WorldWideScience

Sample records for technology testbed demonstrator

  1. Advanced Artificial Intelligence Technology Testbed

    Science.gov (United States)

    Anken, Craig S.

    1993-01-01

    The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

  2. A commercial space technology testbed on ISS

    Science.gov (United States)

    Boyle, David R.

    2000-01-01

    There is a significant and growing commercial market for new, more capable communications and remote sensing satellites. Competition in this market strongly motivates satellite manufacturers and spacecraft component developers to test and demonstrate new space hardware in a realistic environment. External attach points on the International Space Station allow it to function uniquely as a space technology testbed to satisfy this market need. However, space industry officials have identified three critical barriers to their commercial use of the ISS: unpredictable access, cost risk, and schedule uncertainty. Appropriate NASA policy initiatives and business/technical assistance for industry from the Commercial Space Center for Engineering can overcome these barriers. .

  3. Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed.

    Science.gov (United States)

    Channegowda, M; Nejabati, R; Rashidi Fard, M; Peng, S; Amaya, N; Zervas, G; Simeonidou, D; Vilalta, R; Casellas, R; Martínez, R; Muñoz, R; Liu, L; Tsuritani, T; Morita, I; Autenrieth, A; Elbers, J P; Kostecki, P; Kaczmarek, P

    2013-03-11

    Software defined networking (SDN) and flexible grid optical transport technology are two key technologies that allow network operators to customize their infrastructure based on application requirements and therefore minimizing the extra capital and operational costs required for hosting new applications. In this paper, for the first time we report on design, implementation & demonstration of a novel OpenFlow based SDN unified control plane allowing seamless operation across heterogeneous state-of-the-art optical and packet transport domains. We verify and experimentally evaluate OpenFlow protocol extensions for flexible DWDM grid transport technology along with its integration with fixed DWDM grid and layer-2 packet switching.

  4. University of Florida Advanced Technologies Campus Testbed

    Science.gov (United States)

    2017-09-21

    The University of Florida (UF) and its Transportation Institute (UFTI), the Florida Department of Transportation (FDOT) and the City of Gainesville (CoG) are cooperating to develop a smart transportation testbed on the University of Florida (UF) main...

  5. A demonstration of remote survey and characterization of a buried waste site using the SRIP [Soldier Robot Interface Project] testbed

    International Nuclear Information System (INIS)

    Burks, B.L.; Richardson, B.S.; Armstrong, G.A.; Hamel, W.R.; Jansen, J.F.; Killough, S.M.; Thompson, D.H.; Emery, M.S.

    1990-01-01

    During FY 1990, the Oak Ridge National Laboratory (ORNL) supported the Department of Energy (DOE) Environmental Restoration and Waste Management (ER ampersand WM) Office of Technology Development through several projects including the development of a semiautonomous survey of a buried waste site using a remotely operated all-terrain robotic testbed borrowed from the US Army. The testbed was developed for the US Army's Human Engineering Laboratory (HEL) for the US Army's Soldier Robot Interface Project (SRIP). Initial development of the SRIP testbed was performed by a team including ORNL, HEL, Tooele Army Depot, and Odetics, Inc., as an experimental testbed for a variety of human factors issues related to military applications of robotics. The SRIP testbed was made available to the DOE and ORNL for the further development required for a remote landfill survey. The robot was modified extensively, equipped with environmental sensors, and used to demonstrate an automated remote survey of Solid Waste Storage Area No. 3 (SWSA 3) at ORNL on Tuesday, September 18, 1990. Burial trenches in this area containing contaminated materials were covered with soil nearly twenty years ago. This paper describes the SRIP testbed and work performed in FY 1990 to demonstrate a semiautonomous landfill survey at ORNL. 5 refs

  6. Current Developments in DETER Cybersecurity Testbed Technology

    Science.gov (United States)

    2015-12-08

    Management Experimental cybersecurity research is often inherently risky. An experiment may involve releasing live malware code, operating a real botnet...imagine a worm that can only propagate by first contacting a “propagation service” (T1 constraint), composed with a testbed firewall (T2...experiment. Finally, T1 constraints might be enforced by (1) explicit modification of malware to constrain its behavior, (2) implicit constraints

  7. The development of the human exploration demonstration project (HEDP), a planetary systems testbed

    Science.gov (United States)

    Chevers, Edward S.; Korsmeyer, David J.

    1993-01-01

    The Human Exploration Demonstration Project (HEDP) is an ongoing task at the National Aeronautics and Space Administration's Ames Research Center to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary surface habitat. The integrated environment will consist of life support systems, physiological monitoring of project crew, a virtual environment workstation, and centralized data acquisition and habitat systems health monitoring. There will be several robotic systems on a simulated planetary landscape external to the habitat environment to provide representative work loads for the crew. This paper describes the status of the HEDP after one year, the major facilities composing the HEDP, the project's role as an Ames Research Center testbed, and the types of demonstration scenarios that will be run to showcase the technologies.

  8. Space Station technology testbed: 2010 deep space transport

    Science.gov (United States)

    Holt, Alan C.

    1993-01-01

    A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and

  9. Aerospace Engineering Systems and the Advanced Design Technologies Testbed Experience

    Science.gov (United States)

    VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

    1999-01-01

    Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: 1) Physics-based analysis tools for filling the design space database; 2) Distributed computational resources to reduce response time and cost; 3) Web-based technologies to relieve machine-dependence; and 4) Artificial intelligence technologies to accelerate processes and reduce process variability. The Advanced Design Technologies Testbed (ADTT) activity at NASA Ames Research Center was initiated to study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities are reported.

  10. Innovative technology demonstration

    International Nuclear Information System (INIS)

    Anderson, D.B.; Luttrell, S.P.; Hartley, J.N.; Hinchee, R.

    1992-04-01

    The Innovative Technology Demonstration (ITD) program at Tinker Air Force Base (TAFB), Oklahoma City, Oklahoma, will demonstrate the overall utility and effectiveness of innovative technologies for site characterization, monitoring, and remediation of selected contaminated test sites. The current demonstration test sites include a CERCLA site on the NPL list, located under a building (Building 3001) that houses a large active industrial complex used for rebuilding military aircraft, and a site beneath and surrounding an abandoned underground tank vault used for storage of jet fuels and solvents. The site under Building 3001 (the NW Test Site) is contaminated with TCE and Cr +6 ; the site with the fuel storage vault (the SW Tanks Site) is contaminated with fuels, BTEX and TCE. These sites and others have been identified for cleanup under the Air Force's Installation Restoration Program (IRP). This document describes the demonstrations that have been conducted or are planned for the TAFB

  11. IGCC technology and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Palonen, J [A. Ahlstrom Corporation, Karhula (Finland). Hans Ahlstrom Lab.; Lundqvist, R G [A. Ahlstrom Corporation, Helsinki (Finland); Staahl, K [Sydkraft AB, Malmoe (Sweden)

    1997-12-31

    Future energy production will be performed by advanced technologies that are more efficient, more environmentally friendly and less expensive than current technologies. Integrated gasification combined cycle (IGCC) power plants have been proposed as one of these systems. Utilising biofuels in future energy production will also be emphasised since this lowers substantially carbon dioxide emissions into the atmosphere due to the fact that biomass is a renewable form of energy. Combining advanced technology and biomass utilisation is for this reason something that should and will be encouraged. A. Ahlstrom Corporation of Finland and Sydkraft AB of Sweden have as one part of company strategies adopted this approach for the future. The companies have joined their resources in developing a biomass-based IGCC system with the gasification part based on pressurised circulating fluidized-bed technology. With this kind of technology electrical efficiency can be substantially increased compared to conventional power plants. As a first concrete step, a decision has been made to build a demonstration plant. This plant, located in Vaernamo, Sweden, has already been built and is now in commissioning and demonstration stage. The system comprises a fuel drying plant, a pressurised CFB gasifier with gas cooling and cleaning, a gas turbine, a waste heat recovery unit and a steam turbine. The plant is the first in the world where the integration of a pressurised gasifier with a gas turbine will be realised utilising a low calorific gas produced from biomass. The capacity of the Vaernamo plant is 6 MW of electricity and 9 MW of district heating. Technology development is in progress for design of plants of sizes from 20 to 120 MWe. The paper describes the Bioflow IGCC system, the Vaernamo demonstration plant and experiences from the commissioning and demonstration stages. (orig.)

  12. IGCC technology and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Palonen, J. [A. Ahlstrom Corporation, Karhula (Finland). Hans Ahlstrom Lab.; Lundqvist, R.G. [A. Ahlstrom Corporation, Helsinki (Finland); Staahl, K. [Sydkraft AB, Malmoe (Sweden)

    1996-12-31

    Future energy production will be performed by advanced technologies that are more efficient, more environmentally friendly and less expensive than current technologies. Integrated gasification combined cycle (IGCC) power plants have been proposed as one of these systems. Utilising biofuels in future energy production will also be emphasised since this lowers substantially carbon dioxide emissions into the atmosphere due to the fact that biomass is a renewable form of energy. Combining advanced technology and biomass utilisation is for this reason something that should and will be encouraged. A. Ahlstrom Corporation of Finland and Sydkraft AB of Sweden have as one part of company strategies adopted this approach for the future. The companies have joined their resources in developing a biomass-based IGCC system with the gasification part based on pressurised circulating fluidized-bed technology. With this kind of technology electrical efficiency can be substantially increased compared to conventional power plants. As a first concrete step, a decision has been made to build a demonstration plant. This plant, located in Vaernamo, Sweden, has already been built and is now in commissioning and demonstration stage. The system comprises a fuel drying plant, a pressurised CFB gasifier with gas cooling and cleaning, a gas turbine, a waste heat recovery unit and a steam turbine. The plant is the first in the world where the integration of a pressurised gasifier with a gas turbine will be realised utilising a low calorific gas produced from biomass. The capacity of the Vaernamo plant is 6 MW of electricity and 9 MW of district heating. Technology development is in progress for design of plants of sizes from 20 to 120 MWe. The paper describes the Bioflow IGCC system, the Vaernamo demonstration plant and experiences from the commissioning and demonstration stages. (orig.)

  13. Innovative technology demonstrations

    International Nuclear Information System (INIS)

    Anderson, D.B.; Luttrell, S.P.; Hartley, J.N.

    1992-08-01

    Environmental Management Operations (EMO) is conducting an Innovative Technology Demonstration Program for Tinker Air Force Base (TAFB). Several innovative technologies are being demonstrated to address specific problems associated with remediating two contaminated test sites at the base. Cone penetrometer testing (CPT) is a form of testing that can rapidly characterize a site. This technology was selected to evaluate its applicability in the tight clay soils and consolidated sandstone sediments found at TAFB. Directionally drilled horizontal wells was selected as a method that may be effective in accessing contamination beneath Building 3001 without disrupting the mission of the building, and in enhancing the extraction of contamination both in ground water and in soil. A soil gas extraction (SGE) demonstration, also known as soil vapor extraction, will evaluate the effectiveness of SGE in remediating fuels and TCE contamination contained in the tight clay soil formations surrounding the abandoned underground fuel storage vault located at the SW Tanks Site. In situ sensors have recently received much acclaim as a technology that can be effective in remediating hazardous waste sites. Sensors can be useful for determining real-time, in situ contaminant concentrations during the remediation process for performance monitoring and in providing feedback for controlling the remediation process. Following the SGE demonstration, the SGE system and SW Tanks test site will be modified to demonstrate bioremediation as an effective means of degrading the remaining contaminants in situ. The bioremediation demonstration will evaluate a bioventing process in which the naturally occurring consortium of soil bacteria will be stimulated to aerobically degrade soil contaminants, including fuel and TCE, in situ

  14. Innovative technology demonstrations

    International Nuclear Information System (INIS)

    Anderson, D.B.; Hartley, J.N.; Luttrell, S.P.

    1992-04-01

    Currently, several innovative technologies are being demonstrated at Tinker Air Force Base (TAFB) to address specific problems associated with remediating two contaminated test sites at the base. Cone penetrometer testing (CPT) is a form of testing that can rapidly characterize a site. This technology was selected to evaluate its applicability in the tight clay soils and consolidated sandstone sediments found at TAFB. Directionally drilled horizontal wells have been successfully installed at the US Department of Energy's (DOE) Savannah River Site to test new methods of in situ remediation of soils and ground water. This emerging technology was selected as a method that may be effective in accessing contamination beneath Building 3001 without disrupting the mission of the building, and in enhancing the extraction of contamination both in ground water and in soil. A soil gas extraction (SGE) demonstration, also known as soil vapor extraction, will evaluate the effectiveness of SGE in remediating fuels and TCE contamination contained in the tight clay soil formations surrounding the abandoned underground fuel storage vault located at the SW Tanks Site. In situ sensors have recently received much acclaim as a technology that can be effective in remediating hazardous waste sites. Sensors can be useful for determining real-time, in situ contaminant concentrations during the remediation process for performance monitoring and in providing feedback for controlling the remediation process. A demonstration of two in situ sensor systems capable of providing real-time data on contamination levels will be conducted and evaluated concurrently with the SGE demonstration activities. Following the SGE demonstration, the SGE system and SW Tanks test site will be modified to demonstrate bioremediation as an effective means of degrading the remaining contaminants in situ

  15. Development of a hardware-in-the-loop testbed to demonstrate multiple spacecraft operations in proximity

    Science.gov (United States)

    Eun, Youngho; Park, Sang-Young; Kim, Geuk-Nam

    2018-06-01

    This paper presents a new state-of-the-art ground-based hardware-in-the-loop test facility, which was developed to verify and demonstrate autonomous guidance, navigation, and control algorithms for space proximity operations and formation flying maneuvers. The test facility consists of two complete spaceflight simulators, an aluminum-based operational arena, and a set of infrared motion tracking cameras; thus, the testbed is capable of representing space activities under circumstances prevailing on the ground. The spaceflight simulators have a maximum of five-degree-of-freedom in a quasi-momentum-free environment, which is produced by a set of linear/hemispherical air-bearings and a horizontally leveled operational arena. The tracking system measures the real-time three-dimensional position and attitude to provide state variables to the agents. The design of the testbed is illustrated in detail for every element throughout the paper. The practical hardware characteristics of the active/passive measurement units and internal actuators are identified in detail from various perspectives. These experimental results support the successful development of the entire facility and enable us to implement and verify the spacecraft proximity operation strategy in the near future.

  16. Development of a smart-antenna test-bed, demonstrating software defined digital beamforming

    NARCIS (Netherlands)

    Kluwer, T.; Slump, Cornelis H.; Schiphorst, Roelof; Hoeksema, F.W.

    2001-01-01

    This paper describes a smart-antenna test-bed consisting of ‘common of the shelf’ (COTS) hardware and software defined radio components. The use of software radio components enables a flexible platform to implement and test mobile communication systems as a real-world system. The test-bed is

  17. Information Integration Technology Demonstration (IITD)

    National Research Council Canada - National Science Library

    Loe, Richard

    2001-01-01

    The objectives of the Information Integration Technology Demonstration (IITD) were to investigate, design a software architecture and demonstrate a capability to display intelligence data from multiple disciplines...

  18. Development of a Tethered Formation Flight Testbed for ISS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of a testbed for the development and demonstration of technologies needed by tethered formation flying satellites is proposed. Such a testbed would...

  19. Project Morpheus: Lean Development of a Terrestrial Flight Testbed for Maturing NASA Lander Technologies

    Science.gov (United States)

    Devolites, Jennifer L.; Olansen, Jon B.

    2015-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a Liquid Oxygen (LOX)/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. In 2012, Morpheus began integrating the Autonomous Landing and Hazard Avoidance Technology (ALHAT) sensors and software onto the vehicle in order to demonstrate safe, autonomous landing and hazard avoidance. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. This paper describes the tailored project life cycle and systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in fiscal year (FY) 2011.

  20. Status of the Visible Nulling Coronagraph Technology Demonstration Program

    Science.gov (United States)

    Clampin, M.; Lyon, R.

    2012-01-01

    We report on the development, sensing and control of the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraphy (VNC) for exoplanet detection and characterization. The VNC is one of the few approaches that works with filled, segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be flown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center has an established effort to develop VNC technologies, and an incremental sequence of testbeds to advance this approach and its critical technologies. We will highlight results demonstrating the achievement of our TDEM contrast milestones, and highlight the performance of our wavefront sensing and control concept.

  1. Deployment of a Testbed in a Brazilian Research Network using IPv6 and Optical Access Technologies

    Science.gov (United States)

    Martins, Luciano; Ferramola Pozzuto, João; Olimpio Tognolli, João; Chaves, Niudomar Siqueira De A.; Reggiani, Atilio Eduardo; Hortêncio, Claudio Antonio

    2012-04-01

    This article presents the implementation of a testbed and the experimental results obtained with it on the Brazilian Experimental Network of the government-sponsored "GIGA Project." The use of IPv6 integrated to current and emerging optical architectures and technologies, such as dense wavelength division multiplexing and 10-gigabit Ethernet on the core and gigabit capable passive optical network and optical distribution network on access, were tested. These protocols, architectures, and optical technologies are promising and part of a brand new worldwide technological scenario that has being fairly adopted in the networks of enterprises and providers of the world.

  2. Trace explosives sensor testbed (TESTbed)

    Science.gov (United States)

    Collins, Greg E.; Malito, Michael P.; Tamanaha, Cy R.; Hammond, Mark H.; Giordano, Braden C.; Lubrano, Adam L.; Field, Christopher R.; Rogers, Duane A.; Jeffries, Russell A.; Colton, Richard J.; Rose-Pehrsson, Susan L.

    2017-03-01

    A novel vapor delivery testbed, referred to as the Trace Explosives Sensor Testbed, or TESTbed, is demonstrated that is amenable to both high- and low-volatility explosives vapors including nitromethane, nitroglycerine, ethylene glycol dinitrate, triacetone triperoxide, 2,4,6-trinitrotoluene, pentaerythritol tetranitrate, and hexahydro-1,3,5-trinitro-1,3,5-triazine. The TESTbed incorporates a six-port dual-line manifold system allowing for rapid actuation between a dedicated clean air source and a trace explosives vapor source. Explosives and explosives-related vapors can be sourced through a number of means including gas cylinders, permeation tube ovens, dynamic headspace chambers, and a Pneumatically Modulated Liquid Delivery System coupled to a perfluoroalkoxy total-consumption microflow nebulizer. Key features of the TESTbed include continuous and pulseless control of trace vapor concentrations with wide dynamic range of concentration generation, six sampling ports with reproducible vapor profile outputs, limited low-volatility explosives adsorption to the manifold surface, temperature and humidity control of the vapor stream, and a graphical user interface for system operation and testing protocol implementation.

  3. Offsite demonstrations for MWLID technologies

    International Nuclear Information System (INIS)

    Williams, C.; Gruebel, R.

    1995-01-01

    The goal of the Offsite Demonstration Project for Mixed Waste Landfill Integrated Demonstration (MWLID)-developed environmental site characterization and remediation technologies is to facilitate the transfer, use, and commercialization of these technologies to the public and private sector. The meet this goal, the project identified environmental restoration needs of mixed waste and/or hazardous waste landfill owners (Native American, municipal, DOE, and DoD); documenting potential demonstration sites and the contaminants present at each site; assessing the environmental regulations that would effect demonstration activities; and evaluating site suitability for demonstrating MWLID technologies at the tribal and municipal sites identified. Eighteen landfill sites within a 40.2-km radius of Sandia National Laboratories are listed on the CERCLIS Site/Event Listing for the state of New Mexico. Seventeen are not located within DOE or DoD facilities and are potential offsite MWLID technology demonstration sites. Two of the seventeen CERCLIS sites, one on Native American land and one on municipal land, were evaluated and identified as potential candidates for off-site demonstrations of MWLID-developed technologies. Contaminants potentially present on site include chromium waste, household/commercial hazardous waste, volatile organic compounds, and petroleum products. MWLID characterization technologies applicable to these sites include Magnetometer Towed Array, Cross-borehole Electromagnetic Imaging, SitePlanner trademark/PLUME, Hybrid Directional Drilling, Seamist trademark/Vadose Zone Monitoring, Stripping Analyses, and x-ray Fluorescence Spectroscopy for Heavy Metals

  4. Results from a multi aperture Fizeau interferometer ground testbed: demonstrator for a future space-based interferometer

    Science.gov (United States)

    Baccichet, Nicola; Caillat, Amandine; Rakotonimbahy, Eddy; Dohlen, Kjetil; Savini, Giorgio; Marcos, Michel

    2016-08-01

    In the framework of the European FP7-FISICA (Far Infrared Space Interferometer Critical Assessment) program, we developed a miniaturized version of the hyper-telescope to demonstrate multi-aperture interferometry on ground. This setup would be ultimately integrated into a CubeSat platform, therefore providing the first real demonstrator of a multi aperture Fizeau interferometer in space. In this paper, we describe the optical design of the ground testbed and the data processing pipeline implemented to reconstruct the object image from interferometric data. As a scientific application, we measured the Sun diameter by fitting a limb-darkening model to our data. Finally, we present the design of a CubeSat platform carrying this miniature Fizeau interferometer, which could be used to monitor the Sun diameter over a long in-orbit period.

  5. Test-bed Assessment of Communication Technologies for a Power-Balancing Controller

    DEFF Research Database (Denmark)

    Findrik, Mislav; Pedersen, Rasmus; Hasenleithner, Eduard

    2016-01-01

    and control. In this paper, we present a Smart Grid test-bed that integrates various communication technologies and deploys a power balancing controller for LV grids. Control performance of the introduced power balancing controller is subsequently investigated and its robustness to communication network cross......Due to growing need for sustainable energy, increasing number of different renewable energy resources are being connected into distribution grids. In order to efficiently manage a decentralized power generation units, the smart grid will rely on communication networks for information exchange...

  6. Aerospace Communications Security Technologies Demonstrated

    Science.gov (United States)

    Griner, James H.; Martzaklis, Konstantinos S.

    2003-01-01

    In light of the events of September 11, 2001, NASA senior management requested an investigation of technologies and concepts to enhance aviation security. The investigation was to focus on near-term technologies that could be demonstrated within 90 days and implemented in less than 2 years. In response to this request, an internal NASA Glenn Research Center Communications, Navigation, and Surveillance Aviation Security Tiger Team was assembled. The 2-year plan developed by the team included an investigation of multiple aviation security concepts, multiple aircraft platforms, and extensively leveraged datalink communications technologies. It incorporated industry partners from NASA's Graphical Weather-in-the-Cockpit research, which is within NASA's Aviation Safety Program. Two concepts from the plan were selected for demonstration: remote "black box," and cockpit/cabin surveillance. The remote "black box" concept involves real-time downlinking of aircraft parameters for remote monitoring and archiving of aircraft data, which would assure access to the data following the loss or inaccessibility of an aircraft. The cockpit/cabin surveillance concept involves remote audio and/or visual surveillance of cockpit and cabin activity, which would allow immediate response to any security breach and would serve as a possible deterrent to such breaches. The datalink selected for the demonstrations was VDL Mode 2 (VHF digital link), the first digital datalink for air-ground communications designed for aircraft use. VDL Mode 2 is beginning to be implemented through the deployment of ground stations and aircraft avionics installations, with the goal of being operational in 2 years. The first demonstration was performed December 3, 2001, onboard the LearJet 25 at Glenn. NASA worked with Honeywell, Inc., for the broadcast VDL Mode 2 datalink capability and with actual Boeing 757 aircraft data. This demonstration used a cockpitmounted camera for video surveillance and a coupling to

  7. Buried Waste Integrated Demonstration lessons learned: 1993 technology demonstrations

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Owens, K.J.

    1994-01-01

    An integrated technology demonstration was conducted by the Buried Waste Integrated Demonstration (BWID) at the Idaho National Engineering Laboratory Cold Test Pit in the summer of 1993. This program and demonstration was sponsored by the US Department of Energy Office of Technology Development. The demonstration included six technologies representing a synergistic system for the characterization and retrieval of a buried hazardous waste site. The integrated technology demonstration proved very successful and a summary of the technical accomplishments is presented. Upon completion of the integrated technology demonstration, cognizant program personnel participated in a lessons learned exercise. This exercise was conducted at the Simplot Decision Support Center at Idaho State University and lessons learned activity captured additional information relative to the integration of technologies for demonstration purposes. This information will be used by BWID to enhance program planning and strengthen future technology demonstrations

  8. Pacific Northwest GridWise™ Testbed Demonstration Projects; Part I. Olympic Peninsula Project

    Energy Technology Data Exchange (ETDEWEB)

    Hammerstrom, Donald J.; Ambrosio, Ron; Carlon, Teresa A.; DeSteese, John G.; Horst, Gale R.; Kajfasz, Robert; Kiesling, Laura L.; Michie, Preston; Pratt, Robert G.; Yao, Mark; Brous, Jerry; Chassin, David P.; Guttromson, Ross T.; Jarvegren, Olof M.; Katipamula, Srinivas; Le, N. T.; Oliver, Terry V.; Thompson, Sandra E.

    2008-01-09

    This report describes the implementation and results of a field demonstration wherein residential electric water heaters and thermostats, commercial building space conditioning, municipal water pump loads, and several distributed generators were coordinated to manage constrained feeder electrical distribution through the two-way communication of load status and electric price signals. The field demonstration took place in Washington and Oregon and was paid for by the U.S. Department of Energy and several northwest utilities. Price is found to be an effective control signal for managing transmission or distribution congestion. Real-time signals at 5-minute intervals are shown to shift controlled load in time. The behaviors of customers and their responses under fixed, time-of-use, and real-time price contracts are compared. Peak loads are effectively reduced on the experimental feeder. A novel application of portfolio theory is applied to the selection of an optimal mix of customer contract types.

  9. Demonstration and field trial of a resilient hybrid NG-PON test-bed

    Science.gov (United States)

    Prat, Josep; Polo, Victor; Schrenk, Bernhard; Lazaro, Jose A.; Bonada, Francesc; Lopez, Eduardo T.; Omella, Mireia; Saliou, Fabienne; Le, Quang T.; Chanclou, Philippe; Leino, Dmitri; Soila, Risto; Spirou, Spiros; Costa, Liliana; Teixeira, Antonio; Tosi-Beleffi, Giorgio M.; Klonidis, Dimitrios; Tomkos, Ioannis

    2014-10-01

    A multi-layer next generation PON prototype has been built and tested, to show the feasibility of extended hybrid DWDM/TDM-XGPON FTTH networks with resilient optically-integrated ring-trees architecture, supporting broadband multimedia services. It constitutes a transparent common platform for the coexistence of multiple operators sharing the optical infrastructure of the central metro ring, passively combining the access and the metropolitan network sections. It features 32 wavelength connections at 10 Gbps, up to 1000 users distributed in 16 independent resilient sub-PONs over 100 km. This paper summarizes the network operation, demonstration and field trial results.

  10. A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R

    International Nuclear Information System (INIS)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael

    2014-01-01

    We present a numerical testbed for remote sensing of aerosols, together with a demonstration for evaluating retrieval synergy from a geostationary satellite constellation. The testbed combines inverse (optimal-estimation) software with a forward model containing linearized code for computing particle scattering (for both spherical and non-spherical particles), a kernel-based (land and ocean) surface bi-directional reflectance facility, and a linearized radiative transfer model for polarized radiance. Calculation of gas absorption spectra uses the HITRAN (HIgh-resolution TRANsmission molecular absorption) database of spectroscopic line parameters and other trace species cross-sections. The outputs of the testbed include not only the Stokes 4-vector elements and their sensitivities (Jacobians) with respect to the aerosol single scattering and physical parameters (such as size and shape parameters, refractive index, and plume height), but also DFS (Degree of Freedom for Signal) values for retrieval of these parameters. This testbed can be used as a tool to provide an objective assessment of aerosol information content that can be retrieved for any constellation of (planned or real) satellite sensors and for any combination of algorithm design factors (in terms of wavelengths, viewing angles, radiance and/or polarization to be measured or used). We summarize the components of the testbed, including the derivation and validation of analytical formulae for Jacobian calculations. Benchmark calculations from the forward model are documented. In the context of NASA's Decadal Survey Mission GEO-CAPE (GEOstationary Coastal and Air Pollution Events), we demonstrate the use of the testbed to conduct a feasibility study of using polarization measurements in and around the O 2 A band for the retrieval of aerosol height information from space, as well as an to assess potential improvement in the retrieval of aerosol fine and coarse mode aerosol optical depth (AOD) through the

  11. A Numerical Testbed for Remote Sensing of Aerosols, and its Demonstration for Evaluating Retrieval Synergy from a Geostationary Satellite Constellation of GEO-CAPE and GOES-R

    Science.gov (United States)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael I.

    2014-01-01

    We present a numerical testbed for remote sensing of aerosols, together with a demonstration for evaluating retrieval synergy from a geostationary satellite constellation. The testbed combines inverse (optimal-estimation) software with a forward model containing linearized code for computing particle scattering (for both spherical and non-spherical particles), a kernel-based (land and ocean) surface bi-directional reflectance facility, and a linearized radiative transfer model for polarized radiance. Calculation of gas absorption spectra uses the HITRAN (HIgh-resolution TRANsmission molecular absorption) database of spectroscopic line parameters and other trace species cross-sections. The outputs of the testbed include not only the Stokes 4-vector elements and their sensitivities (Jacobians) with respect to the aerosol single scattering and physical parameters (such as size and shape parameters, refractive index, and plume height), but also DFS (Degree of Freedom for Signal) values for retrieval of these parameters. This testbed can be used as a tool to provide an objective assessment of aerosol information content that can be retrieved for any constellation of (planned or real) satellite sensors and for any combination of algorithm design factors (in terms of wavelengths, viewing angles, radiance and/or polarization to be measured or used). We summarize the components of the testbed, including the derivation and validation of analytical formulae for Jacobian calculations. Benchmark calculations from the forward model are documented. In the context of NASA's Decadal Survey Mission GEOCAPE (GEOstationary Coastal and Air Pollution Events), we demonstrate the use of the testbed to conduct a feasibility study of using polarization measurements in and around the O2 A band for the retrieval of aerosol height information from space, as well as an to assess potential improvement in the retrieval of aerosol fine and coarse mode aerosol optical depth (AOD) through the

  12. Cargo container inspection test program at ARPA's Nonintrusive Inspection Technology Testbed

    Science.gov (United States)

    Volberding, Roy W.; Khan, Siraj M.

    1994-10-01

    An x-ray-based cargo inspection system test program is being conducted at the Advanced Research Project Agency (ARPA)-sponsored Nonintrusive Inspection Technology Testbed (NITT) located in the Port of Tacoma, Washington. The test program seeks to determine the performance that can be expected from a dual, high-energy x-ray cargo inspection system when inspecting ISO cargo containers. This paper describes an intensive, three-month, system test involving two independent test groups, one representing the criminal smuggling element and the other representing the law enforcement community. The first group, the `Red Team', prepares ISO containers for inspection at an off-site facility. An algorithm randomly selects and indicates the positions and preparation of cargoes within a container. The prepared container is dispatched to the NITT for inspection by the `Blue Team'. After in-gate processing, it is queued for examination. The Blue Team inspects the container and decides whether or not to pass the container. The shipment undergoes out-gate processing and returns to the Red Team. The results of the inspection are recorded for subsequent analysis. The test process, including its governing protocol, the cargoes, container preparation, the examination and results available at the time of submission are presented.

  13. SunJammer Technology Demonstration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sunjammer Project is a NASA funded contract to L?Garde Inc. to fly a solar sail demonstration for a period of approximately one year. L?Garde is also partnered...

  14. Satellite Demonstration: The Videodisc Technology.

    Science.gov (United States)

    Propp, George; And Others

    1979-01-01

    Originally part of a symposium on educational media for the deaf, the paper describes a satellite demonstration of video disc materials. It is explained that a panel of deaf individuals in Washington, D.C. and another in Nebraska came into direct two-way communication for the first time, and video disc materials were broadcast via the satellite.…

  15. Tandem mirror technology demonstration facility

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  16. Tandem mirror technology demonstration facility

    International Nuclear Information System (INIS)

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M 2 ) on an 8-m 2 test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m 2 and give the necessary experience for successful operation of an ETR

  17. Flight Experiments for Living With a Star Space Environment Testbed (LWS-SET): Relationship to Technology

    Science.gov (United States)

    LaBel, Kenneth A.; Barth, Janet L.; Brewer, Dana A.

    2003-01-01

    This viewgraph presentation provides information on flight validation experiments for technologies to determine solar effects. The experiments are intended to demonstrate tolerance to a solar variant environment. The technologies tested are microelectronics, photonics, materials, and sensors.

  18. Buried waste integrated demonstration technology integration process

    International Nuclear Information System (INIS)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD)

  19. CubeSub - A CubeSat Based Submersible Testbed for Space Technology

    Science.gov (United States)

    Slettebo, Christian

    2016-01-01

    This report is a Master's Thesis in Aerospace Engineering, performed at the NASA Ames Research Center. It describes the development of the CubeSub, a submersible testbed compatible with the CubeSat form factor. The CubeSub will be used to mature technology and operational procedures to be used in space exploration, and possibly also as a tool for exploration of Earthly environments. CubeSats are carried as payloads, either containing technology to be tested or experiments and sensors for scientific use. The CubeSub is designed to be built up by modules, which can be assembled in different configurations to fulfill different needs. Each module is powered individually and intermodular communication is wireless, reducing the need for wiring. The inside of the hull is flooded with ambient water to simplify the interaction between payloads and surrounding environment. The overall shape is similar to that of a conventional AUV, slender and smooth. This is to make for a low drag, reduce the risk of snagging on surrounding objects and make it possible to deploy through an ice sheet via a narrow borehole. Rapid prototyping is utilized to a large extent, with full-scale prototypes being constructed through 3D-printing and with COTS (Commercial Off-The-Shelf) components. Arduino boards are used for control and internal communication. Modules required for basic operation have been designed, manufactured and tested. Each module is described with regards to its function, design and manufacturability. By performing tests in a pool it was found that the basic concept is sound and that future improvements include better controllability, course stability and waterproofing of electrical components. Further development is needed to make the CubeSub usable for its intended purposes. The largest gains are expected to be found by developing the software and improving controllability.

  20. Demonstration of automated proximity and docking technologies

    Science.gov (United States)

    Anderson, Robert L.; Tsugawa, Roy K.; Bryan, Thomas C.

    An autodock was demonstrated using straightforward techniques and real sensor hardware. A simulation testbed was established and validated. The sensor design was refined with improved optical performance and image processing noise mitigation techniques, and the sensor is ready for production from off-the-shelf components. The autonomous spacecraft architecture is defined. The areas of sensors, docking hardware, propulsion, and avionics are included in the design. The Guidance Navigation and Control architecture and requirements are developed. Modular structures suitable for automated control are used. The spacecraft system manager functions including configuration, resource, and redundancy management are defined. The requirements for autonomous spacecraft executive are defined. High level decisionmaking, mission planning, and mission contingency recovery are a part of this. The next step is to do flight demonstrations. After the presentation the following question was asked. How do you define validation? There are two components to validation definition: software simulation with formal and vigorous validation, and hardware and facility performance validated with respect to software already validated against analytical profile.

  1. High energy nuclear database: a test-bed for nuclear data information technology

    International Nuclear Information System (INIS)

    Brown, D.A.; Vogt, R.; Beck, B.; Pruet, J.; Vogt, R.

    2008-01-01

    We describe the development of an on-line high-energy heavy-ion experimental database. When completed, the database will be searchable and cross-indexed with relevant publications, including published detector descriptions. While this effort is relatively new, it will eventually contain all published data from older heavy-ion programs as well as published data from current and future facilities. These data include all measured observables in proton-proton, proton-nucleus and nucleus-nucleus collisions. Once in general use, this database will have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models for a broad range of experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion, target and source development for upcoming facilities such as the International Linear Collider and homeland security. This database is part of a larger proposal that includes the production of periodic data evaluations and topical reviews. These reviews would provide an alternative and impartial mechanism to resolve discrepancies between published data from rival experiments and between theory and experiment. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This project serves as a test-bed for the further development of an object-oriented nuclear data format and database system. By using 'off-the-shelf' software tools and techniques, the system is simple, robust, and extensible. Eventually we envision a 'Grand Unified Nuclear Format' encapsulating data types used in the ENSDF, Endf/B, EXFOR, NSR and other formats, including processed data formats. (authors)

  2. High Energy Nuclear Database: A Testbed for Nuclear Data Information Technology

    International Nuclear Information System (INIS)

    Brown, D A; Vogt, R; Beck, B; Pruet, J

    2007-01-01

    We describe the development of an on-line high-energy heavy-ion experimental database. When completed, the database will be searchable and cross-indexed with relevant publications, including published detector descriptions. While this effort is relatively new, it will eventually contain all published data from older heavy-ion programs as well as published data from current and future facilities. These data include all measured observables in proton-proton, proton-nucleus and nucleus-nucleus collisions. Once in general use, this database will have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models for a broad range of experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion, target and source development for upcoming facilities such as the International Linear Collider and homeland security. This database is part of a larger proposal that includes the production of periodic data evaluations and topical reviews. These reviews would provide an alternative and impartial mechanism to resolve discrepancies between published data from rival experiments and between theory and experiment. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This project serves as a testbed for the further development of an object-oriented nuclear data format and database system. By using ''off-the-shelf'' software tools and techniques, the system is simple, robust, and extensible. Eventually we envision a ''Grand Unified Nuclear Format'' encapsulating data types used in the ENSDF, ENDF/B, EXFOR, NSR and other formats, including processed data formats

  3. Hybrid Life Support System Technology Demonstrations

    Science.gov (United States)

    Morrow, R. C.; Wetzel, J. P.; Richter, R. C.

    2018-02-01

    Demonstration of plant-based hybrid life support technologies in deep space will validate the function of these technologies for long duration missions, such as Mars transit, while providing dietary variety to improve habitability.

  4. Nuclear Systems (NS): Technology Demonstration Unit (TDU)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nuclear Systems Project demonstrates nuclear power technology readiness to support the goals of NASA's Space Technology Mission Directorate. To this end, the...

  5. Environmental management technology demonstration and commercialization

    International Nuclear Information System (INIS)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H.

    1995-01-01

    The Energy ampersand Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD ampersand C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE's Office of Environmental Science and Technology (EM-50) under DOE's EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies

  6. Decision support software technology demonstration plan

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN,T.; ARMSTRONG,A.

    1998-09-01

    The performance evaluation of innovative and alternative environmental technologies is an integral part of the US Environmental Protection Agency's (EPA) mission. Early efforts focused on evaluating technologies that supported the implementation of the Clean Air and Clean Water Acts. In 1986 the Agency began to demonstrate and evaluate the cost and performance of remediation and monitoring technologies under the Superfund Innovative Technology Evaluation (SITE) program (in response to the mandate in the Superfund Amendments and Reauthorization Act of 1986 (SARA)). In 1990, the US Technology Policy was announced. This policy placed a renewed emphasis on making the best use of technology in achieving the national goals of improved quality of life for all Americans, continued economic growth, and national security. In the spirit of the technology policy, the Agency began to direct a portion of its resources toward the promotion, recognition, acceptance, and use of US-developed innovative environmental technologies both domestically and abroad. Decision Support Software (DSS) packages integrate environmental data and simulation models into a framework for making site characterization, monitoring, and cleanup decisions. To limit the scope which will be addressed in this demonstration, three endpoints have been selected for evaluation: Visualization; Sample Optimization; and Cost/Benefit Analysis. Five topics are covered in this report: the objectives of the demonstration; the elements of the demonstration plan; an overview of the Site Characterization and Monitoring Technology Pilot; an overview of the technology verification process; and the purpose of this demonstration plan.

  7. Exploration Systems Health Management Facilities and Testbed Workshop

    Science.gov (United States)

    Wilson, Scott; Waterman, Robert; McCleskey, Carey

    2004-01-01

    Presentation Agenda : (1) Technology Maturation Pipeline (The Plan) (2) Cryogenic testbed (and other KSC Labs) (2a) Component / Subsystem technologies (3) Advanced Technology Development Center (ATDC) (3a) System / Vehic1e technologies (4) EL V Flight Experiments (Flight Testbeds).

  8. OVERVIEW OF USEPA'S ARSENIC TECHNOLOGY DEMONSTRATION PROGRAM

    Science.gov (United States)

    This presentation provides a summary on the Arsenic Treatment Technology Demonstration Program. The information includes the history and the current status of the demonstration projects on both round 1 and round 2 including some photos of the treatment systems. The presentation m...

  9. Environmental management technology demonstration and commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H. [Energy & Environmental Research Center, Grand Forks, ND (United States)] [and others

    1995-10-01

    The Energy & Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD&C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE`s Office of Environmental Science and Technology (EM-50) under DOE`s EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies.

  10. FY 2011 Second Quarter: Demonstration of New Aerosol Measurement Verification Testbed for Present-Day Global Aerosol Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Koch, D

    2011-03-20

    The regional-scale Weather Research and Forecasting (WRF) model is being used by a DOE Earth System Modeling (ESM) project titled “Improving the Characterization of Clouds, Aerosols and the Cryosphere in Climate Models” to evaluate the performance of atmospheric process modules that treat aerosols and aerosol radiative forcing in the Arctic. We are using a regional-scale modeling framework for three reasons: (1) It is easier to produce a useful comparison to observations with a high resolution model; (2) We can compare the behavior of the CAM parameterization suite with some of the more complex and computationally expensive parameterizations used in WRF; (3) we can explore the behavior of this parameterization suite at high resolution. Climate models like the Community Atmosphere Model version 5 (CAM5) being used within the Community Earth System Model (CESM) will not likely be run at mesoscale spatial resolutions (10–20 km) until 5–10 years from now. The performance of the current suite of physics modules in CAM5 at such resolutions is not known, and current computing resources do not permit high-resolution global simulations to be performed routinely. We are taking advantage of two tools recently developed under PNNL Laboratory Directed Research and Development (LDRD) projects for this activity. The first is the Aerosol Modeling Testbed (Fast et al., 2011b), a new computational framework designed to streamline the process of testing and evaluating aerosol process modules over a range of spatial and temporal scales. The second is the CAM5 suite of physics parameterizations that have been ported into WRF so that their performance and scale dependency can be quantified at mesoscale spatial resolutions (Gustafson et al., 2010; with more publications in preparation).

  11. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    International Nuclear Information System (INIS)

    Betsill J, David; Elkins, Ned Z.; Wu, Chuan-Fu; Mewhinney, James D.; Aamodt, Paul

    2000-01-01

    repository, the Waste Isolation Pilot Plant (WIPP) offers a unique opportunity to serve as an international cooperative test bed for developing and demonstrating technologies and processes in a fully operational repository system setting. To address the substantial national security implications for the US resulting from the lack of integrated, transparent management and disposition of nuclear materials at the back-end of the nuclear fuel and weapons cycles, it is proposed that WIPP be used as a test bed to develop and demonstrate technologies that will enable the transparent and proliferation-resistant geologic isolation of nuclear materials. The objectives of this initiative are to: (1) enhance public confidence in safe, secure geologic isolation of nuclear materials; (2) develop, test, and demonstrate transparency measures and technologies for the back-end of nuclear fuel cycle; and (3) foster international collaborations leading to workable, effective, globally-accepted standards for the transparent monitoring of geological repositories for nuclear materials. Test-bed activities include: development and testing of monitoring measures and technologies; international demonstration experiments; transparency workshops; visiting scientist exchanges; and educational outreach. These activities are proposed to be managed by the Department of Energy/Carlsbad Area Office (DOE/CAO) as part of The Center for Applied Repository and Underground Studies (CARUS)

  12. Pilot demonstrations of arsenic removal technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Siegal Malcolm D.

    2004-09-01

    The Arsenic Water Technology Partnership (AWTP) program is a multi-year program funded by a congressional appropriation through the Department of Energy to develop and test innovative technologies that have the potential to reduce the costs of arsenic removal from drinking water. The AWTP members include Sandia National Laboratories, the American Water Works Association (Awwa) Research Foundation and WERC (A Consortium for Environmental Education and Technology Development). The program is designed to move technologies from bench-scale tests to field demonstrations. The Awwa Research Foundation is managing bench-scale research programs; Sandia National Laboratories is conducting the pilot demonstration program and WERC will evaluate the economic feasibility of the technologies investigated and conduct technology transfer activities. The objective of the Sandia Arsenic Treatment Technology Demonstration project (SATTD) is the field demonstration testing of both commercial and innovative technologies. The scope for this work includes: (1) Identification of sites for pilot demonstrations; (2) Accelerated identification of candidate technologies through Vendor Forums, proof-of-principle laboratory and local pilot-scale studies, collaboration with the Awwa Research Foundation bench-scale research program and consultation with relevant advisory panels; and (3) Pilot testing multiple technologies at several sites throughout the country, gathering information on: (a) Performance, as measured by arsenic removal; (b) Costs, including capital and Operation and Maintenance (O&M) costs; (c) O&M requirements, including personnel requirements, and level of operator training; and (d) Waste residuals generation. The New Mexico Environment Department has identified over 90 public water systems that currently exceed the 10 {micro}g/L MCL for arsenic. The Sandia Arsenic Treatment Technology Demonstration project is currently operating pilots at three sites in New Mexico. The cities of

  13. Guidance manual for conducting technology demonstration activities

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, Robert L.; Morris, Michael I.; Singh, Suman P.N.

    1991-12-01

    This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety.

  14. Guidance manual for conducting technology demonstration activities

    International Nuclear Information System (INIS)

    Jolley, R.L.; Morris, M.I.; Singh, S.P.N.

    1991-12-01

    This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety

  15. Technologies of democracy: experiments and demonstrations.

    Science.gov (United States)

    Laurent, Brice

    2011-12-01

    Technologies of democracy are instruments based on material apparatus, social practices and expert knowledge that organize the participation of various publics in the definition and treatment of public problems. Using three examples related to the engagement of publics in nanotechnology in France (a citizen conference, a series of public meetings, and an industrial design process), the paper argues that Science and Technology Studies provide useful tools and methods for the analysis of technologies of democracy. Operations of experiments and public demonstrations can be described, as well as controversies about technologies of democracy giving rise to counter-experiments and counter-demonstrations. The political value of the analysis of public engagement lies in the description of processes of stabilization of democratic orders and in the display of potential alternative political arrangements.

  16. NASA Technology Demonstrations Missions Program Overview

    Science.gov (United States)

    Turner, Susan

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Fiscal Year 2010 (FY10) budget introduced a new strategic plan that placed renewed emphasis on advanced missions beyond Earth orbit. This supports NASA s 2011 strategic goal to create innovative new space technologies for our exploration, science, and economic future. As a result of this focus on undertaking many and more complex missions, NASA placed its attention on a greater investment in technology development, and this shift resulted in the establishment of the Technology Demonstrations Missions (TDM) Program. The TDM Program, within the newly formed NASA Office of the Chief Technologist, supports NASA s grand challenges by providing a steady cadence of advanced space technology demonstrations (Figure 1), allowing the infusion of flexible path capabilities for future exploration. The TDM Program's goal is to mature crosscutting capabilities to flight readiness in support of multiple future space missions, including flight test projects where demonstration is needed before the capability can transition to direct mission The TDM Program has several unique criteria that set it apart from other NASA program offices. For instance, the TDM Office matures a small number of technologies that are of benefit to multiple customers to flight technology readiness level (TRL) 6 through relevant environment testing on a 3-year development schedule. These technologies must be crosscutting, which is defined as technology with potential to benefit multiple mission directorates, other government agencies, or the aerospace industry, and they must capture significant public interest and awareness. These projects will rely heavily on industry partner collaboration, and funding is capped for all elements of the flight test demonstration including planning, hardware development, software development, launch costs, ground operations, and post-test assessments. In order to inspire collaboration across government and industry

  17. Advance Power Technology Demonstration on Starshine 3

    Science.gov (United States)

    Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas

    2002-01-01

    The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IMPS) for evaluation.

  18. Tower-Based Greenhouse Gas Measurement Network Design---The National Institute of Standards and Technology North East Corridor Testbed.

    Science.gov (United States)

    Lopez-Coto, Israel; Ghosh, Subhomoy; Prasad, Kuldeep; Whetstone, James

    2017-09-01

    The North-East Corridor (NEC) Testbed project is the 3rd of three NIST (National Institute of Standards and Technology) greenhouse gas emissions testbeds designed to advance greenhouse gas measurements capabilities. A design approach for a dense observing network combined with atmospheric inversion methodologies is described. The Advanced Research Weather Research and Forecasting Model with the Stochastic Time-Inverted Lagrangian Transport model were used to derive the sensitivity of hypothetical observations to surface greenhouse gas emissions (footprints). Unlike other network design algorithms, an iterative selection algorithm, based on a k -means clustering method, was applied to minimize the similarities between the temporal response of each site and maximize sensitivity to the urban emissions contribution. Once a network was selected, a synthetic inversion Bayesian Kalman filter was used to evaluate observing system performance. We present the performances of various measurement network configurations consisting of differing numbers of towers and tower locations. Results show that an overly spatially compact network has decreased spatial coverage, as the spatial information added per site is then suboptimal as to cover the largest possible area, whilst networks dispersed too broadly lose capabilities of constraining flux uncertainties. In addition, we explore the possibility of using a very high density network of lower cost and performance sensors characterized by larger uncertainties and temporal drift. Analysis convergence is faster with a large number of observing locations, reducing the response time of the filter. Larger uncertainties in the observations implies lower values of uncertainty reduction. On the other hand, the drift is a bias in nature, which is added to the observations and, therefore, biasing the retrieved fluxes.

  19. Combining expedited cleanup with innovative technology demonstrations

    International Nuclear Information System (INIS)

    Hagood, M.C.; Rohay, V.J.; Valcich, P.J.; Brouns, T.M.; Cameron, R.J.

    1993-04-01

    A Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) expedited response action (ERA) has been initiated at the Hanford Site, Washington, for the removal of carbon tetrachloride from contaminated soils to mitigate further contamination of the groundwater. Soil vapor extraction with aboveground collection and treatment was chosen as the preferred remedial technology for the first phase of the ERA. At the same time, innovative technology demonstrations are being conducted in coordination with the ERA to determine the viability of emerging technologies that can be used to characterize, remediate, and monitor carbon tetrachloride and cocontaminants. The overall goal is to improve the performance and decrease the costs of carbon tetrachloride remediation while maintaining a safe working environment

  20. Development of a small-scale solar pond technology testbed for education purposes

    International Nuclear Information System (INIS)

    Rahmat, I.; Shazi, M.; Farizal, M.; Nor Azli; Fakhruldin M Hashim

    2006-01-01

    The search for clean energy sources that do not pollute have led researchers to test their ideas on a multitude of possible technology avenues. A number of these solutions rely on the sun. however, the initial financial investment required is great. These solutions, such as solar water heaters, depend on an insulated water tank to store the captured energy. A more effective device could be used to both capture and store copious amounts of sunlight energy, allowing almost continuous use even at night. Solar ponds show great promise in fulfilling this requirement. The one currently in operation at Universiti Teknologi PETRONAS is of the non-convecting type. It uses concentrated brine in the depths of the pond to capture solar energy. The energy is then trapped by the presence of a non-saline top layer, which insulates from convection heat losses. This phenomenon manifests itself as a rise in temperature of the brine. In this manner, thermal energy is contained in the pond, which can serve as the heat source for any appropriate power cycle or used for heating purposes. To make the technology feasible for education purposes it is imperative that its cost is lowered. The system is not dug out of the ground but uses a commercial bathtub to simulate the body of water. This method also greatly simplifies fabrication and maintenance. With this rudimentary setup, the highest temperature reached so far is 54 o C, achieved in a water depth of only 0.28 m. The next step is to increase the water depth, search for the most cost-effective side insulation and continue research into the appropriate energy extraction system to match the output and size of the solar pond. The main intent of this project is to educate students on this concept and develop it into an effective technology demonstrator. By keeping the cost low it can be turned into a viable secondary school Living Skills project to educate them on the potential of solar energy and the existence of alternative solutions in

  1. An information technology enabled sustainability test-bed (ITEST) for occupancy detection through an environmental sensing network

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Bing; Lam, Khee Poh; Zhang, Rui; Chiou, Yun-Shang [Center for Building Performance and Diagnostics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Andrews, Burton; Hoeynck, Michael; Benitez, Diego [Research and Technology Center, Robert BOSCH LLC, Pittsburgh, PA 15212 (United States)

    2010-07-15

    This paper describes a large-scale wireless and wired environmental sensor network test-bed and its application to occupancy detection in an open-plan office building. Detection of occupant presence has been used extensively in built environments for applications such as demand-controlled ventilation and security; however, the ability to discern the actual number of people in a room is beyond the scope of current sensing techniques. To address this problem, a complex sensor network is deployed in the Robert L. Preger Intelligent Workplace comprising a wireless ambient-sensing system, a wired carbon dioxide sensing system, and a wired indoor air quality sensing system. A wired camera network is implemented as well for establishing true occupancy levels to be used as ground truth information for deriving algorithmic relationships with the environment conditions. To our knowledge, this extensive and diverse ambient-sensing infrastructure of the ITEST setup as well as the continuous data-collection capability is unprecedented. Final results indicate that there are significant correlations between measured environmental conditions and occupancy status. An average of 73% accuracy on the occupancy number detection was achieved by Hidden Markov Models during testing periods. This paper serves as an exploration to the research of ITEST for occupancy detection in offices. In addition, its utility extends to a wide variety of other building technology research areas such as human-centered environmental control, security, energy efficient and sustainable green buildings. (author)

  2. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record #833

    National Research Council Canada - National Science Library

    Fling, Rick; McClung, Christina; Burch, William; McDonnell, Patrick

    2007-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. This Scoring Record was coordinated by Dennis Teefy and the Standardized UXO Technology Demonstration Site Scoring Committee...

  3. Standardized UXO Technology Demonstration Site, Woods Scoring Record Number 486

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  4. Use-Driven Testbed for Evaluating Systems and Technologies (U-TEST), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen will require the development of novel solutions to shape the airspace of tomorrow. Along with the ability to generate new systems and technologies comes the...

  5. Airspace Technology Demonstration 2 (ATD-2) Technology Description Document (TDD)

    Science.gov (United States)

    Ging, Andrew; Engelland, Shawn; Capps, Al; Eshow, Michelle; Jung, Yoon; Sharma, Shivanjli; Talebi, Ehsan; Downs, Michael; Freedman, Cynthia; Ngo, Tyler; hide

    2018-01-01

    This Technology Description Document (TDD) provides an overview of the technology for the Phase 1 Baseline Integrated Arrival, Departure, and Surface (IADS) prototype system of the National Aeronautics and Space Administration's (NASA) Airspace Technology Demonstration 2 (ATD-2) project, to be demonstrated beginning in 2017 at Charlotte Douglas International Airport (CLT). Development, integration, and field demonstration of relevant technologies of the IADS system directly address recommendations made by the Next Generation Air Transportation System (NextGen) Integration Working Group (NIWG) on Surface and Data Sharing and the Surface Collaborative Decision Making (Surface CDM) concept of operations developed jointly by the Federal Aviation Administration (FAA) and aviation industry partners. NASA is developing the IADS traffic management system under the ATD-2 project in coordination with the FAA, flight operators, CLT airport, and the National Air Traffic Controllers Association (NATCA). The primary goal of ATD-2 is to improve the predictability and operational efficiency of the air traffic system in metroplex environments, through the enhancement, development, and integration of the nation's most advanced and sophisticated arrival, departure, and surface prediction, scheduling, and management systems. The ATD-2 project is a 5-year research activity beginning in 2015 and extending through 2020. The Phase 1 Baseline IADS capability resulting from the ATD-2 research will be demonstrated at the CLT airport beginning in 2017. Phase 1 will provide the initial demonstration of the integrated system with strategic and tactical scheduling, tactical departure scheduling to an en route meter point, and an early implementation prototype of a Terminal Flight Data Manager (TFDM) Electronic Flight Data (EFD) system. The strategic surface scheduling element of the capability is consistent with the Surface CDM Concept of Operations published in 2014 by the FAA Surface

  6. Field Measurements of Perceived Air Quality in the Test-Bed for Innovative Climate Conditioning Technologies

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Kabrhel, Michal

    the potential influence of aforementioned technologies on the perceived air quality. Additionally, the effect of Demand Controlled Ventilation (DCV) on the perceived air quality was tested. Measurements comprised of the assessments of perceived air quality and objective measurements of operative temperature...

  7. Near-Net Forging Technology Demonstration Program

    Science.gov (United States)

    Hall, I. Keith

    1996-01-01

    Significant advantages in specific mechanical properties, when compared to conventional aluminum (Al) alloys, make aluminum-lithium (Al-Li) alloys attractive candidate materials for use in cryogenic propellant tanks and dry bay structures. However, the cost of Al-Li alloys is typically five times that of 2219 aluminum. If conventional fabrication processes are employed to fabricate launch vehicle structure, the material costs will restrict their utilization. In order to fully exploit the potential cost and performance benefits of Al-Li alloys, it is necessary that near-net manufacturing methods be developed to off-set or reduce raw material costs. Near-net forging is an advanced manufacturing method that uses elevated temperature metal movement (forging) to fabricate a single piece, near-net shape, structure. This process is termed 'near-net' because only a minimal amount of post-forge machining is required. The near-net forging process was developed to reduce the material scrap rate (buy-to-fly ratio) and fabrication costs associated with conventional manufacturing methods. The goal for the near-net forging process, when mature, is to achieve an overall cost reduction of approximately 50 percent compared with conventional manufacturing options for producing structures fabricated from Al-Li alloys. This NASA Marshall Space Flight Center (MSFC) sponsored program has been a part of a unique government / industry partnership, coordinated to develop and demonstrate near-net forging technology. The objective of this program was to demonstrate scale-up of the near-net forging process. This objective was successfully achieved by fabricating four integrally stiffened, 170- inch diameter by 20-inch tall, Al-Li alloy 2195, Y-ring adapters. Initially, two 2195 Al-Li ingots were converted and back extruded to produce four cylindrical blockers. Conventional ring rolling of the blockers was performed to produce ring preforms, which were then contour ring rolled to produce

  8. Electrodynamic Tethers and E-Sails as Active Experiment Testbeds and Technologies in Space

    Science.gov (United States)

    Gilchrist, B. E.; Wiegmann, B.; Johnson, L.; Bilen, S. G.; Habash Krause, L.; Miars, G.; Leon, O.

    2017-12-01

    The use of small-to-large flexible structures in space such as tethers continues to be studied for scientific and technology applications. Here we will consider tether electrodynamic and electrostatic interactions with magneto-plasmas in ionospheres, magnetospheres, and interplanetary space. These systems are enabling fundamental studies of basic plasma physics phenomena, allowing direct studies of the space environment, and generating technological applications beneficial for science missions. Electrodynamic tethers can drive current through the tether based on the Lorenz force adding or extracting energy from its orbit allowing for the study of charged bodies or plasma plumes moving through meso-sonic magnetoplasmas [1]. Technologically, this also generates propulsive forces requiring no propellant and little or no consumables in any planetary system with a magnetic field and ionosphere, e.g., Jupiter [2]. Further, so called electric sails (E-sails) are being studied to provide thrust through momentum exchange with the hypersonic solar wind. The E-sail uses multiple, very long (10s of km) charged, mostly bare rotating conducting tethers to deflect solar wind protons. It is estimated that a spacecraft could achieve a velocity over 100 km/s with time [3,4]. 1. Banks, P.M., "Review of electrodynamic tethers for space plasma science," J. Spacecraft and Rockets, vol. 26, no. 4, pp. 234-239, 1989. 2. Talley, C., J. Moore, D. Gallagher, and L. Johnson, "Propulsion and power from a rotating electrodynamic tether at Jupiter," 38th AIAA Aerospace Sciences Meeting and Exhibit, January 2000. 3. Janhunen, P., "The electric sail—A new propulsion method which may enable fast missions to the outer solar system," J. British Interpl. Soc., vol. 61, no. 8, pp. 322-325, 2008. 4. Wiegman, B., T. Scheider, A. Heaton, J. Vaughn, N. Stone, and K. Wright, "The Heliopause Electrostatic Rapid Transit System (HERTS)—Design, trades, and analyses performed in a two-year NASA investigation

  9. Composite Cryotank Technologies and Demonstration (CCTD)

    Data.gov (United States)

    National Aeronautics and Space Administration — Advance the technologies for composite cryogenic propellant tanks at diameters suitable for future heavy lift vehicles and other in-space applications with a goal of...

  10. CFM technologies for space transportation: Multipurpose hydrogen testbed system definition and tank procurement

    Science.gov (United States)

    Fox, E. C.; Kiefel, E. R.; Mcintosh, G. L.; Sharpe, J. B.; Sheahan, D. R.; Wakefield, M. E.

    1993-01-01

    The development of a test bed tank and system for evaluating cryogenic fluid management technologies in a simulated upper stage liquid hydrogen tank is covered. The tank is 10 ft long and is 10 ft in diameter, and is an ASME certified tank constructed of 5083 aluminum. The tank is insulated with a combination of sprayed on foam insulation, covered by 45 layers of double aluminized mylar separated by dacron net. The mylar is applied by a continuous wrap system adapted from commercial applications, and incorporates variable spacing between the mylar to provide more space between those layers having a high delta temperature, which minimizes heat leak. It also incorporates a unique venting system which uses fewer large holes in the mylar rather than the multitude of small holes used conventionally. This significantly reduces radiation heat transfer. The test bed consists of an existing vacuum chamber at MSFC, the test bed tank and its thermal control system, and a thermal shroud (which may be heated) surrounding the tank. Provisions are made in the tank and chamber for inclusion of a variety of cryogenic fluid management experiments.

  11. DEMONSTRATION BULLETIN: FORAGER™ SPONGE TECHNOLOGY - DYNAPHORE, INC.

    Science.gov (United States)

    The Forager™ Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that has selective affinity for dissolved heavy metals in both cationic and anionic states. The Forager™ Sponge technology can be utilized to remove and concentrate heavy me...

  12. SmartPark Technology Demonstration Project

    Science.gov (United States)

    2013-11-01

    The purpose of FMCSAs SmartPark initiative is to determine the feasibility of a technology for providing truck parking space availability in real time to truckers on the road. SmartPark consists of two phases. Phase I was a field operational test ...

  13. Space Internet-Embedded Web Technologies Demonstration

    Science.gov (United States)

    Foltz, David A.

    2001-01-01

    The NASA Glenn Research Center recently demonstrated the ability to securely command and control space-based assets by using the Internet and standard Internet Protocols (IP). This is a significant accomplishment because future NASA missions will benefit by using Internet standards-based protocols. The benefits include reduced mission costs and increased mission efficiency. The Internet-Based Space Command and Control System Architecture demonstrated at the NASA Inspection 2000 event proved that this communications architecture is viable for future NASA missions.

  14. Laser-boosted lightcraft technology demonstrator

    Science.gov (United States)

    Richard, J. C.; Morales, C.; Smith, W. L.; Myrabo, L. N.

    1990-01-01

    The detailed description and performance analysis of a 1.4 meter diameter Lightcraft Technology Demonstator (LTD) is presented. The launch system employs a 100 MW-class ground-based laser to transmit power directly to an advanced combined-cycle engine that propels the 120 kg LTD to orbit - with a mass ratio of two. The single-stage-to-orbit (SSTO) LTD machine then becomes an autonomous sensor satellite that can deliver precise, high quality information typical of today's large orbital platforms. The dominant motivation behind this study is to provide an example of how laser propulsion and its low launch costs can induce a comparable order-of-magnitude reduction in sensor satellite packaging costs. The issue is simply one of production technology for future, survivable SSTO aerospace vehicles that intimately share both laser propulsion engine and satellite functional hardware.

  15. Technology Tips: Building Interactive Demonstrations with Sage

    Science.gov (United States)

    Murray, Maura

    2013-01-01

    Sage is an open-source software package that can be used in many different areas of mathematics, ranging from algebra to calculus and beyond. One of the most exciting pedagogical features of Sage (http://www.sagemath.org) is its ability to create interacts--interactive examples that can be used in a classroom demonstration or by students in a…

  16. Optical Network Testbeds Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Joe Mambretti

    2007-06-01

    This is the summary report of the third annual Optical Networking Testbed Workshop (ONT3), which brought together leading members of the international advanced research community to address major challenges in creating next generation communication services and technologies. Networking research and development (R&D) communities throughout the world continue to discover new methods and technologies that are enabling breakthroughs in advanced communications. These discoveries are keystones for building the foundation of the future economy, which requires the sophisticated management of extremely large qualities of digital information through high performance communications. This innovation is made possible by basic research and experiments within laboratories and on specialized testbeds. Initial network research and development initiatives are driven by diverse motives, including attempts to solve existing complex problems, the desire to create powerful new technologies that do not exist using traditional methods, and the need to create tools to address specific challenges, including those mandated by large scale science or government agency mission agendas. Many new discoveries related to communications technologies transition to wide-spread deployment through standards organizations and commercialization. These transition paths allow for new communications capabilities that drive many sectors of the digital economy. In the last few years, networking R&D has increasingly focused on advancing multiple new capabilities enabled by next generation optical networking. Both US Federal networking R&D and other national R&D initiatives, such as those organized by the National Institute of Information and Communications Technology (NICT) of Japan are creating optical networking technologies that allow for new, powerful communication services. Among the most promising services are those based on new types of multi-service or hybrid networks, which use new optical networking

  17. Buried Waste Integrated Demonstration Technology Preparedness and Status Report Guidance

    International Nuclear Information System (INIS)

    Blacker, P.B.; Bonnenberg, R.W.; Cannon, P.G.; Hyde, R.A.; Watson, L.R.

    1994-04-01

    A Technology Preparedness and Status Report is required for each Technical Task Plan funded by the Buried Waste Integrated Demonstration. This document provides guidance for the preparation of that report. Major sections of the report will include a subset of the need for the technology, objectives of the demonstration, technology description and readiness evaluation, demonstration requirements, and preparedness checklist and action plan

  18. Demonstration and Field Test of airjacket technology

    Energy Technology Data Exchange (ETDEWEB)

    Faulkner, D.; Fisk, W.J.; Gadgil, A.J.; Sullivan, D.P.

    1998-06-01

    There are approximately 600,000 paint spray workers in the United States applying paints and coatings with some type of sprayer. Approximately 5% of these spray workers are in the South Coast Air Quality Management District (SCAQMD). These spray workers apply paints or other coatings to products such as bridges, houses, automobiles, wood and metal furniture, and other consumer and industrial products. The materials being sprayed include exterior and interior paints, lacquers, primers, shellacs, stains and varnishes. Our experimental findings indicate that the Airjacket does not significantly reduce the exposure of spray workers to paint fumes during HVLP spraying. The difference between ideal and actual spray paint procedures influence the mechanisms driving spray workers exposures to paint fumes and influence the viability of the Airjacket technology. In the ideal procedure, for which the Airjacket was conceived, the spray worker's exposure to paint fumes is due largely to the formation of a recirculating eddy between the spray worker and the object painted. The Airjacket ejects air to diminish and ventilate this eddy. In actual practice, exposures may result largely from directing paint upstream and from the bounce-back of the air/paint jet of the object being painted. The Airjacket, would not be expected to dramatically reduce exposures to paint fumes when the paint is not directed downstream or when the bounce-back of paint on the object creates a cloud of paint aerosols around the spray worker.

  19. Demonstration of Nautilus Centripetal Capillary Condenser Technology

    Science.gov (United States)

    Wheeler, RIchard; Tang, Linh; Wambolt, Spencer; Golliher, Eric; Agui, Juan

    2016-01-01

    This paper describes the results of a proof of concept effort for development of a Nautilus Centripetal Capillary Condenser (NCCC or NC3) used for microgravity compatible water recovery from moist air with integral passive phase separation. Removal of liquid condensate from the air stream exiting a condenser is readily performed here on Earth. In order to perform this function in space however, without gravity or mechanical action, other tactics including utilization of inertial, drag and capillary forces are required. Within the NC3, liquid water forms via condensation on cold condenser surfaces as humid air passes along multiple spiral channels, each in its own plane, all together forming a stacked plate assembly. Non-mechanical inertial forces are employed to transfer condensate, as it forms, via centripetal action to the outer perimeter of each channel. A V-shaped groove, constructed on this outer edge of the spiral channel, increases local capillary forces thereby retaining the liquid. Air drag then pulls the liquid along to a collection region near the center of the device. Dry air produced by each parallel spiral channel is combined in a common orthogonal, out-of-plane conduit passing down the axial center of the stacked device. Similarly, the parallel condensate streams are combined and removed from the condenser/separator through yet another out-of-plane axial conduit. NC3 is an integration of conventional finned condenser operation, combined with static phase separation and capillary transport phenomena. A Mars' transit mission would be a logical application for this technology where gravity is absent and the use of vibrating, energy-intensive, motor-driven centrifugal separators is undesired. Here a vapor stream from either the Heat Melt Compactor or the Carbon dioxide Reduction Assembly, for example, would be dried to a dew point of 10 deg using a passive NC3 condenser/separator with the precious water condensate recycled to the water bus.

  20. A Business-to-Business Interoperability Testbed: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kulvatunyou, Boonserm [ORNL; Ivezic, Nenad [ORNL; Monica, Martin [Sun Microsystems, Inc.; Jones, Albert [National Institute of Standards and Technology (NIST)

    2003-10-01

    In this paper, we describe a business-to-business (B2B) testbed co-sponsored by the Open Applications Group, Inc. (OAGI) and the National Institute of Standard and Technology (NIST) to advance enterprise e-commerce standards. We describe the business and technical objectives and initial activities within the B2B Testbed. We summarize our initial lessons learned to form the requirements that drive the next generation testbed development. We also give an overview of a promising testing framework architecture in which to drive the testbed developments. We outline the future plans for the testbed development.

  1. Closing the contrast gap between testbed and model prediction with WFIRST-CGI shaped pupil coronagraph

    Science.gov (United States)

    Zhou, Hanying; Nemati, Bijan; Krist, John; Cady, Eric; Prada, Camilo M.; Kern, Brian; Poberezhskiy, Ilya

    2016-07-01

    JPL has recently passed an important milestone in its technology development for a proposed NASA WFIRST mission coronagraph: demonstration of better than 1x10-8 contrast over broad bandwidth (10%) on both shaped pupil coronagraph (SPC) and hybrid Lyot coronagraph (HLC) testbeds with the WFIRST obscuration pattern. Challenges remain, however, in the technology readiness for the proposed mission. One is the discrepancies between the achieved contrasts on the testbeds and their corresponding model predictions. A series of testbed diagnoses and modeling activities were planned and carried out on the SPC testbed in order to close the gap. A very useful tool we developed was a derived "measured" testbed wavefront control Jacobian matrix that could be compared with the model-predicted "control" version that was used to generate the high contrast dark hole region in the image plane. The difference between these two is an estimate of the error in the control Jacobian. When the control matrix, which includes both amplitude and phase, was modified to reproduce the error, the simulated performance closely matched the SPC testbed behavior in both contrast floor and contrast convergence speed. This is a step closer toward model validation for high contrast coronagraphs. Further Jacobian analysis and modeling provided clues to the possible sources for the mismatch: DM misregistration and testbed optical wavefront error (WFE) and the deformable mirror (DM) setting for correcting this WFE. These analyses suggested that a high contrast coronagraph has a tight tolerance in the accuracy of its control Jacobian. Modifications to both testbed control model as well as prediction model are being implemented, and future works are discussed.

  2. Sustainability/Logistics-Basing Science and Technology Objective - Demonstration; Demonstration #2 - 300-Person Camp Demonstration

    Science.gov (United States)

    2017-09-04

    Air conditioner (Figure 10) As part of this project, a hygiene (shower/latrine), waste management or repurposing, and laundering module was...draws out what it needs.” One Soldier said this system “is going to save money and lives.” The Soldiers suggested making the system cheaper and...recon and where extra money is worth it.” Although the Soldiers thought the technology could be made lighter and smaller, they believed the NPC could

  3. Use of Bioregenerative Technologies for Advanced Life Support: Some Considerations for BIO-Plex and Related Testbeds

    Science.gov (United States)

    Wheeler, Raymond M.; Strayer, Richard F.

    1997-01-01

    A review of bioregenerative life support concepts is provided as a guide for developing ground-based testbeds for NASA's Advanced Life Support Program. Key among these concepts are the use of controlled environment plant culture for the production of food, oxygen, and clean water, and the use of bacterial bioreactors for degrading wastes and recycling nutrients. Candidate crops and specific bioreactor approaches are discussed based on experiences from the. Kennedy Space Center Advanced Life Support Breadboard Project, and a review of related literature is provided.

  4. Cab technology integration laboratory demonstration with moving map technology

    Science.gov (United States)

    2013-03-31

    A human performance study was conducted at the John A. Volpe National Transportation Systems Center (Volpe Center) using a locomotive research simulatorthe Cab Technology Integration Laboratory (CTIL)that was acquired by the Federal Railroad Ad...

  5. Holodeck Testbed Project

    Science.gov (United States)

    Arias, Adriel (Inventor)

    2016-01-01

    The main objective of the Holodeck Testbed is to create a cost effective, realistic, and highly immersive environment that can be used to train astronauts, carry out engineering analysis, develop procedures, and support various operations tasks. Currently, the Holodeck testbed allows to step into a simulated ISS (International Space Station) and interact with objects; as well as, perform Extra Vehicular Activities (EVA) on the surface of the Moon or Mars. The Holodeck Testbed is using the products being developed in the Hybrid Reality Lab (HRL). The HRL is combining technologies related to merging physical models with photo-realistic visuals to create a realistic and highly immersive environment. The lab also investigates technologies and concepts that are needed to allow it to be integrated with other testbeds; such as, the gravity offload capability provided by the Active Response Gravity Offload System (ARGOS). My main two duties were to develop and animate models for use in the HRL environments and work on a new way to interface with computers using Brain Computer Interface (BCI) technology. On my first task, I was able to create precise computer virtual tool models (accurate down to the thousandths or hundredths of an inch). To make these tools even more realistic, I produced animations for these tools so they would have the same mechanical features as the tools in real life. The computer models were also used to create 3D printed replicas that will be outfitted with tracking sensors. The sensor will allow the 3D printed models to align precisely with the computer models in the physical world and provide people with haptic/tactile feedback while wearing a VR (Virtual Reality) headset and interacting with the tools. Getting close to the end of my internship the lab bought a professional grade 3D Scanner. With this, I was able to replicate more intricate tools at a much more time-effective rate. The second task was to investigate the use of BCI to control

  6. A Reconfigurable Testbed Environment for Spacecraft Autonomy

    Science.gov (United States)

    Biesiadecki, Jeffrey; Jain, Abhinandan

    1996-01-01

    A key goal of NASA's New Millennium Program is the development of technology for increased spacecraft on-board autonomy. Achievement of this objective requires the development of a new class of ground-based automony testbeds that can enable the low-cost and rapid design, test, and integration of the spacecraft autonomy software. This paper describes the development of an Autonomy Testbed Environment (ATBE) for the NMP Deep Space I comet/asteroid rendezvous mission.

  7. Clean Coal Technology Demonstration Program: Program Update 1998

    Energy Technology Data Exchange (ETDEWEB)

    Assistant Secretary for Fossil Energy

    1999-03-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  8. Clean Coal Technology Demonstration Program: Program Update 2001

    Energy Technology Data Exchange (ETDEWEB)

    Assistant Secretary for Fossil Energy

    2002-07-30

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results. Also includes Power Plant Improvement Initiative Projects.

  9. Technology demonstrations in the Decontamination and Decommissioning Focus Area

    International Nuclear Information System (INIS)

    Bossart, S.J.

    1996-01-01

    This paper describes three large-scale demonstration projects sponsored jointly by the Decontamination and Decommissioning Focus Area (DDFA), and the three US Department of Energy (DOE) Operations Offices that successfully offered to deactivate or decommission (D ampersand D) one of its facilities using a combination of innovative and commercial D ampersand D technologies. The paper also includes discussions on recent technology demonstrations for an Advanced Worker Protection System, an Electrohydraulic Scabbling System, and a Pipe Explorer trademark. The references at the conclusion of this paper should be consulted for more detailed information about the large-scale demonstration projects and recent technology demonstrations sponsored by the DDFA

  10. The CMS integration grid testbed

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Gregory E.

    2004-08-26

    The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distribution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuous two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. In this paper, we describe the process that led to one of the world's first continuously available, functioning grids.

  11. The CMS Integration Grid Testbed

    CERN Document Server

    Graham, G E; Aziz, Shafqat; Bauerdick, L.A.T.; Ernst, Michael; Kaiser, Joseph; Ratnikova, Natalia; Wenzel, Hans; Wu, Yu-jun; Aslakson, Erik; Bunn, Julian; Iqbal, Saima; Legrand, Iosif; Newman, Harvey; Singh, Suresh; Steenberg, Conrad; Branson, James; Fisk, Ian; Letts, James; Arbree, Adam; Avery, Paul; Bourilkov, Dimitri; Cavanaugh, Richard; Rodriguez, Jorge Luis; Kategari, Suchindra; Couvares, Peter; DeSmet, Alan; Livny, Miron; Roy, Alain; Tannenbaum, Todd; Graham, Gregory E.; Aziz, Shafqat; Ernst, Michael; Kaiser, Joseph; Ratnikova, Natalia; Wenzel, Hans; Wu, Yujun; Aslakson, Erik; Bunn, Julian; Iqbal, Saima; Legrand, Iosif; Newman, Harvey; Singh, Suresh; Steenberg, Conrad; Branson, James; Fisk, Ian; Letts, James; Arbree, Adam; Avery, Paul; Bourilkov, Dimitri; Cavanaugh, Richard; Rodriguez, Jorge; Kategari, Suchindra; Couvares, Peter; Smet, Alan De; Livny, Miron; Roy, Alain; Tannenbaum, Todd

    2003-01-01

    The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distrib ution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuo us two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. ...

  12. Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rutter, A. [Sustainability Solutions LLC (Guam); Briggs, D. [Naval Base Guam, Santa Rita (Guam)

    2014-03-01

    In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

  13. DEMONSTRATION OF SORBENT INJECTION TECHNOLOGY ON A WALL-FIRED UTILITY BOILER (EDGEWATER LIMB DEMONSTRATION)

    Science.gov (United States)

    The report gives results of the full-scale demonstration of Limestone Injection Multistage Burner (LIMB) technology on the coal-fired, 105 MW, Unit 4 boiler at Ohio Edison's Edgewater Station. eveloped as a technology aimed at moderate levels of sulfur dioxide (SO2) and nitrogen ...

  14. Sustainability Logistics Basing - Science and Technology Objective - Demonstration; Industry Assessment and Demonstration Final Report

    Science.gov (United States)

    2017-08-14

    TECHNICAL REPORT AD ________________ NATICK/TR-17/019 SUSTAINABILITY ...LOGISTICS BASING – SCIENCE & TECHNOLOGY OBJECTIVE – DEMONSTRATION; INDUSTRY ASSESSMENT AND DEMONSTRATION FINAL REPORT by Elizabeth D. Swisher and...Benjamin J. Campbell August 2017 Final Report December 2014 – February 2016 Approved for public release; distribution is

  15. Demonstration of artificial intelligence technology for transit railcar diagnostics

    Science.gov (United States)

    1999-01-01

    This report will be of interest to railcar maintenance professionals concerned with improving railcar maintenance fault-diagnostic capabilities through the use of artificial intelligence (AI) technologies. It documents the results of a demonstration ...

  16. Clean Coal Technology Demonstration Program. Program update 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

  17. Cure electrocoagulation demonstration at Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Bridges, J.L.; Jones, J.; Ball, T.

    1996-01-01

    A demonstration of an innovative technology for remediating radionuclide contamination in water took place at the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado, during the summer of 1995. The demonstration was part of the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) program and was conducted by EPA, the U.S. Department of Energy (DOE), and General Environmental Corporation (GEC). The SITE program encourages the development and demonstration of innovative treatment and monitoring technologies. The purpose of the demonstration was to evaluate the ability of GEC's innovative CURE technology to remove uranium, plutonium, and americium from water taken from the A and B solar evaporation ponds at RFETS. The CURE electrocoagulation process uses an anode and cathode in a patented geometry to remove contaminants, including radionuclides, from wastewater in a continuous flow process. Electrocoagulation has been recognized as a method of removing a variety of contaminants from wastewaters. With the CURE process, GEC has refined the technology and adapted it to hazardous waste cleanup. Bench scale treatability testing conducted in April 1995 indicated 99 percent removal efficiencies were possible for uranium, plutonium-239/240, and americium-241. During the field scale demonstration in August and September 1995, samples were collected from four demonstration runs at RFETS. A removal efficiency of approximately 50 percent was achieved for uranium and nearly 99 percent for plutonium and americium

  18. Cure electrocoagulation demonstration at Rocky Flats Environmental Technology Site

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, J.L.; Jones, J.; Ball, T. [PRC Environmental Management, Inc., Denver, CO (United States)] [and others

    1996-12-31

    A demonstration of an innovative technology for remediating radionuclide contamination in water took place at the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado, during the summer of 1995. The demonstration was part of the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) program and was conducted by EPA, the U.S. Department of Energy (DOE), and General Environmental Corporation (GEC). The SITE program encourages the development and demonstration of innovative treatment and monitoring technologies. The purpose of the demonstration was to evaluate the ability of GEC`s innovative CURE technology to remove uranium, plutonium, and americium from water taken from the A and B solar evaporation ponds at RFETS. The CURE electrocoagulation process uses an anode and cathode in a patented geometry to remove contaminants, including radionuclides, from wastewater in a continuous flow process. Electrocoagulation has been recognized as a method of removing a variety of contaminants from wastewaters. With the CURE process, GEC has refined the technology and adapted it to hazardous waste cleanup. Bench scale treatability testing conducted in April 1995 indicated 99 percent removal efficiencies were possible for uranium, plutonium-239/240, and americium-241. During the field scale demonstration in August and September 1995, samples were collected from four demonstration runs at RFETS. A removal efficiency of approximately 50 percent was achieved for uranium and nearly 99 percent for plutonium and americium.

  19. Clean Coal Technology Demonstration Program: Program update 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a $6.9 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Technology has a vital role in ensuring that coal can continue to serve U.S. energy interests and enhance opportunities for economic growth and employment while meeting the national committment to a clean and healthy global environment. These technologies are being advanced through the CCT Program. The CCT Program supports three substantive national objectives: ensuring a sustainable environment through technology; enhancing energy efficiency and reliability; providing opportunities for economic growth and employment. The technologies being demonstrated under the CCT Program reduce the emissions of sulfur oxides, nitrogen oxides, greenhouse gases, hazardous air pollutants, solid and liquid wastes, and other emissions resulting from coal use or conversion to other fuel forms. These emissions reductions are achieved with efficiencies greater than or equal to currently available technologies.

  20. A Case Study of Three Satellite Technology Demonstration School Sites.

    Science.gov (United States)

    Law, Gordon

    The Satellite Technology Demonstration (STD) represented a cooperative and complex effort involving federal, regional, state and local interests and demonstrated the feasibility of media distribution by communication satellite of social services for rural audiences. As part of a comprehensive evaluation plan, the summative data base was augmented…

  1. Virtual Factory Testbed

    Data.gov (United States)

    Federal Laboratory Consortium — The Virtual Factory Testbed (VFT) is comprised of three physical facilities linked by a standalone network (VFNet). The three facilities are the Smart and Wireless...

  2. Large-scale demonstration of D ampersand D technologies

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.; Black, D.B.; Rose, R.W.

    1997-01-01

    It is becoming increasingly evident that new technologies will need to be utilized for decontamination and decommissioning (D ampersand D) activities in order to assure safe and cost effective operations. The magnitude of the international D ampersand D problem is sufficiently large in anticipated cost (100's of billions of dollars) and in elapsed time (decades), that the utilization of new technologies should lead to substantial improvements in cost and safety performance. Adoption of new technologies in the generally highly contaminated D ampersand D environments requires assurances that the technology will perform as advertised. Such assurances can be obtained from demonstrations of the technology in environments that are similar to the actual environments without being quite as contaminated and hazardous. The Large Scale Demonstration Project (LSDP) concept was designed to provide such a function. The first LSDP funded by the U.S. Department Of Energy's Environmental Management Office (EM) was on the Chicago Pile 5 (CP-5) Reactor at Argonne National Laboratory. The project, conducted by a Strategic Alliance for Environmental Restoration, has completed demonstrations of 10 D ampersand D technologies and is in the process of comparing the performance to baseline technologies. At the conclusion of the project, a catalog of performance comparisons of these technologies will be developed that will be suitable for use by future D ampersand D planners

  3. Demonstration of innovative monitoring technologies at the Savannah River Integrated Demonstration Site

    Energy Technology Data Exchange (ETDEWEB)

    Rossabi, J. [Westinghouse Savannah River Co., Aiken, SC (United States); Jenkins, R.A.; Wise, M.B. [Oak Ridge National Lab., TN (United States)] [and others

    1993-12-31

    The Department of Energy`s Office of Technology Development initiated an Integrated Demonstration Program at the Savannah River Site in 1989. The objective of this program is to develop, demonstrate, and evaluate innovative technologies that can improve present-day environmental restoration methods. The Integrated Demonstration Program at SRS is entitled ``Cleanup of Organics in Soils and Groundwater at Non-Arid Sites.`` New technologies in the areas of drilling, characterization, monitoring, and remediation are being demonstrated and evaluated for their technical performance and cost effectiveness in comparison with baseline technologies. Present site characterization and monitoring methods are costly, time-consuming, overly invasive, and often imprecise. Better technologies are required to accurately describe the subsurface geophysical and geochemical features of a site and the nature and extent of contamination. More efficient, nonintrusive characterization and monitoring techniques are necessary for understanding and predicting subsurface transport. More reliable procedures are also needed for interpreting monitoring and characterization data. Site characterization and monitoring are key elements in preventing, identifying, and restoring contaminated sites. The remediation of a site cannot be determined without characterization data, and monitoring may be required for 30 years after site closure.

  4. Demonstration of innovative monitoring technologies at the Savannah River Integrated Demonstration Site

    International Nuclear Information System (INIS)

    Rossabi, J.; Jenkins, R.A.; Wise, M.B.

    1993-01-01

    The Department of Energy's Office of Technology Development initiated an Integrated Demonstration Program at the Savannah River Site in 1989. The objective of this program is to develop, demonstrate, and evaluate innovative technologies that can improve present-day environmental restoration methods. The Integrated Demonstration Program at SRS is entitled ''Cleanup of Organics in Soils and Groundwater at Non-Arid Sites.'' New technologies in the areas of drilling, characterization, monitoring, and remediation are being demonstrated and evaluated for their technical performance and cost effectiveness in comparison with baseline technologies. Present site characterization and monitoring methods are costly, time-consuming, overly invasive, and often imprecise. Better technologies are required to accurately describe the subsurface geophysical and geochemical features of a site and the nature and extent of contamination. More efficient, nonintrusive characterization and monitoring techniques are necessary for understanding and predicting subsurface transport. More reliable procedures are also needed for interpreting monitoring and characterization data. Site characterization and monitoring are key elements in preventing, identifying, and restoring contaminated sites. The remediation of a site cannot be determined without characterization data, and monitoring may be required for 30 years after site closure

  5. Visible nulling coronagraph testbed results

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Thompson, Patrick; Petrone, Peter; Madison, Timothy; Rizzo, Maxime; Melnick, Gary; Tolls, Volker

    2009-08-01

    We report on our recent laboratory results with the NASA/Goddard Space Flight Center (GSFC) Visible Nulling Coronagraph (VNC) testbed. We have experimentally achieved focal plane contrasts of 1 x 108 and approaching 109 at inner working angles of 2 * wavelength/D and 4 * wavelength/D respectively where D is the aperture diameter. The result was obtained using a broadband source with a narrowband spectral filter of width 10 nm centered on 630 nm. To date this is the deepest nulling result with a visible nulling coronagraph yet obtained. Developed also is a Null Control Breadboard (NCB) to assess and quantify MEMS based segmented deformable mirror technology and develop and assess closed-loop null sensing and control algorithm performance from both the pupil and focal planes. We have demonstrated closed-loop control at 27 Hz in the laboratory environment. Efforts are underway to first bring the contrast to > 109 necessary for the direct detection and characterization of jovian (Jupiter-like) and then to > 1010 necessary for terrestrial (Earth-like) exosolar planets. Short term advancements are expected to both broaden the spectral passband from 10 nm to 100 nm and to increase both the long-term stability to > 2 hours and the extent of the null out to a ~ 10 * wavelength / D via the use of MEMS based segmented deformable mirror technology, a coherent fiber bundle, achromatic phase shifters, all in a vacuum chamber at the GSFC VNC facility. Additionally an extreme stability textbook sized compact VNC is under development.

  6. The Reusable Launch Vehicle Technology Program and the X-33 Advanced Technology Demonstrator

    Science.gov (United States)

    Cook, Stephen A.

    1995-01-01

    The goal of the Reusable Launch Vehicle (RLV) technology program is formulated, and the primary objectives of RLV are listed. RLV technology program implementation phases are outlined. X-33 advanced technology demonstrator is described. Program management is addressed.

  7. DEMONSTRATION OF SORBENT INJECTION TECHNOLOGY ON A TANGENTIALLY COAL-FIRED UTILITY BOILER (YORKTOWN LIMB DEMONSTRATION)

    Science.gov (United States)

    The report summarizes activities conducted and results achieved in an EPA-sponsored program to demonstrate Limestone Injection Multistage Burner (LIMB) technology on a tangentially fired coal-burning utility boiler, Virginia Power's 180-MWe Yorktown Unit No. 2. his successfully d...

  8. Polyethylene encapsulation full-scale technology demonstration. Final report

    International Nuclear Information System (INIS)

    Kalb, P.D.; Lageraaen, P.R.

    1994-10-01

    A full-scale integrated technology demonstration of a polyethylene encapsulation process, sponsored by the US Department of Energy (DOE) Office of Technology Development (OTD), was conducted at the Environmental ampersand Waste Technology Center at Brookhaven National Laboratory (BNL.) in September 1994. As part of the Polymer Solidification National Effort, polyethylene encapsulation has been developed and tested at BNL as an alternative solidification technology for improved, cost-effective treatment of low-level radioactive (LLW), hazardous and mixed wastes. A fully equipped production-scale system, capable of processing 900 kg/hr (2000 lb/hr), has been installed at BNL. The demonstration covered all facets of the integrated processing system including pre-treatment of aqueous wastes, precise feed metering, extrusion processing, on-line quality control monitoring, and process control

  9. Demonstration of Passive Fuel Cell Thermal Management Technology

    Science.gov (United States)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  10. Demonstrating and implementing innovative technologies: Case studies from the USDOE Office of Technology Development

    International Nuclear Information System (INIS)

    Brouns, T.M.; Koegler, K.J.; Mamiya, L.S.

    1995-02-01

    This paper describes elements of success for demonstration, evaluation, and transfer for deployment of innovative technologies for environmental restoration. They have been compiled from lessons learned through the US Department of Energy (DOE) Office of Technology Development's Volatile Organic Compounds in Arid Soil Integrated Demonstration (VOC-Arid ID). The success of the VOC-Arid ID program was determined by the rapid development demonstration, and transfer for deployment of technologies to operational sites that improve on safety, cost, and/or schedule of performance over baseline technologies. The VOC-Arid ID successfully fielded more than 25 innovative technology field demonstrations; several of the technologies demonstrated have been successfully transferred for deployment Field demonstration is a critical element in the successful transfer of innovative technologies into environmental restoration operations. The measures of success for technology demonstrations include conducting the demonstration in a safe and controlled environment and generating the appropriate information by which to evaluate the technology. However, field demonstrations alone do not guarantee successful transfer for deployment There are many key elements throughout the development and demonstration process that have a significant impact on the success of a technology. This paper presents key elements for a successful technology demonstration and transfer for deployment identified through the experiences of the VOC-Arid ID. Also, several case studies are provided as examples

  11. Clean coal technology demonstration program: Program update 1996-97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

  12. SUSTAINABILITY LOGISTICS BASING SCIENCE AND TECHNOLOGY OBJECTIVE DEMONSTRATION; SELECTED TECHNOLOGY ASSESSMENT

    Science.gov (United States)

    2018-03-22

    BASING SCIENCE AND TECHNOLOGY OBJECTIVE – DEMONSTRATION; SELECTED TECHNOLOGY ASSESSMENT by Gregg J. Gildea Paul D. Carpenter Benjamin J...Campbell William F. Harris* Michael A. McCluskey** and José A. Miletti*** *General Dynamics Information Technology Fairfax, VA 22030 **Maneuver...SCIENCE AND TECHNOLOGY OBJECTIVE – DEMONSTRATION; SELECTED TECHNOLOGY ASSESSMENT 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  13. Technology Development and Demonstration Concepts for the Space Elevator

    Science.gov (United States)

    Smitherman, David V., Jr.

    2004-01-01

    During the 1990s several discoveries and advances in the development of carbon nano-tube (CNT) materials indicated that material strengths many times greater than common high-strength composite materials might be possible. Progress in the development of this material led to renewed interest in the space elevator concept for construction of a tether structure from the surface of the Earth through a geostationary orbit (GEO) and thus creating a new approach to Earth-to-orbit transportation infrastructures. To investigate this possibility the author, in 1999, managed for NASA a space elevator work:hop at the Marshall Space Flight Center to explore the potential feasibility of space elevators in the 21 century, and to identify the critical technologies and demonstration missions needed to make development of space elevators feasible. Since that time, a NASA Institute for Advanced Concepts (NIAC) funded study of the Space Elevator proposed a concept for a simpler first space elevator system using more near-term technologies. This paper will review some of the latest ideas for space elevator development, the critical technologies required, and some of the ideas proposed for demonstrating the feasibility for full-scale development of an Earth to GEO space elevator. Critical technologies include CNT composite materials, wireless power transmission, orbital object avoidance, and large-scale tether deployment and control systems. Numerous paths for technology demonstrations have been proposed utilizing ground experiments, air structures. LEO missions, the space shuttle, the international Space Station, GEO demonstration missions, demonstrations at the lunar L1 or L2 points, and other locations. In conclusion, this paper finds that the most critical technologies for an Earth to GEO space elevator include CNT composite materials development and object avoidance technologies; that lack of successful development of these technologies need not preclude continued development of

  14. The role of a technology demonstration program for future reactors

    International Nuclear Information System (INIS)

    Viktorov, A.

    2011-01-01

    A comprehensive technology demonstration program is seen as an important component of the overall safety case, especially for a novel technology. The objective of such a program is defined as providing objective and auditable evidence that the technology will meet or exceed the relevant requirements. Various aspects of such a program are identified and then discussed in some details in this presentation. We will show how the need for such a program is anchored in fundamental safety principles. Attributes of the program, means of achieving its objective, roles of participants, as well as key steps are all elaborated. It will be argued that to prove a novel technology, the designer will have to combine several activities such as the use of operational experience, prototyping of the technology elements, conduct of experiments and tests under representative conditions, as well as modeling and analysis. Importance of availability of experimental facilities and qualified scientific and technical staff is emphasized. A solid technology demonstration program will facilitate and speed up regulatory evaluations of licensing applications. (author)

  15. The role of a technology demonstration program for future reactors

    Energy Technology Data Exchange (ETDEWEB)

    Viktorov, A. [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2011-07-01

    A comprehensive technology demonstration program is seen as an important component of the overall safety case, especially for a novel technology. The objective of such a program is defined as providing objective and auditable evidence that the technology will meet or exceed the relevant requirements. Various aspects of such a program are identified and then discussed in some details in this presentation. We will show how the need for such a program is anchored in fundamental safety principles. Attributes of the program, means of achieving its objective, roles of participants, as well as key steps are all elaborated. It will be argued that to prove a novel technology, the designer will have to combine several activities such as the use of operational experience, prototyping of the technology elements, conduct of experiments and tests under representative conditions, as well as modeling and analysis. Importance of availability of experimental facilities and qualified scientific and technical staff is emphasized. A solid technology demonstration program will facilitate and speed up regulatory evaluations of licensing applications. (author)

  16. Hot demonstration of proposed commercial nuclide removal technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.D.; Travis, J.R.; Gibson, M.R. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    Cesium, strontium, and technetium radionuclides are a small fraction of the mainly sodium and potassium salts in storage tank supernatants at the Hanford, Oak Ridge, Savannah River, and Idaho sites that DOE must remediate. Radionuclide removal technologies supplied by the ESP-CP have been previously proposed and tested in small batch and column tests using simulated and a few actual supernatants. They must now be tested and the most appropriate ones selected using a flow system of a scale suitable to obtain engineering data that can be applied to the design of pilot-scale equipment. This task involves operation of an experimental unit designed and constructed to test radionuclide removal technologies during continuous operation on actual supernatants. The equipment diagram, consists of the tanks, pumps, tubing and fittings, filters, and intrumentation for testing radionuclide removal technologies in a continuous-flow system in an Oak Ridge National Laboratory (ORNL) hot cell. The task provides a test bed for investigating new technologies, such as 3M`s SLIG 644 WWL WEB and AEA Technology`s EIX electrochemical elution system, and complements ESP`s comprehensive supernatant task (TTPOR06C341) by using larger engineering-scale, continuous equipment to verify and expand that task`s batch studies. This task complements the Tanks Focus Area`s (TFA`s) Cesium Removal Demonstration (CsRD) at ORNL by providing sorbent selection information, evaluating and testing proposed sorbents, and providing operational experience and characteristics using the sorbent and supernatant to be used in the demonstration, followed by evaluating and comparing small-scale to demonstration-scale performance. The authors cooperate closely with other ESP-CP tasks and the TFA to ultimately transfer the technologies being developed to the end user.

  17. Dust Removal Technology Demonstration for a Lunar Habitat

    Science.gov (United States)

    Calle, C. I.; Chen, A.; Immer, C. D.; Csonka, M.; Hogue, M. D.; Snyder, S. J.; Rogriquez, M.; Margiotta, D. V.

    2010-01-01

    We have developed an Electrodynamic Dust Shield (EDS), an active dust mitigation technology with applications to solar panels, thermal radiators, optical systems, visors, seals and connectors. This active technology is capable of removing dust and granular material with diameters as large as several hundred microns. In this paper, we report on the development of three types of EDS systems for NASA's Habitat Demonstration Unit (HDU). A transparent EDS 20 cm in diameter with indium tin oxide electrodes on a 0.1 mm-thick polyethylene terephtalate (PET) film was constructed for viewport dust protection. Two opaque EDS systems with copper electrodes on 0.1 mm-thick Kapton were also built to demonstrate dust removal on the doors of the HDU. A lotus coating that minimizes dust adhesion was added to one of the last two EDS systems to demonstrate the effectiveness of the combined systems.

  18. Field demonstration of technologies for delineating uranium contaminated soils

    International Nuclear Information System (INIS)

    Tidwell, V.C.; Cunnane, J.C.; Schwing, J.; Lee, S.Y.; Perry, D.L.; Morris, D.E.

    1993-01-01

    An Integrated Demonstration Program, hosted by the Fernald Environmental Restoration Management Corporation (FERMCO), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. An important part of this effort is the evaluation of field screening tools capable of acquiring high resolution information on the distribution of uranium contamination in surface soils in a cost-and-time efficient manner. Consistent with this need, four field screening technologies have been demonstrated at two hazardous waste sites at the FERMCO. The four technologies tested are wide-area gamma spectroscopy, beta scintillation counting, laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES), and long-range alpha detection (LRAD). One of the important findings of this demonstration was just how difficult it is to compare data collected by means of multiple independent measurement techniques. Difficulties are attributed to differences in measurement scale, differences in the basic physics upon which the various measurement schemes are predicated, and differences in the general performance of detector instrumentation. It follows that optimal deployment of these techniques requires the development of an approach for accounting for the intrinsic differences noted above. As such, emphasis is given in this paper to the development of a methodology for integrating these techniques for use in site characterization programs as well as the development of a framework for interpreting the collected data. The methodology described here also has general application to other field-based screening technologies and soil sampling programs

  19. Uranium in Soils Integrated Demonstration: Technology summary, March 1994

    International Nuclear Information System (INIS)

    1994-03-01

    A recent Pacific Northwest Laboratory (PNL) study identified 59 waste sites at 14 DOE facilities across the nation that exhibit radionuclide contamination in excess of established limits. The rapid and efficient characterization of these sites, and the potentially contaminated regions that surround them represents a technological challenge with no existing solution. In particular, the past operations of uranium production and support facilities at several DOE sites have occasionally resulted in the local contamination of surface and subsurface soils. Such contamination commonly occurs within waste burial sites, cribs, pond bottom sediments and soils surrounding waste tanks or uranium scrap, ore, tailings, and slag heaps. The objective of the Uranium In Soils Integrated Demonstration is to develop optimal remediation methods for soils contaminated with radionuclides, principally uranium (U), at DOE sites. It is examining all phases involved in an actual cleanup, including all regulatory and permitting requirements, to expedite selection and implementation of the best technologies that show immediate and long-term effectiveness specific to the Fernald Environmental Management Project (FEMP) and applicable to other radionuclide contaminated DOE sites. The demonstration provides for technical performance evaluations and comparisons of different developmental technologies at FEMP sites, based on cost-effectiveness, risk-reduction effectiveness, technology effectiveness, and regulatory and public acceptability. Technology groups being evaluated include physical and chemical contaminant separations, in situ remediation, real-time characterization and monitoring, precise excavation, site restoration, secondary waste treatment, and soil waste stabilization

  20. NASA Robotic Neurosurgery Testbed

    Science.gov (United States)

    Mah, Robert

    1997-01-01

    The detection of tissue interface (e.g., normal tissue, cancer, tumor) has been limited clinically to tactile feedback, temperature monitoring, and the use of a miniature ultrasound probe for tissue differentiation during surgical operations, In neurosurgery, the needle used in the standard stereotactic CT or MRI guided brain biopsy provides no information about the tissue being sampled. The tissue sampled depends entirely upon the accuracy with which the localization provided by the preoperative CT or MRI scan is translated to the intracranial biopsy site. In addition, no information about the tissue being traversed by the needle (e.g., a blood vessel) is provided. Hemorrhage due to the biopsy needle tearing a blood vessel within the brain is the most devastating complication of stereotactic CT/MRI guided brain biopsy. A robotic neurosurgery testbed has been developed at NASA Ames Research Center as a spin-off of technologies from space, aeronautics and medical programs. The invention entitled "Robotic Neurosurgery Leading to Multimodality Devices for Tissue Identification" is nearing a state ready for commercialization. The devices will: 1) improve diagnostic accuracy and precision of general surgery, with near term emphasis on stereotactic brain biopsy, 2) automate tissue identification, with near term emphasis on stereotactic brain biopsy, to permit remote control of the procedure, and 3) reduce morbidity for stereotactic brain biopsy. The commercial impact from this work is the potential development of a whole new generation of smart surgical tools to increase the safety, accuracy and efficiency of surgical procedures. Other potential markets include smart surgical tools for tumor ablation in neurosurgery, general exploratory surgery, prostate cancer surgery, and breast cancer surgery.

  1. INTERNATIONAL ENVIRONMENTAL TECHNOLOGY IDENTIFICATION, DEVELOPMENT, DEMONSTRATION, DEPLOYMENT AND EXCHANGE

    Energy Technology Data Exchange (ETDEWEB)

    Roy C. Herndon

    2001-02-28

    Cooperative Agreement (DE-FC21-95EW55101) between the U.S. Department of Energy (DOE) and the Florida State University's Institute for International Cooperative Environmental Research (IICER) was designed to facilitate a number of joint programmatic goals of both the DOE and the IICER related to international technology identification, development, demonstration and deployment using a variety of mechanisms to accomplish these goals. These mechanisms included: laboratory and field research; technology demonstrations; international training and technical exchanges; data collection, synthesis and evaluation; the conduct of conferences, symposia and high-level meetings; and other appropriate and effective approaches. The DOE utilized the expertise and facilities of the IICER at Florida State University to accomplish its goals related to this cooperative agreement. The IICER has unique and demonstrated capabilities that have been utilized to conduct the tasks for this cooperative agreement. The IICER conducted activities related to technology identification, development, evaluation, demonstration and deployment through its joint centers which link the capabilities at Florida State University with collaborating academic and leading research institutions in the major countries of Central and Eastern Europe (e.g., Czech Republic, Hungary, Poland) and Russia. The activities and accomplishments for this five-year cooperative agreement are summarized in this Final Technical Report.

  2. Secure, Mobile, Wireless Network Technology Designed, Developed, and Demonstrated

    Science.gov (United States)

    Ivancic, William D.; Paulsen, Phillip E.

    2004-01-01

    The inability to seamlessly disseminate data securely over a high-integrity, wireless broadband network has been identified as a primary technical barrier to providing an order-of-magnitude increase in aviation capacity and safety. Secure, autonomous communications to and from aircraft will enable advanced, automated, data-intensive air traffic management concepts, increase National Air Space (NAS) capacity, and potentially reduce the overall cost of air travel operations. For the first time ever, secure, mobile, network technology was designed, developed, and demonstrated with state-ofthe- art protocols and applications by a diverse, cooperative Government-industry team led by the NASA Glenn Research Center. This revolutionary technology solution will make fundamentally new airplane system capabilities possible by enabling secure, seamless network connections from platforms in motion (e.g., cars, ships, aircraft, and satellites) to existing terrestrial systems without the need for manual reconfiguration. Called Mobile Router, the new technology autonomously connects and configures networks as they traverse from one operating theater to another. The Mobile Router demonstration aboard the Neah Bay, a U.S. Coast Guard vessel stationed in Cleveland, Ohio, accomplished secure, seamless interoperability of mobile network systems across multiple domains without manual system reconfiguration. The Neah Bay was chosen because of its low cost and communications mission similarity to low-Earth-orbiting satellite platforms. This technology was successfully advanced from technology readiness level (TRL) 2 (concept and/or application formation) to TRL 6 (system model or prototype demonstration in a relevant environment). The secure, seamless interoperability offered by the Mobile Router and encryption device will enable several new, vehicle-specific and systemwide technologies to perform such things as remote, autonomous aircraft performance monitoring and early detection and

  3. VOCs in Non-Arid Soils Integrated Demonstration: Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The Volatile Organic Compounds (VOCs) in Non-Arid Soils Integrated Demonstration (ID) was initiated in 1989. Objectives for the ID were to test the integrated demonstration concept, demonstrate and evaluate innovative technologies/systems for the remediation of VOC contamination in soils and groundwater, and to transfer technologies and systems to internal and external customers for use in fullscale remediation programs. The demonstration brought together technologies from DOE laboratories, other government agencies, and industry for demonstration at a single test bed. The Savannah River Site was chosen as the location for this ID as the result of having soil and groundwater contaminated with VOCS. The primary contaminants, trichlorethylene and tetrachloroethylene, originated from an underground process sewer line servicing a metal fabrication facility at the M-Area. Some of the major technical accomplishments for the ID include the successful demonstration of the following: In situ air stripping coupled with horizontal wells to remediate sites through air injection and vacuum extraction; Crosshole geophysical tomography for mapping moisture content and lithologic properties of the contaminated media; In situ radio frequency and ohmic heating to increase mobility, of the contaminants, thereby speeding recovery and the remedial process; High-energy corona destruction of VOCs in the off-gas of vapor recovery wells; Application of a Brayton cycle heat pump to regenerate carbon adsorption media used to trap VOCs from the offgas of recovery wells; In situ permeable flow sensors and the colloidal borescope to determine groundwater flow; Chemical sensors to rapidly quantify chlorinated solvent contamination in the subsurface; In situ bioremediation through methane/nutrient injection to enhance degradation of contaminants by methanotrophic bateria

  4. Technology demonstration of space intravehicular automation and robotics

    Science.gov (United States)

    Morris, A. Terry; Barker, L. Keith

    1994-01-01

    Automation and robotic technologies are being developed and capabilities demonstrated which would increase the productivity of microgravity science and materials processing in the space station laboratory module, especially when the crew is not present. The Automation Technology Branch at NASA Langley has been working in the area of intravehicular automation and robotics (IVAR) to provide a user-friendly development facility, to determine customer requirements for automated laboratory systems, and to improve the quality and efficiency of commercial production and scientific experimentation in space. This paper will describe the IVAR facility and present the results of a demonstration using a simulated protein crystal growth experiment inside a full-scale mockup of the space station laboratory module using a unique seven-degree-of-freedom robot.

  5. Simulator platform for fast reactor operation and safety technology demonstration

    International Nuclear Information System (INIS)

    Vilim, R.B.; Park, Y.S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J.

    2012-01-01

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  6. Simulator platform for fast reactor operation and safety technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J. (Nuclear Engineering Division)

    2012-07-30

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  7. New energy technologies. Research, development and demonstration; Denmark; Nye energiteknologier. Forskning, udvikling og demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Holst Joergensen, B.; Muenster, M.

    2010-12-15

    This report was commissioned by the Danish Climate Commission in 2009 to analyse how research, development and demonstration (RD and D) on sustainable energy technologies can contribute to make Denmark independent on fossil energy by 2050. It focuses on the RD and D investments needed as well as adequate framework conditions for Danish knowledge production and diffusion within this field. First part focuses on the general aspects related to knowledge production and the challenges related to research. Energy technologies are categorized and recent attempt to optimize Danish efforts are addressed, including RD and D prioritisation, public-private partnerships and international RD and D cooperation. Part two describes the development and organisation of the Danish public RD and D activities, including benchmark with other countries. The national energy RD and D programmes and their contribution to the knowledge value chain are described as well as the coordination and alignment efforts. Part Three illustrates three national innovation systems for highly different technologies - wind, fuel cells and intelligent energy systems. Finally, six recommendations are put forward: to make a national strategic energy technology plan; to enforce the coordination and synergy between national RD and D programmes; to strengthen social science research related to the transition to a sustainable energy system; to increase public RD and D expenditure to at least 0.1% of GDP per year; to strengthen international RD and D cooperation; and to make a comprehensive analysis of the capacity and competence needs for the energy sector. (Author)

  8. Clean coal technologies: Research, development, and demonstration program plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  9. Daemen Alternative Energy/Geothermal Technologies Demonstration Program, Erie County

    Energy Technology Data Exchange (ETDEWEB)

    Beiswanger, Robert C. [Daemen College, Amherst, NY (United States)

    2013-02-28

    The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is available to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings that are quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center

  10. Technology demonstration assessment report for X-701B Holding Pond

    International Nuclear Information System (INIS)

    1992-07-01

    This Technology Demonstration Assessment Report (TDAR) was developed to evaluate and recommend the most feasible approach for cleanup of contaminated Minford soils below the X-701B Holding Pond and to summarize closure activities at the Portsmouth Gaseous Diffusion Plant (PORTS)X-701B Holding Pond(X-701B)site. In this TDAR, the recommended alternative and the activities for closure of the X-701B site are discussed. Four treatment technologies chosen for the TD, along with a contingent design, were evaluated to determine which approach would be appropriate for final closure of X-701B. These technologies address removal of soil contamination from the vadose zone and the saturated zone. The four technologies plus the Contingent Design evaluated were: In situ Soil Mixing with Solidification/Stabilization; In situ Soil Mixing with Isothermal Vapor Extraction; In situ Soil Mixing with Thermally Enhanced Vapor Extraction; In situ Soil Mixing with Peroxidation Destruction; and Contingent Closure. These technologies were evaluated according to their performance, reliability, implementability, safety, waste minimization, cost, and implementation time. Based on these criteria, a preferred treatment approach was recommended. The goal of the treatment approach is to apply the most appropriate technology demonstrated at X-231 B in order to reduce Volatile Organic Compounds (VOCs) in the saturated Minford soils directly beneath the X-701B Holding Pond. The closure schedule will include bid and award of two construction contracts, mobilization and demobilization, soil treatment, cap design, and cap construction. The total time required for soil treatment will be established based on actual performance of the soil treatment approach in the field

  11. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.

    2014-01-01

    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  12. NASA's ATM Technology Demonstration-1: Integrated Concept of Arrival Operations

    Science.gov (United States)

    Baxley, Brian T.; Swenson, Harry N.; Prevot, Thomas; Callantine, Todd J.

    2012-01-01

    This paper describes operations and procedures envisioned for NASA s Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1). The ATD-1 Concept of Operations (ConOps) demonstration will integrate three NASA technologies to achieve high throughput, fuel-efficient arrival operations into busy terminal airspace. They are Traffic Management Advisor with Terminal Metering (TMA-TM) for precise time-based schedules to the runway and points within the terminal area, Controller-Managed Spacing (CMS) decision support tools for terminal controllers to better manage aircraft delay using speed control, and Flight deck Interval Management (FIM) avionics and flight crew procedures to conduct airborne spacing operations. The ATD-1 concept provides de-conflicted and efficient operations of multiple arrival streams of aircraft, passing through multiple merge points, from top-of-descent (TOD) to touchdown. It also enables aircraft to conduct Optimized Profile Descents (OPDs) from en route altitude to the runway, using primarily speed control to maintain separation and schedule. The ATD-1 project is currently addressing the challenges of integrating the three technologies, and implantation into an operational environment. Goals of the ATD-1 demonstration include increasing the throughput of high-density airports, reducing controller workload, increasing efficiency of arrival operations and the frequency of trajectory-based operations, and promoting aircraft ADS-B equipage.

  13. ASTRID, Generation IV advanced sodium technological reactor for industrial demonstration

    International Nuclear Information System (INIS)

    Gauche, F.

    2013-01-01

    ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) is an integrated technology demonstrator designed to demonstrate the operability of the innovative choices enabling fast neutron reactor technology to meet the Generation IV criteria. ASTRID is a sodium-cooled fast reactor with an electricity generating power of 600 MWe. In order to meet the generation IV goals, ASTRID will incorporate the following decisive innovations: -) an improved core with a very low, even negative void coefficient; -) the possible installation of additional safety devices in the core. For example, passive anti-reactivity insertion devices are explored; -) more core instrumentation; -) an energy conversion system with modular steam generators, to limit the effects of a possible sodium-water reaction, or sodium-nitrogen exchangers; -) considerable thermal inertia combined with natural convection to deal with decay heat; -)elimination of major sodium fires by bunkerization and/or inert atmosphere in the premises; -) to take into account off-site hazards (earthquake, airplane crash,...) right from the design stage; -) a complete rethink of the reactor architecture in order to limit the risk of proliferation. ASTRID will also include systems for reducing the length of refueling outages and increasing the burn-up and the duration of the cycle. In-service inspection, maintenance and repair are also taken into account right from the start of the project. The ASTRID prototype should be operational by about 2023. (A.C.)

  14. Selecting Days for Concept and Technology Evaluation in SMART-NAS Test-Bed Scenario Generation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Crown Consulting, Inc. will investigate and demonstrate methods to enable rapid selection of days for scenario generation in the development and evaluation of Air...

  15. Hanford Tanks Initiative fiscal year 1997 retrieval technology demonstrations

    International Nuclear Information System (INIS)

    Berglin, E.J.

    1998-01-01

    The Hanford Tanks Initiative was established in 1996 to address a range of retrieval and closure issues associated with radioactive and hazardous waste stored in Hanford's single shell tanks (SSTs). One of HTI's retrieval goals is to ''Successfully demonstrate technology(s) that provide expanded capabilities beyond past practice sluicing and are extensible to retrieve waste from other SSTS.'' Specifically, HTI is to address ''Alternative technologies to past practice sluicing'' ... that can ... ''successfully remove the hard heel from a sluiced tank or to remove waste from a leaking SST'' (HTI Mission Analysis). During fiscal year 1997, the project contracted with seven commercial vendor teams to demonstrate retrieval technologies using waste simulants. These tests were conducted in two series: three integrated tests (IT) were completed in January 1997, and four more comprehensive Alternative Technology Retrieval Demonstrations (ARTD) were completed in July 1997. The goal of this testing was to address issues to minimize the risk, uncertainties, and ultimately the overall cost of removing waste from the SSTS. Retrieval technologies can be separated into three tracks based on how the tools would be deployed in the tank: globally (e.g., sluicing) or using vehicles or robotic manipulators. Accordingly, the HTI tests included an advanced sluicer (Track 1: global systems), two different vehicles (Track 2: vehicle based systems), and three unique manipulators (Track 3: arm-based systems), each deploying a wide range of dislodging tools and conveyance systems. Each industry team produced a system description as envisioned for actual retrieval and a list of issues that could prevent using the described system; defined the tests to resolve the issues; performed the test; and reported the results, lessons learned, and state of issue resolution. These test reports are cited in this document, listed in the reference section, and summarized in the appendices. This report

  16. Hanford Tanks Initiative fiscal year 1997 retrieval technology demonstrations

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, E.J.

    1998-02-05

    The Hanford Tanks Initiative was established in 1996 to address a range of retrieval and closure issues associated with radioactive and hazardous waste stored in Hanford`s single shell tanks (SSTs). One of HTI`s retrieval goals is to ``Successfully demonstrate technology(s) that provide expanded capabilities beyond past practice sluicing and are extensible to retrieve waste from other SSTS.`` Specifically, HTI is to address ``Alternative technologies to past practice sluicing`` ... that can ... ``successfully remove the hard heel from a sluiced tank or to remove waste from a leaking SST`` (HTI Mission Analysis). During fiscal year 1997, the project contracted with seven commercial vendor teams to demonstrate retrieval technologies using waste simulants. These tests were conducted in two series: three integrated tests (IT) were completed in January 1997, and four more comprehensive Alternative Technology Retrieval Demonstrations (ARTD) were completed in July 1997. The goal of this testing was to address issues to minimize the risk, uncertainties, and ultimately the overall cost of removing waste from the SSTS. Retrieval technologies can be separated into three tracks based on how the tools would be deployed in the tank: globally (e.g., sluicing) or using vehicles or robotic manipulators. Accordingly, the HTI tests included an advanced sluicer (Track 1: global systems), two different vehicles (Track 2: vehicle based systems), and three unique manipulators (Track 3: arm-based systems), each deploying a wide range of dislodging tools and conveyance systems. Each industry team produced a system description as envisioned for actual retrieval and a list of issues that could prevent using the described system; defined the tests to resolve the issues; performed the test; and reported the results, lessons learned, and state of issue resolution. These test reports are cited in this document, listed in the reference section, and summarized in the appendices. This report

  17. Space Solar Power Technology Demonstration for Lunar Polar Applications

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, J.

    2002-01-01

    A solar power generation station on a mountaintop near the moon's North or South pole can receive sunlight 708 hours per lunar day, for continuous power generation. Power can be beamed from this station over long distances using a laser-based wireless power transmission system and a photo-voltaic receiver. This beamed energy can provide warmth, electricity, and illumination for a robotic rover to perform scientific experiments in cold, dark craters where no other power source is practical. Radio-frequency power transmission may also be demonstrated in lunar polar applications to locate and recover sub-surface deposits of volatile material, such as water ice. High circular polarization ratios observed in data from Clementine spacecraft and Arecibo radar reflections from the moon's South pole suggest that water ice is indeed present in certain lunar polar craters. Data from the Lunar Prospector spacecraft's epi-thermal neutron spectrometer also indicate that hydrogen is present at the moon's poles. Space Solar Power technology enables investigation of these craters, which may contain a billion-year-old stratigraphic record of tremendous scientific value. Layers of ice, preserved at the moon's poles, could help us determine the sequence and composition of comet impacts on the moon. Such ice deposits may even include distinct strata deposited by secondary ejecta following significant Earth (ocean) impacts, linked to major extinctions of life on Earth. Ice resources at the moon's poles could provide water and air for human exploration and development of space as well as rocket propellant for future space transportation. Technologies demonstrated and matured via lunar polar applications can also be used in other NASA science missions (Valles Marineris. Phobos, Deimos, Mercury's poles, asteroids, etc.) and in future large-scale SSP systems to beam energy from space to Earth. Ground-based technology demonstrations are proceeding to mature the technology for such a near

  18. Nuclear Instrumentation and Control Cyber Testbed Considerations – Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Gray; Robert Anderson; Julio G. Rodriguez; Cheol-Kwon Lee

    2014-08-01

    Abstract: Identifying and understanding digital instrumentation and control (I&C) cyber vulnerabilities within nuclear power plants and other nuclear facilities, is critical if nation states desire to operate nuclear facilities safely, reliably, and securely. In order to demonstrate objective evidence that cyber vulnerabilities have been adequately identified and mitigated, a testbed representing a facility’s critical nuclear equipment must be replicated. Idaho National Laboratory (INL) has built and operated similar testbeds for common critical infrastructure I&C for over ten years. This experience developing, operating, and maintaining an I&C testbed in support of research identifying cyber vulnerabilities has led the Korean Atomic Energy Research Institute of the Republic of Korea to solicit the experiences of INL to help mitigate problems early in the design, development, operation, and maintenance of a similar testbed. The following information will discuss I&C testbed lessons learned and the impact of these experiences to KAERI.

  19. INFN Tier-1 Testbed Facility

    International Nuclear Information System (INIS)

    Gregori, Daniele; Cavalli, Alessandro; Dell'Agnello, Luca; Dal Pra, Stefano; Prosperini, Andrea; Ricci, Pierpaolo; Ronchieri, Elisabetta; Sapunenko, Vladimir

    2012-01-01

    INFN-CNAF, located in Bologna, is the Information Technology Center of National Institute of Nuclear Physics (INFN). In the framework of the Worldwide LHC Computing Grid, INFN-CNAF is one of the eleven worldwide Tier-1 centers to store and reprocessing Large Hadron Collider (LHC) data. The Italian Tier-1 provides the resources of storage (i.e., disk space for short term needs and tapes for long term needs) and computing power that are needed for data processing and analysis to the LHC scientific community. Furthermore, INFN Tier-1 houses computing resources for other particle physics experiments, like CDF at Fermilab, SuperB at Frascati, as well as for astro particle and spatial physics experiments. The computing center is a very complex infrastructure, the hardaware layer include the network, storage and farming area, while the software layer includes open source and proprietary software. Software updating and new hardware adding can unexpectedly deteriorate the production activity of the center: therefore a testbed facility has been set up in order to reproduce and certify the various layers of the Tier-1. In this article we describe the testbed and the checks performed.

  20. Maintenance and disassembly considerations for the Technology Demonstration Facility

    International Nuclear Information System (INIS)

    Spampinato, P.T.

    1983-01-01

    The Technology Demonstration Facility (TDF) is a tandem-mirror design concept carried out under the direction of Lawrence Livermore National Laboratory. It was conceived as a near-term device with a mission of developing engineering technology in a D-T fusion environment. Overall maintenance and component disassembly were among the responsibilities of the Fusion Engineering Design Center (FEDC). A configuration evolved that was based on the operational requirements of the components, as well as the requirements for their replacements. Component lifetime estimates were used to estimate the frequency and the number of replacements. In addition, it was determined that the need for remote handling equipment followed within 1.5 years after initial start-up, emphasizing the direct relationship between developing maintenance scenarios/equipment and the device configuration. Many of the scheduled maintenance operations were investigated to first order, and preliminary handling equipment concepts were developed

  1. Application of multimedia image technology in engineering report demonstration system

    Science.gov (United States)

    Lili, Jiang

    2018-03-01

    With the rapid development of global economic integration, people’s strong desire for a wide range of global exchanges and interactions has been promoted, and there are more unprecedented convenient means for people to know the world and even to transform the world. At this stage, we realize that the traditional mode of work has become difficult to adapt to the changing trends of the world and informatization, multimedia, science and technology have become the mainstream of the times. Therefore, this paper will mainly analyze the present situation of the project report demonstration system and the key points of the work and put forward with pertinence specific application strategy of the integration with multimedia image technology.

  2. DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION

    Energy Technology Data Exchange (ETDEWEB)

    Barry L. Burks

    2002-12-01

    The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

  3. Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare -- Wastewater Recycling Technology

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Brian K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parker, Graham B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Petersen, Joseph M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sullivan, Greg [Efficiency Solutions, LLC (United States); Goetzler, W. [Navigant Consulting, Inc. (United States); Foley, K. J. [Navigant Consulting, Inc. (United States); Sutherland, T. A. [Navigant Consulting, Inc. (United States)

    2014-08-14

    The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of a wastewater recycling system installed in the Grand Hyatt Seattle.

  4. Demonstration of Autonomous Rendezvous Technology (DART) Project Summary

    Science.gov (United States)

    Rumford, TImothy E.

    2003-01-01

    Since the 1960's, NASA has performed numerous rendezvous and docking missions. The common element of all US rendezvous and docking is that the spacecraft has always been piloted by astronauts. Only the Russian Space Program has developed and demonstrated an autonomous capability. The Demonstration of Autonomous Rendezvous Technology (DART) project currently funded under NASA's Space Launch Initiative (SLI) Cycle I, provides a key step in establishing an autonomous rendezvous capability for the United States. DART's objective is to demonstrate, in space, the hardware and software necessary for autonomous rendezvous. Orbital Sciences Corporation intends to integrate an Advanced Video Guidance Sensor and Autonomous Rendezvous and Proximity Operations algorithms into a Pegasus upper stage in order to demonstrate the capability to autonomously rendezvous with a target currently in orbit. The DART mission will occur in April 2004. The launch site will be Vandenburg AFB and the launch vehicle will be a Pegasus XL equipped with a Hydrazine Auxiliary Propulsion System 4th stage. All mission objectives will be completed within a 24 hour period. The paper provides a summary of mission objectives, mission overview and a discussion on the design features of the chase and target vehicles.

  5. Technology demonstration of starshade manufacturing for NASA's Exoplanet mission program

    Science.gov (United States)

    Kasdin, N. J.; Lisman, D.; Shaklan, S.; Thomson, M.; Cady, E.; Martin, S.; Marchen, L.; Vanderbei, R. J.; Macintosh, B.; Rudd, R. E.; Savransky, D.; Mikula, J.; Lynch, D.

    2012-09-01

    It is likely that the coming decade will see the development of a large visible light telescope with enabling technology for imaging exosolar Earthlike planets in the habitable zone of nearby stars. One such technology utilizes an external occulter, a satellite flying far from the telescope and employing a large screen, or starshade, to suppress the incoming starlight suffciently for detecting and characterizing exoplanets. This trades the added complexity of building the precisely shaped starshade and flying it in formation against simplifications in the telescope since extremely precise wavefront control is no longer necessary. In this paper we present the results of our project to design, manufacture, and measure a prototype occulter petal as part of NASA's first Technology Development for Exoplanet Missions program. We describe the mechanical design of the starshade and petal, the precision manufacturing tolerances, and the metrology approach. We demonstrate that the prototype petal meets the requirements and is consistent with a full-size occulter achieving better than 10-10 contrast.

  6. Gas Dynamic Spray Technology Demonstration Project Management. Joint Test Report

    Science.gov (United States)

    Lewis, Pattie

    2011-01-01

    The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are sUbject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by Air Force Space Command (AFSPC) and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GOS) technology (also known as Cold Spray) was evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GOS coatings also have no VOCs and are environmentally preferable coatings. The primary objective of this effort was to demonstrate GDS technology as a repair method for TSCs. The aim was that successful completion of this project would result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations to improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  7. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    Science.gov (United States)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  8. Combining innovative technology demonstrations with dense nonaqueous phase liquids cleanup

    International Nuclear Information System (INIS)

    Hagood, M.C.; Koegler, K.J.; Rohay, V.J.; Trent, S.J.; Stein, S.L.; Brouns, T.M.; McCabe, G.H.; Tomich, S.

    1993-05-01

    Radioactively contaminated acidic aqueous wastes and organic liquids were discharged to the soil column at three disposal sites within the 200 West Area of the Hanford Site, Washington. As a result, a portion of the underlying groundwater is contaminated with carbon tetrachloride several orders of magnitude above the maximum contaminant level accepted for a drinking water supply. Treatability testing and cleanup actions have been initiated to remove the contamination from both the unsaturated soils to minimize further groundwater contamination and the groundwater itself. To expedite cleanup, innovative technologies for (1) drilling, (2) site characterization, (3) monitoring, (4) well field development, and (5) contaminant treatment are being demonstrated and subsequently used where possible to improve the rates and cost savings associated with the removal of carbon tetrachloride from the soils and groundwater

  9. Technology demonstration for the DARHT linear induction accelerators

    International Nuclear Information System (INIS)

    Burns, M.; Allison, P.; Downing, J.; Moir, D.; Caporaso, G.; Chen, Y.J.

    1992-01-01

    The Dual-Axis Radiographic Hydrodynamics Test (DARHT) facility will employ two 16-MeV, 3-kA Linear Induction Accelerators to produce intense, bremsstrahlung x-ray pulses for flash radiography. Technology demonstration of the key accelerator sub-systems is underway at the DARHT Integrated Test Stand (ITS), which will produce a 6-MeV, 3-kA, 60-ns flattop electron beam. We will summarized measurements of ITS injector, pulsed-power, and accelerator cell performance. Time-resolved measurements of the electron beam parameters will also be presented. These measurements indicate that the DARHT accelerator design is sufficiently advanced to provide the high quality electron beams required for radiography with sub-millimeter spatial resolution

  10. Technology demonstration for the DARHT linear induction accelerators

    International Nuclear Information System (INIS)

    Burns, M.; Allison, P.; Downing, J.; Moir, D.; Caporaso, G.; Chen, Y.J.

    1993-01-01

    The Dual-Axis Radiographic Hydrodynamics Test (DARHT) facility will employ two 16-MeV, 3-kA Linear Induction Accelerators to produce intense, bremsstrahlung x-ray pulses for flash radiography. Technology demonstration of the key accelerator sub-systems is underway at the DARHT Integrated Test Stand (ITS), which will produce a 6-MeV, 3-kA, 60-ns flattop electron beam. The authors summarize measurements of ITS injector, pulsed-power, and accelerator cell performance. Time-resolved measurements of the electron beam parameters are also presented. These measurements indicate that the DARHT accelerator design is sufficiently advanced to provide the high quality electron beams required for radiography with sub-millimeter spatial resolution

  11. Exploration Drilling and Technology Demonstration At Fort Bliss

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Ben; Moore, Joe [EGI; Segall, Marylin; Nash, Greg; Simmons, Stuart; Jones, Clay; Lear, Jon; Bennett, Carlon

    2014-02-26

    The Tularosa-Hueco basin in south-central New Mexico has long been known as an extensional area of high heat flow. Much of the basin is within the Fort Bliss military reservation, which is an exceptionally high value customer for power independent of the regional electric grid and for direct use energy in building climate control. A series of slim holes drilled in the 1990s established the existence of a thermal anomaly but not its practical value. This study began in 2009 with a demonstration of new exploration drilling technology. The subsequent phases reported here delivered a useful well, comparative exploration data sets and encouragement for further development. A production-size well, RMI56-5, was sited after extensive study of archival and newly collected data in 2010-2011. Most of 2012 was taken up with getting state and Federal authorities to agree on a lead agency for permitting purposes, getting a drilling permit and redesigning the drilling program to suit available equipment. In 2013 we drilled, logged and tested a 924 m well on the McGregor Range at Fort Bliss using a reverse circulation rig. Rig tests demonstrated commercial permeability and the well has a 7-inch slotted liner for use either in production or injection. An August 2013 survey of the completed well showed a temperature of 90 C with no reversal, the highest such temperature in the vicinity. The well’s proximity to demand suggests a potentially valuable resource for direct use heat and emergency power generation. The drilling produced cuttings of excellent size and quality. These were subjected to traditional analyses (thin sections, XRD) and to the QEMScan™ for comparison. QEMScan™ technology includes algorithms for determining such properties of rocks as density, mineralogy, heavy/light atoms, and porosity to be compared with direct measurements of the cuttings. In addition to a complete cuttings set, conventional and resistivity image logs were obtained in the open hole before

  12. TRUEX/SREX demonstration. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    The tank waste at the Idaho National engineering and Environmental Laboratory (INEEL) must be removed from the tanks by 2012. Transuranic Extraction (TRUEX) and Strontium Extraction (SREX) are the preferred processes for treating INEEL tank waste. The demonstrations for both the TRUEX and SREX processes were carried out separately in the ICPP Remote Analytical Laboratory (RAL) shielded hot cell. A 24-stage bank of 2-cm diameter, centrifugal contactors was fabricated by Argonne National Laboratory. The contractors were modified at the ICPP for remote installation and operation in the RAL hot cell. An overall removal efficiency of 99.79% was obtained for the actinides using TRUEX. An overall removal efficiency of 94% was obtained for the actinides using SREX. The TRUEX and SREX processes will undergo further testing before full-scale processes are built. The experimental results are based on short-term testing (2--3 h). Longer testing times are needed. This report describes the technology, their performance, the application of the technology, costs, regulatory and policy issues, and lessons learned

  13. Demonstration of EnergyNest thermal energy storage (TES) technology

    Science.gov (United States)

    Hoivik, Nils; Greiner, Christopher; Tirado, Eva Bellido; Barragan, Juan; Bergan, Pâl; Skeie, Geir; Blanco, Pablo; Calvet, Nicolas

    2017-06-01

    This paper presents the experimental results from the EnergyNest 2 × 500 kWhth thermal energy storage (TES) pilot system installed at Masdar Institute of Science & Technology Solar Platform. Measured data are shown and compared to simulations using a specially developed computer program to verify the stability and performance of the TES. The TES is based on a solid-state concrete storage medium (HEATCRETE®) with integrated steel tube heat exchangers cast into the concrete. The unique concrete recipe used in the TES has been developed in collaboration with Heidelberg Cement; this material has significantly higher thermal conductivity compared to regular concrete implying very effective heat transfer, at the same time being chemically stable up to 450 °C. The demonstrated and measured performance of the TES matches the predictions based on simulations, and proves the operational feasibility of the EnergyNest concrete-based TES. A further case study is analyzed where a large-scale TES system presented in this article is compared to two-tank indirect molten salt technology.

  14. The Advanced Linked Extended Reconnaissance & Targeting Technology Demonstration project

    Science.gov (United States)

    Edwards, Mark

    2008-04-01

    The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing many operational needs of the future Canadian Army's Surveillance and Reconnaissance forces. Using the surveillance system of the Coyote reconnaissance vehicle as an experimental platform, the ALERT TD project aims to significantly enhance situational awareness by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. The project is exploiting important advances made in computer processing capability, displays technology, digital communications, and sensor technology since the design of the original surveillance system. As the major research area within the project, concepts are discussed for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as from beyond line-of-sight systems such as mini-UAVs and unattended ground sensors. Video-rate image processing has been developed to assist the operator to detect poorly visible targets. As a second major area of research, automatic target cueing capabilities have been added to the system. These include scene change detection, automatic target detection and aided target recognition algorithms processing both IR and visible-band images to draw the operator's attention to possible targets. The merits of incorporating scene change detection algorithms are also discussed. In the area of multi-sensor data fusion, up to Joint Defence Labs level 2 has been demonstrated. The human factors engineering aspects of the user interface in this complex environment are presented, drawing upon multiple user group sessions with military surveillance system operators. The paper concludes with Lessons Learned from the project. The ALERT system has been used in a number of C4ISR

  15. Dismantling of JPDR begins: to demonstrate advanced technology

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    The first dismantling of the Japan Power Demonstration Reactor (JPDR, BWR, 90 MWt, 12.5 MWe) began on December 4, 1986, claiming the attention of nuclear interests in Japan and overseas. The Japan Atomic Energy Research Institute undertook the project as the second phase of the six year program for dismantling the JPDR at the Tokai Research Establishment. It is the demonstration of the technology developed in the first phase of the program from 1981 to 1986, aiming at establishing a total system for dismantling commercial nuclear power plants in the furture. At the ceremony for the beginning of dismantling held on December 4 at the site, a special switch was operated to fire a gas burner, and cutting of the upper head of the reactor pressure vessel on the service floor of the reactor building began. The long term program on the development and utilization of nuclear energy in 1982 decided the basic policy on reactor decommissioning. Under this policy, in July, 1984, the nuclear subcommittee of the Advisory Committee for Energy set up the guideline for standardized decommissioning suitable to the actual situation in Japan. The schedule of the program, the development of eight fundamental techniques, disassembling techniques, decontamination, measurement and robotics are described. (Kako, I.).

  16. Hot demonstration of proposed commercial cesium removal technology

    International Nuclear Information System (INIS)

    Lee, D.D.; Travis, J.R.; Gibson, M.R.

    1997-12-01

    This report describes the work done in support of the development of technology for the continuous removal and concentration of radioactive cesium in supernatant from Melton Valley Storage Tanks (MVSTs) at the ORNL site. The primary objective was to test candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the MVSTs. An experimental system contained in a hot-cell facility was constructed to test the materials in columns or modules using the same batch of supernatant to allow comparison on an equal basis. Resorcinol/formaldehyde (RF) resin was evaluated at three flow rates with 50% breakthrough ranges of 35 to 50 column volumes (CV) and also through a series of five loading/elution/regeneration cycles. The results reported here include the cesium loading breakthrough curves, elution curves (when applicable), and operational problems and observations for each material. The comparative evaluations should provide critical data for the selection of the sorbent for the ORNL Cesium Removal Demonstration project. These results will be used to help determine the design parameters for demonstration-scale systems. Such parameters include rates of cesium removal, quantity of resin or sorbent to be used, and elution and regeneration requirements, if applicable

  17. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  18. Standardized UXO Technology Demonstration Site, Blind Grid Scoring Record Number 842

    National Research Council Canada - National Science Library

    Karwatka, Michael; Fling, Rick; McClung, Christina; Banta, Matthew; Burch, William; McDonnell, Patrick

    2007-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. This Scoring Record was coordinated by Michael Karwatka and the Standardized UXO Technology Demonstration Site Scoring Committee...

  19. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 396

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Boutin, Matthew; Fling, Rick; McClung, Christina; Robitaille, George

    2005-01-01

    ...) utilizing the APG Standardized UXO technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  20. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 805

    National Research Council Canada - National Science Library

    Karwatka, Michael; Fling, Rick; McClung, Christina

    2007-01-01

    ...) utilizing the YPG Standardized UXO Technology Demonstration Site Blind Grid. This Scoring Record was coordinated by Michael Karwatka and the Standardized UXO Technology Demonstration Site Scoring Committee...

  1. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 268

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Fling, Rick; McClung, Christina; Robitaille, George

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  2. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record Number 312

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Archiable, Robert; McClung, Christina; Robitaille, George

    2005-01-01

    ...) utilizing the YPG Standardized UXO Technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Scoring Committee...

  3. Standardized UXO Technology Demonstration Site, Blind Grid Scoring Record No. 898

    National Research Council Canada - National Science Library

    Burch, William; Fling, Rick; McClung, Christina; Lombardo, Leonardo; McDonnell, Patrick

    2008-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid Field. This Scoring Record was coordinated by William Burch and the Standardized UXO Technology Demonstration Site Scoring Committee...

  4. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 769

    National Research Council Canada - National Science Library

    Archiable, Robert; Fling, Rick; McClung, Christina; Teefy, Dennis; Burch, William; Packer, Bonnie; Banta, Matthew

    2006-01-01

    ...) utilizing the YPG Standardized UXO Technology Demonstration Site Blind Grid. Scoring Records have been coordinated by Dennis Teefy and the Standardized UXO Technology Demonstration Site Scoring Committee...

  5. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 792

    National Research Council Canada - National Science Library

    Karwatka, Mike; Packer, Bonnie

    2006-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. Scoring Records have been coordinated by Mike Karwatka and the Standardized UXO Technology Demonstration Site Scoring Committee...

  6. Standardized UXO Technology Demonstration Site, Blind Grid Scoring Record No. 896

    National Research Council Canada - National Science Library

    Burch, William; Fling, Rick; McClung, Christina

    2008-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid Field. This Scoring Record was coordinated by William Burch and the Standardized UXO Technology Demonstration Site Scoring Committee...

  7. Standardized UXO Technology Demonstration Site, Blind Grid Scoring Record No. 257

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Robitaille, George; Boutin, Matthew; Fling, Rick; McClung, Christina

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  8. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 830

    National Research Council Canada - National Science Library

    Teefy, Dennis

    2007-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. This Scoring Record was coordinated by Dennis Teefy and the Standardized UXO Technology Demonstration Site Scoring Committee...

  9. Standardized UXO Technology Demonstration Site, Blind Grid Scoring Record Number 431

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ...) utilizing the YPG Standardized UXO Technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  10. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 834

    National Research Council Canada - National Science Library

    Teefy, Dennis; Fling, Rick; McClung, Christina

    2007-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. This Scoring Record was coordinated by Dennis Teefy and the Standardized UXO Technology Demonstration Site Scoring Committee...

  11. Standardized UXO Technology Demonstration Site, Blind Grid Scoring Record No. 397

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Robitaille, George; Boutin, Matthew; Fling, Rick; McClung, Christina

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  12. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 252

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Boutin, Matthew; Fling, Rick; McClung, Christina

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  13. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record Number 691

    National Research Council Canada - National Science Library

    Overbay, Jr., Larry; Watts, Kimberly; Fling, Rick; McClung, Christina; Banta, Matthew

    2006-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site blind grid. Scoring Records have been coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  14. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 832

    National Research Council Canada - National Science Library

    Teefy, Dennis

    2007-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. This Scoring Record was coordinated by Dennis Teefy and the Standardized UXO Technology Demonstration Site Scoring Committee...

  15. Standardized UXO Technology Demonstration Site, Blind Grid Scoring Record No. 237

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Robitaille, George; Boutin, Matthew; Fling, Rick; McClung, Christina

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  16. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 906 (Sky Research, Inc.)

    National Research Council Canada - National Science Library

    McClung, J. S; Burch, William; Fling, Rick; McClung, Christina; Lombardo, Leonardo; McDonnell, Patrick

    2008-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. This Scoring Record was coordinated by William Burch and the Standardized UXO Technology Demonstration Site Scoring Committee...

  17. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 764

    National Research Council Canada - National Science Library

    Overbay, Larry; Watts, Kimberly

    2006-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. Scoring Records have been coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  18. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 831

    National Research Council Canada - National Science Library

    Teefy, Dennis

    2007-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. This Scoring Record was coordinated by Dennis Teefy and the Standardized UXO Technology Demonstration Site Scoring Committee...

  19. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 690

    National Research Council Canada - National Science Library

    Overbay, Larry

    2005-01-01

    ...) utilizing the YPC Standardized UXO Technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Scoring Committee...

  20. Standardized UXO Technology Demonstration Site. Open Field Scoring Record Number 154

    National Research Council Canada - National Science Library

    Overbay, Larry

    2004-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  1. Standardized UXO Technology Demonstration Site, Open Field Scoring Record Number 379

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ... (UXO) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. Scoring Records have been coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  2. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 354

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Archiable, Robert; McClung, Christina

    2005-01-01

    ...) utilizing the YPG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  3. Standardized UXO Technology Demonstration Site Open Field Scoring Record No. 311

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Boutin, Matthew; Fling, Rick; McClung, Christina; Robitaille, George

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  4. Standardized UXO Technology Demonstration Site Open Field Scoring Recording Number 231 (Human Factors Applications, Inc.)

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbuy and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  5. Standardized UXO Technology Demonstration Site, Open Field Scoring Record Number 426

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Boutin, Matthew; Archiable, Robert; Fling, Rick; McClung, Christina; Robitaille, George

    2005-01-01

    ...) utilizing the YPG Standardized UXO Technology Demonstration Site Open Field. Scoring Records have been coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  6. Standardized UXO Technology Demonstration Site, Open Field Scoring Record Number 657

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. Scoring Records have been coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  7. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 129

    National Research Council Canada - National Science Library

    Overbay, Larry

    2004-01-01

    ...) utilizing the APO Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  8. Standardized UXO Technology Demonstration Site, Open Field Scoring Record Number 229

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Boutin, Matthew; Fling, Rick; McClung, Christina; Robitaille, George

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  9. Standardized UXO Technology Demonstration Site, Open Field Scoring Record Number 411

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  10. Standardized UXO Technology Demonstration Site, Open Field Scoring Record No. 897

    National Research Council Canada - National Science Library

    Burch, William; Fling, Rick; McClung, Christina

    2008-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. This Scoring Record was coordinated by William Burch and the Standardized UXO Technology Demonstration Site Scoring Committee...

  11. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 673 (Naval Research Laboratories)

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ...) utilizing the APG standardized UXO Technology Demonstration Site Open Field. Scoring Records have been coordinate by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  12. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 169

    National Research Council Canada - National Science Library

    Overbay, Larry; Archiable, Robert; McClung, Christina; Robitaille, George

    2005-01-01

    ...) utilizing the YPG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  13. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 492 (Shaw Environmental, Inc.)

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. Scoring Records have been coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  14. Standardized UXO Technology Demonstration Site Open Field Scoring Record No. 442

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Boutin, Matthew; Archiable, Robert; Fling, Rick; McClung, Christina; Robitaille, George

    2005-01-01

    ...) unitizing the YPG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  15. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 201

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Fling, Rick; Robitaille, George

    2004-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  16. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 668 (NAEVA Geophysics, Inc.)

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ...) utilizing they PG Standardized UXO Technology Demonstration Site Open Field. Scoring Records have been coordinate by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  17. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 165

    National Research Council Canada - National Science Library

    Overbay, Larry

    2004-01-01

    ...) utilizing the APO Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  18. Standardized UXO Technology Demonstration Site, Open Field Scoring Record Number 638

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Robitaille, George; Boutin, Matthew; Archiable, Robert; McClung, Christina

    2005-01-01

    ...) utilizing the YPG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  19. Standardized UXO Technology Demonstration Site Open Field Scoring Record No. 857

    National Research Council Canada - National Science Library

    Fling, Rick; McClung, Christina; Banta, Matthew; Burch, William; McDonnell, Patrick

    2007-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. This Scoring Record was coordinated by Dennis Teefy and the Standardized UXO Technology Demonstration Site Scoring Committee...

  20. Wavefront control performance modeling with WFIRST shaped pupil coronagraph testbed

    Science.gov (United States)

    Zhou, Hanying; Nemati, Bijian; Krist, John; Cady, Eric; Kern, Brian; Poberezhskiy, Ilya

    2017-09-01

    NASA's WFIRST mission includes a coronagraph instrument (CGI) for direct imaging of exoplanets. Significant improvement in CGI model fidelity has been made recently, alongside a testbed high contrast demonstration in a simulated dynamic environment at JPL. We present our modeling method and results of comparisons to testbed's high order wavefront correction performance for the shaped pupil coronagraph. Agreement between model prediction and testbed result at better than a factor of 2 has been consistently achieved in raw contrast (contrast floor, chromaticity, and convergence), and with that comes good agreement in contrast sensitivity to wavefront perturbations and mask lateral shear.

  1. Learning to make technology work - a study of learning in technology demonstration projects

    DEFF Research Database (Denmark)

    Sutherland Olsen, Dorothy; Andersen, Per Dannemand

    2014-01-01

    Building working demonstrations of new technologies within sustainable energy and transport has become an important activity in the move towards a more energy efficient society. The work involved in building these demonstrations is usually organised in a project with a variety of different partic...

  2. Pecan Street Grid Demonstration Program. Final technology performance report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-02-10

    This document represents the final Regional Demonstration Project Technical Performance Report (TPR) for Pecan Street Inc.’s (Pecan Street) Smart Grid Demonstration Program, DE-OE-0000219. Pecan Street is a 501(c)(3) smart grid/clean energy research and development organization headquartered at The University of Texas at Austin (UT). Pecan Street worked in collaboration with Austin Energy, UT, Environmental Defense Fund (EDF), the City of Austin, the Austin Chamber of Commerce and selected consultants, contractors, and vendors to take a more detailed look at the energy load of residential and small commercial properties while the power industry is undergoing modernization. The Pecan Street Smart Grid Demonstration Program signed-up over 1,000 participants who are sharing their home or businesses’s electricity consumption data with the project via green button protocols, smart meters, and/or a home energy monitoring system (HEMS). Pecan Street completed the installation of HEMS in 750 homes and 25 commercial properties. The program provided incentives to increase the installed base of roof-top solar photovoltaic (PV) systems, plug-in electric vehicles with Level 2 charging, and smart appliances. Over 200 participants within a one square mile area took advantage of Austin Energy and Pecan Street’s joint PV incentive program and installed roof-top PV as part of this project. Of these homes, 69 purchased or leased an electric vehicle through Pecan Street’s PV rebate program and received a Level 2 charger from Pecan Street. Pecan Street studied the impacts of these technologies along with a variety of consumer behavior interventions, including pricing models, real-time feedback on energy use, incentive programs, and messaging, as well as the corresponding impacts on Austin Energy’s distribution assets.The primary demonstration site was the Mueller community in Austin, Texas. The Mueller development, located less than three miles from the Texas State Capitol

  3. Fission Surface Power Technology Demonstration Unit Test Results

    Science.gov (United States)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Sanzi, James L.

    2016-01-01

    The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7 percent resulting in a net system power of 8.1 kW and a system level efficiency of 17.2 percent. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to the NASA Glenn Research Center (GRC). The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3 percent. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 percent.

  4. Plug-In Hybrid Urban Delivery Truck Technology Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Miyasato, Matt [South Coast Air Quality Management District Building Corporation, Diamond Bar, CA (United States); Impllitti, Joseph [South Coast Air Quality Management District Building Corporation, Diamond Bar, CA (United States); Pascal, Amar [South Coast Air Quality Management District Building Corporation, Diamond Bar, CA (United States)

    2015-07-31

    The I-710 and CA-60 highways are key transportation corridors in the Southern California region that are heavily used on a daily basis by heavy duty drayage trucks that transport the cargo from the ports to the inland transportation terminals. These terminals, which include store/warehouses, inland-railways, are anywhere from 5 to 50 miles in distance from the ports. The concentrated operation of these drayage vehicles in these corridors has had and will continue to have a significant impact on the air quality in this region whereby significantly impacting the quality of life in the communities surrounding these corridors. To reduce these negative impacts it is critical that zero and near-zero emission technologies be developed and deployed in the region. A potential local market size of up to 46,000 trucks exists in the South Coast Air Basin, based on near- dock drayage trucks and trucks operating on the I-710 freeway. The South Coast Air Quality Management District (SCAQMD), California Air Resources Board (CARB) and Southern California Association of Governments (SCAG) — the agencies responsible for preparing the State Implementation Plan required under the federal Clean Air Act — have stated that to attain federal air quality standards the region will need to transition to broad use of zero and near zero emission energy sources in cars, trucks and other equipment (Southern California Association of Governments et al, 2011). SCAQMD partnered with Volvo Trucks to develop, build and demonstrate a prototype Class 8 heavy-duty plug-in hybrid drayage truck with significantly reduced emissions and fuel use. Volvo’s approach leveraged the group’s global knowledge and experience in designing and deploying electromobility products. The proprietary hybrid driveline selected for this proof of concept was integrated with multiple enhancements to the complete vehicle in order to maximize the emission and energy impact of electrification. A detailed review of all

  5. Wireless Testbed Bonsai

    Science.gov (United States)

    2006-02-01

    wireless sensor device network, and a about 200 Stargate nodes higher-tier multi-hop peer- to-peer 802.11b wireless network. Leading up to the full ExScal...deployment, we conducted spatial scaling tests on our higher-tier protocols on a 7 × 7 grid of Stargates nodes 45m and with 90m separations respectively...onW and its scaled version W̃ . III. EXPERIMENTAL SETUP Description of Kansei testbed. A stargate is a single board linux-based computer [7]. It uses a

  6. Inductive voltage adder advanced hydrodynamic radiographic technology demonstration

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Poukey, J.W.; Maenchen; Rovang, D.C.

    1997-04-01

    This paper presents the design, results, and analysis of a high-brightness electron beam technology demonstration experiment completed at Sandia National Laboratories, performed in collaboration with Los Alamos National Laboratory. The anticipated electron beam parameters were: 12 MeV, 35-40 kA, 0.5-mm rms radius, and 40-ns full width half maximum (FWHM) pulse duration. This beam, on an optimum thickness tantalum converter, should produce a very intense x-ray source of ∼ 1.5-mm spot size and 1 kR dose at sign 1 m. The accelerator utilized was SABRE, a pulsed inductive voltage adder, and the electron source was a magnetically immersed foilless electron diode. For these experiments, SABRE was modified to high-impedance negative-polarity operation. A new 100-ohm magnetically insulated transmission line cathode electrode was designed and constructed; the cavities were rotated 180 degrees poloidally to invert the central electrode polarity to negative; and only one of the two pulse forming lines per cavity was energized. A twenty- to thirty-Tesla solenoidal magnet insulated the diode and contained the beam at its extremely small size. These experiments were designed to demonstrate high electron currents in submillimeter radius beams resulting in a high-brightness high-intensity flash x-ray source for high-resolution thick-object hydrodynamic radiography. The SABRE facility high-impedance performance was less than what was hoped. The modifications resulted in a lower amplitude (9 MV), narrower-than-anticipated triangular voltage pulse, which limited the dose to ∼ 20% of the expected value. In addition, halo and ion-hose instabilities increased the electron beam spot size to > 1.5 mm. Subsequent, more detailed calculations explain these reduced output parameters. An accelerator designed (versus retrofit) for this purpose would provide the desired voltage and pulse shape

  7. COLUMBUS as Engineering Testbed for Communications and Multimedia Equipment

    Science.gov (United States)

    Bank, C.; Anspach von Broecker, G. O.; Kolloge, H.-G.; Richters, M.; Rauer, D.; Urban, G.; Canovai, G.; Oesterle, E.

    2002-01-01

    antenna tracking system employing star sensors enables usability with any other GEO data relay satellite system. In order to be prepared for the upcoming telecom standards for ground distribution of spacecraft generated data, the interface avionics allows for testing ATM-based data formatting and routing. Three testbeds accompany these studies and designs: i)a cable-and-connector testbed measures the signal characteristics for data transfer of up to 200 Mbps through the ii)an avionics &embedded software testbed prepares for data formatting, routing, and storage in CCSDS and ATM; iii)a software testbed tests newly developed S/W man-machine interfaces and simulates bandwidth limitations, on- This makes COLUMBUS a true technology testbed for a variety of engineering topics: - application of terrestrial standard data formats for broadband, near-real-time applications in space - qualification &test of off-the-shelf multimedia equipment in manned spacecraft - secure data transmission in flexible VPNs - in-orbit demonstration of advanced data transmission technology - elaboration of efficient crew and ground operations and training procedures - evaluation of personalized displays (S/W HFI) for long-duration space missions

  8. The advanced linked extended reconnaissance and targeting technology demonstration project

    Science.gov (United States)

    Cruickshank, James; de Villers, Yves; Maheux, Jean; Edwards, Mark; Gains, David; Rea, Terry; Banbury, Simon; Gauthier, Michelle

    2007-06-01

    The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing key operational needs of the future Canadian Army's Surveillance and Reconnaissance forces by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. We discuss concepts for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as beyond line-of-sight systems such as a mini-UAV and unattended ground sensors. The authors address technical issues associated with the use of fully digital IR and day video cameras and discuss video-rate image processing developed to assist the operator to recognize poorly visible targets. Automatic target detection and recognition algorithms processing both IR and visible-band images have been investigated to draw the operator's attention to possible targets. The machine generated information display requirements are presented with the human factors engineering aspects of the user interface in this complex environment, with a view to establishing user trust in the automation. The paper concludes with a summary of achievements to date and steps to project completion.

  9. Conceptual Design of an Electric Sail Technology Demonstration Mission Spacecraft

    Science.gov (United States)

    Wiegmann, Bruce M.

    2017-01-01

    , 3) Controllability of the space-craft via a voltage bias to steer itself through the solar system to destinations of discovery. These activities once demonstrated analytically, will require a technology demonstration mission (TDM) around the year2020 to demonstrate that all systems work together seamlessly before a Heliophysics Electrostatic Rapid Transit System (HERTS) mission could be initiated. A notional TDM spacecraft that meets the requirements of such a mission will be showcased in this paper.

  10. SITE - DEMONSTRATION BULLETIN - MINERGY GLASS FURNACE TECHNOLOGY - MINERGY CORPORATION

    Science.gov (United States)

    The Glass Furnace Technology (GFT) was developed by Minergy Corporation (Minergy), of Waukesha, Wisconsin. Minergy originally developed vitrification technologies to process wastewater sludge into glass aggregate that could be sold as a commercial product. Minergy modified a st...

  11. Development of an Experimental Testbed for Research in Lithium-Ion Battery Management Systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ferdowsi

    2013-10-01

    Full Text Available Advanced electrochemical batteries are becoming an integral part of a wide range of applications from household and commercial to smart grid, transportation, and aerospace applications. Among different battery technologies, lithium-ion (Li-ion batteries are growing more and more popular due to their high energy density, high galvanic potential, low self-discharge, low weight, and the fact that they have almost no memory effect. However, one of the main obstacles facing the widespread commercialization of Li-ion batteries is the design of reliable battery management systems (BMSs. An efficient BMS ensures electrical safety during operation, while increasing battery lifetime, capacity and thermal stability. Despite the need for extensive research in this field, the majority of research conducted on Li-ion battery packs and BMS are proprietary works conducted by manufacturers. The available literature, however, provides either general descriptions or detailed analysis of individual components of the battery system, and ignores addressing details of the overall system development. This paper addresses the development of an experimental research testbed for studying Li-ion batteries and their BMS design. The testbed can be configured in a variety of cell and pack architectures, allowing for a wide range of BMS monitoring, diagnostics, and control technologies to be tested and analyzed. General considerations that should be taken into account while designing Li-ion battery systems are reviewed and different technologies and challenges commonly encountered in Li-ion battery systems are investigated. This testbed facilitates future development of more practical and improved BMS technologies with the aim of increasing the safety, reliability, and efficiency of existing Li-ion battery systems. Experimental results of initial tests performed on the system are used to demonstrate some of the capabilities of the developed research testbed. To the authors

  12. 3D Printing in Zero-G ISS Technology Demonstration

    Science.gov (United States)

    Johnston, Mallory M.; Werkheiser, Mary J.; Cooper, Kenneth G.; Snyder, Michael P.; Edmunson, Jennifer E.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station. The 3D Printing In Zero-G experiment will be the first machine to perform 3D printing in space. The greater the distance from Earth and the longer the mission duration, the more difficult resupply becomes; this requires a change from the current spares, maintenance, repair, and hardware design model that has been used on the International Space Station up until now. Given the extension of the ISS Program, which will inevitably result in replacement parts being required, the ISS is an ideal platform to begin changing the current model for resupply and repair to one that is more suitable for all exploration missions. 3D Printing, more formally known as Additive Manufacturing, is the method of building parts/ objects/tools layer-by-layer. The 3D Print experiment will use extrusion-based additive manufacturing, which involves building an object out of plastic deposited by a wire-feed via an extruder head. Parts can be printed from data files loaded on the device at launch, as well as additional files uplinked to the device while on-orbit. The plastic extrusion additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS. The 3D Print payload will serve as the ideal first step to proving that process in space. It is unreasonable to expect NASA to launch large blocks of material from which parts or tools can be traditionally machined, and even more unreasonable to fly up specialized manufacturing hardware to perform the entire range of function traditionally machining requires. The technology to produce parts on demand, in space, offers unique design options that are not possible

  13. X-231B technology demonstration for in situ treatment of contaminated soil: Technology evaluation and screening

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Morris, M.I.; Donaldson, T.L.; Palumbo, A.V.; Herbes, S.E.; Jenkins, R.A.; Morrissey, C.M.; Harris, M.T.

    1993-08-01

    The Portsmouth Gaseous Diffusion Plant (Ports) is located approximately 70 miles south of Columbus in southern Ohio. Among the several waste management units on the facility, the X-231B unit consists of two adjacent oil biodegradation plots. The plots encompass ∼ 0.8 acres and were reportedly used from 1976 to 1983 for the treatment and disposal of waste oils and degreasing solvents, some containing uranium-235 and technetium-99. The X-231B unit is a regulated solid waste management unit (SWMU) under the Resource Conservation and Recovery Act (RCRA). The X-231B unit is also a designated SWMU located within Quadrant I of the site as defined in an ongoing RCRA Facilities Investigation and Corrective Measures Study (RFI/CMS). Before implementing one or more Technology Demonstration Project must be completed. The principal goal of this project was to elect and successfully demonstrate one ore more technologies for effective treatment of the contaminated soils associated with the X-231B unit at PORTS. The project was divided into two major phases. Phase 1 involved a technology evaluation and screening process. The second phase (i.e., Phase 2) was to involve field demonstration, testing and evaluation of the technology(s) selected during Phase 1. This report presents the methods, results, and conclusions of the technology evaluation and screening portion of the project

  14. Technology Performance Report: Duke Energy Notrees Wind Storage Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, Jeff [Duke Energy Renewables, Charlotte, NC (United States); Mohler, David [Duke Energy Renewables, Charlotte, NC (United States); Gibson, Stuart [Duke Energy Renewables, Charlotte, NC (United States); Clanin, Jason [Duke Energy Renewables, Charlotte, NC (United States); Faris, Don [Duke Energy Renewables, Charlotte, NC (United States); Hooker, Kevin [Duke Energy Renewables, Charlotte, NC (United States); Rowand, Michael [Duke Energy Renewables, Charlotte, NC (United States)

    2015-11-01

    Duke Energy Renewables owns and operates the Notrees Wind Farm in west Texas’s Ector and Winkler counties. The wind farm, which was commissioned in April 2009, has a total capacity of 152.6 MW generated by 55 Vestas V82 turbines, one Vestas 1-V90 experimental turbine, and 40 GE 1.5-MW turbines. The Vestas V82 turbines have a generating capacity of 1.65 MW each, the Vestas V90 turbine has a generating capacity of 1.86 MW, and the GE turbines have a generating capacity of 1.5 MW each. The objective of the Notrees Wind Storage Demonstration Project is to validate that energy storage increases the value and practical application of intermittent wind generation and is commercially viable at utility scale. The project incorporates both new and existing technologies and techniques to evaluate the performance and potential of wind energy storage. In addition, it could serve as a model for others to adopt and replicate. Wind power resources are expected to play a significant part in reducing greenhouse gas emissions from electric power generation by 2030. However, the large variability and intermittent nature of wind presents a barrier to integrating it within electric markets, particularly when competing against conventional generation that is more reliable. In addition, wind power production often peaks at night or other times when demand and electricity prices are lowest. Energy storage systems can overcome those barriers and enable wind to become a valuable asset and equal competitor to conventional fossil fuel generation.

  15. The relationship of fluidized bed technology to the U.S. Clean Coal Technology demonstration program

    International Nuclear Information System (INIS)

    Weth, G.; Geffken, J.; Huber, D.A.

    1991-01-01

    Fluidized Bed Combustion projects (both AFBCs and PFBCs) have a prominent role in the US DOE Clean Coal Technology (CCT) Program. This program has the successful commercialization of these technologies as its primary objective and this is the basic criterion for government funding and participation in the development and demonstration of the technologies. Under the CCT program the US DOE is actively involved in the development and operation of three Fluidized Bed Technology projects, NUCLA, TIDD, and SPORN, and is in the negotiation stage on others, Dairyland, Nichols and Tallahassee. All of these projects, along with the operating information on fluidized beds in the industrial sector, will provide a basis for evaluating future utilization of Fluidized Bed Technology in the market place. Impacting upon further utilization will be the time-frame and the Clean Air Act Amendments of 1990. This paper presents the results of a study to ascertain the commercial readiness of Fluidized Bed Technology to meet the emissions and time-frame requirements of the Clean Air Act Amendments of 1990. Specifically addressed are: Commercialization criteria/factors which candidate and/or existing CCTs must achieve in order to gain market acceptance. The status of Fluidized Bed Technology in achieving these commercialization criteria for market acceptance (industrial and utility) consistent with the time frame of the Clean Air Act Amendments of 1990. Recommendations of commercialization criteria for future fluidized bed CCT demonstration projects

  16. The Airborne Optical Systems Testbed (AOSTB)

    Science.gov (United States)

    2017-05-31

    are the Atlantic Ocean and coastal waterways, which reflect back very little light at our SWIR operating wavelength of 1064 nm. The Airborne Optical...demonstrate our typical FOPEN capabilities, figure 5 shows two images taken over a forested area near Burlington, VT. Figure 5(a) is a 3D point...Systems Testbed (AOSTB) 1 - 6 STO-MP-SET-999 (a) (b) Fig. 5. Ladar target scan of a forested area in northern Vermont

  17. Demonstration of Submillimeter Astrophysics Technology at Caltech Submillimeter Observatory

    Data.gov (United States)

    National Aeronautics and Space Administration — Detector technology developments will determine the science product of future astrophysics missions and projects, and this is especially true at submillimeter...

  18. Demonstration and evaluation of dual-fuel technology; Demonstration och utvaerdering av dual-fuel-tekniken

    Energy Technology Data Exchange (ETDEWEB)

    Staalhammar, Per; Erlandsson, Lennart; Willner, Kristina (AVL MTC Motortestcenter AB (Sweden)); Johannesson, Staffan (Ecoplan AB (Sweden))

    2011-06-15

    There is an increased interest for Dual Fuel (methane-Diesel) applications in Sweden since this technology is seen as one of the more interesting options for a fast and cost effective introduction of biomethane as fuel for HD engines. The Dual Fuel technology has been used for many years, mainly for stationary purpose (generators, pumps and ships) while the Spark Ignited (SI) 'Otto' technology has been used for trucks and busses. One obstacle for introducing Dual Fuel technology for busses and trucks is the EU legislation that don't allow for HD on road certification of Dual Fuel applications. Challenges with the Dual Fuel technology is to develop cost effective applications that is capable of reaching low emissions (especially CH{sub 4} and NO{sub x}) in combination with high Diesel replacement in the test cycles used for on road applications. AVL MTC Motortestcenter AB (hereinafter called AVL) has on commission by SGC (Swedish Gas technical Centre) carried out this project with the objectives to analyze the Dual Fuel (Diesel-methane) technology with focus on emissions, fuel consumption and technical challenges. One important part of this project was to carry out emission tests on selected Dual Fuel applications in Sweden and to compile experiences from existing Dual Fuel technology. This report also summarizes other commonly used technologies for methane engines and compares the Dual Fuel with conventional Diesel and Otto technologies. The major challenges with Dual Fuel applications for on road vehicles will be to develop robust and cost effective solutions that meet the emission legislations (with aged catalysts) and to increase the Diesel replacement to achieve reasonable reduction of green house gases (GHG). This is especially important when biomethane is available as fuel but not Bio-Diesel. It will probably be possible to reach EURO V emission limits with advanced Dual Fuel systems but none of the tested systems reached EURO V emission levels

  19. Save Maritime Systems Testbed

    Directory of Open Access Journals (Sweden)

    Bolles André

    2014-06-01

    Full Text Available ‘Safe voyage from berth to berth’ — this is the goal of all e-navigation strains, driven by new technologies, new infrastructures and new organizational structures on bridge, on shore as well as in the cloud. To facilitate these efforts suitable engineering and safety/risk assessment methods have to be applied. Understanding maritime transportation as a sociotechnical system allows system engineering methods to be applied. Formal and simulation based verification and validation of e-navigation technologies are important methods to obtain system safety and reliability. The modelling and simulation toolset HAGGIS provides methods for system specification and formal risk analysis. It provides a modelling framework for processes, fault trees and generic hazard specification and a physical world and maritime traffic simulation system. HAGGIS is accompanied by the physical test bed LABSKAUS which implements a reference port and waterway. Additionally, it contains an experimental Vessel Traffic Services (VTS implementation and a mobile integrated bridge enabling in situ experiments for technology evaluation, testing, ground research and demonstration. This paper describes an integrated seamless approach for developing new e-navigation technologies starting with virtual simulation based assessment and ending in physical real world demonstrations.

  20. Testbed for High-Acuity Imaging and Stable Photometry

    Science.gov (United States)

    Gregory, James

    This proposal from MIT Lincoln Laboratory (LL) accompanies the NASA/APRA proposal enti-tled THAI-SPICE: Testbed for High-Acuity Imaging - Stable Photometry and Image-Motion Compensa-tion Experiment (submitted by Eliot Young, Southwest Research Institute). The goal of the THAI-SPICE project is to demonstrate three technologies that will help low-cost balloon-borne telescopes achieve diffraction-limited imaging: stable pointing, passive thermal stabilization and in-flight monitoring of the wave front error. This MIT LL proposal supplies a key element of the pointing stabilization component of THAI-SPICE: an electronic camera based on an orthogonaltransfer charge-coupled device (OTCCD). OTCCD cameras have been demonstrated with charge-transfer efficiencies >0.99999, noise of 90%. In addition to supplying a camera with an OTCCD detector, MIT LL will help with integration and testing of the OTCCD with the THAI-SPICE payload’s guide camera.

  1. Connecting remote systems for demonstration of automation technologies

    Science.gov (United States)

    Brown, R. M.; Yee, R.

    1988-01-01

    An initial estimate of the communications requirements of the Systems Autonomy Demonstration Project (SADP) development and demonstration environments is presented. A proposed network paradigm is developed, and options for network topologies are explored.

  2. DEMONSTRATION BULLETIN: COLLOID POLISHING FILTER METHOD - FILTER FLOW TECHNOLOGY, INC.

    Science.gov (United States)

    The Filter Flow Technology, Inc. (FFT) Colloid Polishing Filter Method (CPFM) was tested as a transportable, trailer mounted, system that uses sorption and chemical complexing phenomena to remove heavy metals and nontritium radionuclides from water. Contaminated waters can be pro...

  3. Joint Rapid Airfield Construction (JRAC) 2007 Technology Demonstration

    National Research Council Canada - National Science Library

    Anderton, Gary L; Berney, IV, Ernest S; Mann, Travis A; Newman, J. K; Baylot, E. A; Miller, Daniel K; Mason, Quint

    2008-01-01

    ...) unsurfaced runway and two 45,480-ft2 (4,225-m2) aircraft parking aprons with associated connector taxiways, all using JRAC technologies focused on rapid construction with reduced logistics and increased system reliability...

  4. Distributed Space System Technology Demonstrations with the Emerald Nanosatellite

    Science.gov (United States)

    Twiggs, Robert

    2002-01-01

    A viewgraph presentation of Distributed Space System Technologies utilizing the Emerald Nanosatellite is shown. The topics include: 1) Structure Assembly; 2) Emerald Mission; 3) Payload and Mission Operations; 4) System and Subsystem Description; and 5) Safety Integration and Testing.

  5. The Living With a Star Space Environment Testbed Program

    Science.gov (United States)

    Barth, Janet; LaBel, Kenneth; Day, John H. (Technical Monitor)

    2001-01-01

    NASA has initiated the Living with a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affects life and society. The Program Architecture includes science missions, theory and modeling and Space Environment Testbeds (SET). This current paper discusses the Space Environment Testbeds. The goal of the SET program is to improve the engineering approach to accomodate and/or mitigate the effects of solar variability on spacecraft design and operations. The SET Program will infuse new technologies into the space programs through collection of data in space and subsequent design and validation of technologies. Examples of these technologies are cited and discussed.

  6. ATM Technology Demonstration 1 (ATD-1): EcoDemonstrator ASTAR Guided Arrival Research (EAGAR)

    Science.gov (United States)

    Roper, Roy

    2015-01-01

    In Spring 2013, high level NASA and Boeing management were seeking opportunities to collaborate on a flight test activity involving the ecoDemonstrator. The Airspace Systems Program Office identified FIM as a viable candidate. ATD-1 accepted the challenge. Work began in July for a December 2013 flight test.

  7. Northwest Open Automated Demand Response Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann

    2009-08-01

    Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) performed a technology demonstration and evaluation for Bonneville Power Administration (BPA) in Seattle City Light's (SCL) service territory. This report summarizes the process and results of deploying open automated demand response (OpenADR) in Seattle area with winter morning peaking commercial buildings. The field tests were designed to evaluate the feasibility of deploying fully automated demand response (DR) in four to six sites in the winter and the savings from various building systems. The project started in November of 2008 and lasted 6 months. The methodology for the study included site recruitment, control strategy development, automation system deployment and enhancements, and evaluation of sites participation in DR test events. LBNL subcontracted McKinstry and Akuacom for this project. McKinstry assisted with recruitment, site survey collection, strategy development and overall participant and control vendor management. Akuacom established a new server and enhanced its operations to allow for scheduling winter morning day-of and day-ahead events. Each site signed a Memorandum of Agreement with SCL. SCL offered each site $3,000 for agreeing to participate in the study and an additional $1,000 for each event they participated. Each facility and their control vendor worked with LBNL and McKinstry to select and implement control strategies for DR and developed their automation based on the existing Internet connectivity and building control system. Once the DR strategies were programmed, McKinstry commissioned them before actual test events. McKinstry worked with LBNL to identify control points that can be archived at each facility. For each site LBNL collected meter data and trend logs from the energy management and control system. The communication system allowed the sites to receive day-ahead as well as day-of DR test event signals. Measurement of DR was

  8. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 740

    National Research Council Canada - National Science Library

    Overbay, Jr., Larry; Fling, Rick; McClug, Christina; Watts, Kimberly; Banta, Matthew

    2006-01-01

    The objective in the Standardized UXO Technology Demonstration Site Program is to evaluate the detection and discrimination capabilities of a given technology under various field and soil conditions...

  9. SmartPark Technology Demonstration Project, Phase II: Final Report

    Science.gov (United States)

    2018-05-01

    The purpose of FMCSA's SmartPark project was to determine the feasibility of a technology for providing truck parking space availability information in real time to truckers on the road. SmartPark consisted of two phases. Phase I was a field operatio...

  10. Precision Airdrop Technology Conference and Demonstration (4th) 2007

    Science.gov (United States)

    2008-02-01

    items such as towplates, CDS buffer stop assemblies/center vertical restrain systems , C-17 Dual Row Airdrop System platforms, and outrigger ...specialized areas such as control systems , launcher structures , instruments, solar arrays, real-time simulation software, and parachute systems . Dutch...expertise range from advanced materials, structural composites, electronics, informatics, and portable power systems . TSI technologies are used in

  11. OCTAVIUS: a FP7 project demonstrating CO2 capture technologies

    NARCIS (Netherlands)

    Broutin, P.; Kvamsdal, H.M.; La Marca, C.; Os, P.J. van; Robinson, L.

    2014-01-01

    The OCTAVIUS project (Optimisation of CO2 Capture Technology Allowing Verification and Implementation at Utility Scale) has started on March 1st 2012 for a period of 5 years, as part of the 7th Framework Programme of the European Commission. Gathering 15 European and 2 South African partners,

  12. Integrated System Health Management (ISHM) Technology Demonstration Project Final Report

    Science.gov (United States)

    Mackey, Ryan; Iverson, David; Pisanich, Greg; Toberman, Mike; Hicks, Ken

    2006-01-01

    Integrated System Health Management (ISHM) is an essential capability that will be required to enable upcoming explorations mission systems such as the Crew Exploration Vehicle (CEV) and Crew Launch Vehicle (CLV), as well as NASA aeronautics missions. However, the lack of flight experience and available test platforms have held back the infusion by NASA Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) of ISHM technologies into future space and aeronautical missions. To address this problem, a pioneer project was conceived to use a high-performance aircraft as a low-cost proxy to develop, mature, and verify the effectiveness of candidate ISHM technologies. Given the similarities between spacecraft and aircraft, an F/A-18 currently stationed at Dryden Flight Research Center (DFRC) was chosen as a suitable host platform for the test bed. This report describes how the test bed was conceived, how the technologies were integrated on to the aircraft, and how these technologies were matured during the project. It also describes the lessons learned during the project and a forward path for continued work.

  13. Arctic Technology Evaluation 2014 Oil-in-Ice Demonstration Report

    Science.gov (United States)

    2015-03-01

    Security Class (This Report) UNCLAS//Public 20. Security Class (This Page) UNCLAS//Public 21. No of Pages 52 22. Price Arctic Technology...specifically manned for the surveillance system. Smaller aerostats and sUAS could be deployed on skimming vessels; however, under many conditions their

  14. Task summary: Hot demonstration of proposed commercial nuclide removal technology

    International Nuclear Information System (INIS)

    Lee, D.D.; Travis, J.R.

    1995-11-01

    Radionuclides represent only a small fraction of the components in millions of gallons of storage tank supernatant at various sites, including Oak Ridge, Hanford, Savannah River, and Idaho. Most of the radioactivity is contributed by cesium, strontium, and technetium along with high concentrations of sodium and potassium salts. The purpose of this task is to test and select sorbents and commercial removal technologies supplied by ESP for removing and concentrating the radionuclides, thereby reducing the volume of waste to be stored or disposed

  15. Hot demonstration of proposed commercial nuclide removal technology

    International Nuclear Information System (INIS)

    Lee, D.

    1996-01-01

    This task covers the development and operation of an experimental test unit located in a Building 4501 hot cell within Building 4501 at Oak Ridge National Laboratory (ORNL). This equipment is designed to test radionuclides removal technologies under continuous operatoin on actual ORNL Melton Valley Storage Tank (MVST) supernatant, Savannah River high-level waste supernatant, and Hanford supernatant. The latter two may be simulated by adding the appropriate chemicals and/or nuclides to the MVST supernatant

  16. Adaptive Seat Energy Absorbers for Enhanced Crash Safety: Technology Demonstration

    Science.gov (United States)

    2016-08-01

    is no pressing need for MREA refinement. However, should an increase in MREA yield force be desired, the project team explored 2 simple refinements...team developed a servo motor controller and data acquisition program using dSPACE real-time system. From the preliminary test, the preloaded Terfenol...Technology; 1940. b Oberg E, editor. Machinery’s handbook: eighteenth edition. Norwalk (CT): Industrial Press ; 1968. c Quayle JP, editor. Kempe’s

  17. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 213

    National Research Council Canada - National Science Library

    Overbay, Larry; Archiable, Robert; McClung, Christina; Robitaille, George

    2005-01-01

    ... (UXO) utilizing the YPG Standardized UXO Technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Site Scoring Committee...

  18. 78 FR 32637 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2013-05-31

    ..., Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of the Army, Army Research, Development and...

  19. Standardized UXO Technology Demonstration Site Open Field Scoring Record No. 901 (Sky Research, Inc.)

    National Research Council Canada - National Science Library

    McClung, J. S; Fling, Rick; McClung, Christina; Burch, William; Lombardo, Leonardo; McDonnell, Patrick

    2008-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. This Scoring Record was coordinated by Stephen McClung and the Standardized UXO Technology Demonstration Site Scoring Committee...

  20. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 245

    National Research Council Canada - National Science Library

    Overbay, Larry

    2005-01-01

    ... (UXO) utilizing the YPG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  1. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 675

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ... (UXO) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  2. Simulation to Flight Test for a UAV Controls Testbed

    Science.gov (United States)

    Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.

    2006-01-01

    The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.

  3. X-ray Pulsar Navigation Algorithms and Testbed for SEXTANT

    Science.gov (United States)

    Winternitz, Luke M. B.; Hasouneh, Monther A.; Mitchell, Jason W.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2015-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a NASA funded technologydemonstration. SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar-based Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper describes the basic design of the SEXTANT system with a focus on core models and algorithms, and the design and continued development of the GSFC X-ray Navigation Laboratory Testbed (GXLT) with its dynamic pulsar emulation capability. We also present early results from GXLT modeling of the combined NICER X-ray timing instrument hardware and SEXTANT flight software algorithms.

  4. Demonstration and practical exercises on radiation curing technology

    International Nuclear Information System (INIS)

    Nik Ghazali Nik Salleh

    1993-01-01

    The contents are Part I : Demonstration - substrate, coating materials, experimental procedures; Part II: Practical exercises - coating and characterization, the report, testing; procedure to use i. automatic reverse roller coater, ii. flow/curtain coater; description and technical data of IST-UV irradiator (including safety precautions); low energy electron beam accelerator (Cureton) model EBC-200-20-15

  5. Demonstration and practical exercises on radiation curing technology

    Energy Technology Data Exchange (ETDEWEB)

    Nik Salleh, Nik Ghazali [Nuclear Energy Unit, Bangi, Selangor (Malaysia)

    1994-12-31

    The contents are Part I : Demonstration - substrate, coating materials, experimental procedures; Part II: Practical exercises - coating and characterization, the report, testing; procedure to use i. automatic reverse roller coater, ii. flow/curtain coater; description and technical data of IST-UV irradiator (including safety precautions); low energy electron beam accelerator (Cureton) model EBC-200-20-15.

  6. In situ gas treatment technology demonstration test plan

    International Nuclear Information System (INIS)

    Thornton, E.C.; Miller, R.D.

    1996-01-01

    This document defines the objectives and requirements associated with undertaking a field demonstration of an in situ gas treatment appoach to remediation chromate-contaminated soil. The major tasks presented in this plan include the design and development of the surface gas treatment system, performance of permitting activities, and completion of site preparation and field testing activities

  7. Demonstration of ROV-based Underwater Electromagnetic Array Technology

    Science.gov (United States)

    2017-05-25

    demobilization Cost to mobilize to site  Derived from demonstration costs Equipment Prep (est.): $ 950 Shipping (NH-FL-NH): $ 3,810 TOTAL Mob ...Petrophysical properties of shallow-water carbonates in modern depositional and shallow subsurface, University of Miami, PhD Thesis, 405 pp. Lidz B.H

  8. O/OREOS Nanosatellite: A Multi-Payload Technology Demonstration

    OpenAIRE

    Minelli, Giovanni; Ricco, Antonio; Beasley, Christopher; Hines, John; Agasid, Elwood; Yost, Bruce; Squires, David; Friedericks, Charlie; Piccini, Matthew; Defouw, Greg; McIntyre, Mike; Ricks, Robert; Parra, Macarena; Diaz-Aguado, Millan; Timucin, Linda

    2010-01-01

    The Organism/Organic Exposure to Orbital Stresses (O/OREOS) nanosatellite follows in the footsteps of the successful GeneSat-1 and PharmaSat missions to validate key technologies developed to conduct compelling science experiments in space for a small price tag. Developed by the Small Spacecraft Division at NASA Ames Research Center, the 5.5-kg 3U satellite contains two completely independent payloads and a novel drag-enhancing device which shortens the spacecraft’s orbital lifetime, thereby ...

  9. Development of a Thermoacoustic Stirling Engine Technology Demonstrator

    Science.gov (United States)

    Reissner, Alexander; Gerger, Joachim; Hummel, Stefan; Reißig, Jannis; Pawelke, Roland

    2014-08-01

    Waste heat is a primary source of energy loss in many aerospace and terrestrial applications. FOTEC, an Austrian Research Company located in Wiener Neustadt, is presently developing a micro power converter, promising high efficiencies even for small- scale applications. The converter is based on an innovative thermoacoustic stirling engine concept without any moving parts. Such a maintenance-free engine system would be particularly suitable for advanced space power systems (radioisotope, waste heat) or even within the scope of terrestrial energy harvesting. This paper will summarizes the status of our ongoing efforts on this micro power converter technology.

  10. Technology development and demonstration for TRIGA research reactor decontamination, decommissioning and site restoration

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Ki Jung; Lee, Byung Jik

    1997-01-01

    This paper describes the introduction to research reactor decommissioning plan at KAERI, the background of technology development and demonstration, and the current status of the system decontamination technology for TRIGA reactors, concrete decontamination and dust treatment technologies, wall ranging robot and graphic simulation of dismantling processes, soil decontamination and restoration technology, recycling or reuse technologies for radioactive metallic wastes, and incineration technology demonstration for combustible wastes. 9 figs

  11. Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, E.J.

    1997-07-31

    A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination. Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36`` diameter x 6` high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20` diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling

  12. Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)

    International Nuclear Information System (INIS)

    Berglin, E.J.

    1997-01-01

    A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination. Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36'' diameter x 6' high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20' diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling

  13. ASTRID: Advanced Sodium Technological Reactor for Industrial Demonstration

    International Nuclear Information System (INIS)

    Vasile, A.

    2012-01-01

    Conclusions: • R&D results [CEA-AREVA-EDF] obtained from 2007 to 2009 have contributed to ASTRID mid 2010 choice of options; • ASTRID has the objective to demonstrate at the industrial scale progress in the identified domains of SFR weakness (safety, operability, economy). and to perform transmutation demonstrations; • A lot of improvements are related to safety; • The first very important milestone is 2012 (June 2006 French Act on wastes management): – ASTRID pre-conceptual design studies: 2010-2012; – First investment cost evaluation; – First safety Authorities advice on the orientations for ASTRID safety; • With the ASTRID program funded by the French government, France has the opportunity to develop a GEN IV Sodium Fast Reactor

  14. Demonstration of pharmaceutical tablet coating process by injection molding technology.

    Science.gov (United States)

    Puri, Vibha; Brancazio, David; Harinath, Eranda; Martinez, Alexander R; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Braatz, Richard D; Myerson, Allan S; Trout, Bernhardt L

    2018-01-15

    We demonstrate the coating of tablets using an injection molding (IM) process that has advantage of being solvent free and can provide precision coat features. The selected core tablets comprising 10% w/w griseofulvin were prepared by an integrated hot melt extrusion-injection molding (HME-IM) process. Coating trials were conducted on a vertical injection mold machine. Polyethylene glycol and polyethylene oxide based hot melt extruded coat compositions were used. Tablet coating process feasibility was successfully demonstrated using different coating mold designs (with both overlapping and non-overlapping coatings at the weld) and coat thicknesses of 150 and 300 μm. The resultant coated tablets had acceptable appearance, seal at the weld, and immediate drug release profile (with an acceptable lag time). Since IM is a continuous process, this study opens opportunities to develop HME-IM continuous processes for transforming powder to coated tablets. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The end-to-end testbed of the optical metrology system on-board LISA Pathfinder

    Energy Technology Data Exchange (ETDEWEB)

    Steier, F; Cervantes, F Guzman; Marin, A F GarcIa; Heinzel, G; Danzmann, K [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) and Universitaet Hannover (Germany); Gerardi, D, E-mail: frank.steier@aei.mpg.d [EADS Astrium Satellites GmbH, Friedrichshafen (Germany)

    2009-05-07

    LISA Pathfinder is a technology demonstration mission for the Laser Interferometer Space Antenna (LISA). The main experiment on-board LISA Pathfinder is the so-called LISA Technology Package (LTP) which has the aim to measure the differential acceleration between two free-falling test masses with an accuracy of 3 x 10{sup -14} ms{sup -2} Hz{sup -1/2} between 1 mHz and 30 mHz. This measurement is performed interferometrically by the optical metrology system (OMS) on-board LISA Pathfinder. In this paper, we present the development of an experimental end-to-end testbed of the entire OMS. It includes the interferometer and its sub-units, the interferometer backend which is a phasemeter and the processing of the phasemeter output data. Furthermore, three-axes piezo-actuated mirrors are used instead of the free-falling test masses for the characterization of the dynamic behaviour of the system and some parts of the drag-free and attitude control system (DFACS) which controls the test masses and the satellite. The end-to-end testbed includes all parts of the LTP that can reasonably be tested on earth without free-falling test masses. At its present status it consists mainly of breadboard components. Some of those have already been replaced by engineering models of the LTP experiment. In the next steps, further engineering and flight models will also be inserted in this testbed and tested against well-characterized breadboard components. The presented testbed is an important reference for the unit tests and can also be used for validation of the on-board experiment during the mission.

  16. Oil-free centrifugal hydrogen compression technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Heshmat, Hooshang [Mohawk Innovative Technology Inc., Albany, NY (United States)

    2014-05-31

    One of the key elements in realizing a mature market for hydrogen vehicles is the deployment of a safe and efficient hydrogen production and delivery infrastructure on a scale that can compete economically with current fuels. The challenge, however, is that hydrogen, being the lightest and smallest of gases with a lower viscosity and density than natural gas, readily migrates through small spaces and is difficult to compresses efficiently. While efficient and cost effective compression technology is crucial to effective pipeline delivery of hydrogen, the compression methods used currently rely on oil lubricated positive displacement (PD) machines. PD compression technology is very costly, has poor reliability and durability, especially for components subjected to wear (e.g., valves, rider bands and piston rings) and contaminates hydrogen with lubricating fluid. Even so called “oil-free” machines use oil lubricants that migrate into and contaminate the gas path. Due to the poor reliability of PD compressors, current hydrogen producers often install duplicate units in order to maintain on-line times of 98-99%. Such machine redundancy adds substantially to system capital costs. As such, DOE deemed that low capital cost, reliable, efficient and oil-free advanced compressor technologies are needed. MiTi’s solution is a completely oil-free, multi-stage, high-speed, centrifugal compressor designed for flow capacity of 500,000 kg/day with a discharge pressure of 1200 psig. The design employs oil-free compliant foil bearings and seals to allow for very high operating speeds, totally contamination free operation, long life and reliability. This design meets the DOE’s performance targets and achieves an extremely aggressive, specific power metric of 0.48 kW-hr/kg and provides significant improvements in reliability/durability, energy efficiency, sealing and freedom from contamination. The multi-stage compressor system concept has been validated through full scale

  17. RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Doebber, I. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dominick, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Holland, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-03-01

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft2 exchange store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).

  18. DECONTAMINATION/DESTRUCTION TECHNOLOGY DEMONSTRATION FOR ORGANICS IN TRANSURANIC WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Chris Jones; Javier Del Campo; Patrick Nevins; Stuart Legg

    2002-08-01

    The United States Department of Energy's Savannah River Site has approximately 5000 55-gallon drums of {sup 238}Pu contaminated waste in interim storage. These may not be shipped to WIPP in TRUPACT-II containers due to the high rate of hydrogen production resulting from the radiolysis of the organic content of the drums. In order to circumvent this problem, the {sup 238}Pu needs to be separated from the organics--either by mineralization of the latter or by decontamination by a chemical separation. We have conducted ''cold'' optimization trials and surrogate tests in which a combination of a mediated electrochemical oxidation process (SILVER II{trademark}) and ultrasonic mixing have been used to decontaminate the surrogate waste materials. The surrogate wastes were impregnated with copper oxalate for plutonium dioxide. Our process combines both mineralization of reactive components (such cellulose, rubber, and oil) and surface decontamination of less reactive materials such as polyethylene, polystyrene and polyvinylchloride. By using this combination of SILVER II and ultrasonic mixing, we have achieved 100% current efficiency for the destruction of the reactive components. We have demonstrated that: The degree of decontamination achieved would be adequate to meet both WIPP waste acceptance criteria and TRUPACT II packaging and shipping requirements; The system can maintain near absolute containment of the surrogate radionuclides; Only minimal pre-treatment (coarse shredding) and minimal waste sorting are required; The system requires minimal off gas control processes and monitoring instrumentation; The laboratory trials have developed information that can be used for scale-up purposes; The process does not produce dioxins and furans; Disposal routes for secondary process arisings have already been demonstrated in other programs. Based on the results from Phase 1, the recommendation is to proceed to Phase 2 and use the equipment at Savannah

  19. Commercial Demonstration of Wood Recovery, Recycling, and Value Adding Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Auburn Machinery, Inc.

    2004-07-15

    This commercial demonstration project demonstrated the technical feasibility of converting low-value, underutilized and waste stream solid wood fiber material into higher valued products. With a growing need to increase product/production yield and reduce waste in most sawmills, few recovery operations and practically no data existed to support the viability of recovery operations. Prior to our efforts, most all in the forest products industry believed that recovery was difficult, extremely labor intensive, not cost effective, and that recovered products had low value and were difficult to sell. This project provided an opportunity for many within the industry to see through demonstration that converting waste stream material into higher valued products does in fact offer a solution. Our work, supported by the U.S. Department of Energy, throughout the project aimed to demonstrate a reasonable approach to reducing the millions of recoverable solid wood fiber tons that are annually treated as and converted into low value chips, mulch and fuel. Consequently sawmills continue to suffer from reduced availability of forest resources, higher raw material costs, growing waste disposal problems, increased global competition, and more pressure to operate in an Environmentally Friendly manner. It is our belief (based upon the experience of this project) that the successful mainstreaming of the recovery concept would assist in alleviating this burden as well as provide for a realistically achievable economic benefit to those who would seriously pursue the concept and tap into the rapidly growing ''GREEN'' building marketplace. Ultimately, with participation and aggressive pursuit of the recovery concept, the public would benefit in that: (1) Landfill/disposal waste volume could be reduced adding greater life to existing municipal landfill sites thereby minimizing the need to prematurely license and open added facilities. Also, there would be a cost

  20. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn(sub 2)TiO(sub 4) or ZnTiO(sub 3)), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO(sub 2)), is currently one of the leading sorbents. Overall chemical reactions with Zn(sub 2)TiO(sub 4) during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO(sub 2)

  1. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    International Nuclear Information System (INIS)

    Unknown

    1999-01-01

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn(sub 2)TiO(sub 4) or ZnTiO(sub 3)), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO(sub 2)), is currently one of the leading sorbents. Overall chemical reactions with Zn(sub 2)TiO(sub 4) during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO(sub 2)

  2. Quantified safety objectives in high technology: Meaning and demonstration

    International Nuclear Information System (INIS)

    Vinck, W.F.; Gilby, E.; Chicken, J.

    1986-01-01

    An overview and trends-analysis is given of the types of quantified criteria and objectives which are presently applied or envisaged and discussed in Europe in the nuclear application, more specifically Nuclear Power Plants (NPPs), and in non-nuclear applications, more specifically in the chemical and petrochemical process industry. Some comparative deductions are made. Attention is paid to the similarities or discrepancies between such criteria and objectives and to problems associated with the demonstration that they are implemented. The role of cost-effectiveness of Risk deduction is briefly discussed and mention made of a search made into combining the technical, economic and socio-political factors playing a role in Risk acceptance

  3. Application of seismic isolation technology to demonstration FBR

    International Nuclear Information System (INIS)

    Kato, Muneaki

    1994-01-01

    The Japanese demonstration FBR is loop type, the intermediate heat exchanger is installed between the reactor and the steam generator, and up to the intermediate heat exchanger is in the containment vessel, which is designed as a reinforced concrete vessel. In FBRs, the optimization in aseismatic design and high temperature structural design is important. The reactor building is buried in rock bed up to its center of gravity to minimize the amplifying earthquake response. If the seismic isolation structure for a reactor is realized, cost reduction can be expected by the rationalization of machinery and equipment and the standardization of buildings and facilities. The research on FBR seismic isolation design has been carried out by Central Research Institute of Electric Power Industry and Japan Atomic Power Co. The concept of FBR seismic isolation design, the basic condition for the design evaluation, the research on safety allowance and the conceptual design analysis are reported. (K.I.)

  4. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    International Nuclear Information System (INIS)

    Unknown

    1999-01-01

    The U.S. Department of Energy (DOE), Federal Energy Technology Center (FETC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn(sub 2) TiO(sub 4) or ZnTiO(sub 3)), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO(sub 2)), is currently one of the leading sorbents. Overall chemical reactions with Zn(sub 2) TiO(sub 4) during the desulfurization (sulfidation)-regeneration cycle are shown below: Sulfidation: Zn(sub 2) TiO(sub 4)+ 2H(sub 2)S(yields) 2ZnS+ TiO(sub 2)+ 2H(sub 2)O; Regeneration: 2ZnS+ TiO(sub 2)+ 3O(sub 2)(yields) Zn(sub 2) TiO(sub 4)+ 2SO(sub 2) The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO(sub 2)

  5. Reusable LH2 tank technology demonstration through ground test

    Science.gov (United States)

    Bianca, C.; Greenberg, H. S.; Johnson, S. E.

    1995-01-01

    The paper presents the project plan to demonstrate, by March 1997, the reusability of an integrated composite LH2 tank structure, cryogenic insulation, and thermal protection system (TPS). The plan includes establishment of design requirements and a comprehensive trade study to select the most suitable Reusable Hydrogen Composite Tank system (RHCTS) within the most suitable of 4 candidate structural configurations. The 4 vehicles are winged body with the capability to deliver 25,000 lbs of payload to a circular 220 nm, 51.6 degree inclined orbit (also 40,000 lbs to a 28.5 inclined 150 nm orbit). A prototype design of the selected RHCTS is established to identify the construction, fabrication, and stress simulation and test requirements necessary in an 8 foot diameter tank structure/insulation/TPS test article. A comprehensive development test program supports the 8 foot test article development and involves the composite tank itself, cryogenic insulation, and integrated tank/insulation/TPS designs. The 8 foot diameter tank will contain the integrated cryogenic insulation and TPS designs resulting from this development and that of the concurrent lightweight durable TPS program. Tank ground testing will include 330 cycles of LH2 filling, pressurization, body loading, depressurization, draining, and entry heating.

  6. Cover technology demonstration for low-level radioactive sites

    International Nuclear Information System (INIS)

    Barnes, F.J.; Warren, J.L.

    1988-01-01

    The performance of a shallow land burial site in isolating low-level radioactive and mixed waste is strongly influenced by the behavior of the precipitation falling on the site. Predicting the long-term integrity of a cover design requires a knowledge of the water balance dynamics, and the use of predictive models. The multiplicity of factors operating on a site in the years post-closure (precipitation intensity and duration, soil conditions, vegetation seasonality and variability) have made it extremely difficult to predict the effects of natural precipitation with accuracy. Preliminary results are presented on a three-year field demonstration at Los Alamos National Laboratory to evaluate the influence of different waste trench cap designs on water balance under natural precipitation. Erosion plots having two different vegetative covers (shrubs and grasses) and with either gravel-mulched or unmulched soil surface treatments have been established on three different soil profiles on an inactive waste site. Total runoff and soil loss from each plot are measured biweekly while plant canopy cover is measured seasonally. Preliminary results from the first year show that the application of a gravel mulch reduced runoff by 73 to 90%. Total soil loss was reduced by 83 to 93% by the mulch treatment. On unmulched plots, grass cover reduced both runoff and soil loss by about 50% compared to the shrub plots. Soil moisture reduction during the growing season was more pronounced on the shrub plots. This indicates that a more complex vegetative cover provides greater soil moisture storage capacity for winter precipitation than the usual grass cover

  7. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    Science.gov (United States)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  8. Optimizing Electric Vehicle Coordination Over a Heterogeneous Mesh Network in a Scaled-Down Smart Grid Testbed

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Lévesque, Martin; Maier, Martin

    2015-01-01

    High penetration of renewable energy sources and electric vehicles (EVs) create power imbalance and congestion in the existing power network, and hence causes significant problems in the control and operation. Despite investing huge efforts from the electric utilities, governments, and researchers......, smart grid (SG) is still at the developmental stage to address those issues. In this regard, a smart grid testbed (SGT) is desirable to develop, analyze, and demonstrate various novel SG solutions, namely demand response, real-time pricing, and congestion management. In this paper, a novel SGT...... is developed in a laboratory by scaling a 250 kVA, 0.4 kV real low-voltage distribution feeder down to 1 kVA, 0.22 kV. Information and communication technology is integrated in the scaled-down network to establish real-time monitoring and control. The novelty of the developed testbed is demonstrated...

  9. Passive Thermal Design Approach for the Space Communications and Navigation (SCaN) Testbed Experiment on the International Space Station (ISS)

    Science.gov (United States)

    Siamidis, John; Yuko, Jim

    2014-01-01

    The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).

  10. Recent Successes and Future Plans for NASA's Space Communications and Navigation Testbed on the International Space Station

    Science.gov (United States)

    Reinhart, Richard C.; Sankovic, John M.; Johnson, Sandra K.; Lux, James P.; Chelmins, David T.

    2014-01-01

    Flexible and extensible space communications architectures and technology are essential to enable future space exploration and science activities. NASA has championed the development of the Space Telecommunications Radio System (STRS) software defined radio (SDR) standard and the application of SDR technology to reduce the costs and risks of using SDRs for space missions, and has developed an on-orbit testbed to validate these capabilities. The Space Communications and Navigation (SCaN) Testbed (previously known as the Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT)) is advancing SDR, on-board networking, and navigation technologies by conducting space experiments aboard the International Space Station. During its first year(s) on-orbit, the SCaN Testbed has achieved considerable accomplishments to better understand SDRs and their applications. The SDR platforms and software waveforms on each SDR have over 1500 hours of operation and are performing as designed. The Ka-band SDR on the SCaN Testbed is NASAs first space Ka-band transceiver and is NASA's first Ka-band mission using the Space Network. This has provided exciting opportunities to operate at Ka-band and assist with on-orbit tests of NASA newest Tracking and Data Relay Satellites (TDRS). During its first year, SCaN Testbed completed its first on-orbit SDR reconfigurations. SDR reconfigurations occur when implementing new waveforms on an SDR. SDR reconfigurations allow a radio to change minor parameters, such as data rate, or complete functionality. New waveforms which provide new capability and are reusable across different missions provide long term value for reconfigurable platforms such as SDRs. The STRS Standard provides guidelines for new waveform development by third parties. Waveform development by organizations other than the platform provider offers NASA the ability to develop waveforms itself and reduce its dependence and costs on the platform developer. Each of these

  11. Environment Emulation For Wsn Testbed

    Directory of Open Access Journals (Sweden)

    Radosław Kapłoniak

    2012-01-01

    Full Text Available The development of applications for wireless sensor networks is a challenging task. For this reason, several testbed platforms have been created. They simplify the manageability of nodes by offering easy ways of programming and debugging sensor nodes. These platforms, sometimes composed of dozens of sensors, provide a convenient way for carrying out research on medium access control and data exchange between nodes. In this article, we propose the extension of the WSN testbed, which could be used for evaluating and testing the functionality of sensor networks applications by emulating a real-world environment.

  12. Standardized UXO Technology Demonstration Site, Blind Grid Scoring Record No. 671

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ... (UXO) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Deomostration Site Scoring Committee...

  13. Project Overview of the Naval Postgraduate School Spacecraft Architecture and Technology Demonstration Experiment

    National Research Council Canada - National Science Library

    Reuer, Charles

    2001-01-01

    The Naval Postgraduate School's current attempt at getting another spacecraft into orbit is focusing on Naval Postgraduate School Spacecraft Architecture and Technology Demonstration Experiment (NPSAT1...

  14. Technology Demonstration of Wet Abrasive Blasting for Removal of Lead- and Asbestos-Containing Paint

    National Research Council Canada - National Science Library

    Race, Timothy

    2003-01-01

    ...). This technology demonstration showed that wet blasting using an engineered abrasive can safely and effectively remove lead- and asbestos-containing paint from exterior concrete masonry unit walls...

  15. Use of Cultivation Data from the Algae Testbed Public Private Partnership as Utilized in NREL's Algae State of Technology Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Knoshaug, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Laurens, Lieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    The Algae Testbed Public Private Partnership (ATP3) conducted algal growth experiments over the course of 16 months termed the Unified Field Studies (UFS). These experiments were conducted at 5 different geographic locations in Arizona (ASU), California (CP), Florida (FA), Georgia (GT), and Hawaii (CELL). The UFS sought to evaluate different algal biomass harvesting strategies using identical ponds, media, and operational conditions through all four seasons across different geographic regions to isolate the effects on productivity attributed to locational climate and seasonal variability, overlaid by the differing harvest strategies. Set up as the baseline against which other experiments would build upon, it must be emphasized that as per the stated, approved experimental goals of the ATP3 UFS, no attempts at growth or lipid accumulation optimization were made; rather, the primary focus of the UFS work was to cultivate algal biomass under deliberate, consistent conditions, time periods, and harvesting protocols, to provide public data on year-round outdoor biomass production that could be directly compared between one site and another (with accompanying climate data for each site). Thus the resulting productivity numbers in effect represent a conservative baseline of non-optimized algal growth one may expect at these sites. Also clearly weather can vary dramatically from season to season and from year to year, and even within a given 'season' where an individual season's data was typically based on 4-6 week operating windows. Thus these numbers also only reflect a short snapshot in time, and must be interpreted carefully in projecting what may be expected over many years or decades (for example, a 30-year facility lifetime as evaluated in techno-economic models).

  16. 76 FR 56406 - Science and Technology Reinvention Laboratory Demonstration Project; Department of the Army; Army...

    Science.gov (United States)

    2011-09-13

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Demonstration Project; Department of the Army; Army Research, Development and Engineering Command; Tank... personnel management demonstration project for eligible TARDEC employees. Within that notice the table...

  17. KickSat: A Crowd-Funded Technology Demonstration Mission for the Sprite ChipSat

    Data.gov (United States)

    National Aeronautics and Space Administration — KickSat is a cubesat technology demonstration mission designed to demonstrate the deployment and operation of prototype sprite "ChipSats" (femtosatellites) developed...

  18. The Fourier-Kelvin Stellar Interferometer (FKSI) Nulling Testbed II: Closed-loop Path Length Metrology And Control Subsystem

    Science.gov (United States)

    Frey, B. J.; Barry, R. K.; Danchi, W. C.; Hyde, T. T.; Lee, K. Y.; Martino, A. J.; Zuray, M. S.

    2006-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer in the near to mid-infrared spectral region (3-8 microns), and will be a scientific and technological pathfinder for upcoming missions including TPF-I/DARWIN, SPECS, and SPIRIT. At NASA's Goddard Space Flight Center, we have constructed a symmetric Mach-Zehnder nulling testbed to demonstrate techniques and algorithms that can be used to establish and maintain the 10(exp 4) null depth that will be required for such a mission. Among the challenges inherent in such a system is the ability to acquire and track the null fringe to the desired depth for timescales on the order of hours in a laboratory environment. In addition, it is desirable to achieve this stability without using conventional dithering techniques. We describe recent testbed metrology and control system developments necessary to achieve these goals and present our preliminary results.

  19. 40 CFR 450.24 - New source performance standards reflecting the best available demonstrated control technology...

    Science.gov (United States)

    2010-07-01

    ... performance standards reflecting the best available demonstrated control technology (NSPS). Any new source... 40 Protection of Environment 29 2010-07-01 2010-07-01 false New source performance standards reflecting the best available demonstrated control technology (NSPS). 450.24 Section 450.24 Protection of...

  20. Project A+ Elementary Technology Demonstration Schools 1990-91. The First Year.

    Science.gov (United States)

    Marable, Paula; Frazer, Linda

    Project A+ Elementary Technology Demonstration Schools is a program made possible through grants from IBM (International Business Machines Corporation) and Apple, Inc. The primary purpose of the program is to demonstrate the educational effectiveness of technology in accelerating the learning of low achieving at-risk students and enhancing the…

  1. Summary performance assessment of in situ remediation technologies demonstrated at Savannah River

    International Nuclear Information System (INIS)

    Rosenberg, N.D.; Robinson, B.A.; Birdsell, K.H.; Travis, B.J.

    1994-06-01

    The Office of Technology Development (OTD) in the Department of Energy's (DOE) Office of Environmental Restoration and Waste Management is investigating new technologies for ''better, faster, cheaper, safer'' environmental remediation. A program at DOE's Savannah River site was designed to demonstrate innovative technologies for the remediation of volatile organic compounds (VOCs) at nonarid sites. Two remediation technologies, in situ air stripping and in situ bioremediation--both using horizontal wells, were demonstrated at the site between 1990--1993. This brief report summarizes the conclusions from three separate modeling studies on the performance of these technologies

  2. 3D Printing in Zero G Technology Demonstration Mission: Summary of On-Orbit Operations, Material Testing, and Future Work

    Science.gov (United States)

    Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ordonez, Erick; Ledbetter, Frank; Ryan, Richard; Newton, Steve

    2016-01-01

    Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS), an orbiting laboratory 200 miles above the earth, provides a unique and incredible opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture farther into the solar system. The ability to manufacture parts in-space rather than launch them from earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In particularly, additive manufacturing (or 3D printing) techniques can potentially be deployed in the space environment to enhance crew safety (by providing an on-demand part replacement capability) and decrease launch mass by reducing the number of spare components that must be launched for missions where cargo resupply is not a near-term option. In September 2014, NASA launched the 3D Printing in Zero G technology demonstration mission to the ISS to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on-orbit. The printer for this mission was designed and operated by the company Made In Space under a NASA SBIR (Small Business Innovation Research) phase III contract. The overarching objectives of the 3D print mission were to use ISS as a testbed to further maturation of enhancing technologies needed for long duration human exploration missions, introduce new materials and methods to fabricate structure in space, enable cost-effective manufacturing for structures and mechanisms made in low-unit production, and enable physical components to be manufactured in space on long duration missions if necessary. The 3D print unit for fused deposition modeling (FDM) of acrylonitrile butadiene styrene (ABS) was integrated into the ISS Microgravity Science Glovebox (MSG) in November 2014 and phase I printing operations took place from

  3. Definition and compositions of standard wastestreams for evaluation of Buried Waste Integrated Demonstration treatment technologies

    International Nuclear Information System (INIS)

    Bates, S.O.

    1993-06-01

    The Buried Waste Integrated Demonstration (BWID) Project was organized at the Idaho National Engineering Laboratory to support research, development, demonstration, testing, and evaluation of emerging technologies that offer promising solutions to remediation of buried waste. BWID will identify emerging technologies, screen them for applicability to the identified needs, select technologies for demonstration, and then evaluate the technologies based on prescribed performance objectives. The technical objective of the project is to establish solutions to Environmental Restoration and Waste Management's technological deficiencies and improve baseline remediation systems. This report establishes a set of standard wastestream compositions that will be used by BWID to evaluate the emerging technologies. Five wastestreams are proposed that use four types of waste and a nominal case that is a homogenized combination of the four wastes. The five wastestreams will provide data on the compositional extremes and indicate the technologies' effectiveness over the complete range of expected wastestream compositions

  4. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 810 (FEREX Fluxgate Gradient Magnetometer/Sling)

    National Research Council Canada - National Science Library

    Fling, Rick; McClung, Christina; Banta, Matthew; Burch, William; Karwatka, Michael; McDonnell, Patrick

    2007-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. This Scoring Record was coordinated by Michael Karwatka and the Standardized UXO Technology Demonstration Site Scoring Committee...

  5. Standardized UXO Technology Demonstration Site, Open Field Scoring Record No. 770. Magnetometer FEREX DLG GPS/Sling

    National Research Council Canada - National Science Library

    Karwatka, Mike; Packer, Bonnie

    2006-01-01

    ...) utilizing the YPG Standardized UXO Technology Demonstration Site open field. Scoring Records have been coordinated by Mike Karwatka and the Standardized UXO Technology Demonstration Site Scoring Committee...

  6. Large-scale decontamination and decommissioning technology demonstration project at a former uranium metal production facility

    International Nuclear Information System (INIS)

    Martineit, R.A.; Borgman, T.D.; Peters, M.S.; Stebbins, L.L.

    1997-01-01

    The Department of Energy's (DOE) Office of Science and Technology Decontamination and Decommissioning (D ampersand D) Focus Area, led by the Federal Energy Technology Center, has been charged with improving upon baseline D ampersand D technologies with the goal of demonstrating and validating more cost-effective and safer technologies to characterize, deactivate, survey, decontaminate, dismantle, and dispose of surplus structures, buildings, and their contents at DOE sites. The D ampersand D Focus Area's approach to verifying the benefits of the improved D ampersand D technologies is to use them in large-scale technology demonstration (LSTD) projects at several DOE sites. The Fernald Environmental Management Project (FEMP) was selected to host one of the first three LSTD's awarded by the D ampersand D Focus Area. The FEMP is a DOE facility near Cincinnati, Ohio, that was formerly engaged in the production of high quality uranium metal. The FEMP is a Superfund site which has completed its RUFS process and is currently undergoing environmental restoration. With the FEMP's selection to host an LSTD, the FEMP was immediately faced with some challenges. The primary challenge was that this LSTD was to be integrated into the FEMP's Plant 1 D ampersand D Project which was an ongoing D ampersand D Project for which a firm fixed price contract had been issued to the D ampersand D Contractor. Thus, interferences with the baseline D ampersand D project could have significant financial implications. Other challenges include defining and selecting meaningful technology demonstrations, finding/selecting technology providers, and integrating the technology into the baseline D ampersand D project. To date, twelve technologies have been selected, and six have been demonstrated. The technology demonstrations have yielded a high proportion of open-quotes winners.close quotes All demonstrated, technologies will be evaluated for incorporation into the FEMP's baseline D ampersand D

  7. A 100 kW-Class Technology Demonstrator for Space Solar Power

    Science.gov (United States)

    Howell, J.; Carrington, C.; Day, G.

    2004-12-01

    A first step in the development of solar power from space is the flight demonstration of critical technologies. These fundamental technologies include efficient solar power collection and generation, power management and distribution, and thermal management. In addition, the integration and utilization of these technologies into a viable satellite bus could provide an energy-rich platform for a portfolio of payload experiments such as wireless power transmission (WPT). This paper presents the preliminary design of a concept for a 100 kW-class free-flying platform suitable for flight demonstration of Space Solar Power (SSP) technology experiments.

  8. Field demonstration and transition of SCAPS direct push VOC in-situ sensing technologies

    International Nuclear Information System (INIS)

    Davis, William M.

    1999-01-01

    This project demonstrated two in-situ volatile organic compound (VOC) samplers in combination with the direct sampling ion trap mass spectrometer (DSITMS). The technologies chosen were the Vadose Sparge and the Membrane Interface Probe (MIP) sensing systems. Tests at two demonstration sites showed the newer VOC technologies capable of providing in situ contaminant measurements at two to four times the rate of the previously demonstrated Hydrosparge sensor. The results of this project provide initial results supporting the utility of these new technologies to provide rapid site characterization of VOC contaminants in the subsurface

  9. Demonstration Project 111, ITS/CVO Technology Truck, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Gambrell, KP

    2002-01-11

    In 1995, the planning and building processes began to design and develop a mobile demonstration unit that could travel across the nation and be used as an effective outreach tool. In 1997, the unit was completed; and from June 1997 until December 2000, the Federal Highway Administration (FHWA)/Federal Motor Carrier Safety Administration (FMCSA) mobilized the Technology Truck, also known as Demonstration Project No. 111, ''Advanced Motor Carrier Operations and Safety Technologies.'' The project featured the latest available state-of-the-practice intelligent transportation systems (ITS) technologies designed to improve both the efficiency and safety of commercial vehicle operations (CVO). The Technology Truck was designed to inform and educate the motor carrier community and other stakeholders regarding ITS technologies, thus gaining support and buy-in for participation in the ITS program. The primary objective of the project was to demonstrate new and emerging ITS/CVO technologies and programs, showing their impact on motor carrier safety and productivity. In order to meet the objectives of the Technology Truck project, the FHWA/FMCSA formed public/private partnerships with industry and with Oak Ridge National Laboratory to demonstrate and display available ITS/CVO technologies in a cooperative effort. The mobile demonstration unit was showcased at national and regional conferences, symposiums, universities, truck shows and other venues, in an effort to reach as many potential users and decision makers as possible. By the end of the touring phase, the ITS/CVO Technology Truck had been demonstrated in 38 states, 4 Canadian provinces, 88 cities, and 114 events; been toured by 18,099 people; and traveled 115,233 miles. The market penetration for the Technology Truck exceeded 4,000,000, and the website received more than 25,000 hits. In addition to the Truck's visits, the portable ITS/CVO kiosk was demonstrated at 31 events in 23 cites in 15

  10. The OGC Innovation Program Testbeds - Advancing Architectures for Earth and Systems

    Science.gov (United States)

    Bermudez, L. E.; Percivall, G.; Simonis, I.; Serich, S.

    2017-12-01

    The OGC Innovation Program provides a collaborative agile process for solving challenging science problems and advancing new technologies. Since 1999, 100 initiatives have taken place, from multi-million dollar testbeds to small interoperability experiments. During these initiatives, sponsors and technology implementers (including academia and private sector) come together to solve problems, produce prototypes, develop demonstrations, provide best practices, and advance the future of standards. This presentation will provide the latest system architectures that can be used for Earth and space systems as a result of the OGC Testbed 13, including the following components: Elastic cloud autoscaler for Earth Observations (EO) using a WPS in an ESGF hybrid climate data research platform. Accessibility of climate data for the scientist and non-scientist users via on demand models wrapped in WPS. Standards descriptions for containerize applications to discover processes on the cloud, including using linked data, a WPS extension for hybrid clouds and linking to hybrid big data stores. OpenID and OAuth to secure OGC Services with built-in Attribute Based Access Control (ABAC) infrastructures leveraging GeoDRM patterns. Publishing and access of vector tiles, including use of compression and attribute options reusing patterns from WMS, WMTS and WFS. Servers providing 3D Tiles and streaming of data, including Indexed 3d Scene Layer (I3S), CityGML and Common DataBase (CDB). Asynchronous Services with advanced pushed notifications strategies, with a filter language instead of simple topic subscriptions, that can be use across OGC services. Testbed 14 will continue advancing topics like Big Data, security, and streaming, as well as making easier to use OGC services (e.g. RESTful APIs). The Call for Participation will be issued in December and responses are due on mid January 2018.

  11. Aerodynamic design of the National Rotor Testbed.

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Christopher Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    A new wind turbine blade has been designed for the National Rotor Testbed (NRT) project and for future experiments at the Scaled Wind Farm Technology (SWiFT) facility with a specific focus on scaled wakes. This report shows the aerodynamic design of new blades that can produce a wake that has similitude to utility scale blades despite the difference in size and location in the atmospheric boundary layer. Dimensionless quantities circulation, induction, thrust coefficient, and tip-speed-ratio were kept equal between rotor scales in region 2 of operation. The new NRT design matched the aerodynamic quantities of the most common wind turbine in the United States, the GE 1.5sle turbine with 37c model blades. The NRT blade design is presented along with its performance subject to the winds at SWiFT. The design requirements determined by the SWiFT experimental test campaign are shown to be met.

  12. A Storable, Hybrid Mars Ascent Vehicle Technology Demonstrator for the 2020 Launch Opportunity

    Science.gov (United States)

    Chandler, A. A.; Karabeyoglu, M. A.; Cantwell, B. J.; Reeve, R.; Goldstein, B. G.; Hubbard, G. S.

    2012-06-01

    A Phoenix sized mission including a reduced payload, two-stage, hybrid Mars Ascent Vehicle technology demonstrator is proposed for the 2020 opportunity. The hybrid MAV is storable on Mars and would retire risk for a Mars Sample Return campaign.

  13. SELENIUM TREATMENT/REMOVAL ALTERNATIVES DEMONSTRATION PROJECT - MINE WASTE TECHNOLOGY PROGRAM ACTIVITY III, PROJECT 20

    Science.gov (United States)

    This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...

  14. Technology Demonstration of the Zero Emissions Chromium Electroplating System; Appendix I: CHPPM Report on Air Sampling

    National Research Council Canada - National Science Library

    Hay, K. J; Maloney, Stephen W; Cannon, John J; Phelps, Max R; Modrell, Jason

    2008-01-01

    This volume is an Appendix to the main report, Volume 1, which documents the demonstration of a technology developed by PRD, Inc, for control of chromium emissions during hard chromium electroplating...

  15. SITE Technology Capsule. Demonstration of Rocky Mountain Remediation Services Soil Amendment

    Science.gov (United States)

    This report briefly summarizes the Rocky Mountain Remediation Services treatment technology demonstration of a soil amendment process for lead contaminated soil at Roseville, OH. The evaluation included leaching, bioavailability, geotechnical, and geochemical methods.

  16. A remote integrated testbed for cooperating objects

    CERN Document Server

    Dios, Jose Ramiro Martinez-de; Bernabe, Alberto de San; Ollero, Anibal

    2013-01-01

    Testbeds are gaining increasing relevance in research domains and also in industrial applications. However, very few books devoted to testbeds have been published. To the best of my knowledge no book on this topic has been published. This book is particularly interesting for the growing community of testbed developers. I believe the book is also very interesting for researchers in robot-WSN cooperation.This book provides detailed description of a system that can be considered the first testbed that allows full peer-to-peer interoperability between heterogeneous robots and ubiquitous systems su

  17. An Historical Overview of the Production Requirement for the Satellite Technology Demonstration. Technical Report No. 0504.

    Science.gov (United States)

    Smith, Myron P.; Sosey, Phillip

    The Satellite Technology Demonstration employs the latest telecommunications technology to deliver community oriented programing to rural areas. To meet the demand for contemporary broadcasts responsive to community needs, a studio was constructed in the Denver area to produce and coordinate future programs for the Rocky Mountains area. Problems…

  18. Extrasolar Planetary Imaging Coronagraph (EPIC): visible nulling cornagraph testbed results

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Melnick, Gary; Tolls, Volker; Woodruff, Robert; Vasudevan, Gopal

    2008-07-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a NASA Astrophysics Strategic Mission Concept under study for the upcoming Exoplanet Probe. EPIC's mission would be to image and characterize extrasolar giant planets, and potential super-Earths, in orbits with semi-major axes between 2 and 10 AU. EPIC will provide insights into the physical nature of a variety of planets in other solar systems complimenting radial velocity (RV) and astrometric planet searches. It will detect and characterize the atmospheres of planets identified by radial velocity surveys and potentially some transits, determine orbital inclinations and masses, characterize the atmospheres of gas giants around A and F stars, observed the inner spatial structure and colors of inner Spitzer selected debris disks. EPIC would be launched into a heliocentric Earth trailing drift-away orbit, with a 3-year mission lifetime (5 year goal) and will revisit planets at least three times. The starlight suppression approach consists of a visible nulling coronagraph (VNC) that enables high order starlight suppression in broadband light. To demonstrate the VNC approach and advance it's technology readiness the NASA/Goddard Space Flight Center and Lockheed-Martin have developed a laboratory VNC and have demonstrated white light nulling. We will discuss our ongoing VNC work and show the latest results from the VNC testbed.

  19. Extrasolar Planetary Imaging Coronagraph: Visible Nulling Coronagraph Testbed Results

    Science.gov (United States)

    Lyon, Richard G.

    2008-01-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a proposed NASA Discovery mission to image and characterize extrasolar giant planets in orbits with semi-major axes between 2 and 10 AU. EPIC will provide insights into the physical nature of a variety of planets in other solar systems complimenting radial velocity (RV) and astrometric planet searches. It will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses, characterize the atmospheres around A and F stars, observed the inner spatial structure and colors of inner Spitzer selected debris disks. EPIC would be launched to heliocentric Earth trailing drift-away orbit, with a 3-year mission lifetime ( 5 year goal) and will revisit planets at least three times at intervals of 9 months. The starlight suppression approach consists of a visible nulling coronagraph (VNC) that enables high order starlight suppression in broadband light. To demonstrate the VNC approach and advance it's technology readiness the NASA Goddard Space Flight Center and Lockheed-Martin have developed a laboratory VNC and have demonstrated white light nulling. We will discuss our ongoing VNC work and show the latest results from the VNC testbed,

  20. Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Sheppy, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Metzger, I. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Holland, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hanada, A. [Naval Facilities Engineering Command, Washington, DC (United States)

    2014-01-01

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of the technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.

  1. Research, development, demonstration, and early deployment policies for advanced-coal technology in China

    International Nuclear Information System (INIS)

    Zhao Lifeng; Gallagher, Kelly Sims

    2007-01-01

    Advanced-coal technologies will increasingly play a significant role in addressing China's multiple energy challenges. This paper introduces the current status of energy in China, evaluates the research, development, and demonstration policies for advanced-coal technologies during the Tenth Five-Year Plan, and gives policy prospects for advanced-coal technologies in the Eleventh Five-Year Plan. Early deployment policies for advanced-coal technologies are discussed and some recommendations are put forward. China has made great progress in the development of advanced-coal technologies. In terms of research, development, and demonstration of advanced-coal technologies, China has achieved breakthroughs in developing and demonstrating advanced-coal gasification, direct and indirect coal liquefaction, and key technologies of Integrated Gasification Combined Cycle (IGCC) and co-production systems. Progress on actual deployment of advanced-coal technologies has been more limited, in part due to insufficient supporting policies. Recently, industry chose Ultra Super Critical (USC) Pulverized Coal (PC) and Super Critical (SC) PC for new capacity coupled with pollution-control technology, and 300 MW Circulating Fluidized Bed (CFB) as a supplement

  2. Smart Antenna UKM Testbed for Digital Beamforming System

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available A new design of smart antenna testbed developed at UKM for digital beamforming purpose is proposed. The smart antenna UKM testbed developed based on modular design employing two novel designs of L-probe fed inverted hybrid E-H (LIEH array antenna and software reconfigurable digital beamforming system (DBS. The antenna is developed based on using the novel LIEH microstrip patch element design arranged into 4×1 uniform linear array antenna. An interface board is designed to interface to the ADC board with the RF front-end receiver. The modular concept of the system provides the capability to test the antenna hardware, beamforming unit, and beamforming algorithm in an independent manner, thus allowing the smart antenna system to be developed and tested in parallel, hence reduces the design time. The DBS was developed using a high-performance TMS320C6711TM floating-point DSP board and a 4-channel RF front-end receiver developed in-house. An interface board is designed to interface to the ADC board with the RF front-end receiver. A four-element receiving array testbed at 1.88–2.22 GHz frequency is constructed, and digital beamforming on this testbed is successfully demonstrated.

  3. Development and demonstration of energy saving technologies in agriculture; Udvikling og demonstration af energibesparende teknologi til landbruget

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Joergen; Trenel, P.; Krogh Hansen, T.; Andersen, Mathias

    2010-07-01

    The energy consumption for agriculture is approx. 10% of the total corporate energy use in Denmark and is therefore a major source of total CO2 emission. This project aims to show that there is great potential for reducing energy use in agriculture. The project focused on saving energy in pig production, as this is the largest branch of production in farming and also the most energy consuming. The energy consumption in selected herds has been monitored with high accuracy making it possible to track down energy consumption, on system level, minute by minute. The energy consumption for light, ventilation and heating systems has been followed in various sections of different farms to compare the level of consumption. In the project 4 technologies were developed and tested. The results are: 1) Two new EC (electronically commuted) fans for livestock facilities makes it possible to reduce power consumption for ventilation with over 50% compared with frequency controlled fans; 2) An intelligent shelter for two climate stables was developed to regulate heat in the piglet pens. The system showed a 43% energy saving for heating compared to identical climate stables with normal floor heating; 3) An hour-based energy management system called Elspot was tested. The Elspot module can automatically activate and deactivate electrically powered equipment according to the energy price. The study found that farms can reduce their spending on electricity by 25% using the Elspot module on a feed mill; 4) A web interface for energy monitoring was designed specifically for farmers. This system makes it possible for farmers to monitor their energy consumption at and benchmark this against normative values or new technologies. The initial goal of the project was to develop and demonstrate solutions that could potentially reduce energy consumption in agriculture by 20%. Since the work was done only with energy saving technologies in livestock production, this corresponds to an energy

  4. Field Demonstration of Innovative Condition Assessment Technologies for Water Mains: Leak Detection and Location

    Science.gov (United States)

    Three leak detection/location technologies were demonstrated on a 76-year-old, 2,057-ft-long portion of a cement-lined, 24-in. cast iron water main in Louisville, KY. This activity was part of a series of field demonstrations of innovative leak detection/location and condition a...

  5. Hanford tanks initiative - test implementation plan for demonstration of in-tank retrieval technology

    International Nuclear Information System (INIS)

    Schaus, P.S.

    1997-01-01

    This document presents a Systems Engineering approach for performing the series of tests associated with demonstrating in-tank retrieval technologies. The testing ranges from cold testing of individual components at the vendor's facility to the final fully integrated demonstration of the retrieval system's ability to remove hard heel high-level waste from the bottom of a Hanford single-shell tank

  6. Performance-Based Technology Selection Filter description report. INEL Buried Waste Integrated Demonstration System Analysis project

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

    1992-05-01

    A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

  7. Pacific Northwest Smart Grid Demonstration Project Technology Performance Report Volume 1: Technology Performance

    Energy Technology Data Exchange (ETDEWEB)

    Melton, Ron [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-01

    The Pacific Northwest Smart Grid Demonstration (PNWSGD), a $179 million project that was co-funded by the U.S. Department of Energy (DOE) in late 2009, was one of the largest and most comprehensive demonstrations of electricity grid modernization ever completed. The project was one of 16 regional smart grid demonstrations funded by the American Recovery and Reinvestment Act. It was the only demonstration that included multiple states and cooperation from multiple electric utilities, including rural electric co-ops, investor-owned, municipal, and other public utilities. No fewer than 55 unique instantiations of distinct smart grid systems were demonstrated at the projects’ sites. The local objectives for these systems included improved reliability, energy conservation, improved efficiency, and demand responsiveness. The demonstration developed and deployed an innovative transactive system, unique in the world, that coordinated many of the project’s distributed energy resources and demand-responsive components. With the transactive system, additional regional objectives were also addressed, including the mitigation of renewable energy intermittency and the flattening of system load. Using the transactive system, the project coordinated a regional response across the 11 utilities. This region-wide connection from the transmission system down to individual premises equipment was one of the major successes of the project. The project showed that this can be done and assets at the end points can respond dynamically on a wide scale. In principle, a transactive system of this type might eventually help coordinate electricity supply, transmission, distribution, and end uses by distributing mostly automated control responsibilities among the many distributed smart grid domain members and their smart devices.

  8. An access technology delivery protocol for children with severe and multiple disabilities: a case demonstration.

    Science.gov (United States)

    Mumford, Leslie; Lam, Rachel; Wright, Virginia; Chau, Tom

    2014-08-01

    This study applied response efficiency theory to create the Access Technology Delivery Protocol (ATDP), a child and family-centred collaborative approach to the implementation of access technologies. We conducted a descriptive, mixed methods case study to demonstrate the ATDP method with a 12-year-old boy with no reliable means of access to an external device. Evaluations of response efficiency, satisfaction, goal attainment, technology use and participation were made after 8 and 16 weeks of training with a custom smile-based access technology. At the 16 week mark, the new access technology offered better response quality; teacher satisfaction was high; average technology usage was 3-4 times per week for up to 1 h each time; switch sensitivity and specificity reached 78% and 64%, respectively, and participation scores increased by 38%. This case supports further development and testing of the ATDP with additional children with multiple or severe disabilities.

  9. Fast Physics Testbed for the FASTER Project

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.; Liu, Y.; Hogan, R.; Neggers, R.; Jensen, M.; Fridlind, A.; Lin, Y.; Wolf, A.

    2010-03-15

    This poster describes the Fast Physics Testbed for the new FAst-physics System Testbed and Research (FASTER) project. The overall objective is to provide a convenient and comprehensive platform for fast turn-around model evaluation against ARM observations and to facilitate development of parameterizations for cloud-related fast processes represented in global climate models. The testbed features three major components: a single column model (SCM) testbed, an NWP-Testbed, and high-resolution modeling (HRM). The web-based SCM-Testbed features multiple SCMs from major climate modeling centers and aims to maximize the potential of SCM approach to enhance and accelerate the evaluation and improvement of fast physics parameterizations through continuous evaluation of existing and evolving models against historical as well as new/improved ARM and other complementary measurements. The NWP-Testbed aims to capitalize on the large pool of operational numerical weather prediction products. Continuous evaluations of NWP forecasts against observations at ARM sites are carried out to systematically identify the biases and skills of physical parameterizations under all weather conditions. The highresolution modeling (HRM) activities aim to simulate the fast processes at high resolution to aid in the understanding of the fast processes and their parameterizations. A four-tier HRM framework is established to augment the SCM- and NWP-Testbeds towards eventual improvement of the parameterizations.

  10. Visible nulling coronagraphy testbed development for exoplanet detection

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Thompson, Patrick; Chen, Andrew; Petrone, Peter; Booth, Andrew; Madison, Timothy; Bolcar, Matthew; Noecker, M. Charley; Kendrick, Stephen; Melnick, Gary; Tolls, Volker

    2010-07-01

    Three of the recently completed NASA Astrophysics Strategic Mission Concept (ASMC) studies addressed the feasibility of using a Visible Nulling Coronagraph (VNC) as the prime instrument for exoplanet science. The VNC approach is one of the few approaches that works with filled, segmented and sparse or diluted aperture telescope systems and thus spans the space of potential ASMC exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies and has developed an incremental sequence of VNC testbeds to advance the this approach and the technologies associated with it. Herein we report on the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under high bandwidth closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible light nulling milestones of sequentially higher contrasts of 108, 109 and 1010 at an inner working angle of 2*λ/D and ultimately culminate in spectrally broadband (>20%) high contrast imaging. Each of the milestones, one per year, is traceable to one or more of the ASMC studies. The VNT uses a modified Mach-Zehnder nulling interferometer, modified with a modified "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. Discussed will be the optical configuration laboratory results, critical technologies and the null sensing and control approach.

  11. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present

  12. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gelman, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tomberlin, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bain, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-03-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

  13. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    Science.gov (United States)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  14. Clean Coal Technology Demonstration Program: Program update 1991 (as of December 31, 1991)

    International Nuclear Information System (INIS)

    1992-02-01

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of large-scale ''showcase'' facilities built across the country. The program takes the most promising advanced coal-based technologies and moves them into the commercial marketplace through demonstration. These demonstrations are on a scale large enough to generate all the data, from design, construction and operation, that are necessary for the private sector to judge commercial potential and make informed, confident decisions on commercial readiness. The CCT Program has been identified in the National Energy Strategy as major initiative supporting the strategy's overall goals to: increase efficiency of energy use; secure future energy supplies; enhance environmental quality; fortify foundations. The technologies being demonstrated under the CCT Program when commercially available will enable coal to reach its full potential as a source of energy for the nation and the international marketplace. The goal of the program is to furnish the US and international energy marketplaces with a number of advanced, highly efficient, and environmentally acceptable coal-using technologies

  15. ATM Technology Demonstration 1 (ATD-1) Project: Terminal Airspace Technologies for NextGen (Public)

    Science.gov (United States)

    Robinson, John E.; Wang, Easter

    2015-01-01

    This video highlights the human-in-the-loop (HITL) simulations conducted by the ATD-1 project and features visual elements developed for Traffic Management Advisor - Terminal Metering, Controller Managed Spacing, and Flight Deck Interval Management. The video content is fairly technical and intended for audiences that have some knowledge of air traffic management issues. This includes researchers and management from NASA, FAA, industry partners, and others interested in terminal metering, controller managed spacing, and interval management technologies. Please note that the media release only clears the video for peer audiences such as ATM conferences or as part of presentations to researchers.

  16. Development of Demonstration Facility Design Technology for Advanced Nuclear Fuel Cycle Process

    International Nuclear Information System (INIS)

    Cho, Il Je; You, G. S.; Choung, W. M.

    2010-04-01

    The main objective of this R and D is to develop the PRIDE (PyRoprocess Integrated inactive DEmonstration) facility for engineering-scale inactive test using fresh uranium, and to establish the design requirements of the ESPF (Engineering Scale Pyroprocess Facility) for active demonstration of the pyroprocess. Pyroprocess technology, which is applicable to GEN-IV systems as one of the fuel cycle options, is a solution of the spent fuel accumulation problems. PRIDE Facility, pyroprocess mock-up facility, is the first facility that is operated in inert atmosphere in the country. By using the facility, the functional requirements and validity of pyroprocess technology and facility related to the advanced fuel cycle can be verified with a low cost. Then, PRIDE will contribute to evaluate the technology viability, proliferation resistance and possibility of commercialization of the pyroprocess technology. The PRIDE evaluation data, such as performance evaluation data of equipment and operation experiences, will be directly utilized for the design of ESPF

  17. Rio Grande Erosion Potential Demonstration - Report for the National Border Technology Program; TOPICAL

    International Nuclear Information System (INIS)

    JEPSEN, RICHARD A.; ROBERTS, JESSE D.; LANGFORD, RICHARD; GAILANI, JOSEPH

    2001-01-01

    This demonstration project is a collaboration among DOE, Sandia National Laboratories, the University of Texas, El Paso (UTEP), the International Boundary and Water Commission (IBWC), and the US Army Corps of Engineers (USACE). Sandia deployed and demonstrated a field measurement technology that enables the determination of erosion and transport potential of sediments in the Rio Grande. The technology deployed was the Mobile High Shear Stress Flume. This unique device was developed by Sandia's Carlsbad Programs for the USACE and has been used extensively in collaborative efforts on near shore and river systems throughout the United States. Since surface water quantity and quality along with human health is an important part of the National Border Technology Program, technologies that aid in characterizing, managing, and protecting this valuable resource from possible contamination sources is imperative

  18. Testbed model and data assimilation for ARM

    International Nuclear Information System (INIS)

    Louis, J.F.

    1992-01-01

    The objectives of this contract are to further develop and test the ALFA (AER Local Forecast and Assimilation) model originally designed at AER for local weather prediction and apply it to three distinct but related purposes in connection with the Atmospheric Radiation Measurement (ARM) program: (a) to provide a testbed that simulates a global climate model in order to facilitate the development and testing of new cloud parametrizations and radiation models; (b) to assimilate the ARM data continuously at the scale of a climate model, using the adjoint method, thus providing the initial conditions and verification data for testing parameumtions; (c) to study the sensitivity of a radiation scheme to cloud parameters, again using the adjoint method, thus demonstrating the usefulness of the testbed model. The data assimilation will use a variational technique that minimizes the difference between the model results and the observation during the analysis period. The adjoint model is used to compute the gradient of a measure of the model errors with respect to nudging terms that are added to the equations to force the model output closer to the data. The radiation scheme that will be included in the basic ALFA model makes use of a gen two-stream approximation, and is designed for vertically inhonogeneous, multiple-scattering atmospheres. The sensitivity of this model to the definition of cloud parameters will be studied. The adjoint technique will also be used to compute the sensitivities. This project is designed to provide the Science Team members with the appropriate tools and modeling environment for proper testing and tuning of new radiation models and cloud parametrization schemes

  19. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    International Nuclear Information System (INIS)

    Dr. Ronald C. Surdam

    1999-01-01

    This project will provide a full demonstration of an entirely new package of exploration technologies that will result in the discovery and development of significant new gas reserves now trapped in unconventional low-permeability reservoirs. This demonstration includes the field application of these technologies, prospect definition and well siting, and a test of this new strategy through wildcat drilling. In addition this project includes a demonstration of a new stimulation technology that will improve completion success in these unconventional low permeability reservoirs which are sensitive to drilling and completion damage. The work includes two test wells to be drilled by Snyder Oil Company on the Shoshone/Arapahoe Tribal Lands in the Wind River Basin. This basin is a foreland basin whose petroleum systems include Paleozoic and Cretaceous source beds and reservoirs which were buried, folded by Laramide compressional folding, and subsequently uplifted asymmetrically. The anomalous pressure boundary is also asymmetric, following differential uplift trends

  20. Managing Risk on a Technology Development Project/Advanced Mirror System Demonstrator

    Science.gov (United States)

    Byberg, Alicia; Russell, J. Kevin; Stahl, Phil (Technical Monitor)

    2002-01-01

    The risk management study applied to the Advanced Mirror System Demonstrator (AMSD), a precursor mirror technology development for the Next Generation Space Telescope (NGST) is documented. The AMSD will be developed as a segment of a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. The technology gained from the program will support the risk mitigation strategy for the NGST, as well as other government agency space mirror programs.

  1. Overview: Solar Electric Propulsion Concept Designs for SEP Technology Demonstration Mission

    Science.gov (United States)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David; Herman, Daniel

    2014-01-01

    JPC presentation of the Concept designs for NASA Solar Electric Propulsion Technology Demonstration mission paper. Multiple Solar Electric Propulsion Technology Demonstration Missions were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kg spacecraft capable of delivering 4000 kg of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kg spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload.

  2. JOYO modification program for demonstration tests of FBR innovative technology development

    International Nuclear Information System (INIS)

    Yoshimi, H.; Hachiya, Y.

    1990-01-01

    A plan is under way at PNC to modify the experimental fast reactor JOYO. The project is called MARK-III (MK-III) program. The purpose of MK-III is to expand the function of JOYO, and to make it possible to receive demonstration tests of new or high level technologies for FBR development. The MK-III program consists of two main modifications: conversion to a highly efficient irradiation facility; and a modification for demonstration testing of new technologies and concepts that have a high potential to reduce FBR plant construction cost, to evaluate plant reliability and to improve plant safety. These modifications are scheduled to start in 1991

  3. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  4. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    International Nuclear Information System (INIS)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-01-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of approximately minus8 m (minus27 ft.), following a predetermined drill path, tracking the drill path to within a radius of approximately1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of ∼ -21 m (-70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned

  5. Airspace Technology Demonstration 2 (ATD-2): ATD-2 CLT Pilot Community Engagement

    Science.gov (United States)

    Capps, Al; Hooey, Becky

    2017-01-01

    The Airspace Technology Demonstration 2 (ATD-2) project conducted a pilot community workshop at Charlotte Douglas International Airport (CLT) in Charlotte, North Carolina. The goal was to familiarize pilots with the ATD-2 project, with an emphasis on procedures that may affect pilots during the Phase 1 Field Demonstration (beginning September 30, 2017). At this workshop, the high-level goals and objectives of ATD-2, expected benefits for pilots, changes to procedures, training requirements, and data sharing elements were presented.

  6. Mixed Waste Focus Area alternative oxidation technologies development and demonstration program

    International Nuclear Information System (INIS)

    Borduin, L.C.; Fewell, T.; Gombert, D.; Priebe, S.

    1998-01-01

    The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. The impetus for this support derives from regulatory and political hurdles frequently encountered by traditional thermal techniques, primarily incinerators. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. Whether thermal or nonthermal, the processes have the potential advantages of relatively low-volume gaseous emissions, generation of few or no dioxin/furan compounds, and operation at low enough temperatures that metals (except mercury) and most radionuclides are not volatilized. Technology development and demonstration are needed to confirm and realize the potential of AOTs and to compare them on an equal basis with their fully demonstrated thermal counterparts. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site, and direct chemical oxidation at Lawrence Livermore National Laboratory. All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory, and team reforming, a commercial process being supported by Department of Energy. Related technologies include two low-flow, secondary oxidation processes (Phoenix and Thermatrix units) that have been tested at MSE, Inc., in Butte, Montana. Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each

  7. Advancing the US Department of Energy's Technologies through the Underground Storage Tank: Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Gates, T.E.

    1993-01-01

    The principal objective of the Underground Storage Tank -- Integrated Demonstration Program is the demonstration and continued development of technologies suitable for the remediation of waste stored in underground storage tanks. The Underground Storage Tank Integrated Demonstration Program is the most complex of the integrated demonstration programs established under the management of the Office of Technology Development. The Program has the following five participating sites: Oak Ridge, Idaho, Fernald, Savannah River, and Hanford. Activities included within the Underground Storage Tank -- Integrated Demonstration are (1) characterizating radioactive and hazardous waste constituents, (2) determining the need and methodology for improving the stability of the waste form, (3) determining the performance requirements, (4) demonstrating barrier performance by instrumented field tests, natural analog studies, and modeling, (5) determining the need and method for destroying and stabilizing hazardous waste constituents, (6) developing and evaluating methods for retrieving, processing (pretreatment and treatment), and storing the waste on an interim basis, and (7) defining and evaluating waste packages, transportation options, and ultimate closure techniques including site restoration. The eventual objective is the transfer of new technologies as a system to full-scale remediation at the US Department of Energy complexes and sites in the private sector

  8. Milliken Clean Coal Technology Demonstration Project. Environmental monitoring report, July--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    New York State Electric and Gas Corporation (NYSEG) has installed and is presently operating a high-efficiency flue gas desulfurization (FGD) system to demonstrate innovative emissions control technology and comply with the Clean Air Act Amendments of 1990. The host facility for this demonstration project is NYSEG`s Milliken Station, in the Town of Lansing, New York. The primary objective of this project is to demonstrate a retrofit of energy-efficient SO{sub 2} and NO{sub x} control systems with minimal impact on overall plant efficiency. The demonstration project has added a forced oxidation, formic acid-enhanced wet limestone FGD system, which is expected to reduce SO{sub 2} emissions by at least 90 percent. NYSEG also made combustion modifications to each boiler and plans to demonstrate selective non-catalytic reduction (SNCR) technology on unit 1, which will reduce NO{sub x} emissions. Goals of the proposed demonstration include up to 98 percent SO{sub 2} removal efficiency while burning high-sulfur coal, 30 percent NO{sub x} reductions through combustion modifications, additional NO{sub x} reductions using SNCR technology, production of marketable commercial-grade gypsum and calcium chloride by-products to minimize solid waste disposal, and zero wastewater discharge.

  9. Wave energy technology. Strategy for research, development and demonstration 2012; Boelgekraftteknologi. Strategi for forskning, udvikling og demonstration 2012

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, K.; Krogh, J.; Kofoed, J.P. [Aalborg Univ., Aalborg (Denmark); Jensen, N.E.H. [Energinet.dk, Fredericia (Denmark); Friis-Madsen, E. [Boelgekraftforeningen, Hurup (Denmark); Mikkelsen, B.V. [Hanstholm Havneforum (Denmark); Jensen, A. [DanWEC, Thisted (Denmark)

    2012-06-15

    The vision for Danish development of wave energy technology is that Danish industrial and commercial firms gain skills for marketing of competitive wave energy technologies in both the Danish and the international market. Utilization of wave power is a prerequisite for that there in the future can be built offshore energy parks at greater sea depths. The development of wave energy technology should from 2030 at the latest provide the opportunity for cost-effective, sustainable electricity from offshore energy parks in Denmark. This strategy contains a detailed development plan and overview of the investment required to achieve the expected technological development. The objective to produce 1500 GWh / year at a reduced price of 0.10 DKK / kWh compared to pure offshore wind power will require a public investment of approx. 1.5 billion DKK over the next 20 years. This investment will, at the reduced electricity production cost alone, be paid back in 10 years. (LN)

  10. SITE demonstration of the Dynaphore/Forager Sponge technology to remove dissolved metals from contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, C.R. [Environmental Protection Agency, Edison, NJ (United States); Vaccaro, G. [Science Applications International Corp., Hackensack, NJ (United States)

    1995-10-01

    A Superfund Innovative Technology Evaluation (SITE) demonstration was conducted of the Dynaphore/Forager Sponge technology during the week of April 3, 1994 at the N.L. Industries Superfund Site in Pedricktown, New Jersey. The Forager Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that selectively absorbs dissolved heavy metals in both cationic and anionic states. This technology is a volume reduction technology in which heavy metal contaminants from an aqueous medium are concentrated into a smaller volume for facilitated disposal. The developer states that the technology can be used to remove heavy metals from a wide variety of aqueous media, such as groundwater, surface waters and process waters. The sponge matrix can be directly disposed, or regenerated with chemical solutions. For this demonstration the sponge was set up as a mobile pump-and-treat system which treated groundwater contaminated with heavy metals. The demonstration focused on the system`s ability to remove lead, cadmium, chromium and copper from the contaminated groundwater over a continuous 72-hour test. The removal of heavy metals proceeded in the presence of significantly higher concentrations of innocuous cations such as calcium, magnesium, sodium, potassium and aluminum.

  11. 75 FR 60091 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2010-09-29

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of the Army, Army Research, Development and... project; correction. SUMMARY: On September 9, 2010 (75 FR 55199), DoD published a notice concerning the...

  12. 76 FR 67154 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Program

    Science.gov (United States)

    2011-10-31

    ... to eight legacy Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration (demo) Project Plans resulting from section 1107(c) of the National Defense Authorization Act... flexibilities, modifying demo project plans, or executing Federal Register Notices has identified some areas for...

  13. Project A+, Elementary Technology Demonstration Schools, 1991-92: The Second Year.

    Science.gov (United States)

    Nichols, Todd; Frazer, Linda

    The Elementary Technology Demonstration Schools program, where four elementary schools were equipped with computer hardware and software, was made possible by grants from IBM and Apple, Inc. The goals of the program were, in 3 years, to reduce by 50% the number of students not in their age appropriate grade level and those students not achieving…

  14. Elementary Technology Demonstration Schools: The Third Year 1992-93. Publication Number 92.31.

    Science.gov (United States)

    Sabatino, Melissa

    The 1992-93 school year was the third year of the Elementary Technology Demonstration Schools program of the Austin (Texas) schools; the project is funded by International Business Machines Corporation (IBM) and Apple Computer Inc. Grants from these corporations were used to equip three elementary schools with IBM equipment and one with Apple…

  15. Solar Power System Options for the Radiation and Technology Demonstration Spacecraft

    Science.gov (United States)

    Kerslake, Thomas W.; Haraburda, Francis M.; Riehl, John P.

    2000-01-01

    The Radiation and Technology Demonstration (RTD) Mission has the primary objective of demonstrating high-power (10 kilowatts) electric thruster technologies in Earth orbit. This paper discusses the conceptual design of the RTD spacecraft photovoltaic (PV) power system and mission performance analyses. These power system studies assessed multiple options for PV arrays, battery technologies and bus voltage levels. To quantify performance attributes of these power system options, a dedicated Fortran code was developed to predict power system performance and estimate system mass. The low-thrust mission trajectory was analyzed and important Earth orbital environments were modeled. Baseline power system design options are recommended on the basis of performance, mass and risk/complexity. Important findings from parametric studies are discussed and the resulting impacts to the spacecraft design and cost.

  16. LTE-Advanced/WLAN testbed

    OpenAIRE

    Plaisner, Denis

    2017-01-01

    Táto práca sa zaoberá skúmaním a vyhodnocovaním komunikácie štandardov LTE-Advance a WiFi (IEEE 802.11n/ac). Pri jednotlivých štandardoch je preskúmaný chybový parameter EVM. Pre prácu s jednotlivými štandardmi je navrhnuté univerzálne pracovisko (testbed). Toto univerzálne pracovisko slúži na nastavovanie vysielacieho a prijímacieho zariadenia a na spracovávanie prenášaných signálov a ich vyhodnocovanie. Pre túto prácu je vybrané prostredie Matlab, cez ktoré sa ovládajú použité prístroje ako...

  17. FY94 Office of Technology Development Mixed Waste Operations Robotics Demonstration

    International Nuclear Information System (INIS)

    Kriikku, E.M.

    1994-01-01

    The Department of Energy (DOE) Office of Technology Development (OTD) develops technologies to help solve waste management and environmental problems at DOE sites. The OTD includes the Robotics Technology Development Program (RTDP) and the Mixed Waste Integrated Program (MWIP). Together these programs will provide technologies for DOE mixed waste cleanup projects. Mixed waste contains both radioactive and hazardous constituents. DOE sites currently store over 240,000 cubic meters of low level mixed waste and cleanup activities will generate several hundred thousand more cubic meters. Federal and state regulations require that this waste must be processed before final disposal. The OTD RTDP Mixed Waste Operations (MWO) team held several robotic demonstrations at the Savannah River Site (SRS) during November of 1993. Over 330 representatives from DOE, Government Contractors, industry, and universities attended. The MWO team includes: Fernald Environmental Management Project (FEMP), Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Engineering Laboratory (ORNL), Sandia National Laboratory (SNL), and Savannah River Technology Center (SRTC). SRTC is the lead site for MWO and provides the technical coordinator. The primary demonstration objective was to show that robotic technologies can make DOE waste facilities run better, faster, more cost effective, and safer. To meet the primary objective, the demonstrations successfully showed the following remote waste drum processing activities: non-destructive drum examination, drum transportation, drum opening, removing waste from a drum, characterize and sort waste items, scarify metal waste, and inspect stored drums. To further meet the primary objective, the demonstrations successfully showed the following remote waste box processing activities: swing free crane control, workcell modeling, and torch standoff control

  18. Accelerating Innovation that Enhances Resource Recovery in the Wastewater Sector: Advancing a National Testbed Network.

    Science.gov (United States)

    Mihelcic, James R; Ren, Zhiyong Jason; Cornejo, Pablo K; Fisher, Aaron; Simon, A J; Snyder, Seth W; Zhang, Qiong; Rosso, Diego; Huggins, Tyler M; Cooper, William; Moeller, Jeff; Rose, Bob; Schottel, Brandi L; Turgeon, Jason

    2017-07-18

    This Feature examines significant challenges and opportunities to spur innovation and accelerate adoption of reliable technologies that enhance integrated resource recovery in the wastewater sector through the creation of a national testbed network. The network is a virtual entity that connects appropriate physical testing facilities, and other components needed for a testbed network, with researchers, investors, technology providers, utilities, regulators, and other stakeholders to accelerate the adoption of innovative technologies and processes that are needed for the water resource recovery facility of the future. Here we summarize and extract key issues and developments, to provide a strategy for the wastewater sector to accelerate a path forward that leads to new sustainable water infrastructures.

  19. Using the ISS as a testbed to prepare for the next generation of space-based telescopes

    Science.gov (United States)

    Postman, Marc; Sparks, William B.; Liu, Fengchuan; Ess, Kim; Green, Joseph; Carpenter, Kenneth G.; Thronson, Harley; Goullioud, Renaud

    2012-09-01

    The infrastructure available on the ISS provides a unique opportunity to develop the technologies necessary to assemble large space telescopes. Assembling telescopes in space is a game-changing approach to space astronomy. Using the ISS as a testbed enables a concentration of resources on reducing the technical risks associated with integrating the technologies, such as laser metrology and wavefront sensing and control (WFS&C), with the robotic assembly of major components including very light-weight primary and secondary mirrors and the alignment of the optical elements to a diffraction-limited optical system in space. The capability to assemble the optical system and remove and replace components via the existing ISS robotic systems such as the Special Purpose Dexterous Manipulator (SPDM), or by the ISS Flight Crew, allows for future experimentation as well as repair if necessary. In 2015, first light will be obtained by the Optical Testbed and Integration on ISS eXperiment (OpTIIX), a small 1.5-meter optical telescope assembled on the ISS. The primary objectives of OpTIIX include demonstrating telescope assembly technologies and end-to-end optical system technologies that will advance future large optical telescopes.

  20. The Clean Coal Technology Program 100 MWe demonstration of gas suspension absorption for flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.E.; Hedenhag, J.G. [AirPol Inc., Teterboro, NJ (United States); Marchant, S.K.; Pukanic, G.W. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Norwood, V.M.; Burnett, T.A. [Tennessee Valley Authority, Chattanooga, TN (United States)

    1997-12-31

    AirPol Inc., with the cooperation of the Tennessee Valley Authority (TVA) under a Cooperative Agreement with the United States Department of Energy, installed and tested a 10 MWe Gas Suspension Absorption (GSA) Demonstration system at TVA`s Shawnee Fossil Plant near Paducah, Kentucky. This low-cost retrofit project demonstrated that the GSA system can remove more than 90% of the sulfur dioxide from high-sulfur coal-fired flue gas, while achieving a relatively high utilization of reagent lime. This paper presents a detailed technical description of the Clean Coal Technology demonstration project. Test results and data analysis from the preliminary testing, factorial tests, air toxics texts, 28-day continuous demonstration run of GSA/electrostatic precipitator (ESP), and 14-day continuous demonstration run of GSA/pulse jet baghouse (PJBH) are also discussed within this paper.

  1. A 100 kW-Class Technology Demonstrator for Space Solar Power

    Science.gov (United States)

    Carrington, Connie; Howell, Joe; Day, Greg

    2004-01-01

    A first step in the development of solar power from space is the flight demonstration of critical technologies. These fundamental technologies include efficient solar power collection and generation, power management and distribution, and thermal management. In addition, the integration and utilization of these technologies into a viable satellite bus could provide an energy-rich platform for a portfolio of payload experiments such as wireless power transmission (WPT). This paper presents the preliminary design of a concept for a 100 kW-class fiee-flying platform suitable for flight demonstration of technology experiments. Recent space solar power (SSP) studies by NASA have taken a stepping stones approach that lead to the gigawatt systems necessary to cost-effectively deliver power from space. These steps start with a 100 kW-class satellite, leading to a 500 kW and then a 1 MW-class platform. Later steps develop a 100 M W bus that could eventually lead to a 1-2 GW pilot plant for SSP. Our studies have shown that a modular approach is cost effective. Modular designs include individual laser-power-beaming satellites that fly in constellations or that are autonomously assembled into larger structures at geosynchronous orbit (GEO). Microwave power-beamed approaches are also modularized into large numbers of identical units of solar arrays, power converters, or supporting structures for arrays and microwave transmitting antennas. A cost-effective approach to launching these modular units is to use existing Earth-to-orbit (ETO) launch systems, in which the modules are dropped into low Earth orbit (LEO) and then the modules perform their own orbit transfer to GEO using expendable solar arrays to power solar electric thrusters. At GEO, the modules either rendezvous and are assembled robotically into larger platforms, or are deployed into constellations of identical laser power-beaming satellites. Since solar electric propulsion by the modules is cost-effective for both

  2. A MIMO-OFDM Testbed for Wireless Local Area Networks

    Directory of Open Access Journals (Sweden)

    Conrat Jean-Marc

    2006-01-01

    Full Text Available We describe the design steps and final implementation of a MIMO OFDM prototype platform developed to enhance the performance of wireless LAN standards such as HiperLAN/2 and 802.11, using multiple transmit and multiple receive antennas. We first describe the channel measurement campaign used to characterize the indoor operational propagation environment, and analyze the influence of the channel on code design through a ray-tracing channel simulator. We also comment on some antenna and RF issues which are of importance for the final realization of the testbed. Multiple coding, decoding, and channel estimation strategies are discussed and their respective performance-complexity trade-offs are evaluated over the realistic channel obtained from the propagation studies. Finally, we present the design methodology, including cross-validation of the Matlab, C++, and VHDL components, and the final demonstrator architecture. We highlight the increased measured performance of the MIMO testbed over the single-antenna system.

  3. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    Science.gov (United States)

    Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott

    2012-01-01

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  4. Development and demonstration of treatment technologies for the processing of US Department of Energy mixed waste

    International Nuclear Information System (INIS)

    Berry, J.B.; Bloom, G.A.; Kuchynka, D.J.

    1994-01-01

    Mixed waste is defined as waste contaminated with chemically hazardous (governed by the Resource Conservation and Recovery Act) and radioactive species [governed by US Department of Energy (DOE) orders]. The Mixed Waste Integrated Program (MWIP) is responding to the need for DOE mixed waste treatment technologies that meet these dual regulatory requirements. MWIP is developing emerging and innovative treatment technologies to determine process feasibility. Technology demonstrations will be used to determine whether processes are superior to existing technologies in reducing risk, minimizing life-cycle cost, and improving process performance. The Program also provides a forum for stakeholder and customer involvement in the technology development process. MWIP is composed of six technical areas that support a mixed-waste treatment system: (1) systems analysis, (2) materials handling, (3) chemical/physical separation, (4) waste destruction and stabilization, (5) off-gas treatment, and (6) final waste form stabilization. The status of the technical initiatives and the current research, development, and demonstration in each of these areas is described in this paper

  5. The Living With a Star Program Space Environment Testbed

    Science.gov (United States)

    Barth, Janet; Day, John H. (Technical Monitor)

    2001-01-01

    This viewgraph presentation describes the objective, approach, and scope of the Living With a Star (LWS) program at the Marshall Space Flight Center. Scientists involved in the project seek to refine the understanding of space weather and the role of solar variability in terrestrial climate change. Research and the development of improved analytic methods have led to increased predictive capabilities and the improvement of environment specification models. Specifically, the Space Environment Testbed (SET) project of LWS is responsible for the implementation of improved engineering approaches to observing solar effects on climate change. This responsibility includes technology development, ground test protocol development, and the development of a technology application model/engineering tool.

  6. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  7. DOE's Innovative Treatment Remediation Demonstration Program accelerating the implementation of innovative technologies

    International Nuclear Information System (INIS)

    Hightower, M.

    1995-01-01

    A program to help accelerate the adoption and implementation of new and innovative remediation technologies has been initiated by the Department of Energy's (DOE) Environmental Restoration Program Office (EM40). Developed as a Public-Private Partnership program in cooperation with the US Environmental Protection Agency's (EPA) Technology Innovation Office (TIO) and coordinated by Sandia National Laboratories, the Innovative Treatment Remediation Demonstration (ITRD) Program attempts to reduce many of the classic barriers to the use of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. In this program, DOE facilities work cooperatively with EPA, industry, national laboratories, and state and federal regulatory agencies to establish remediation demonstrations using applicable innovative technologies at their sites. Selected innovative technologies are used to remediate small, one to two acre, sites to generate the full-scale and real-world operating, treatment performance, and cost data needed to validate these technologies and gain acceptance by industry and regulatory agencies, thus accelerating their use nationwide. Each ITRD project developed at a DOE site is designed to address a typical soil or groundwater contamination issue facing both DOE and industry. This includes sites with volatile organic compound (VOC), semi-VOC, heavy metal, explosive residue, and complex or multiple constituent contamination. Projects are presently underway at three DOE facilities, while additional projects are under consideration for initiation in FY96 at several additional DOE sites. A brief overview of the ITRD Program, program plans, and the status and progress of existing ITRD projects are reviewed in this paper

  8. Australian pyrolysis technology leads the world in demonstrating renewable energy production and biosequestration

    International Nuclear Information System (INIS)

    Downie, Adriana; Crosky, Alan; Munroe, Paul; Zwieten, Lukas Van; Cowie, Annette; Chan, Yin; Kimber, Stephen

    2007-01-01

    Full text: Australian-developed slow pyrolysis technology is leading the world in carbon negative (removing C02 from the atmosphere) renewable energy production. The collaborative research, development and commercialisation program between BEST Energies and the NSW Department of Primary Industries (DPI) was awarded the United Nations Association of Australia 2007 World Environment Day Awards top honour for 'Meeting the Greenhouse Challenge'. 'BEST Energies' Australian developed pyrolysis technology is a genuinely innovative project with huge potential to reduce greenhouse gas emissions' according to the UN World Environment Day Awards Judging Panel. The technology has been recognised as a vital tool for climate change mitigation because it not only produces a renewable energy to displace the use of fossil fuel, but it also produces a very stable form of solid carbon which can be beneficially sequestered over the long term in soils. The technology involves heating low grade biomass without oxygen to generate a gaseous biofuel and a very stable, carbon-rich, char product. BEST Energies has a fully integrated pilot plant which has demonstrated the viability of the technology and assisted the design of commercial scale units. It is accepted that immediate action is required to reverse the adverse impacts on atmospheric C02 levels resulting from industrial processes. The logical next step for this technology is immediate industry adoption and large-scale roll out. Preliminary life cycle assessments have demonstrated that pyrolysis technology will deliver significant reductions in atmospheric C02 at a global scale in a relatively short time frame. Prof. Johannes Lehmann from Cornell University estimates that by the end of this century, char schemes and pyrolysis programs could store up to 9.5 billion tons of carbon a year. Once the high carbon char product is added as an amendment to agricultural soils some of the most remarkable and promising benefits of this technology

  9. Wireless Sensor Networks TestBed: ASNTbed

    CSIR Research Space (South Africa)

    Dludla, AG

    2013-05-01

    Full Text Available Wireless sensor networks (WSNs) have been used in different types of applications and deployed within various environments. Simulation tools are essential for studying WSNs, especially for exploring large-scale networks. However, WSN testbeds...

  10. AMS San Diego Testbed - Calibration Data

    Data.gov (United States)

    Department of Transportation — The data in this repository were collected from the San Diego, California testbed, namely, I-15 from the interchange with SR-78 in the north to the interchange with...

  11. Versatile Electric Propulsion Aircraft Testbed, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An all-electric aircraft testbed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  12. Development of demonstration facility design technology for advanced nuclear fuel cycle process

    International Nuclear Information System (INIS)

    Cho, Il Je; You, G. S.; Choung, W. M.; Lee, E. P.; Hong, D. H.; Lee, W. K.; Ku, J. H.; Moon, S. I.; Kwon, K. C.; Lee, K. I. and other

    2012-04-01

    PRIDE Facility, pyroprocess mock-up facility, is the first facility that is operated in inert atmosphere in the country. By using the facility, the functional requirements and validity of pyroprocess technology and facility related to the advanced fuel cycle can be verified with a low cost. Then, PRIDE will contribute to evaluate the technology viability, proliferation resistance and possibility of commercialization of the pyroprocess technology. It is essential to develop design technologies for the advanced nuclear fuel cycle demonstration facilities and complete the detailed design of PRIDE facility with capabilities of the stringent inert atmosphere control, fully remote operation which are necessary to develop the high-temperature molten salts technology. For these, it is necessary to design the essential equipment of large scale inert cell structure and the control system to maintain the inert atmosphere, and evaluate the safety. To construct the hot cell system which is appropriate for pyroprocess, some design technologies should be developed, which include safety evaluation for effective operation and maintenance, radiation safety analysis for hot cell, structural analysis, environmental evaluation, HVAC systems and electric equipment

  13. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    Energy Technology Data Exchange (ETDEWEB)

    Donley, Tim [Cooper Tire & Rubber Company Incorporated, Findlay, OH (United States)

    2014-12-31

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  14. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds

    Science.gov (United States)

    Frank, Jared A.; Brill, Anthony; Kapila, Vikram

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464

  15. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds

    Directory of Open Access Journals (Sweden)

    Jared A. Frank

    2016-08-01

    Full Text Available Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.

  16. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds.

    Science.gov (United States)

    Frank, Jared A; Brill, Anthony; Kapila, Vikram

    2016-08-20

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.

  17. Expedited technology demonstration project. Project baseline revision 2.2 and FY96 plan

    International Nuclear Information System (INIS)

    1996-07-01

    The Expedited Technology Demonstration Project Plan, Mixed Waste Management Facility (MWMF) current baseline. The revised plan will focus efforts specifically on the demonstration of an integrated Molten Salt Oxidation (MSO) system. In addition to the MSO primary unit, offgas, and salt recycle subsystems, the demonstrations will include feed preparation and feed delivery systems, and the generation of robust final forms from process mineral residues. A simplified process flow chart for the expedited demonstration is provided. To minimize costs and to accelerate the schedule for deployment, the integrated system will be staged in an existing facility at LLNL equipped to handle hazardous and radioactive materials. The MSO systems will be activated in fiscal year 97, followed by the activation of feed preparation and final forms in fiscal year 98

  18. A design study for a medium-scale field demonstration of the viscous barrier technology

    International Nuclear Information System (INIS)

    Moridis, G.; Yen, P.; Persoff, P.; Finsterle, S.; Williams, P.; Myer, L.; Pruess, K.

    1996-09-01

    This report is the design study for a medium-scale field demonstration of Lawrence Berkeley National Laboratory's new subsurface containment technology for waste isolation using a new generation of barrier liquids. The test site is located in central California in a quarry owned by the Los Banos Gravel Company in Los Banos, California, in heterogeneous unsaturated deposits of sand, silt, and -ravel typical of many of the and DOE cleanup sites and particularly analogous to the Hanford site. The coals of the field demonstration are (a) to demonstrate the ability to create a continuous subsurface barrier isolating a medium-scale volume (30 ft long by 30 ft wide by 20 ft deep, i.e. 1/10th to 1/8th the size of a buried tank at the Hanford Reservation) in the subsurface, and (b) to demonstrate the continuity, performance, and integrity of the barrier

  19. Implementation of standard testbeds for numerical relativity

    Energy Technology Data Exchange (ETDEWEB)

    Babiuc, M C [Department of Physics and Physical Science, Marshall University, Huntington, WV 25755 (United States); Husa, S [Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Alic, D [Department of Physics, University of the Balearic Islands, Cra Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Hinder, I [Center for Gravitational Wave Physics, Pennsylvania State University, University Park, PA 16802 (United States); Lechner, C [Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Mohrenstrasse 39, 10117 Berlin (Germany); Schnetter, E [Center for Computation and Technology, 216 Johnston Hall, Louisiana State University, Baton Rouge, LA 70803 (United States); Szilagyi, B; Dorband, N; Pollney, D; Winicour, J [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Am Muehlenberg 1, 14076 Golm (Germany); Zlochower, Y [Center for Computational Relativity and Gravitation, School of Mathematical Sciences, Rochester Institute of Technology, 78 Lomb Memorial Drive, Rochester, New York 14623 (United States)

    2008-06-21

    We discuss results that have been obtained from the implementation of the initial round of testbeds for numerical relativity which was proposed in the first paper of the Apples with Apples Alliance. We present benchmark results for various codes which provide templates for analyzing the testbeds and to draw conclusions about various features of the codes. This allows us to sharpen the initial test specifications, design a new test and add theoretical insight.

  20. NASA Systems Autonomy Demonstration Project - Development of Space Station automation technology

    Science.gov (United States)

    Bull, John S.; Brown, Richard; Friedland, Peter; Wong, Carla M.; Bates, William

    1987-01-01

    A 1984 Congressional expansion of the 1958 National Aeronautics and Space Act mandated that NASA conduct programs, as part of the Space Station program, which will yield the U.S. material benefits, particularly in the areas of advanced automation and robotics systems. Demonstration programs are scheduled for automated systems such as the thermal control, expert system coordination of Station subsystems, and automation of multiple subsystems. The programs focus the R&D efforts and provide a gateway for transfer of technology to industry. The NASA Office of Aeronautics and Space Technology is responsible for directing, funding and evaluating the Systems Autonomy Demonstration Project, which will include simulated interactions between novice personnel and astronauts and several automated, expert subsystems to explore the effectiveness of the man-machine interface being developed. Features and progress on the TEXSYS prototype thermal control system expert system are outlined.

  1. Public demonstration projects and field trials: Accelerating commercialisation of sustainable technology in solar photovoltaics

    International Nuclear Information System (INIS)

    Brown, James; Hendry, Chris

    2009-01-01

    The paper considers the role of government funded demonstration projects and field trials (DTs) in accelerating the commercialisation of new energy technologies that meet a public good but do not have immediate market appeal [Sagar, A.D., van der Zwaan, B., 2006. Technological innovation in the energy sector: R and D, deployment, and learning-by-doing. Energy Policy 34, 2601-2608]. Drawing on an original database of DTs in the EU, Japan and USA from 1973 to 2004, we review the history of DTs in photovoltaic technology for electricity generation, and its subsequent take up as a commercial energy source. We find that DTs that are aimed purely at discovering suitable market opportunities are less successful in achieving diffusion than projects that target a particular application and concentrate resources on it. The former nevertheless have a vital role to play in the learning process, while a targeted focus is often dependent on national industrial and institutional factors.

  2. Development and demonstration of treatment technologies for the processing of US Department of Energy Mixed Waste

    International Nuclear Information System (INIS)

    Bloom, G.A.; Berry, J.B.

    1994-01-01

    Mixed waste is defined as ''waste contaminated with chemically hazardous and radioactive species.'' The Mixed Waste Integrated Program (MWIP) was established in response to the need for a unified, DOE complexwide solution to issues of mixed waste treatment that meets regulatory requirements. MWIP is developing treatment technologies that reduce risk, minimize life-cycle cost, and improve process performance as compared to existing technologies. Treatment for waste streams for which no current technology exists, and suitable waste forms for disposal, will be provided to improve operations of the DOE Office of Waste Management. MWIP is composed of six technical areas within a mixed-waste treatment system: (1) systems analysis, (2) materials handling, (3) chemical/physical separation, (4) waste destruction and stabilization, (5) off-gas treatment, and (6) final waste form stabilization. The status of the technical initiatives and the current research, development, and demonstration in each of these areas are described in this paper

  3. Demonstration test on decontamination of contaminated pool water using liquid-solid settling technology with flocculants

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Adachi, Toshihiro; Watanabe, Noriyuki; Tagawa, Akihiro; Hosobuchi, Shigeki; Takanashi, Junko

    2013-01-01

    For the purpose of supplying agricultural water, a stationary purification system for contaminated water had been developed on the basis of the liquid-solid settling technology using flocculants. Two kinds of flocculants had been developed on the basis of preliminary tests: one that compounds iron ferrocyanide and the other that does not. With the use of this system and flocculants, a demonstration test was conducted to apply the decontamination technology on contaminated water in two swimming pools in an elementary school located at Motomiya City, Fukushima Prefecture, Japan. It is proved from the results that both the developed purification system and the flocculants can be established as a practicable decontamination technology for contaminated water: the treatment rate was 10 m 3 /hour and the elimination factor of radioactive materials was higher than 99%. (author)

  4. A sanitation technology demonstration centre to enhance decision making in South Africa

    CSIR Research Space (South Africa)

    Duncker, Louiza C

    2013-07-01

    Full Text Available International Conference, Nakuru, Kenya, 2013 DELIVERING WATER, SANITATION AND HYGIENE SERVICES IN AN UNCERTAIN ENVIRONMENT A sanitation technology demonstration centre to enhance decision making in South Africa L.C. Duncker, South Africa... for Water Services in South Africa (SFWS) defines basic sanitation services as the provision of a basic sanitation facility, the sustainable operation of this facility and the communication of good sanitation, hygiene and related practices. However...

  5. Demonstration of Plasma Arc Environmental Technology Applications for the Demilitarization of DOD Stockpiles

    Science.gov (United States)

    Smith, Ed; Zaghloul, Hany; Filius, Krag; Rivers, Tim

    2000-01-01

    Since 1989 the U.S. Army Construction Engineering Research Laboratories (USACERL) have been active participants in the research and development toward establishing Plasma Arc Technology (PAT) as an efficient, economical, and safe hazardous waste immobilization tool. A plasma torch capable of generating high temperatures makes this technology a viable and powerful tool for the thermal destruction of various military industrial waste streams into an innocuous ceramic material no longer requiring hazardous waste landfill (Class 1) disposal. The emerging pl asma environmental thermal treatment process, has been used to safely and efficiently meet the waste disposal needs for various demilitarized components disposal needs, such as: pyrotechnic smoke assemblies, thermal batteries, proximity fuses, cartridge actuated devices (CAD's), and propellant actuated devices (PAD's). MSE Technology Applications, Inc., (MSE) has proposed and fabricated a Mobile Plasma Treatment System to be a technology demonstrator for pilot-scale mobile plasma waste processing. The system is capable of providing small-scale waste remediation services, and conducting waste stream applicability demonstrations. The Mobile Plasma Treatment System's innovative concept provides the flexibility to treat waste streams at numerous sites and sites with only a limited quantity of waste, yet too hazardous to transport to a regional fixed facility. The system was designed to be operated as skid mounted modules; consisting of a furnace module, controls module, offgas module, and ancillary systems module. All system components have been integrated to be operated from a single control station with both semi-continuous feeding and batch slag-pouring capability.

  6. Demonstration of Plasma Arc Environmental Technology Applications for the Demilitrization of DOD Stockpiles

    Science.gov (United States)

    Smith, Ed; Dee, P. E.; Zaghloul, Hany; Filius, Krag; Rivers, Tim

    2000-01-01

    Since 1989 the US Army Construction Engineering Research Laboratories (USACERL) have been active participants in the research and development towards establishing Plasma Arc Technology (PAT) as an efficient, economical, and safe hazardous waste immobilization tool. A plasma torch capable of generating high temperatures makes this technology a viable and powerful tool for the thermal destruction of various military industrial waste streams into an innocuous ceramic material no longer requiring hazardous waste landfill disposal. The emerging plasma environmental thermal treatment process has been used to safely and efficiently meet the waste disposal needs for various demilitarized components disposal needs, such as: (1) pyrotechnic smoke assemblies, (2) thermal batteries, (3) proximity fuses, (4) cartridge actuated devices (CADs), and (5) propellant actuated devices (PADs). MSE Technology Applications, Inc., (MSE) has proposed and fabricated a Mobile Plasma Treatment System to be a technology demonstrator for pilotscale mobile plasma waste processing. The system is capable of providing small-scale waste remediation services, and conducting waste stream applicability demonstrations. The Mobile Plasma Treatment System's innovative concept provides the flexibility to treat waste streams at numerous sites and sites with only a limited quantity of waste, yet too hazardous to transport to a regional fixed facility. The system was designed to be operated as skid mounted modules; consisting of a furnace module, controls module, offgas module, and ancillary systems module. All system components have been integrated to be operated from a single control station with both semi-continuous feeding and batch slag-pouring capability.

  7. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  8. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    Science.gov (United States)

    Young, Roy M.; Adams, Charles L.

    2010-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.

  9. Optical testbed for the LISA phasemeter

    International Nuclear Information System (INIS)

    Schwarze, T S; Fernández Barranco, G; Penkert, D; Gerberding, O; Heinzel, G; Danzmann, K

    2016-01-01

    The planned spaceborne gravitational wave detector LISA will allow the detection of gravitational waves at frequencies between 0.1 mHz and 1 Hz. A breadboard model for the metrology system aka the phasemeter was developed in the scope of an ESA technology development project by a collaboration between the Albert Einstein Institute, the Technical University of Denmark and the Danish industry partner Axcon Aps. It in particular provides the electronic readout of the main interferometer phases besides auxiliary functions. These include clock noise transfer, ADC pilot tone correction, inter-satellite ranging and data transfer. Besides in LISA, the phasemeter can also be applied in future satellite geodesy missions. Here we show the planning and advances in the implementation of an optical testbed for the full metrology chain. It is based on an ultra-stable hexagonal optical bench. This bench allows the generation of three unequal heterodyne beatnotes with a zero phase combination, thus providing the possibility to probe the phase readout for non-linearities in an optical three signal test. Additionally, the utilization of three independent phasemeters will allow the testing of the auxiliary functions. Once working, components can individually be replaced with flight-qualified hardware in this setup. (paper)

  10. Termite: Emulation Testbed for Encounter Networks

    Directory of Open Access Journals (Sweden)

    Rodrigo Bruno

    2015-08-01

    Full Text Available Cutting-edge mobile devices like smartphones and tablets are equipped with various infrastructureless wireless interfaces, such as WiFi Direct and Bluetooth. Such technologies allow for novel mobile applications that take advantage of casual encounters between co-located users. However, the need to mimic the behavior of real-world encounter networks makes testing and debugging of such applications hard tasks. We present Termite, an emulation testbed for encounter networks. Our system allows developers to run their applications on a virtual encounter network emulated by software. Developers can model arbitrary encounter networks and specify user interactions on the emulated virtual devices. To facilitate testing and debugging, developers can place breakpoints, inspect the runtime state of virtual nodes, and run experiments in a stepwise fashion. Termite defines its own Petri Net variant to model the dynamically changing topology and synthesize user interactions with virtual devices. The system is designed to efficiently multiplex an underlying emulation hosting infrastructure across multiple developers, and to support heterogeneous mobile platforms. Our current system implementation supports virtual Android devices communicating over WiFi Direct networks and runs on top of a local cloud infrastructure. We evaluated our system using emulator network traces, and found that Termite is expressive and performs well.

  11. Optical testbed for the LISA phasemeter

    Science.gov (United States)

    Schwarze, T. S.; Fernández Barranco, G.; Penkert, D.; Gerberding, O.; Heinzel, G.; Danzmann, K.

    2016-05-01

    The planned spaceborne gravitational wave detector LISA will allow the detection of gravitational waves at frequencies between 0.1 mHz and 1 Hz. A breadboard model for the metrology system aka the phasemeter was developed in the scope of an ESA technology development project by a collaboration between the Albert Einstein Institute, the Technical University of Denmark and the Danish industry partner Axcon Aps. It in particular provides the electronic readout of the main interferometer phases besides auxiliary functions. These include clock noise transfer, ADC pilot tone correction, inter-satellite ranging and data transfer. Besides in LISA, the phasemeter can also be applied in future satellite geodesy missions. Here we show the planning and advances in the implementation of an optical testbed for the full metrology chain. It is based on an ultra-stable hexagonal optical bench. This bench allows the generation of three unequal heterodyne beatnotes with a zero phase combination, thus providing the possibility to probe the phase readout for non-linearities in an optical three signal test. Additionally, the utilization of three independent phasemeters will allow the testing of the auxiliary functions. Once working, components can individually be replaced with flight-qualified hardware in this setup.

  12. Technology summary of the in situ bioremediation demonstration (methane biostimulation) via horizontal wells at the Savannah River Site Integrated Demonstration Project

    International Nuclear Information System (INIS)

    Hazen, T.C.; Looney, B.B.; Fliermans, C.B.; Eddy-Dilek, C.A.; Lombard, K.H.; Enzien, M.V.; Dougherty, J.M.; Wear, J.

    1994-01-01

    The US Department of Energy, Office of Technology Development, has been sponsoring full-scale environmental restoration technology demonstrations for the past 4 years. The Savannah River Site Integrated Demonstration focuses on ''Clean-up of Soils ad Groundwater Contaminated with Chlorinated VOCs.'' Several laboratories including our own had demonstrated the ability of methanotrophic bacteria to completely degrade or mineralize chlorinated solvents, and these bacteria were naturally found in soil and aquifer material. Thus the test consisted of injection of methane mixed with air into the contaminated aquifer via a horizontal well and extraction from the vadose zone via a parallel horizontal well

  13. Airspace Technology Demonstration 3 (ATD-3): Dynamic Weather Routes (DWR) Technology Transfer Document Summary Version 1.0

    Science.gov (United States)

    Sheth, Kapil; Wang, Easter Mayan Chan

    2016-01-01

    Airspace Technology Demonstration #3 (ATD-3) is part of NASA's Airspace Operations and Safety Program (AOSP) - specifically, its Airspace Technology Demonstrations (ATD) Project. ATD-3 is a multiyear research and development effort which proposes to develop and demonstrate automation technologies and operating concepts that enable air navigation service providers and airspace users to continuously assess weather, winds, traffic, and other information to identify, evaluate, and implement workable opportunities for flight plan route corrections that can result in significant flight time and fuel savings in en route airspace. In order to ensure that the products of this tech-transfer are relevant and useful, NASA has created strong partnerships with the FAA and key industry stakeholders. This summary document and accompanying technology artifacts satisfy the first of three Research Transition Products (RTPs) defined in the Applied Traffic Flow Management (ATFM) Research Transition Team (RTT) Plan. This transfer consists of NASA's legacy Dynamic Weather Routes (DWR) work for efficient routing for en-route weather avoidance. DWR is a ground-based trajectory automation system that continuously and automatically analyzes active airborne aircraft in en route airspace to identify opportunities for simple corrections to flight plan routes that can save significant flying time, at least five minutes wind-corrected, while avoiding weather and considering traffic conflicts, airspace sector congestion, special use airspace, and FAA routing restrictions. The key benefit of the DWR concept is to let automation continuously and automatically analyze active flights to find those where simple route corrections can save significant time and fuel. Operators are busy during weather events. It is more effective to let automation find the opportunities for high-value route corrections.

  14. A Demonstrator Analog Signal Processing Circuit in a Radiation Hard SOI-CMOS Technology

    CERN Multimedia

    2002-01-01

    % RD-9 A Demonstrator Analog Signal Processing Circuit in a Radiation Hard SOI-CMOS Technology \\\\ \\\\Radiation hardened SOI-CMOS (Silicon-On-Insulator, Complementary Metal-Oxide- \\linebreak Semiconductor planar microelectronic circuit technology) was a likely candidate technology for mixed analog-digital signal processing electronics in experiments at the future high luminosity hadron colliders. We have studied the analog characteristics of circuit designs realized in the Thomson TCS radiation hard technologies HSOI3-HD. The feature size of this technology was 1.2 $\\mu$m. We have irradiated several devices up to 25~Mrad and 3.10$^{14}$ neutrons cm$^{-2}$. Gain, noise characteristics and speed have been measured. Irradiation introduces a degradation which in the interesting bandwidth of 0.01~MHz~-~1~MHz is less than 40\\%. \\\\ \\\\Some specific SOI phenomena have been studied in detail, like the influence on the noise spectrum of series resistence in the thin silicon film that constitutes the body of the transistor...

  15. Good Practice Policy Framework for Energy Technology Research Development and Demonstration (RD and D)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The transition to a low carbon economy clearly requires accelerating energy innovation and technology adoption. Governments have an important role in this context. They can help by establishing the enabling environment in which innovation can thrive, and within which effective and efficient policies can be identified, with the specific goal of advancing research, development, demonstration and, ultimately, deployment (RDD&D) of clean energy technologies. At the front end of the innovation process, significant increases in, and restructuring of, global RD&D efforts will be required, combined with well-targeted government RD&D policies. The development of a clear policy framework for energy technology RD&D, based on good practices, should include six elements: Coherent energy RD&D strategy and priorities; Adequate government RD&D funding and policy support; Co-ordinated energy RD&D governance; Strong collaborative approach, engaging industry through public private partnerships (PPPs); Effective RD&D monitoring and evaluation; and Strategic international collaboration. While countries have been favouring certain technologies over others, based on decisions on which areas are to receive funding, clear priorities are not always determined through structured analysis and documented processes. A review of stated energy RD&D priorities, based on announced technology programmes and strategies, and recent spending trends reveals some important deviations from stated priorities and actual RD&D funding.

  16. Design and demonstration of an intracortical probe technology with tunable modulus.

    Science.gov (United States)

    Simon, Dustin M; Charkhkar, Hamid; St John, Conan; Rajendran, Sakthi; Kang, Tong; Reit, Radu; Arreaga-Salas, David; McHail, Daniel G; Knaack, Gretchen L; Sloan, Andrew; Grasse, Dane; Dumas, Theodore C; Rennaker, Robert L; Pancrazio, Joseph J; Voit, Walter E

    2017-01-01

    Intracortical probe technology, consisting of arrays of microelectrodes, offers a means of recording the bioelectrical activity from neural tissue. A major limitation of existing intracortical probe technology pertains to limited lifetime of 6 months to a year of recording after implantation. A major contributor to device failure is widely believed to be the interfacial mechanical mismatch of conventional stiff intracortical devices and the surrounding brain tissue. We describe the design, development, and demonstration of a novel functional intracortical probe technology that has a tunable Young's modulus from ∼2 GPa to ∼50 MPa. This technology leverages advances in dynamically softening materials, specifically thiol-ene/acrylate thermoset polymers, which exhibit minimal swelling of memory polymer-based multichannel intracortical probe can be fabricated, that the mechanical properties are stable for at least 2 months and that the device is capable of single unit recordings for durations up to 77 days in vivo. This novel technology, which is amenable to processes suitable for manufacturing via standard semiconductor fabrication techniques, offers the capability of softening in vivo to reduce the tissue-device modulus mismatch to ultimately improve long term viability of neural recordings. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 159-168, 2017. © 2016 Wiley Periodicals, Inc.

  17. Pilot demonstrations of arsenic treatment technologies in U.S. Department of Energy Arsenic Water Technology Partnership program.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Randy L.; Aragon, Alicia R.; Siegal Malcolm D.; Dwyer, Brian P.

    2005-01-01

    The Arsenic Water Technology Partnership program is a multi-year program funded by a congressional appropriation through the Department of Energy. The program is designed to move technologies from benchscale tests to field demonstrations. It will enable water utilities, particularly those serving small, rural communities and Indian tribes, to implement the most cost-effective solutions to their arsenic treatment needs. As part of the Arsenic Water Technology Partnership program, Sandia National Laboratories is carrying out field demonstration testing of innovative technologies that have the potential to substantially reduce the costs associated with arsenic removal from drinking water. The scope for this work includes: (1) Selection of sites and identification of technologies for pilot demonstrations; (2) Laboratory studies to develop rapid small-scale test methods; and (3) Pilot-scale studies at community sites involving side-by-side tests of innovative technologies. The goal of site selection is to identify sites that allow examination of treatment processes and systems under conditions that are relevant to different geochemical settings throughout the country. A number of candidate sites have been identified through reviews of groundwater quality databases, conference proceedings and discussions with state and local officials. These include sites in New Mexico, Arizona, Colorado, Oklahoma, Michigan, and California. Candidate technologies for the pilot tests are being reviewed through vendor forums, proof-of-principle benchscale studies managed by the American Water Works Association Research Foundation (AwwaRF) and the WERC design contest. The review considers as many potential technologies as possible and screens out unsuitable ones by considering data from past performance testing, expected costs, complexity of operation and maturity of the technology. The pilot test configurations will depend on the site-specific conditions such as access, power availability

  18. Evaluation of waste treatment technologies by LLWDDD [Low-Level Waste Disposal Development and Demonstration] Programs

    International Nuclear Information System (INIS)

    Kennerly, J.M.; Williams, L.C.; Dole, L.R.; Genung, R.K.

    1987-01-01

    Waste treatments are divided into four categories: (1) volume reduction; (2) conditioning to improve waste form performance; (3) segregation to achieve waste reduction; and (4) separation to remove radioactive (or hazardous) constituents. Two waste treatment demonstrations are described. In the first, volume reduction by mechanical means was achieved during the supercompaction of 300 55-gal drums of solid waste at ORNL. In the second demonstration, conditioning of waste through immobilization and packaging to improve the performance of the waste form is being evaluated. The final section of this paper describes potential scenarios for the management of uranium-contaminated wastes at the Y-12 Plant in Oak Ridge and emphasizes where demonstrations of treatment technology will be needed to implement the scenarios. Separation and thermal treatment are identified as the principal means for treating these wastes. 15 figs

  19. Space Technology Demonstrations Using Low Cost, Short-Schedule Airborne and Range Facilities at the Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Kelly, John; Jones, Dan; Lee, James

    2013-01-01

    There is a national effort to expedite advanced space technologies on new space systems for both government and commercial applications. In order to lower risk, these technologies should be demonstrated in a relevant environment before being installed in new space systems. This presentation introduces several low cost, short schedule space technology demonstrations using airborne and range facilities available at the Dryden Flight Research Center.

  20. Regulatory requirements of the integrated technology demonstration program, Savannah River Site (U)

    International Nuclear Information System (INIS)

    Bergren, C.L.

    1992-01-01

    The integrated demonstration program at the Savannah River Site (SRS) involves demonstration, testing and evaluation of new characterization, monitoring, drilling and remediation technologies for soils and groundwater impacted by organic solvent contamination. The regulatory success of the demonstration program has developed as a result of open communications between the regulators and the technical teams involved. This open dialogue is an attempt to allow timely completion of applied environmental restoration demonstrations while meeting all applicable regulatory requirements. Simultaneous processing of multiple regulatory documents (satisfying RCRA, CERCLA, NEPA and various state regulations) has streamlined the overall permitting process. Public involvement is achieved as various regulatory documents are advertised for public comment consistent with the site's community relations plan. The SRS integrated demonstration has been permitted and endorsed by regulatory agencies, including the Environmental Protection Agency (EPA) and the South Carolina Department of Health and Environmental Control. EPA headquarters and regional offices are involved in DOE's integrated Demonstration Program. This relationship allows for rapid regulatory acceptance while reducing federal funding and time requirements. (author)

  1. Conceptual Design and Cost Estimate of a Subsonic NASA Testbed Vehicle (NTV) for Aeronautics Research

    Science.gov (United States)

    Nickol, Craig L.; Frederic, Peter

    2013-01-01

    A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.

  2. Definition study for variable cycle engine testbed engine and associated test program

    Science.gov (United States)

    Vdoviak, J. W.

    1978-01-01

    The product/study double bypass variable cycle engine (VCE) was updated to incorporate recent improvements. The effect of these improvements on mission range and noise levels was determined. This engine design was then compared with current existing high-technology core engines in order to define a subscale testbed configuration that simulated many of the critical technology features of the product/study VCE. Detailed preliminary program plans were then developed for the design, fabrication, and static test of the selected testbed engine configuration. These plans included estimated costs and schedules for the detail design, fabrication and test of the testbed engine and the definition of a test program, test plan, schedule, instrumentation, and test stand requirements.

  3. Bench-scale demonstration of treatment technologies for contaminated sediments in Sydney Tar Ponds

    International Nuclear Information System (INIS)

    Volchek, K.; Velicogna, D.; Punt, M.; Wong, B.; Weimer, L.; Tsangaris, A.; Brown, C.E.

    2003-01-01

    A series of bench-scale tests were conducted to determine the capabilities of selected commercially available technologies for treating contaminated sediments from the South Pond of Sydney Tar Ponds. This study was conducted under the umbrella of a technology demonstration program aimed at evaluating technologies to be used in the remediation of such sediments. The following approach was proposed by SAIC Canada for the treatment of the sediments: (1) solvent extraction for the removal of organic contaminants, (2) acid/chelant leaching for the removal of inorganic contaminants such as heavy metals, and (3) plasma hearth process for the destruction of toxic streams resulting from the first two processes. Solvent extraction followed by plasma treatment proved effective for removing and destroying organic contaminants. The removal of metals did not achieve the expected results through leaching. An approach was proposed for treating those sediments based on the results of the study. The approach differed depending on the level of organic content. An assessment of associated process costs for both a pilot-scale field demonstration and a full-scale treatment was provided. 11 tabs., 4 figs

  4. Evaluation of Smart Grid Technologies Employed for System Reliability Improvement: Pacific Northwest Smart Grid Demonstration Experience

    Energy Technology Data Exchange (ETDEWEB)

    Agalgaonkar, Yashodhan P.; Hammerstrom, Donald J.

    2017-06-01

    The Pacific Northwest Smart Grid Demonstration (PNWSGD) was a smart grid technology performance evaluation project that included multiple U.S. states and cooperation from multiple electric utilities in the northwest region. One of the local objectives for the project was to achieve improved distribution system reliability. Toward this end, some PNWSGD utilities automated their distribution systems, including the application of fault detection, isolation, and restoration and advanced metering infrastructure. In light of this investment, a major challenge was to establish a correlation between implementation of these smart grid technologies and actual improvements of distribution system reliability. This paper proposes using Welch’s t-test to objectively determine and quantify whether distribution system reliability is improving over time. The proposed methodology is generic, and it can be implemented by any utility after calculation of the standard reliability indices. The effectiveness of the proposed hypothesis testing approach is demonstrated through comprehensive practical results. It is believed that wider adoption of the proposed approach can help utilities to evaluate a realistic long-term performance of smart grid technologies.

  5. Investigation of the feasibility of an international integrated demonstration: Joint demonstration of environmental cleanup technologies in Eastern Europe/former Soviet Union

    International Nuclear Information System (INIS)

    Hagood, M.C.; Stein, S.L.; Brouns, T.M.; McCabe, G.H.

    1993-01-01

    Eastern Europe (EE) and the former Soviet Union (FSU) republics have areas that are contaminated with radioactive and hazardous constituents. The Westinghouse Hanford Company is exploring the feasibility of establishing a collaborative effort with various US agencies to establish an International Integrated Demonstration (IID). Westinghouse manages the waste management and cleanup programs at the US Department of Energy's (DOE) Hanford Site. The purpose of the IID would be to (1) facilitate assistance to EE/FSU cleanup efforts, (2) provide hands-on management and operational assistance to EE/FSU countries, (3) provide a basis for evaluating opportunities for and establishing future collaborations, and (4) evaluate the applicability of US technologies to both US and EE/FSU cleanup efforts. The DOE's Integrated Demonstration Programs are currently providing the conduit for development and demonstration and transfer and deployment of innovative technologies to meet DOE's cleanup need for hazardous and radioactive wastes. The Integrated Demonstrations are focused on all facets of environmental restoration including characterization, remediation, monitoring, site closure, regulatory compliance, and regulatory and public acceptance. Innovative technologies are being tested and demonstrated at host sites across the country to provide the necessary performance data needed to deploy these technologies. The IID concept would be to conduct an Integrated Demonstration at one or more EE/FSU host sites

  6. Subproject plan for demonstration of 3M technology for treatment of N Basin water

    International Nuclear Information System (INIS)

    Plastino, J.C.

    1996-02-01

    A dissolved radionuclides removal demonstration is being conducted at the 105-N Basin as part of the 100-N Area Projects' policy of aggressively integrating innovative technologies to achieve more cost effective, faster, and/or safer deactivation operations. This subproject plan demonstrates new technology (marketed by the 3M trademark Company) that absorbs specific ions from water. The demonstration will take place at the spent fuel basin at the N Reactor facility. The 105-N Basin contains 1 million gal of water consisting of approximately 32 Ci of dissolved 90 Sr at a concentration of 8.4 uCi/L and 7.3 Ci of dissolved 137 Cs at a concentration of 1.92 uCi/L. The Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement [Ecology et al. 1990]) Milestone M-16-01E-T2 requires the initiation of pretreatment and removal of all N Reactor fuel storage basin waters by September 30, 1996, pursuant to the N Reactor Deactivation Program Plan (WHC 1993). 105-N Basin dewatering is on the critical path for overall deactivation of N Reactor by March 1997. The 105-N Basin Deactivation Program Plan (BHI 1995) includes removing debris, hardware, algae and sediment from the basin, followed by pretreatment (filtration) and removal of the 1005-N Basin water. Final water removal is currently scheduled for September 30, 1996. The recommended method of the 105-N Basin water is the treatment of the water at the Effluent Treatment Facility (ETF) in the 200 East Area. The demonstration of the 3M technology could be a feasible treatment alternative to the ETF if the ETF is not available to meet the project schedule or if additional pretreatment is needed to reduce the inventory of radioactive species to be handled at the ETF. Demonstration of this technology could be of value for other fuel basins at the Hanford Site and possibly other US Department of Energy (DOE) sites and non- DOE nuclear power plants

  7. Demonstration of robust micromachined jet technology and its application to realistic flow control problems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sung Pil [Inha University, Incheon (Korea, Republic of)

    2006-04-15

    This paper describes the demonstration of successful fabrication and initial characterization of micromachined pressure sensors and micromachined jets (microjets) fabricated for use in macro flow control and other applications. In this work, the microfabrication technology was investigated to create a micromachined fluidic control system with a goal of application in practical fluids problems, such as UAV (Unmanned Aerial Vehicle)-scale aerodynamic control. Approaches of this work include : (1) the development of suitable micromachined synthetic jets (microjets) as actuators, which obviate the need to physically extend micromachined structures into an external flow ; and (2) a non-silicon alternative micromachining fabrication technology based on metallic substrates and lamination (in addition to traditional MEMS technologies) which will allow the realization of larger scale, more robust structures and larger array active areas for fluidic systems. As an initial study, an array of MEMS pressure sensors and an array of MEMS modulators for orifice-based control of microjets have been fabricated, and characterized. Both pressure sensors and modulators have been built using stainless steel as a substrate and a combination of lamination and traditional micromachining processes as fabrication technologies.

  8. Two-Phase Flow Technology Developed and Demonstrated for the Vision for Exploration

    Science.gov (United States)

    Sankovic, John M.; McQuillen, John B.; Lekan, Jack F.

    2005-01-01

    NASA s vision for exploration will once again expand the bounds of human presence in the universe with planned missions to the Moon and Mars. To attain the numerous goals of this vision, NASA will need to develop technologies in several areas, including advanced power-generation and thermal-control systems for spacecraft and life support. The development of these systems will have to be demonstrated prior to implementation to ensure safe and reliable operation in reduced-gravity environments. The Two-Phase Flow Facility (T(PHI) FFy) Project will provide the path to these enabling technologies for critical multiphase fluid products. The safety and reliability of future systems will be enhanced by addressing focused microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability, all of which are essential to exploration technology. The project--a multiyear effort initiated in 2004--will include concept development, normal-gravity testing (laboratories), reduced gravity aircraft flight campaigns (NASA s KC-135 and C-9 aircraft), space-flight experimentation (International Space Station), and model development. This project will be implemented by a team from the NASA Glenn Research Center, QSS Group, Inc., ZIN Technologies, Inc., and the Extramural Strategic Research Team composed of experts from academia.

  9. Demonstration of robust micromachined jet technology and its application to realistic flow control problems

    International Nuclear Information System (INIS)

    Chang, Sung Pil

    2006-01-01

    This paper describes the demonstration of successful fabrication and initial characterization of micromachined pressure sensors and micromachined jets (microjets) fabricated for use in macro flow control and other applications. In this work, the microfabrication technology was investigated to create a micromachined fluidic control system with a goal of application in practical fluids problems, such as UAV (Unmanned Aerial Vehicle)-scale aerodynamic control. Approaches of this work include : (1) the development of suitable micromachined synthetic jets (microjets) as actuators, which obviate the need to physically extend micromachined structures into an external flow ; and (2) a non-silicon alternative micromachining fabrication technology based on metallic substrates and lamination (in addition to traditional MEMS technologies) which will allow the realization of larger scale, more robust structures and larger array active areas for fluidic systems. As an initial study, an array of MEMS pressure sensors and an array of MEMS modulators for orifice-based control of microjets have been fabricated, and characterized. Both pressure sensors and modulators have been built using stainless steel as a substrate and a combination of lamination and traditional micromachining processes as fabrication technologies

  10. A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, Katya [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hallbert, Bruce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thomas, Kenneth [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.

  11. A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies

    International Nuclear Information System (INIS)

    Le Blanc, Katya; Boring, Ronald; Joe, Jeffrey; Hallbert, Bruce; Thomas, Kenneth

    2014-01-01

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energy's Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.

  12. DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Tom Hrdlicka; William Swanson

    2005-12-01

    The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

  13. Continued maturing of SOFC cell production technology and development and demonstration of SOFC stacks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2008-08-15

    The overall objective of the 6385 project was to develop stack materials, components and stack technology including industrial relevant manufacturing methods for cells components and stacks. Furthermore, the project should include testing and demonstration of the stacks under relevant operating conditions. A production of 6.829 cells, twenty 75-cell stacks and a number of small stacks was achieved. Major improvements were also made in the manufacturing methods and in stack design. Two test and demonstration activities were included in the project. The first test unit was established at H.C. OErsted power plant at the Copenhagen waterfront in order to perform test of SOFC stacks. The unit will be used for tests in other projects. The second demonstration unit is the alpha prototype demonstration in a system running on natural gas in Finland. The alpha prototype demonstration system with 24 TOFC (Topsoe Fuel Cell) stacks was established and started running in October 2007 and operational experience was gained in the period from October 2007 to February 2008. (auther)

  14. DEMONSTRATION BULLETIN: PCP IMMUNOASSAY TECHNOLOGIES - PENTA RISC BY ENSYS INC., PENTA RAPID BY OHMICRON CORP., ENVIROGARD BY MILLIPORE

    Science.gov (United States)

    The objectives of this demonstration were to test these field screening technologies for accuracy and precision in detecting Pentachlorophenol (PCP) levels in soil and water by comparing their results with those of a confirmatory laboratory. The three immunoassay technologies ...

  15. Critical joints in large composite primary aircraft structures. Volume 2: Technology demonstration test report

    Science.gov (United States)

    Bunin, Bruce L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints in composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of four large composite multirow bolted joint tests are presented. The tests were conducted to demonstrate the technology for critical joints in highly loaded composite structure and to verify the analytical methods that were developed throughout the program. The test consisted of a wing skin-stringer transition specimen representing a stringer runout and skin splice on the wing lower surface at the side of the fuselage attachment. All tests were static tension tests. The composite material was Toray T-300 fiber with Ciba-Geigy 914 resin in 10 mil tape form. The splice members were metallic, using combinations of aluminum and titanium. Discussions are given of the test article, instrumentation, test setup, test procedures, and test results for each of the four specimens. Some of the analytical predictions are also included.

  16. Waste management technology development and demonstration programs at Brookhaven National Laboratory

    Science.gov (United States)

    Kalb, Paul D.; Colombo, Peter

    1991-01-01

    Two thermoplastic processes for improved treatment of radioactive, hazardous, and mixed wastes were developed from bench scale through technology demonstration: polyethylene encapsulation and modified sulfur cement encapsulation. The steps required to bring technologies from the research and development stage through full scale implementation are described. Both systems result in durable waste forms that meet current Nuclear Regulatory Commission and Environmental Protection Agency regulatory criteria and provide significant improvements over conventional solidification systems such as hydraulic cement. For example, the polyethylene process can encapsulate up to 70 wt pct. nitrate salt, compared with a maximum of about 20 wt pct. for the best hydraulic cement formulation. Modified sulfur cement waste forms containing as much as 43 wt pct. incinerator fly ash were formulated, whereas the maximum quantity of this waste in hydraulic cement is 16 wt pct.

  17. Lunar base mission technology issues and orbital demonstration requirements on space station

    Science.gov (United States)

    Llewellyn, Charles P.; Weidman, Deene J.

    1992-01-01

    The International Space Station has been the object of considerable design, redesign, and alteration since it was originally proposed in early 1984. In the intervening years the station has slowly evolved to a specific design that was thoroughly reviewed by a large agency-wide Critical Evaluation Task Force (CETF). As space station designs continue to evolve, studies must be conducted to determine the suitability of the current design for some of the primary purposes for which the station will be used. This paper concentrates on the technology requirements and issues, the on-orbit demonstration and verification program, and the space station focused support required prior to the establishment of a permanently manned lunar base as identified in the National Commission on Space report. Technology issues associated with the on-orbit assembly and processing of the lunar vehicle flight elements are also discussed.

  18. The IPRP (Integrated Pyrolysis Regenerated Plant) technology: From concept to demonstration

    International Nuclear Information System (INIS)

    D’Alessandro, Bruno; D’Amico, Michele; Desideri, Umberto; Fantozzi, Francesco

    2013-01-01

    Highlights: ► IPRP technology development for distributed conversion of biomass and wastes. ► IPRP demonstrative unit combines a rotary kiln pyrolyzer to a 80 kWe microturbine. ► Main performances and critical issues are pointed out for different residual fuels. -- Abstract: The concept of integrated pyrolysis regenerated plant (IPRP) is based on a Gas Turbine (GT) fuelled by pyrogas produced in a rotary kiln slow pyrolysis reactor, where waste heat from GT is used to sustain the pyrolysis process. The IPRP plant provides a unique solution for microscale (below 250 kW) power plants, opening a new and competitive possibility for distributed biomass or wastes to energy conversion systems. The paper summarizes the state of art of the IPRP technology, from preliminary numerical simulation to pilot plant facility, including some new available data on pyrolysis gas from laboratory and pilot plants.

  19. Fixed capital investments for the uranium soils integrated demonstration soil treatment technologies

    Energy Technology Data Exchange (ETDEWEB)

    Douthat, D.M.; Armstrong, A.Q. [Oak Ridge National Lab., TN (United States); Stewart, R.N. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-05-01

    The development of a nuclear industry in the United States required mining, milling, and fabricating a large variety of uranium products. One of these products was purified uranium metal which was used in the Savannah River and Hanford Site reactors. Most of this feed material was produced at the United States Department of Energy (DOE) facility formerly called the Feed Materials Production Center at Fernald, Ohio. During operation of this facility, soils became contaminated with uranium from a variety of sources. To address remediation and management of uranium-contaminated soils at sites owned by DOE, the Uranium Soils Integrated Demonstration (USID) Program was formed to evaluate and compare the versatility, efficiency, and economics of various technologies that may be combined into systems designed to characterize and remediate uranium contaminated soils. The USID Program has five major tasks in developing and demonstrating these technologies. Each must be able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from soil, (3) treat or dispose of resulting waste streams, (4) meet necessary state and federal regulations, and (5) meet performance assessment objectives. The role of the performance assessment objectives is to provide the information necessary to conduct evaluations of the technologies. These performance assessments provide the basis for selecting the optimum system for remediation of large areas contaminated with uranium. One of the performance assessment tasks is to address the economics of full-scale implementation of soil treatment technologies developed by the USID Program. The cost of treating contaminated soil is one of the criteria used in the decision-making process for selecting remedial alternatives.

  20. Fixed capital investments for the uranium soils integrated demonstration soil treatment technologies

    International Nuclear Information System (INIS)

    Douthat, D.M.; Armstrong, A.Q.; Stewart, R.N.

    1995-05-01

    The development of a nuclear industry in the United States required mining, milling, and fabricating a large variety of uranium products. One of these products was purified uranium metal which was used in the Savannah River and Hanford Site reactors. Most of this feed material was produced at the United States Department of Energy (DOE) facility formerly called the Feed Materials Production Center at Fernald, Ohio. During operation of this facility, soils became contaminated with uranium from a variety of sources. To address remediation and management of uranium-contaminated soils at sites owned by DOE, the Uranium Soils Integrated Demonstration (USID) Program was formed to evaluate and compare the versatility, efficiency, and economics of various technologies that may be combined into systems designed to characterize and remediate uranium contaminated soils. The USID Program has five major tasks in developing and demonstrating these technologies. Each must be able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from soil, (3) treat or dispose of resulting waste streams, (4) meet necessary state and federal regulations, and (5) meet performance assessment objectives. The role of the performance assessment objectives is to provide the information necessary to conduct evaluations of the technologies. These performance assessments provide the basis for selecting the optimum system for remediation of large areas contaminated with uranium. One of the performance assessment tasks is to address the economics of full-scale implementation of soil treatment technologies developed by the USID Program. The cost of treating contaminated soil is one of the criteria used in the decision-making process for selecting remedial alternatives

  1. Flight demonstration of new thruster and green propellant technology on the PRISMA satellite

    Science.gov (United States)

    Anflo, K.; Möllerberg, R.

    2009-11-01

    The concept of a storable liquid monopropellant blend for space applications based on ammonium dinitramide (ADN) was invented in 1997, within a co-operation between the Swedish Space Corporation (SSC) and the Swedish Defense Research Agency (FOI). The objective was to develop a propellant which has higher performance and is safer than hydrazine. The work has been performed under contract from the Swedish National Space Board and ESA. The progress of the development has been presented in several papers since 2000. ECAPS, a subsidiary of the Swedish Space Corporation was established in 2000 with the aim to develop and market the novel "high performance green propellant" (HPGP) technology for space applications. The new technology is based on several innovations and patents w.r.t. propellant formulation and thruster design, including a high temperature resistant catalyst and thrust chamber. The first flight demonstration of the HPGP propulsion system will be performed on PRISMA. PRISMA is an international technology demonstration program with Swedish Space Corporation as the Prime Contractor. This paper describes the performance, characteristics, design and verification of the HPGP propulsion system for PRISMA. Compatibility issues related to using a new propellant with COTS components is also discussed. The PRISMA mission includes two satellites in LEO orbit were the focus is on rendezvous and formation flying. One of the satellites will act as a "target" and the main spacecraft performs rendezvous and formation flying maneuvers, where the ECAPS HPGP propulsion system will provide delta-V capability. The PRISMA CDR was held in January 2007. Integration of the flight propulsion system is about to be finalized. The flight opportunity on PRISMA represents a unique opportunity to demonstrate the HPGP propulsion system in space, and thus take a significant step towards its use in future space applications. The launch of PRISMA scheduled to 2009.

  2. Conceptual capital-cost estimate and facility design of the Mirror-Fusion Technology Demonstration Facility

    International Nuclear Information System (INIS)

    1982-09-01

    This report contains contributions by Bechtel Group, Inc. to Lawrence Livermore National Laboratory (LLNL) for the final report on the conceptual design of the Mirror Fusion Technology Demonstration Facility (TDF). Included in this report are the following contributions: (1) conceptual capital cost estimate, (2) structural design, and (3) plot plan and plant arrangement drawings. The conceptual capital cost estimate is prepared in a format suitable for inclusion as a section in the TDF final report. The structural design and drawings are prepared as partial inputs to the TDF final report section on facilities design, which is being prepared by the FEDC

  3. Static Aeroelastic Deformation Effects in Preliminary Wind-tunnel Tests of Silent Supersonic Technology Demonstrator

    OpenAIRE

    Makino, Yoshikazu; Ohira, Keisuke; Makimoto, Takuya; Mitomo, Toshiteru; 牧野, 好和; 大平, 啓介; 牧本, 卓也; 三友, 俊輝

    2011-01-01

    Effects of static aeroelastic deformation of a wind-tunnel test model on the aerodynamic characteristics are discussed in wind-tunnel tests in the preliminary design phase of the silent supersonic technology demonstrator (S3TD). The static aeroelastic deformation of the main wing is estimated for JAXA 2m x 2m transonic wind-tunnel and 1m x 1m supersonic wind-tunnel by a finite element method (FEM) structural analysis in which its structural model is tuned with the model deformation calibratio...

  4. LONG-TERM DEMONSTRATION OF SORBENT ENHANCEMENT ADDITIVE TECHNOLOGY FOR MERCURY CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Jason D. Laumb; Dennis L. Laudal; Grant E. Dunham; John P. Kay; Christopher L. Martin; Jeffrey S. Thompson; Nicholas B. Lentz; Alexander Azenkeng; Kevin C. Galbreath; Lucinda L. Hamre

    2011-05-27

    Long-term demonstration tests of advanced sorbent enhancement additive (SEA) technologies have been completed at five coal-fired power plants. The targeted removal rate was 90% from baseline conditions at all five stations. The plants included Hawthorn Unit 5, Mill Creek Unit 4, San Miguel Unit 1, Centralia Unit 2, and Hoot Lake Unit 2. The materials tested included powdered activated carbon, treated carbon, scrubber additives, and SEAs. In only one case (San Miguel) was >90% removal not attainable. The reemission of mercury from the scrubber at this facility prevented >90% capture.

  5. Application and demonstration of oxyfuel combustion technologies to the existing power plant in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Terutoshi; Yamada, Toshihiko; Watanabe, Shuzo; Kiga, Takashi; Gotou, Takahiro [IHI Corporation, Tokyo (Japan). Power Plant Div.; Misawa, Nobuhiro [Electric Power Development Co., Ltd., Tokyo (Japan); Spero, Chris [CS Energy Ltd, Brisbane (Australia)

    2013-07-01

    Oxyfuel combustion is able to directly make the highly concentrated CO{sub 2} from the flue gas of pulverized coal fired power plant and, therefore, is expected as one of the promising technologies for CO{sub 2} capture. We are advancing the Oxyfuel combustion demonstration project, which is called Callide Oxyfuel Project, with the support of both Australian and Japanese governments. Currently the boiler retrofit work is completed and the commissioning in air combustion is going on. In this paper, we introduce the general outline of the Callide Oxyfuel Project and its progress.

  6. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    International Nuclear Information System (INIS)

    Herbst, A.K.

    2000-01-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state

  7. Hanford Waste Vitrification Plant technical background document for best available radionuclide control technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, A.B.; Skone, S.S.; Rodenhizer, D.G.; Marusich, M.V. (Ebasco Services, Inc., Bellevue, WA (USA))

    1990-10-01

    This report provides the background documentation to support applications for approval to construct and operate new radionuclide emission sources at the Hanford Waste Vitrification Plant (HWVP) near Richland, Washington. The HWVP is required to obtain permits under federal and state statutes for atmospheric discharges of radionuclides. Since these permits must be issued prior to construction of the facility, draft permit applications are being prepared, as well as documentation to support these permits. This report addresses the applicable requirements and demonstrates that the preferred design meets energy, environmental, and economic criteria for Best Available Radionuclide Control Technology (BARCT) at HWVP. 22 refs., 11 figs., 25 tabs.

  8. Hanford Waste Vitrification Plant technical background document for best available radionuclide control technology demonstration

    International Nuclear Information System (INIS)

    Carpenter, A.B.; Skone, S.S.; Rodenhizer, D.G.; Marusich, M.V.

    1990-10-01

    This report provides the background documentation to support applications for approval to construct and operate new radionuclide emission sources at the Hanford Waste Vitrification Plant (HWVP) near Richland, Washington. The HWVP is required to obtain permits under federal and state statutes for atmospheric discharges of radionuclides. Since these permits must be issued prior to construction of the facility, draft permit applications are being prepared, as well as documentation to support these permits. This report addresses the applicable requirements and demonstrates that the preferred design meets energy, environmental, and economic criteria for Best Available Radionuclide Control Technology (BARCT) at HWVP. 22 refs., 11 figs., 25 tabs

  9. Definition of technology development missions for early space station satellite servicing, volume 1

    Science.gov (United States)

    1983-01-01

    The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.

  10. The DataTAG transatlantic testbed

    CERN Document Server

    Martin, O; Martin-Flatin, J P; Moroni, P; Nae, D; Newman, H; Ravot, S

    2005-01-01

    Wide area network testbeds allow researchers and engineers to test out new equipment, protocols and services in real-life situations, without jeopardizing the stability and reliability of production networks. The Data TransAtlantic Grid (DataTAG) testbed, deployed in 2002 between CERN, Geneva, Switzerland and StarLight, Chicago, IL, USA, is probably the largest testbed built to date. Jointly managed by CERN and Caltech, it is funded by the European Commission, the U.S. Department of Energy and the U.S. National Science Foundation. The main objectives of this testbed are to improve the Grid community's understanding of the networking issues posed by data- intensive Grid applications over transoceanic gigabit networks, design and develop new Grid middleware services, and improve the interoperability of European and U.S. Grid applications in High- Energy and Nuclear Physics. In this paper, we give an overview of this testbed, describe its various topologies over time, and summarize the main lessons learned after...

  11. Subsurface Planar Vitrification Treatment of Problematic TRU Wastes: Status of a Technology Demonstration Program

    International Nuclear Information System (INIS)

    Morse, M.K.; Nowack, B.R.; Thompson, L.E.

    2006-01-01

    This paper provides a status of the In Situ Transuranic Waste Delineation and Removal Project in which the GeoMelt R Subsurface Planar Vitrification TM (SPV TM ) process is being evaluated for the in situ treatment of burial sites containing remote handled mixed transuranic (TRU) waste. The GeoMelt R SPV TM process was invented and patented by Geosafe Corporation. AMEC holds the exclusive worldwide license to use this technology. The current project is part of a three-phase demonstration program to evaluate the effectiveness of the GeoMelt R SPV TM process to treat waste contained in vertical pipe units (VPUs) and caissons that were used for the disposal of remote handled transuranic wastes located at Hanford's 618-10 and 618-11 burial grounds. This project is being performed for the US Department of Energy (DOE) for use at the Hanford site and other DOE installations. The Phase I evaluation determined that removal and treatment of the 618-10/11 VPUs are beyond what can be safely accomplished using conventional excavation methods. Accordingly, a careful stepwise non-intrusive delineation approach and treatment using the GeoMelt R SPV TM technology, followed by removal, characterization, and disposal of the resulting inert vitrified mass was identified as the preferred alternative. Phase II of the project, which started in July 2004, included a full-scale non-radioactive demonstration of AMEC's GeoMelt R SPV TM process on a mock VPU configured to match the actual VPUs. The non-radioactive demonstration (completed in May 2005) was performed to confirm the approach and design before proceeding to a radioactive ('hot') demonstration on an actual VPU. This demonstration took approximately 130 hours, processed the entire mock VPU, and resulted in a vitrified monolith weighing an estimated 90 tonnes. [1] Plans for a radioactive demonstration on an actual VPU are being developed for CY 2006. In addition to demonstrating GeoMelt R SPV TM , delineation techniques are being

  12. Development of Liquid Propulsion Systems Testbed at MSFC

    Science.gov (United States)

    Alexander, Reginald; Nelson, Graham

    2016-01-01

    As NASA, the Department of Defense and the aerospace industry in general strive to develop capabilities to explore near-Earth, Cis-lunar and deep space, the need to create more cost effective techniques of propulsion system design, manufacturing and test is imperative in the current budget constrained environment. The physics of space exploration have not changed, but the manner in which systems are developed and certified needs to change if there is going to be any hope of designing and building the high performance liquid propulsion systems necessary to deliver crew and cargo to the further reaches of space. To further the objective of developing these systems, the Marshall Space Flight Center is currently in the process of formulating a Liquid Propulsion Systems testbed, which will enable rapid integration of components to be tested and assessed for performance in integrated systems. The manifestation of this testbed is a breadboard engine configuration (BBE) with facility support for consumables and/or other components as needed. The goal of the facility is to test NASA developed elements, but can be used to test articles developed by other government agencies, industry or academia. Joint government/private partnership is likely the approach that will be required to enable efficient propulsion system development. MSFC has recently tested its own additively manufactured liquid hydrogen pump, injector, and valves in a BBE hot firing. It is rapidly building toward testing the pump and a new CH4 injector in the BBE configuration to demonstrate a 22,000 lbf, pump-fed LO2/LCH4 engine for the Mars lander or in-space transportation. The value of having this BBE testbed is that as components are developed they may be easily integrated in the testbed and tested. MSFC is striving to enhance its liquid propulsion system development capability. Rapid design, analysis, build and test will be critical to fielding the next high thrust rocket engine. With the maturity of the

  13. Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical

  14. Deep Space Habitat Concept Demonstrator

    Science.gov (United States)

    Bookout, Paul S.; Smitherman, David

    2015-01-01

    This project will develop, integrate, test, and evaluate Habitation Systems that will be utilized as technology testbeds and will advance NASA's understanding of alternative deep space mission architectures, requirements, and operations concepts. Rapid prototyping and existing hardware will be utilized to develop full-scale habitat demonstrators. FY 2014 focused on the development of a large volume Space Launch System (SLS) class habitat (Skylab Gen 2) based on the SLS hydrogen tank components. Similar to the original Skylab, a tank section of the SLS rocket can be outfitted with a deep space habitat configuration and launched as a payload on an SLS rocket. This concept can be used to support extended stay at the Lunar Distant Retrograde Orbit to support the Asteroid Retrieval Mission and provide a habitat suitable for human missions to Mars.

  15. Optical Multi-Gas Monitor Technology Demonstration on the International Space Station

    Science.gov (United States)

    Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B,; Johnson, Michael D.; Mudgett, Paul D.

    2014-01-01

    There are a variety of both portable and fixed gas monitors onboard the International Space Station (ISS). Devices range from rack-mounted mass spectrometers to hand-held electrochemical sensors. An optical Multi-Gas Monitor has been developed as an ISS Technology Demonstration to evaluate long-term continuous measurement of 4 gases. Based on tunable diode laser spectroscopy, this technology offers unprecedented selectivity, concentration range, precision, and calibration stability. The monitor utilizes the combination of high performance laser absorption spectroscopy with a rugged optical path length enhancement cell that is nearly impossible to misalign. The enhancement cell serves simultaneously as the measurement sampling cell for multiple laser channels operating within a common measurement volume. Four laser diode based detection channels allow quantitative determination of ISS cabin concentrations of water vapor (humidity), carbon dioxide, ammonia and oxygen. Each channel utilizes a separate vertical cavity surface emitting laser (VCSEL) at a different wavelength. In addition to measuring major air constituents in their relevant ranges, the multiple gas monitor provides real time quantitative gaseous ammonia measurements between 5 and 20,000 parts-per-million (ppm). A small ventilation fan draws air with no pumps or valves into the enclosure in which analysis occurs. Power draw is only about 3 W from USB sources when installed in Nanoracks or when connected to 28V source from any EXPRESS rack interface. Internal battery power can run the sensor for over 20 hours during portable operation. The sensor is controlled digitally with an FPGA/microcontroller architecture that stores data internally while displaying running average measurements on an LCD screen and interfacing with the rack or laptop via USB. Design, construction and certification of the Multi-Gas Monitor were a joint effort between Vista Photonics, Nanoracks and NASA-Johnson Space Center (JSC

  16. Airspace Technology Demonstration 2 (ATD-2) Phase 1 Concept of Use (ConUse)

    Science.gov (United States)

    Jung, Yoon; Engelland, Shawn; Capps, Richard; Coppenbarger, Rich; Hooey, Becky; Sharma, Shivanjli; Stevens, Lindsay; Verma, Savita; Lohr, Gary; Chevalley, Eric; hide

    2018-01-01

    This document presents an operational Concept of Use (ConUse) for the Phase 1 Baseline Integrated Arrival, Departure, and Surface (IADS) prototype system of NASA's Airspace Technology Demonstration 2 (ATD-2) sub-project, which began demonstration in 2017 at Charlotte Douglas International Airport (CLT). NASA is developing the IADS system under the ATD-2 sub-project in coordination with the Federal Aviation Administration (FAA) and aviation industry partners. The primary goal of ATD-2 sub-project is to improve the predictability and the operational efficiency of the air traffic system in metroplex environments, through the enhancement, development, and integration of the nation's most advanced and sophisticated arrival, departure, and surface prediction, scheduling, and management systems. The ATD-2 effort is a five-year research activity through 2020. The initial phase of the ATD-2 sub-project, which is the focus of this document, will demonstrate the Phase 1 Baseline IADS capability at CLT in 2017. The Phase 1 Baseline IADS capabilities of the ATD-2 sub-project consists of: (a) Strategic and tactical surface scheduling to improve efficiency and predictability of airport surface operations, (b) Tactical departure scheduling to enhance merging of departures into overhead traffic streams via accurate predictions of takeoff times and automated coordination between the Airport Traffic Control Tower (ATCT, or Tower) and the Air Route Traffic Control Center (ARTCC, or Center), (c) Improvements in departure surface demand predictions in Time Based Flow Management (TBFM), (d) A prototype Electronic Flight Data (EFD) system provided by the FAA via the Terminal Flight Data Manager (TFDM) early implementation effort, and (e) Improved situational awareness and demand predictions through integration with the Traffic Flow Management System (TFMS), TBFM, and TFDM (3Ts) for electronic data integration and exchange, and an on-screen dashboard displaying pertinent analytics in real

  17. SCaN Testbed Software Development and Lessons Learned

    Science.gov (United States)

    Kacpura, Thomas J.; Varga, Denise M.

    2012-01-01

    National Aeronautics and Space Administration (NASA) has developed an on-orbit, adaptable, Software Defined Radio (SDR)Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The SCAN Testbed Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, SDR platforms and the STRS Architecture.The SDRs are a new technology for NASA, and the support infrastructure they require is different from legacy, fixed function radios. SDRs offer the ability to reconfigure on-orbit communications by changing software for new waveforms and operating systems to enable new capabilities or fix any anomalies, which was not a previous option. They are not stand alone devices, but required a new approach to effectively control them and flow data. This requires extensive software to be developed to utilize the full potential of these reconfigurable platforms. The paper focuses on development, integration and testing as related to the avionics processor system, and the software required to command, control, monitor, and interact with the SDRs, as well as the other communication payload elements. An extensive effort was required to develop the flight software and meet the NASA requirements for software quality and safety. The flight avionics must be radiation tolerant, and these processors have limited capability in comparison to terrestrial counterparts. A big challenge was that there are three SDRs onboard, and interfacing with multiple SDRs simultaneously complicatesd the effort. The effort also includes ground software, which is a key element for both the command of the payload, and displaying data created by the payload. The verification of

  18. D and D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms

    International Nuclear Information System (INIS)

    Lagos, L.; Shoffner, P.; Espinosa, E.; Pena, G.; Kirk, P.; Conley, T.

    2009-01-01

    The objective of the US Department of Energy Office of Environmental Management's (DOE-EM's) D and D Toolbox Project is to use an integrated systems approach to develop a suite of decontamination and decommissioning (D and D) technologies, a D and D toolbox, that can be readily used across the DOE complex to improve safety, reduce technical risks, and limit uncertainty within D and D operations. Florida International University's Applied Research Center (FIU-ARC) is supporting this initiative by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting technology demonstrations of selected technologies at FIU-ARC facilities in Miami, Florida. To meet the technology gap challenge for a technology to remotely apply strippable/fixative coatings, FIU-ARC identified and demonstrated of a remote fixative sprayer platform. During this process, FIU-ARC worked closely with the Oak Ridge National Laboratory in the selection of typical fixatives and in the design of a hot cell mockup facility for demonstrations at FIUARC. For this demonstration and for future demonstrations, FIU-ARC built a hot cell mockup facility at the FIU-ARC Technology Demonstration/Evaluation site in Miami, Florida. FIU-ARC selected the International Climbing Machines' (ICM's) Robotic Climber to perform this technology demonstration. The selected technology was demonstrated at the hot cell mockup facility at FIU-ARC during the week of November 10, 2008. Fixative products typically used inside hot cells were investigated and selected for this remote application. The fixatives tested included Sherwin Williams' Promar 200 and DTM paints and Bartlett's Polymeric Barrier System (PBS). The technology evaluation documented the ability of the remote system to spray fixative products on horizontal and vertical concrete surfaces. The technology performance, cost, and health and safety issues were evaluated

  19. Role of the CSIR/WRC Sanitation Technology Demonstration Centre in creating awareness, sharing information and in decision-making regarding sanitation technologies

    CSIR Research Space (South Africa)

    Mema, V

    2010-09-01

    Full Text Available The CSIR and the Water Research Commission (WRC) have envisioned a Sanitation Technology Demonstration Centre to provide a cutting-edge environment for bringing to light old and new, as well as promising sanitation technologies. The purpose...

  20. Transfer of adapted water supply technologies through a demonstration and teaching facility

    Science.gov (United States)

    Nestmann, F.; Oberle, P.; Ikhwan, M.; Stoffel, D.; Blaß, H. J.; Töws, D.; Schmidt, S.

    2016-09-01

    Water scarcity can be defined as a lack of sufficient water resources or as the limited or even missing access to a safe water supply. Latter can be classified as `economic water scarcity' which among others can commonly be met in tropical and subtropical karst regions of emerging and developing countries. Karst aquifers, mostly consisting of limestone and carbonate rock, show high infiltration rates which leads to a lack of above ground storage possibilities. Thus, the water will drain rapidly into the underground and evolve vast river networks. Considering the lack of appropriate infrastructure and limited human capacities in the affected areas, these underground water resources cannot be exploited adequately. Against this, background innovative and adapted technologies are required to utilize hard-to-access water resources in a sustainable way. In this context, the German-Indonesian joint R&D project "Integrated Water Resources Management (IWRM) Indonesia" dealt with the development of highly adaptable water technologies and management strategies. Under the aegis of the Karlsruhe Institute of Technology (KIT) and funded by the German Ministry of Education and Research (BMBF), these innovative technical concepts were exemplarily implemented to remedy this deficiency in the model region Gunung Sewu, a karst area situated on the southern coast of Java Island, Indonesia. The experiences gained through the interdisciplinary joint R&D activities clearly showed that even in the case of availability of appropriate technologies, a comprising transfer of knowhow and the buildup of capabilities (Capacity Development) is inevitable to sustainably implement and disseminate new methods. In this context, an adapted water supply facility was developed by KIT which hereafter shall serve for demonstration, teaching, and research purposes. The plant's functionality, its teaching and research concept, as well as the design process, which was accomplished in collaboration with the

  1. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.W. [Rosebud SynCoal Partnership, Billings, MT (United States)

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stages are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.

  2. LOS Throughput Measurements in Real-Time with a 128-Antenna Massive MIMO Testbed

    OpenAIRE

    Harris, Paul; Zhang, Siming; Beach, Mark; Mellios, Evangelos; Nix, Andrew; Armour, Simon; Doufexi, Angela; Nieman, Karl; Kundargi, Nikhil

    2017-01-01

    This paper presents initial results for a novel 128-antenna massive Multiple-Input, Multiple- Output (MIMO) testbed developed through Bristol Is Open in collaboration with National Instruments and Lund University. We believe that the results presented here validate the adoption of massive MIMO as a key enabling technology for 5G and pave the way for further pragmatic research by the massive MIMO community. The testbed operates in real-time with a Long-Term Evolution (LTE)-like PHY in Time Div...

  3. The Living With a Star Space Environment Testbed Experiments

    Science.gov (United States)

    Xapsos, Michael A.

    2014-01-01

    The focus of the Living With a Star (LWS) Space Environment Testbed (SET) program is to improve the performance of hardware in the space radiation environment. The program has developed a payload for the Air Force Research Laboratory (AFRL) Demonstration and Science Experiments (DSX) spacecraft that is scheduled for launch in August 2015 on the SpaceX Falcon Heavy rocket. The primary structure of DSX is an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring. DSX will be in a Medium Earth Orbit (MEO). This oral presentation will describe the SET payload.

  4. Testing of an Annular Linear Induction Pump for the Fission Surface Power Technology Demonstration Unit

    Science.gov (United States)

    Polzin, K. A.; Pearson, J. B.; Webster, K.; Godfoy, T. J.; Bossard, J. A.

    2013-01-01

    Results of performance testing of an annular linear induction pump that has been designed for integration into a fission surface power technology demonstration unit are presented. The pump electromagnetically pushes liquid metal (NaK) through a specially-designed apparatus that permits quantification of pump performance over a range of operating conditions. Testing was conducted for frequencies of 40, 55, and 70 Hz, liquid metal temperatures of 125, 325, and 525 C, and input voltages from 30 to 120 V. Pump performance spanned a range of flow rates from roughly 0.3 to 3.1 L/s (4.8 to 49 gpm), and pressure heads of <1 to 104 kPa (<0.15 to 15 psi). The maximum efficiency measured during testing was 5.4%. At the technology demonstration unit operating temperature of 525 C the pump operated over a narrower envelope, with flow rates from 0.3 to 2.75 L/s (4.8 to 43.6 gpm), developed pressure heads from <1 to 55 kPa (<0.15 to 8 psi), and a maximum efficiency of 3.5%. The pump was supplied with three-phase power at 40 and 55 Hz using a variable-frequency motor drive, while power at 55 and 70 Hz was supplied using a variable-frequency power supply. Measured performance of the pump at 55 Hz using either supply exhibited good quantitative agreement. For a given temperature, the peak in efficiency occurred at different flow rates as the frequency was changed, but the maximum value of efficiency was relative insensitive within 0.3% over the frequency range tested, including a scan from 45 to 78 Hz. The objectives of the FSP technology project are as follows:5 • Develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options. • Establish a nonnuclear hardware-based technical foundation for FSP design concepts to reduce overall development risk. • Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates. • Generate the key nonnuclear products to allow Agency

  5. Creative thinking of design and redesign on SEAT aircraft cabin testbed: a case study

    NARCIS (Netherlands)

    Tan, C.F.; Chen, W.; Rauterberg, G.W.M.

    2009-01-01

    this paper, the intuition approach in the design and redesign of the environmental friendly innovative aircraft cabin simulator is presented.. The aircraft cabin simulator is a testbed that used for European Project SEAT (Smart tEchnologies for Stress free Air Travel). The SEAT project aims to

  6. The design and implementation of the LLNL gigabit testbed

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, D. [Lawrence Livermore National Labs., CA (United States)

    1994-12-01

    This paper will look at the design and implementation of the LLNL Gigabit testbed (LGTB), where various high speed networking products, can be tested in one environment. The paper will discuss the philosophy behind the design of and the need for the testbed, the tests that are performed in the testbed, and the tools used to implement those tests.

  7. Possible stakeholder concerns regarding volatile organic compound in arid soils integrated demonstration technologies not evaluated in the stakeholder involvement program

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    The Volatile Organic Compounds in Arid Soils Integrated Demonstration (VOC-Arid ID) supported the demonstration of a number of innovative technologies, not all of which were evaluated in the integrated demonstration's stakeholder involvement program. These technologies have been organized into two categories and the first category ranked in order of priority according to interest in the evaluation of the technology. The purpose of this report is to present issues stakeholders would likely raise concerning each of the technologies in light of commentary, insights, data requirements, concerns, and recommendations offered during the VOC-Arid ID's three-year stakeholder involvement, technology evaluation program. A secondary purpose is to provide a closeout status for each of the technologies associated with the VOC-Arid ID. This report concludes with a summary of concerns and requirements that stakeholders have for all innovative technologies

  8. High Temperature Syngas Cleanup Technology Scale-up and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Ben [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Turk, Brian [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Denton, David [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Gupta, Raghubir [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States)

    2015-09-30

    Gasification is a technology for clean energy conversion of diverse feedstocks into a wide variety of useful products such as chemicals, fertilizers, fuels, electric power, and hydrogen. Existing technologies can be employed to clean the syngas from gasification processes to meet the demands of such applications, but they are expensive to build and operate and consume a significant fraction of overall parasitic energy requirements, thus lowering overall process efficiency. RTI International has developed a warm syngas desulfurization process (WDP) utilizing a transport-bed reactor design and a proprietary attrition-resistant, high-capacity solid sorbent with excellent performance replicated at lab, bench, and pilot scales. Results indicated that WDP technology can improve both efficiency and cost of gasification plants. The WDP technology achieved ~99.9% removal of total sulfur (as either H2S or COS) from coal-derived syngas at temperatures as high as 600°C and over a wide range of pressures (20-80 bar, pressure independent performance) and sulfur concentrations. Based on the success of these tests, RTI negotiated a cooperative agreement with the U.S. Department of Energy for precommercial testing of this technology at Tampa Electric Company’s Polk Power Station IGCC facility in Tampa, Florida. The project scope also included a sweet water-gas-shift process for hydrogen enrichment and an activated amine process for 90+% total carbon capture. Because the activated amine process provides some additional non-selective sulfur removal, the integration of these processes was expected to reduce overall sulfur in the syngas to sub-ppmv concentrations, suitable for most syngas applications. The overall objective of this project was to mitigate the technical risks associated with the scale up and integration of the WDP and carbon dioxide capture technologies, enabling subsequent commercial-scale demonstration. The warm syngas cleanup pre-commercial test unit

  9. Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare -- Ozone Based Laundry Systems

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Brian K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parker, Graham B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Petersen, Joseph M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sullivan, Greg [Efficiency Solutions, LLC (United States); Goetzler, W. [Navigant Consulting, Inc. (United States); Sutherland, T. A. [Navigant Consulting, Inc. (United States); Foley, K. J. [Navigant Consulting, Inc. (United States)

    2014-08-14

    The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of ozone laundry system installations at the Charleston Place Hotel in Charleston, South Carolina, and the Rogerson House assisted living facility in Boston, Massachusetts.

  10. Multi-Lab EV Smart Grid Integration Requirements Study. Providing Guidance on Technology Development and Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Markel, T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Meintz, A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hardy, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Bohn, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Smart, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Scoffield, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hovsapian, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Saxena, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); MacDonald, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kiliccote, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kahl, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pratt, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-28

    The report begins with a discussion of the current state of the energy and transportation systems, followed by a summary of some VGI scenarios and opportunities. The current efforts to create foundational interface standards are detailed, and the requirements for enabling PEVs as a grid resource are presented. Existing technology demonstrations that include vehicle to grid functions are summarized. The report also includes a data-based discussion on the magnitude and variability of PEVs as a grid resource, followed by an overview of existing simulation tools that vi This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. can be used to explore the expansion of VGI to larger grid functions that might offer system and customer value. The document concludes with a summary of the requirements and potential action items that would support greater adoption of VGI.

  11. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    Energy Technology Data Exchange (ETDEWEB)

    Roy Scandrol

    2003-10-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create nine (9) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry FGD technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

  12. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    Energy Technology Data Exchange (ETDEWEB)

    Roy Scandrol

    2003-04-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create eight (8) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry flue gas desulfurization (FGD) technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

  13. RAVAN CubeSat Results: Technologies and Science Demonstrated On Orbit

    Science.gov (United States)

    Swartz, W. H.; Lorentz, S. R.; Huang, P. M.; Smith, A. W.; Yu, Y.; Briscoe, J. S.; Reilly, N.; Reilly, S.; Reynolds, E.; Carvo, J.; Wu, D.

    2017-12-01

    Elucidating Earth's energy budget is vital to understanding and predicting climate, particularly the small imbalance between the incident solar irradiance and Earth-leaving fluxes of total and solar-reflected energy. Accurately quantifying the spatial and temporal variation of Earth's outgoing energy from space is a challenge—one potentially rendered more tractable with the advent of multipoint measurements from small satellite or hosted payload constellations. The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) 3U CubeSat, launched November 11, 2016, is a pathfinder for a constellation to measure the Earth's energy imbalance. The objective of RAVAN is to establish that compact, broadband radiometers absolutely calibrated to high accuracy can be built and operated in space for low cost. RAVAN demonstrates two key technologies: (1) vertically aligned carbon nanotubes as spectrally flat radiometer absorbers and (2) gallium phase-change cells for on-board calibration and degradation monitoring of RAVAN's radiometer sensors. We show on-orbit results, including calibrated irradiance measurements at both shortwave, solar-reflected wavelengths and in the thermal infrared. These results are compared with both modeled upwelling fluxes and those measured by independent Earth energy instruments in low-Earth orbit. Further, we show the performance of two gallium phase-change cells that are used to monitor the degradation of RAVAN's radiometer sensors. In addition to Earth energy budget technology and science, RAVAN also demonstrates partnering with a commercial vendor for the CubeSat bus, payload integration and test, and mission operations. We conclude with a discussion of how a RAVAN-type constellation could enable a breakthrough in the measurement of Earth's energy budget and lead to superior predictions of future climate.

  14. Laser Spectroscopy Multi-Gas Monitor: Results of Technology Demonstration on ISS

    Science.gov (United States)

    Mudgett, Paul D.; Pilgrim, Jeffrey S.

    2015-01-01

    Tunable diode laser spectroscopy (TDLS) is an up and coming trace and major gas monitoring technology with unmatched selectivity, range and stability. The technology demonstration of the 4 gas Multi-Gas Monitor (MGM), reported at the 2014 ICES conference, operated continuously on the International Space Station (ISS) for nearly a year. The MGM is designed to measure oxygen, carbon dioxide, ammonia and water vapor in ambient cabin air in a low power, relatively compact device. While on board, the MGM experienced a number of challenges, unplanned and planned, including a test of the ammonia channel using a commercial medical ammonia inhalant. Data from the unit was downlinked once per week and compared with other analytical resources on board, notably the Major Constituent Analyzer (MCA), a magnetic sector mass spectrometer. MGM spent the majority of the time installed in the Nanoracks Frame 2 payload facility in front breathing mode (sampling the ambient environment of the Japanese Experiment Module), but was also used to analyze recirculated rack air. The capability of the MGM to be operated in portable mode (via internal rechargeable lithium ion polymer batteries or by plugging into any Express Rack 28VDC connector) was a part of the usability demonstration. Results to date show unprecedented stability and accuracy of the MGM vs. the MCA for oxygen and carbon dioxide. The ammonia challenge (approx. 75 ppm) was successful as well, showing very rapid response time in both directions. Work on an expansion of capability in a next generation MGM has just begun. Combustion products and hydrazine are being added to the measurable target analytes. An 8 to 10 gas monitor (aka Gas Tricorder 1.0) is envisioned for use on ISS, Orion and Exploration missions.

  15. Benchmarking Diagnostic Algorithms on an Electrical Power System Testbed

    Science.gov (United States)

    Kurtoglu, Tolga; Narasimhan, Sriram; Poll, Scott; Garcia, David; Wright, Stephanie

    2009-01-01

    Diagnostic algorithms (DAs) are key to enabling automated health management. These algorithms are designed to detect and isolate anomalies of either a component or the whole system based on observations received from sensors. In recent years a wide range of algorithms, both model-based and data-driven, have been developed to increase autonomy and improve system reliability and affordability. However, the lack of support to perform systematic benchmarking of these algorithms continues to create barriers for effective development and deployment of diagnostic technologies. In this paper, we present our efforts to benchmark a set of DAs on a common platform using a framework that was developed to evaluate and compare various performance metrics for diagnostic technologies. The diagnosed system is an electrical power system, namely the Advanced Diagnostics and Prognostics Testbed (ADAPT) developed and located at the NASA Ames Research Center. The paper presents the fundamentals of the benchmarking framework, the ADAPT system, description of faults and data sets, the metrics used for evaluation, and an in-depth analysis of benchmarking results obtained from testing ten diagnostic algorithms on the ADAPT electrical power system testbed.

  16. Demonstration of an Innovative Large-Diameter Sewer Rehabilitation Technology in Houston, Texas

    Science.gov (United States)

    While sewer renewal technologies currently being used for the repair, replacement and/or rehabilitation of deteriorating wastewater collection systems are generally effective, there is still room for improvement of existing technologies and for the development of new technologies...

  17. Demonstration of an Innovative Large-Diameter Sewer Rehabilitation Technology in Houston, Texas - slides

    Science.gov (United States)

    While sewer renewal technologies currently being used for the repair, replacement and/or rehabilitation of deteriorating wastewater collection systems are generally effective, there is still room for improvement of existing technologies and for the development of new technologies...

  18. Demonstration on Areca Catechu Tree Reuse with Supporting of Information Technology

    Science.gov (United States)

    Chao, F. L.; Wu, C. K.; Chao, A. K.

    2018-04-01

    Areca catechu can be commonly found in Taiwan and Asia. By the restriction of agriculture policy, often the tree is chopped down and left in the wild and became an extra burden on the local environment. In this study, reuse design cases and opportunities were collected as Blog, so that people can access more easily. To enhance the user’s awareness and information access it included the facets of its biology, culture history and reuse cases. Furthermore, we proposed demonstration supported with information technology. A blog can collect facts and examples with capabilities of multiple tags. This ability makes information search more accessible. The proposed approach combines both physical samples and visual elements in Blog which can be view by mobile phone. From the survey, Blog performs better than a regular internet search. Most people feel interesting, and some people were able to have own idea. Demonstration designs gather both elements will help to form a positive communication to the society with sustainable thinking.

  19. Lithium-Ion Battery Demonstrated for NASA Desert Research and Technology Studies

    Science.gov (United States)

    Bennett, William R.; Baldwin, Richard S.

    2008-01-01

    Lithium-ion batteries have attractive performance characteristics that are well suited to a number of NASA applications. These rechargeable batteries produce compact, lightweight energy-storage systems with excellent cycle life, high charge/discharge efficiency, and low self-discharge rate. NASA Glenn Research Center's Electrochemistry Branch designed and produced five lithium-ion battery packs configured to power the liquid-air backpack (LAB) on spacesuit simulators. The demonstration batteries incorporated advanced, NASA-developed electrolytes with enhanced low-temperature performance characteristics. The objectives of this effort were to (1) demonstrate practical battery performance under field-test conditions and (2) supply laboratory performance data under controlled laboratory conditions. Advanced electrolyte development is being conducted under the Exploration Technology Development Program by the NASA Jet Propulsion Laboratory. Three field trials were successfully completed at Cinder Lake from September 10 to 12, 2007. Extravehicular activities of up to 1 hr and 50 min were supported, with residual battery capacity sufficient for 30 min of additional run time. Additional laboratory testing of batteries and cells is underway at Glenn s Electrochemical Branch.

  20. The Segmented Aperture Interferometric Nulling Testbed (SAINT) I: overview and air-side system description

    Science.gov (United States)

    Hicks, Brian A.; Lyon, Richard G.; Petrone, Peter; Ballard, Marlin; Bolcar, Matthew R.; Bolognese, Jeff; Clampin, Mark; Dogoda, Peter; Dworzanski, Daniel; Helmbrecht, Michael A.; Koca, Corina; Shiri, Ron

    2016-07-01

    This work presents an overview of the Segmented Aperture Interferometric Nulling Testbed (SAINT), a project that will pair an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC). SAINT will incorporate the VNC's demonstrated wavefront sensing and control system to refine and quantify end-to-end high-contrast starlight suppression performance. This pathfinder testbed will be used as a tool to study and refine approaches to mitigating instabilities and complex diffraction expected from future large segmented aperture telescopes.

  1. SSERVI Analog Regolith Simulant Testbed Facility

    Science.gov (United States)

    Minafra, J.; Schmidt, G. K.

    2016-12-01

    SSERVI's goals include supporting planetary researchers within NASA, other government agencies; private sector and hardware developers; competitors in focused prize design competitions; and academic sector researchers. The SSERVI Analog Regolith Simulant Testbed provides opportunities for research scientists and engineers to study the effects of regolith analog testbed research in the planetary exploration field. This capability is essential to help to understand the basic effects of continued long-term exposure to a simulated analog test environment. The current facility houses approximately eight tons of JSC-1A lunar regolith simulant in a test bin consisting of a 4 meter by 4 meter area. SSERVI provides a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships. This testbed provides a means of consolidating the tasks of acquisition, storage and safety mitigation in handling large quantities of regolith simulant Facility hardware and environment testing scenarios include, but are not limited to the following; Lunar surface mobility, Dust exposure and mitigation, Regolith handling and excavation, Solar-like illumination, Lunar surface compaction profile, Lofted dust, Mechanical properties of lunar regolith, and Surface features (i.e. grades and rocks) Numerous benefits vary from easy access to a controlled analog regolith simulant testbed, and planetary exploration activities at NASA Research Park, to academia and expanded commercial opportunities in California's Silicon Valley, as well as public outreach and education opportunities.

  2. Cognitive Medical Wireless Testbed System (COMWITS)

    Science.gov (United States)

    2016-11-01

    Number: ...... ...... Sub Contractors (DD882) Names of other research staff Inventions (DD882) Scientific Progress This testbed merges two ARO grants...bit 64 bit CPU Intel Xeon Processor E5-1650v3 (6C, 3.5 GHz, Turbo, HT , 15M, 140W) Intel Core i7-3770 (3.4 GHz Quad Core, 77W) Dual Intel Xeon

  3. Vacuum Nuller Testbed (VNT) Performance, Characterization and Null Control: Progress Report

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.; Noecker, M. Charley; Kendrick, Stephen; Helmbrecht, Michael

    2011-01-01

    Herein we report on the development. sensing and control and our first results with the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraph (VNC) for exoplanet coronagraphy. The VNC is one of the few approaches that works with filled. segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be Hown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies. and has developed an incremental sequence of VNC testbeds to advance this approach and the enabling technologies associated with it. We discuss the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). Tbe VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 10(sup 8), 10(sup 9) and ideally 10(sup 10) at an inner working angle of 2*lambda/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the initial laboratory results, the optical configuration, critical technologies and the null sensing and control approach.

  4. Vacuum nuller testbed (VNT) performance, characterization and null control: progress report

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.; Noecker, M. Charley; Kendrick, Stephen; Helmbrecht, Michael

    2011-10-01

    Herein we report on the development, sensing and control and our first results with the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraph (VNC) for exoplanet coronagraphy. The VNC is one of the few approaches that works with filled, segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be flown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and the enabling technologies associated with it. We discuss the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 108, 109, and ideally 1010 at an inner working angle of 2*λ/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the initial laboratory results, the optical configuration, critical technologies and the null sensing and control approach.

  5. Development of optical packet and circuit integrated ring network testbed.

    Science.gov (United States)

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. © 2011 Optical Society of America

  6. ProtoDESI: First On-Sky Technology Demonstration for the Dark Energy Spectroscopic Instrument

    Science.gov (United States)

    Fagrelius, Parker; Abareshi, Behzad; Allen, Lori; Ballester, Otger; Baltay, Charles; Besuner, Robert; Buckley-Geer, Elizabeth; Butler, Karen; Cardiel, Laia; Dey, Arjun; Duan, Yutong; Elliott, Ann; Emmet, William; Gershkovich, Irena; Honscheid, Klaus; Illa, Jose M.; Jimenez, Jorge; Joyce, Richard; Karcher, Armin; Kent, Stephen; Lambert, Andrew; Lampton, Michael; Levi, Michael; Manser, Christopher; Marshall, Robert; Martini, Paul; Paat, Anthony; Probst, Ronald; Rabinowitz, David; Reil, Kevin; Robertson, Amy; Rockosi, Connie; Schlegel, David; Schubnell, Michael; Serrano, Santiago; Silber, Joseph; Soto, Christian; Sprayberry, David; Summers, David; Tarlé, Greg; Weaver, Benjamin A.

    2018-02-01

    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the universe using the baryon acoustic oscillations technique. The spectra of 35 million galaxies and quasars over 14,000 square degrees will be measured during a 5-year survey. A new prime focus corrector for the Mayall telescope at Kitt Peak National Observatory will deliver light to 5,000 individually targeted fiber-fed robotic positioners. The fibers in turn feed ten broadband multi-object spectrographs. We describe the ProtoDESI experiment, that was installed and commissioned on the 4-m Mayall telescope from 2016 August 14 to September 30. ProtoDESI was an on-sky technology demonstration with the goal to reduce technical risks associated with aligning optical fibers with targets using robotic fiber positioners and maintaining the stability required to operate DESI. The ProtoDESI prime focus instrument, consisting of three fiber positioners, illuminated fiducials, and a guide camera, was installed behind the existing Mosaic corrector on the Mayall telescope. A fiber view camera was mounted in the Cassegrain cage of the telescope and provided feedback metrology for positioning the fibers. ProtoDESI also provided a platform for early integration of hardware with the DESI Instrument Control System that controls the subsystems, provides communication with the Telescope Control System, and collects instrument telemetry data. Lacking a spectrograph, ProtoDESI monitored the output of the fibers using a fiber photometry camera mounted on the prime focus instrument. ProtoDESI was successful in acquiring targets with the robotically positioned fibers and demonstrated that the DESI guiding requirements can be met.

  7. Distributed computing testbed for a remote experimental environment

    International Nuclear Information System (INIS)

    Butner, D.N.; Casper, T.A.; Howard, B.C.; Henline, P.A.; Davis, S.L.; Barnes, D.

    1995-01-01

    Collaboration is increasing as physics research becomes concentrated on a few large, expensive facilities, particularly in magnetic fusion energy research, with national and international participation. These facilities are designed for steady state operation and interactive, real-time experimentation. We are developing tools to provide for the establishment of geographically distant centers for interactive operations; such centers would allow scientists to participate in experiments from their home institutions. A testbed is being developed for a Remote Experimental Environment (REE), a ''Collaboratory.'' The testbed will be used to evaluate the ability of a remotely located group of scientists to conduct research on the DIII-D Tokamak at General Atomics. The REE will serve as a testing environment for advanced control and collaboration concepts applicable to future experiments. Process-to-process communications over high speed wide area networks provide real-time synchronization and exchange of data among multiple computer networks, while the ability to conduct research is enhanced by adding audio/video communication capabilities. The Open Software Foundation's Distributed Computing Environment is being used to test concepts in distributed control, security, naming, remote procedure calls and distributed file access using the Distributed File Services. We are exploring the technology and sociology of remotely participating in the operation of a large scale experimental facility

  8. Demonstrating Starshade Performance as Part of NASA's Technology Development for Exoplanet Missions

    Science.gov (United States)

    Kasdin, N. Jeremy; Spergel, D. N.; Vanderbei, R. J.; Lisman, D.; Shaklan, S.; Thomson, M. W.; Walkemeyer, P. E.; Bach, V. M.; Oakes, E.; Cady, E. J.; Martin, S. R.; Marchen, L. F.; Macintosh, B.; Rudd, R.; Mikula, J. A.; Lynch, D. H.

    2012-01-01

    In this poster we describe the results of our project to design, manufacture, and measure a prototype starshade petal as part of the Technology Development for Exoplanet Missions program. An external occult is a satellite employing a large screen, or starshade,that flies in formation with a spaceborne telescope to provide the starlight suppression needed for detecting and characterizing exoplanets. Among the advantages of using an occulter are the broadband allowed for characterization and the removal of light for the observatory, greatly relaxing the requirements on the telescope and instrument. In this first two-year phase we focused on the key requirement of manufacturing a precision petal with the precise tolerances needed to meet the overall error budget. These tolerances are established by modeling the effect that various mechanical and thermal errors have on scatter in the telescope image plane and by suballocating the allowable contrast degradation between these error sources. We show the results of this analysis and a representative error budget. We also present the final manufactured occulter petal and the metrology on its shape that demonstrates it meets requirements. We show that a space occulter built of petals with the same measured shape would achieve better than 1e-9 contrast. We also show our progress in building and testing sample edges with the sharp radius of curvature needed for limiting solar glint. Finally, we describe our plans for the second TDEM phase.

  9. Inertial Navigation System for India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD HEX) Mission

    Science.gov (United States)

    Umadevi, P.; Navas, A.; Karuturi, Kesavabrahmaji; Shukkoor, A. Abdul; Kumar, J. Krishna; Sreekumar, Sreejith; Basim, A. Mohammed

    2017-12-01

    This work presents the configuration of Inertial Navigation System (INS) used in India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) Program. In view of the specific features and requirements of the RLV-TD, specific improvements and modifications were required in the INS. A new system was designed, realised and qualified meeting the mission requirements of RLV-TD, at the same time taking advantage of the flight heritage attained in INS through various Launch vehicle Missions of the country. The new system has additional redundancy in acceleration channel, in-built inclinometer based bias update scheme for acceleration channels and sign conventions as employed in an aircraft. Data acquisition in micro cycle periodicity (10 ms) was incorporated which was required to provide rate and attitude information at higher sampling rate for ascent phase control. Provision was incorporated for acquisition of rate and acceleration data with high resolution for aerodynamic characterisation and parameter estimation. GPS aided navigation scheme was incorporated to meet the stringent accuracy requirements of the mission. Navigation system configuration for RLV-TD, specific features incorporated to meet the mission requirements, various tests carried out and performance during RLV-TD flight are highlighted.

  10. Demonstration of an RF front-end based on GaN HEMT technology

    Science.gov (United States)

    Ture, Erdin; Musser, Markus; Hülsmann, Axel; Quay, Rüdiger; Ambacher, Oliver

    2017-05-01

    The effectiveness of the developed front-end on blocking the communication link of a commercial drone vehicle has been demonstrated in this work. A jamming approach has been taken in a broadband fashion by using GaN HEMT technology. Equipped with a modulated-signal generator, a broadband power amplifier, and an omni-directional antenna, the proposed system is capable of producing jamming signals in a very wide frequency range between 0.1 - 3 GHz. The maximum RF output power of the amplifier module has been software-limited to 27 dBm (500 mW), complying to the legal spectral regulations of the 2.4 GHz ISM band. In order to test the proof of concept, a real-world scenario has been prepared in which a commercially-available quadcopter UAV is flown in a controlled environment while the jammer system has been placed in a distance of about 10 m from the drone. It has been proven that the drone of interest can be neutralized as soon as it falls within the range of coverage (˜3 m) which endorses the promising potential of the broadband jamming approach.

  11. A Technology Demonstration Experiment for Laser Cooled Atomic Clocks in Space

    Science.gov (United States)

    Klipstein, W. M.; Kohel, J.; Seidel, D. J.; Thompson, R. J.; Maleki, L.; Gibble, K.

    2000-01-01

    We have been developing a laser-cooling apparatus for flight on the International Space Station (ISS), with the intention of demonstrating linewidths on the cesium clock transition narrower than can be realized on the ground. GLACE (the Glovebox Laser- cooled Atomic Clock Experiment) is scheduled for launch on Utilization Flight 3 (UF3) in 2002, and will be mounted in one of the ISS Glovebox platforms for an anticipated 2-3 week run. Separate flight definition projects funded at NIST and Yale by the Micro- gravity Research Division of NASA as a part of its Laser Cooling and Atomic Physics (LCAP) program will follow GLACE. Core technologies for these and other LCAP missions are being developed at JPL, with the current emphasis on developing components such as the laser and optics subsystem, and non-magnetic vacuum-compatible mechanical shutters. Significant technical challenges in developing a space qualifiable laser cooling apparatus include reducing the volume, mass, and power requirements, while increasing the ruggedness and reliability in order to both withstand typical launch conditions and achieve several months of unattended operation. This work was performed at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.

  12. Demonstration of Airborne Wide Area Assessment Technologies at the Toussaint River, Ohio

    National Research Council Canada - National Science Library

    Foley, Jack; Wright, David

    2007-01-01

    ...) technology, a wide area assessment technology, to assist in the characterization of the shore and shallow areas in and around the Toussaint River relative to munitions contamination from historical...

  13. Embedded Sensors and Controls to Improve Component Performance and Reliability -- Bench-scale Testbed Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Drira, Anis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Reed, Frederick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings to support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.

  14. Examining the Quality of Technology Implementation in STEM Classrooms: Demonstration of an Evaluative Framework

    Science.gov (United States)

    Parker, Caroline E.; Stylinski, Cathlyn D.; Bonney, Christina R.; Schillaci, Rebecca; McAuliffe, Carla

    2015-01-01

    Technology applications aligned with science, technology, engineering, and math (STEM) workplace practices can engage students in real-world pursuits but also present dramatic challenges for classroom implementation. We examined the impact of teacher professional development focused on incorporating these workplace technologies in the classroom.…

  15. Air Traffic Management Technology Demonstration-1 Concept of Operations (ATD-1 ConOps), Version 3.0

    Science.gov (United States)

    Baxley, Brian T.; Johnson, William C.; Scardina, John; Shay, Richard F.

    2016-01-01

    This document describes the goals, benefits, technologies, and procedures of the Concept of Operations (ConOps) for the Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1), and provides an update to the previous versions of the document [ref 1 and ref 2].

  16. Bringing solid fuel ramjet projectiles closer to application - An overview of the TNO/RWMS technology demonstration programme

    NARCIS (Netherlands)

    Veraar, R.G.; Giusti, G.

    2005-01-01

    TNO executed a technology demonstration programme in co-operation with RWMS on the application of solid fuel ramjet propulsion technology to medium calibre air defence projectiles. From 2000 to 2004 a complete and integrated structural and aero-thermodynamic projectile design was conceived

  17. Validation of morphing wing methodologies on an unmanned aerial system and a wind tunnel technology demonstrator

    Science.gov (United States)

    Gabor, Oliviu Sugar

    To increase the aerodynamic efficiency of aircraft, in order to reduce the fuel consumption, a novel morphing wing concept has been developed. It consists in replacing a part of the wing upper and lower surfaces with a flexible skin whose shape can be modified using an actuation system placed inside the wing structure. Numerical studies in two and three dimensions were performed in order to determine the gains the morphing system achieves for the case of an Unmanned Aerial System and for a morphing technology demonstrator based on the wing tip of a transport aircraft. To obtain the optimal wing skin shapes in function of the flight condition, different global optimization algorithms were implemented, such as the Genetic Algorithm and the Artificial Bee Colony Algorithm. To reduce calculation times, a hybrid method was created by coupling the population-based algorithm with a fast, gradient-based local search method. Validations were performed with commercial state-of-the-art optimization tools and demonstrated the efficiency of the proposed methods. For accurately determining the aerodynamic characteristics of the morphing wing, two new methods were developed, a nonlinear lifting line method and a nonlinear vortex lattice method. Both use strip analysis of the span-wise wing section to account for the airfoil shape modifications induced by the flexible skin, and can provide accurate results for the wing drag coefficient. The methods do not require the generation of a complex mesh around the wing and are suitable for coupling with optimization algorithms due to the computational time several orders of magnitude smaller than traditional three-dimensional Computational Fluid Dynamics methods. Two-dimensional and three-dimensional optimizations of the Unmanned Aerial System wing equipped with the morphing skin were performed, with the objective of improving its performances for an extended range of flight conditions. The chordwise positions of the internal actuators

  18. HRE-Pond Cryogenic Barrier Technology Demonstration: Pre- and Post-Barrier Hydrologic Assessment

    International Nuclear Information System (INIS)

    Moline, G.R.

    1999-01-01

    The Homogeneous Reactor Experiment (HRE) Pond is the site of a former impoundment for radioactive wastes on the Oak Ridge Reservation (ORR) in east Tennessee. The pond received radioactive wastes from 1957 to 1962, and was subsequently drained, filled with soil, and covered with an asphalt cap. The site is bordered to the east and south by an unnamed stream that contains significant concentrations of radioactive contaminants, primarily 90 Sr. Because of the proximity of the stream to the HRE disposal site and the probable flow of groundwater from the site to the stream, it was hypothesized that the HRE Pond has been a source of contamination to the creek. The HRE-Pond was chosen as the site of a cryogenic barrier demonstration to evaluate this technology as a means for rapid, temporary isolation of contaminants in the type of subsurface environment that exists on the ORR. The cryogenic barrier is created by the circulation of liquid CO 2 through a system of thermoprobes installed in boreholes which are backfilled with sand. The probes cool the subsurface, creating a vertical ice wall by freezing adjacent groundwater, effectively surrounding the pond on four sides. The purpose of this investigation was to evaluate the hydrologic conditions within and around the pond prior to, during, and after the cryogenic barrier emplacement. The objectives were (1) to provide a hydrologic baseline for post-banner performance assessment, (2) to confirm that the pond is hydraulically connected to the surrounding sediments, (3) to determine the likely contaminant exit pathways from the pond, and (4) to measure changes in hydrologic conditions after barrier emplacement in order to assess the barrier performance. Because relatively little information about the subsurface hydrology and the actual configuration of the pond existed, data from multiple sources was required to reconstruct this complex system

  19. Mini-mast CSI testbed user's guide

    Science.gov (United States)

    Tanner, Sharon E.; Pappa, Richard S.; Sulla, Jeffrey L.; Elliott, Kenny B.; Miserentino, Robert; Bailey, James P.; Cooper, Paul A.; Williams, Boyd L., Jr.; Bruner, Anne M.

    1992-01-01

    The Mini-Mast testbed is a 20 m generic truss highly representative of future deployable trusses for space applications. It is fully instrumented for system identification and active vibrations control experiments and is used as a ground testbed at NASA-Langley. The facility has actuators and feedback sensors linked via fiber optic cables to the Advanced Real Time Simulation (ARTS) system, where user defined control laws are incorporated into generic controls software. The object of the facility is to conduct comprehensive active vibration control experiments on a dynamically realistic large space structure. A primary goal is to understand the practical effects of simplifying theoretical assumptions. This User's Guide describes the hardware and its primary components, the dynamic characteristics of the test article, the control law implementation process, and the necessary safeguards employed to protect the test article. Suggestions for a strawman controls experiment are also included.

  20. DEMONSTRATION OF AQUAFIX AND SAPS PASSIVE MINE WATER TREATMENT TECHNOLOGIES AT SUMMITVILLE MINE SITE, INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    As part of the Superfund Innovative Technology Evaluation (SITE) Program, the U.S. Environmental Protection Agency evaluated two passive water treatment (PWT) technologies for metals removal from acid mine drainage (AMD) at the Summitville Mine Superfund Site in southern Colorado...

  1. Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Habegger, L. J.; Fernandez, L. E.; Engle, M.; Bailey, J. L.; Peterson, D. P.; MacDonell, M. M.; U.S. Environmental Protection Agency

    2008-06-30

    Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles. The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of

  2. SSERVI Analog Regolith Simulant Testbed Facility

    Science.gov (United States)

    Minafra, Joseph; Schmidt, Gregory; Bailey, Brad; Gibbs, Kristina

    2016-10-01

    The Solar System Exploration Research Virtual Institute (SSERVI) at NASA's Ames Research Center in California's Silicon Valley was founded in 2013 to act as a virtual institute that provides interdisciplinary research centered on the goals of its supporting directorates: NASA Science Mission Directorate (SMD) and the Human Exploration & Operations Mission Directorate (HEOMD).Primary research goals of the Institute revolve around the integration of science and exploration to gain knowledge required for the future of human space exploration beyond low Earth orbit. SSERVI intends to leverage existing JSC1A regolith simulant resources into the creation of a regolith simulant testbed facility. The purpose of this testbed concept is to provide the planetary exploration community with a readily available capability to test hardware and conduct research in a large simulant environment.SSERVI's goals include supporting planetary researchers within NASA, other government agencies; private sector and hardware developers; competitors in focused prize design competitions; and academic sector researchers.SSERVI provides opportunities for research scientists and engineers to study the effects of regolith analog testbed research in the planetary exploration field. This capability is essential to help to understand the basic effects of continued long-term exposure to a simulated analog test environment.The current facility houses approximately eight tons of JSC-1A lunar regolith simulant in a test bin consisting of a 4 meter by 4 meter area, including dust mitigation and safety oversight.Facility hardware and environment testing scenarios could include, Lunar surface mobility, Dust exposure and mitigation, Regolith handling and excavation, Solar-like illumination, Lunar surface compaction profile, Lofted dust, Mechanical properties of lunar regolith, Surface features (i.e. grades and rocks)Numerous benefits vary from easy access to a controlled analog regolith simulant testbed, and

  3. Towards standard testbeds for numerical relativity

    International Nuclear Information System (INIS)

    Alcubierre, Miguel; Allen, Gabrielle; Bona, Carles; Fiske, David; Goodale, Tom; Guzman, F Siddhartha; Hawke, Ian; Hawley, Scott H; Husa, Sascha; Koppitz, Michael; Lechner, Christiane; Pollney, Denis; Rideout, David; Salgado, Marcelo; Schnetter, Erik; Seidel, Edward; Shinkai, Hisa-aki; Shoemaker, Deirdre; Szilagyi, Bela; Takahashi, Ryoji; Winicour, Jeff

    2004-01-01

    In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step towards building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources and can be used with many different approaches used in the relativity community

  4. Towards standard testbeds for numerical relativity

    Energy Technology Data Exchange (ETDEWEB)

    Alcubierre, Miguel [Inst. de Ciencias Nucleares, Univ. Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico Distrito Federal 04510 (Mexico); Allen, Gabrielle; Goodale, Tom; Guzman, F Siddhartha; Hawke, Ian; Husa, Sascha; Koppitz, Michael; Lechner, Christiane; Pollney, Denis; Rideout, David [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm (Germany); Bona, Carles [Departament de Fisica, Universitat de les Illes Balears, Ctra de Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Fiske, David [Dept. of Physics, Univ. of Maryland, College Park, MD 20742-4111 (United States); Hawley, Scott H [Center for Relativity, Univ. of Texas at Austin, Austin, Texas 78712 (United States); Salgado, Marcelo [Inst. de Ciencias Nucleares, Univ. Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico Distrito Federal 04510 (Mexico); Schnetter, Erik [Inst. fuer Astronomie und Astrophysik, Universitaet Tuebingen, 72076 Tuebingen (Germany); Seidel, Edward [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Inst., 14476 Golm (Germany); Shinkai, Hisa-aki [Computational Science Div., Inst. of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Shoemaker, Deirdre [Center for Radiophysics and Space Research, Cornell Univ., Ithaca, NY 14853 (United States); Szilagyi, Bela [Dept. of Physics and Astronomy, Univ. of Pittsburgh, Pittsburgh, PA 15260 (United States); Takahashi, Ryoji [Theoretical Astrophysics Center, Juliane Maries Vej 30, 2100 Copenhagen, (Denmark); Winicour, Jeff [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm (Germany)

    2004-01-21

    In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step towards building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources and can be used with many different approaches used in the relativity community.

  5. People attending pulmonary rehabilitation demonstrate a substantial engagement with technology and willingness to use telerehabilitation: a survey

    Directory of Open Access Journals (Sweden)

    Zachariah Seidman

    2017-07-01

    Conclusion: People attending metropolitan pulmonary rehabilitation, maintenance exercise classes and support groups had substantial technology engagement, with high device access and use, and good self-rated technology competence. The majority of participants were willing to use telerehabilitation, especially if they were regular users of technology devices. [Seidman Z, McNamara R, Wootton S, Leung R, Spencer L, Dale M, Dennis S, McKeough Z (2017 People attending pulmonary rehabilitation demonstrate a substantial engagement with technology and willingness to use telerehabilitation: a survey. Journal of Physiotherapy 63: 175–181

  6. Demonstrating and Deploying Private Sector Technologies at DOE Sites - Issues to be Overcome

    International Nuclear Information System (INIS)

    Bedick, R. C.

    2002-01-01

    The Department of Energy (DOE), Office of Environmental Management (EM) continues to pursue cost-effective, environmental cleanup of the weapons complex sites with a concomitant emphasis on deployment of innovative technologies as a means to this end. The EM Office of Science and Technology (OST) pursues a strategy that entails identification of technologies that have potential applications throughout the DOE complex: at multiple DOE sites and at multiple facilities on those sites. It further encourages a competitive procurement process for the various applications entailed in the remediation of a given facility. These strategies require a competitive private-sector supplier base to help meet EM needs. OST supports technology development and deployment through investments in partnerships with private industry to enhance the acceptance of their technology products within the DOE market. Since 1992, OST and the National Energy Technology Laboratory (NETL) have supported the re search and development of technology products and services offered by the private sector. During this time, NETL has managed over 140 research and development projects involving industrial and university partners. These projects involve research in a broad range of EM related topics, including deactivation and decommissioning, characterization, monitoring, sensors, waste separation, groundwater remediation, robotics, and mixed waste treatment. Successful partnerships between DOE and Industry have resulted in viable options for EM's cleanup needs, and require continued marketing efforts to ensure that these technology solutions are used at multiple DOE sites and facilities

  7. Airspace Technology Demonstration 3 (ATD-3): Applied Traffic Flow Management Project Overview

    Science.gov (United States)

    Gong, Chester

    2016-01-01

    ATD-3 Project Overview for 3rd Joint Workshop for KAIA-KARI - NASA ATM Research Collaboration. This presentation gives a high level description of the ATD-3 project and related technologies. These technologies include Multi-Flight Common Routes (MFCR), Traffic Aware Strategic Aircrew Requests (TASAR) and Dynamic Routes for Arrivals in Weather (DRAW).

  8. Superfund Innovative Technology Evaluation - Demonstration Bulletin: In-Situ Soil Stabilization

    Science.gov (United States)

    In-situ stabilization technology immobilizes organics and inorganic compounds in wet or dry soils by using reagents (additives) to polymerize with the soils and sludges producing a cement-like mass. Two basic components of this technology are the Geo-Con/DSM Deep Soil Mixing Sy...

  9. Joint federal initiative for demonstration of on-site innovative technologies

    International Nuclear Information System (INIS)

    Marsh, J.; Munro, J.F.; McKinnon, C.; Coyle, G.J.

    1994-01-01

    The Federal Government needs to develop and implement new technologies to support its environmental and waste management programs. The incentive is threefold: First, new technologies are needed to accomplish many cleanup and waste management tasks. Second, the development and implementation of new technologies is expected to reduce significantly total cleanup costs. Third, the development of new environmental technologies can help secure national economic advantages by making U.S. industry more competitive in terms of global environmental markets. The Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT) initiative reinvents inter-governmental relations by stressing the solving of environmental problems through partnerships rather than through confrontation. This overview -- which is essentially a shortened and slightly modified version of the recent Coordinating Group Report to the DOIT Committee --describes the waste management challenges facing the Nation, discusses the innovative solutions offered by DOIT, outlines progress of the initiative to date, and identifies critical next steps

  10. 78 FR 29335 - Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration Projects

    Science.gov (United States)

    2013-05-20

    ...) Personnel Management Demonstration Projects AGENCY: Office of the Deputy Assistant Secretary of Defense... demonstration project plans. SUMMARY: Section 342(b) of the National Defense Authorization Act (NDAA) for Fiscal... 2001, authorizes the Secretary of Defense to conduct personnel demonstration projects at DoD...

  11. 77 FR 69601 - Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration Projects

    Science.gov (United States)

    2012-11-20

    ...) Personnel Management Demonstration Projects AGENCY: Office of the Deputy Assistant Secretary of Defense... to demonstration project plans. SUMMARY: Section 342(b) of the National Defense Authorization Act... the NDAA for FY 2001, authorizes the Secretary of Defense to conduct personnel demonstration projects...

  12. 75 FR 77379 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2010-12-10

    ... Personnel Management Demonstration Project, Department of Navy, Office of Naval Research; Notice #0;#0..., authorizes the Secretary of Defense (SECDEF) to conduct personnel management demonstration projects at... to execute a process and plan to employ the Department's personnel management demonstration project...

  13. Embedded Sensors and Controls to Improve Component Performance and Reliability -- Loop-scale Testbed Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    Embedded instrumentation and control systems that can operate in extreme environments are challenging to design and operate. Extreme environments limit the options for sensors and actuators and degrade their performance. Because sensors and actuators are necessary for feedback control, these limitations mean that designing embedded instrumentation and control systems for the challenging environments of nuclear reactors requires advanced technical solutions that are not available commercially. This report details the development of testbed that will be used for cross-cutting embedded instrumentation and control research for nuclear power applications. This research is funded by the Department of Energy's Nuclear Energy Enabling Technology program's Advanced Sensors and Instrumentation topic. The design goal of the loop-scale testbed is to build a low temperature pump that utilizes magnetic bearing that will be incorporated into a water loop to test control system performance and self-sensing techniques. Specifically, this testbed will be used to analyze control system performance in response to nonlinear and cross-coupling fluid effects between the shaft axes of motion, rotordynamics and gyroscopic effects, and impeller disturbances. This testbed will also be used to characterize the performance losses when using self-sensing position measurement techniques. Active magnetic bearings are a technology that can reduce failures and maintenance costs in nuclear power plants. They are particularly relevant to liquid salt reactors that operate at high temperatures (700 C). Pumps used in the extreme environment of liquid salt reactors provide many engineering challenges that can be overcome with magnetic bearings and their associated embedded instrumentation and control. This report will give details of the mechanical design and electromagnetic design of the loop-scale embedded instrumentation and control testbed.

  14. Evaluation of Unmanned Aircraft Systems (UAS) for Weather and Climate using the Multi-testbed approach

    Science.gov (United States)

    Baker, B.; Lee, T.; Buban, M.; Dumas, E. J.

    2017-12-01

    Evaluation of Unmanned Aircraft Systems (UAS) for Weather and Climate using the Multi-testbed approachC. Bruce Baker1, Ed Dumas1,2, Temple Lee1,2, Michael Buban1,21NOAA ARL, Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN2Oak Ridge Associated Universities, Oak Ridge, TN The development of a small Unmanned Aerial System (sUAS) testbeds that can be used to validate, integrate, calibrate and evaluate new technology and sensors for routine boundary layer research, validation of operational weather models, improvement of model parameterizations, and recording observations within high-impact storms is important for understanding the importance and impact of using sUAS's routinely as a new observing platform. The goal of the multi-testbed approach is to build a robust set of protocols to assess the cost and operational feasibility of unmanned observations for routine applications using various combinations of sUAS aircraft and sensors in different locations and field experiments. All of these observational testbeds serve different community needs, but they also use a diverse suite of methodologies for calibration and evaluation of different sensors and platforms for severe weather and boundary layer research. The primary focus will be to evaluate meteorological sensor payloads to measure thermodynamic parameters and define surface characteristics with visible, IR, and multi-spectral cameras. This evaluation will lead to recommendations for sensor payloads for VTOL and fixed-wing sUAS.

  15. U.S. Department of Energy, Office of Technology Development, mixed-waste treatment research, development, demonstration, testing, and evaluation

    International Nuclear Information System (INIS)

    Berry, J.B.

    1993-01-01

    Both chemically hazardous and radioactive species contaminate mixed waste. Historically, technology has been developed to treat either hazardous or radioactive waste. Technology specifically designed to produce a low-risk final waste form for mixed low-level waste has not been developed, demonstrated, or tested. Site-specific solutions to management of mixed waste have been initiated; however, site-specific programs result in duplication of technology development effort between various sites. There is a clear need for technology designed to meet the unique requirements for mixed-waste processing and a system-wide integrated strategy for developing technology and managing mixed waste. This paper discusses the US Department of Energy (DOE) approach to addressing these unique requirements through a national technology development effort

  16. Designing, Implementing and Documenting the Atlas Networking Test-bed.

    CERN Document Server

    Martinsen, Hans Åge

    The A Toroidal LHC ApparatuS (Atlas) experiment at the Large Hadron Colider (LHC) in European Organization for Nuclear Research (CERN), Geneva is a production environment. To develop new architectures, test new equipment and evaluate new technologies a well supported test bench is needed. A new one is now being commissioned and I will take a leading role in its development, commissioning and operation. This thesis will cover the requirements, the implementation, the documentation and the approach to the different challenges in implementing the testbed. I will be joining the project in the early stages and start by following the work that my colleagues are doing and then, as I get a better understanding, more responsibility will be given to me. To be able to suggest and implement solutions I will have to understand what the requirements are and how to achieve these requirements with the given resources.

  17. SABA: A Testbed for a Real-Time MIMO System

    Directory of Open Access Journals (Sweden)

    Brühl Lars

    2006-01-01

    Full Text Available The growing demand for high data rates for wireless communication systems leads to the development of new technologies to increase the channel capacity thus increasing the data rate. MIMO (multiple-input multiple-output systems are best qualified for these applications. In this paper, we present a MIMO test environment for high data rate transmissions in frequency-selective environments. An overview of the testbed is given, including the analyzed algorithms, the digital signal processing with a new highly parallel processor to perform the algorithms in real time, as well as the analog front-ends. A brief overview of the influence of polarization on the channel capacity is given as well.

  18. Telescience testbed: Operational support functions for biomedical experiments

    Science.gov (United States)

    Yamashita, Masamichi; Watanabe, Satoru; Shoji, Takatoshi; Clarke, Andrew H.; Suzuki, Hiroyuki; Yanagihara, Dai

    A telescience testbed was conducted to study the methodology of space biomedicine with simulated constraints imposed on space experiments. An experimental subject selected for this testbedding was an elaborate surgery of animals and electrophysiological measurements conducted by an operator onboard. The standing potential in the ampulla of the pigeon's semicircular canal was measured during gravitational and caloric stimulation. A principal investigator, isolated from the operation site, participated in the experiment interactively by telecommunication links. Reliability analysis was applied to the whole layers of experimentation, including design of experimental objectives and operational procedures. Engineering and technological aspects of telescience are discussed in terms of reliability to assure quality of science. Feasibility of robotics was examined for supportive functions to reduce the workload of the onboard operator.

  19. DHIAP Phase I Technology Demonstration Report: Prototype for Remote Authentication Dail-In User Service (RADIUS)

    National Research Council Canada - National Science Library

    Crane, Lynn

    2000-01-01

    ... a region, is a system that meets the Remote Authentication Dial-In User Service (RADIUS) standard. This report describes the development and trials of the technology and provides an analysis of alternative.

  20. EVALUATION OF SOLIDIFICATION/STABILIZATION AS A BEST DEMONSTRATED AVAILABLE TECHNOLOGY FOR CONTAMINATED SOILS

    Science.gov (United States)

    This project involved the evaluation of solidification/stabilization technology as a BDAT for contaminated soil. Three binding agents were used on four different synthetically contaminated soils. Performance evaluation data included unconfined compressive strength (UCS) and the T...

  1. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Mays, Gary T [ORNL; Pointer, William David [ORNL; Robb, Kevin R [ORNL; Yoder Jr, Graydon L [ORNL

    2013-11-01

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  2. Demonstration of advanced combustion NO(sub X) control techniques for a wall-fired boiler. Project performance summary, Clean Coal Technology Demonstration Program

    International Nuclear Information System (INIS)

    None

    2001-01-01

    The project represents a landmark assessment of the potential of low-NO(sub x) burners, advanced overtire air, and neural-network control systems to reduce NO(sub x) emissions within the bounds of acceptable dry-bottom, wall-fired boiler performance. Such boilers were targeted under the Clean Air Act Amendments of 1990 (CAAA). Testing provided valuable input to the Environmental Protection Agency ruling issued in March 1994, which set NO(sub x) emission limits for ''Group 1'' wall-fired boilers at 0.5 lb/10(sup 6) Btu to be met by January 1996. The resultant comprehensive database served to assist utilities in effectively implementing CAAA compliance. The project is part of the U.S. Department of Energy's Clean Coal Technology Demonstration Program established to address energy and environmental concerns related to coal use. Five nationally competed solicitations sought cost-shared partnerships with industry to accelerate commercialization of the most advanced coal-based power generation and pollution control technologies. The Program, valued at over$5 billion, has leveraged federal funding twofold through the resultant partnerships encompassing utilities, technology developers, state governments, and research organizations. This project was one of 16 selected in May 1988 from 55 proposals submitted in response to the Program's second solicitation. Southern Company Services, Inc. (SCS) conducted a comprehensive evaluation of the effects of Foster Wheeler Energy Corporation's (FWEC) advanced overfire air (AOFA), low-NO(sub x) burners (LNB), and LNB/AOFA on wall-fired boiler NO(sub x) emissions and other combustion parameters. SCS also evaluated the effectiveness of an advanced on-line optimization system, the Generic NO(sub x) Control Intelligent System (GNOCIS). Over a six-year period, SCS carried out testing at Georgia Power Company's 500-MWe Plant Hammond Unit 4 in Coosa, Georgia. Tests proceeded in a logical sequence using rigorous statistical analyses to

  3. Vacuum Nuller Testbed Performance, Characterization and Null Control

    Science.gov (United States)

    Lyon, R. G.; Clampin, M.; Petrone, P.; Mallik, U.; Madison, T.; Bolcar, M.; Noecker, C.; Kendrick, S.; Helmbrecht, M. A.

    2011-01-01

    The Visible Nulling Coronagraph (VNC) can detect and characterize exoplanets with filled, segmented and sparse aperture telescopes, thereby spanning the choice of future internal coronagraph exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has developed a Vacuum Nuller Testbed (VNT) to advance this approach, and assess and advance technologies needed to realize a VNC as a flight instrument. The VNT is an ultra-stable testbed operating at 15 Hz in vacuum. It consists of a MachZehnder nulling interferometer; modified with a "W" configuration to accommodate a hexpacked MEMS based deformable mirror (DM), coherent fiber bundle and achromatic phase shifters. The 2-output channels are imaged with a vacuum photon counting camera and conventional camera. Error-sensing and feedback to DM and delay line with control algorithms are implemented in a real-time architecture. The inherent advantage of the VNC is that it is its own interferometer and directly controls its errors by exploiting images from bright and dark channels simultaneously. Conservation of energy requires the sum total of the photon counts be conserved independent of the VNC state. Thus sensing and control bandwidth is limited by the target stars throughput, with the net effect that the higher bandwidth offloads stressing stability tolerances within the telescope. We report our recent progress with the VNT towards achieving an incremental sequence of contrast milestones of 10(exp 8) , 10(exp 9) and 10(exp 10) respectively at inner working angles approaching 2A/D. Discussed will be the optics, lab results, technologies, and null control. Shown will be evidence that the milestones have been achieved.

  4. 78 FR 64204 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2013-10-28

    ... Personnel Management Demonstration Project, Department of Navy, Office of Naval Research (ONR); Amendment... ONR Personnel Management Demonstration Project (75 FR 77380-77447, December 10, 2010). SUMMARY: On December 10, 2010 (75 FR 77380-77447), DoD published a notice of approval of a personnel management...

  5. 75 FR 55199 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2010-09-09

    ... customers; and 7. Workforce satisfaction. An evaluation model was developed for the Director, Defense... personnel system under an appropriate demonstration project as defined in section 342(b) of Public Law 103... satisfaction. With some modifications, this project mirrors the STRL personnel management demonstration project...

  6. 76 FR 12507 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2011-03-07

    ... customers; and 7. Workforce satisfaction with the personnel management system. An evaluation model was... personnel system under an appropriate demonstration project as defined in section 342(b) of Public Law 103... was deleted with the actual construct of pay pools to be further defined in the Demonstration Project...

  7. Solar Resource Assessment with Sky Imagery and a Virtual Testbed for Sky Imager Solar Forecasting

    Science.gov (United States)

    Kurtz, Benjamin Bernard

    In recent years, ground-based sky imagers have emerged as a promising tool for forecasting solar energy on short time scales (0 to 30 minutes ahead). Following the development of sky imager hardware and algorithms at UC San Diego, we present three new or improved algorithms for sky imager forecasting and forecast evaluation. First, we present an algorithm for measuring irradiance with a sky imager. Sky imager forecasts are often used in conjunction with other instruments for measuring irradiance, so this has the potential to decrease instrumentation costs and logistical complexity. In particular, the forecast algorithm itself often relies on knowledge of the current irradiance which can now be provided directly from the sky images. Irradiance measurements are accurate to within about 10%. Second, we demonstrate a virtual sky imager testbed that can be used for validating and enhancing the forecast algorithm. The testbed uses high-quality (but slow) simulations to produce virtual clouds and sky images. Because virtual cloud locations are known, much more advanced validation procedures are possible with the virtual testbed than with measured data. In this way, we are able to determine that camera geometry and non-uniform evolution of the cloud field are the two largest sources of forecast error. Finally, with the assistance of the virtual sky imager testbed, we develop improvements to the cloud advection model used for forecasting. The new advection schemes are 10-20% better at short time horizons.

  8. An adaptable, low cost test-bed for unmanned vehicle systems research

    Science.gov (United States)

    Goppert, James M.

    2011-12-01

    An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The creation of this test-bed allows research teams to focus on algorithm development and employ a common well-tested experimental framework. The ArduPilotOne autopilot was developed to provide the necessary level of abstraction for multiple vehicle types. The autopilot was also designed to be highly integrated with the Mavlink protocol for Micro Air Vehicle (MAV) communication. Mavlink is the native protocol for QGroundControl, a MAV ground control program. Features were added to QGroundControl to accommodate outdoor usage. Next, the Mavsim toolbox was developed for Scicoslab to allow hardware-in-the-loop testing, control design and analysis, and estimation algorithm testing and verification. In order to obtain linear models of aircraft dynamics, the JSBSim flight dynamics engine was extended to use a probabilistic Nelder-Mead simplex method. The JSBSim aircraft dynamics were compared with wind-tunnel data collected. Finally, a structured methodology for successive loop closure control design is proposed. This methodology is demonstrated along with the rest of the test-bed tools on a quadrotor, a fixed wing RC plane, and a ground vehicle. Test results for the ground vehicle are presented.

  9. Cooperating expert systems for Space Station - Power/thermal subsystem testbeds

    Science.gov (United States)

    Wong, Carla M.; Weeks, David J.; Sundberg, Gale R.; Healey, Kathleen L.; Dominick, Jeffrey S.

    1988-01-01

    The Systems Autonomy Demonstration Project (SADP) is a NASA-sponsored series of increasingly complex demonstrations to show the benefits of integrating knowledge-based systems with conventional process control in real-time, real-world problem domains that can facilitate the operations and availability of major Space Station distributed systems. This paper describes the system design, objectives, approaches, and status of each of the testbed knowledge-based systems. Simplified schematics of the systems are shown.

  10. Assessment of Bioremediation Technologies: Focus on Technologies Suitable for Field-Level Demonstrations and Applicable to DoD Contaminants.

    Science.gov (United States)

    1995-06-01

    Bioremediation Microbial Mats Phytoremediation /construc- ted wetlands White Rot Fungus Full scale commercial technology for treatment of hydro...industrial facilities include chromium, copper, nickel, lead, mercury , cadmium, and zinc. Table 3 shows that inorganics in soil were identified as high... mercury , molybdenum, nickel, selenium, and tin. Constructed wetlands. The passive bioremediation of metals in wetlands is a concept borrowed from

  11. Digital Preservation Theory and Application: Transcontinental Persistent Archives Testbed Activity

    Directory of Open Access Journals (Sweden)

    Paul Watry

    2007-12-01

    Full Text Available The National Archives and Records Administration (NARA and EU SHAMAN projects are working with multiple research institutions on tools and technologies that will supply a comprehensive, systematic, and dynamic means for preserving virtually any type of electronic record, free from dependence on any specific hardware or software. This paper describes the joint development work between the University of Liverpool and the San Diego Supercomputer Center (SDSC at the University of California, San Diego on the NARA and SHAMAN prototypes. The aim is to provide technologies in support of the required generic data management infrastructure. We describe a Theory of Preservation that quantifies how communication can be accomplished when future technologies are different from those available at present. This includes not only different hardware and software, but also different standards for encoding information. We describe the concept of a “digital ontology” to characterize preservation processes; this is an advance on the current OAIS Reference Model of providing representation information about records. To realize a comprehensive Theory of Preservation, we describe the ongoing integration of distributed shared collection management technologies, digital library browsing, and presentation technologies for the NARA and SHAMAN Persistent Archive Testbeds.

  12. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    International Nuclear Information System (INIS)

    White, Maurice A.; Qiu Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's)

  13. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    Science.gov (United States)

    White, Maurice A.; Qiu, Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's). .

  14. US Department of Energy, Office of Technology Development, mixed-waste treatment research, development, demonstration, testing, and evaluation

    International Nuclear Information System (INIS)

    Berry, J.B.; Backus, P.M.; Conley, T.B.; Coyle, G.J.; Lurk, P.W.; Wolf, S.M.

    1993-01-01

    Department of Energy (DOE) mixed waste is contaminated with both chemically hazardous and radioactive species. The DOE is responsible for regulating radioactive species while the Environmental Protection Agency (EPA) is responsible for regulating hazardous species. Dual regulations establish treatment standards and therefore affect the treatment technologies used to process mixed waste. This duality is reflected in technology development initiatives. Significant technology development has been conducted for either radioactive or hazardous waste, but limited technology development, specifically addressing mixed waste treatment issues, has been completed. Technology has not been designed, developed, demonstrated, or tested to produce a low-risk final waste form that increases the probability that the final waste form will be disposed

  15. Development of a Remotely Operated Vehicle Test-bed

    Directory of Open Access Journals (Sweden)

    Biao WANG

    2013-06-01

    Full Text Available This paper presents the development of a remotely operated vehicle (ROV, designed to serve as a convenient, cost-effective platform for research and experimental validation of hardware, sensors and control algorithms. Both of the mechanical and control system design are introduced. The vehicle with a dimension 0.65 m long, 0.45 m wide has been designed to have a frame structure for modification of mounted devices and thruster allocation. For control system, STM32 based MCU boards specially designed for this project, are used as core processing boards. And an open source, modular, flexible software is developed. Experiment results demonstrate the effectiveness of the test-bed.

  16. Segmented Aperture Interferometric Nulling Testbed (SAINT) II: component systems update

    Science.gov (United States)

    Hicks, Brian A.; Bolcar, Matthew R.; Helmbrecht, Michael A.; Petrone, Peter; Burke, Elliot; Corsetti, James; Dillon, Thomas; Lea, Andrew; Pellicori, Samuel; Sheets, Teresa; Shiri, Ron; Agolli, Jack; DeVries, John; Eberhardt, Andrew; McCabe, Tyler

    2017-09-01

    This work presents updates to the coronagraph and telescope components of the Segmented Aperture Interferometric Nulling Testbed (SAINT). The project pairs an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC) towards demonstrating capabilities for the future space observatories needed to directly detect and characterize a significant sample of Earth-sized worlds around nearby stars in the quest for identifying those which may be habitable and possibly harbor life. Efforts to improve the VNC wavefront control optics and mechanisms towards repeating narrowband results are described. A narrative is provided for the design of new optical components aimed at enabling broadband performance. Initial work with the hardware and software interface for controlling the segmented telescope mirror is also presented.

  17. OCTAVIUS: a new FP7 project demonstrating CO2 capture technologies

    NARCIS (Netherlands)

    Broutin, P.; Kvamsdal, H.M.; Marca, C. la; Os, P.J. van; Booth, N.

    2013-01-01

    The OCTAVIUS project (Optimisation of CO2 Capture Technology Allowing Verification and Implementation at Utility Scale) has started on March 1st 2012 for a period of 5 years, as part of the 7th Framework Programme of the European Commission. Gathering 15 European and 2 South African partners,

  18. Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Page, Janie; Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann; Chiu, Albert K.; Kellow, Bashar; Koch, Ed; Lipkin, Paul

    2011-07-01

    Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

  19. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  20. DEMONSTRATION BULLETIN: HIGH VOLTAGE ELECTRON BEAM TECHNOLOGY - HIGH VOLTAGE ENVIRONMENTAL APPLICATIONS, INC.

    Science.gov (United States)

    The high energy electron beam irradiation technology is a low temperature method for destroying complex mixtures of hazardous organic chemicals in solutions containing solids. The system consists of a computer-automated, portable electron beam accelerator and a delivery system. T...