS)

    Teillac, J.

    1977-01-01

    Economic wealth is the result of the three factors: natural resources, human work and technological know-how; the last being essential to make full use of the first two. The transfer of technology is not only a matter of training engineers or technicians but of creating a real network of knowledge and abilities so that the technologies can be fully assimilated and used according to the specific goals of the country, so a basic nuclear education is absolutely necessary, so the operation of a raining and research centre is essential. For this reason the CEA and its subsidary Technicatome have undertaken the study and construction of the Esfahan Nuclear Technology Centre (ENTEC). The main objectives of this centre are: the nuclear reactors, the study of nuclear fuels and industrial applications

  12. Entrepreneurship and technology transfer knowledge utilization and management

    NARCIS (Netherlands)

    Chavez, Victor

    2016-01-01

    Research at the intersection of creative enterprise, knowledge intensive entrepreneurship, public policy, and economic development is limited, although individually, each of these areas has been researched extensively. Reflective practitioners in industry, Government, and Technology Transfer can

  13. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-05-01

    During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

  14. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    1999-12-01

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  15. Technology Transfer of Isotopes-Based Assay: Strategies and Mechanisms

    International Nuclear Information System (INIS)

    Tabbada, R.S.D.C.; Rañada, M.L.O.; Mendoza, A.D.L.; Panganiban, R.; Castañeda, S.S.; Sombrito, E.Z.; Arcamo, S.V.R.

    2015-01-01

    Receptor Binding Assay for Paralytic Shellfish Poisoning (PSP RBA) is an isotope-based assay for detection and quantification of PSP toxins in seafood. It was established in the Philippines through a national program based on the recommendations of the Expert Mission sent by the International Atomic Energy Agency (IAEA). Through the said program, the Philippines Nuclear Research Institute (PNRI) was able to put up an RBA facility and develop expertise. Advantages of the technique against Mouse Bioassay (MBA) and high-performance Liquid Chromatography (HPLC) methods were are established. RBA is being utilized by some developed countries as screening method for Harmful Algal Bloom (HAB) Monitoring. However, it was not immediately adopted by the national HAB regulatory body for the following reasons: (1) acceptance of RBA as an official national method of analysis for PSP, (2) logistics and financial concerns in building up and maintaining a RBA facility, (3) considerations on the use of radioactive materials. To address these issues, the Philippines Council for Agriculture, Aquatic and Natural Resources Research and Development (PCAARRD) approved a Grants-In-Aid Project to initiate and to facilitate the transfer of the RBA technology to the monitoring and regulatory body. The project has two major objectives: capacity building and technology transfer. The capacity building focuses on human resources development of HAB monitoring personnel, specifically training on RBA and on the use of radioactive materials. On the other hand, the technology transfer deals with assistance that PNRI may render in establishing the new RBA facility and over-all know-how of the project. In this is poster, the mechanisms and strategies being undertaken by PNRI, in collaboration with the regulatory and monitoring body, to address the limitation of transferring a technology that utilizes radioactive materials including the technical difficulties are presented and discussed. (author)

  16. Can CDM bring technology transfer to China?-An empirical study of technology transfer in China's CDM projects

    International Nuclear Information System (INIS)

    Wang Bo

    2010-01-01

    China has undertaken the greatest number of projects and reported the largest emission reductions on the global clean development mechanism (CDM) market. As technology transfer (TT) was designed to play a key role for Annex II countries in achieving greenhouse gas emission reductions, this study examines various factors that have affected CDM and TT in China. The proportion of total income derived from the certified emissions reductions (CER) plays a key role in the project owners' decision to adopt foreign technology. Incompatibility of CDM procedures with Chinese domestic procedures, technology diffusion (TD) effects, Chinese government policy and the role of carbon traders and CDM project consultants all contribute to the different degrees and forms of TT. International carbon traders and CDM consultants could play a larger role in TT in China's CDM projects as investors and brokers in the future.

  17. Brazilian university technology transfer to rural areas Transferência de tecnologia de universidades brasileiras na área rural

    Directory of Open Access Journals (Sweden)

    Enio Marchesan

    2010-10-01

    Full Text Available In agriculture, there is a difference between average yield obtained by farmers and crop potential. There is technology available to increase yields, but not all farmers have access to it and/or use this information. This clearly characterizes an extension and technology transference problem. There are several technology transfer systems, but there is no system to fit all conditions. Therefore, it is necessary to create extension solutions according to local conditions. Another rural extension challenge is efficiency, despite continuous funding reductions. One proposal that has resulted from extension reform worldwide has suggested integration between the public and private sectors. The public universities could play the role of training and updating technical assistance of human resources, which is the one of the main aspects that has limited technology transfer. The objective of this study was to identify approaches to promote technology transfer generated in Brazilian public universities to rural areas through literature review. An experimental approach of technology transfer is presented here where a Brazilian university extension Vice-chancellor incorporates professionals from consolidated research groups according to demand. In this way, public universities take part of their social functions, by integrating teaching, research, and extension.Em agricultura, há diferenças entre a produtividade média obtida pelos produtores e o potencial produtivo dos cultivos. Há informação tecnológica disponível para aumentar a produtividade, mas nem todos os produtores têm acesso e/ou usam a informação. Isso caracteriza claramente um problema de extensão e transferência de tecnologia. Há vários sistemas de transferência de tecnologia, mas, como não há sistema que se ajuste a todas as condições, é necessário criar alternativas adequadas às condições de cada local. Outro desafio da extensão rural é ser eficiente, apesar da cont

  18. Transference of advanced LMFBR control technology to the aerospace power system program

    International Nuclear Information System (INIS)

    Chisholm, G.H.

    1984-01-01

    Much recent R and D has been devoted to the safety of liquid metal fast breeder reactors (LMFBR's). Part of the resulting technology, especially advanced control systems, appears to be directly transferable to the space nuclear power program. Some of the ideas described herein have been already culminated in successful products that are available for application, e.g. analytical redundancy and fault-tolerant computers. Others, in various stages of R and D, are being developed as elements to support the design goals outlined in the following section, e.g. automated software verification, automated hardware verification, and system validation

  19. The uncounted benefits: Federal efforts in domestic technology transfer

    Science.gov (United States)

    Chapman, R. L.; Hirst, K.

    1986-01-01

    Organized technology transfer activities conducted by the agencies of the U.S. government are described. The focus is upon agency or departmental level activity rather than the laboratory level. None of the programs on which information was collected has been assessed or evaluated individually. However, the aggregate programs of the government have been judged in terms of obvious gaps and opportunities for future improvement. An overview, descriptions of the various agency or department programs of technology transfer, a list of persons interviewed or consulted during the survey, and a bibliography of publications, reports and other material made available to the study staff are given. An extensive appendix of illustrative material collected from the various programs is also given.

  20. PrediCTC, liquid biopsy in precision oncology: a technology transfer experience in the Spanish health system.

    Science.gov (United States)

    Alonso-Alconada, L; Barbazan, J; Candamio, S; Falco, J L; Anton, C; Martin-Saborido, C; Fuster, G; Sampedro, M; Grande, C; Lado, R; Sampietro-Colom, L; Crego, E; Figueiras, S; Leon-Mateos, L; Lopez-Lopez, R; Abal, M

    2018-05-01

    Management of metastatic disease in oncology includes monitoring of therapy response principally by imaging techniques like CT scan. In addition to some limitations, the irruption of liquid biopsy and its application in personalized medicine has encouraged the development of more efficient technologies for prognosis and follow-up of patients in advanced disease. PrediCTC constitutes a panel of genes for the assessment of circulating tumor cells (CTC) in metastatic colorectal cancer patients, with demonstrated improved efficiency compared to CT scan for the evaluation of early therapy response in a multicenter prospective study. In this work, we designed and developed a technology transfer strategy to define the market opportunity for an eventual implementation of PrediCTC in the clinical practice. This included the definition of the regulatory framework, the analysis of the regulatory roadmap needed for CE mark, a benchmarking study, the design of a product development strategy, a revision of intellectual property, a cost-effectiveness study and an expert panel consultation. The definition and analysis of an appropriate technology transfer strategy and the correct balance among regulatory, financial and technical determinants are critical for the transformation of a promising technology into a viable technology, and for the decision of implementing liquid biopsy in the monitoring of therapy response in advanced disease.

  1. PAST AND FUTURE APPLICATIONS OF 3-D (VIRTUAL REALITY) TECHNOLOGY

    OpenAIRE

    Nigel Foreman; Liliya Korallo

    2014-01-01

    Virtual Reality (virtual environment technology, VET) has been widely available for twenty years. In that time, the benefits of using virtual environments (VEs) have become clear in many areas of application, including assessment and training, education, rehabilitation and psychological research in spatial cognition. The flexibility, reproducibility and adaptability of VEs are especially important, particularly in the training and testing of navigational and way-finding skills. Transfer of tr...

  2. Clean energy technology transfer. A review of programs under the UNFCCC

    International Nuclear Information System (INIS)

    Kline, D.; Vimmerstedt, L.; Benioff, R.

    2004-01-01

    This paper describes the experience and results of programs designed to operationalize the technology transfer provisions of the United Nations Framework Convention on Climate Change (UNFCCC). These programs share a common goal of demonstrating modalities for developed country parties to fulfill their obligation under the UNFCCC to support technology transfer to developing country parties that facilitates their participation in global efforts to combat climate changes. Several related U.S. bilateral programs and programs supported by the Climate Technology Initiative, a multilateral effort on behalf of a number of Organization for Economic Cooperation and Development (OECD) countries, are included in this review. The discussion highlights a number of common elements of the approaches of many of these programs as well as some differences. It presents case studies that focus on methods and results in China, Mexico, and Southern Africa, and catalogues and describes the implementation activities and results that these programs have achieved. It concludes by assessing the implications of this experience for the international community as it moves forward with the climate change technology transfer enterprise

  3. Evaluating disparities in the U.S. technology transfer ecosystem to improve bench to business translation.

    Science.gov (United States)

    Weis, James; Bashyam, Ashvin; Ekchian, Gregory J; Paisner, Kathryn; Vanderford, Nathan L

    2018-01-01

    Background: A large number of highly impactful technologies originated from academic research, and the transfer of inventions from academic institutions to private industry is a major driver of economic growth, and a catalyst for further discovery. However, there are significant inefficiencies in academic technology transfer. In this work, we conducted a data-driven assessment of translational activity across United States (U.S.) institutions to better understand how effective universities are in facilitating the transfer of new technologies into the marketplace. From this analysis, we provide recommendations to guide technology transfer policy making at both the university and national level. Methods: Using data from the Association of University Technology Managers U.S. Licensing Activity Survey, we defined a commercialization pipeline that reflects the typical path intellectual property takes; from initial research funding to startup formation and gross income. We use this pipeline to quantify the performance of academic institutions at each step of the process, as well as overall, and identify the top performing institutions via mean reciprocal rank. The corresponding distributions were visualized and disparities quantified using the Gini coefficient. Results: We found significant discrepancies in commercialization activity between institutions; a small number of institutions contribute to the vast majority of total commercialization activity. By examining select top performing institutions, we suggest improvements universities and technology transfer offices could implement to emulate the environment at these high-performing institutions. Conclusion: Significant disparities in technology transfer performance exist in which a select set of institutions produce a majority share of the total technology transfer activity. This disparity points to missed commercialization opportunities, and thus, further investigation into the distribution of technology transfer

  4. What do we need from intermediaries for technology transfer to China?

    DEFF Research Database (Denmark)

    Li-Ying, Jason

    2012-01-01

    . To facilitate technology transfer between technology providers and recipients and to compensate for the weakness in the system of innovation, the role of technology intermediaries as bridging organizations has been widely recognized and discussed. This study deepens our understanding of the role...

  5. Transfer of technology: Management of disused radioactive sources

    International Nuclear Information System (INIS)

    Friedrich, V.

    2001-01-01

    The number of sealed radioactive sources worldwide is estimated to be in the millions, although the existing registries indicate a much smaller number. If a source is no longer needed or has become unfit for the intended application, it is classified as spent or disused source. The activity of a disused source may still be in the order of GBq or TBq. Recognizing the risk associated with disused radioactive sources and the number of incidents and accidents with a wide range of consequences including widespread contamination and deterministic health effects, the IAEA has embarked on various activities dealing with the safe management of disused radioactive sources. These activities include publication of up-to-date technical information and guidance, development and distribution of management tools, transfer of technology and know-how through training and technical co-operation projects and direct assistance to solve specific safety and technical problems. This paper briefly describes these activities with reference to publications and projects carried out in various Member States. (author)

  6. INTERNATIONAL TECHNOLOGY TRANSFER AND LOCALIZATION: SUCCESS STORIES IN NUCLEAR BRANCH

    Directory of Open Access Journals (Sweden)

    Yulia V. Chernyakhovskaya

    2016-01-01

    Full Text Available countries are considering nuclear power industry development [2, p. 3; 3, p. 3; 4]. For newcomer-countries it is of great importance to stimulate the national industry through NPP projects implementation based on technology transfer and localization (TTL. The study and systematization of world experience is useful in purpose to elaborate the national industry development programs. Objectives. The aim of article is to determine success factors of TTL; tasks: 1 to study TTL international experience in the fi eld of nuclear power technologies; 2 on the ground of the world practice to analyze preconditions, contents, stages, arrangement modes, formats and results of TTL. Methods. The following methods are utilized in the study: analysis and synthesis including problem-chronological, cause and eff ect and logical analysis and historical-diachronic method (method of periodization. Results. The following conclusions presented below have been made on the basis of the three cases study related to nuclear industry development using TTL (France, South Korea and China. Conclusions. The TTL success factors includes: Government support that provides long-term governmental development plan of nuclear power and industry for nuclear power based on TTL, and an appropriate international cooperation (under favorable conditions of “NPP buyers market”; Complex approach to implementation of the national TTL program and NPP construction projects: signing of NPP construction contracts with vendors stipulating technology transfer; NPP designing and constructing should be performed jointly with training and transferring of technical documentation and software. Technology transfer cooperation should be implemented through the licenses agreements and setting up joint ventures; Public acceptance and support.

  7. The National Information Infrastructure and Dual-Use Technology Transfer

    National Research Council Canada - National Science Library

    Wigand, Rolf

    1997-01-01

    .... Concepts and principles guiding the organization, structure, and design of Web sites as a suitable medium for electronic technology transfer are from the literature on transaction costs, marketing...

  8. Technology Transfer, Foreign Direct Investment and Economic ...

    African Journals Online (AJOL)

    The aim of this study is to investigate the long-run equilibrium relationship between various international factors and economic growth, as well as to assess the short-term impact of inward FDI, trade and economic growth on international technology transfer to Nigeria. To achieve this, the study used a time series data from ...

  9. Japan acts to speed technology transfer from universities

    CERN Multimedia

    Saegusa, A

    1999-01-01

    A Japanese law will take effect in the autumn to promote technology transfer from universities and laboratories. The new measures aim to encourage collaborations with the commercial sector and allow industrial research partners to retain title to inventions (1 page).

  10. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present

  11. Imagining value, imagining users: academic technology transfer for health innovation.

    Science.gov (United States)

    Miller, Fiona Alice; Sanders, Carrie B; Lehoux, Pascale

    2009-04-01

    Governments have invested heavily in the clinical and economic promise of health innovation and express increasing concern with the efficacy and efficiency of the health innovation system. In considering strategies for 'better' health innovation, policy makers and researchers have taken a particular interest in the work of universities and related public research organizations: How do these organizations identify and transfer promising innovations to market, and do these efforts make best use of public sector investments? We conducted an ethnographic study of technology transfer offices (TTOs) in Ontario and British Columbia, Canada, to consider the place of health and health system imperatives in judgments of value in early-stage health innovation. Our analysis suggests that the valuation process is poorly specified as a set of task-specific judgments. Instead, we argue that technology transfer professionals are active participants in the construction of the innovation and assign value by 'imagining' the end product in its 'context of use'. Oriented as they are to the commercialization of health technology, TTOs understand users primarily as market players. The immediate users of TTOs' efforts are commercial partners (i.e., licensees, investors) who are capable of translating current discoveries into future commodities. The ultimate end users - patients, clinicians, health systems - are the future consumers of the products to be sold. Attention to these proximate and more distal users in the valuation process is a complex and constitutive feature of the work of health technology transfer. At the same time, judgements about individual technologies are made in relation to a broader imperative through which TTOs seek to imagine and construct sustainable innovation systems. Judgments of value are rendered sensible in relation to the logic of valuation for systems of innovation that, in turn, configure users of health innovation in systemic ways.

  12. Cast Metals Coalition Technology Transfer and Program Management Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gwyn, Mike

    2009-03-31

    . Without collaboration, new technologies enabling energy efficiencies and environment-friendly improvements are slow to develop, and have trouble obtaining a broad application. The CMC team was able to effectively and efficiently transfer the results of DOE's metalcasting R&D projects to industry by utilizing and delivering the numerous communication vehicles identified in the proposal. The three metalcasting technical associations achieved significant technology transition results under this program. In addition to reaching over 23,000 people per year through Modern Casting and 28,000 through Engineered Casting Solutions, AFS had 84 national publications and reached over 1,200 people annually through Cast Metals Institute (CMI) education courses. NADCA's education department reached over 1,000 people each year through their courses, in addition to reaching over 6,000 people annually through Die Casting Engineer, and publishing 58 papers. The SFSA also published 99 research papers and reached over 1,000 people annually through their member newsletters. In addition to these communication vehicles, the CMC team conducted numerous technical committee meetings, project reviews, and onsite visits. All of these efforts to distribute the latest metalcasting technologies contributed to the successful deployment of DOE's R&D projects into industry. The DOE/CMC partnership demonstrated significant success in the identification and review of relevant and easy-to-implement metalcasting energy-saving processes and technologies so that the results are quickly implemented and become general practice. The results achieved in this program demonstrate that sustained technology transfer efforts are a critical step in the deployment of R&D projects to industry.

  13. Technology transfer of brain-computer interfaces as assistive technology: barriers and opportunities.

    Science.gov (United States)

    Nijboer, F

    2015-02-01

    This paper provides an analysis of perspectives from different stakeholders on the state-of-the-art of BCI. Three barriers for technology transfer of BCIs as access technologies are identified. First, BCIs are developed with a narrow focus on creating a reliable technology, while a broader focus on creating a usable technology is needed. Second, the potential target group, which could benefit from BCIs as access technologies is expected to be very small. Development costs are therefore high, while reimbursements are expected to be low, which challenges the commercial viability. Third, potential target users should be much more included in the design process of BCIs to ensure that the end-products meet technical, ethical, legal and social requirements. These three issues need to be urgently addressed so that target users may benefit from this promising technology. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. 77 FR 46909 - Small Business Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR...

    Science.gov (United States)

    2012-08-06

    ... Technology Transfer (STTR) Program Policy Directives AGENCY: U.S. Small Business Administration. ACTION...) and Small Business Technology Transfer Program (STTR) Policy Directives. These amendments implement... to Edsel Brown, Assistant Director, Office of Technology, U.S. Small Business Administrator, 409...

  15. The Analysis of the Relationship between Clean Technology Transfer and Chinese Intellectual Property Countering the Climate Changes

    DEFF Research Database (Denmark)

    Min, Hao

    This report discusses the relationship between the Chinese intellectual property systems which counter with the climate change and the transfer of clean technology, and states how to encourage the developed countries transfer the clean technology to the developing countries according to the relat...... property countering the climate changes; the analysis of current technology transfer modes relating to the climate; the difficulties of Chinese countering climate changes technology transfer and strategic thinking....

  16. The Clean Development Mechanism as a Vehicle for Technology Transfer and Sustainable Development - Myth or Reality?

    Directory of Open Access Journals (Sweden)

    Gary Cox

    2010-09-01

    Full Text Available This paper critically examines the clean development mechanism (CDM established under Article 12 of the Kyoto Protocol in terms of its effectiveness as a vehicle for technology transfer to developing countries, a specific commitment under the UNFCCC. Fundamentally, the paper poses the question of whether technology transfer as part of the CDM is a myth or a reality in the broader context of sustainable development. Technology transfer between countries of the North and South is explored in a historical context and the emergence of technology transfer obligations is traced in multilateral environmental agreements. The architecture of the UNFCCC and the Kyoto Protocol are examined in relation to technology transfer obligations. Empirical studies are reviewed to gain an understanding of how CDM operates in practice, with a closer examination of a small number of recent CDM projects. There is an update on the Technology Mechanism being established under the Copenhagen Accord. The paper concludes with a summary of the benefits of CDM to date and its current limitations in achieving the scaling-up of affordable environmentally sound technology transfer envisaged in the Bali Action Plan. The conclusion is that technology transfer must be a much more explicit objective of CDM with better targeting of projects in order to achieve locally sustainable equitable outcomes. Furthermore, the link between CDM and technology transfer needs to be much more explicitly made in order that, in the long run, such interventions will lead to viable low emission development pathways in developing countries.

  17. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  18. Incorporating the Delphi Technique to investigate renewable energy technology transfer in Saudi Arabia

    Science.gov (United States)

    Al-Otaibi, Nasir K.

    Saudi Arabia is a major oil-producing nation facing a rapidly-growing population, high unemployment, climate change, and the depletion of its natural resources, potentially including its oil supply. Technology transfer is regarded as a means to diversify countries' economies beyond their natural resources. This dissertation examined the opportunities and barriers to utilizing technology transfer successfully to build renewable energy resources in Saudi Arabia to diversify the economy beyond oil production. Examples of other developing countries that have successfully used technology transfer to transform their economies are explored, including Japan, Malayasia, and the United Arab Emirates. Brazil is presented as a detailed case study to illustrate its transition to an economy based to a much greater degree than before on renewable energy. Following a pilot study, the Delphi Method was used in this research to gather the opinions of a panel of technology transfer experts consisting of 10 heterogeneous members of different institutions in the Kingdom of Saudi Arabia, including aviation, telecommunication, oil industry, education, health systems, and military and governmental organizations. In three rounds of questioning, the experts identified Education, Dependence on Oil, and Manpower as the 3 most significant factors influencing the potential for success of renewable energy technology transfer for Saudi Arabia. Political factors were also rated toward the "Very Important" end of a Likert scale and were discussed as they impact Education, Oil Dependence, and Manpower. The experts' opinions are presented and interpreted. They form the basis for recommended future research and discussion of how in light of its political system and its dependence on oil, Saudi Arabia can realistically move forward on renewable energy technology transfer and secure its economic future.

  19. International technology transfer for climate change mitigation and the cases of Russia and China

    International Nuclear Information System (INIS)

    Martinot, E.; Sinton, J.E.

    1997-01-01

    The environmental agenda for mitigating climate change through international transfers of technology is linked with a diverse literature, reviewed here within a framework that combines technological, agent/agenda, and market/transaction perspectives. Literature that bears on international technology transfer for climate change mitigation is similar in many ways for Russia and China: opportunities for energy efficiency and renewable energy, economic reform and restructuring, the difficulties enterprises face in responding to market conditions, international assistance policies, international joint ventures, market intermediation, and capacity building for market development. In both countries, capacity building means enhancing market-oriented capabilities in addition to technological capabilities. For Russia, institutional development is critical, such as new commercial legal codes and housing-sector changes beyond privatization. For China, technology policies and modernization programs significantly influence technology transfers. 234 refs., 3 tabs

  20. International technology transfer for climate change mitigation and the cases of Russia and China

    Energy Technology Data Exchange (ETDEWEB)

    Martinot, E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group]|[Stockholm Environment Inst., Boston, MA (United States); Sinton, J.E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group]|[Lawrence Berkeley National Lab., CA (United States). International Energy Studies Group; Haddad, B.M. [Univ. of California, Berkeley, CA (United States)

    1997-12-31

    The environmental agenda for mitigating climate change through international transfers of technology is linked with a diverse literature, reviewed here within a framework that combines technological, agent/agenda, and market/transaction perspectives. Literature that bears on international technology transfer for climate change mitigation is similar in many ways for Russia and China: opportunities for energy efficiency and renewable energy, economic reform and restructuring, the difficulties enterprises face in responding to market conditions, international assistance policies, international joint ventures, market intermediation, and capacity building for market development. In both countries, capacity building means enhancing market-oriented capabilities in addition to technological capabilities. For Russia, institutional development is critical, such as new commercial legal codes and housing-sector changes beyond privatization. For China, technology policies and modernization programs significantly influence technology transfers. 234 refs., 3 tabs.

  1. Heat transfer applications for the practicing engineer

    CERN Document Server

    Theodore, Louis

    2011-01-01

    This book serves as a training tool for individuals in industry and academia involved with heat transfer applications. Although the literature is inundated with texts emphasizing theory and theoretical derivations, the goal of this book is to present the subject of heat transfer from a strictly pragmatic point of view. The book is divided into four Parts: Introduction, Principles, Equipment Design Procedures and Applications, and ABET-related Topics. The first Part provides a series of chapters concerned with introductory topics that are required when solving most engineering problems, inclu

  2. Technology transfer to US oil producers: A policy tool to sustain or increase oil production

    Energy Technology Data Exchange (ETDEWEB)

    Dowd, W. T.

    1990-03-01

    The Department of Energy provided the Interstate Oil Compact Commission with a grant to identify and evaluate existing technology transfer channels to operators, to devise and test improvements or new technology transfer channels and to make recommendations as to how the Department of Energy's oil and gas technology transfer methods could be improved. The IOCC conducted this effort in a series of four tasks: a structural analysis to characterize the oil producing industry according to operator production size class, geographic location, awareness and use of reservoir management technologies, and strategies for adding reserves and replacing produced reserves; targeted interviews conducted with some 300 oil and gas industry participants to identify current technology transfer channels and their relative usefulness for various classes of industry participants; a design and testing phase, in which the IOCC critiqued the current technology transfer structure, based on results of the structural analysis and targeted interviews, and identified several strategies for improvement; and an evaluation of existing state outreach programs to determine whether they might provide a model for development of additional outreach programs in other producing states.

  3. U.S. EPA Federal Technology Transfer Program Fact Sheet

    Science.gov (United States)

    The Federal Technology Transfer Act (FTTA), enacted by Congress in 1986 and building on previous legislation, improves access to federal laboratories by non-federal organizations for research and development opportunities.

  4. Collaborating with EPA through the Federal Technology Transfer Act

    Science.gov (United States)

    Under the Federal Technology Transfer Act (FTTA), EPA can collaborate with external parties on research projects, and share research materials. Learn more about the types of partnerships the EPA offers.

  5. The academic spin-offs as technology transfer way

    International Nuclear Information System (INIS)

    Gomez Gras, J. M.; Mira Solves, I.; Verdu Jover, A. J.; Sancho Azuar, J.

    2007-01-01

    One of the technology transfer mechanisms used by universities that has risen more interest in the last decade is the formation of academic spin-off, firms specifically created for the commercial exploitation of technology derived from research results. In the current paper we review the typologies and the development process of this kind of firms, as well as we propose a model that groups the conditioning factors of spin-off activity in the internal university environment. (Author) 92 refs

  6. The application of the high throughput sequencing technology in the transposable elements.

    Science.gov (United States)

    Liu, Zhen; Xu, Jian-hong

    2015-09-01

    High throughput sequencing technology has dramatically improved the efficiency of DNA sequencing, and decreased the costs to a great extent. Meanwhile, this technology usually has advantages of better specificity, higher sensitivity and accuracy. Therefore, it has been applied to the research on genetic variations, transcriptomics and epigenomics. Recently, this technology has been widely employed in the studies of transposable elements and has achieved fruitful results. In this review, we summarize the application of high throughput sequencing technology in the fields of transposable elements, including the estimation of transposon content, preference of target sites and distribution, insertion polymorphism and population frequency, identification of rare copies, transposon horizontal transfers as well as transposon tagging. We also briefly introduce the major common sequencing strategies and algorithms, their advantages and disadvantages, and the corresponding solutions. Finally, we envision the developing trends of high throughput sequencing technology, especially the third generation sequencing technology, and its application in transposon studies in the future, hopefully providing a comprehensive understanding and reference for related scientific researchers.

  7. Technology transfer for Ukrainian milk treatment: A case study

    International Nuclear Information System (INIS)

    Dunn, M.J.; Walker, J.S.

    1994-01-01

    As a result of the Chernobyl Nuclear Power Plant accident, radioactive fission products have contaminated the food chain in the Ukraine. The highest doses to humans are a result of cesium contamination in milk. The milk produced in the Ukraine contains radioactive cesium at levels up to 10 times the acceptance standards. Bradtec has developed and demonstrated technology for the US Department of Energy for the treatment of groundwater and effluent water. This technology has also been tested and demonstrated for the Ukrainian government for the purpose of treating contaminated milk. Bradtec, a small business offering specialized technologies in the field of environmental remediation and waste management, has successfully worked with a consortium of businesses, National Laboratories and DOE Headquarters staff to develop and implement a technology demonstration strategy which has led to the implementation of a series collaboration agreements with Ukrainian officials. This paper describes, in a case study approach, the path followed by Bradtec and its collaboration partners in successfully implementing a technology transfer strategy. Also presented is an update on new programs that can provide benefit to private sector companies as DOE seeks to assist the private sector in joint venture/technology transfer relationships with the NIS (New Independent States). This paper should be of interest to all businesses seeking to participate in business opportunities in the NIS

  8. Innovation and technology transfer through global value chains: Evidence from China's PV industry

    International Nuclear Information System (INIS)

    Zhang, Fang; Gallagher, Kelly Sims

    2016-01-01

    China's success as a rapid innovation follower in the infant Photovoltaic (PV) industry surprised many observers. This paper explores how China inserted itself into global clean energy innovation systems by examining the case of the solar PV industry. The paper decomposes the global PV industrial value chain, and determines the main factors shaping PV technology transfer and diffusion. Chinese firms first entered PV module manufacturing through technology acquisition, and then gradually built their global competitiveness by utilizing a vertical integration strategy within segments of the industry as well as the broader PV value chain. The main drivers for PV technology transfer from the global innovation system to China are global market formation policy, international mobilization of talent, the flexibility of manufacturing in China, and belated policy incentives from China's government. The development trajectory of the PV industry in China indicates that innovation in cleaner energy technologies can occur through both global and national innovation processes, and knowledge exchange along the global PV value chain. - Highlights: •The value chain analytical approach is synergized with the theories of technology transfer and innovation systems. •A detailed review of how China integrated itself into the global solar PV innovation system is provided. •Four main factors shape PV technology transfer to China across various value chain segments. •Innovation in cleaner energy technologies is a combination of global and national innovation processes.

  9. The heat-transfer method: a versatile low-cost, label-free, fast, and user-friendly readout platform for biosensor applications.

    Science.gov (United States)

    van Grinsven, Bart; Eersels, Kasper; Peeters, Marloes; Losada-Pérez, Patricia; Vandenryt, Thijs; Cleij, Thomas J; Wagner, Patrick

    2014-08-27

    In recent years, biosensors have become increasingly important in various scientific domains including medicine, biology, and pharmacology, resulting in an increased demand for fast and effective readout techniques. In this Spotlight on Applications, we report on the recently developed heat-transfer method (HTM) and illustrate the use of the technique by zooming in on four established bio(mimetic) sensor applications: (i) mutation analysis in DNA sequences, (ii) cancer cell identification through surface-imprinted polymers, (iii) detection of neurotransmitters with molecularly imprinted polymers, and (iv) phase-transition analysis in lipid vesicle layers. The methodology is based on changes in heat-transfer resistance at a functionalized solid-liquid interface. To this extent, the device applies a temperature gradient over this interface and monitors the temperature underneath and above the functionalized chip in time. The heat-transfer resistance can be obtained by dividing this temperature gradient by the power needed to achieve a programmed temperature. The low-cost, fast, label-free and user-friendly nature of the technology in combination with a high degree of specificity, selectivity, and sensitivity makes HTM a promising sensor technology.

  10. Role of national centers of research and development in nuclear technology transfer

    International Nuclear Information System (INIS)

    Graf, J.-J.; Millies, Pierre.

    1977-01-01

    National Research Centers are shown to play a leading role in nuclear technology transfer, whatever may be the directing scheme of nuclear development in the country envisaged. The first act of the Center consists in training specialists in the various nuclear fields. It must ensure the transfer of technological knowledge towards industry (in metallurgy, mechanics, electronics) and other nuclear auxiliary techniques, together with the transfer towards administration (laws). A simplified scheme of nuclear development strategy based on the French scheme (the French Atomic Energy Commission (CEA) with its subsidiary Companies) is presented that is usable for developing countries [fr

  11. The Role of Transition of Workforce between Companies in Transferring Technology

    Directory of Open Access Journals (Sweden)

    Sedki Esmaeel Rezouki

    2015-12-01

    Full Text Available The transition of professionals between different sectors is considered as one of sources of acquisition of technology and will lead to add the practical experience to them. This experience depending on different factors like: the scientific degree and practical experience by the professionals, the technology possessed by the transferor sector, the duration that spent by experienced in transferor sector, the type of work performed by professional….etc. The research aims to verify the affect of these factors in technology transfer process. Research reached that the technology transfer process which is depending on the Iraqi competencies in work is unsatisfied level between Iraqi organizations because there are different obstacles behind this. Research diagnosed such obstacles as well as the procedures that followed-up by professionals to serve this process.

  12. 76 FR 8371 - Notice Correction; Generic Submission of Technology Transfer Center (TTC) External Customer...

    Science.gov (United States)

    2011-02-14

    ... Submission of Technology Transfer Center (TTC) External Customer Satisfaction Surveys (NCI) The Federal... project titled, ``Technology Transfer Center (TTC) External Customer Satisfaction Survey (NCI)'' was... will include multiple customer satisfaction surveys over the course of three years. At this time, only...

  13. Poverty Alleviation and Environmental Sustainability through Improved Regimes of Technology Transfer

    Directory of Open Access Journals (Sweden)

    Klaus Bosselmann

    2006-06-01

    Full Text Available To achieve the Millennium Development Goals, international technology transfer can play a major role for poverty alleviation and environmental sustainability. At present, there are economic, social and legal (rather than technical barriers preventing the transfer of environmentally sound technology (EST from a wider use in international regimes. Removing these barriers requires greater political and regulatory efforts both domestically and internationally. To enable EST transfer, developed States need to improve domestic market conditions such as removal of negative subsidies and barriers to foreign investment, targeted fiscal incentives and law reforms favouring sustainable production and use of energy. There is no realistic perspective for international EST transfer as long as it is disadvantaged domestically. A coherent EST transfer regime is only possible through greater governmental intervention at the national and international level, including environmental regulations, national systems of innovation, and creating an enabling environment for EST. Such intervention should include effective public-private partnerships, both within and between States. Partnerships, if guided by law, could ensure EST innovation more efficiently than purely State-driven or market-driven EST transfers. In search for a model, the EST transfer regime under the Vienna Ozone Layer Convention and the Montreal Protocol deserves recognition. For example, the clean development mechanism under the Kyoto Protocol allows for considerable scope for EST transfer. The potential of EST transfer for climate change and for meeting the Millennium Development Goals has yet to be realized.

  14. Analisis dan Perancangan Sistem Informasi Direktorat Research & Technology Transfer Binus University

    Directory of Open Access Journals (Sweden)

    Mahenda Metta Surya

    2014-12-01

    Full Text Available Rapid growth of information technology development as well as increasing level of competition make every company need to establish an information system to support its business process. Research & Technology Transfer Directorate of Binus University is aware of this matter and makes a goal to improve the existing business process and develop a web-based information system that is able to support the existing business process to be more effective and efficient. This study aims to conduct an analysis and a design of information system for Research & Technology Transfer Directorate Binus University that can enhance the existing business process. Research used two methods, firstly data gathering done by conducting field studies and literature reviews, secondly the analysis and design of the system with object-oriented method. The result achieved from this research is a web-based information system that can support Research & Technology Transfer Directorate business process. The conclusion of this research is a new integrated web-based information system that can support and enhance current business process by connecting all parts of the system with the result to make all process more effective and efficient.

  15. Supercritical fluid technology: concepts and pharmaceutical applications.

    Science.gov (United States)

    Deshpande, Praful Balavant; Kumar, G Aravind; Kumar, Averineni Ranjith; Shavi, Gopal Venkatesh; Karthik, Arumugam; Reddy, Meka Sreenivasa; Udupa, Nayanabhirama

    2011-01-01

    In light of environmental apprehension, supercritical fluid technology (SFT) exhibits excellent opportunities to accomplish key objectives in the drug delivery sector. Supercritical fluid extraction using carbon dioxide (CO(2)) has been recognized as a green technology. It is a clean and versatile solvent with gas-like diffusivity and liquid-like density in the supercritical phase, which has provided an excellent alternative to the use of chemical solvents. The present commentary provides an overview of different techniques using supercritical fluids and their future opportunity for the drug delivery industry. Some of the emerging applications of SFT in pharmaceuticals, such as particle design, drug solubilization, inclusion complex, polymer impregnation, polymorphism, drug extraction process, and analysis, are also covered in this review. The data collection methods are based on the recent literature related to drug delivery systems using SFT platforms. SFT has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This cutting-edge technology is growing predominantly to surrogate conventional unit operations in relevance to the pharmaceutical production process. Supercritical fluid technology has recently drawn attention in the field of pharmaceuticals. It is a distinct conception that utilizes the solvent properties of supercritical fluids above their critical temperature and pressure, where they exhibit both liquid-like and gas-like properties, which can enable many pharmaceutical applications. For example, the liquid-like properties provide benefits in extraction processes of organic solvents or impurities, drug solubilization, and polymer plasticization, and the gas-like features facilitate mass transfer processes. It has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This review is

  16. Technology transfer: A cooperative agreement and success story

    International Nuclear Information System (INIS)

    Reno, H.W.; McNeel, K.; Armstrong, A.T.; Vance, J.K.

    1996-01-01

    This paper describes the cooperative agreement between the U.S. Department of Energy and Envirocare of Utah, Inc., wherein the former transferred macroencapsulative technology to the latter for purposes of demonstrating commercialization of treatment and disposal of 225, 000 Kg of radioactive lead stored at departmental installations

  17. Agile manufacturing and technology transfer to industrialising countries

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Boer, S.J.

    2003-01-01

    One of the requirements of agile manufacturing, the necessity to gain flexibility, can be reached by using a supplier network. A possible way to develop a supplier network is by subcontracting to parties in industrialising countries. In most cases, it is necessary to transfer technology. The

  18. 6. Seminar of the IIE-ININ-IMP on technological specialties. Topic 15: commercialization and technology transfer

    International Nuclear Information System (INIS)

    1992-01-01

    The document includes 9 papers presented at the 6. Seminar of the IIE-ININ-IMP (Mexico) on technological specialties in the field of commercialization and technology transfer. (Topic 15). One item was in INIS s ubject scope and a separate abstract was prepared for it

  19. The role of IAEA in coordinating research and transferring technology in radiation chemistry and processing of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Haji-Saeid, M. [International Atomic Energy Agency (IAEA), Wagramer Strasse 5, A-1400 Vienna (Austria)], E-mail: M.Haji-Saeid@iaea.org; Sampa, M.H.; Ramamoorthy, N. [International Atomic Energy Agency (IAEA), Wagramer Strasse 5, A-1400 Vienna (Austria); Gueven, O. [Hacettepe University, Department of Chemistry, Ankara (Turkey); Chmielewski, A.G. [Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw (Poland)

    2007-12-15

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through technical cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The technical cooperation (TC) programme helps Member States to realize their development priorities through the application of appropriate radiation technology. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. The IAEA extends cooperation to well-known international conferences dealing with radiation technology to facilitate participation of talented scientists from developing MS and building collaborations. The IAEA published technical documents, covering the findings of thematic technical meetings (TM) and coordinated research projects have been an important source of valuable practical information.

  20. The role of IAEA in coordinating research and transferring technology in radiation chemistry and processing of polymers

    International Nuclear Information System (INIS)

    Haji-Saeid, M.; Sampa, M.H.; Ramamoorthy, N.; Gueven, O.; Chmielewski, A.G.

    2007-01-01

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through technical cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The technical cooperation (TC) programme helps Member States to realize their development priorities through the application of appropriate radiation technology. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. The IAEA extends cooperation to well-known international conferences dealing with radiation technology to facilitate participation of talented scientists from developing MS and building collaborations. The IAEA published technical documents, covering the findings of thematic technical meetings (TM) and coordinated research projects have been an important source of valuable practical information

  1. Technological laser application

    International Nuclear Information System (INIS)

    Shia, D.O.; Kollen, R.; Rods, U.

    1980-01-01

    Problems of the technological applications of lasers are stated in the popular form. Main requirements to a technological laser as well as problems arising in designing any system using lasers have been considered. Areas of the laser applications are described generally: laser treatment of materials, thermal treatment, welding, broach and drilling of holes, scribing, microtreatment and adjustment of resistors, material cutting, investigations into controlled thermonuclear fussion

  2. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Schatzinger, Viola [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Chapman, Kathy [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Lovendahl, Kristi [Petroleum Tech. Transfer Council, Tulsa, OK (United States)

    2014-09-30

    The Petroleum Technology Transfer Council (PTTC) is a unique not-for-profit network that focuses on transferring Exploration and Production (E&P) technology to the domestic oil and natural gas producing industry. PTTC connects producers, technology providers and innovators, academia, research and development (R&D) consortiums and governments. Local affordable workshops delivered by Regional Lead Organizations (RLOs), which are typically a university or geological survey, are a primary tool. PTTC also maintains a website network, issues a national newsletter, provides a column in a major trade publication, and exhibits at major industry events. It also encourages industry to ask technology-related questions, striving to find relevant answers that will save questioners significant time. Working since late 1993, the PTTC network has a proven track record of providing industry with technology insights they can apply. Volunteers at the regional and national level provide key guidance regarding where to focus technical effort and help connect PTTC with industry. At historical funding levels, PTTC had been able to hold well more than 100 workshops per year, drawing 6,000+ attendees. As funding decreased in the early 2000s, the level of activity decreased and PTTC sought a merger with the American Association of Petroleum Geologists (AAPG), becoming an AAPG-managed organization at the start of FY08. This relationship with AAPG was terminated by mutual consent in May 2011 and PTTC once again operates independently. Chris Hall, California continued to serve as Chairman of the Board of Directors until December 2013. At the time PTTC reorganized into a RLO led organization with Mary Carr and Jeremy Viscomi as co-Executive Directors. Jerry Anderson became the Chairman of the PTTC Board of Directors and Chris Hall continues to serve on the Board. Workshop activity stabilized at 55-65 workshops per year averaging 3,100 attendees. FY14 represented the fifth year in a multi

  3. The role of technology transfer for the development of a local wind component industry in Chile

    International Nuclear Information System (INIS)

    Pueyo, Ana; Garcia, Rodrigo; Mendiluce, Maria; Morales, Dario

    2011-01-01

    This paper contributes to the debate about climate change technology transfer by analysing barriers and enablers for a Chilean company starting up the production of wind blades. Literature on the role of technology transfer for the development and deployment of local renewable energy technologies in developing countries often refers to success stories in Brazil, India and China. Instead, this case study highlights the different challenges faced by smaller emerging economies. The paper argues that successful technology transfer in a smaller economy like Chile requires: a minimum internal demand and access to regional markets to attract foreign knowledge providers; a focus in the types of technologies where the recipient country or company have a competitive advantage; and active learning processes by the recipient company. Lessons are drawn for improving the design and implementation of technology-push and market-pull policies in small or medium emerging economies. - Highlights: → We analyse the case of a Chilean company starting up wind blades production. → Technology transfer is required as the relevant knowledge is not available in the country. → We examine the factors that enable technology transfer to draw policy conclusions. → We highlight the particularities of medium sized developing countries.

  4. The role of technology transfer for the development of a local wind component industry in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Pueyo, Ana, E-mail: anapueyo@hotmail.com [Technical University of Madrid (UPM)-Escuela Tecnica Superior de Ingenieros Industriales (ETSII), Madrid (Spain); Garcia, Rodrigo [Centro de Energias Renovables (CER), Santiago de Chile (Chile); Mendiluce, Maria [World Business Council for Sustainable Development (WBCSD), Geneva (Switzerland); Morales, Dario [InnovaChile-CORFO Chile, Santiago de Chile (Chile)

    2011-07-15

    This paper contributes to the debate about climate change technology transfer by analysing barriers and enablers for a Chilean company starting up the production of wind blades. Literature on the role of technology transfer for the development and deployment of local renewable energy technologies in developing countries often refers to success stories in Brazil, India and China. Instead, this case study highlights the different challenges faced by smaller emerging economies. The paper argues that successful technology transfer in a smaller economy like Chile requires: a minimum internal demand and access to regional markets to attract foreign knowledge providers; a focus in the types of technologies where the recipient country or company have a competitive advantage; and active learning processes by the recipient company. Lessons are drawn for improving the design and implementation of technology-push and market-pull policies in small or medium emerging economies. - Highlights: > We analyse the case of a Chilean company starting up wind blades production. > Technology transfer is required as the relevant knowledge is not available in the country. > We examine the factors that enable technology transfer to draw policy conclusions. > We highlight the particularities of medium sized developing countries.

  5. Boiling heat transfer modern developments and advances

    CERN Document Server

    Lahey, Jr, RT

    2013-01-01

    This volume covers the modern developments in boiling heat transfer and two-phase flow, and is intended to provide industrial, government and academic researchers with state-of-the-art research findings in the area of multiphase flow and heat transfer technology. Special attention is given to technology transfer, indicating how recent significant results may be used for practical applications. The chapters give detailed technical material that will be useful to engineers and scientists who work in the field of multiphase flow and heat transfer. The authors of all chapters are members of the

  6. The CFFTP technology applications program

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The Canadian Fusion Fuels Technology Project (CFFTP) was originally conceived as having a Technology Applications Program to help fulfill its mandate of extending and adapting existing Canadian technology for use in international fusion programs. This technology was determined to be materials, breeder technology, remote handling, health and saftey, and tritium fuel systems. The CFFTP Applications Program has done work for the STARFIRE, MARS and TFTR reactors as well as developing two computer codes for tritium fuel systems. In the future the Technology Applications Program will be involved in the Tokamak Fusion Core Experiment (TFCX) as well as work for NET, JET and Frascati

  7. Transfer your ideas to society!

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Science and technology labs are the ideal places for developing innovative solutions. However, inventors sometimes don’t realize that their ideas can find an application in industry, which can in turn have a technical and economic impact on society. Some researchers may think that disclosing an invention is a time-consuming process which is worth doing only in very special cases. But one thing is certain: it is always worth informing the Knowledge and Technology Transfer group, as they will give you the correct advice and support. Don’t be afraid of the paperwork… it can be highly rewarding!   Why should researchers at CERN bother to disclose their inventions to the Knowledge and Technology Transfer Group first? “Because when inventors do so, a process to transfer the technology to industry is set in motion” explains Henning Huuse, Patent Portfolio Manager in the KTT Group. To facilitate this transfer, patent protection can be a useful tool. &...

  8. Westinghouse experience in the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Simpson, J.W.

    1977-01-01

    Westinghouse experience with transfer of technical information is two-sided. First is our experience in learning, and the second is our experience in teaching others. Westinghouse conducts a special school to which government, academic and industry people are invited. There are many problems involved in all technology transfers; these include: keeping information current, making certain changes are compatible with the supplier's manufacturing capability and also suitable to the receiver, patent right and proprietary information. The building, testing and maintenance of the unit on the line - and then a succession of its sister plant is the basis for the Westinghouse leadership

  9. Technological transfer. 1. Appropriateness for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Berrie, T W

    1978-12-01

    Capital-intensive projects dominate the technology transferred to developing countries in spite of the need to serve a pool of unskilled labor and small capital reserves. Recent doubts about the appropriateness of large industrialization projects have questioned the social and economic benefits of this approach and led to an emphasis on innovative planning for the benefit of the urban and rural poor. This shift assumed that direct attacks on the roots of poverty will be more effective than the trickle-down approach, but development planners now see that technologies can be planned that are not limited to single groups. Official policies, often working against the adoption of appropriate technologies, must consider local needs and local resources. Farm equipment, for example, must minimize the need for skilled labor and maintenance. Planners for appropriate urban technology should emphasize local capability, but should also risk occasional failure in the effort to improve the efficiency of labor.

  10. Commercial objectives, technology transfer, and systems analysis for fusion power development

    Science.gov (United States)

    Dean, Stephen O.

    1988-03-01

    Fusion is an essentially inexhaustible source of energy that has the potential for economically attractive commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion-energy development program is the generation of centralstation electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high-energy neutrons suggests potentially unique applications. These include breeding of fissile fuels, production of hydrogen and other chemical products, transmutation or “burning” of various nuclear or chemical wastes, radiation processing of materials, production of radioisotopes, food preservation, medical diagnosis and medical treatment, and space power and space propulsion. In addition, fusion R&D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other hand, are the two primary criteria for setting long-range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R&D program toward practical applications. The transfer of fusion technology and skills from the national laboratories and universities to industry is the key to achieving the long-range objective of commercial fusion applications.

  11. EPA and the Federal Technology Transfer Act: Opportunity knocks

    Energy Technology Data Exchange (ETDEWEB)

    Gatchett, A.M.; Fradkin, L.; Moore, M.; Gorman, T.; Ehrlich, A. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    In 1986, the Federal Technology Transfer Act (FTTA) was established to promote a closer, collaborative relationship between federal government agencies and the private sector. With the increasing need for new cost-effective technologies to prevent and control pollution, both the US Environmental Protection Agency (EPA) and private industry are encouraged to facilitate the transfer of knowledge and technology under this Act. The FTTA removed several of the legal and institutional barriers to cooperative research that existed before the Act`s passage. Through the FTTA, the government strives to promote the movement of its products, processes, skills, and knowledge into the private sector for further development and commercialization by encouraging the exchange of technical personnel and the sharing of facilities and other resources. Collaborative efforts between industry, federal agencies, and academia are made possible through cooperative research and development agreements (CRADAs). Forty-two CRADAs and five licensing agreements have been initiated with EPA under this program. This paper provides an overview of this new and innovative program within the EPA. 1 fig., 2 tabs.

  12. Technology Transfer In Rural Industries of Thailand: The Case of Dessert And Palm Tree Industries

    Directory of Open Access Journals (Sweden)

    Apisek Pansuwan

    2013-07-01

    Full Text Available In last decade, the small industrial sector has increasingly received attention from Thai policy makers. This study investigates the relationship between small industries and community in rural area in term of technology transfer. In the research area, knowledge and experience gathered from workplace as an employee and family businesses are the core resources to establish and run busineSses. Technically, technology transfer is divided into 2 characteristics; intra-enterprise and inter-enterprise. Intra-enterprise technology transfer comes from employers to employees, emphasizing production development. Beside, technology transfer of inter-enterprise has two directions. Firstly, direction points from the entrepreneur to material suppliers aiming to secure raw material quality. Secondly direction points from consumers to the entrepreneur aiming to put a great emphasis on product development, quality control and management.

  13. FY05 Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-11-01

    Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions

  14. Research progress on microgravity boiling heat transfer

    International Nuclear Information System (INIS)

    Xiao Zejun; Chen Bingde

    2003-01-01

    Microgravity boiling heat transfer is one of the most basic research topics in aerospace technology, which is important for both scientific research and engineering application. Research progress on microgravity boiling heat transfer is presented, including terrestrial simulation technique, terrestrial simulation experiment, microgravity experiment, and flow boiling heat transfer

  15. Research Tools and Materials | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Research Tools can be found in TTC's Available Technologies and in scientific publications. They are freely available to non-profits and universities through a Material Transfer Agreement (or other appropriate mechanism), and available via licensing to companies.

  16. A commercial outcome prediction system for university technology transfer using neural networks

    OpenAIRE

    Chu, Ling

    2007-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 26/03/2007. This thesis presents a commercial outcome prediction system (CPS) capable of predicting the likely future monetary return that would be generated by an invention. The CPS is designed to be used by university technology transfer offices for invention assessment purposes, and is based on the data from their historical invention cases. It is aimed at improving technology transfer off...

  17. An explorative study of the technology transfer coach as a preliminary for the design of a computer aid

    OpenAIRE

    Jönsson, Oscar

    2014-01-01

    The university technology transfer coach has an important role in supporting the commercialization of research results. This thesis has studied the technology transfer coach and their needs in the coaching process. The goal has been to investigate information needs of the technology transfer coach as a preliminary for the design of computer aids.Using a grounded theory approach, we interviewed 17 coaches working in the Swedish technology transfer environment. Extracted quotes from interviews ...

  18. Enhancing the visibility of new technologies

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    After several years of experience and reflection on the subject of technology transfer, CERN has formalised its policy for managing the intellectual property linked to its technology transfer activities.   The new Policy on the Management of Intellectual Property in Technology Transfer activities at CERN was approved in March this year. The aim of the policy is to clarify the basic principles governing technology transfer and the management of the associated intellectual property. The document also lays down the principles governing the redistribution of the income generated by technology transfer and provides for a fund to be set up to give financial support to knowledge and technology transfer projects. "Our main aim is to do everything we can to facilitate the actual transfer of CERN technologies and know-how with potential applications in other research fields or in industrial processes or products," says Bernard Denis, who is a member of the Knowledge and Technology Transfer (...

  19. Research and development projects in the frame of the technology transfer program of the Kernforschungszentrum Karlsruhe

    International Nuclear Information System (INIS)

    Wuest, J.

    1984-01-01

    Within the framework of the Technology Transfer Programme carried through by kfk for some years now, a specific technology transfer model has been developed for the purpose of efficient utilization of the spin-off. This model showing means and methods of ensuring a continuous, purposeful and controllable organization of the transfer of know-how, is accompanied by experience in the appropriate contractual activities adjusted to the various conditions encountered, as e.g. cooperation and licence agreements, services, consultative agreements, personnel transfer, selling agreements, committed research agreements, and development contracts. Consuming about 2 p.c. of the annual overall expenses of the kfk, the Technology Transfer Programme belongs to the minor projects of the research centre. (DG) [de

  20. intensifying and reorienting transfer of low carbon technologies for climate change prevention

    International Nuclear Information System (INIS)

    Pisani-Ferry, Jean; Monange, Herve; Gorges, Delphine; Senne, Valerie; Roulle, Jean-Michel

    2013-10-01

    The transfer of 'low carbon' technologies is crucial in order to moderate greenhouse gas (GHG) emissions by developing countries, which are set to rise significantly. Their implementation will determine the success of a global agreement on climate change in 2015, and this is the task of the Technology Mechanism, created in 2010. This policy brief sets out the principal results of a study commissioned from the Mines ParisTech Industrial Economics Centre (CERNA). The study shows that, unlike China, Mexico, South Africa and, to a lesser extent, Brazil, India is currently left out of international flows of low carbon technologies transfer - it is therefore a top priority, as is the rest of developing Asia, Africa and Eastern Europe. To intensify these transfers, ambitious greenhouse gas emissions reduction policies need to be implemented and absorptive capacities need to be created in countries that receive such technologies. In emerging countries, which possess a genuine capacity for innovation, and which are involved in international trade, the strengthening of intellectual property rights and the lowering of barriers to trade and investment are to be recommended. However, in the least developed countries, emphasis must be placed on technology absorptive capacities and in particular on the development of a qualified labour force

  1. Transfer And Adoption Of Labour Saving Technologies | Idu ...

    African Journals Online (AJOL)

    The study was carried out to assess the transfer and adoption of labour saving technologies in Apa Local Government area of BenueState. A total sample size One Hundred and Twenty was used in the study. Interview schedule was used to collect the data from respondents. The results revealed that herbicide was adopted ...

  2. Institutionalization of Technology Transfer Organizations in Chinese Universities

    Science.gov (United States)

    Cai, Yuzhuo; Zhang, Han; Pinheiro, Rómulo

    2015-01-01

    There is a lack of in-depth studies on how technology transfer organizations (TTOs) are organized and developed. This paper examines the evolution/institutionalization of TTOs in Tsinghua University (TU), as a microcosm of the development of TTOs in Chinese universities. It explores two issues in particular: what kinds of TTOs have been developed…

  3. Legal aspects of nuclear technology transfer in connection with Latin America

    International Nuclear Information System (INIS)

    Zaldivar, E.

    1983-01-01

    This paper concerns technology and technology transfers which are becoming increasingly important for developing countries, especially those in South America. The author also points out that developed countries have not implemented the United Nations resolutions concerning dissemination of knowledge on advanced technologies. He stresses that if South American States wish to obtain assistance with nuclear technology from developed countries they should sign and ratify the Non-Proliferation Treaty and the Tlatelolco Treaty. (NEA) [fr

  4. Local R&D and Technology Transfers

    DEFF Research Database (Denmark)

    Aggarwal, Aradhna

    ownership is categorised according to the control exercisable by them as defined under the Companies’ Act of India. A comparative analysis of domestic and different categories of foreign firms was conducted at two time periods: the global boom period of 2004-2008 and post crisis period of 2008......-2014. The propensity score matching (PSM) analysis reveals that the majority owned foreign companies spend less on R&D and more on technology transfers than their local counterparts. Overall, threshold equity holding and global conditions matter. A panel data regression analysis on matched sample confirms the findings...

  5. Causes and implications of the slow pace of technology transfer and ...

    African Journals Online (AJOL)

    The causes of slow pace of technology transfer and adoption were identified to include ineffectiveness of extension delivery system, lack of adequate liaison between extension and research, lack of trained personnel both in quantity and quality, inadequate financial support, complexity of the new technology, incompatibility, ...

  6. Technology applications bulletins

    International Nuclear Information System (INIS)

    Koncinski, W. Jr.

    1989-02-01

    Martin Marietta Energy Systems, Inc. (Energy Systems), operates five facilities for the US Department of Energy (DOE): the Oak Ridge National Laboratory (ORNL), which is a large, multidisciplinary research and development (R and D) center whose primary mission is energy research; the Oak Ridge Y-12 Plant, which engages in defense research, development, and production; and the uranium-enrichment plants at Oak Ridge; Paducah, Kentucky; and Portsmouth, Ohio. Much of the research carried out at these facilities is of interest to industry and to state or local governments. To make information about this research available, the Energy Systems Office of Technology Applications publishes brief descriptions of selected technologies and reports. These technology applications bulletins describe the new technology and inform the reader about how to obtain further information, gain access to technical resources, and initiate direct contact with Energy Systems researchers

  7. Future orbital transfer vehicle technology study. Volume 2: Technical report

    Science.gov (United States)

    Davis, E. E.

    1982-01-01

    Missions for future orbit transfer vehicles (1995-2010) are identified and the technology, operations and vehicle concepts that satisfy the transportation requirements are defined. Comparison of reusable space and ground based LO2/LH2 OTV's was made. Both vehicles used advanced space engines and aero assist capability. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. Comparison of an all LO2/LH2 OTV fleet with a fleet of LO2/LH2 OTVs and electric OTV's was also made. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. This provided a 23% advantage in total transportation cost. The impact of accelerated technology was considered in terms of improvements in performance and cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on-orbit propellant storage and transfer and on-orbit maintenance capability.

  8. Status and Mission Applicability of NASA's In-Space Propulsion Technology Project

    Science.gov (United States)

    Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry

    2009-01-01

    The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed

  9. Building Technologies Program Multi-Year Program Plan Technology Validation and Market Introduction 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for technology validation and market introduction, including ENERGY STAR, building energy codes, technology transfer application centers, commercial lighting initiative, EnergySmart Schools, EnergySmar

  10. Development and application of isotopes and radiation technology in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Djaloeis, A. [DDG, Batan, Jakarta (Indonesia)

    1997-10-01

    The National Atomic Energy Agency (BATAN) of the Republic of Indonesia is the highest agency in the country, charged amongst others with the development and application of Isotopes and Radiation Technology as a tool in the search for the optimal solution of various national development problems, such as those encountered in the fields of Agriculture, Livestock, health/medicine, Industry, Environment and Energy. The acquisition and development of the scientific and technical expertise, R and D facilities/instruments and infrastructure have been achieved primarily through bilateral and multilateral collaborative activities with domestic, foreign and international institutions. On the basis of the achieved R and D results, the acquired techniques have been progressively transferred to the end-users and applied in solving scientific-technical problems in the aforementioned fields. This paper gives a brief overview of the present status and future trend of activities in the development and applications of isotopes and radiation technology in Agriculture, Livestock and Industry in Indonesia. In the field of Agriculture the research activities are focussed on obtaining and disseminating new crop varieties with desired specific characteristics and on increasing soil fertilizer efficiency. These research results and those on livestock feed supplementation formula and disease prevention have been applied in helping farmers in various parts of Indonesia to increase their productivity. In industry, irradiation technology for food preservation and sterilization has been successfully transferred to the commercial companies. The same is also true for Non-Destructive Examination, Radioactive Tracer and Radiation Based Process Monitoring Techniques. Natural and radioactive isotopes have been widely used also in hydrology, sedimentology and geothermal studies. Highlights of the results are presented and discussed

  11. Development and application of isotopes and radiation technology in Indonesia

    International Nuclear Information System (INIS)

    Djaloeis, A.

    1997-01-01

    The National Atomic Energy Agency (BATAN) of the Republic of Indonesia is the highest agency in the country, charged amongst others with the development and application of Isotopes and Radiation Technology as a tool in the search for the optimal solution of various national development problems, such as those encountered in the fields of Agriculture, Livestock, health/medicine, Industry, Environment and Energy. The acquisition and development of the scientific and technical expertise, R and D facilities/instruments and infrastructure have been achieved primarily through bilateral and multilateral collaborative activities with domestic, foreign and international institutions. On the basis of the achieved R and D results, the acquired techniques have been progressively transferred to the end-users and applied in solving scientific-technical problems in the aforementioned fields. This paper gives a brief overview of the present status and future trend of activities in the development and applications of isotopes and radiation technology in Agriculture, Livestock and Industry in Indonesia. In the field of Agriculture the research activities are focussed on obtaining and disseminating new crop varieties with desired specific characteristics and on increasing soil fertilizer efficiency. These research results and those on livestock feed supplementation formula and disease prevention have been applied in helping farmers in various parts of Indonesia to increase their productivity. In industry, irradiation technology for food preservation and sterilization has been successfully transferred to the commercial companies. The same is also true for Non-Destructive Examination, Radioactive Tracer and Radiation Based Process Monitoring Techniques. Natural and radioactive isotopes have been widely used also in hydrology, sedimentology and geothermal studies. Highlights of the results are presented and discussed

  12. Low-carbon innovation and technology transfer in latecomer countries

    DEFF Research Database (Denmark)

    Lema, Adrian; Lema, Rasmus

    2016-01-01

    This paper examines the organizational arrangements for technology supply in solar photovoltaic projects in the Clean Development Mechanism (CDM). It shows that while lower middle-income countries typically import solar PV equipment into CDM projects, China, India and Thailand have begun to use new...... organizational arrangements for technology transfer which reflect the overall industry maturity in the solar PV sectors in these countries. This has great potential for long-term climate change mitigation efforts. However, the initiation of these new organizational arrangements often preceded the supply...... of technology into CDM projects. This raises important questions about the role of CDM in spearheading the development of technological capabilities required for sustainable development. The paper uses these findings to add to the literature about technology in CDM and to the wider policy debates over...

  13. Multimedia database retrieval technology and applications

    CERN Document Server

    Muneesawang, Paisarn; Guan, Ling

    2014-01-01

    This book explores multimedia applications that emerged from computer vision and machine learning technologies. These state-of-the-art applications include MPEG-7, interactive multimedia retrieval, multimodal fusion, annotation, and database re-ranking. The application-oriented approach maximizes reader understanding of this complex field. Established researchers explain the latest developments in multimedia database technology and offer a glimpse of future technologies. The authors emphasize the crucial role of innovation, inspiring users to develop new applications in multimedia technologies

  14. Technology transfer at CERN a study on inter-organizational knowledge transfer within multi-national R&D collaborations

    CERN Document Server

    Huuse, H; Streit-Bianchi, M

    2004-01-01

    This study focus on the knowledge aspect of inter-organizational technology transfer projects. We have studied two large R&D collaborations where CERN is involved as one of several participating organizations, in order to reveal the causalities related to the knowledge transfer processes within these projects. The objective of the study is to understand how knowledge transfer happens, identify influencing factors to the process, and finally investigate the outcome of such processes. The study is founded on a thorough literature review where we examine different aspects of inter-organizational knowledge transfer. Based on the theory, we develop an analytic framework and establish different elements in the knowledge transfer process to study in more detail. This framework illustrates the relation between the different elements in a knowledge transfer process and provides the structure for our empirical foundation. We perform an explanatory embedded multiple case study and analyze our findings in terms of th...

  15. Technology transfer. Its contribution to the Canadian nuclear industry

    International Nuclear Information System (INIS)

    Perryman, E.C.W.

    1977-01-01

    Technology transfer from the Laboratories of Atomic Energy of Canada Limited is discussed in relation to the birth and growth of the Canadian Nuclear Industry. The evolution of the laboratories and their changing emphasis during the commercialization of the CANDU reactor system is described

  16. Technology transfer for DOE's office of buildings and community systems: assessment and strategies

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.; Jones, D.W.; Kolb, J.O.; Snell, S.A.

    1986-07-01

    The uninterrupted availability of oil supplies over the past several years and the moderation of energy price increases has sent signals to consumers and decision-makers in the buildings industry that the ''energy crisis'' is over. As a result, efforts to promote energy-conserving technologies must emphasize benefits other than BTU savings. The improved ambience of daylit spaces and the lower first costs associated with installing down-sized HVAC systems in ''tight'' buildings are examples of benefits which are likely to more influential than estimates of energy saved. Successful technology transfer requires that an R and D product have intrinsic value and that these values be effectively communicated to potential users. Active technology transfer programs are more effective than passive ones. Transfer activities should involve more than simply making information available to those who seek it. Information should be tailored to meet the needs of specific user groups and disseminated through those channels which users normally employ. In addition to information dissemination, successful technology transfer involves the management of intellectual property, including patented inventions, copyrights, technical data, and rights to future inventions. When the public can best benefit from an invention through commercialization of a new product, the exclusivity necessary to protect the investment from copiers should be provided. Most federal technology transfer programs concentrate on information exchange and largely avoid intellectual property transfers.

  17. Venture Creation Programs: Bridging Entrepreneurship Education and Technology Transfer

    Science.gov (United States)

    Lackéus, Martin; Williams Middleton, Karen

    2015-01-01

    Purpose: The purpose of this paper is to explore how university-based entrepreneurship programs, incorporating real-life venture creation into educational design and delivery, can bridge the gap between entrepreneurship education and technology transfer within the university environment. Design/methodology/approach: Based on a literature review…

  18. Love and Hate in University Technology Transfer: Examining Faculty and Staff Conflicts and Ethical Issues

    Science.gov (United States)

    Hamilton, Clovia; Schumann, David

    2016-01-01

    With respect to university technology transfer, the purpose of this paper is to examine the literature focused on the relationship between university research faculty and technology transfer office staff. We attempt to provide greater understanding of how research faculty's personal values and research universities' organization values may differ…

  19. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration.

    Science.gov (United States)

    Yao, Ye

    2016-07-01

    The physical mechanisms of heat and mass transfer enhancement by ultrasound have been identified by people. Basically, the effect of 'cavitation' induced by ultrasound is the main reason for the enhancement of heat and mass transfer in a liquid environment, and the acoustic streaming and vibration are the main reasons for that in a gaseous environment. The adsorbent regeneration and food drying/dehydration are typical heat and mass transfer process, and the intensification of the two processes by ultrasound is of complete feasibility. This paper makes an overview on recent studies regarding applications of power ultrasound to adsorbent regeneration and food drying/dehydration. The concerned adsorbents include desiccant materials (typically like silica gel) for air dehumidification and other ones (typically active carbon and polymeric resin) for water treatment. The applications of ultrasound in the regeneration of these adsorbents have been proved to be energy saving. The concerned foods are mostly fruits and vegetables. Although the ultrasonic treatment may cause food degradation or nutrient loss, it can greatly reduce the food processing time and decrease drying temperature. From the literature, it can be seen that the ultrasonic conditions (i.e., acoustic frequency and power levels) are always focused on during the study of ultrasonic applications. The increasing number of relevant studies argues that ultrasound is a very promising technology applied to the adsorbent regeneration and food drying/dehydration. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Sandia technology: Engineering and science applications

    Science.gov (United States)

    Maydew, M. C.; Parrot, H.; Dale, B. C.; Floyd, H. L.; Leonard, J. A.; Parrot, L.

    1990-12-01

    This report discusses: protecting environment, safety, and health; Sandia's quality initiative; Sandia vigorously pursues technology transfer; scientific and technical education support programs; nuclear weapons development; recognizing battlefield targets with trained artificial neural networks; battlefield robotics: warfare at a distance; a spinning shell sizes up the enemy; thwarting would-be nuclear terrorists; unattended video surveillance system for nuclear facilities; making the skies safer for travelers; onboard instrumentation system to evaluate performance of stockpile bombs; keeping track with lasers; extended-life lithium batteries; a remote digital video link acquires images securely; guiding high-performance missiles with laser gyroscopes; nonvolatile memory chips for space applications; initiating weapon explosives with lasers; next-generation optoelectronics and microelectronics technology developments; chemometrics: new methods for improving chemical analysis; research team focuses ion beam to record-breaking intensities; standardizing the volt to quantum accuracy; new techniques improve robotic software development productivity; a practical laser plasma source for generating soft x-rays; exploring metal grain boundaries; massively parallel computing; modeling the amount of desiccant needed for moisture control; attacking pollution with sunshine; designing fuel-conversion catalysts with computers; extending a nuclear power plant's useful life; plasma-facing components for the International Thermonuclear Experimental Reactor.

  1. Participation of the national industry within a nuclear power plant program by technology transfer from the point of view of the main contractor

    International Nuclear Information System (INIS)

    Kopp, H.

    1986-04-01

    The broad scope of components needed in a nuclear power plant with various technical requirements offer a big opportunity for the participation of local industries in the construction of such plants. Depending on the existing capability of the industrial enterprises, the scope of national participation can be increased by technology transfer on all technical areas to be applied for the construction of NPPs. Such technology requires as basis a nuclear program of the country determined and supported by the government and the utilities. This program has to be defined as realistic as even possible adjoined to the future energy demand of the country. Furthermore the available capability, existing qualifications and equipment of the national industry have to be considered. On the basis of these fundamental requirements a tailormade technology transfer program has to be elaborated in close cooperation with an experienced main contractor of the plant and his partners for such technology transfer and should be established afterwards. This program has to consider not only the goal to achieve finally the independent production of components and equipment for NPPs or the construction of complete power plant units itself, but also the economic benefit of such a program for the country. The costs of technology transfer and the necessary investment of the national industry required for the manufacture of nuclear components have to be thoroughly investigated, based on the expected scope of products to be manufactured for the nuclear power plants according to the nuclear program. Furthermore the application of the technology transferred for other components e.g. for conventional power stations, mineral-oil or chemical industrial plants has to be considered. By a tailormade nuclear technology transfer program, executed by qualified and experienced partners not only the quality of the products of the national industry for NPPs will be improved, but also the general standard regarding

  2. Technology Transfer as a Form of Co-creation for Future Market

    DEFF Research Database (Denmark)

    Rai, Sudhanshu; Van Belle, Jean-Poul; Kühn Pedersen, Mogens

    2010-01-01

    development as an instance of capacity building, where technology transfer in particular has been considered primarily as a diffusion process. Technology in this case, is introduced because it is seen to be a benevolent lever for human development. In this paper we develop an alternative argument...... to the benevolence thesis predicating its success or failure in a local context on the nature of the co-creation process and the facilitation of a parallel market where the outcomes of the co-creation process can be elucidated. The endeavour is to develop the idea of co-creation as an alternative framework...... to technology transfer. Although we make explicit the purpose of co-creation, which is to enable the formation of future markets, we spend little effort on explicating what the objective of this exercise is. Our preoccupation at this stage is primarily trying to explain co-creation and not so much the objective...

  3. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  4. Formal and Informal Knowledge and Technology Transfer from Academia to Industry

    DEFF Research Database (Denmark)

    Grimpe, Christoph; Hussinger, Katrin

    2013-01-01

    Literature has identified formal and informal channels in university knowledge and technology transfer (KTT). While formal KTT typically involves a legal contract on a patent or on collaborative research activities, informal transfer channels refer to personal contacts and hence to the tacit...... dimension of knowledge transfer. Research is, however, scarce regarding the interaction of formal and informal transfer mechanisms. In this paper, we analyze whether these activities are mutually reinforcing, i.e., complementary. Our analysis is based on a comprehensive data-set of more than 2,000 German...... manufacturing firms and confirms a complementary relationship between formal and informal KTT modes: using both transfer channels contributes to higher innovation performance. The management of the firm should therefore strive to maintain close informal relationships with universities to realize the full...

  5. Innovation and international technology transfer: The case of the Chinese photovoltaic industry

    International Nuclear Information System (INIS)

    Tour, Arnaud de la; Glachant, Matthieu; Meniere, Yann

    2011-01-01

    China is the largest solar photovoltaic cell producer in the world, with more than one third of worldwide production in 2008, exporting more than 95 percent of what it produces. The purpose of this paper is to understand the drivers of this success and its limits, with a particular emphasis on the role of technology transfers and innovation. Our analysis combines a review of international patent data at a detailed technology level with field interviews of ten Chinese PV companies. We show that Chinese producers have acquired the technologies and skills necessary to produce PV products through two main channels: the purchasing of manufacturing equipment in a competitive international market and the recruitment of skilled executives from the Chinese diaspora who built pioneer PV firms. The success of these firms in their market is, however, not reflected in their performance in terms of innovation. Rather, patent data highlight a policy-driven effort to catch up in critical technological areas. - Research Highlights: →China has become the world leader in the production of PV cells and modules, but remains far behind industrialized countries in the more upstream segments of the photovoltaic industry. →International technology transfers from industrialized countries to China have taken place through two main channels: the competitive market of manufacturing equipments, and labour mobility. →Fierce competition between equipment manufacturers and public availability of core technology have prevented intellectual property rights from hindering technology transfers towards China. →As compared with their foreign competitors, Chinese firms file many patents, but of low technical and commercial value. →Chinese firms' innovation is focused on process rather than on products.

  6. Solid lubricant mass contact transfer technology usage for vacuum ball bearings longevity increasing

    Science.gov (United States)

    Arzymatov, B.; Deulin, E.

    2016-07-01

    A contact mass transfer technological method of solid lubricant deposition on components of vacuum ball bearings is presented. Physics-mathematical model of process contact mass transfer is being considered. The experimental results of ball bearings covered with solid lubricant longevity in vacuum are presented. It is shown that solid lubricant of contact mass transfer method deposition is prospective for ball bearing longevity increasing.

  7. Knowledge Incubation and Collaboration for Science, Technology Adoption, Resourcing and Transfer (KIC-START)

    International Nuclear Information System (INIS)

    Ugbor, U.; Cilliers, A.; Kurwitz, R. C.

    2016-01-01

    Full text: In order to address the effectiveness of national networks in Member States, and to implement regional and national strategies, it is important to understand the necessary conditions that ensure successful creation and sharing of knowledge, including, effective policy and programme incentives, promoting collaboration, innovation and networking. Furthermore, Member States with aspirations to develop their nuclear programmes (power and non-power applications in agriculture, industry and health sector), need to develop their own capabilities if they are to fully benefit from the social and economic opportunities from nuclear science and technology. Ultimately nuclear innovation programmes that take into account the role of universities, education and industry would lead to a robust nuclear programme that maximizes social and economic benefit. This paper a presents an initiative for capturing best practices in the areas of university collaboration and innovation, which are driven by learning, research and entrepreneurship. The initiative covers Knowledge (creation), Innovation and Collaboration for Science and Technology Adoption, Resourcing and Transfer (KIC-START). (author

  8. A proton medical accelerator by the SBIR route - an example of technology transfer

    International Nuclear Information System (INIS)

    Martin, R.L.

    1989-01-01

    Medical facilities for radiation treatment of cancer with protons have been established in many laboratories throughout the world. Essentially all of these have been designed as physics facilities, however, because of the requirement for protons up to 250 MeV. Most of the experience on this branch of accelerator technology lies in the national laboratories and a few large universities. A major issue is the transfer of this technology to the commercial sector to provide hospitals with simple, reliable, and relatively inexpensive accelerators for this application. The author has chosen the SBIR route to accomplish this goal. ACCTEK Associates has received grants from the National Cancer Institute for development of the medical accelerator and beam delivery systems. Considerable encouragement and help has been received from Argonne National Laboratory and the Department of Energy. The experiences to date and the pros and cons on this approach to commercializing medical accelerators are described. (orig.)

  9. A proton medical accelerator by the SBIR route: An example of technology transfer

    International Nuclear Information System (INIS)

    Martin, R.L.

    1988-01-01

    Medical facilities for radiation treatment of cancer with protons have been established in many laboratories throughout the world. Essentially all of these have been designed as physics facilities, however, because of the requirement for protons up to 250 MeV. Most of the experience in this branch of accelerator technology lies in the national laboratories and a few large universities. A major issue is the transfer of this technology to the commercial sector to provide hospitals with simple, reliable, and relatively inexpensive accelerators for this application. The author has chosen the SBIR route to accomplish this goal. ACCTEK Associates have received grants from the National Cancer Institute for development of the medical accelerator and beam delivery systems. Considerable encouragement and help has been received from Argonne National Laboratory and the Department of Energy. The experiences to date and the pros and cons on this approach to commercializing medical accelerators are described. 4 refs., 1 fig

  10. Commercial technologies from the SP-100 program

    International Nuclear Information System (INIS)

    Truscello, V.C.; Fujita, T.; Mondt, J.F.

    1995-01-01

    For more than a decade, Jet Propulsion Labortory and Los Alamos have managed a multi-agency funded effort to develop a space reactor power system. This SP-100 Program has developed technologies required for space power systems that can be implemented in the industrial and commercial sectors to improve competitiveness in the global economy. Initial steps taken to transfer this technology from the laboratories to industrial and commercial entities within United States include: (1) identifying specific technologies having commercial potential; (2) distributing information describing the identified technologies and interacting with interested commercial and industrial entities to develop application-specific details and requirements; and (3) providing a technological data base that leads to transfer of technology or the forming of teaming arrangements to accomplish the transfer by tailoring the technology to meet application-specific requirements. SP-100 technologies having commercial potential encompass fabrication processes, devices, and components. Examples: a process for bonding refractory metals to graphite, a device to sense the position of an actuator and a component to enable rotating machines to operate without supplying lubrication (self-lubricating ball bearing). Shortly after the NASA Regional Technology Transfer Centers widely disseminated information covering SP-100 technologies, over one hundred expressions of interest were received, which indicate that there is a large potential benefit in transferring SP-100 technology. Interactions with industrial and commercial entities have identified a substantial need for creating teaming arrangements involving the interested entity and personnel from laboratories and their contractors, who have the knowledge and ability to tailor the technology to meet application-specific requirements. copyright 1995 American Institute of Physics

  11. Enabling frameworks for low-carbon technology transfer to small emerging economies: Analysis of ten case studies in Chile

    International Nuclear Information System (INIS)

    Pueyo, Ana

    2013-01-01

    Technology transfer is crucial to reduce the carbon intensity of developing countries. Enabling frameworks need to be in place to allow foreign technologies to flow, to be absorbed and to bring about technological change in the recipient country. This paper contributes to identifying these enabling factors by analysing 10 case studies of low-carbon technology transfer processes based in Chile. Our findings show the importance of strong economic and institutional fundamentals, a sound knowledge base, a sizable and stable demand and a functioning local industry. Policy recommendations are derived to improve the penetration of foreign low-carbon technologies in developing countries, focusing on the particularities of small and medium emerging economies. - Highlights: ► We analyse 10 case studies of low carbon technology transfer to Chile. ► We identify enablers of technology transfer to developing countries. ► We provide policy recommendations focusing on small and medium economies.

  12. Technology development and applications at Fernald

    International Nuclear Information System (INIS)

    Pettit, P.J.; Skriba, M.C.; Warner, R.D.

    1995-01-01

    At the Fernald Environmental Management Project (FEMP) northwest of Cincinnati, Ohio, the U.S. Department of Energy and contractor Fernald Environmental Restoration Management Corporation (FERMCO) are aggressively pursuing both the development and the application of improved, innovative technology to the environmental restoration task. Application of emerging technologies is particularly challenging in a regulatory environment that places pressure on operational managers to develop and meet tight schedules. The regulatory and operational needs make close communication essential between technology developers and technology users (CERCLA/RCRA Unit managers). At Fernald this cooperation and communication has led, not only to the development and demonstration of new technologies with applications at other sites, but also to application of new technologies directly to the Fernald clean up. New technologies have been applied to improve environmental safety and health, improve the effectiveness of restoration efforts, and to cut restoration costs. The paper will describe successful efforts to develop and apply new technologies at the FEMP and will emphasize those technologies that have been applied and are planned for use in the clean up of this former uranium production facility

  13. Study on the efficient export control for the Intangible Transfer of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sung-ho; Choi, Sun-do; Lee, Chansuh; Kim, Jong-sook [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    Technical Data may take forms such as document, drawing, description, report, manual and instruction. And, it can be written or recorded on storage medium such as disk, tape and read-only memories. Technical assistance may take forms such as instruction, skill, training, working knowledge and consulting services. Technical data or assistance can be transferred by intangible manners such as an electronic means (e.g. email, internet, telephone or fax) and through the oral (e.g. seminar, meeting or workshop). Currently, ROK's export control regulation is not classified between the transfer of listed items (or general technology) and intangible transfer of technology (ITT). It may make a loop hole or cause inefficient implementation of export control. The purpose of this study is to suggest the efficient control method for ITT independent from item control method. From the result of this study, several main feathers in regulations of developed countries are drawn. First, they define that technical assistance (or support) is the object of permission. And, they have a clear distinction between resident and non-resident. Second, The UK and Germany do not control the technical assistance related to construction and operation of nuclear facilities for peaceful use, as long as technology does not transfer to recipient that has a nuclear proliferation concerns such as the DPRK, Iran or Pakistan.

  14. Federal technology transfer requirements :a focused study of principal agencies approaches with implications for the Department of Homeland Security.

    Energy Technology Data Exchange (ETDEWEB)

    Koker, Denise; Micheau, Jill M.

    2006-07-01

    This report provides relevant information and analysis to the Department of Homeland Security (DHS) that will assist DHS in determining how to meet the requirements of federal technology transfer legislation. These legal requirements are grouped into five categories: (1) establishing an Office of Research and Technology Applications, or providing the functions thereof; (2) information management; (3) enabling agreements with non-federal partners; (4) royalty sharing; and (5) invention ownership/obligations. These five categories provide the organizing framework for this study, which benchmarks other federal agencies/laboratories engaged in technology transfer/transition Four key agencies--the Department of Health & Human Services (HHS), the U.S. Department of Agriculture (USDA), the Department of Energy (DOE), and the Department of Defense (DoD)--and several of their laboratories have been surveyed. An analysis of DHS's mission needs for commercializing R&D compared to those agencies/laboratories is presented with implications and next steps for DHS's consideration. Federal technology transfer legislation, requirements, and practices have evolved over the decades as agencies and laboratories have grown more knowledgeable and sophisticated in their efforts to conduct technology transfer and as needs and opinions in the federal sector have changed with regards to what is appropriate. The need to address requirements in a fairly thorough manner has, therefore, resulted in a lengthy paper. There are two ways to find summary information. Each chapter concludes with a summary, and there is an overall ''Summary and Next Steps'' chapter on pages 57-60. For those readers who are unable to read the entire document, we recommend referring to these pages.

  15. Transferring brain-computer interfaces beyond the laboratory: successful application control for motor-disabled users.

    Science.gov (United States)

    Leeb, Robert; Perdikis, Serafeim; Tonin, Luca; Biasiucci, Andrea; Tavella, Michele; Creatura, Marco; Molina, Alberto; Al-Khodairy, Abdul; Carlson, Tom; Millán, José D R

    2013-10-01

    Brain-computer interfaces (BCIs) are no longer only used by healthy participants under controlled conditions in laboratory environments, but also by patients and end-users, controlling applications in their homes or clinics, without the BCI experts around. But are the technology and the field mature enough for this? Especially the successful operation of applications - like text entry systems or assistive mobility devices such as tele-presence robots - requires a good level of BCI control. How much training is needed to achieve such a level? Is it possible to train naïve end-users in 10 days to successfully control such applications? In this work, we report our experiences of training 24 motor-disabled participants at rehabilitation clinics or at the end-users' homes, without BCI experts present. We also share the lessons that we have learned through transferring BCI technologies from the lab to the user's home or clinics. The most important outcome is that 50% of the participants achieved good BCI performance and could successfully control the applications (tele-presence robot and text-entry system). In the case of the tele-presence robot the participants achieved an average performance ratio of 0.87 (max. 0.97) and for the text entry application a mean of 0.93 (max. 1.0). The lessons learned and the gathered user feedback range from pure BCI problems (technical and handling), to common communication issues among the different people involved, and issues encountered while controlling the applications. The points raised in this paper are very widely applicable and we anticipate that they might be faced similarly by other groups, if they move on to bringing the BCI technology to the end-user, to home environments and towards application prototype control. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Spray cooling heat transfer: Technology overview and assessment of future challenges for micro-gravity application

    International Nuclear Information System (INIS)

    Silk, Eric A.; Golliher, Eric L.; Paneer Selvam, R.

    2008-01-01

    Advanced on-board flight systems for future NASA space exploration programs consist of components such as laser-diode arrays (LDA's) and multi-chip modules (MCM's). Thermal management of these systems require high heat flux cooling capability (≥100 W/cm 2 ), tight temperature control (approx. ±2 deg. C), reliable start-up (on demand) and long term stability. Traditional multiphase thermal control technologies for space flight (e.g., loop heat pipes, capillary pumped loops, etc.) satisfy the temperature control, start-up and stability requirements, but their heat flux removal capabilities are limited. Spray cooling can provide high heat fluxes in excess of 100 W/cm 2 using fluorinerts and over 1000 W/cm 2 with water while allowing tight temperature control at low coolant fluid flow rates. Spray cooling has been flight proven in an open loop configuration through the Space shuttle's flash evaporator system (FES). However, several closed system issues require investigation to further advance the technology to a technology readiness level (TRL) appropriate for closed system space flight application. This paper provides a discussion of the current status of spray cooling technology as well as NASA's goals, current direction, and challenges associated with the implementation and practice of this technology in the micro-gravity environment

  17. Advanced robotic technologies for transfer at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Bennett, P.C.

    1994-01-01

    Hazardous operations which have in the past been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. As a result, remote systems are needed to accomplish many hazardous materials handling tasks such as the clean-up of waste sites in which the exposure of personnel to radiation, chemical, explosive and other hazardous constituents is unacceptable. Computer models augmented by sensing, and structured, modular computing environments are proving effective in automating many unstructured hazardous tasks. Work at Sandia National Laboratories (SNL) has focused on applying flexible automation (robotics) to meet the needs of the U.S. Department of Energy (USDOE). Dismantling facilities, environmental remediation, and materials handling in changing, hazardous environments lead to many technical challenges. Computer planning, monitoring and operator assistance shorten training cycles, reduce errors, and speed execution of operations. Robotic systems that re-use well-understood generic technologies can be much better characterized than robotic systems developed for a particular application, leading to a more reliable and safer systems. Further safety in robotic operations results from use of environmental sensors and knowledge of the task and environment. Collision detection and avoidance is achieved from such sensor integration and model-based control. This paper discusses selected technologies developed at SNL for use within the USDOE complex that have been or are ready for transfer to government and industrial suppliers. These technologies include sensors, sub-systems, and the design philosophy applied to quickly integrate them into a working robotic system. This paper represents the work of many people at the Intelligent Systems and Robotics Center at SNL, to whom the credit belongs

  18. Technology status of spray calcination--vitrification of high-level liquid waste for full-scale application

    International Nuclear Information System (INIS)

    Keeley, R.B.; Bonner, W.F.; Larson, D.E.

    1977-01-01

    Spray calcination and vitrification technology for stabilization of high-level nuclear wastes has been developed to the point that initiation of technology transfer to an industrial-sized facility could begin. This report discusses current process and equipment development status together with additional R and D studies and engineering evaluations needed. Preliminary full-scale process and equipment descriptions are presented. Technology application in a full-scale plant would blend three distinct maintenance design philosophies, depending on service life anticipated: (1) totally remote maintenance with limited viewing and handling equipment, (2) totally remote maintenance with extensive viewing and handling equipment, and (3) contact maintenance

  19. Strategic Evaluation of University Knowledge and Technology Transfer Effectiveness

    Science.gov (United States)

    Tran, Thien Anh

    2013-01-01

    Academic knowledge and technology transfer has been growing in importance both in academic research and practice. A critical question in managing this activity is how to evaluate its effectiveness. The literature shows an increasing number of studies done to address this question; however, it also reveals important gaps that need more research.…

  20. PROMECE - Research Results Transfer - Collection of technology trends reports (ICT)

    OpenAIRE

    ITI

    2016-01-01

    Instituto Tecnológico de Informática has a non-economic Activities Plan (PROMECE) whose general objective is to strengthen the research lines in which the Institute works, within the scope of Information and Communication Technologies (ICT). Through this plan of activities a work is carried out to transfer the results obtained in the execution of R+D+I projects within these lines or areas of action. The transfer actions are aimed at companies and the industrial sector and society as a who...

  1. Process metallurgical evaluation and application of very fine bubbling technology

    Energy Technology Data Exchange (ETDEWEB)

    Catana, C.; Gotsis, V.S.; Dourdounis, E.; Angelopoulos, G.N.; Papamantellos, D.C. [Lab. of Metallurgy, Univ. of Patras, Rio (Greece); Mavrommatis, K. [IEHK, RWTH Aachen, Aachen (Germany)

    2002-12-01

    The potential of VFB (Very Fine Bubbling)-technology in steelmaking, developed for the production of super clean steels, was investigated. Recent R and D work has proven that with very fine argon bubbling through a developed Special Porous Plug (SPP) at low flow rates, the total oxygen content of low carbon steel grades can be lowered to a level of 6 ppm under industrial vacuum conditions and to a level of 10 ppm under argon protective atmosphere. The perspective of industrial application of the VFB technology to a 56-t ladle furnace of Helliniki Halyvourgia S.A., Greece, in order to improve steel cleanliness, requires additional R and D efforts. It is important to define the limits of VFB technology in respect of alloys dissolution, mixing time and homogenisation of steel and slag/metal reactions. In this work, a gas driven bubble aqueous reactor model simulating the bottom gas stirred ladle by means of gas injection through a SPP and a conventional porous plug was studied. Various operating conditions as well as different positions for the porous plug with and without a top oil layer were simulated. Tests concerning mixing time, solid-liquid mass transfer and critical gas flow rate, liquid/liquid mass transfer, using the SPP and a conventional porous plug have been performed. The evaluation of experimental results delivered important information for the design and operation of steel ladles, applying VFB-technology. Experimental results with SPP bubbles' agitated steel (1600 C) in laboratory and technical scale experiments in IF and VIF are presented and discussed. (orig.)

  2. Transferring aviation human factors technology to the nuclear power industry

    International Nuclear Information System (INIS)

    Montemerlo, M.D.

    1981-01-01

    The purpose of this paper is to demonstrate the availability of aviation safety technology and research on problems which are sufficiently similar to those faced by the nuclear power industry that an agressive effort to adapt and transfer that technology and research is warranted. Because of time and space constraints, the scope of this paper is reduced from a discussion of all of aviation safety technology to the human factors of air carrier safety. This area was selected not only because of similarities in the human factors challenges shared by both industries (e.g. selection, training, evaluation, certification, etc.) but because experience in aviation has clearly demonstrated that human error contributes to a substantially greater proportion of accidents and incidents than does equipment failure. The Congress of the United States has placed a great deal of emphasis on investigating and solving human factors problems in aviation. A number of recent examples of this interest and of the resulting actions are described. The opinions of prominent aviation organizations as to the human factors problems most in need of research are presented, along with indications of where technology transfer to the nuclear power industry may be viable. The areas covered include: fatigue, crew size, information transfer, resource management, safety data-bases, the role of automation, voice and data recording systems, crew distractions, the management of safety regulatory agencies, equipment recertification, team training, crew work-load, behavioural factors, human factors of equipment design, medical problems, toxicological factors, the use of simulators for training and certification, determining the causes of human errors, the politics of systems improvement, and importance of both safety and public perception of safety if the industry is to be viable. (author)

  3. Millimeter-Wave Wireless Power Transfer Technology for Space Applications

    Science.gov (United States)

    Chattopadhyay, Goutam; Manohara, Harish; Mojarradi, Mohammad M.; Vo, Tuan A.; Mojarradi, Hadi; Bae, Sam Y.; Marzwell, Neville

    2008-01-01

    In this paper we present a new compact, scalable, and low cost technology for efficient receiving of power using RF waves at 94 GHz. This technology employs a highly innovative array of slot antennas that is integrated on substrate composed of gold (Au), silicon (Si), and silicon dioxide (SiO2) layers. The length of the slots and spacing between them are optimized for a highly efficient beam through a 3-D electromagnetic simulation process. Antenna simulation results shows a good beam profile with very low side lobe levels and better than 93% antenna efficiency.

  4. A proton medical accelerator by the SBIR route — an example of technology transfer

    Science.gov (United States)

    Martin, R. L.

    1989-04-01

    Medical facilities for radiation treatment of cancer with protons have been established in many laboratories throughout the world. Essentially all of these have been designed as physics facilities, however, because of the requirement for protons up to 250 MeV. Most of the experience in this branch of accelerator technology lies in the national laboratories and a few large universities. A major issue is the transfer of this technology to the commercial sector to provide hospitals with simple, reliable and relatively inexpensive accelerators for this application. The author has chosen the SBIR route to accomplish this goal. ACCTEK Associates has received grants from the National Cancer Institute for development of the medical accelerator and beam delivery systems. Considerable encouragement and help has been received from Argonne National Laboratory and the Department of Energy. The experiences to date and the pros and cons on this approach to commercializing medical accelerators are described.

  5. NAC international dry spent fuel transfer technology

    International Nuclear Information System (INIS)

    Shelton, Thomas A.; Malone, James P.; Patterson, John R.

    1996-01-01

    cask. The loaded transfer cask is then placed upon the adapter and the fuel canister is transferred into the cavity of the shipping cask. This operation is repeated until the shipping cask is completely loaded. Once completed, the shipping cask is prepared for shipment in the normal manner. One significant advantage of utilizing this technology is the minimization of cask decontamination efforts which are typically time consuming following wet loading. DTS equipment has been used with research reactor and MTR fuel assemblies in Taiwan, Iraq and Greece over the past several years. The handling of canistered fuel has enabled NAC to standardize the canister handling equipment and transfer system. The entire process has proven to be a straightforward and direct approach in solving facility interface problems in the spent fuel transportation arena. NAC completed DTS operations at the Neeley Nuclear Research Center on the Georgia Tech campus prior to the Olympic Games. The DTS was most recently used at the La Reina reactor in Santiago, Chile and will be used to load the fuel at the Brookhaven National Laboratory in late 1996 or early 1997, depending on DOE's schedule. (author)

  6. Research to practice in addiction treatment: key terms and a field-driven model of technology transfer.

    Science.gov (United States)

    2011-09-01

    The transfer of new technologies (e.g., evidence-based practices) into substance abuse treatment organizations often occurs long after they have been developed and shown to be effective. Transfer is slowed, in part, due to a lack of clear understanding about all that is needed to achieve full implementation of these technologies. Such misunderstanding is exacerbated by inconsistent terminology and overlapping models of an innovation, including its development and validation, dissemination to the public, and implementation or use in the field. For this reason, a workgroup of the Addiction Technology Transfer Center (ATTC) Network developed a field-driven conceptual model of the innovation process that more precisely defines relevant terms and concepts and integrates them into a comprehensive taxonomy. The proposed definitions and conceptual framework will allow for improved understanding and consensus regarding the distinct meaning and conceptual relationships between dimensions of the technology transfer process and accelerate the use of evidence-based practices. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Technology Transfer From The University of Minas Gerais to a Private Company: Process and Results

    OpenAIRE

    Alves De Oliveira, Maria Do Rosário; Girolleti, Domingos A.; Maccari, Emerson Antonio; Storopoli, José Eduardo

    2016-01-01

    Economic growth and technological development are closely related. In this article, the   process of technology transfer developed by the UFMG (a new sole cushioning system for a footwear industry in Nova Serrana city, in Minas Gerais State) is analyzed, using a case study. The data were collected from UFMG document research and through semi-structured interviews with the principal stakeholders. The process of technology transfer from the university to Crômic was a great learning process for ...

  8. Screening applications in drug discovery based on microfluidic technology

    Science.gov (United States)

    Eribol, P.; Uguz, A. K.; Ulgen, K. O.

    2016-01-01

    Microfluidics has been the focus of interest for the last two decades for all the advantages such as low chemical consumption, reduced analysis time, high throughput, better control of mass and heat transfer, downsizing a bench-top laboratory to a chip, i.e., lab-on-a-chip, and many others it has offered. Microfluidic technology quickly found applications in the pharmaceutical industry, which demands working with leading edge scientific and technological breakthroughs, as drug screening and commercialization are very long and expensive processes and require many tests due to unpredictable results. This review paper is on drug candidate screening methods with microfluidic technology and focuses specifically on fabrication techniques and materials for the microchip, types of flow such as continuous or discrete and their advantages, determination of kinetic parameters and their comparison with conventional systems, assessment of toxicities and cytotoxicities, concentration generations for high throughput, and the computational methods that were employed. An important conclusion of this review is that even though microfluidic technology has been in this field for around 20 years there is still room for research and development, as this cutting edge technology requires ingenuity to design and find solutions for each individual case. Recent extensions of these microsystems are microengineered organs-on-chips and organ arrays. PMID:26865904

  9. Screening applications in drug discovery based on microfluidic technology.

    Science.gov (United States)

    Eribol, P; Uguz, A K; Ulgen, K O

    2016-01-01

    Microfluidics has been the focus of interest for the last two decades for all the advantages such as low chemical consumption, reduced analysis time, high throughput, better control of mass and heat transfer, downsizing a bench-top laboratory to a chip, i.e., lab-on-a-chip, and many others it has offered. Microfluidic technology quickly found applications in the pharmaceutical industry, which demands working with leading edge scientific and technological breakthroughs, as drug screening and commercialization are very long and expensive processes and require many tests due to unpredictable results. This review paper is on drug candidate screening methods with microfluidic technology and focuses specifically on fabrication techniques and materials for the microchip, types of flow such as continuous or discrete and their advantages, determination of kinetic parameters and their comparison with conventional systems, assessment of toxicities and cytotoxicities, concentration generations for high throughput, and the computational methods that were employed. An important conclusion of this review is that even though microfluidic technology has been in this field for around 20 years there is still room for research and development, as this cutting edge technology requires ingenuity to design and find solutions for each individual case. Recent extensions of these microsystems are microengineered organs-on-chips and organ arrays.

  10. Technology transfer and design conversion of a dry spent fuel storage system in Ukraine

    International Nuclear Information System (INIS)

    Peacock, R.C.; Marcelli, D.G.

    1998-01-01

    A number of unique issues surfaced in the technology transfer and design conversion of a US dry spent fuel storage technology in Ukraine. Unique challenges were encountered in the areas of nuclear design conversion, technical codes and standards, material selection and qualification, fabrication, construction and testing, quality assurance, documentation, and translation and verification processes. Technology transfer and design conversion were undertaken for both concrete and steel components for the project. The overall effort presented significant technical and cultural challenges to both the US and Ukrainian side, but technical exchange and design improvements to achieve a common goal have been reached. (author)

  11. 77 FR 46855 - Small Business Technology Transfer Program Policy Directive

    Science.gov (United States)

    2012-08-06

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Chapter I RIN 3245-AF45 Small Business Technology Transfer Program Policy Directive AGENCY: Small Business Administration. ACTION: Final policy directive with request for comments. SUMMARY: The U.S. Small Business Administration (SBA) is amending its Small Business...

  12. CERN’s policy in the field of knowledge and technology transfer goes global

    CERN Multimedia

    CERN Bulletin

    On 2 November, the Knowledge & Technology Transfer (KTT) Group presented to the Directorate three proposals that aim to enhance KTT activities. One important aspect of the proposals is the direct involvement of all members of CERN, who are strongly encouraged to communicate any ideas for additional applications of their work. KTT is a high-priority activity area because of its potential to demonstrate the role of CERN as a source of innovation, delivering tangible benefits to society. In particular, through its know-how and its leadership, CERN is today generating innovations applicable in domains such as medical sciences, energy and the environment, as well as many others. “The measures endorsed by the Directorate on 2 November include a comprehensive policy for managing the intellectual property related to CERN technologies”, explains Claudio Parrinello, head of the KTT Group in the DG Department. “This includes a proposal to redistribute part of the income generated by ...

  13. Planning and Operation of Commercial Application Center

    International Nuclear Information System (INIS)

    Kim, Jun Yeon; Kim, Kye Ryung; Lee, Tae Joon; Lee, Jae Hyeong; Park, Je Won; Lee, Jae Sang

    2003-06-01

    The objectives of this R and D project are as follows : First, transferring developed technologies to outside companies and operating technology market to vitalize technology transactions, Second, developing commercial application projects to transfer technologies for commercial purposes and to solve interface problems in commercial applications, Third, enhancing commercial utilizations of developed accelerator and beam utilization technologies, Finally. preparing infra-structures for the development of over 30 venture- businesses based on achieved technologies through the Proton Engineering Frontier Project

  14. Planning and Operation of Commercial Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Yeon; Kim, Kye Ryung; Lee, Tae Joon; Lee, Jae Hyeong; Park, Je Won; Lee, Jae Sang

    2003-06-15

    The objectives of this R and D project are as follows : First, transferring developed technologies to outside companies and operating technology market to vitalize technology transactions, Second, developing commercial application projects to transfer technologies for commercial purposes and to solve interface problems in commercial applications, Third, enhancing commercial utilizations of developed accelerator and beam utilization technologies, Finally. preparing infra-structures for the development of over 30 venture- businesses based on achieved technologies through the Proton Engineering Frontier Project.

  15. Investigation of monitoring technologies for heat transfer corrosion in reprocessing equipment

    International Nuclear Information System (INIS)

    Tsukatani, I.; Kiuchi, K.

    2004-01-01

    Two types of in-situ monitoring techniques using electrical resistance methods were developed for estimating the wall thinning of heat transfer tubes used in evaporators for Purex process on commercial reprocessing plants. The corrosion rate is accelerated with oxidizer ions formed by the thermal decomposition of nitric acid under heat flux. An in-situ corrosion sensor was developed for estimating the corrosion rate of heat transfer tubes using miniature heat transfer tube specimens under heat flux control. It is possible to simulate the heating condition as same as heat transfer tubes. The applicability was evaluated by setting it in gas-liquid separator in a mock-up evaporator for acid recovery. The sensitivity of electric resistance methods is increased with decreasing the residual thickness of probe tube. The other is the electrical potential drop method using direct current so-called the field signature method. It is applicable to estimate the corrosiveness of reprocessing nitric acid by setting it on the drain tube in evaporator. The sensitivity to the thinning rate of tubes wall machined artificially was obtained within ±10% to the wall thickness. It has the non-sensitive region nearly 0.1mm up to begin working. The practical applicability has been also evaluated by setting it in a mock-up evaporator. (author)

  16. IPAD: A unique approach to government/industry cooperation for technology development and transfer

    Science.gov (United States)

    Fulton, Robert E.; Salley, George C.

    1985-01-01

    A key element to improved industry productivity is effective management of Computer Aided Design / Computer Aided Manufacturing (CAD/CAM) information. To stimulate advancement, a unique joint government/industry project designated Integrated Programs for Aerospace-Vehicle Design (IPAD) was carried out from 1971 to 1984. The goal was to raise aerospace industry productivity through advancement of computer based technology to integrate and manage information involved in the design and manufacturing process. IPAD research was guided by an Industry Technical Advisory Board (ITAB) composed of over 100 representatives from aerospace and computer companies. The project complemented traditional NASA/DOD research to develop aerospace design technology and the Air Force's Integrated Computer Aided Manufacturing (ICAM) program to advance CAM technology. IPAD had unprecedented industry support and involvement and served as a unique approach to government industry cooperation in the development and transfer of advanced technology. The IPAD project background, approach, accomplishments, industry involvement, technology transfer mechanisms and lessons learned are summarized.

  17. Gaps, barriers and conceptual chasms: theories of technology transfer and energy in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Shove, E. [University of Lancaster (United Kingdom). Centre for the Study of Environmental Change

    1998-12-01

    Having shown how much energy might be saved through the use of economically worthwhile measures and technologies, researchers and policy makers then find themselves trying to close the gap between current practice and recognised technical potential. The ensuing process of technology transfer is often seen as a process of overcoming 'non technical barriers' which inhibit the realisation of proven technical potential. This familiar approach depends upon a strong conceptual distinction between the social, on the one hand, and the technical, on the other. But does it make sense to talk of technical potential in the abstract? Do people really have technologies 'transferred' upon them? Drawing upon ideas from the sociology of science and technology and on recent research funded by Britain's Economic and Social Research Council, this paper unpacks conventional beliefs about the diffusion of energy efficient technologies and suggests an alternative approach which acknowledges the social structuring of technical innovation. (author)

  18. Technology Transfer and Outreach for SNL/Rochester ALPHA Project.

    Energy Technology Data Exchange (ETDEWEB)

    Sinars, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    This report describes the next stage goals and resource needs for the joint Sandia and University of Rochester ARPA-E project. A key portion of this project is Technology Transfer and Outreach, with the goal being to help ensure that this project develops a credible method or tool that the magneto-inertial fusion (MIF) research community can use to broaden the advocacy base, to pursue a viable path to commercial fusion energy, and to develop other commercial opportunities for the associated technology. This report describes an analysis of next stage goals and resource needs as requested by Milestone 5.1.1.

  19. Analysis of risk management during AP1000 equipment technology transfer and localization

    International Nuclear Information System (INIS)

    Gao Yongjun; Guan Rui

    2009-01-01

    This article analyzes the risk factors existing in AP1000 equipment technology transfer and localization process by describing the invitation for bid, tender evaluation and contract negotiation process of the third-generation nuclear power plant technology introduction project of China and discusses the classification, evaluation and analysis methods of risks, and puts forward some referential suggestions for the successful introduction of equipment technology for AP1000 nuclear project. (authors)

  20. Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process.

    Science.gov (United States)

    Buckland, Barry; Boulanger, Robert; Fino, Mireli; Srivastava, Indresh; Holtz, Kathy; Khramtsov, Nikolai; McPherson, Clifton; Meghrous, Jamal; Kubera, Paul; Cox, Manon M J

    2014-09-22

    Multiple different hemagglutinin (HA) protein antigens have been reproducibly manufactured at the 650L scale by Protein Sciences Corporation (PSC) based on an insect cell culture with baculovirus infection. Significantly, these HA protein antigens were produced by the same Universal Manufacturing process as described in the biological license application (BLA) for the first recombinant influenza vaccine approved by the FDA (Flublok). The technology is uniquely designed so that a change in vaccine composition can be readily accommodated from one HA protein antigen to another one. Here we present a vaccine candidate to combat the recently emerged H7N9 virus as an example starting with the genetic sequence for the required HA, creation of the baculovirus and ending with purified protein antigen (or vaccine component) at the 10L scale accomplished within 38 days under GMP conditions. The same process performance is being achieved at the 2L, 10L, 100L, 650L and 2500L scale. An illustration is given of how the technology was transferred from the benchmark 650L scale facility to a retrofitted microbial facility at the 2500L scale within 100 days which includes the time for facility engineering changes. The successful development, technology transfer and scale-up of the Flublok process has major implications for being ready to make vaccine rapidly on a worldwide scale as a defense against pandemic influenza. The technology described does not have the same vulnerability to mutations in the egg adapted strain, and resulting loss in vaccine efficacy, faced by egg based manufacture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Technology transfer on long-term radioactive waste management - a feasible option for small nuclear programmes?

    International Nuclear Information System (INIS)

    Mele, I.; Mathieson, J.

    2007-01-01

    The EU project CATT - Co-operation and technology transfer on long-term radioactive waste management for Member States with small nuclear programmes investigated the feasibility of countries with small nuclear programmes implementing long-term radioactive waste management solutions within their national borders, through collaboration on technology transfer with those countries with advanced disposal concepts. The main project objective was to analyse the existing capabilities of technology owning Member States and the corresponding requirements of potential technology acquiring Member States and, based on the findings, to develop a number of possible collaboration models and scenarios that could be used in a technology transfer scheme. The project CATT was performed as a specific support action under the EU sixth framework programme and it brought together waste management organisations from six EU Member States: UK, Bulgaria, Germany, Lithuania, Slovenia and Sweden. In addition, the EC Joint Research Centre from the Netherlands also participated as a full partner. The paper summarises the analyses performed and the results obtained within the project. (author)

  2. 47 CFR 76.502 - Time limits applicable to franchise authority consideration of transfer applications.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Time limits applicable to franchise authority... Cable Systems § 76.502 Time limits applicable to franchise authority consideration of transfer applications. (a) A franchise authority shall have 120 days from the date of submission of a completed FCC Form...

  3. Identifying the key processes for technology transfer through spin-offs in academic institutions : a case study in Flanders and The Netherlands

    OpenAIRE

    Meysman, Jasmine; Cleyn, De, Sven H.; Braet, Johan

    2017-01-01

    Abstract: The position and role of technology transfer offices within universities and academic institutions have changed under influence of todays society, with diminishing government subsidies and technology transfer related policies having their impact on the technology transfer processes. In order to find out what the effect of this impact is, we performed a multiple-case study on six technology transfer offices in Flanders and The Netherlands. As a result of the study, we identified two ...

  4. Reaching for the cloud: on the lessons learned from grid computing technology transfer process to the biomedical community.

    Science.gov (United States)

    Mohammed, Yassene; Dickmann, Frank; Sax, Ulrich; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto

    2010-01-01

    Natural scientists such as physicists pioneered the sharing of computing resources, which led to the creation of the Grid. The inter domain transfer process of this technology has hitherto been an intuitive process without in depth analysis. Some difficulties facing the life science community in this transfer can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies which have achieved certain stability. Grid and Cloud solutions are technologies, which are still in flux. We show how Grid computing creates new difficulties in the transfer process that are not considered in Bozeman's model. We show why the success of healthgrids should be measured by the qualified scientific human capital and the opportunities created, and not primarily by the market impact. We conclude with recommendations that can help improve the adoption of Grid and Cloud solutions into the biomedical community. These results give a more concise explanation of the difficulties many life science IT projects are facing in the late funding periods, and show leveraging steps that can help overcoming the "vale of tears".

  5. How You Can Partner with NIH | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NCI Technology Transfer Center (TTC) provides an array of agreements to support the National Cancer Institute's partnering. Deciding which type of agreement to use can be a challenge: CRADA, MTA, collaboration, agreement, CTA, Materials-CRADA

  6. NIH Employee Invention Report (EIR) | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NIH researchers must immediately contact their Laboratory or Branch Chief and inform him or her of a possible invention, and then consult with your NCI TTC Technology Transfer Manager about submitting an Employee Invention Report (EIR) Form. | [google6f4cd5334ac394ab.html

  7. Climate technology transfer at the local, national and global levels: analyzing the relationships between multi-level structures

    NARCIS (Netherlands)

    Tessema Abissa, Fisseha; Tessema Abissa, Fisseha

    2014-01-01

    This thesis examines the relationships between multi-leveled decision structures for climate technology transfer through an analysis of top-down macro-policy and bottom-up micro-implementation. It examines how international climate technology transfer policy under the UNFCCC filters down to the

  8. Matrix Transfer Function Design for Flexible Structures: An Application

    Science.gov (United States)

    Brennan, T. J.; Compito, A. V.; Doran, A. L.; Gustafson, C. L.; Wong, C. L.

    1985-01-01

    The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure.

  9. Technology transfer of nuclear power development in developing countries: Case study of China

    International Nuclear Information System (INIS)

    He Jiachen; Shen Wenquan; Zhang Luqing

    2000-01-01

    This paper describes the specific experiences in the technology transfer of nuclear power in China, a country that both imported and developed indigenous nuclear technology. Based on this experience some recommendations are presented that should be considered particularly by the developing countries. (author)

  10. Industrial applications of nuclear technology

    International Nuclear Information System (INIS)

    Vargas, Celso

    2010-01-01

    Industrial applications of nuclear technology have been very diverse worldwide. This type of technology has begun to introduce in Costa Rica to evaluate and improve different industrial processes. These applications have been classified into two or three categories, according to the criteria used. Nucleonic control systems, the gamma logging and radiotracers are determined. (author) [es

  11. An Institutional Framework to Explain the University-Industry Technology Transfer in a Public University of Mexico

    Directory of Open Access Journals (Sweden)

    Lizbeth Magdalena Puerta Sierra

    2017-04-01

    Full Text Available In the last years, studies and modifications to the science and technology regulatory framework in Mexico show the increase in the attention to transfer the research results of professors and researchers from higher education institutions, towards the productive sector with the purpose of generating regional, national and international growth and development. This study has conducted to the search of the factors that determine the increase of linkage activities and technology transfer. Based on the literature review, this study develops a framework integrated with the factors considered that have a significantly impact in the university-industry linkage and technology transfer. The proposed independent variables are the following: Institutional Factors, Academic Profile, and Innovation.

  12. Technology transfer: The key to successful space engineering education

    Science.gov (United States)

    Fletcher, L. S.; Page, R. H.

    The 1990s are the threshold of the space revolution for the next century. This space revolution was initiated by space pioneers like Tsiolkovsky, Goddard, and Oberth, who contributed a great deal to the evolution of space exploration, and more importantly, to space education. Recently, space engineering education programs for all ages have been advocated around the world, especially in Asia and Europe, as well as the U.S.A. and the Soviet Union. And yet, although space related technologies are developing rapidly, these technologies are not being incorporated successfully into space education programs. Timely technology transfer is essential to assure the continued education of professionals. This paper reviews the evolution of space engineering education and identifies a number of initiatives which could strengthen space engineering education for the next century.

  13. Fastening Transfer of Technology Through the Franchise Agreement

    OpenAIRE

    Asikin, Zainal

    2014-01-01

    The major improvement of franchise practices in Indonesian within the last 10 (ten) years has speeded to many region. Yet the government and local government under informed about the exact concept and regulation of franchise. Therefore this research meant to find out the concept of franchise and how the government regulate franchise agreement and its relation with transfer of technology. This research in a normative research as a way to depth study legal norms in various primary and secondary...

  14. Small Business Innovation Research and Small Business Technology Transfer Programs

    Science.gov (United States)

    Garrison, Lynn; Jasper, Gwen

    2015-01-01

    The Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) programs fund the research, development, and demonstration of innovative technologies that fulfill NASA's needs as described in the annual Solicitations and have significant potential for successful commercialization. The only eligible participants are small business concern (SBC) with 500 or fewer employees or a nonprofit research institute such as a university or a research laboratory with ties to an SBC. These programs are potential sources of seed funding for the development of small business innovations.

  15. Application of seminal plasma to female genital tract prior to embryo transfer in assisted reproductive technology cycles (IVF, ICSI and frozen embryo transfer).

    Science.gov (United States)

    Ata, Baris; Abou-Setta, Ahmed M; Seyhan, Ayse; Buckett, William

    2018-02-28

    The female genital tract is not exposed to seminal plasma during standard assisted reproductive technology (ART) cycles. However, it is thought that the inflammatory reaction triggered by seminal plasma may be beneficial by inducing maternal tolerance to paternal antigens expressed by the products of conception, and may increase the chance of successful implantation and live birth. To assess the effectiveness and safety of application of seminal plasma to the female genital tract prior to embryo transfer in ART cycles. We searched the following databases from inception to October 2017: Cochrane Gynaecology and Fertility Group Specialised Register of Controlled Trials, Cochrane Central Register of Studies Online (CRSO), MEDLINE, Embase, CINAHL and PsycINFO. We also searched trial registers for ongoing trials, including International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov. Other sources searched were; Web of Knowledge, OpenGrey, LILACS, PubMed, Google Scholar and the reference lists of relevant articles. We included randomised controlled trials (RCTs) conducted among women undergoing ART, comparing any procedure that would expose the female genital tract to seminal plasma during the period starting five days before embryo transfer and ending two days after it versus no seminal plasma application. Two review authors independently selected trials, assessed risk of bias, and extracted data. We pooled data to calculate relative risks (RRs) and 95% confidence intervals (CIs). We assessed statistical heterogeneity using the I 2 statistic. We assessed the overall quality of the evidence for the main outcomes using GRADE methods. Our primary outcomes were live birth rate and miscarriage rate. Secondary outcomes were live birth/ongoing pregnancy rate, clinical pregnancy rate, multiple pregnancy rate, ectopic pregnancy rate and the incidence of other adverse events. We included 11 RCTs (3215 women). The quality of the evidence ranged

  16. Wireless Power Transfer for Space Applications

    Science.gov (United States)

    Ramos, Gabriel Vazquez; Yuan, Jiann-Shiun

    2011-01-01

    This paper introduces an implementation for magnetic resonance wireless power transfer for space applications. The analysis includes an equivalent impedance study, loop material characterization, source/load resonance coupling technique, and system response behavior due to loads variability. System characterization is accomplished by executing circuit design from analytical equations and simulations using Matlab and SPICE. The theory was validated by a combination of different experiments that includes loop material consideration, resonance coupling circuits considerations, electric loads considerations and a small scale proof-of-concept prototype. Experiment results shows successful wireless power transfer for all the cases studied. The prototype provided about 4.5 W of power to the load at a separation of -5 cm from the source using a power amplifier rated for 7 W.

  17. Operational Research for Developing Countries - a case of transfer of technology

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui; Ravn, Hans V.

    1986-01-01

    This paper is concerned with some fundamental aspects of the process of transfer of operational research from the industrialized countries to the Third World. Two complementary conceptions of operational research are identified: technical and social operational research. The main contribution of ...... of this paper is to regard the discussion of operational research for developing countries as a case of transfer of technology. Finally, some proposals for action and further research will be briefly outlined.......This paper is concerned with some fundamental aspects of the process of transfer of operational research from the industrialized countries to the Third World. Two complementary conceptions of operational research are identified: technical and social operational research. The main contribution...

  18. Selected case studies of technology transfer from mission-oriented applied research

    Energy Technology Data Exchange (ETDEWEB)

    Daellenbach, K.K.; Watts, R.L.; Young, J.K. [Pacific Northwest Lab., Richland, WA (United States); Abarcar, R.B. [Energetics, Inc., Columbia, MD (United States)

    1992-07-01

    The US Department of Energy (DOE) Advanced Industrial Concepts Division (AICD) under the Office of Industrial Technologies (OIT) supports interdisciplinary applied research and exploratory development that will expand the knowledge base to enable industry to improve its energy efficiency and its capability to use alternative energy resources. AICD capitalizes on scientific and technical advances from the United States and abroad, applying them to address critical technical needs of American industry. As a result, AICD research and development products are many and varied, and the effective transfer of these products to diverse targeted users requires different strategies as well. This paper describes the products of AICD research, how they are transferred to potential users, and how actual transfer is determined.

  19. Advancement and application of bubble detector technology

    International Nuclear Information System (INIS)

    Buckner, M.A.; Casson, W.H.; Sims, C.S.

    1991-01-01

    A new technology is vying for position in the dosimetry community. This relatively young technology is building upon the foundation of the bubble chamber, conceptualized by Glaser in 1952. Although the attitudes surrounding this technology are somewhat mixed, applications of this technology hold great promise for the future of neutron dosimetry. The Dosimetry Applications Research facility of Oak Ridge National Laboratory is looking into some innovative applications of this technology. The authors are investigating options for overcoming its limiting features in hopes of achieving an unprecedented level of proficiency in neutron detection. Among these are the developing and testing of a Combination Area Neutron Spectrometer, CANS, assessing the plausibility of extremity applications, the assembly of an alternative reader for research, investigation of temperature-related effects and how to correct for them and considerations on the coming of age of neutron dosimetry via real time detection of bubble formation in Bubble Technology Industries Inc. detectors. The authors attempt to answer the questions: (1) What areas hold the greatest promise for application of this emerging technology?; (2) What obstacles must be overcome before full-blown application becomes a reality?; and (3) What might the future hold?

  20. FEATURES OF TECHNOLOGIES TRANSFER SYSTEMS IN EURASIAN ECONOMIC UNION MEMBER COUNTRIES

    Directory of Open Access Journals (Sweden)

    Yu.V. Solovieva

    2017-12-01

    Full Text Available In article forms and conditions of interaction of participants of innovative process, feature of creation and development of organizational system of a transfer of technologies in member countries of the Eurasian Economic Union are considered. On the basis of a transfer systems analysis functioning in the EEU countries, the author allocates the key and most perspective directions of development of integration of scientific and educational, production spheres and the state for the purpose of formation of special mechanisms of the organization of the innovative processes providing effective interaction between all its participants. The conclusion about need of creation of the organizational system based on integration of institutes of the state, science, business and education in the EEU countries for formation of competitive hi-tech production, increase in the status of the countries in the world market of technologies is drawn.