WorldWideScience

Sample records for technology taxonomy mapping

  1. Taxonomies of Educational Technology Uses: Dewey, Chip and Me

    Science.gov (United States)

    Levin, James A.

    2014-01-01

    In the early 1990s, Chip Bruce created a taxonomy of education technology uses, which the author of the article helped to expand and evaluate. This taxonomy is based on John Dewey's "four impulses of the child": inquiry, construction, communication, and expression. This taxonomy has helped people interested in the uses of…

  2. A taxonomy of behaviour change methods: an Intervention Mapping approach.

    Science.gov (United States)

    Kok, Gerjo; Gottlieb, Nell H; Peters, Gjalt-Jorn Y; Mullen, Patricia Dolan; Parcel, Guy S; Ruiter, Robert A C; Fernández, María E; Markham, Christine; Bartholomew, L Kay

    2016-09-01

    In this paper, we introduce the Intervention Mapping (IM) taxonomy of behaviour change methods and its potential to be developed into a coding taxonomy. That is, although IM and its taxonomy of behaviour change methods are not in fact new, because IM was originally developed as a tool for intervention development, this potential was not immediately apparent. Second, in explaining the IM taxonomy and defining the relevant constructs, we call attention to the existence of parameters for effectiveness of methods, and explicate the related distinction between theory-based methods and practical applications and the probability that poor translation of methods may lead to erroneous conclusions as to method-effectiveness. Third, we recommend a minimal set of intervention characteristics that may be reported when intervention descriptions and evaluations are published. Specifying these characteristics can greatly enhance the quality of our meta-analyses and other literature syntheses. In conclusion, the dynamics of behaviour change are such that any taxonomy of methods of behaviour change needs to acknowledge the importance of, and provide instruments for dealing with, three conditions for effectiveness for behaviour change methods. For a behaviour change method to be effective: (1) it must target a determinant that predicts behaviour; (2) it must be able to change that determinant; (3) it must be translated into a practical application in a way that preserves the parameters for effectiveness and fits with the target population, culture, and context. Thus, taxonomies of methods of behaviour change must distinguish the specific determinants that are targeted, practical, specific applications, and the theory-based methods they embody. In addition, taxonomies should acknowledge that the lists of behaviour change methods will be used by, and should be used by, intervention developers. Ideally, the taxonomy should be readily usable for this goal; but alternatively, it should be

  3. Development and evaluation of a specialized task taxonomy for spatial planning - A map literacy experiment with topographic maps

    Science.gov (United States)

    Rautenbach, Victoria; Coetzee, Serena; Çöltekin, Arzu

    2017-05-01

    Topographic maps are among the most commonly used map types, however, their complex and information-rich designs depicting natural, human-made and cultural features make them difficult to read. Regardless of their complexity, spatial planners make extensive use of topographic maps in their work. On the other hand, various studies suggest that map literacy among the development planning professionals in South Africa is not very high. The widespread use of topographic maps combined with the low levels of map literacy presents challenges for effective development planning. In this paper we address some of these challenges by developing a specialized task taxonomy based on systematically assessed map literacy levels; and conducting an empirical experiment with topographic maps to evaluate our task taxonomy. In such empirical studies if non-realistic tasks are used, the results of map literacy tests may be skewed. Furthermore, experience and familiarity with the studied map type play a role in map literacy. There is thus a need to develop map literacy tests aimed at planners specifically. We developed a taxonomy of realistic map reading tasks typically executed during the planning process. The taxonomy defines six levels tasks of increasing difficulty and complexity, ranging from recognising symbols to extracting knowledge. We hypothesized that competence in the first four levels indicates functional map literacy. In this paper, we present results from an empirical experiment with 49 map literate participants solving a subset of tasks from the first four levels of the taxonomy with a topographic map. Our findings suggest that the proposed taxonomy is a good reference for evaluating topographic map literacy. Participants solved the tasks on all four levels as expected and we therefore conclude that the experiment based on the first four levels of the taxonomy successfully determined the functional map literacy of the participants. We plan to continue the study for the

  4. A topographic feature taxonomy for a U.S. national topographic mapping ontology

    Science.gov (United States)

    Varanka, Dalia E.

    2013-01-01

    Using legacy feature lists from the U.S. National Topographic Mapping Program of the twentieth century, a taxonomy of features is presented for purposes of developing a national topographic feature ontology for geographic mapping and analysis. After reviewing published taxonomic classifications, six basic classes are suggested; terrain, surface water, ecological regimes, built-up areas, divisions, and events. Aspects of ontology development are suggested as the taxonomy is described.

  5. Capturing the Meaning of Internet Search Queries by Taxonomy Mapping

    Science.gov (United States)

    Tikk, Domonkos; Kardkovács, Zsolt T.; Bánsághi, Zoltán

    Capturing the meaning of internet search queries can significantly improve the effectiveness of search retrieval. Users often have problem to find relevant answer to their queries, particularly, when the posted query is ambiguous. The orientation of the user can be greatly facilitated, if answers are grouped into topics of a fixed subject taxonomy. In this manner, the original problem can be transformed to the labelling of queries — and consequently, the answers — with the topic names. Thus the original problem is transformed into a classification set-up. This paper introduces our Ferrety algorithm that performs topic assignment, which also works when there is no directly available training data that describes the semantics of the subject taxonomy. The approach is presented via the example of ACM KDD Cup 2005 problem, where Ferrety was awarded for precision and creativity.

  6. A taxonomy and discussion of software attack technologies

    Science.gov (United States)

    Banks, Sheila B.; Stytz, Martin R.

    2005-03-01

    Software is a complex thing. It is not an engineering artifact that springs forth from a design by simply following software coding rules; creativity and the human element are at the heart of the process. Software development is part science, part art, and part craft. Design, architecture, and coding are equally important activities and in each of these activities, errors may be introduced that lead to security vulnerabilities. Therefore, inevitably, errors enter into the code. Some of these errors are discovered during testing; however, some are not. The best way to find security errors, whether they are introduced as part of the architecture development effort or coding effort, is to automate the security testing process to the maximum extent possible and add this class of tools to the tools available, which aids in the compilation process, testing, test analysis, and software distribution. Recent technological advances, improvements in computer-generated forces (CGFs), and results in research in information assurance and software protection indicate that we can build a semi-intelligent software security testing tool. However, before we can undertake the security testing automation effort, we must understand the scope of the required testing, the security failures that need to be uncovered during testing, and the characteristics of the failures. Therefore, we undertook the research reported in the paper, which is the development of a taxonomy and a discussion of software attacks generated from the point of view of the security tester with the goal of using the taxonomy to guide the development of the knowledge base for the automated security testing tool. The representation for attacks and threat cases yielded by this research captures the strategies, tactics, and other considerations that come into play during the planning and execution of attacks upon application software. The paper is organized as follows. Section one contains an introduction to our research

  7. Let's rise up to unite taxonomy and technology.

    Science.gov (United States)

    Bik, Holly M

    2017-08-01

    What do you think of when you think of taxonomy? An 18th century gentlemen in breeches? Or perhaps botany drawings hung on the walls of a boutique hotel? Such old-fashioned conceptions to the contrary, taxonomy is alive today although constantly struggling for survival and recognition. The scientific community is losing valuable resources as taxonomy experts age and retire, and funding for morphological studies and species descriptions remains stagnant. At the same time, organismal knowledge (morphology, ecology, physiology) has never been more important: genomic studies are becoming more taxon focused, the scientific community is recognizing the limitations of traditional "model" organisms, and taxonomic expertise is desperately needed to fight against global biodiversity declines resulting from human impacts. There has never been a better time for a taxonomic renaissance.

  8. Using the COMMVAC taxonomy to map vaccination communication interventions in Mozambique

    Science.gov (United States)

    Muloliwa, Artur Manuel; Cliff, Julie; Oku, Afiong; Oyo-Ita, Angela; Glenton, Claire; Ames, Heather; Kaufman, Jessica; Hill, Sophie; Cartier, Yuri; Bosch-Capblanch, Xavier; Rada, Gabriel; Lewin, Simon

    2017-01-01

    ABSTRACT Background: Improved communication about childhood vaccination is fundamental to increasing vaccine uptake in low-income countries. Mozambique, with 64% of children fully vaccinated, uses a range of communication interventions to promote uptake of childhood immunisation. Objectives: Using a taxonomy developed by the ‘Communicate to Vaccinate’ (COMMVAC) project, the study aims to identify and classify the existing communication interventions for vaccination in Mozambique and to find the gaps. Methods: We used a qualitative research approach to identify the range of communication interventions used in Mozambique. In-depth semi-structured interviews were carried out with key purposively selected personnel at national level and relevant documents were collected and analysed. These data were complemented with observations of communication during routine vaccination and campaigns in Nampula province. We used the COMMVAC taxonomy, which organises vaccination communication intervention according to its intended purpose and the population targeted, to map both routine and campaign interventions. Results: We identified interventions used in campaign and routine vaccination, or in both, fitting five of the seven taxonomy purposes, with informing or educating community members predominating. We did not identify any interventions that aimed to provide support or facilitate decision-making. There were interventions for all main target groups, although fewer for health providers. Overlap occurred: for example, interventions often targeted both parents and community members. Conclusions: We consider that the predominant focus on informing and educating community members is appropriate in the Mozambican context, where there is a high level of illiteracy and poor knowledge of the reasons for vaccination. We recommend increasing interventions for health providers, in particular training them in better communication for vaccination. The taxonomy was useful for identifying

  9. Pentexonomy: A Multi-Dimensional Taxonomy of Educational Online Technologies

    Science.gov (United States)

    Tuapawa, Kimberley; Sher, William; Gu, Ning

    2014-01-01

    Educational online technologies (EOTs) have revolutionised the delivery of online education, making a large contribution towards the global increase in demand for higher learning. Educationalists have striven to adapt through knowledge development and application of online tools, but making educationally sound choices about technology has proved…

  10. ORION-VIRCAT: a tool for mapping ICTV and NCBI taxonomies.

    Science.gov (United States)

    Valdivia-Granda, Willy; Larson, Francis

    2009-01-01

    Viruses, viroids and prions are the smallest infectious biological entities that depend on their host for replication. The number of pathogenic viruses is considerably large and their impact in human global health is well documented. Currently, the International Committee on the Taxonomy of Viruses (ICTV) has classified approximately 4379 virus species while the National Center for Biotechnology Information Viral Genomes Resource (NCBI-VGR) database has mapped 617 705 proteins to eight large taxonomic groups. Despite these efforts, an automated approach for mapping the ICTV master list and its officially accepted virus naming to the NCBI-VGR's taxonomical classification is not available. Due to metagenomic sequencing, it is likely that the discovery and naming of new viral species will increase by at least ten fold. Unfortunately, existing viral databases are not adequately prepared to scale, maintain and annotate automatically ultra-high throughput sequences and place this information into specific taxonomic categories. ORION-VIRCAT is a scalable and interoperable object-relational database designed to serve as a resource for the integration and verification of taxonomical classifications generated by the ICTV and NCBI-VGR. The current release (v1.0) of ORION-VIRCAT is implemented in PostgreSQL and it has been extended to ORACLE, MySQL and SyBase. ORION-VIRCAT automatically mapped and joined 617 705 entries from the NCBI-VGR to the viral naming of the ICTV. This detailed analysis revealed that 399 095 entries from the NCBI-VGR can be mapped to the ICTV classification and that one Order, 10 families, 35 genera and 503 species listed in the ICTV disagree with the the NCBI-VGR classification schema. Nevertheless, we were eable to correct several discrepancies mapping 234 000 additional entries.Database URL:http://www.orionbiosciences.com/research/orion-vircat.html.

  11. New Technology Makes Gene Mapping Cheaper, Faster

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_164255.html New Technology Makes Gene Mapping Cheaper, Faster: Study Researchers decoded ... they've developed a much cheaper and faster technology for mapping the genetic makeup of a living ...

  12. Technology and Bloom's Taxonomy: Tools to facilitate higher-level learning in chemistry

    Science.gov (United States)

    Morgan, Matthew Earle

    This research project ties together chemistry data acquisition technology, introductory chemistry laboratory experiments. and Bloom's Taxonomy of Educational Objectives into a unified learning model. The goal is to provide faculty and introductory chemistry students with the tools and exercises to experience higher levels of learning, as defined by Bloom's taxonomy. The tools developed as part of this project include data acquisition hardware and software, communications software, and computer simulations that enable higher-level learning situations. A series of five experiments using a discovery-based teaching model are developed as part of the learning model. The experiments bring together the hardware tools, software tools, and learning model to place students in situations that require students to use critical thinking skills and experience higher-level learning. Content-related application problems are also included in the experiments. The experiments are divided into three chemistry units of instruction that build on each other, but can also be used independently. Instructor training is an important part of this project. The successful integration of technology into educational situations cannot be accomplished without the support and understanding of faculty, staff, and teaching assistants. This aspect of the project focuses on shifting teaching and learning paradigms to encourage appropriate technology use and allow technology to become a major aspect of the high-level learning environment. Finally, students were surveyed in an attempt to measure the effectiveness of the learning model. Students were evaluated on chemistry concept retention, as well as their perception of learning. They were also asked how well they enjoyed this form of learning. Along with the tools themselves, this project provides templates that can launch future work in this area. The learning model, data acquisition tools, and experiment writing templates are developed here to provide

  13. Alignment of Assessment Objectives with Instructional Objectives Using Revised Bloom's Taxonomy--The Case for Food Science and Technology Education

    Science.gov (United States)

    Jideani, V. A.; Jideani, I. A.

    2012-01-01

    Nine food science and technology (FST) subjects were assessed for alignment between the learning outcomes and assessment using revised Bloom's taxonomy (RBT) of cognitive knowledge. Conjoint analysis was used to estimate the utilities of the levels of cognitive, knowledge, and the attribute importance (cognitive process and knowledge dimension)…

  14. Mapping Knowledge-Making in Writing Center Research: A Taxonomy of Methodologies

    Science.gov (United States)

    Liggett, Sarah; Jordan, Kerri; Price, Steve

    2011-01-01

    This article proposes a taxonomy of methodologies to understand how knowledge is--and can be--made in the complex context of writing centers. The authors found it to be a powerful tool to generate critical thinking, helping to classify, critique, and retrieve knowledge. Likewise, they believe it can serve various audiences. For example, those…

  15. Taxonomy of Means and Ends in Aquaculture Production—Part 4: The Mapping of Technical Solutions onto Multiple Treatment Functions

    Directory of Open Access Journals (Sweden)

    Bjorgvin Vilbergsson

    2016-11-01

    Full Text Available Designing aquaculture production units will require decisions on which treatment to include, e.g., the intensification of the system, and then a decision on a technical solution for each treatment function selected to implement. To complicate matters, each technical solution is not unique to each treatment function, but has a multiple effect on the system. This interaction of a technical solution to multiple treatment functions will play a part in the decision making process. Previous work by the authors has made a taxonomy of all technical solutions for the treatment function, and in this article, how technical solutions affect treatment functions is mapped. The article views the aquaculture production system as a transformation process with three sets of functions, input, treatment and output. Based on a comprehensive literature review where all technical solutions were found and categorized into a taxonomy, their effect on treatment function was mapped using a quality function deployment (QFD. The result is a matrix that gives an evaluation on the interaction. This work is a step towards an aquaculture engineering design methodology.

  16. Phase II evaluation of clinical coding schemes: completeness, taxonomy, mapping, definitions, and clarity. CPRI Work Group on Codes and Structures.

    Science.gov (United States)

    Campbell, J R; Carpenter, P; Sneiderman, C; Cohn, S; Chute, C G; Warren, J

    1997-01-01

    To compare three potential sources of controlled clinical terminology (READ codes version 3.1, SNOMED International, and Unified Medical Language System (UMLS) version 1.6) relative to attributes of completeness, clinical taxonomy, administrative mapping, term definitions and clarity (duplicate coding rate). The authors assembled 1929 source concept records from a variety of clinical information taken from four medical centers across the United States. The source data included medical as well as ample nursing terminology. The source records were coded in each scheme by an investigator and checked by the coding scheme owner. The codings were then scored by an independent panel of clinicians for acceptability. Codes were checked for definitions provided with the scheme. Codes for a random sample of source records were analyzed by an investigator for "parent" and "child" codes within the scheme. Parent and child pairs were scored by an independent panel of medical informatics specialists for clinical acceptability. Administrative and billing code mapping from the published scheme were reviewed for all coded records and analyzed by independent reviewers for accuracy. The investigator for each scheme exhaustively searched a sample of coded records for duplications. SNOMED was judged to be significantly more complete in coding the source material than the other schemes (SNOMED* 70%; READ 57%; UMLS 50%; *p < .00001). SNOMED also had a richer clinical taxonomy judged by the number of acceptable first-degree relatives per coded concept (SNOMED* 4.56, UMLS 3.17; READ 2.14, *p < .005). Only the UMLS provided any definitions; these were found for 49% of records which had a coding assignment. READ and UMLS had better administrative mappings (composite score: READ* 40.6%; UMLS* 36.1%; SNOMED 20.7%, *p < .00001), and SNOMED had substantially more duplications of coding assignments (duplication rate: READ 0%; UMLS 4.2%; SNOMED* 13.9%, *p < .004) associated with a loss of clarity

  17. [Research on identification of cabbages and weeds combining spectral imaging technology and SAM taxonomy].

    Science.gov (United States)

    Zu, Qin; Zhang, Shui-fa; Cao, Yang; Zhao, Hui-yi; Dang, Chang-qing

    2015-02-01

    Weeds automatic identification is the key technique and also the bottleneck for implementation of variable spraying and precision pesticide. Therefore, accurate, rapid and non-destructive automatic identification of weeds has become a very important research direction for precision agriculture. Hyperspectral imaging system was used to capture the hyperspectral images of cabbage seedlings and five kinds of weeds such as pigweed, barnyard grass, goosegrass, crabgrass and setaria with the wavelength ranging from 1000 to 2500 nm. In ENVI, by utilizing the MNF rotation to implement the noise reduction and de-correlation of hyperspectral data and reduce the band dimensions from 256 to 11, and extracting the region of interest to get the spectral library as standard spectra, finally, using the SAM taxonomy to identify cabbages and weeds, the classification effect was good when the spectral angle threshold was set as 0. 1 radians. In HSI Analyzer, after selecting the training pixels to obtain the standard spectrum, the SAM taxonomy was used to distinguish weeds from cabbages. Furthermore, in order to measure the recognition accuracy of weeds quantificationally, the statistical data of the weeds and non-weeds were obtained by comparing the SAM classification image with the best classification effects to the manual classification image. The experimental results demonstrated that, when the parameters were set as 5-point smoothing, 0-order derivative and 7-degree spectral angle, the best classification result was acquired and the recognition rate of weeds, non-weeds and overall samples was 80%, 97.3% and 96.8% respectively. The method that combined the spectral imaging technology and the SAM taxonomy together took full advantage of fusion information of spectrum and image. By applying the spatial classification algorithms to establishing training sets for spectral identification, checking the similarity among spectral vectors in the pixel level, integrating the advantages of

  18. MGmapper: Reference based mapping and taxonomy annotation of metagenomics sequence reads

    DEFF Research Database (Denmark)

    Petersen, Thomas Nordahl; Lukjancenko, Oksana; Thomsen, Martin Christen Frølund

    2017-01-01

    .5% for Kraken and both methods identified all species with no false positives. Extensive read count statistics are provided in plain text and excel sheets for both rejected and accepted taxonomy annotations. The use of custom databases is possible for the command-line version of MGmapper, and the complete......An increasing amount of species and gene identification studies rely on the use of next generation sequence analysis of either single isolate or metagenomics samples. Several methods are available to perform taxonomic annotations and a previous metagenomics benchmark study has shown that a vast......-processing analysis to produce reliable taxonomy annotation at species and strain level resolution. An in-vitro bacterial mock community sample comprised of 8 genuses, 11 species and 12 strains was previously used to benchmark metagenomics classification methods. After applying a post-processing filter, we obtained...

  19. MGmapper: Reference based mapping and taxonomy annotation of metagenomics sequence reads.

    Science.gov (United States)

    Petersen, Thomas Nordahl; Lukjancenko, Oksana; Thomsen, Martin Christen Frølund; Maddalena Sperotto, Maria; Lund, Ole; Møller Aarestrup, Frank; Sicheritz-Pontén, Thomas

    2017-01-01

    An increasing amount of species and gene identification studies rely on the use of next generation sequence analysis of either single isolate or metagenomics samples. Several methods are available to perform taxonomic annotations and a previous metagenomics benchmark study has shown that a vast number of false positive species annotations are a problem unless thresholds or post-processing are applied to differentiate between correct and false annotations. MGmapper is a package to process raw next generation sequence data and perform reference based sequence assignment, followed by a post-processing analysis to produce reliable taxonomy annotation at species and strain level resolution. An in-vitro bacterial mock community sample comprised of 8 genuses, 11 species and 12 strains was previously used to benchmark metagenomics classification methods. After applying a post-processing filter, we obtained 100% correct taxonomy assignments at species and genus level. A sensitivity and precision at 75% was obtained for strain level annotations. A comparison between MGmapper and Kraken at species level, shows MGmapper assigns taxonomy at species level using 84.8% of the sequence reads, compared to 70.5% for Kraken and both methods identified all species with no false positives. Extensive read count statistics are provided in plain text and excel sheets for both rejected and accepted taxonomy annotations. The use of custom databases is possible for the command-line version of MGmapper, and the complete pipeline is freely available as a bitbucked package (https://bitbucket.org/genomicepidemiology/mgmapper). A web-version (https://cge.cbs.dtu.dk/services/MGmapper) provides the basic functionality for analysis of small fastq datasets.

  20. Taxonomy of Payments

    DEFF Research Database (Denmark)

    Hedman, Jonas; Tan, Felix B.; Holst, Jacques

    2017-01-01

    . The approach draws heavily on organizational systematics to better understand payers’ choice of payment instruments. Findings: A four-category taxonomy of payments was developed. The authors refer to the taxonomy as the 4Ps: the purchase, the payer, the payment instrument, and the physical technology......) there are over 12,000 startups in the payment arena. For them, the taxonomy can function as a template for the design of payment instruments, as well as understanding the various factors that influence payer choice of payment instruments. Originality/value: The main contribution of this paper is the 4Ps taxonomy...

  1. Patent Overlay Mapping: Visualizing Technological Distance

    CERN Document Server

    Kay, Luciano; Youtie, Jan; Porter, Alan L; Rafols, Ismael

    2012-01-01

    The purpose of this paper is to present a new global patent map that represents all technological categories, and a method to locate patent data of individual organizations and technological fields on the global map. This second patent overlay map technique is shown to be of potential interest to support competitive intelligence and policy decision-making. The global patent map is based on similarities in citing-to-cited relationships between categories of the International Patent Classification (IPC) of European Patent Office (EPO) patents from 2000 to 2006. This patent dataset, extracted from PatStat database, represents more than 760,000 patent records in more than 400 IPC categories. To illustrate the kind of analytical support offered by this approach, the paper shows the overlay of nanotechnology-related patenting activities of two companies and two different nanotechnology subfields on to the global patent map. The exercise shows the potential of patent overlay maps to visualize technological areas and...

  2. Mapping Technology Space by Normalizing Technology Relatedness Networks

    CERN Document Server

    Alstott, Jeff; Yan, Bowen; Luo, Jianxi

    2015-01-01

    Technology is a complex system, with technologies relating to each other in a space that can be mapped as a network. The technology relatedness network's structure can reveal properties of technologies and of human behavior, if it can be mapped accurately. Technology networks have been made from patent data, using several measures of relatedness. These measures, however, are influenced by factors of the patenting system that do not reflect technologies or their relatedness. We created technology networks that precisely controlled for these impinging factors and normalized them out, using data from 3.9 million patents. The normalized technology relatedness networks were sparse, with only ~20% of technology domain pairs more related than would be expected by chance. Different measures of technology relatedness became more correlated with each other after normalization, approaching a single dimension of technology relatedness. The normalized network corresponded with human behavior: we analyzed the patenting his...

  3. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available mphii_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cycas+rumphii&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Cycas+rumphii&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cycas+rumphii&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cycas+rumphii&t=NS ...

  4. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available p://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pteranodon+longiceps&t=L http://biosciencedbc.jp/taxonomy_icon.../icon.cgi?i=Pteranodon+longiceps&t=NL http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Pteranodon+longiceps&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pteranodon+longiceps&t=NS ...

  5. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available p://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Triceratops+horridus&t=L http://biosciencedbc.jp/taxonomy_icon.../icon.cgi?i=Triceratops+horridus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Triceratops+horridus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Triceratops+horridus&t=NS ...

  6. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ltithorax_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brachiosaurus+altithorax&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Brachiosaurus+altithorax&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Brachiosaurus+altithorax&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brachiosaurus+altithorax&t=NS ...

  7. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available la_trichopoda_S.png Amborella_trichopoda_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Amborella+t...richopoda&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Amborella+trichopoda&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Amborella+trichopoda&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Amborella+trichopoda&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=13 ...

  8. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g Trichoplax_adhaerens_S.png Trichoplax_adhaerens_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tr...ichoplax+adhaerens&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Trichoplax+adhaerens&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Trichoplax+adhaerens&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Trichoplax+adhaerens&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=95 ...

  9. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g Hydra_magnipapillata_S.png Hydra_magnipapillata_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hy...dra+magnipapillata&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hydra+magnipapillata&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Hydra+magnipapillata&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Hydra+magnipapillata&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=159 ...

  10. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available L.png Schistosoma_mansoni_S.png Schistosoma_mansoni_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=...Schistosoma+mansoni&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schistosoma+mansoni&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Schistosoma+mansoni&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Schistosoma+mansoni&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=185 ...

  11. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available aurus_stenops_L.png Stegosaurus_stenops_NL.png Stegosaurus_stenops_S.png Stegosaurus_stenops_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Stegosaurus+stenops&t=L http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Stegosaurus+stenops&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=S...tegosaurus+stenops&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Stegosaurus+stenops&t=NS ...

  12. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Phaeodactylum tricornutum Phaeodactylum_tricornutum_L.png Phaeodactylum_tricornutum..._NL.png Phaeodactylum_tricornutum_S.png Phaeodactylum_tricornutum_NS.png http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Phaeodactylum+tricornutum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Phaeodactylum+trico...rnutum&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Phaeodactylum+trico...rnutum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Phaeodactylum+tricornutum&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=213 ...

  13. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available aurus_rex_L.png Tyrannosaurus_rex_NL.png Tyrannosaurus_rex_S.png Tyrannosaurus_rex_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Tyrannosaurus+rex&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tyrann...osaurus+rex&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tyrannosaurus+r...ex&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tyrannosaurus+rex&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=109 ...

  14. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _NL.png Caenorhabditis_elegans_S.png Caenorhabditis_elegans_NS.png http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Caenorhabditis+elegans&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Caenorhabditis+elegans&t...=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Caenorhabditis+elegans&t=S h...ttp://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Caenorhabditis+elegans&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=94 ...

  15. Recent trends in space mapping technology

    DEFF Research Database (Denmark)

    Bandler, John W.; Cheng, Qingsha S.; Hailu, Daniel;

    2004-01-01

    We review recent trends in the art of Space Mapping (SM) technology for modeling and design of engineering devices and systems. The SM approach aims at achieving a satisfactory solution with a handful of computationally expensive so-called "fine" model evaluations. SM procedures iteratively update...

  16. Recent trends in space mapping technology

    DEFF Research Database (Denmark)

    Bandler, John W.; Cheng, Qingsha S.; Hailu, Daniel

    2004-01-01

    We review recent trends in the art of Space Mapping (SM) technology for modeling and design of engineering devices and systems. The SM approach aims at achieving a satisfactory solution with a handful of computationally expensive so-called "fine" model evaluations. SM procedures iteratively update...

  17. Enhanced surrogate models for statistical design exploiting space mapping technology

    DEFF Research Database (Denmark)

    Koziel, Slawek; Bandler, John W.; Mohamed, Achmed S.;

    2005-01-01

    We present advances in microwave and RF device modeling exploiting Space Mapping (SM) technology. We propose new SM modeling formulations utilizing input mappings, output mappings, frequency scaling and quadratic approximations. Our aim is to enhance circuit models for statistical analysis...

  18. Toward a Taxonomy for Multi-Omics Science? Terminology Development for Whole Genome Study Approaches by Omics Technology and Hierarchy.

    Science.gov (United States)

    Pirih, Nina; Kunej, Tanja

    2017-01-01

    Omics is a form of high-throughput systems science. However, taxonomies for omics studies are limited, inviting us to rethink new ways in which we classify, prioritize, and rank various omics systems science studies. In this overarching context, the genome-wide study approaches have proliferated in number and popularity over the past decade. However, their hierarchy is not well organized and the development of attendant terminology is not controlled. In the present study, we searched the literature in PubMed and the Web of Science databases published from March 1999 to September 2016 using the keywords, including genome-wide, association, whole genome, transcriptome-wide, metabolome, epigenome, and phenome. We identified the whole genome study approaches and sorted them according to the omics technology types (genomics, proteomics, and so on) and hierarchy. Thirty-four studies from over 90 publications were sorted into 10 omics groups: DNA level, transcriptomics, proteomics, interactomics, metabolomics, epigenomics, miRNomics/ncRNomics, phenomics, environmental omics, and pharmacogenomics. We suggest here modifications of terminology for study approaches, which share the same acronyms such as EWAS for epigenome-wide association and environment-wide association studies, and MWAS for methylome-wide association and metabolome-wide association studies. Taken together, our study presented here provides the first systematic review and analyses of whole genome approaches and presents a baseline for further controlled terminology development, with a view to a new taxonomy for omics and multi-omics studies in the future. Finally, we call for greater dialogue and collaboration across diverse omics knowledge domains and applications, for example, across plants, animals, clinical medicine, and ecology.

  19. Examining Technology-Enhanced Coursework in Rehabilitation Counselor Education Using Bloom's Taxonomy of Learning

    Science.gov (United States)

    Tansey, Timothy N.; Schopieray, Scott; Boland, Elizabeth; Lane, Frank; Pruett, Steven R.

    2009-01-01

    The use of technology-enhanced coursework by rehabilitation counselor educators has increased dramatically over the last decade. In many cases, educators are using new technologies to support traditional modes of teaching and learning. Research conducted in technology-enhanced coursework has primarily focused on the cognitive and psychomotor…

  20. Developing Emotion-Aware, Advanced Learning Technologies: A Taxonomy of Approaches and Features

    Science.gov (United States)

    Harley, Jason M.; Lajoie, Susanne P.; Frasson, Claude; Hall, Nathan C.

    2017-01-01

    A growing body of work on intelligent tutoring systems, affective computing, and artificial intelligence in education is exploring creative, technology-driven approaches to enhance learners' experience of adaptive, positively-valenced emotions while interacting with advanced learning technologies. Despite this, there has been no published work to…

  1. Technology Road Mapping for Innovation Pathways of Fibrates: A ...

    African Journals Online (AJOL)

    Technology Road Mapping for Innovation Pathways of Fibrates: A ... Purpose: To examine international technology development of fibrates ... It will aid researchers, entrepreneurs, investors and policymakers to identify foci for fibrate research ...

  2. Taxonomy Icon Data: maize [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available /biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Zea+mays&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Zea...+mays&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Zea+mays&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Zea+mays&t=NS ...

  3. Taxonomy Icon Data: rice [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ativa_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oryza+sativa&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Oryza+sativa&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oryza+sativa&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oryza+sativa&t=NS ...

  4. Taxonomy Icon Data: blue whale [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available s_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Balaenoptera+musculus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Balaenoptera+musculus&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Balaenoptera+musculus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Balaenoptera+musculus&t=NS ...

  5. Taxonomy Icon Data: loblolly pine [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available nus_taeda_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pinus+taeda&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Pinus+taeda&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pinus+taeda&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pinus+taeda&t=NS ...

  6. Taxonomy Icon Data: cabbage [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _oleracea_S.png Brassica_oleracea_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassica+oleracea&...t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassica+oleracea&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Brassica+oleracea&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassica+oleracea&t=NS ...

  7. Taxonomy Icon Data: peach [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g Prunus_persica_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Prunus+persica&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Prunus+persica&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Prunus...+persica&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Prunus+persica&t=NS ...

  8. Taxonomy Icon Data: apple [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available pumila_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Malus+pumila&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Malus+pumila&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Malus+pumila&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Malus+pumila&t=NS ...

  9. Taxonomy Icon Data: sperm whale [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ephalus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Physeter+macrocephalus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Physeter+macrocephalus&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Physeter+macrocephalus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Physeter+macrocephalus&t=NS ...

  10. Taxonomy Icon Data: platypus [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available us_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ornithorhynchus+anatinus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Ornithorhynchus+anatinus&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Ornithorhynchus+anatinus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ornithorhynchus+anatinus&t=NS ...

  11. Taxonomy Icon Data: field mustard [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available S.png Brassica_rapa_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassica+rapa&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Brassica+rapa&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brass...ica+rapa&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassica+rapa&t=NS ...

  12. Taxonomy Icon Data: oat [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available tiva_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Avena+sativa&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Avena+sativa&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Avena+sativa&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Avena+sativa&t=NS ...

  13. Taxonomy Icon Data: onion [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available a_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Allium+cepa&t=L http://biosciencedbc.jp/taxonomy_i...con/icon.cgi?i=Allium+cepa&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Allium+cepa&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Allium+cepa&t=NS ...

  14. Taxonomy Icon Data: purple urchin [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ratus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Strongylocentrotus+purpuratus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Strongylocentrotus+purpuratus&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Strongylocentrotus+purpuratus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Strongylocentrotus+purpuratus&t=NS ...

  15. Taxonomy Icon Data: domestic cat [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available tris_catus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Felis+silvestris+catus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Felis+silvestris+catus&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Felis+silvestris+catus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Felis+silvestris+catus&t=NS ...

  16. Taxonomy Icon Data: raccoon dog [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available reutes_procyonoides_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Nyctereutes+procyonoides&t=L htt...p://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Nyctereutes+procyonoides&t=NL http:...//biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Nyctereutes+procyonoides&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Nyctereutes+procyonoides&t=NS ...

  17. Taxonomy Icon Data: valencia orange [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _sinensis_S.png Citrus_sinensis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Citrus+sinensis&t=L ...http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Citrus+sinensis&t=NL http://biosciencedbc.jp/taxonomy_icon/...icon.cgi?i=Citrus+sinensis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Citrus+sinensis&t=NS ...

  18. Taxonomy Icon Data: rabbit [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oryctolagus+cuniculus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Oryctolagus+cuniculus&t=NL http://biosciencedbc.jp/taxonomy_ico...n/icon.cgi?i=Oryctolagus+cuniculus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oryctolagus+cuniculus&t=NS ...

  19. Taxonomy Icon Data: white rhinoceros [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ceratotherium+simum&t=L http://biosciencedbc.jp/taxonomy_...icon/icon.cgi?i=Ceratotherium+simum&t=NL http://biosciencedbc.jp/taxonomy_icon/ic...on.cgi?i=Ceratotherium+simum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ceratotherium+simum&t=NS ...

  20. Taxonomy Icon Data: rape [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Brassica_napus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassica+napus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Brassica+napus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassic...a+napus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassica+napus&t=NS ...

  1. Who's Who in Internet Politics: A Taxonomy of Information Technology Policy

    Science.gov (United States)

    Atkinson, Robert D.

    2010-01-01

    A decade ago, before the tech boom collapsed and the digital economy bubble burst, it seemed to some that issues surrounding information technology (IT) might be central to the politics of the early 21st century. But after September 11, 2001, with so much else on everyone's minds, "digital politics" seemed a boring sideshow. Technocrats,…

  2. Taxonomy Icon Data: Grey heron [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _NL.png Ardea_cinerea_S.png Ardea_cinerea_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ardea+cine...rea&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ardea+cinerea&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Ardea+cinerea&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi...?i=Ardea+cinerea&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=2 ...

  3. Taxonomy Icon Data: water bears [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ng Echiniscus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Echiniscus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Echiniscus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Echiniscus&t=S ht...tp://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Echiniscus&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=58 ...

  4. Taxonomy Icon Data: pig [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sus+scrofa+domestica&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Sus+scrofa+domestica&t=NL http://biosciencedbc.jp/taxonomy_icon/...icon.cgi?i=Sus+scrofa+domestica&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sus+scrofa+domestica&t=...NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=166 ...

  5. Taxonomy Icon Data: Peanut [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available gaea_S.png Arachis_hypogaea_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Arachis+hypogaea&t=L htt...p://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Arachis+hypogaea&t=NL http://biosciencedbc.jp/taxonomy_icon/ic...on.cgi?i=Arachis+hypogaea&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ar...achis+hypogaea&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=207 ...

  6. Taxonomy Icon Data: mallard [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available latyrhynchos_NL.png Anas_platyrhynchos_S.png Anas_platyrhynchos_NS.png http://biosciencedbc.jp/taxonomy_icon.../icon.cgi?i=Anas+platyrhynchos&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anas+platyrhynchos&t=NL ...http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anas+platyrhynchos&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Anas+platyrhynchos&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=180 ...

  7. Taxonomy Icon Data: Common mormon [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ng Papilio_polytes_S.png Papilio_polytes_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papilio+pol...ytes&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papilio+polytes&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Papilio+polytes&t=S http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Papilio+polytes&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=80 ...

  8. Taxonomy Icon Data: Asian Swallowtail [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available png Papilio_xuthus_S.png Papilio_xuthus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papilio+xuth...us&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papilio+xuthus&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Papilio+xuthus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cg...i?i=Papilio+xuthus&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=123 ...

  9. Taxonomy Icon Data: Bacillus subtilis [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g Bacillus_subtilis_S.png Bacillus_subtilis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus...+subtilis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus+subtilis&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Bacillus+subtilis&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Bacillus+subtilis&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=214 ...

  10. Digital Technology for Geological Field Mapping

    Science.gov (United States)

    Rourke, Peter; Smith, Stuart; Vaughan, Alan; Ellis, Jenny

    2014-05-01

    The amount of time that students and professionals spend in the field has reduced over the past 25 years (Gibbs, 2012). Recent advances in technology are changing the way students and professionals are able to conduct geological field study. Applications such as Midland Valley Exploration's FieldMove Clino now allow the geologist to use their smartphone as a fast, georeferenced measuring device compared with a traditional compass-clinometer. Although we support the view that an understanding of field mapping and model building, taught at university level, is essential to give the geologist the ability to think in three and four dimensions, new technologies that automate the ability to digitise and visualise data in the field lead to a better appreciation of the geometry, scale, and evolution of geological structures and trapping mechanisms that will be encountered during a career in industry. The majority of future industry professionals own a smartphone or tablet device: A recent study found that four-fifths of new students own a smartphone and one-fifth own a tablet device (UCAS Media, 2013). This figure is increasing with each new intake of geoscience students. With the increased availability and affordability of smartphone and tablet devices, new techniques are being examined for digital data collection in the field. If the trend continues that geoscience students are likely to spend less time in the field than their predecessors, then the time available must be spent as effectively as possible. Digital devices allow students and professionals alike to optimise the time spent in the field, allowing more time to think about geological relationships, and highlighting areas of uncertainty that can be studied further. This poster will examine the use of new digital smartphone and tablet devices for the collection of geological field data.

  11. Strategic intelligence on emerging technologies: Scientometric overlay mapping

    NARCIS (Netherlands)

    Rotolo, D.; Rafols, I.; Hopkins, M.M.; Leydesdorff, L.

    This paper examines the use of scientometric overlay mapping as a tool of “strategic intelligence” to aid the governing of emerging technologies. We develop an integrative synthesis of different overlay mapping techniques and associated perspectives on technological emergence across geographical,

  12. A technology mapping of boolean functions for CPLDs

    Science.gov (United States)

    Kania, Dariusz

    2014-10-01

    The effective technology mapping for PAL-based Complex PLDs is presented. The aim of this approach is to cover a multiple-output function by a minimal number of PAL-based logic blocks. Proposed algorithm, implemented within the PALDec system, has been used for synthesizing the benchmarks. The obtained results are compared with the classical technology mapping.

  13. Information Technology In Supply Chain Operations: A Road Map ...

    African Journals Online (AJOL)

    Information Technology In Supply Chain Operations: A Road Map To Success. ... map to successful implementation of Information Technology (IT) to Supply Chain ... of critical success factors, the role of IT in SCM and the overall benefits which ... stressing that connecting numerous information systems and integrating data ...

  14. Enhancing a taxonomy for health information technology: an exploratory study of user input towards folksonomy.

    Science.gov (United States)

    Dixon, Brian E; McGowan, Julie J

    2010-01-01

    The U.S. Agency for Healthcare Research and Quality has created a public website to disseminate critical information regarding its health information technology initiative. The website is maintained by AHRQ's Natiomal Resource Center (NRC) for Health Information Technology. In the latest continuous quality improvement project, the NRC used the site's search logs to extract user-generated search phrases. The phrases were then compared to the site's controlled vocabulary with respect to language, grammar, and search precision. Results of the comparison demonstrate that search log data can be a cost-effective way to improve controlled vocabularies as well as information retrieval. User-entered search phrases were found to also share many similarities with folksonomy tags.

  15. Method for Stereo Mapping Based on Objectarx and Pipeline Technology

    Science.gov (United States)

    Liu, F.; Chen, T.; Lin, Z.; Yang, Y.

    2012-07-01

    Stereo mapping is an important way to acquire 4D production. Based on the development of the stereo mapping and the characteristics of ObjectARX and pipeline technology, a new stereo mapping scheme which can realize the interaction between the AutoCAD and digital photogrammetry system is offered by ObjectARX and pipeline technology. An experiment is made in order to make sure the feasibility with the example of the software MAP-AT (Modern Aerial Photogrammetry Automatic Triangulation), the experimental results show that this scheme is feasible and it has very important meaning for the realization of the acquisition and edit integration.

  16. Asteroid taxonomy

    Science.gov (United States)

    Tholen, David J.; Barucci, M. Antonietta

    1989-01-01

    The spectral reflectivity of asteroid surfaces over the wavelength range of 0.3 to 1.1 micron can be used to classify these objects into several broad groups with similar spectral characteristics. The three most recently developed taxonomies group the asteroids into 9, 11, or 14 different clases, depending on the technique used to perform the analysis. The distribution of the taxonomic classes shows that darker and redder objects become more dominant at larger heliocentric distances, while the rare asteroid types are found more frequently among the small objects of the planet-crossing population.

  17. Taxonomy Icon Data: Ramazzottius [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Ramazzottius Ramazzottius Tardigrada Ramazzottius_L.png Ramazzottius_NL.png Ramazzottius_S.png Ramazzotti...us_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ramazzottius&t=L http://bio...sciencedbc.jp/taxonomy_icon/icon.cgi?i=Ramazzottius&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ramazzotti...us&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ramazzottius&t=NS

  18. Taxonomy Icon Data: tobacco [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available tobacco Nicotiana tabacum Nicotiana_tabacum_L.png Nicotiana_tabacum_NL.png Nicotiana_tabacum_S.png Nico...tiana_tabacum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Nicotiana+tabacum&...t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Nicotiana+tabacum&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Nico...tiana+tabacum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Nicotiana+tabacum&t=NS ...

  19. Taxonomy Icon Data: sorghum [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available sorghum Sorghum bicolor Sorghum_bicolor_L.png Sorghum_bicolor_NL.png Sorghum_bicolor_S.png Sorghum_bico...lor_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sorghum+bicolor&t=L http://b...iosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sorghum+bicolor&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sorghum+bico...lor&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sorghum+bicolor&t=NS ...

  20. Taxonomy Icon Data: Lotus corniculatus [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Lotus corniculatus Lotus corniculatus Lotus_corniculatus_L.png Lotus_corniculatus_NL.png Lotus_corn...iculatus_S.png Lotus_corniculatus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lotus+corn...iculatus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lotus+corniculatus&t=NL http://bioscie...ncedbc.jp/taxonomy_icon/icon.cgi?i=Lotus+corniculatus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lotus+corniculatus&t=NS ...

  1. Taxonomy Icon Data: barley [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available barley Hordeum vulgare Hordeum_vulgare_L.png Hordeum_vulgare_NL.png Hordeum_vulgare_S.png Hordeum_vu...lgare_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hordeum+vulgare&t=L http://bi...osciencedbc.jp/taxonomy_icon/icon.cgi?i=Hordeum+vulgare&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hordeum+vu...lgare&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hordeum+vulgare&t=NS ...

  2. Taxonomy Icon Data: radish [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available radish Raphanus sativus Raphanus_sativus_L.png Raphanus_sativus_NL.png Raphanus_sativu...s_S.png Raphanus_sativus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Raphanus+sativus&t=L htt...p://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Raphanus+sativus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Raphanus+sativu...s&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Raphanus+sativus&t=NS ...

  3. Taxonomy Icon Data: thale cress [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available .png Arabidopsis_thaliana_S.png Arabidopsis_thaliana_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i...=Arabidopsis+thaliana&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Arabidopsis+thaliana&t=NL http://...biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Arabidopsis+thaliana&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Arabidopsis+thaliana&t=NS ...

  4. Taxonomy Icon Data: alpaca [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available gna_pacos_L.png Vicugna_pacos_NL.png Vicugna_pacos_S.png Vicugna_pacos_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Vicugna+pacos&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Vicugna+pacos&t=NL htt...p://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Vicugna+pacos&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Vicugna+pacos&t=NS ...

  5. Taxonomy Icon Data: dugong [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available L.png Dugong_dugon_NL.png Dugong_dugon_S.png Dugong_dugon_NS.png http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Dugong+dugon&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Dugong+dugon&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Dugong+dugon&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Dugong+dugon&t=NS ...

  6. Taxonomy Icon Data: llama [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ma_L.png Lama_glama_NL.png Lama_glama_S.png Lama_glama_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi...?i=Lama+glama&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lama+glama&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Lama+glama&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lama+glama&t=NS ...

  7. Taxonomy Icon Data: Aardvark [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available opus_afer_L.png Orycteropus_afer_NL.png Orycteropus_afer_S.png Orycteropus_afer_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Orycteropus+afer&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Orycteropu...s+afer&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Orycteropus+afer&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Orycteropus+afer&t=NS ...

  8. Taxonomy Icon Data: tuatara [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available png Sphenodon_punctatus_NL.png Sphenodon_punctatus_S.png Sphenodon_punctatus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Sphenodon+punctatus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sphenodon+...punctatus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sphenodon+punctat...us&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sphenodon+punctatus&t=NS ...

  9. Taxonomy Icon Data: Chile pepper [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available annuum_S.png Capsicum_annuum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Capsicum+annuum&t=L htt...p://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Capsicum+annuum&t=NL http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Capsicum+annuum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Capsicum+annuum&t=NS ...

  10. Taxonomy Icon Data: wild goat [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Capra_aegagrus_L.png Capra_aegagrus_NL.png Capra_aegagrus_S.png Capra_aegagrus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Capra+aegagrus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Capra+aegagru...s&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Capra+aegagrus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Capra+aegagrus&t=NS ...

  11. Taxonomy Icon Data: sika deer [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ervus_nippon_L.png Cervus_nippon_NL.png Cervus_nippon_S.png Cervus_nippon_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Cervus+nippon&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cervus+nippon&t=NL ...http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cervus+nippon&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cervus+nippon&t=NS ...

  12. Taxonomy Icon Data: fruit fly [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available la_melanogaster_NL.png Drosophila_melanogaster_S.png Drosophila_melanogaster_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Drosophila+melanogaster&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Drosop...hila+melanogaster&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Drosophil...a+melanogaster&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Drosophila+melanogaster&t=NS ...

  13. Taxonomy Icon Data: rhesus monkey [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available acaca_mulatta_L.png Macaca_mulatta_NL.png Macaca_mulatta_S.png Macaca_mulatta_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Macaca+mulatta&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Macaca+mulatta...&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Macaca+mulatta&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Macaca+mulatta&t=NS ...

  14. Taxonomy Icon Data: bread wheat [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available icum_aestivum_S.png Triticum_aestivum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Triticum+aesti...vum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Triticum+aestivum&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Triticum+aestivum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Triticum+aestivum&t=NS ...

  15. Taxonomy Icon Data: wild radish [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _NL.png Raphanus_raphanistrum_S.png Raphanus_raphanistrum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Raphanus+raphanistrum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Raphanus+raphanistrum&t=NL ...http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Raphanus+raphanistrum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Raphanus+raphanistrum&t=NS ...

  16. Taxonomy Icon Data: tiger puffer [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available png Takifugu_rubripes_NL.png Takifugu_rubripes_S.png Takifugu_rubripes_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Takifugu+rubripes&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Takifugu+rubripes&...t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Takifugu+rubripes&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Takifugu+rubripes&t=NS ...

  17. Taxonomy Icon Data: moose [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available lces_L.png Alces_alces_NL.png Alces_alces_S.png Alces_alces_NS.png http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Alces+alces&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Alces+alces&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Alces+alces&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Alces+alces&t=NS ...

  18. Taxonomy Icon Data: chicken [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available .png Gallus_gallus_S.png Gallus_gallus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gallus+gallus...&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gallus+gallus&t=NL http://biosciencedbc.jp/taxonomy_ic...on/icon.cgi?i=Gallus+gallus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gallus+gallus&t=NS ...

  19. Taxonomy Icon Data: red fox [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _vulpes_L.png Vulpes_vulpes_NL.png Vulpes_vulpes_S.png Vulpes_vulpes_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Vulpes+vulpes&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Vulpes+vulpes&t=NL http:...//biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Vulpes+vulpes&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Vulpes+vulpes&t=NS ...

  20. Taxonomy Icon Data: pea aphid [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available sum_NL.png Acyrthosiphon_pisum_S.png Acyrthosiphon_pisum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.c...gi?i=Acyrthosiphon+pisum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Acyrthosiphon+pisum&t=NL http:...//biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Acyrthosiphon+pisum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Acyrthosiphon+pisum&t=NS ...

  1. Taxonomy Icon Data: zebra finch [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Taeniopygia_guttata_NL.png Taeniopygia_guttata_S.png Taeniopygia_guttata_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Taeniopygia+guttata&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Taeniopygia+gu...ttata&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Taeniopygia+guttata&t...=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Taeniopygia+guttata&t=NS ...

  2. Taxonomy Icon Data: upland cotton [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Gossypium_hirsutum_S.png Gossypium_hirsutum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypi...um+hirsutum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypium+hirsutum&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Gossypium+hirsutum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypium+hirsutum&t=NS ...

  3. Taxonomy Icon Data: fission yeast [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available fission yeast Schizosaccharomyces pombe Schizosaccharomyces_pombe_L.png Schizosaccharomy...ces_pombe_NL.png Schizosaccharomyces_pombe_S.png Schizosaccharomyces_pombe_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Schizosaccharomyces+pombe&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schizosaccharomy...ces+pombe&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schizosaccharomy...ces+pombe&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schizosaccharomyces+pombe&t=NS

  4. Taxonomy Icon Data: rat [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available egicus_L.png Rattus_norvegicus_NL.png Rattus_norvegicus_S.png Rattus_norvegicus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Rattus+norvegicus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Rattus+no...rvegicus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Rattus+norvegicus&...t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Rattus+norvegicus&t=NS ...

  5. Taxonomy Icon Data: wapiti [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Cervus_canadensis_L.png Cervus_canadensis_NL.png Cervus_canadensis_S.png Cervus_canadensis_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Cervus+canadensis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?...i=Cervus+canadensis&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cervus+...canadensis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cervus+canadensis&t=NS ...

  6. Taxonomy Icon Data: mummichog [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available us_L.png Fundulus_heteroclitus_NL.png Fundulus_heteroclitus_S.png Fundulus_heteroclitus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Fundulus+heteroclitus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi...?i=Fundulus+heteroclitus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Fu...ndulus+heteroclitus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Fundulus+heteroclitus&t=NS ...

  7. Taxonomy Icon Data: brown bear [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available s_arctos_L.png Ursus_arctos_NL.png Ursus_arctos_S.png Ursus_arctos_NS.png http://biosciencedbc.jp/taxonomy_i...con/icon.cgi?i=Ursus+arctos&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ursus+arctos&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Ursus+arctos&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ursus+arctos&t=NS ...

  8. Taxonomy Icon Data: sunflower [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available thus_annuus_S.png Helianthus_annuus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Helianthus+annuu...s&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Helianthus+annuus&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Helianthus+annuus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Helianthus+annuus&t=NS ...

  9. Taxonomy Icon Data: white shark [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available harias_L.png Carcharodon_carcharias_NL.png Carcharodon_carcharias_S.png Carcharodon_carcharias_NS.png http:/.../biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Carcharodon+carcharias&t=L http://biosciencedbc.jp/taxonomy_icon/...icon.cgi?i=Carcharodon+carcharias&t=NL http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Carcharodon+carcharias&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Carcharodon+carcharias&t=NS ...

  10. Taxonomy Icon Data: tiger [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ra_tigris_L.png Panthera_tigris_NL.png Panthera_tigris_S.png Panthera_tigris_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Panthera+tigris&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Panthera+tigri...s&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Panthera+tigris&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Panthera+tigris&t=NS ...

  11. Taxonomy Icon Data: turkey [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available gris_gallopavo_NL.png Meleagris_gallopavo_S.png Meleagris_gallopavo_NS.png http://biosciencedbc.jp/taxonomy_...icon/icon.cgi?i=Meleagris+gallopavo&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Meleagris+gallopavo...&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Meleagris+gallopavo&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Meleagris+gallopavo&t=NS ...

  12. Taxonomy Icon Data: sea urchin [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available rotus_lividus_NL.png Paracentrotus_lividus_S.png Paracentrotus_lividus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Paracentrotus+lividus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Paracentrotus+...lividus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Paracentrotus+livid...us&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Paracentrotus+lividus&t=NS ...

  13. Taxonomy Icon Data: Sea anemone [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available nia_equina_S.png Actinia_equina_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Actinia+equina&t=L h...ttp://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Actinia+equina&t=NL http://biosciencedbc.jp/taxonomy_icon/ic...on.cgi?i=Actinia+equina&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Actinia+equina&t=NS ...

  14. Taxonomy Icon Data: Asiatic tapir [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available irus_indicus_L.png Tapirus_indicus_NL.png Tapirus_indicus_S.png Tapirus_indicus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Tapirus+indicus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tapirus+ind...icus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tapirus+indicus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tapirus+indicus&t=NS ...

  15. Taxonomy Icon Data: reindeer [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available a Rangifer_tarandus_L.png Rangifer_tarandus_NL.png Rangifer_tarandus_S.png Rangifer_tarandus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Rangifer+tarandus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cg...i?i=Rangifer+tarandus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Rangi...fer+tarandus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Rangifer+tarandus&t=NS ...

  16. Taxonomy Icon Data: Cryptococcus neoformans [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Cryptococcus neoformans Filobasidiella neoformans Filobasidiella_neoformans_L.png Filobasidiella_neoforman...s_NL.png Filobasidiella_neoformans_S.png Filobasidiella_neoformans_NS.png http://bios...ciencedbc.jp/taxonomy_icon/icon.cgi?i=Filobasidiella+neoformans&t=L http://biosciencedbc.jp/taxonomy_icon/ic...on.cgi?i=Filobasidiella+neoformans&t=NL http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Filobasidiella+neoformans&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Filobasidiella+neoforman

  17. Taxonomy Icon Data: Polysphondylium pallidum [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Polysphondylium pallidum Polysphondylium pallidum Polysphondylium_pallidum_L.png Polysphondylium_pall...idum_NL.png Polysphondylium_pallidum_S.png Polysphondylium_pallidum_NS.png http://bioscien...cedbc.jp/taxonomy_icon/icon.cgi?i=Polysphondylium+pallidum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Polysphondylium+pall...idum&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Polysphondylium+pall...idum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Polysphondylium+pallidum&t=N

  18. Taxonomy Icon Data: garden lettuce [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available garden lettuce Lactuca sativa Lactuca_sativa_L.png Lactuca_sativa_NL.png Lactuca_sativa_S.png Lactuca..._sativa_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lactuca+sativa&t=L http://...biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lactuca+sativa&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lactuca...+sativa&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lactuca+sativa&t=NS ...

  19. Taxonomy Icon Data: giraffe [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available giraffe Giraffa camelopardalis Chordata/Vertebrata/Mammalia/Theria/Eutheria/Artioda...pardalis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Giraffa+camelopardalis&t=L http://bioscienc...edbc.jp/taxonomy_icon/icon.cgi?i=Giraffa+camelopardalis&t=NL http://biosciencedbc....jp/taxonomy_icon/icon.cgi?i=Giraffa+camelopardalis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Giraffa+camelopardalis&t=NS ...

  20. Taxonomy Icon Data: Danio rerio [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Danio rerio Danio rerio Chordata/Vertebrata/Pisciformes Danio_rerio_L.png Danio_rerio_NL.png Danio_rerio..._S.png Danio_rerio_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Danio+rerio&...t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Danio+rerio&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Danio+rerio...&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Danio+rerio

  1. Taxonomy Icon Data: barrel medic [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available barrel medic Medicago truncatula Medicago_truncatula_L.png Medicago_truncatula_NL.png Medica...go_truncatula_S.png Medicago_truncatula_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Medica...go+truncatula&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Medicago+truncatula&t=NL http://biosci...encedbc.jp/taxonomy_icon/icon.cgi?i=Medicago+truncatula&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Medicago+truncatula&t=NS ...

  2. Taxonomy Icon Data: soybean [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available soybean Glycine max Glycine_max_L.png Glycine_max_NL.png Glycine_max_S.png Glycine_max..._NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Glycine+max&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Glycine+max&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Glycine+max&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Glycine+max&t=NS ...

  3. Taxonomy Icon Data: Aquilegia formosa [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Aquilegia formosa Aquilegia formosa Aquilegia_formosa_L.png Aquilegia_formosa_NL.png Aquilegia..._formosa_S.png Aquilegia_formosa_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aquilegia...+formosa&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aquilegia+formosa&t=NL http://biosciencedbc.j...p/taxonomy_icon/icon.cgi?i=Aquilegia+formosa&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aquilegia+formosa&t=NS ...

  4. Taxonomy Icon Data: Aegilops speltoides [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Aegilops speltoides Aegilops speltoides Aegilops_speltoides_L.png Aegilops_speltoides_NL.png Aegilop...s_speltoides_S.png Aegilops_speltoides_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aegilop...s+speltoides&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aegilops+speltoides&t=NL http:/.../biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aegilops+speltoides&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aegilops+speltoides&t=NS ...

  5. Taxonomy Icon Data: phylum Xenoturbellida [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available phylum Xenoturbellida Xenoturbella bocki Xenoturbellida Xenoturbella_bocki_L.png Xenoturbell...a_bocki_NL.png Xenoturbella_bocki_S.png Xenoturbella_bocki_NS.png http://biosciencedbc.jp/taxonomy_...icon/icon.cgi?i=Xenoturbella+bocki&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Xenoturbella+bocki&t...=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Xenoturbella+bocki&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Xenoturbella+bocki&t=NS ...

  6. Taxonomy Icon Data: potato [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available potato Solanum tuberosum Solanum_tuberosum_L.png Solanum_tuberosum_NL.png Solanum_tuber...osum_S.png Solanum_tuberosum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Solanum+tuberosum&t...=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Solanum+tuberosum&t=NL http://biosciencedbc.jp/taxonomy_...icon/icon.cgi?i=Solanum+tuberosum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Solanum+tuberosum&t=NS ...

  7. Taxonomy Icon Data: black cottonwood [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available black cottonwood Populus trichocarpa Populus_trichocarpa_L.png Populus_trichocarpa_...NL.png Populus_trichocarpa_S.png Populus_trichocarpa_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i...=Populus+trichocarpa&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Populus+trichocarpa&t=NL http://bi...osciencedbc.jp/taxonomy_icon/icon.cgi?i=Populus+trichocarpa&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Populus+trichocarpa&t=NS ...

  8. Taxonomy Icon Data: Dictyostelium discoideum [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Dictyostelium discoideum Dictyostelium discoideum Dictyostelium_discoideum_L.png Dictyostelium_disco...ideum_NL.png Dictyostelium_discoideum_S.png Dictyostelium_discoideum_NS.png http://biosciencedbc.jp/taxonomy_ico...n/icon.cgi?i=Dictyostelium+discoideum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Dictyostelium+disco...ideum&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Dictyostelium+disco...ideum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Dictyostelium+discoideum&t=N

  9. Taxonomy Icon Data: honey bee [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available honey bee Apis mellifera Arthropoda Apis_mellifera_L.png Apis_mellifera_NL.png Apis_mellife...ra_S.png Apis_mellifera_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apis+mellifera&t=L h...ttp://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apis+mellifera&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apis+mellife...ra&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apis+mellifera&t=NS ...

  10. Taxonomy Icon Data: Sitka spruce [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Sitka spruce Picea sitchensis Picea_sitchensis_L.png Picea_sitchensis_NL.png Picea_sitchensi...s_S.png Picea_sitchensis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Picea+sitchensis&t...=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Picea+sitchensis&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Picea+si...tchensis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Picea+sitchensis&t=NS ...

  11. Taxonomy Icon Data: white spruce [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available white spruce Picea glauca Picea_glauca_L.png Picea_glauca_NL.png Picea_glauca_S.png Pic...ea_glauca_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Picea+glauca&t=L http://biosciencedbc....jp/taxonomy_icon/icon.cgi?i=Picea+glauca&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Picea+glauca&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Picea+glauca&t=NS ...

  12. Taxonomy Icon Data: Guinea baboon [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available o_papio_L.png Papio_papio_NL.png Papio_papio_S.png Papio_papio_NS.png http://biosciencedbc.jp/taxonomy_icon/...icon.cgi?i=Papio+papio&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papio+papio&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Papio+papio&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papio+papio&t=NS ...

  13. Taxonomy Icon Data: Comb jelly [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available cucumis_S.png Beroe_cucumis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Beroe+cucumis&t=L http://biosciencedbc.jp/taxonom...y_icon/icon.cgi?i=Beroe+cucumis&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi...?i=Beroe+cucumis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Beroe+cucum...is&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=30 ...

  14. Taxonomy Icon Data: chimpanzee [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _troglodytes_L.png Pan_troglodytes_NL.png Pan_troglodytes_S.png Pan_troglodytes_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Pan+troglodytes&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pan+troglod...ytes&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pan+troglodytes&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pan+troglodytes&t=NS ...

  15. Taxonomy Icon Data: Atlantic hagfish [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available L.png Myxine_glutinosa_NL.png Myxine_glutinosa_S.png Myxine_glutinosa_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Myxine+glutinosa&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Myxine+glutinosa&t=N...L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Myxine+glutinosa&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Myxine+glutinosa&t=NS ...

  16. Taxonomy Icon Data: quaking aspen [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available png Populus_tremuloides_S.png Populus_tremuloides_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Po...pulus+tremuloides&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Populus+tremuloides&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Populus+tremuloides&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Populus+tremuloides&t=NS ...

  17. Taxonomy Icon Data: Japanese macaque [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available e Macaca_fuscata_L.png Macaca_fuscata_NL.png Macaca_fuscata_S.png Macaca_fuscata_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Macaca+fuscata&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Macaca+fusc...ata&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Macaca+fuscata&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Macaca+fuscata&t=NS ...

  18. Taxonomy Icon Data: emperor penguin [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available L.png Aptenodytes_forsteri_NL.png Aptenodytes_forsteri_S.png Aptenodytes_forsteri_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Aptenodytes+forsteri&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apte...nodytes+forsteri&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aptenodyte...s+forsteri&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aptenodytes+forsteri&t=NS ...

  19. Taxonomy Icon Data: Japanese squirrel [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available urus_lis_L.png Sciurus_lis_NL.png Sciurus_lis_S.png Sciurus_lis_NS.png http://biosciencedbc.jp/taxonomy_icon.../icon.cgi?i=Sciurus+lis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sciurus+lis&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Sciurus+lis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sciurus+lis&t=NS ...

  20. Taxonomy Icon Data: mandrill [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available drillus_sphinx_L.png Mandrillus_sphinx_NL.png Mandrillus_sphinx_S.png Mandrillus_sphinx_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Mandrillus+sphinx&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=M...andrillus+sphinx&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Mandrillus...+sphinx&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Mandrillus+sphinx&t=NS ...

  1. Taxonomy Icon Data: Japanese weasel [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ra Mustela_itatsi_L.png Mustela_itatsi_NL.png Mustela_itatsi_S.png Mustela_itatsi_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Mustela+itatsi&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Mustela+it...atsi&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Mustela+itatsi&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Mustela+itatsi&t=NS ...

  2. Taxonomy Icon Data: emu [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g Dromaius_novaehollandiae_NL.png Dromaius_novaehollandiae_S.png Dromaius_novaehollandiae_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Dromaius+novaehollandiae&t=L http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Dromaius+novaehollandiae&t=NL http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Dromaius+novaehollandiae&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Dromaius+novaehollandiae&t=NS ...

  3. Taxonomy Icon Data: oriental silverfish [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available olepisma_villosa_NL.png Ctenolepisma_villosa_S.png Ctenolepisma_villosa_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Ctenolepisma+villosa&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ctenolepisma+v...illosa&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ctenolepisma+villosa...&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ctenolepisma+villosa&t=NS ...

  4. Taxonomy Icon Data: Bornean orangutan [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available te Pongo_pygmaeus_L.png Pongo_pygmaeus_NL.png Pongo_pygmaeus_S.png Pongo_pygmaeus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Pongo+pygmaeus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pongo+pygm...aeus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pongo+pygmaeus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pongo+pygmaeus&t=NS ...

  5. Taxonomy Icon Data: lemon damsel [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pomacentrus+moluccensis&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Pomacentrus+moluccensis&t=NL http://biosciencedbc.jp/taxonomy_i...con/icon.cgi?i=Pomacentrus+moluccensis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pomacentrus+moluccensis&t=NS ... ...luccensis_L.png Pomacentrus_moluccensis_NL.png Pomacentrus_moluccensis_S.png Pomacentrus_moluccensis_NS.png

  6. Taxonomy Icon Data: Acytostelium subglobosum [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Acytostelium subglobosum Acytostelium subglobosum Acytostelium_subglobosum_L.png Acytostelium_subglobo...sum_NL.png Acytostelium_subglobosum_S.png Acytostelium_subglobosum_NS.png http://bioscien...cedbc.jp/taxonomy_icon/icon.cgi?i=Acytostelium+subglobosum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Acytostelium+subglobo...sum&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Acytostelium+subglobo...sum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Acytostelium+subglobosum&t=N

  7. Taxonomy Icon Data: Lotus japonicus [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Lotus japonicus Lotus japonicus Lotus_japonicus_L.png Lotus_japonicus_NL.png Lotus_japonicus_S.png Lotus_jap...onicus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lotus+japonicus&t=L ...http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lotus+japonicus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lotus+japon...icus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lotus+japonicus&t=NS ...

  8. Taxonomy Icon Data: Sympetrum frequens [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Sympetrum frequens Sympetrum frequens Arthropoda Sympetrum_frequens_L.png Sympetrum_frequens_NL.png Sympet...rum_frequens_S.png Sympetrum_frequens_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sympet...rum+frequens&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sympetrum+frequens&t=NL htt...p://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sympetrum+frequens&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sympetrum+frequens&t=NS ...

  9. Taxonomy Icon Data: tomato [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available tomato Solanum lycopersicum Solanum_lycopersicum_L.png Solanum_lycopersicum_NL.png Solanum..._lycopersicum_S.png Solanum_lycopersicum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Solanum...+lycopersicum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Solanum+lycopersicum&t=NL http://biosc...iencedbc.jp/taxonomy_icon/icon.cgi?i=Solanum+lycopersicum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Solanum+lycopersicum&t=NS ...

  10. The Distributed Wind Cost Taxonomy

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, Trudy; Jimenez, Tony [National Renewable Energy Lab. (NREL), Golden, CO (United States); Preus, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegan, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baring-Gould, Ian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-28

    To date, there has been no standard method or tool to analyze the installed and operational costs for distributed wind turbine systems. This report describes the development of a classification system, or taxonomy, for distributed wind turbine project costs. The taxonomy establishes a framework to help collect, sort, and compare distributed wind cost data that mirrors how the industry categorizes information. The taxonomy organizes costs so they can be aggregated from installers, developers, vendors, and other sources without losing cost details. Developing a peer-reviewed taxonomy is valuable to industry stakeholders because a common understanding the details of distributed wind turbine costs and balance of station costs is a first step to identifying potential high-value cost reduction opportunities. Addressing cost reduction potential can help increase distributed wind's competitiveness and propel the U.S. distributed wind industry forward. The taxonomy can also be used to perform cost comparisons between technologies and track trends for distributed wind industry costs in the future. As an initial application and piloting of the taxonomy, preliminary cost data were collected for projects of different sizes and from different regions across the contiguous United States. Following the methods described in this report, these data are placed into the established cost categories.

  11. Taxonomy Icon Data: choanoflagellate [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available choanoflagellate Monosiga brevicollis Monosiga_brevicollis_L.png Monosiga_brevicoll...is_NL.png Monosiga_brevicollis_S.png Monosiga_brevicollis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Monosiga+brevico...llis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Monosiga+brevicollis&t=NL ht...tp://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Monosiga+brevicollis&t=S http://bi...osciencedbc.jp/taxonomy_icon/icon.cgi?i=Monosiga+brevicollis&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=220 ...

  12. Taxonomy Icon Data: Trypanosoma brucei [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Trypanosoma brucei Trypanosoma brucei Trypanosoma_brucei_L.png Trypanosoma_brucei_NL.png Trypanosoma_bruce...i_S.png Trypanosoma_brucei_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Trypanosoma+bruce...i&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Trypanosoma+brucei&t=NL http://bioscie...ncedbc.jp/taxonomy_icon/icon.cgi?i=Trypanosoma+brucei&t=S http://biosciencedbc.jp.../taxonomy_icon/icon.cgi?i=Trypanosoma+brucei&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=121 ...

  13. Taxonomy Icon Data: cattle [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available rus_L.png Bos_taurus_NL.png Bos_taurus_S.png Bos_taurus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cg...i?i=Bos+taurus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bos+taurus&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Bos+taurus&t=S http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Bos+taurus&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=28 ...

  14. Taxonomy Icon Data: sheep [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available es_L.png Ovis_aries_NL.png Ovis_aries_S.png Ovis_aries_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi...?i=Ovis+aries&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ovis+aries&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Ovis+aries&t=S http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Ovis+aries&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=156 ...

  15. Taxonomy Icon Data: Budding yeast [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Budding yeast Saccharomyces cerevisiae Saccharomyces_cerevisiae_L.png Saccharomyces..._cerevisiae_NL.png Saccharomyces_cerevisiae_S.png Saccharomyces_cerevisiae_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Saccharomyces+cerevisiae&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Saccharomy...ces+cerevisiae&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Saccharomy...ces+cerevisiae&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Saccharomyces+cerevisiae&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=216 ...

  16. Taxonomy Icon Data: Japanese hare [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available pus_brachyurus_L.png Lepus_brachyurus_NL.png Lepus_brachyurus_S.png Lepus_brachyurus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Lepus+brachyurus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lepus...+brachyurus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lepus+brachyuru...s&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lepus+brachyurus&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=138 ...

  17. Taxonomy Icon Data: Beetles [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available oilus_inclinatus_NL.png Prosopocoilus_inclinatus_S.png Prosopocoilus_inclinatus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Prosopocoilus+inclinatus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pr...osopocoilus+inclinatus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pros...opocoilus+inclinatus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Prosopocoilus+inclinatus&t=NS http...://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=139 ...

  18. Taxonomy Icon Data: Toxoplasma gondii [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Toxoplasma gondii Toxoplasma gondii Toxoplasma_gondii_L.png Toxoplasma_gondii_NL.png Toxoplasma..._gondii_S.png Toxoplasma_gondii_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Toxoplasma...+gondii&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Toxoplasma+gondii&t=NL http://biosciencedbc.j...p/taxonomy_icon/icon.cgi?i=Toxoplasma+gondii&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Toxoplasma+gondii&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=113 ...

  19. Taxonomy Icon Data: Diplazium hachijoense [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Diplazium hachijoense Diplazium hachijoense Diplazium_hachijoense_L.png Diplazium_hachijo...ense_NL.png Diplazium_hachijoense_S.png Diplazium_hachijoense_NS.png http://biosciencedbc.jp/taxonomy_...icon/icon.cgi?i=Diplazium+hachijoense&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Diplazium+hachijo...ense&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Diplazium+hachijoense&...t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Diplazium+hachijoense&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=84 ...

  20. Taxonomy Icon Data: koji mold [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available koji mold Aspergillus oryzae Aspergillus_oryzae_L.png Aspergillus_oryzae_NL.png Aspergillus_oryzae_S.png Asp...ergillus_oryzae_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aspergillus...+oryzae&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aspergillus+oryzae&t=NL http://biosciencedbc.jp.../taxonomy_icon/icon.cgi?i=Aspergillus+oryzae&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aspergil...lus+oryzae&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=63 ...

  1. Taxonomy Icon Data: Haliclona permollis [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Haliclona permollis Haliclona permollis Porifera Haliclona_permollis_L.png Haliclona_permollis_NL.png Hali...clona_permollis_S.png Haliclona_permollis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hali...clona+permollis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Haliclona+permollis&t=...NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Haliclona+permollis&t=S http:...//biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Haliclona+permollis&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=194 ...

  2. Taxonomy Icon Data: Japanese medaka [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Japanese medaka Oryzias latipes Chordata/Vertebrata/Pisciformes Oryzias_latipes_L.png Oryzias_latipes..._NL.png Oryzias_latipes_S.png Oryzias_latipes_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oryzias+latip...es&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oryzias+latipes&t=NL http:/.../biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oryzias+latipes&t=S http://bioscienced...bc.jp/taxonomy_icon/icon.cgi?i=Oryzias+latipes&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=195 ...

  3. Taxonomy Icon Data: Human [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available s_L.png Homo_sapiens_NL.png Homo_sapiens_S.png Homo_sapiens_NS.png http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Homo+sapiens&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Homo+sapiens&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Homo+sapiens&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Homo+sapiens&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=157 ...

  4. Taxonomy Icon Data: spotted seal [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available oca_largha_L.png Phoca_largha_NL.png Phoca_largha_S.png Phoca_largha_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Phoca+largha&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Phoca+largha&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Phoca+largha&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Phoca+largha&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=66 ...

  5. Taxonomy Icon Data: Schistosoma japonicum [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Schistosoma japonicum Schistosoma japonicum Platyhelminthes Schistosoma_japonicum_L.png Schistosoma_japon...icum_NL.png Schistosoma_japonicum_S.png Schistosoma_japonicum_NS.png http://bioscience...dbc.jp/taxonomy_icon/icon.cgi?i=Schistosoma+japonicum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schistosoma+japon...icum&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schistosoma+japon...icum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schistosoma+japonicum&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=132 ...

  6. Taxonomy Icon Data: Planaria [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Planaria Dugesia japonica Platyhelminthes Dugesia_japonica_L.png Dugesia_japonica_NL.png Dugesia_japon...ica_S.png Dugesia_japonica_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Dugesia+japon...ica&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Dugesia+japonica&t=NL http://biosciencedbc.j...p/taxonomy_icon/icon.cgi?i=Dugesia+japonica&t=S http://biosciencedbc.jp/taxonomy_...icon/icon.cgi?i=Dugesia+japonica&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=124 ...

  7. Taxonomy Icon Data: Japanese Ratsnake [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Japanese Ratsnake Elaphe climacophora Chordata/Vertebrata/Reptilia/etc Elaphe_climacophora_L.png Elaphe_clim...acophora_NL.png Elaphe_climacophora_S.png Elaphe_climacophora_NS.png http://bioscie...ncedbc.jp/taxonomy_icon/icon.cgi?i=Elaphe+climacophora&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Elaphe+clima...cophora&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Elaphe+clima...cophora&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Elaphe+climacophora&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=3 ...

  8. Taxonomy Icon Data: Anopheles stephensi [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Anopheles stephensi Anopheles stephensi Arthropoda Anopheles_stephensi_L.png Anopheles_steph...ensi_NL.png Anopheles_stephensi_S.png Anopheles_stephensi_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anoph...eles+stephensi&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anopheles+stephensi&...t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anopheles+stephensi&t=S htt...p://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anopheles+stephensi&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=149 ...

  9. Taxonomy Icon Data: hamadryas baboon [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available hamadryas baboon Papio hamadryas Chordata/Vertebrata/Mammalia/Theria/Eutheria/Primate Papio_hamadry...as_L.png Papio_hamadryas_NL.png Papio_hamadryas_S.png Papio_hamadryas_NS.png http://bioscien...cedbc.jp/taxonomy_icon/icon.cgi?i=Papio+hamadryas&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papio+hamadry...as&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papio+hamadryas&...t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papio+hamadryas&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=186 ...

  10. Taxonomy Icon Data: house mouse [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available house mouse Mus musculus Chordata/Vertebrata/Mammalia/Theria/Eutheria/etc. Mus_musculus_L.png Mus_musculus..._NL.png Mus_musculus_S.png Mus_musculus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Mus+musculus...&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Mus+musculus&t=NL http://biosci...encedbc.jp/taxonomy_icon/icon.cgi?i=Mus+musculus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Mus...+musculus&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=146 ...

  11. xMAP Technology: Applications in Detection of Pathogens

    Science.gov (United States)

    Reslova, Nikol; Michna, Veronika; Kasny, Martin; Mikel, Pavel; Kralik, Petr

    2017-01-01

    xMAP technology is applicable for high-throughput, multiplex and simultaneous detection of different analytes within a single complex sample. xMAP multiplex assays are currently available in various nucleic acid and immunoassay formats, enabling simultaneous detection and typing of pathogenic viruses, bacteria, parasites and fungi and also antigen or antibody interception. As an open architecture platform, the xMAP technology is beneficial to end users and therefore it is used in various pharmaceutical, clinical and research laboratories. The main aim of this review is to summarize the latest findings and applications in the field of pathogen detection using microsphere-based multiplex assays. PMID:28179899

  12. Mobile health a technology road map

    CERN Document Server

    2015-01-01

    This book offers a comprehensive report on the technological aspects of Mobile Health (mHealth) and discusses the main challenges and future directions in the field. It is divided into eight parts:  (1) preventive and curative medicine;  (2) remote health monitoring; (3) interoperability; (4) framework, architecture, and software/hardware systems;  (5) cloud applications; (6) radio technologies and applications; (7) communication networks and systems; and (8) security and privacy mechanisms. The first two parts cover sensor-based and bedside systems for remotely monitoring patients’ health condition, which aim at preventing the development of health problems and managing the prognosis of acute and chronic diseases. The related chapters discuss how new sensing and wireless technologies can offer accurate and cost-effective means for monitoring and evaluating behavior of individuals with dementia and psychiatric disorders, such as wandering behavior and sleep impairments. The following two parts focus on a...

  13. Tissue blood flow mapping using laser technology

    Science.gov (United States)

    Wardell, Karin; Linden, Maria; Nilsson, Gert E.

    1995-03-01

    By the introduction of the laser Doppler perfusion imager (LDPI) the microvascular blood flow in a tissue area can be mapped by sequentially moving a laser beam over the tissue. The measurement is performed without touching the tissue and the captured perfusion values in the peripheral circulation are presented as a color-coded image. In the ordinary LDPI-set-up, 64 X 64 measurement sites cover an area in the range of about 10 - 150 cm2 depending on system settings. With a high resolution modification, recordings can be done on tissue areas as small as 1 cm2. This high resolution option has been assessed in animal models for the mapping of small vessels. To be able to record not only spatial but also temporal perfusion components of tissue blood flow, different local area scans (LAS) have been developed. These include single point recording as well as integration of either 2 X 2, 3 X 3, or 4 X 4 measurement sites. The laser beam is repeatedly moved in a quadratic pattern over the small tissue area of interest and the output value constitutes the average perfusion of all captured values within the actual region. For the evaluation, recordings were performed on healthy volunteers before and after application of a vasodilatating cream on the dorsal side of the hand.

  14. A Taxonomy of Technical Animation

    Directory of Open Access Journals (Sweden)

    D. Vaněček

    2011-01-01

    Full Text Available The age in which we are living nowadays is characterized by rapid innovation in the development of information and communication technologies (ICT. This innovation has a significant influence on the education process. This article deals with computer animation in technical education. Our aim is to show the taxonomy of education animation. The paper includes practical examples of animation.

  15. Taxonomy Icon Data: Clementine [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Clementine Citrus clementina Citrus_clementina_L.png Citrus_clementina_NL.png Citrus_clementin...a_S.png Citrus_clementina_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Citrus+clementin...a&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Citrus+clementina&t=NL http://biosciencedbc.jp/taxon...omy_icon/icon.cgi?i=Citrus+clementina&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Citrus+clementina&t=NS ...

  16. Taxonomy Icon Data: Escherichia coli [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Escherichia coli Escherichia coli Escherichia_coli_L.png Escherichia_coli_NL.png Escherich...ia_coli_S.png Escherichia_coli_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Escherichia+co...li&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Escherichia+coli&t=NL http://biosciencedbc.jp/taxono...my_icon/icon.cgi?i=Escherichia+coli&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Escherichia+coli&t=NS ...

  17. Taxonomy Icon Data: wine grape [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _S.png Vitis_vinifera_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Vitis+vinifera&t=L http://biosciencedbc.jp/tax...onomy_icon/icon.cgi?i=Vitis+vinifera&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=V...itis+vinifera&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Vitis+vinifera&t=NS ...

  18. Taxonomy Icon Data: saddleback dolphin [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available nomy_icon/icon.cgi?i=Delphinus+delphis&t=L http://biosciencedbc.jp/taxonomy_icon/ic...on.cgi?i=Delphinus+delphis&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=...Delphinus+delphis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Delphinus+delphis&t=NS ... ...etacea Delphinus_delphis_L.png Delphinus_delphis_NL.png Delphinus_delphis_S.png Delphinus_delphis_NS.png http://biosciencedbc.jp/taxo

  19. Taxonomy Icon Data: Guillardia theta [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Guillardia theta Guillardia theta Guillardia_theta_L.png Guillardia_theta_NL.png Guillardia_the...ta_S.png Guillardia_theta_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Guillardia+the...ta&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Guillardia+theta&t=NL http://biosciencedbc.jp/taxono...my_icon/icon.cgi?i=Guillardia+theta&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Guillardia+the

  20. Taxonomy Icon Data: Japanese serow [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Japanese serow Capricornis crispus Chordata/Vertebrata/Mammalia/Theria/Eutheria/Artiodactyla Caprico...rnis_crispus_L.png Capricornis_crispus_NL.png Capricornis_crispus_S.png Capricornis_crispus..._NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Capricornis+crispus&t=L http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Capricornis+crispus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Caprico...rnis+crispus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Capricornis+crispus&t=NS ...

  1. Taxonomy Icon Data: Asiatic elephant [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Asiatic elephant Elephas maximus Chordata/Vertebrata/Mammalia/Theria/Eutheria/etc. Elephas_maximus..._L.png Elephas_maximus_NL.png Elephas_maximus_S.png Elephas_maximus_NS.png http://bioscienced...bc.jp/taxonomy_icon/icon.cgi?i=Elephas+maximus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Elephas+maximus...&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Elephas+maximus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Elephas+maximus&t=NS ...

  2. Taxonomy Icon Data: Oryzias javanicus [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Oryzias javanicus Oryzias javanicus Chordata/Vertebrata/Pisciformes Oryzias_javanicus_L.png Oryzias_javan...icus_NL.png Oryzias_javanicus_S.png Oryzias_javanicus_NS.png http://biosciencedbc.jp/t...axonomy_icon/icon.cgi?i=Oryzias+javanicus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oryzias+javan...icus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oryzias+javanicus&t=S ...http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oryzias+javanicus&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=77 ...

  3. Taxonomy Icon Data: giant panda [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available giant panda Ailuropoda melanoleuca Chordata/Vertebrata/Mammalia/Theria/Eutheria/Carnivora Ailuropoda..._melanoleuca_L.png Ailuropoda_melanoleuca_NL.png Ailuropoda_melanoleuca_S.png Ailuropoda_me...lanoleuca_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ailuropoda+melanoleuca&t=L http://bioscien...cedbc.jp/taxonomy_icon/icon.cgi?i=Ailuropoda+melanoleuca&t=NL http://biosciencedb...c.jp/taxonomy_icon/icon.cgi?i=Ailuropoda+melanoleuca&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ailuropoda+melanoleuca&t=NS ...

  4. Taxonomy Icon Data: Magellanic penguin [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Magellanic penguin Spheniscus magellanicus Chordata/Vertebrata/Aves Spheniscus_magel...lanicus_L.png Spheniscus_magellanicus_NL.png Spheniscus_magellanicus_S.png Spheniscus_magellanicus_NS.png h...ttp://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Spheniscus+magellanicus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Spheniscus+magellanicus&t=NL http://biosciencedbc.jp/taxonomy_ic...on/icon.cgi?i=Spheniscus+magellanicus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Spheniscus+magell

  5. Taxonomy Icon Data: rainbow trout [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available rainbow trout Oncorhynchus mykiss Chordata/Vertebrata/Pisciformes Oncorhynchus_mykiss_L.png Oncorhynchus_my...kiss_NL.png Oncorhynchus_mykiss_S.png Oncorhynchus_mykiss_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Oncorhynchus+mykiss&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oncorhynchus+my...kiss&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oncorhynchus+my...kiss&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oncorhynchus+mykiss&t=NS ...

  6. Taxonomy Icon Data: moss [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available sp_patens_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Physcomitrella+patens+subsp%2e+patens%2e&t...=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Physcomitrella+patens+subsp%2...e+patens%2e&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Physcomitrella+patens+subsp%2e+patens%2e&t...=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Physcomitrella+patens+subsp%2e+patens%2e&t=NS ...

  7. Taxonomy Icon Data: pygmy chimpanzee [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available pygmy chimpanzee Pan paniscus Chordata/Vertebrata/Mammalia/Theria/Eutheria/Primate ...Pan_paniscus_L.png Pan_paniscus_NL.png Pan_paniscus_S.png Pan_paniscus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Pan+paniscus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pan+paniscus&t=NL http:...//biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pan+paniscus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pan+paniscus&t=NS ...

  8. Taxonomy Icon Data: okapi [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available okapi Okapia johnstoni Chordata/Vertebrata/Mammalia/Theria/Eutheria/Artiodactyla Okapia_john...stoni_L.png Okapia_johnstoni_NL.png Okapia_johnstoni_S.png Okapia_johnstoni_NS.png http://bioscienc...edbc.jp/taxonomy_icon/icon.cgi?i=Okapia+johnstoni&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Okapia+john...stoni&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Okapia+johnston...i&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Okapia+johnstoni&t=NS ...

  9. Taxonomy Icon Data: fathead minnow [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available fathead minnow Pimephales promelas Chordata/Vertebrata/Pisciformes Pimephales_promelas_L.png Pim...ephales_promelas_NL.png Pimephales_promelas_S.png Pimephales_promelas_NS.png http://bioscienced...bc.jp/taxonomy_icon/icon.cgi?i=Pimephales+promelas&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pime...phales+promelas&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pimephales+...promelas&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pimephales+promelas&t=NS ...

  10. Taxonomy Icon Data: southern cassowary [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available southern cassowary Casuarius casuarius Chordata/Vertebrata/Aves Casuarius_casuarius_L.png Casuarius_cas...uarius_NL.png Casuarius_casuarius_S.png Casuarius_casuarius_NS.png http://biosciencedbc....jp/taxonomy_icon/icon.cgi?i=Casuarius+casuarius&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Casuarius+cas...uarius&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Casuarius+casu...arius&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Casuarius+casuarius&t=NS ...

  11. Taxonomy Icon Data: ostrich [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ostrich Struthio camelus Chordata/Vertebrata/Aves Struthio_camelus_L.png Struthio_camelus_NL.png Struth...io_camelus_S.png Struthio_camelus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Struth...io+camelus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Struthio+camelus&t=NL http://bioscie...ncedbc.jp/taxonomy_icon/icon.cgi?i=Struthio+camelus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Struthio+camelus&t=NS ...

  12. Taxonomy Icon Data: crested porcupine [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available crested porcupine Hystrix cristata Chordata/Vertebrata/Mammalia/Theria/Eutheria/etc. Hystrix_cristata..._L.png Hystrix_cristata_NL.png Hystrix_cristata_S.png Hystrix_cristata_NS.png http://biosc...iencedbc.jp/taxonomy_icon/icon.cgi?i=Hystrix+cristata&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hystrix+cristata...&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hystrix+cristata...&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hystrix+cristata&t=NS ...

  13. Taxonomy Icon Data: lion [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available lion Panthera leo Chordata/Vertebrata/Mammalia/Theria/Eutheria/Carnivora Panthera_leo_L.png Panthera..._leo_NL.png Panthera_leo_S.png Panthera_leo_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Panthera...+leo&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Panthera+leo&t=NL http://bioscien...cedbc.jp/taxonomy_icon/icon.cgi?i=Panthera+leo&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Panthera+leo&t=NS ...

  14. Taxonomy Icon Data: slipper animalcule [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available slipper animalcule Paramecium tetraurelia Paramecium_tetraurelia_L.png Paramecium_tetraurelia..._NL.png Paramecium_tetraurelia_S.png Paramecium_tetraurelia_NS.png http://biosciencedbc.jp/taxonom...y_icon/icon.cgi?i=Paramecium+tetraurelia&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Paramecium+tetraurelia...&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Paramecium+tetraurelia...&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Paramecium+tetraurelia&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=204 ...

  15. Taxonomy Icon Data: saddled bichir [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available saddled bichir Polypterus endlicheri Chordata/Vertebrata/Pisciformes Polypterus_endlicheri_L.png Polypteru...s_endlicheri_NL.png Polypterus_endlicheri_S.png Polypterus_endlicheri_NS.png http://b...iosciencedbc.jp/taxonomy_icon/icon.cgi?i=Polypterus+endlicheri&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Polypteru...s+endlicheri&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Polypteru...s+endlicheri&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Polypterus+endlicheri&t=NS ...

  16. Taxonomy Icon Data: Nile crocodile [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Nile crocodile Crocodylus niloticus Chordata/Vertebrata/Reptilia/etc Crocodylus_niloticus_L.png Croco...dylus_niloticus_NL.png Crocodylus_niloticus_S.png Crocodylus_niloticus_NS.png http://biosciencedbc.jp/taxonomy_ico...n/icon.cgi?i=Crocodylus+niloticus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Croco...dylus+niloticus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Croco...dylus+niloticus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Crocodylus+niloticus&t=NS ...

  17. Taxonomy Icon Data: Atlantic salmon [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Atlantic salmon Salmo salar Chordata/Vertebrata/Pisciformes Salmo_salar_L.png Salmo_salar_NL.png Salmo_salar..._S.png Salmo_salar_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Salmo+salar...&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Salmo+salar&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Salmo+sala...r&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Salmo+salar&t=NS ...

  18. Taxonomy Icon Data: coelacanth [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available coelacanth Latimeria chalumnae Chordata/Vertebrata/Pisciformes Latimeria_chalumnae_L.png Latime...ria_chalumnae_NL.png Latimeria_chalumnae_S.png Latimeria_chalumnae_NS.png http://biosciencedbc.j...p/taxonomy_icon/icon.cgi?i=Latimeria+chalumnae&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Latimeri...a+chalumnae&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Latimeria+chalu...mnae&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Latimeria+chalumnae&t=NS ...

  19. Taxonomy Icon Data: domestic pigeon [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available domestic pigeon Columba livia Chordata/Vertebrata/Aves Columba_livia_L.png Columba_livia_NL.png Columba..._livia_S.png Columba_livia_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Columba...+livia&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Columba+livia&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Col...umba+livia&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Columba+livia&t=NS ...

  20. Taxonomy Icon Data: Chinchilla [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Chinchilla Chinchilla lanigera Chordata/Vertebrata/Mammalia/Theria/Eutheria/etc. Chinchill...a_lanigera_L.png Chinchilla_lanigera_NL.png Chinchilla_lanigera_S.png Chinchilla_lanigera_NS.png http...://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Chinchilla+lanigera&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Chinchill...a+lanigera&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Chinchill...a+lanigera&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Chinchilla+lanigera&t=NS ...

  1. Taxonomy Icon Data: Eastern Gorilla [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Eastern Gorilla Gorilla beringei Chordata/Vertebrata/Mammalia/Theria/Eutheria/Primate Gorill...a_beringei_L.png Gorilla_beringei_NL.png Gorilla_beringei_S.png Gorilla_beringei_NS.png http://bios...ciencedbc.jp/taxonomy_icon/icon.cgi?i=Gorilla+beringei&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gorill...a+beringei&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gorilla+be...ringei&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gorilla+beringei&t=NS ...

  2. Taxonomy Icon Data: horse [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available horse Equus caballus Chordata/Vertebrata/Mammalia/Theria/Eutheria/etc. Equus_caballus_L.png Equus_caba...llus_NL.png Equus_caballus_S.png Equus_caballus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Equus+caba...llus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Equus+caballus&t=NL http:...//biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Equus+caballus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Equus+caballus&t=NS ...

  3. Taxonomy Icon Data: chinese pangolin [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available nomy_icon/icon.cgi?i=Manis+pentadactyla&t=L http://biosciencedbc.jp/taxonomy_icon/i...con.cgi?i=Manis+pentadactyla&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?...i=Manis+pentadactyla&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Manis+pentadactyla&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=190 ... ...c. Manis_pentadactyla_L.png Manis_pentadactyla_NL.png Manis_pentadactyla_S.png Manis_pentadactyla_NS.png http://biosciencedbc.jp/taxo

  4. THE USAGE OF TECHNOLOGIES IN TERRESTRIAL MEASUREMENTS FOR HAZARD MAPS

    Directory of Open Access Journals (Sweden)

    VELE Dan

    2015-06-01

    Full Text Available In the context of natural phenomena (earthquakes, floods, landslides etc. bring economical and social prejudices year by year, watching on them and taking decisions becomes mandatory for reducing the material and human lives loss. Making hazard maps represents a tool used on wide global scale but also particularly in our country. This paper work has the purpose to reveal the interests of certain authors related to the usage of the new technologies of terrestrial measurements (GPS technologies, photogrammetry, cartography and of remote sensing in order to make these hazard maps.

  5. Taxonomies of Educational Objective Domain

    OpenAIRE

    Eman Ghanem Nayef; Nik Rosila Nik Yaacob; Hairul Nizam Ismail

    2013-01-01

    This paper highlights an effort to study the educational objective domain taxonomies including Bloom’s taxonomy, Lorin Anderson’s taxonomy, and Wilson’s taxonomy. In this study a comparison among these three taxonomies have been done. Results show that Bloom’s taxonomy is more suitable as an analysis tool to Educational Objective domain.

  6. Mapping technological and biophysical capacities of watersheds to regulate floods

    Science.gov (United States)

    Mogollon, Beatriz; Villamagna, Amy M.; Frimpong, Emmanuel A.; Angermeier, Paul

    2016-01-01

    Flood regulation is a widely valued and studied service provided by watersheds. Flood regulation benefits people directly by decreasing the socio-economic costs of flooding and indirectly by its positive impacts on cultural (e.g., fishing) and provisioning (e.g., water supply) ecosystem services. Like other regulating ecosystem services (e.g., pollination, water purification), flood regulation is often enhanced or replaced by technology, but the relative efficacy of natural versus technological features in controlling floods has scarcely been examined. In an effort to assess flood regulation capacity for selected urban watersheds in the southeastern United States, we: (1) used long-term flood records to assess relative influence of technological and biophysical indicators on flood magnitude and duration, (2) compared the widely used runoff curve number (RCN) approach for assessing the biophysical capacity to regulate floods to an alternative approach that acknowledges land cover and soil properties separately, and (3) mapped technological and biophysical flood regulation capacities based on indicator importance-values derived for flood magnitude and duration. We found that watersheds with high biophysical (via the alternative approach) and technological capacities lengthened the duration and lowered the peak of floods. We found the RCN approach yielded results opposite that expected, possibly because it confounds soil and land cover processes, particularly in urban landscapes, while our alternative approach coherently separates these processes. Mapping biophysical (via the alternative approach) and technological capacities revealed great differences among watersheds. Our study improves on previous mapping of flood regulation by (1) incorporating technological capacity, (2) providing high spatial resolution (i.e., 10-m pixel) maps of watershed capacities, and (3) deriving importance-values for selected landscape indicators. By accounting for technology that enhances

  7. GEM Building Taxonomy (Version 2.0)

    Science.gov (United States)

    Brzev, S.; Scawthorn, C.; Charleson, A.W.; Allen, L.; Greene, M.; Jaiswal, Kishor; Silva, V.

    2013-01-01

    This report documents the development and applications of the Building Taxonomy for the Global Earthquake Model (GEM). The purpose of the GEM Building Taxonomy is to describe and classify buildings in a uniform manner as a key step towards assessing their seismic risk, Criteria for development of the GEM Building Taxonomy were that the Taxonomy be relevant to seismic performance of different construction types; be comprehensive yet simple; be collapsible; adhere to principles that are familiar to the range of users; and ultimately be extensible to non-buildings and other hazards. The taxonomy was developed in conjunction with other GEM researchers and builds on the knowledge base from other taxonomies, including the EERI and IAEE World Housing Encyclopedia, PAGER-STR, and HAZUS. The taxonomy is organized as a series of expandable tables, which contain information pertaining to various building attributes. Each attribute describes a specific characteristic of an individual building or a class of buildings that could potentially affect their seismic performance. The following 13 attributes have been included in the GEM Building Taxonomy Version 2.0 (v2.0): 1.) direction, 2.)material of the lateral load-resisting system, 3.) lateral load-resisting system, 4.) height, 5.) date of construction of retrofit, 6.) occupancy, 7.) building position within a block, 8.) shape of the building plan, 9.) structural irregularity, 10.) exterior walls, 11.) roof, 12.) floor, 13.) foundation system. The report illustrates the pratical use of the GEM Building Taxonomy by discussing example case studies, in which the building-specific characteristics are mapped directly using GEM taxonomic attributes and the corresponding taxonomic string is constructed for that building, with "/" slash marks separating attributes. For example, for the building shown to the right, the GEM Taxonomy string is: DX1/MUR+CLBRS+MOCL2/LWAL3/

  8. Hyperspectral mineral mapping technology applied to geology based on HyMap data

    Science.gov (United States)

    Zhang, Hongliang; Yang, Kai; Yang, Zi'an; Zhang, Pubin; Lu, Yan; Yan, Peisheng

    2016-10-01

    Hyperspectral remote sensing technology has been in front of remote sensing science and technology. It brought a technical revolution for remote sensing. Hyperspectral remote sensing let the spatial and spectral dimensions of traditional image information fusion to an organic whole. It make the multispectral remote sensing image features in wide band to be detected and differentiated in hyperspectral remote sensing detection. Hyperspectral mineral mapping is the most successful technology which can exert its advantages of application field in geology. Using the airborne visible-light and near infrared and short-wave infrared imaging spectral HyMap data, we research the rock ore information recognition of Hami district in Xinjiang. Hyperspectral mineral mapping has made the good application effect in the exploration and resource prediction evaluation in ore-prospecting work.

  9. Use of technology mapping in identification of fuel cell sub-technologies

    Energy Technology Data Exchange (ETDEWEB)

    Arasti, Mohammad R. [Graduate School of Management and Economics, Sharif University of Technology, Tehran (Iran); Bagheri Moghaddam, Nasser [Allameh Tabatabaie University, Tehran (Iran)

    2010-09-15

    Technology Identification involves developing a list of technologies which are, or may be, incorporated into products or processes. After reviewing Technology Assessment, Technology Strategy, Management of Technology and New Product Development in literature, four methods of Technology Identification are investigated: Value Chain of Technologies, Process-based Approach, Quality Function Deployment and Technology Mapping. A model facilitating decision making process is then proposed by which the most appropriate method to be employed is identified. The proposed model is examined in specific case of fuel cell technologies while preparing the Fuel cell Development Strategic Plan of Iran. Specifically, by using Delphi technique based on expert opinion, a map of 198 fuel cell sub-technologies is devised and five technology categories are identified: Stack Component, Fuel Processing, Sub-systems, Simulation and Design and Interface Technologies for Transportation, Stationary and Portable Applications. Fitness of selected method (Technology Mapping) was attested by experts who were involved in the process of identification; although the validity and reliability of proposed model rest to be tested by using it in other cases in different contexts. (author)

  10. Map-Reading Skill Development with 3D Technologies

    Science.gov (United States)

    Carbonell Carrera, Carlos; Avarvarei, Bogdan Vlad; Chelariu, Elena Liliana; Draghia, Lucia; Avarvarei, Simona Catrinel

    2017-01-01

    Landforms often are represented on maps using abstract cartographic techniques that the reader must interpret for successful three-dimensional terrain visualization. New technologies in 3D landscape representation, both digital and tangible, offer the opportunity to visualize terrain in new ways. The results of a university student workshop, in…

  11. Mapping of health technology assessment in selected countries

    NARCIS (Netherlands)

    Oortwijn, W.; Broos, P.; Vondeling, H.; Banta, D.; Todorova, L.

    2013-01-01

    Objectives: The aim of this study was to develop and apply an instrument to map the level of health technology assessment (HTA) development at country level in selected countries. We examined middle-income countries (Argentina, Brazil, India, Indonesia, Malaysia, Mexico, and Russia) and countries we

  12. Mapping the (R-)Evolution of Technological Fields

    DEFF Research Database (Denmark)

    Jurowetzki, Roman; Hain, Daniel S.

    2014-01-01

    The aim of this paper was to provide a framework and novel methodology geared towards mapping technological change in complex interdependent systems by using large amounts of unstructured data from various recent on- and offline sources. Combining techniques from the fields of natural language pr...

  13. Mapping of Ecosystems in Mount Bromo Using Remote Sensing Technology

    Directory of Open Access Journals (Sweden)

    Bangun Muljo Sukojo

    2010-10-01

    Full Text Available Covered land analyses of Landsat image have been done to get ecosystem types and map in Mount Bromo region using remote sensing technology. There are nine types of   ecosystems in Mount Bromo region, i.e. primary forest, secondary forest, lake, crater, sands, uncovered land, underbrush, dry-field and residence. Distribution of rock analysis has also been done by comparing the manual image interpretation with  geological map. The results were coorelated with the digital image interpretation to find rock distribution map which can be useful to get the information about water reservation potencial in Mount Bromo region. The coorelation results together with slope, covered vegetation and rain falls can give description about absolute water reservation and buffer zone map in Mount Bromo region.

  14. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    Science.gov (United States)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  15. Taxonomy Icon Data: sea lamprey [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available sea lamprey Petromyzon marinus Chordata/Vertebrata/Hyperoartia Petromyzon_marinus_L.png Pet...romyzon_marinus_NL.png Petromyzon_marinus_S.png Petromyzon_marinus_NS.png http://biosciencedbc.jp/ta...xonomy_icon/icon.cgi?i=Petromyzon+marinus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Petromyzon+ma...rinus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Petromyzon+marinus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Petromyzon+marinus&t=NS ...

  16. Taxonomy Icon Data: dog [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available dog Canis lupus familiaris Chordata/Vertebrata/Mammalia/Theria/Eutheria/Carnivora Canis_lupus_familia...ris_L.png Canis_lupus_familiaris_NL.png Canis_lupus_familiaris_S.png Canis_lupus_familiari...s_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Canis+lupus+familiaris&t=L http://biosciencedbc.jp.../taxonomy_icon/icon.cgi?i=Canis+lupus+familiaris&t=NL http://biosciencedbc.jp/tax...onomy_icon/icon.cgi?i=Canis+lupus+familiaris&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Canis+lupus+familiaris&t=NS ...

  17. Taxonomy Icon Data: Australian echidna [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Australian echidna Tachyglossus aculeatus Chordata/Vertebrata/Mammalia/Prototheria Tachygloss...us_aculeatus_L.png Tachyglossus_aculeatus_NL.png Tachyglossus_aculeatus_S.png Tachyglossus_aculeat...us_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tachyglossus+aculeatus&t=L http://biosciencedbc.j...p/taxonomy_icon/icon.cgi?i=Tachyglossus+aculeatus&t=NL http://biosciencedbc.jp/ta...xonomy_icon/icon.cgi?i=Tachyglossus+aculeatus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tachyglossus+aculeatus&t=NS ...

  18. Taxonomy Icon Data: Arabian camel [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Arabian camel Camelus dromedarius Chordata/Vertebrata/Mammalia/Theria/Eutheria/Artiodactyla Camelus_dromedar...ius_L.png Camelus_dromedarius_NL.png Camelus_dromedarius_S.png Camelus_dromedarius_...NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Camelus+dromedarius&t=L http://biosciencedbc.jp/taxo...nomy_icon/icon.cgi?i=Camelus+dromedarius&t=NL http://biosciencedbc.jp/taxonomy_ic...on/icon.cgi?i=Camelus+dromedarius&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Camelus+dromedarius&t=NS ...

  19. Taxonomy Icon Data: pronghorn [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available pronghorn Antilocapra americana Chordata/Vertebrata/Mammalia/Theria/Eutheria/Artiodactyla Antilocapra..._americana_L.png Antilocapra_americana_NL.png Antilocapra_americana_S.png Antilocapra_amer...icana_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Antilocapra+americana&t=L http://biosciencedbc....jp/taxonomy_icon/icon.cgi?i=Antilocapra+americana&t=NL http://biosciencedbc.jp/t...axonomy_icon/icon.cgi?i=Antilocapra+americana&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Antilocapra+americana&t=NS ...

  20. Taxonomy Icon Data: Sugarcane [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Sugarcane Saccharum officinarum Saccharum_officinarum_L.png Saccharum_officinarum_NL.png Saccharum_officinarum_S.png Saccharum_officinarum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cg

  1. Eliciting the Functional Taxonomy from protein annotations and taxa.

    Science.gov (United States)

    Falda, Marco; Lavezzo, Enrico; Fontana, Paolo; Bianco, Luca; Berselli, Michele; Formentin, Elide; Toppo, Stefano

    2016-08-18

    The advances of omics technologies have triggered the production of an enormous volume of data coming from thousands of species. Meanwhile, joint international efforts like the Gene Ontology (GO) consortium have worked to provide functional information for a vast amount of proteins. With these data available, we have developed FunTaxIS, a tool that is the first attempt to infer functional taxonomy (i.e. how functions are distributed over taxa) combining functional and taxonomic information. FunTaxIS is able to define a taxon specific functional space by exploiting annotation frequencies in order to establish if a function can or cannot be used to annotate a certain species. The tool generates constraints between GO terms and taxa and then propagates these relations over the taxonomic tree and the GO graph. Since these constraints nearly cover the whole taxonomy, it is possible to obtain the mapping of a function over the taxonomy. FunTaxIS can be used to make functional comparative analyses among taxa, to detect improper associations between taxa and functions, and to discover how functional knowledge is either distributed or missing. A benchmark test set based on six different model species has been devised to get useful insights on the generated taxonomic rules.

  2. State of the art and taxonomy of prognostics approaches, trends of prognostics applications and open issues towards maturity at different technology readiness levels

    Science.gov (United States)

    Javed, Kamran; Gouriveau, Rafael; Zerhouni, Noureddine

    2017-09-01

    Integrating prognostics to a real application requires a certain maturity level and for this reason there is a lack of success stories about development of a complete Prognostics and Health Management system. In fact, the maturity of prognostics is closely linked to data and domain specific entities like modeling. Basically, prognostics task aims at predicting the degradation of engineering assets. However, practically it is not possible to precisely predict the impending failure, which requires a thorough understanding to encounter different sources of uncertainty that affect prognostics. Therefore, different aspects crucial to the prognostics framework, i.e., from monitoring data to remaining useful life of equipment need to be addressed. To this aim, the paper contributes to state of the art and taxonomy of prognostics approaches and their application perspectives. In addition, factors for prognostics approach selection are identified, and new case studies from component-system level are discussed. Moreover, open challenges toward maturity of the prognostics under uncertainty are highlighted and scheme for an efficient prognostics approach is presented. Finally, the existing challenges for verification and validation of prognostics at different technology readiness levels are discussed with respect to open challenges.

  3. The NCBI Taxonomy database.

    Science.gov (United States)

    Federhen, Scott

    2012-01-01

    The NCBI Taxonomy database (http://www.ncbi.nlm.nih.gov/taxonomy) is the standard nomenclature and classification repository for the International Nucleotide Sequence Database Collaboration (INSDC), comprising the GenBank, ENA (EMBL) and DDBJ databases. It includes organism names and taxonomic lineages for each of the sequences represented in the INSDC's nucleotide and protein sequence databases. The taxonomy database is manually curated by a small group of scientists at the NCBI who use the current taxonomic literature to maintain a phylogenetic taxonomy for the source organisms represented in the sequence databases. The taxonomy database is a central organizing hub for many of the resources at the NCBI, and provides a means for clustering elements within other domains of NCBI web site, for internal linking between domains of the Entrez system and for linking out to taxon-specific external resources on the web. Our primary purpose is to index the domain of sequences as conveniently as possible for our user community.

  4. Taxonomy Icon Data: crab-eating macaque [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Macaca+fascicularis&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Macaca+fascicularis&t=NL http://biosciencedbc.jp/taxonomy_i...con/icon.cgi?i=Macaca+fascicularis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Macaca+fascicularis&t=NS ...

  5. Taxonomy Icon Data: gray slender loris [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Loris+lydekkerianus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Loris+lydekkerianus&t=NL http://biosciencedbc.jp/taxonomy_ic...on/icon.cgi?i=Loris+lydekkerianus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Loris+lydekkerianus&t=NS ...

  6. Taxonomy Icon Data: northern fur seal [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Callorhinus+ursinus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Callorhinus+ursinus&t=NL http://biosciencedbc.jp/taxonomy_i...con/icon.cgi?i=Callorhinus+ursinus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Callorhinus+ursinus&t=NS ...

  7. 3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Marzolf, A.; Folsom, M.

    2010-08-31

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame

  8. Taxonomy Icon Data: aye-aye [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available .png Daubentonia_madagascariensis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Daubentonia+madaga...scariensis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Daubentonia+madag...ascariensis&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Daubentonia+madagascariensis&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Daubentonia+madagascariensis&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=1 ...

  9. Taxonomy Icon Data: Halocynthia roretzi (Sea squirt) [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available .png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Halocynthia+roretzi&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Halocynthia+roretzi&t=NL http://biosciencedbc.jp/taxonomy_icon.../icon.cgi?i=Halocynthia+roretzi&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Halocynthia+roretzi&t=N...S http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=183 ...

  10. Taxonomy Icon Data: common brandling worm [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available L.png Eisenia_fetida_S.png Eisenia_fetida_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Eisenia+fe...tida&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Eisenia+fetida&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Eisenia+fetida&t=S http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Eisenia+fetida&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=73 ...

  11. Taxonomy Icon Data: Kuroda's sea hare [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available .png Aplysia_kurodai_S.png Aplysia_kurodai_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aplysia+k...urodai&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aplysia+kurodai&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Aplysia+kurodai&t=S http://biosciencedbc.jp/taxonomy_icon/i...con.cgi?i=Aplysia+kurodai&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=14 ...

  12. The Taxonomy of Intervention Intensity

    Science.gov (United States)

    Fuchs, Lynn S.; Fuchs, Douglas; Malone, Amelia S.

    2016-01-01

    The purpose of this article is to describe the Taxonomy of Intervention Intensity, which articulates 7 dimensions for evaluating and building intervention intensity. We explain the Taxonomy's dimensions of intensity. In explaining the Taxonomy, we rely on a case study to illustrate how the Taxonomy can systematize the process by which special…

  13. A Taxonomy for Conceptualizing Teaching.

    Science.gov (United States)

    Seda, E. Elliott

    This paper details the development of a taxonomy for conceptualizing teaching. This taxonomy is presented as a means to help educators understand and interpret what it is they do and continue in the process of searching and understanding. The purpose of developing a taxonomy, the basis for the dimensions--or subject matter--for the taxonomy, and…

  14. Public health workforce taxonomy.

    Science.gov (United States)

    Boulton, Matthew L; Beck, Angela J; Coronado, Fátima; Merrill, Jacqueline A; Friedman, Charles P; Stamas, George D; Tyus, Nadra; Sellers, Katie; Moore, Jean; Tilson, Hugh H; Leep, Carolyn J

    2014-11-01

    Thoroughly characterizing and continuously monitoring the public health workforce is necessary for ensuring capacity to deliver public health services. A prerequisite for this is to develop a standardized methodology for classifying public health workers, permitting valid comparisons across agencies and over time, which does not exist for the public health workforce. An expert working group, all of whom are authors on this paper, was convened during 2012-2014 to develop a public health workforce taxonomy. The purpose of the taxonomy is to facilitate the systematic characterization of all public health workers while delineating a set of minimum data elements to be used in workforce surveys. The taxonomy will improve the comparability across surveys, assist with estimating duplicate counting of workers, provide a framework for describing the size and composition of the workforce, and address other challenges to workforce enumeration. The taxonomy consists of 12 axes, with each axis describing a key characteristic of public health workers. Within each axis are multiple categories, and sometimes subcategories, that further define that worker characteristic. The workforce taxonomy axes are occupation, workplace setting, employer, education, licensure, certification, job tasks, program area, public health specialization area, funding source, condition of employment, and demographics. The taxonomy is not intended to serve as a replacement for occupational classifications but rather is a tool for systematically categorizing worker characteristics. The taxonomy will continue to evolve as organizations implement it and recommend ways to improve this tool for more accurate workforce data collection.

  15. EPA Web Taxonomy

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPA's Web Taxonomy is a faceted hierarchical vocabulary used to tag web pages with terms from a controlled vocabulary. Tagging enables search and discovery of EPA's...

  16. A Taxonomy of Networks

    CERN Document Server

    Onnela, Jukka-Pekka; Reid, Stephen; Porter, Mason A; Mucha, Peter J; Fricker, Mark D; Jones, Nick S

    2010-01-01

    The study of networks has grown into a substantial interdisciplinary endeavor across the natural, social, and information sciences. Yet there have been very few attempts to investigate the interrelatedness of the different classes of networks studied by different disciplines. Here, we introduced a framework to establish a taxonomy of networks from various origins. The provision of this family tree not only helps understand the kinship of networks, but also facilitates the transfer of empirical analysis, theoretical modeling, and conceptual developments across disciplinary boundaries. The framework is based on probing the mesoscopic properties of networks, an important source of heterogeneity for their structure and function. Using our method, we computed a taxonomy for 752 individual networks and a separate taxonomy for 12 network classes. We also computed three within-class taxonomies for political, fungal, and financial networks, and found them to be insightful in each case.

  17. [Concepts of rational taxonomy].

    Science.gov (United States)

    Pavlinov, I Ia

    2011-01-01

    The problems are discussed related to development of concepts of rational taxonomy and rational classifications (taxonomic systems) in biology. Rational taxonomy is based on the assumption that the key characteristic of rationality is deductive inference of certain partial judgments about reality under study from other judgments taken as more general and a priory true. Respectively, two forms of rationality are discriminated--ontological and epistemological ones. The former implies inference of classifications properties from general (essential) properties of the reality being investigated. The latter implies inference of the partial rules of judgments about classifications from more general (formal) rules. The following principal concepts of ontologically rational biological taxonomy are considered: "crystallographic" approach, inference of the orderliness of organismal diversity from general laws of Nature, inference of the above orderliness from the orderliness of ontogenetic development programs, based on the concept of natural kind and Cassirer's series theory, based on the systemic concept, based on the idea of periodic systems. Various concepts of ontologically rational taxonomy can be generalized by an idea of the causal taxonomy, according to which any biologically sound classification is founded on a contentwise model of biological diversity that includes explicit indication of general causes responsible for that diversity. It is asserted that each category of general causation and respective background model may serve as a basis for a particular ontologically rational taxonomy as a distinctive research program. Concepts of epistemologically rational taxonomy and classifications (taxonomic systems) can be interpreted in terms of application of certain epistemological criteria of substantiation of scientific status of taxonomy in general and of taxonomic systems in particular. These concepts include: consideration of taxonomy consistency from the

  18. Manufacturing road map for tissue engineering and regenerative medicine technologies.

    Science.gov (United States)

    Hunsberger, Joshua; Harrysson, Ola; Shirwaiker, Rohan; Starly, Binil; Wysk, Richard; Cohen, Paul; Allickson, Julie; Yoo, James; Atala, Anthony

    2015-02-01

    The Regenerative Medicine Foundation Annual Conference held on May 6 and 7, 2014, had a vision of assisting with translating tissue engineering and regenerative medicine (TERM)-based technologies closer to the clinic. This vision was achieved by assembling leaders in the field to cover critical areas. Some of these critical areas included regulatory pathways for regenerative medicine therapies, strategic partnerships, coordination of resources, developing standards for the field, government support, priorities for industry, biobanking, and new technologies. The final day of this conference featured focused sessions on manufacturing, during which expert speakers were invited from industry, government, and academia. The speakers identified and accessed roadblocks plaguing the field where improvements in advanced manufacturing offered many solutions. The manufacturing sessions included (a) product development toward commercialization in regenerative medicine, (b) process challenges to scale up manufacturing in regenerative medicine, and (c) infrastructure needs for manufacturing in regenerative medicine. Subsequent to this, industry was invited to participate in a survey to further elucidate the challenges to translation and scale-up. This perspective article will cover the lessons learned from these manufacturing sessions and early results from the survey. We also outline a road map for developing the manufacturing infrastructure, resources, standards, capabilities, education, training, and workforce development to realize the promise of TERM.

  19. Development of a taxonomy of keywords for engineering education research

    Science.gov (United States)

    Finelli, Cynthia J.; Borrego, Maura; Rasoulifar, Golnoosh

    2016-05-01

    The diversity of engineering education research provides an opportunity for cross-fertilisation of ideas and creativity, but it also can result in fragmentation of the field and duplication of effort. One solution is to establish a standardised taxonomy of engineering education terms to map the field and communicate and connect research initiatives. This report describes the process for developing such a taxonomy, the EER Taxonomy. Although the taxonomy focuses on engineering education research in the United States, inclusive efforts have engaged 266 individuals from 149 cities in 30 countries during one multiday workshop, 7 conference sessions, and several other virtual and in-person activities. The resulting taxonomy comprises 455 terms arranged in 14 branches and 6 levels. This taxonomy was found to satisfy four criteria for validity and reliability: (1) keywords assigned to a set of abstracts were reproducible by multiple researchers, (2) the taxonomy comprised terms that could be selected as keywords to fully describe 243 articles in 3 journals, (3) the keywords for those 243 articles were evenly distributed across the branches of the taxonomy, and (4) the authors of 31 conference papers agreed with 90% of researcher-assigned keywords. This report also describes guidelines developed to help authors consistently assign keywords for their articles by encouraging them to choose terms from three categories: (1) context/focus/topic, (2) purpose/target/motivation, and (3) research approach.

  20. A Taxonomy of Human Translation Styles

    DEFF Research Database (Denmark)

    Carl, Michael; Dragsted, Barbara; Lykke Jakobsen, Arnt

    2011-01-01

    While the translation profession becomes increasingly technological, we are still far from understanding how humans actually translate and how they could be best supported by machines. In this paper we outline a method which helps to uncover characteristics of human translation processes. Based o...... on the translators' activity data, we develop a taxonomy of translation styles. The taxonomy could serve to inform the development of advanced translation assistance tools and provide a basis for a felicitous and grounded integration of human machine interaction in translation....

  1. Rehabilitation treatment taxonomy: implications and continuations.

    Science.gov (United States)

    P Dijkers, Marcel; Hart, Tessa; Whyte, John; M Zanca, Jeanne; Packel, Andrew; Tsaousides, Theodore

    2014-01-01

    In relation to the conceptual framework for a rehabilitation treatment taxonomy (RTT), which has been proposed in other articles in this supplement, this article discusses a number of issues relevant to its further development, including creating distinctions within the major target classes; the nature and quantity of allowable targets of treatment; and bracketing as a way of specifying (1) the skill or knowledge taught; (2) the nature of compensation afforded by changes in the environment, assistive technology, and orthotics/prosthetics; and (3) the ingredients in homework a clinician assigns. Clarification is provided regarding the role of the International Classification of Functioning, Disability and Health, focusing a taxonomy on ingredients versus other observable aspects of treatment, and regarding our lack of knowledge and its impact on taxonomy development. Finally, this article discusses the immediate implications of the work to date and presents the need for rehabilitation stakeholders of all disciplines to be involved in further RTT development.

  2. A Web-Based Interactive Mapping System of State Wide School Performance: Integrating Google Maps API Technology into Educational Achievement Data

    Science.gov (United States)

    Wang, Kening; Mulvenon, Sean W.; Stegman, Charles; Anderson, Travis

    2008-01-01

    Google Maps API (Application Programming Interface), released in late June 2005 by Google, is an amazing technology that allows users to embed Google Maps in their own Web pages with JavaScript. Google Maps API has accelerated the development of new Google Maps based applications. This article reports a Web-based interactive mapping system…

  3. Taxonomy Icon Data: hemichordates (Acorn worm) [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available hemichordates (Acorn worm) Glandiceps hacksi Hemichordata Glandiceps_hacksi_L.png G...landiceps_hacksi_NL.png Glandiceps_hacksi_S.png Glandiceps_hacksi_NS.png http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Glandiceps+hacksi&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Glandiceps+hacksi&t=NL ...http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Glandiceps+hacksi&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Glandiceps+hacksi&t=NS ...

  4. Taxonomy Icon Data: common water flea [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available common water flea Daphnia pulex Arthropoda Daphnia_pulex_L.png Daphnia_pulex_NL.png... Daphnia_pulex_S.png Daphnia_pulex_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Daphnia+pulex&t=L... http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Daphnia+pulex&t=NL http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Daphnia+pulex&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Daphnia+pulex&t=NS ...

  5. Taxonomy Icon Data: African malaria mosquito [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available African malaria mosquito Anopheles gambiae Arthropoda Anopheles_gambiae_L.png Anopheles_gambia...e_NL.png Anopheles_gambiae_S.png Anopheles_gambiae_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anopheles+gambi...ae&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anopheles+gambiae&t=NL http...://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anopheles+gambiae&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anopheles+gambiae&t=NS ...

  6. Taxonomy Icon Data: yellow fever mosquito [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available yellow fever mosquito Aedes aegypti Arthropoda Aedes_aegypti_L.png Aedes_aegypti_NL.png Aedes_aegypt...i_S.png Aedes_aegypti_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aedes+aegypti...&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aedes+aegypti&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aedes+aegyp...ti&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aedes+aegypti&t=NS ...

  7. Taxonomy Icon Data: Striped bark scorpion [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Centruroides_vittatus_NL.png Centruroides_vittatus_S.png Centruroides_vittatus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Centruroides+vittatus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Centru...roides+vittatus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Centruroide...s+vittatus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Centruroides+vittatus&t=NS ...

  8. Taxonomy Icon Data: Gossypium raimondii Ulbr. [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available aimondii_NL.png Gossypium_raimondii_S.png Gossypium_raimondii_NS.png http://biosciencedbc.jp/taxonomy_icon/i...con.cgi?i=Gossypium+raimondii&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypium+raimondii&t=NL ...http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypium+raimondii&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypium+raimondii&t=NS ...

  9. Taxonomy Icon Data: cape rock hyrax [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Procavia_capensis_L.png Procavia_capensis_NL.png Procavia_capensis_S.png Procavia_capensis_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Procavia+capensis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi...?i=Procavia+capensis&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Procav...ia+capensis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Procavia+capensis&t=NS ...

  10. [The automatic iris map overlap technology in computer-aided iridiagnosis].

    Science.gov (United States)

    He, Jia-feng; Ye, Hu-nian; Ye, Miao-yuan

    2002-11-01

    In the paper, iridology and computer-aided iridiagnosis technologies are briefly introduced and the extraction method of the collarette contour is then investigated. The iris map can be overlapped on the original iris image based on collarette contour extraction. The research on collarette contour extraction and iris map overlap is of great importance to computer-aided iridiagnosis technologies.

  11. A Theory of Taxonomy

    CERN Document Server

    D'Amico, Guido; Kleban, Matthew

    2016-01-01

    A taxonomy is a standardized framework to classify and organize items into categories. Hierarchical taxonomies are ubiquitous, ranging from the classification of organisms to the file system on a computer. Characterizing the typical distribution of items within taxonomic categories is an important question with applications in many disciplines. Ecologists have long sought to account for the patterns observed in species-abundance distributions (the number of individuals per species found in some sample), and computer scientists study the distribution of files per directory. Is there a universal statistical distribution describing how many items are typically found in each category in large taxonomies? Here, we analyze a wide array of large, real-world datasets -- including items lost and found on the New York City transit system, library books, and a bacterial microbiome -- and discover such an underlying commonality. A simple, non-parametric branching model that randomly categorizes items and takes as input o...

  12. Teaching Taxonomy: How Many Kingdoms?

    Science.gov (United States)

    Case, Emily

    2008-01-01

    Taxonomy, the identification, naming, and classification of living things, is an indispensable unit in any biology curriculum and indeed, an integral part of biological science. Taxonomy catalogues life's diversity and is an essential tool for communication. Textbook discussions of taxonomy range anywhere from three to eight domains of kingdoms.…

  13. ICTV Virus Taxonomy Profile

    DEFF Research Database (Denmark)

    Simmonds, Peter; Becher, Paul; Bukh, Jens

    2017-01-01

    The Flaviviridae is a family of small enveloped viruses with RNA genomes of 9000-13 000 bases. Most infect mammals and birds. Many flaviviruses are host-specific and pathogenic, such as hepatitis C virus in the genus Hepacivirus. The majority of known members in the genus Flavivirus are arthropod...... borne, and many are important human and veterinary pathogens (e.g. yellow fever virus, dengue virus). This is a summary of the current International Committee on Taxonomy of Viruses (ICTV) report on the taxonomy of the Flaviviridae, which is available at www.ictv.global/report/flaviviridae....

  14. Taxonomy Icon Data: Western clawed frog [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Western clawed frog Xenopus tropicalis Chordata/Vertebrata/Amphibia Xenopus_tropicalis_L.png Xenopus..._tropicalis_NL.png Xenopus_tropicalis_S.png Xenopus_tropicalis_NS.png http://biosciencedbc....jp/taxonomy_icon/icon.cgi?i=Xenopus+tropicalis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Xenopus+...tropicalis&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Xenopus+tropical...is&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Xenopus+tropicalis&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=137 ...

  15. Taxonomy Icon Data: African clawed frog [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g Xenopus_laevis_NL.png Xenopus_laevis_S.png Xenopus_laevis_NS.png http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Xenopus+laevis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Xenopus+laevis&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Xenopus+laevis&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Xenopus+laevis&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=11 ...

  16. Taxonomy Icon Data: Old world swallowtail [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available aon_NL.png Papilio_machaon_S.png Papilio_machaon_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pap...ilio+machaon&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papilio+machaon&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Papilio+machaon&t=S http://biosciencedbc.jp/taxonomy_...icon/icon.cgi?i=Papilio+machaon&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=47 ...

  17. Taxonomy Icon Data: malaria parasite P. falciparum [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available malaria parasite P. falciparum Plasmodium falciparum Plasmodium_falciparum_L.png Plasmodium_falci...parum_NL.png Plasmodium_falciparum_S.png Plasmodium_falciparum_NS.png http://biosciencedbc.jp/...taxonomy_icon/icon.cgi?i=Plasmodium+falciparum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Plasmodium+falci...parum&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Plasmodium+falci...parum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Plasmodium+falciparum&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=218 ...

  18. Open source technologies for delivering historical maps online - case studies at the National Library of Scotland

    Directory of Open Access Journals (Sweden)

    Christopher Fleet

    2012-11-01

    Full Text Available Over the last four years, the National Library of Scotland has saved money and improved user access to online historical maps through the implementation of new open source technologies. These new tools include a new Viewer for MrSID images using OpenLayers, a collaborative Georeferencer application, new Tile Map Services for delivering georeferenced historical maps online, and a new GeoServer and OpenLayers application for accessing 44,000 series maps as clickable indexes. All of these applications were developed by Petr Pridal / Klokan Technologies, in collaboration with the National Library of Scotland, and all of them are easily extendible to other map libraries. These open source tools also provide an excellent basis for collaboration with other map libraries, sharing technology, experience and advice.

  19. Comment: 13 [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Life Science licensed under CC Attribution2.1 Japan ヒトアイコンの別候補を作成してみました。 ttamura 2008/11/06 17:14:44 ... ...Human Homo sapiens Homo_sapiens_L.png 13.png Taxonomy icon (c) Database Center for

  20. Company Taxonomy development

    DEFF Research Database (Denmark)

    Lund, Haakon; Ørnager, Susanne

    2016-01-01

    Purpose – The purpose of this paper is to explore theoretically and empirically the understanding and implementation of an information taxonomy in the UN organization World Food Programme (WFP) by analysing users’ information behaviour and by establishing a minimum set of cross-silo metadata...

  1. Comment: 215 [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available 215.png Taxonomy icon (c) Database Center for Life Science licensed under CC Attribution2.1 Japan アイコン:電子顕微鏡バージョン bando 2010/02/15 15:30:03 2010/02/15 15:30:03 ...

  2. Comment: 61 [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available .png Taxonomy icon (c) Database Center for Life Science licensed under CC Attribution2.1 Japan イメージを差し替えました(添付は旧イメージ) ttamura 2009/04/21 12:50:03 ...

  3. Taxonomy in Epistemology

    Science.gov (United States)

    Galloway, Jerry P.

    2011-01-01

    This paper outlines a theoretical paradigm for distinguishing thinking, knowing and believing. A new taxonomy is presented for categorizing levels of knowing and outlines a structure of justification for each level. The paper discusses and explains the importance of such distinctions in decision making and thinking in general.

  4. Comment: 2 [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available bottlenosed dolphin Tursiops truncatus Tursiops_truncatus_L.png 2.png Taxonomy icon (c) Database Cen...ter for Life Science licensed under CC Attribution2.1 Japan サンプルの投稿です ttamura 2008/10/29 11:43:57 ...

  5. MAPPING INFORMATION TECHNOLOGY INFRASTRUCTURE LIBRARY WITH OTHER INFORMATION TECHNOLOGY STANDARDS AND BEST PRACTICES

    Directory of Open Access Journals (Sweden)

    Syed Mubashir Ali

    2013-01-01

    Full Text Available Information Technology (IT has become an important strategic resource that any organization has to manage. It has been recognized that IT services are crucial and strategic organizational assets, therefore, organizations are investing considerable amount of resources into the support and delivery of IT services and the systems that underpins them. Various IT standards and IT best practices are being implemented by the enterprises to support their business and IT services. A number of these standards are different from others but they contain some similarities. This study discusses these IT standards and best practices and maps their processes to ITIL. CobiT, ISO/IEC 27002-2005, Six Sigma, TOGAF, eTOM, CMMI, PCI DSS and Common Security Framework (CSF processes will be mapped to ITIL processes. This study will show the similarities between several IT standards and ITIL that helps in adopting these standards concurrently with ITIL. ITIL and other standards have many similarities that will benefit enterprises in implementing these standards concurrently.

  6. Development of habitat mapping technology using spatial information

    Science.gov (United States)

    Lee, M.-J.; Lee, C.-W.; Oh, K.-Y.

    2016-10-01

    The purpose of this study was to create leopard cat (Prionailurus bengalensis) habitat potential maps of South Korea using spatial information. To create maps, we gathered various environmental factors potentially affecting the species' distribution from a spatial database: elevation, slope, land cover and so on. We analyzed the spatial relationships between the distribution of the leopard cats and the environmental factors using a frequency ratio model. Among the total number of known leopard cat locations, we used 50% for mapping and the remaining 50% for model validation. Our models were relatively successful and showed a high level of accuracy during model validation with existing locations (frequency ratio model 82.15%). These maps can be used to manage and monitor the habitat of mammal species and top predators.

  7. Area–Oriented Technology Mapping for LUT–Based Logic Blocks

    Directory of Open Access Journals (Sweden)

    Kubica Marcin

    2017-03-01

    Full Text Available One of the main aspects of logic synthesis dedicated to FPGA is the problem of technology mapping, which is directly associated with the logic decomposition technique. This paper focuses on using configurable properties of CLBs in the process of logic decomposition and technology mapping. A novel theory and a set of efficient techniques for logic decomposition based on a BDD are proposed. The paper shows that logic optimization can be efficiently carried out by using multiple decomposition. The essence of the proposed synthesis method is multiple cutting of a BDD. A new diagram form called an SMTBDD is proposed. Moreover, techniques that allow finding the best technology mapping oriented to configurability of CLBs are presented. In the experimental section, the presented method (MultiDec is compared with academic and commercial tools. The experimental results show that the proposed technology mapping strategy leads to good results in terms of the number of CLBs.

  8. Topic Maps: Adopting User-Centred Indexing Technologies in Course Management Systems

    Science.gov (United States)

    Venkatesh, Vivek; Shaw, Steven; Dicks, Dennis; Lowerison, Gretchen; Zhang, Dai; Sanjakdar, Roukana

    2007-01-01

    This article provides an empirical evaluation of an indexing technology, topic maps (ISO 13250), in the context of an academic task in a higher education context. Topic maps are a form of indexing that define and display the interrelationships between various topics in a given domain, as well as anchor these topics to specific resources that help…

  9. Environmental Connections and Concept Mapping: Implementing a New Learning Technology at Lewis & Clark College

    Science.gov (United States)

    Proctor, James D.; Bernstein, Jennifer

    2013-01-01

    What is environment? The answer to this question is fundamental to how we teach environmental studies and sciences (ESS). We follow recent scholarly literature in approaching environment as connection, not as some category of reality, and consider pedagogical implications via concept mapping, a new learning technology. Concept maps potentially…

  10. Company Taxonomy development

    DEFF Research Database (Denmark)

    Lund, Haakon; Ørnager, Susanne

    2016-01-01

    and knowledge, greater internal collaborations and stronger links with various sources of knowledge. Staff participating in the various workshops pointed out that work processes as well as the human resources component cannot be left out of a solution development. Originality/value – There has been little......Purpose – The purpose of this paper is to explore theoretically and empirically the understanding and implementation of an information taxonomy in the UN organization World Food Programme (WFP) by analysing users’ information behaviour and by establishing a minimum set of cross-silo metadata...... (taxonomy). Design/methodology/approach – The study implies the use of both qualitative and quantitative methods. This includes desk review of key documents and interviews with information architecture staff from various WFP units; data collection carried out as semi-structured staff interviews in WFP; log...

  11. Taxonomy Icon Data: Javan tree shrew [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Javan tree shrew Tupaia javanica Chordata/Vertebrata/Mammalia/Theria/Eutheria/etc. Tupaia_javan...ica_L.png Tupaia_javanica_NL.png Tupaia_javanica_S.png Tupaia_javanica_NS.png http://bioscienced...bc.jp/taxonomy_icon/icon.cgi?i=Tupaia+javanica&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tupaia+javan...ica&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tupaia+javanica&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tupaia+javanica&t=NS ...

  12. Taxonomy Icon Data: Florida lancelet (amphioxus) [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Florida lancelet (amphioxus) Branchiostoma floridae Chordata/Urochordata,Cephalochorda...ta Branchiostoma_floridae_L.png Branchiostoma_floridae_NL.png Branchiostoma_floridae_S.png Branchiostoma_florida...e_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Branchiostoma+floridae&t=L http://bioscienc...edbc.jp/taxonomy_icon/icon.cgi?i=Branchiostoma+floridae&t=NL http://biosciencedbc....jp/taxonomy_icon/icon.cgi?i=Branchiostoma+floridae&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Branchiostoma+florida

  13. Taxonomy Icon Data: California sea lion [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available California sea lion Zalophus californianus Chordata/Vertebrata/Mammalia/Theria/Euth...eria/Carnivora Zalophus_californianus_L.png Zalophus_californianus_NL.png Zalophus_californianus_S.png Zalophus_california...nus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Zalophus+californianus&t=L http://...biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Zalophus+californianus&t=NL http://bios...ciencedbc.jp/taxonomy_icon/icon.cgi?i=Zalophus+californianus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Zalophus+californianus&t=NS ...

  14. Taxonomy Icon Data: wild Bactrian camel [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available wild Bactrian camel Camelus ferus Chordata/Vertebrata/Mammalia/Theria/Eutheria/Artiodactyla Cam...elus_ferus_L.png Camelus_ferus_NL.png Camelus_ferus_S.png Camelus_ferus_NS.png http://bioscience...dbc.jp/taxonomy_icon/icon.cgi?i=Camelus+ferus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Camelus+f...erus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Camelus+ferus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Camelus+ferus&t=NS ...

  15. Taxonomy Icon Data: white-tufted-ear marmoset [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available white-tufted-ear marmoset Callithrix jacchus Chordata/Vertebrata/Mammalia/Theria/Eutheria/Primate Call...ithrix_jacchus_L.png Callithrix_jacchus_NL.png Callithrix_jacchus_S.png Callithrix_jacchu...s_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Callithrix+jacchus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cal...lithrix+jacchus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Call...ithrix+jacchus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Callithrix+jacchus&t=NS ...

  16. Taxonomy Icon Data: red flour beetle [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available red flour beetle Tribolium castaneum Arthropoda Tribolium_castaneum_L.png Tribolium_cast...aneum_NL.png Tribolium_castaneum_S.png Tribolium_castaneum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tribolium+cas...taneum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tribolium+castaneum&t=N...L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tribolium+castaneum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tribolium+castaneum&t=NS ...

  17. Taxonomy Icon Data: Reeve's pond turtle [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Reeve's pond turtle Chinemys reevesii Chordata/Vertebrata/Reptilia/etc Chinemys_reevesii_L.png Chinemys_reev...esii_NL.png Chinemys_reevesii_S.png Chinemys_reevesii_NS.png http://biosciencedbc.j...p/taxonomy_icon/icon.cgi?i=Chinemys+reevesii&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Chinemys+reeve...sii&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Chinemys+reevesii&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Chinemys+reevesii&t=NS ...

  18. Taxonomy Icon Data: gray short-tailed opossum [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available gray short-tailed opossum Monodelphis domestica Chordata/Vertebrata/Mammalia/Theria.../Metatheria Monodelphis_domestica_L.png Monodelphis_domestica_NL.png Monodelphis_domestica_S.png Monodelphis_domestic...a_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Monodelphis+domestica&t=L http://bioscien...cedbc.jp/taxonomy_icon/icon.cgi?i=Monodelphis+domestica&t=NL http://biosciencedbc....jp/taxonomy_icon/icon.cgi?i=Monodelphis+domestica&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Monodelphis+domestica&t=NS ...

  19. Taxonomy Icon Data: Southern elephant seal [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Southern elephant seal Mirounga leonina Chordata/Vertebrata/Mammalia/Theria/Eutheria/Carnivora Mirounga_leon...ina_L.png Mirounga_leonina_NL.png Mirounga_leonina_S.png Mirounga_leonina_NS.png ht...tp://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Mirounga+leonina&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Mirounga+leon...ina&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Mirounga+leon...ina&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Mirounga+leonina&t=NS ...

  20. Taxonomy Icon Data: thick-tailed bush baby [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available thick-tailed bush baby Otolemur crassicaudatus Chordata/Vertebrata/Mammalia/Theria/Eutheria/Primate Otolemur..._crassicaudatus_L.png Otolemur_crassicaudatus_NL.png Otolemur_crassicaudatus_S.png Otolemur..._crassicaudatus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Otolemur+crassicaudatus&t=L ...http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Otolemur+crassicaudatus&t=NL htt...p://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Otolemur+crassicaudatus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Otolemur+crassicaudatus&t=NS ...

  1. Taxonomy Icon Data: Ciona intestinalis (Sea squirt) [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Ciona intestinalis (Sea squirt) Ciona intestinalis Chordata/Urochordata,Cephalochordata Ciona_intest...inalis_L.png Ciona_intestinalis_NL.png Ciona_intestinalis_S.png Ciona_intestinalis_NS.png h...ttp://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ciona+intestinalis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ciona+intest...inalis&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ciona+intest...inalis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ciona+intestinalis&t=NS ...

  2. Taxonomy Icon Data: Formosan subterranean termite [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Formosan subterranean termite Coptotermes formosanus Arthropoda Coptotermes_formosan...us_L.png Coptotermes_formosanus_NL.png Coptotermes_formosanus_S.png Coptotermes_formosanus_NS.png http://bi...osciencedbc.jp/taxonomy_icon/icon.cgi?i=Coptotermes+formosanus&t=L http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Coptotermes+formosanus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Coptotermes+formosan...us&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Coptotermes+formosanus&t=NS ...

  3. Taxonomy Icon Data: Pacific electric ray [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Pacific electric ray Torpedo californica Chordata/Vertebrata/Pisciformes Torpedo_californica_L.png Torpedo..._californica_NL.png Torpedo_californica_S.png Torpedo_californica_NS.png http://biosc...iencedbc.jp/taxonomy_icon/icon.cgi?i=Torpedo+californica&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Torpedo...+californica&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Torpedo...+californica&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Torpedo+californica&t=NS ...

  4. Taxonomy Icon Data: gold crucian carp [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available gold crucian carp Carassius auratus auratus Chordata/Vertebrata/Pisciformes Carassius_auratus_aura...tus_L.png Carassius_auratus_auratus_NL.png Carassius_auratus_auratus_S.png Carassius_auratus_aura...tus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Carassius+auratus+auratus&t=L http://bioscie...ncedbc.jp/taxonomy_icon/icon.cgi?i=Carassius+auratus+auratus&t=NL http://bioscien...cedbc.jp/taxonomy_icon/icon.cgi?i=Carassius+auratus+auratus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Carassius+auratus+auratus&t=NS ...

  5. Taxonomy Icon Data: Japanese Bush Warbler [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Japanese Bush Warbler Cettia diphone Chordata/Vertebrata/Aves Cettia_diphone_L.png Cettia_diphone..._NL.png Cettia_diphone_S.png Cettia_diphone_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cettia+diphone...&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cettia+diphone&t=NL http://bioscie...ncedbc.jp/taxonomy_icon/icon.cgi?i=Cettia+diphone&t=S http://biosciencedbc.jp/tax...onomy_icon/icon.cgi?i=Cettia+diphone&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=26 ...

  6. Taxonomy Icon Data: Ptychodera flava Eschscholtz (Acorn worm) [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available flava_L.png Ptychodera_flava_NL.png Ptychodera_flava_S.png Ptychodera_flava_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Ptychodera+flava&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ptychodera+fla...va&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ptychodera+flava&t=S http://biosciencedbc.jp/taxo...nomy_icon/icon.cgi?i=Ptychodera+flava&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=161 ...

  7. Taxonomy Icon Data: Japanese giant salamander [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Japanese giant salamander Andrias japonicus Chordata/Vertebrata/Amphibia Andrias_japonicus_L.png Andrias_jap...onicus_NL.png Andrias_japonicus_S.png Andrias_japonicus_NS.png http://biosciencedbc....jp/taxonomy_icon/icon.cgi?i=Andrias+japonicus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Andrias+japon...icus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Andrias+japonicus...&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Andrias+japonicus&t=NS ...

  8. Taxonomy Icon Data: Diplazium tomitaroanum Masam [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Diplazium tomitaroanum Masam Diplazium tomitaroanum Masam Diplazium_tomitaroanum_Masa...m_L.png Diplazium_tomitaroanum_Masam_NL.png Diplazium_tomitaroanum_Masam_S.png Diplazium_tomitaroanum_Masa...m_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Diplazium+tomitaroanum+Masam&t=L http://bioscience...dbc.jp/taxonomy_icon/icon.cgi?i=Diplazium+tomitaroanum+Masam&t=NL http://bioscien...cedbc.jp/taxonomy_icon/icon.cgi?i=Diplazium+tomitaroanum+Masam&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Diplazium+tomitaroanum+Masam&t=NS ...

  9. Taxonomy Icon Data: Japanese tree frog [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Japanese tree frog Hyla japonica Chordata/Vertebrata/Amphibia Hyla_japonica_L.png Hyla_jap...onica_NL.png Hyla_japonica_S.png Hyla_japonica_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hyla+jap...onica&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hyla+japonica&t=NL http://biosciencedbc....jp/taxonomy_icon/icon.cgi?i=Hyla+japonica&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hyla+jap

  10. Comment: 219 [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Japanese medaka Oryzias latipes Oryzias_latipes_L.png 219.png Taxonomy icon (c) Database Center for Life Sci...ence licensed under CC Attribution2.1 Japan アイコン:メダカ HNI-Ⅱ系統バージョン bando 2010/02/15 15:31:07 2010/02/16 09:53:27 ...

  11. Mapping Arctic sea ice from the Earth Resources Technology Satellite

    Science.gov (United States)

    Barnes, J. C. (Principal Investigator); Bowley, C. J.

    1973-01-01

    The author has identified the following significant results. Methods of detecting ice and for distinguishing between ice and clouds are discussed, and examples of ERTS-1 data showing ice distributions in northern Hudson Bay, M'Clure Strait, the eastern Beaufort Sea, and the Greenland Sea are presented. The results of the initial analysis of ERTS-1 data indicate that the locations of ice edges and ice concentrations can be accurately mapped, and that considerable information on ice type can be derived through use of the various spectral bands. Ice features as small as 80 to 100 m width can be mapped.

  12. Reflection and teaching: a taxonomy

    OpenAIRE

    Vos, Henk; Cowan, John

    2009-01-01

    A major problem in teaching reflection is that educational objectives for reflection in terms of student behaviour are lacking. Therefore a taxonomy of reflection has been developed based on Bloom’s taxonomy. Reflective assignments can then be better focused on any chosen educational objectives. The act of reflection has been analysed and abstracted from goal, content, context, means, and moment of reflecting. Reflection was operationalised as answering reflective questions. Bloom’s taxonomy ...

  13. Mapping Students Use of Technologies in Problem Based Learning Environments

    DEFF Research Database (Denmark)

    Rongbutsri, Nikorn; Khalid, Md. Saifuddin; Ryberg, Thomas

    2011-01-01

    This paper aims to understand how students use technology to enhance their learning in problem-based learning environments. The research methodology is based on both qualitative and quantitative studies. The results are based on students’ interviews, a survey and students’ reflections in course......-related blog posts; they show that students have positive perceptions toward using technologies in problem-based learning environments....

  14. Assessments of emerging science and technologies: Mapping the landscape

    NARCIS (Netherlands)

    Forsberg, E.M.; Thorstensen, E.; Nielsen, R.O.; Bakker, de E.

    2014-01-01

    This paper presents comparative work from the EST-Frame project on technology appraisal. It focuses on studies of 'advisory domains' (more or less distinct traditions for assessment of technologies, such as risk analysis, foresight and ethical assessments). The purpose of the study was to increase t

  15. Wayfinding Technology: A Road Map to the Future.

    Science.gov (United States)

    Baldwin, Douglas

    2003-01-01

    This article discusses the future of wayfinding technologies for individuals with visual impairments and the need for environmental literacy. It describes smart computer chips that can be embedded into the environment, robots that can assist individuals with disabilities, and GPS wheelchairs. Recommendations for advancing these technologies are…

  16. Mapping of submerged vegetation using remote sensing technology

    Science.gov (United States)

    Savastano, K. J.; Faller, K. H.; Mcfadin, L. W.; Holley, H.

    1981-01-01

    Techniques for mapping submerged sea grasses using aircraft supported remote sensors are described. The 21 channel solid state array spectroradiometer was successfully used as a remote sensor in the experiment in that the system operated without problem and obtained data. The environmental conditions of clear water, bright sandy bottom and monospecific vegetation (Thalassia) were ideal.

  17. Software Vulnerability Taxonomy Consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Polepeddi, Sriram S. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2004-12-07

    In today's environment, computers and networks are increasing exposed to a number of software vulnerabilities. Information about these vulnerabilities is collected and disseminated via various large publicly available databases such as BugTraq, OSVDB and ICAT. Each of these databases, individually, do not cover all aspects of a vulnerability and lack a standard format among them, making it difficult for end-users to easily compare various vulnerabilities. A central database of vulnerabilities has not been available until today for a number of reasons, such as the non-uniform methods by which current vulnerability database providers receive information, disagreement over which features of a particular vulnerability are important and how best to present them, and the non-utility of the information presented in many databases. The goal of this software vulnerability taxonomy consolidation project is to address the need for a universally accepted vulnerability taxonomy that classifies vulnerabilities in an unambiguous manner. A consolidated vulnerability database (CVDB) was implemented that coalesces and organizes vulnerability data from disparate data sources. Based on the work done in this paper, there is strong evidence that a consolidated taxonomy encompassing and organizing all relevant data can be achieved. However, three primary obstacles remain: lack of referencing a common ''primary key'', un-structured and free-form descriptions of necessary vulnerability data, and lack of data on all aspects of a vulnerability. This work has only considered data that can be unambiguously extracted from various data sources by straightforward parsers. It is felt that even with the use of more advanced, information mining tools, which can wade through the sea of unstructured vulnerability data, this current integration methodology would still provide repeatable, unambiguous, and exhaustive results. Though the goal of coalescing all available data

  18. Land cover change map comparisons using open source web mapping technologies

    Science.gov (United States)

    Erik Lindblom; Ian Housman; Tony Guay; Mark Finco; Kevin. Megown

    2015-01-01

    The USDA Forest Service is evaluating the status of current landscape change maps and assessing gaps in their information content. These activities have been occurring under the auspices of the Landscape Change Monitoring System (LCMS) project, which is a joint effort between USFS Research, USFS Remote Sensing Applications Center (RSAC), USGS Earth Resources...

  19. Development of a Taxonomy of Keywords for Engineering Education Research

    Science.gov (United States)

    Finelli, Cynthia J.; Borrego, Maura; Rasoulifar, Golnoosh

    2016-01-01

    The diversity of engineering education research provides an opportunity for cross-fertilisation of ideas and creativity, but it also can result in fragmentation of the field and duplication of effort. One solution is to establish a standardised taxonomy of engineering education terms to map the field and communicate and connect research…

  20. Taxonomies, Folksonomies, and Semantics: Establishing Functional Meaning in Navigational Structures

    Science.gov (United States)

    Bacha, Jeffrey A.

    2012-01-01

    This article argues for the establishment of a usability process that incorporates the study of "words" and "word phrases." It demonstrates how semantically mapping a navigational taxonomy can help the developers of digital environments establish a more focused sense of functional meaning for the users of their digital designs.

  1. Faceted Taxonomy-Based Sources

    Science.gov (United States)

    Tzitzikas, Yannis

    The objective of this chapter is to explain the underlying mathematical structure of faceted taxonomy-based sources and to provide some common notions and notations that are used in some parts of the book. Subsequently, and on the basis of the introduced formalism, this chapter describes the interaction between a user and an information source that supports dynamic taxonomies and faceted search.

  2. Reflection and teaching: a taxonomy

    NARCIS (Netherlands)

    Vos, Henk; Cowan, John

    2009-01-01

    A major problem in teaching reflection is that educational objectives for reflection in terms of student behaviour are lacking. Therefore a taxonomy of reflection has been developed based on Bloom’s taxonomy. Reflective assignments can then be better focused on any chosen educational objectives. The

  3. The first genetic map of pigeon pea based on diversity arrays technology (DArT) markers

    Indian Academy of Sciences (India)

    Shi Ying Yang; Rachit A. Saxena; Pawan L. Kulwal; Gavin J. Ash; Anuja Dubey; John D. I. Harper; Hari D. Upadhyaya; Ragini Gothalwal; Andrzej Kilian; Rajeev K. Varshney

    2011-04-01

    With an objective to develop a genetic map in pigeon pea (Cajanus spp.), a total of 554 diversity arrays technology (DArT) markers showed polymorphism in a pigeon pea F2 mapping population of 72 progenies derived from an interspecific cross of ICP 28 (Cajanus cajan) and ICPW 94 (Cajanus scarabaeoides). Approximately 13% of markers did not conform to expected segregation ratio. The total number of DArT marker loci segregating in Mendelian manner was 405 with 73.1% ($P \\gt 0.001$) of DArT markers having unique segregation patterns. Two groups of genetic maps were generated using DArT markers. While the maternal genetic linkage map had 122 unique DArT maternal marker loci, the paternal genetic linkage map has a total of 172 unique DArT paternal marker loci. The length of these two maps covered 270.0 cM and 451.6 cM, respectively. These are the first genetic linkage maps developed for pigeon pea, and this is the first report of genetic mapping in any grain legume using diversity arrays technology.

  4. [Recent progress in gene mapping through high-throughput sequencing technology and forward genetic approaches].

    Science.gov (United States)

    Lu, Cairui; Zou, Changsong; Song, Guoli

    2015-08-01

    Traditional gene mapping using forward genetic approaches is conducted primarily through construction of a genetic linkage map, the process of which is tedious and time-consuming, and often results in low accuracy of mapping and large mapping intervals. With the rapid development of high-throughput sequencing technology and decreasing cost of sequencing, a variety of simple and quick methods of gene mapping through sequencing have been developed, including direct sequencing of the mutant genome, sequencing of selective mutant DNA pooling, genetic map construction through sequencing of individuals in population, as well as sequencing of transcriptome and partial genome. These methods can be used to identify mutations at the nucleotide level and has been applied in complex genetic background. Recent reports have shown that sequencing mapping could be even done without the reference of genome sequence, hybridization, and genetic linkage information, which made it possible to perform forward genetic study in many non-model species. In this review, we summarized these new technologies and their application in gene mapping.

  5. Water Mapping Technology Rebuilds Lives in Arid Regions

    Science.gov (United States)

    2015-01-01

    Using NASA Landsat satellite and other remote sensing topographical data, Radar Technologies International developed an algorithm-based software program that can locate underground water sources. Working with international organizations and governments, the firm, which maintains an office in New Braunfels, Texas, is helping to provide water for refugees and other people in drought-stricken regions such as Kenya, Sudan, and Afghanistan.

  6. Using McREL's Knowledge Taxonomy for Ed Tech Professional Development

    Science.gov (United States)

    Hubbell, Elizabeth Ross

    2010-01-01

    In this article, the author discusses the Mid-continent Research for Education and Learning's (McREL's) Knowledge Taxonomy, which is a useful guide for any educational technology professional development plan. This taxonomy is based on the assertion that teachers need to know not only "what" to do to improve student achievement, but "why," "how,"…

  7. Evaluation and Mapping of The Use of Technology in The Pulp And Paper Agro Industry

    Directory of Open Access Journals (Sweden)

    Yulia Nurendah

    2015-02-01

    Full Text Available The execution and the implementation of the revitalization program and the growth of pulp and paper agro industry require evaluation activities. For that, we need a study that will provide evaluation and mapping of the implementation of policies and programs so that the analysis, assessment and weighting can be more transparent and measurable. The main objective of this activity is, there are an evaluation and mapping policy as well as output-based programs to the use of technology in the pulp and paper agro industry in 2010-2012 and the functioning of the evaluation program results and policies as a policy formulation and program for 2015-2019. Generally, the data analysis methods used are Descriptive Analysis Method, Assessment Technology, Counting Technology Index, Technology Mapping: Importance Performance Analysis, Benchmarking,  SWOT Analysis, RIA (Regulatory Impact Analysis. The technology used in the pulp and paper agro industries in Indonesia has generally been good in the downstream sector. The results of the overall analysis show that the type of technology used is still dominant with ‘semi-mechanical technology’. The status of the use of technology in pulp industry is good, while the status  of the use of technology in paper industry is very good.

  8. Research on Geological Survey Data Management and Automatic Mapping Technology

    Directory of Open Access Journals (Sweden)

    Dong Huang

    2017-01-01

    Full Text Available The data management of a large geological survey is not an easy task. To efficiently store and manage the huge datasets, a database of geological information on the basis of Microsoft Access has been created. By using the database of geological information, we can make easily and scientifically store and manage the large geological information. The geological maps—borehole diagrams, the rose diagrams for the joint trends, and joint isointensity diagrams—are traditionally drawn by hand, which is not efficient way; next, it is not easily possible to modify. Therefore, to solve those problems, the automatic mapping method and associated interfaces have been developed by using VS2010 and geological information database; these developments are presented in this article. This article describes the theoretical basis of the new method in detail and provides a case study of practical engineering to demonstrate its application.

  9. Knowledge representation and communication with concept maps in teacher training of science and technology

    Directory of Open Access Journals (Sweden)

    Pontes Pedrajas, Alfonso

    2012-01-01

    Full Text Available This paper shows the development of an educational innovation that we have made in the context of initial teacher training for secondary education of science and technology. In this educational experience computing resources and concept maps are used to develop teaching skills related to knowledge representation, oral communication, teamwork and practical use of ICT in the classroom. Initial results indicate that future teachers value positively the use of concept maps and computer resources as useful tools for teacher training.

  10. Taxonomy Icon Data: Philippine flying lemur [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Philippine flying lemur Cynocephalus volans Chordata/Vertebrata/Mammalia/Theria/Eutheria/etc. Cynocephalu...s_volans_L.png Cynocephalus_volans_NL.png Cynocephalus_volans_S.png Cynocephalus_volan...s_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cynocephalus+volans&t=L http://biosciencedbc.jp/ta...xonomy_icon/icon.cgi?i=Cynocephalus+volans&t=NL http://biosciencedbc.jp/taxonomy_...icon/icon.cgi?i=Cynocephalus+volans&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cynocephalus+volans&t=NS ...

  11. Taxonomy Icon Data: southern two-toed sloth [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available southern two-toed sloth Choloepus didactylus Chordata/Vertebrata/Mammalia/Theria/Eutheria/etc. Choloe...pus_didactylus_L.png Choloepus_didactylus_NL.png Choloepus_didactylus_S.png Choloepus_dida...ctylus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Choloepus+didactylus&t=L http://biosciencedbc....jp/taxonomy_icon/icon.cgi?i=Choloepus+didactylus&t=NL http://biosciencedbc.jp/ta...xonomy_icon/icon.cgi?i=Choloepus+didactylus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Choloepus+didactylus&t=NS ...

  12. Taxonomy Icon Data: African savanna elephant [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available African savanna elephant Loxodonta africana Chordata/Vertebrata/Mammalia/Theria/Eutheria/etc. Loxodonta_afri...cana_L.png Loxodonta_africana_NL.png Loxodonta_africana_S.png Loxodonta_africana_NS....png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Loxodonta+africana&t=L http://biosciencedbc.jp/taxonom...y_icon/icon.cgi?i=Loxodonta+africana&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Loxodonta+afric...ana&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Loxodonta+africana&t=NS ...

  13. Taxonomy Icon Data: North Pacific right whale [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available North Pacific right whale Eubalaena japonica Chordata/Vertebrata/Mammalia/Theria/Eu...theria/Cetacea Eubalaena_japonica_L.png Eubalaena_japonica_NL.png Eubalaena_japonica_S.png Eubalaena_japonic...a_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Eubalaena+japonica&t=L http://biosciencedbc.jp/tax...onomy_icon/icon.cgi?i=Eubalaena+japonica&t=NL http://biosciencedbc.jp/taxonomy_ic...on/icon.cgi?i=Eubalaena+japonica&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Eubalaena+japonica&t=NS ...

  14. Overview of the taxonomy of zooxanthellate Scleractinia.

    Science.gov (United States)

    Veron, John

    2013-11-01

    Coral taxonomy has entered a historical phase where nomenclatorial uncertainty is rapidly increasing. The fundamental cause is mandatory adherence to historical monographs that lack essential information of all sorts, and also to type specimens, if they exist at all, that are commonly unrecognizable fragments or are uncharacteristic of the species they are believed to represent. Historical problems, including incorrect subsequent type species designations, also create uncertainty for many well-established genera. The advent of in situ studies in the 1970s revealed these issues; now molecular technology is again changing the taxonomic landscape. The competing methodologies involved must be seen in context if they are to avoid becoming an additional basis for continuing nomenclatorial instability. To prevent this happening, the International Commission on Zoological Nomenclature (ICZN) will need to focus on rules that consolidate well-established nomenclature and allow for the designation of new type specimens that are unambiguous, and which include both skeletal material and soft tissue for molecular study. Taxonomic and biogeographic findings have now become linked, with molecular methodologies providing the capacity to re-visit past taxonomic decisions, and to extend both taxonomy and biogeography into the realm of evolutionary theory. It is proposed that most species will ultimately be seen as operational taxonomic units that are human rather than natural constructs, which in consequence will always have fuzzy morphological, genetic, and distribution boundaries. The pathway ahead calls for the integration of morphological and molecular taxonomies, and for website delivery of information that crosses current discipline boundaries.

  15. Innovative technologies in urban mapping built space and mental space

    CERN Document Server

    Paolini, Paolo; Salerno, Rossella

    2014-01-01

    The book presents a comprehensive vision of the impact of ICT on the contemporary city, heritage, public spaces and meta-cities on both urban and metropolitan scales, not only in producing innovative perspectives but also related to newly discovered scientific methods, which can be used to stimulate the emerging reciprocal relations between cities and information technologies. Using the principles established by multi-disciplinary interventions as examples and then expanding on them, this book demonstrates how by using ICT and new devices, metropolises can be organized for a future that preserves the historic nucleus of the city and the environment while preparing the necessary expansion of transportation, housing and industrial facilities.

  16. Genomic taxonomy of vibrios

    Directory of Open Access Journals (Sweden)

    Iida Tetsuya

    2009-10-01

    Full Text Available Abstract Background Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA, supertrees, Average Amino Acid Identity (AAI, genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. Results We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.. A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. Conclusion The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in

  17. Taxonomy of the extrasolar planet

    OpenAIRE

    Plávalová, E.

    2011-01-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extra-solar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extra-solar planets. I propose the following the extra-solar planet taxonomy scale w...

  18. Taxonomy Icon Data: Synechocystis sp.PCC 6803 [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Synechocystis sp.PCC 6803 Synechocystis sp.PCC 6803 Synechocystis_sp_PCC_6803_L.png Synechoc...ystis_sp_PCC_6803_NL.png Synechocystis_sp_PCC_6803_S.png Synechocystis_sp_PCC_6803_NS.png http://bi...osciencedbc.jp/taxonomy_icon/icon.cgi?i=Synechocystis+sp%2ePCC+6803&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Synechoc...ystis+sp%2ePCC+6803&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Synechoc...ystis+sp%2ePCC+6803&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Synechocystis

  19. High-Speed, Three Dimensional Object Composition Mapping Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, M Y

    2001-02-14

    This document overviews an entirely new approach to determining the composition--the chemical-elemental, isotopic and molecular make-up--of complex, highly structured objects, moreover with microscopic spatial resolution in all 3 dimensions. The front cover depicts the new type of pulsed laser system at the heart of this novel technology under adjustment by Alexis Wynne, and schematically indicates two of its early uses: swiftly analyzing the 3-D composition governed structure of a transistor circuit with both optical and mass-spectrometric detectors, and of fossilized dinosaur and turtle bones high-speed probed by optical detection means. Studying the composition-cued 3-D micro-structures of advanced composite materials and the microscopic scale composition-texture of biological tissues are two near-term examples of the rich spectrum of novel applications enabled by this field-opening analytic tool-set.

  20. UniMAP e-Lab for Electrical Engineering Technology: Future Online Laboratory Classes

    Directory of Open Access Journals (Sweden)

    Daud Mohd Hisam

    2016-01-01

    Full Text Available This paper will describe a proposed design and approaches to the future provision of laboratory experience using communication and control technology. This approach provides broad access for students who can not attend conventional laboratory to laboratory work. The experimental system online (e-Lab is under development for the students to carry out various experiments in engineering and technology education assessment system. In the field of engineering technology, one important element is laboratory work, although there are limitations in terms of space laboratories, distance learning provision. UniMAP e-Lab project aims to address many of the existing constraints. Beyond the educational goals, UniMAP e-Lab system enables experimental knowledge in a particular field of engineering technology and experimental results of the research are disseminated and exploited effectively. Solution design of hardware and software as well as the characteristics of education discussed.

  1. LIDAR Mapping Technology to Populate Green Areas GIS

    Science.gov (United States)

    Cattaneo, N.; Di Maria, F.; Guzzetti, F.; Privitera, A.; Righetti, G.

    2011-08-01

    In the last eight years the structure of Topographical Database of green areas has been implemented and consolidated: originally born to manage green areas in Milan, it is now used in other cities. Beside the optimizations achieved in data management (i.e. relationship between data and working process, updating procedures, exhaustive Index of Items) it is now becoming important an optimization in data acquisition: this is the reason why a test was started involving the use of LiDAR technology for surveying those green areas classified as equipped parks (over 50.000 sqmt), as an alternative to the traditional topographycal survey. LiDAR technology is commonly applied to forestry surveying and green mass computation, even in urban contexts, achieving good results also in automation of data processing. Nevertheless this testing activity has a specific aim, that is to derive (also using the contextual orthophoto) as many layers as possible among the ones described by the Specifications on Green areas TDb, preserving the high level of thematical detail and accuracy suggested by the Specifications. To do this, using the application Laserwebfor visualization and interaction with the point cloud, new and specific functions and layouts have been designed and implemented. For each item of the index has been made an effort to encode the optimal strategy for exploring the cloud and exporting the datum. The variety of the elements included in the Specification Index of Items is very differentiated, therefore also the procedures in point cloud analysis are various, as the main purpose of this work is to exploit all the potential information contained in a point cloud.

  2. Successful Teaching, Learning, and Use of Digital Mapping Technology in Mazvihwa, Rural Zimbabwe

    Science.gov (United States)

    Eitzel Solera, M. V.; Madzoro, S.; Solera, J.; Mhike Hove, E.; Changarara, A.; Ndlovu, D.; Chirindira, A.; Ndlovu, A.; Gwatipedza, S.; Mhizha, M.; Ndlovu, M.

    2016-12-01

    Participatory mapping is now a staple of community-based work around the world. Particularly for indigenous and rural peoples, it can represent a new avenue for environmental justice and can be a tool for culturally appropriate management of local ecosystems. We present a successful example of teaching and learning digital mapping technology in rural Zimbabwe. Our digital mapping project is part of the long-term community-based participatory research of The Muonde Trust in Mazvihwa, Zimbabwe. By gathering and distributing local knowledge and also bringing in visitors to share knowledge, Muonde has been able to spread relevant information among rural farmers. The authors were all members of Muonde or were Muonde's visitors, and were mentors and learners of digital mapping technologies at different times. Key successful characteristics of participants included patience, compassion, openness, perseverance, respect, and humility. Important mentoring strategies included: 1) instruction in Shona and in English, 2) locally relevant examples, assignments, and analogies motivated by real needs, 3) using a variety of teaching methods for different learning modalities, 4) building on and modifying familiar teaching methods, and 5) paying attention to the social and relational aspects of teaching and learning. The Muonde mapping team has used their new skills for a wide variety of purposes, including: identifying, discussing, and acting on emerging needs; using digital mapping for land-use and agropastoral planning; and using mapping as a tool for recording and telling important historical and cultural stories. Digital mapping has built self-confidence as well as providing employable skills and giving Muonde more visibility to other local and national non-governmental organizations, utility companies, and educational institutions. Digital mapping, as taught in a bottom-up, collaborative way, has proven to be both accessible and of enormous practical use to rural Zimbabweans.

  3. Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection.

    Science.gov (United States)

    Dunbar, Sherry A

    2006-01-01

    As we enter the post-genome sequencing era and begin to sift through the enormous amount of genetic information now available, the need for technologies that allow rapid, cost-effective, high-throughput detection of specific nucleic acid sequences becomes apparent. Multiplexing technologies, which allow for simultaneous detection of multiple nucleic acid sequences in a single reaction, can greatly reduce the time, cost and labor associated with single reaction detection technologies. The Luminex xMAP system is a multiplexed microsphere-based suspension array platform capable of analyzing and reporting up to 100 different reactions in a single reaction vessel. This technology provides a new platform for high-throughput nucleic acid detection and is being utilized with increasing frequency. Here we review specific applications of xMAP technology for nucleic acid detection in the areas of single nucleotide polymorphism (SNP) genotyping, genetic disease screening, gene expression profiling, HLA DNA typing and microbial detection. These studies demonstrate the speed, efficiency and utility of xMAP technology for simultaneous, rapid, sensitive and specific nucleic acid detection, and its capability to meet the current and future requirements of the molecular laboratory for high-throughput nucleic acid detection.

  4. MarineMap: Web-Based Technology for Coastal and Marine Spatial Planning

    Science.gov (United States)

    McClintock, W.; Ferdana, Z.; Merrifield, M.; Steinback, C.; Marinemap Consortium

    2010-12-01

    Science, technology and stakeholder engagement are at the heart of marine spatial planning (MSP). Yet, most stakeholders are not scientists or technologists. MarineMap (http://northcoast.marinemap.org) is a web-based decision support tool developed specifically for use by non-technical stakeholders in marine protected area (MPA) planning. However, MarineMap has been developed so that it may be extended to virtually any MSP project where there is a need for (a) visualization and analysis of geospatial data, (b) siting prospective use areas (e.g., for wind or wave energy sites, MPAs, transportation routes), (c) collaboration and communication amongst stakeholders, and (d) transparency of the process to the public. MarineMap is extremely well documented, is based on free and open source technologies and, therefore, may be implemented by anyone without licensing fees. Furthermore, the underlying technologies are extremely flexible and extensible, making it ideal for incorporating new models (e.g., tradeoff analyses, cumulative impacts, etc.) as they are identified for specific MSP projects. We will demonstrate how MarineMap has been developed for MPA planning in California, human impact assessment and MSP on the West Coast, energy and conservation planning in Oregon, and explain how interested parties may access MarineMap's source code and contribute to development.

  5. Advanced technologies for genomic analysis in farm animals and its application for QTL mapping.

    Science.gov (United States)

    Hu, Xiaoxiang; Gao, Yu; Feng, Chungang; Liu, Qiuyue; Wang, Xiaobo; Du, Zhuo; Wang, Qingsong; Li, Ning

    2009-06-01

    Rapid progress in farm animal breeding has been made in the last few decades. Advanced technologies for genomic analysis in molecular genetics have led to the identification of genes or markers associated with genes that affect economic traits. Molecular markers, large-insert libraries and RH panels have been used to build the genetic linkage maps, physical maps and comparative maps in different farm animals. Moreover, EST sequencing, genome sequencing and SNPs maps are helping us to understand how genomes function in various organisms and further areas will be studied by DNA microarray technologies and proteomics methods. Because most economically important traits in farm animals are controlled by multiple genes and the environment, the main goal of genome research in farm animals is to map and characterize genes determining QTL. There are two main strategies to identify trait loci, candidate gene association tests and genome scan approaches. In recent years, some new concepts, such as RNAi, miRNA and eQTL, have been introduced into farm animal research, especially for QTL mapping and finding QTN. Several genes that influence important traits have already been identified or are close to being identified, and some of them have been applied in farm animal breeding programs by marker-assisted selection.

  6. A taxonomy of inductive problems.

    Science.gov (United States)

    Kemp, Charles; Jern, Alan

    2014-02-01

    Inductive inferences about objects, features, categories, and relations have been studied for many years, but there are few attempts to chart the range of inductive problems that humans are able to solve. We present a taxonomy of inductive problems that helps to clarify the relationships between familiar inductive problems such as generalization, categorization, and identification, and that introduces new inductive problems for psychological investigation. Our taxonomy is founded on the idea that semantic knowledge is organized into systems of objects, features, categories, and relations, and we attempt to characterize all of the inductive problems that can arise when these systems are partially observed. Recent studies have begun to address some of the new problems in our taxonomy, and future work should aim to develop unified theories of inductive reasoning that explain how people solve all of the problems in the taxonomy.

  7. Further Verification of Bloom's Taxonomy

    Science.gov (United States)

    Roberts, Nancy

    1976-01-01

    Tests a curriculum designed to teach fifth and sixth grade students system dynamics thinking, an orientation that is congruent with the fourth and fifth levels of Bloom's "Taxonomy of Educational Objectives: Cognitive Domain".

  8. Assessing the Crossdisciplinarity of Technology-Enhanced Learning with Science Overlay Maps and Diversity Measures

    Science.gov (United States)

    Kalz, Marco; Specht, Marcus

    2014-01-01

    This paper deals with the assessment of the crossdisciplinarity of technology-enhanced learning (TEL). Based on a general discussion of the concept interdisciplinarity and a summary of the discussion in the field, two empirical methods from scientometrics are introduced and applied. Science overlay maps and the Rao-Stirling diversity index are…

  9. Assessing the Crossdisciplinarity of Technology-Enhanced Learning with Science Overlay Maps and Diversity Measures

    Science.gov (United States)

    Kalz, Marco; Specht, Marcus

    2014-01-01

    This paper deals with the assessment of the crossdisciplinarity of technology-enhanced learning (TEL). Based on a general discussion of the concept interdisciplinarity and a summary of the discussion in the field, two empirical methods from scientometrics are introduced and applied. Science overlay maps and the Rao-Stirling diversity index are…

  10. Using Remote Sensing and Spatial Information Technologies to Detect and Map Two Aquatic Macrophytes

    OpenAIRE

    Everitt, J.H.; Yang, C.; Escobar, D.E.; Webster, C.F.; Lonard, R.I.; Davis, M.R.

    1999-01-01

    This paper describes the light reflectance characteristics ofwaterhyacinth [Eichhornia crassipes (Mort.) Solms] and hydrilla [Hydrilla verticillata (L.F.) Royle] and the application of airborned videography with global positioning system (GPS) and geographic information system (GIS) technologies for distinguishing and mapping the distribution of these two aquatic weeds in waterways of southern Texas. Field reflectance measurements made at several locations showed that waterhyacinth generall...

  11. Conceptual Framework for the Mapping of Management Process with Information Technology in a Business Process

    Science.gov (United States)

    Chellappa, Swarnalatha; Nagarajan, Asha

    2015-01-01

    This study on component framework reveals the importance of management process and technology mapping in a business environment. We defined ERP as a software tool, which has to provide business solution but not necessarily an integration of all the departments. Any business process can be classified as management process, operational process and the supportive process. We have gone through entire management process and were enable to bring influencing components to be mapped with a technology for a business solution. Governance, strategic management, and decision making are thoroughly discussed and the need of mapping these components with the ERP is clearly explained. Also we suggest that implementation of this framework might reduce the ERP failures and especially the ERP misfit was completely rectified. PMID:25861688

  12. Conceptual framework for the mapping of management process with information technology in a business process.

    Science.gov (United States)

    Rajarathinam, Vetrickarthick; Chellappa, Swarnalatha; Nagarajan, Asha

    2015-01-01

    This study on component framework reveals the importance of management process and technology mapping in a business environment. We defined ERP as a software tool, which has to provide business solution but not necessarily an integration of all the departments. Any business process can be classified as management process, operational process and the supportive process. We have gone through entire management process and were enable to bring influencing components to be mapped with a technology for a business solution. Governance, strategic management, and decision making are thoroughly discussed and the need of mapping these components with the ERP is clearly explained. Also we suggest that implementation of this framework might reduce the ERP failures and especially the ERP misfit was completely rectified.

  13. Taxonomy of stock market indices

    Science.gov (United States)

    Bonanno, Giovanni; Vandewalle, Nicolas; Mantegna, Rosario N.

    2000-12-01

    We investigate sets of financial nonredundant and nonsynchronously recorded time series. The sets are composed by a number of stock market indices located all over the world in five continents. By properly selecting the time horizon of returns and by using a reference currency we find a meaningful taxonomy. The detection of such a taxonomy proves that interpretable information can be stored in a set of nonsynchronously recorded time series.

  14. Taxonomy Working Group Final Report

    Science.gov (United States)

    Parsons, Vickie S.; Beil, Robert J.; Terrone, Mark; Barth, Timothy S.; Panontin, Tina L.; Wales, Roxana; Rackley, Michael W.; Milne, James S.; McPherson, John W.; Dutra, Jayne E.; Shaw, Larry C.

    2009-01-01

    The purpose of the Taxonomy Working Group was to develop a proposal for a common taxonomy to be used by all NASA projects in the classifying of nonconformances, anomalies, and problems. Specifically, the group developed a recommended list of data elements along with general suggestions for the development of a problem reporting system to better serve NASA's need for managing, reporting, and trending project aberrant events. The Group's recommendations are reported in this document.

  15. IMPLEMENTATION OF OPEN-SOURCE WEB MAPPING TECHNOLOGIES TO SUPPORT MONITORING OF GOVERNMENTAL SCHEMES

    Directory of Open Access Journals (Sweden)

    B. R. Pulsani

    2015-10-01

    Full Text Available Several schemes are undertaken by the government to uplift social and economic condition of people. The monitoring of these schemes is done through information technology where involvement of Geographic Information System (GIS is lacking. To demonstrate the benefits of thematic mapping as a tool for assisting the officials in making decisions, a web mapping application for three government programs such as Mother and Child Tracking system (MCTS, Telangana State Housing Corporation Limited (TSHCL and Ground Water Quality Mapping (GWQM has been built. Indeed the three applications depicted the distribution of various parameters thematically and helped in identifying the areas with higher and weaker distributions. Based on the three applications, the study tends to find similarities of many government schemes reflecting the nature of thematic mapping and hence deduces to implement this kind of approach for other schemes as well. These applications have been developed using SharpMap Csharp library which is a free and open source mapping library for developing geospatial applications. The study highlights upon the cost benefits of SharpMap and brings out the advantage of this library over proprietary vendors and further discusses its advantages over other open source libraries as well.

  16. METHOD OF HIGH-LEVEL TECHNOLOGY MAPPING BASED ON KNOWLEDGE(RULE)

    Institute of Scientific and Technical Information of China (English)

    Ma Cong; Wang Zuojian; Liu Mingye

    2001-01-01

    This paper studies the linkage problem between the result of high-level synthesis and back-end technology, presents a method of high-level technology mapping based on knowl edge, and studies deeply all of its important links such as knowledge representation, knowledge utility and knowledge acquisition. It includes: (1) present a kind of expanded production about knowledge of circuit structure; (2) present a VHDL-based method to acquire knowledge of tech nology mapping; (3) provide solution control strategy and algorithm of knowledge utility; (4)present a half-automatic maintenance method, which can find redundance and contradiction of knowledge base; (5) present a practical method to embed the algorithm into knowledge system to decrease complexity of knowledge base. A system has been developed and linked with three kinds of technologies, so verified the work of this paper.

  17. Microbial genomic taxonomy.

    Science.gov (United States)

    Thompson, Cristiane C; Chimetto, Luciane; Edwards, Robert A; Swings, Jean; Stackebrandt, Erko; Thompson, Fabiano L

    2013-12-23

    A need for a genomic species definition is emerging from several independent studies worldwide. In this commentary paper, we discuss recent studies on the genomic taxonomy of diverse microbial groups and a unified species definition based on genomics. Accordingly, strains from the same microbial species share >95% Average Amino Acid Identity (AAI) and Average Nucleotide Identity (ANI), >95% identity based on multiple alignment genes, genomic signature, and > 70% in silico Genome-to-Genome Hybridization similarity (GGDH). Species of the same genus will form monophyletic groups on the basis of 16S rRNA gene sequences, Multilocus Sequence Analysis (MLSA) and supertree analysis. In addition to the established requirements for species descriptions, we propose that new taxa descriptions should also include at least a draft genome sequence of the type strain in order to obtain a clear outlook on the genomic landscape of the novel microbe. The application of the new genomic species definition put forward here will allow researchers to use genome sequences to define simultaneously coherent phenotypic and genomic groups.

  18. Airborne Lidar: Advances in Discrete Return Technology for 3D Vegetation Mapping

    Directory of Open Access Journals (Sweden)

    Valerie Ussyshkin

    2011-02-01

    Full Text Available Conventional discrete return airborne lidar systems, used in the commercial sector for efficient generation of high quality spatial data, have been considered for the past decade to be an ideal choice for various mapping applications. Unlike two-dimensional aerial imagery, the elevation component of airborne lidar data provides the ability to represent vertical structure details with very high precision, which is an advantage for many lidar applications focusing on the analysis of elevated features such as 3D vegetation mapping. However, the use of conventional airborne discrete return lidar systems for some of these applications has often been limited, mostly due to relatively coarse vertical resolution and insufficient number of multiple measurements in vertical domain. For this reason, full waveform airborne sensors providing more detailed representation of target vertical structure have often been considered as a preferable choice in some areas of 3D vegetation mapping application, such as forestry research. This paper presents an overview of the specific features of airborne lidar technology concerning 3D mapping applications, particularly vegetation mapping. Certain key performance characteristics of lidar sensors important for the quality of vegetation mapping are discussed and illustrated by the advanced capabilities of the ALTM-Orion, a new discrete return sensor manufactured by Optech Incorporated. It is demonstrated that advanced discrete return sensors with enhanced 3D mapping capabilities can produce data of enhanced quality, which can represent complex structures of vegetation targets at the level of details equivalent in some aspects to the content of full waveform data. It is also shown that recent advances in conventional airborne lidar technology bear the potential to create a new application niche, where high quality dense point clouds, enhanced by fully recorded intensity for multiple returns, may provide sufficient

  19. Radiation visualization in virtual reality: A comparison of flat and topographic map types, presented on four different display technologies

    Energy Technology Data Exchange (ETDEWEB)

    Nystad, Espen; Sebok, Angelia

    2005-08-15

    HWR-734 describes an experiment performed to compare different types of VR display technologies and their effects on learning. In the study, two different ways of presenting radiation information were compared. One was a flat radiation map with different colours for different levels of radiation. The other was a topographic map, where radiation levels were distinguished both by colour and by the elevation of the map. The efficiency of the maps for learning radiation information, and subjective preferences was assessed. The results indicated that the maps were each suited for different kinds of use. It is recommended to follow up this study with further investigation of radiation map efficiency. (Author)

  20. Untangling Web 2.0: Charting Web 2.0 Tools, the NCSS Guidelines for Effective Use of Technology, and Bloom's Taxonomy

    Science.gov (United States)

    Diacopoulos, Mark M.

    2015-01-01

    The potential for social studies to embrace instructional technology and Web 2.0 applications has become a growing trend in recent social studies research. As part of an ongoing process of collaborative enquiry between an instructional specialist and social studies teachers in a Professional Learning Community, a table of Web 2.0 applications was…

  1. Plant taxonomy: a historical perspective, current challenges, and perspectives.

    Science.gov (United States)

    Rouhan, Germinal; Gaudeul, Myriam

    2014-01-01

    Taxonomy is the science that explores, describes, names, and classifies all organisms. In this introductory chapter, we highlight the major historical steps in the elaboration of this science that provides baseline data for all fields of biology and plays a vital role for society but is also an independent, complex, and sound hypothesis-driven scientific discipline.In a first part, we underline that plant taxonomy is one of the earliest scientific disciplines that emerged thousands of years ago, even before the important contributions of Greeks and Romans (e.g., Theophrastus, Pliny the Elder, and Dioscorides). In the fifteenth to sixteenth centuries, plant taxonomy benefited from the Great Navigations, the invention of the printing press, the creation of botanic gardens, and the use of the drying technique to preserve plant specimens. In parallel with the growing body of morpho-anatomical data, subsequent major steps in the history of plant taxonomy include the emergence of the concept of natural classification, the adoption of the binomial naming system (with the major role of Linnaeus) and other universal rules for the naming of plants, the formulation of the principle of subordination of characters, and the advent of the evolutionary thought. More recently, the cladistic theory (initiated by Hennig) and the rapid advances in DNA technologies allowed to infer phylogenies and to propose true natural, genealogy-based classifications.In a second part, we put the emphasis on the challenges that plant taxonomy faces nowadays. The still very incomplete taxonomic knowledge of the worldwide flora (the so-called taxonomic impediment) is seriously hampering conservation efforts that are especially crucial as biodiversity enters its sixth extinction crisis. It appears mainly due to insufficient funding, lack of taxonomic expertise, and lack of communication and coordination. We then review recent initiatives to overcome these limitations and to anticipate how taxonomy

  2. The integrative future of taxonomy

    Directory of Open Access Journals (Sweden)

    Vences Miguel

    2010-05-01

    Full Text Available Abstract Background Taxonomy is the biological discipline that identifies, describes, classifies and names extant and extinct species and other taxa. Nowadays, species taxonomy is confronted with the challenge to fully incorporate new theory, methods and data from disciplines that study the origin, limits and evolution of species. Results Integrative taxonomy has been proposed as a framework to bring together these conceptual and methodological developments. Here we review perspectives for an integrative taxonomy that directly bear on what species are, how they can be discovered, and how much diversity is on Earth. Conclusions We conclude that taxonomy needs to be pluralistic to improve species discovery and description, and to develop novel protocols to produce the much-needed inventory of life in a reasonable time. To cope with the large number of candidate species revealed by molecular studies of eukaryotes, we propose a classification scheme for those units that will facilitate the subsequent assembly of data sets for the formal description of new species under the Linnaean system, and will ultimately integrate the activities of taxonomists and molecular biologists.

  3. Taxonomy Icon Data: three-spined stickleback [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available three-spined stickleback Gasterosteus aculeatus Chordata/Vertebrata/Pisciformes Gasteros...teus_aculeatus_L.png Gasterosteus_aculeatus_NL.png Gasterosteus_aculeatus_S.png Gasterosteus_aculeatus_...NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gasterosteus+aculeatus&t=L http://biosciencedbc.jp/t...axonomy_icon/icon.cgi?i=Gasterosteus+aculeatus&t=NL http://biosciencedbc.jp/taxon...omy_icon/icon.cgi?i=Gasterosteus+aculeatus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gasterosteus+aculeatus&t=NS ...

  4. RESEARCH ON THE KEY TECHNOLOGY OF LARGE SCALE MAPPING FROM LOW ALTITUDE PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    W. Bo-Yi

    2016-06-01

    Full Text Available Based on the theoretic analysis of the accuracy in large scale photogrammetric mapping, some defects in traditional procedure were discussed. A set of key technologies dedicate to accuracy improvement in low altitude photogrammetry were analyzed in detail, namely the utilization of wide angle camera and low altitude flight, enhancement in image matching, predesigned layout of Ground Control Points (GCPs in field survey, optimization of adjustment model and improvement in map processing. Besides, a low altitude aerial unmanned airship system was established. Finally, successful implementation in 1:500 topographic mapping project in built-up areas of 30 counties in Shanxi Province proves the practicability and effectiveness of the proposed approaches.

  5. Constructing a Business Model Taxonomy

    DEFF Research Database (Denmark)

    Groth, Pernille; Nielsen, Christian

    2015-01-01

    Abstract Purpose: The paper proposes a research design recipe capable of leading to future business model taxonomies and discusses the potential benefits and implications of achieving this goal. Design/Methodology/Approach: The paper provides a review of relevant scholarly literature about business...... models to clarify the subject as well as highlighting the importance of past studies of business model classifications. In addition it reviews the scholarly literature on relevant methodological approaches, such as cluster analysis and latent class analysis, for constructing a business model taxonomy....... The two literature streams combined to form the basis for the suggested recipe. Findings: The paper highlights the need for further large-scale empirical studies leading to a potential business model taxonomy, a topic that is currently under-exposed even though its merits are highlighted continuously...

  6. Constructing a Business Model Taxonomy

    DEFF Research Database (Denmark)

    Groth, Pernille; Nielsen, Christian

    2015-01-01

    Abstract Purpose: The paper proposes a research design recipe capable of leading to future business model taxonomies and discusses the potential benefits and implications of achieving this goal. Design/Methodology/Approach: The paper provides a review of relevant scholarly literature about business...... models to clarify the subject as well as highlighting the importance of past studies of business model classifications. In addition it reviews the scholarly literature on relevant methodological approaches, such as cluster analysis and latent class analysis, for constructing a business model taxonomy....... The two literature streams combined to form the basis for the suggested recipe. Findings: The paper highlights the need for further large-scale empirical studies leading to a potential business model taxonomy, a topic that is currently under-exposed even though its merits are highlighted continuously...

  7. Taxonomy of the genus Passerina (Thymelaeaceae

    Directory of Open Access Journals (Sweden)

    C. L. Bredenkamp

    2003-12-01

    Full Text Available Passerina L. is mainly a southern African genus, comprising 20 species and four subspecies. A few species occur along the Great Escarpment, two extend into Zimbabwe and Mozambique, but most are concentrated in the Cape Floristic Region. Palynological. macromorphological and anatomical evidence was used in the delimitation of the genus and its infrageneric taxa. A cladistic study supports Passerina as a monophyletic genus. A genus treatment, key to species and a full species treatment are given. Each species treatment includes a taxonomic diagnosis, description and notes on taxonomy, etymology, economic value and distribution. Illustrations of representative species are provided and distribution maps are included for each species.  P. esterhuyseniae Bredenk. & A.E.van Wyk is newly described. A list of excluded species names highlights the previous cosmopolitan taxonomic interpretation of Passerina. as many names are now in synony my under other genera of the Thymelaeaceae.

  8. Taxonomy of the genus Passerina (Thymelaeaceae

    Directory of Open Access Journals (Sweden)

    C. L. Bredenkamp

    2003-12-01

    Full Text Available Passerina L. is mainly a southern African genus, comprising 20 species and four subspecies. A few species occur along the Great Escarpment, two extend into Zimbabwe and Mozambique, but most are concentrated in the Cape Floristic Region. Palynological. macromorphological and anatomical evidence was used in the delimitation of the genus and its infrageneric taxa. A cladistic study supports Passerina as a monophyletic genus. A genus treatment, key to species and a full species treatment are given. Each species treatment includes a taxonomic diagnosis, description and notes on taxonomy, etymology, economic value and distribution. Illustrations of representative species are provided and distribution maps are included for each species.  P. esterhuyseniae Bredenk. & A.E.van Wyk is newly described. A list of excluded species names highlights the previous cosmopolitan taxonomic interpretation of Passerina. as many names are now in synony my under other genera of the Thymelaeaceae.

  9. Exposure, hazard and risk mapping during a flood event using open source geospatial technology

    Directory of Open Access Journals (Sweden)

    Arpit Aggarwal

    2016-07-01

    Full Text Available After a flood event there is a need to delineate the hazard footprint as quickly as possible in order to assess the magnitude of losses and to plan for the relief operations. Delineation of such hazard footprint is generally hindered by the lack of geospatial data, technology and related software packages. This paper demonstrates the use of open source data and software packages which can be used to implement most recent technology available for flood hazard footprint delineation. This study utilizes open source software packages and web applications like Geographic Resource Analysis Support System, Quantum geographic information system and Google Earth to implement a complete process of hazard mapping using remotely sensed data which include pre-processing, mapping (both hazard and exposure and accuracy assessment. In this study, Brisbane flood event of 2011 has been taken as a case study. For built-up extraction, the Landsat 7-band image has been transformed to a stack of 3-band image using vegetation, water and built-up indices. It has been observed by scattergram analysis that these transformations make vegetation, water and built-up classes more separable. Built-up area has been delineated using supervised maximum likelihood classification on the new 3-band image. For flood hazard mapping, thresholding of near-infrared band has been utilized along with the assistance of mid-infrared band to discriminate water from built-up classes. After delineating both exposure and hazard map, final risk map due to flood event has been generated to assess the urban exposure under the flood hazard impact.

  10. Amerind taxonomy and testable hypotheses.

    Science.gov (United States)

    Pichardo, M

    1998-06-01

    The acceptance of a 30,000 yr B.P. age for Valsequillo sets new parameters for hypotheses of Paleoindian entry into America. A review of Amerind taxonomy defines the early groups as Otamid-Sundadonts. Isolation in America led to an adaptive radiation that has implications for the origin and dispersal of Pithecanthropus.

  11. Using Esri Story Map Technology to Demonstrate SERVIR Global Success Stories

    Science.gov (United States)

    Adams, E. C.; Flores, A.; Muench, R.; Coulter, D.; Limaye, A. S.; Irwin, D.

    2016-12-01

    A joint development initiative of the National Aeronautics and Space Administration (NASA) and the United States Agency for International Development (USAID), SERVIR works in partnership with leading regional organizations world-wide to help developing countries build their capacity to use information provided by Earth observing satellites and geospatial technologies for managing climate and weather risks, food security and agriculture, land use change, water resources, and natural disaster response. The SERVIR network currently includes 4 regional hubs: Eastern and Southern Africa, Hindu-Kush-Himalaya, the Lower Mekong region, and West Africa, and has completed project activities in the Mesoamerica region. SERVIR has activities in over 40 countries, has developed 70 custom tools, and has collaborated with 155 institutions to apply current state of the art science and technology to decision making. Many of these efforts have the potential to continue to influence decision-making at new institutions throughout the globe; however, engaging those stakeholders and society while maintaining a global brand identity is challenging. Esri story map technologies have allowed the SERVIR network to highlight the applications of SERVIR projects. Conventional communication approaches have been used in SERVIR to share success stories of our geospatial projects; however, the power of Esri story telling offers a great opportunity to convey effectively the impacts of the geospatial solutions provided through SERVIR to end users. This paper will present use cases of how Esri story map technologies are being used across the SERVIR network to effectively communicate science to SERVIR users and general public. The easy to use design templates and interactive user interface are ideal for highlighting SERVIR's diverse products. In addition, the SERVIR team hopes to continue using story maps for project outreach and user engagement.

  12. From Typology to Taxonomy

    DEFF Research Database (Denmark)

    Hotho, Jasper J.

    2014-01-01

    The business systems approach holds considerable promise for improving our understanding of the relations between societal institutions and technological and economic outcomes. Nonetheless, there have been surprisingly few attempts to validate its proposed typology of business system types. In th...

  13. Bluetooth Threat Taxonomy

    OpenAIRE

    Dunning, John Paul

    2010-01-01

    Since its release in 1999, Bluetooth has become a commonly used technology available on billions of devices through the world. Bluetooth is a wireless technology used for information transfer by devices such as Smartphones, headsets, keyboard/mice, laptops/desktops, video game systems, automobiles, printers, heart monitors, and surveillance cameras. Dozens of threats have been developed by researchers and hackers which targets these Bluetooth enabled devices. The work in this thesis provides ...

  14. Comparison results of forest cover mapping of Peninsular Malaysia using geospatial technology

    Science.gov (United States)

    Hamid, Wan Abdul; Abd Rahman, Shukri B. Wan

    2016-06-01

    Climate change and global warming transpire due to several factors. Among them is deforestation which occur mostly in developing countries including Malaysia where forested areas are converted to other land use for tangible economic returns and to a smaller extent, as subsistence for local communities. As a cause for concern, efforts have been taken by the World Resource Institute (WRI) and World Wildlife Fund (WWF) to monitor forest loss using geospatial technology - interpreting time-based remote sensing imageries and producing statistics of forested areas lost since 2001. In Peninsular Malaysia, the Forestry Department of Peninsular Malaysia(FDPM) has conducted forest cover mapping for the region using the same technology since 2011, producing GIS maps for 2009-2010,2011-2012,2013-2014 and 2015. This paper focuses on the comparative study of the results generated from WRI,WWF and FDPM interpretations between 2010 and 2015, the methodologies used, the similarities and differences, challenges and recommendations for future enhancement of forest cover mapping technique.

  15. Landscaping climate change: a mapping technique for understanding science and technology debates on the world wide web

    NARCIS (Netherlands)

    Rogers, R.; Marres, N.

    2000-01-01

    New World Wide Web (web) mapping techniques may inform and ultimately facilitate meaningful participation in current science and technology debates. The technique described here "landscapes" a debate by displaying key "webby" relationships between organizations. "Debate-scaping" plots two organizati

  16. Landscaping climate change: a mapping technique for understanding science and technology debates on the world wide web

    NARCIS (Netherlands)

    Rogers, R.; Marres, N.

    2000-01-01

    New World Wide Web (web) mapping techniques may inform and ultimately facilitate meaningful participation in current science and technology debates. The technique described here "landscapes" a debate by displaying key "webby" relationships between organizations. "Debate-scaping" plots two organizati

  17. Landscaping climate change: a mapping technique for understanding science and technology debates on the world wide web

    NARCIS (Netherlands)

    Rogers, R.; Marres, N.

    2000-01-01

    New World Wide Web (web) mapping techniques may inform and ultimately facilitate meaningful participation in current science and technology debates. The technique described here "landscapes" a debate by displaying key "webby" relationships between organizations. "Debate-scaping" plots two

  18. Diversity array technology markers: genetic diversity analyses and linkage map construction in rapeseed (Brassica napus L.).

    Science.gov (United States)

    Raman, Harsh; Raman, Rosy; Nelson, Matthew N; Aslam, M N; Rajasekaran, Ravikesavan; Wratten, Neil; Cowling, Wallace A; Kilian, A; Sharpe, Andrew G; Schondelmaier, Joerg

    2012-01-01

    We developed Diversity Array Technology (DArT) markers for application in genetic studies of Brassica napus and other Brassica species with A or C genomes. Genomic representation from 107 diverse genotypes of B. napus L. var. oleifera (rapeseed, AACC genomes) and B. rapa (AA genome) was used to develop a DArT array comprising 11 520 clones generated using PstI/BanII and PstI/BstN1 complexity reduction methods. In total, 1547 polymorphic DArT markers of high technical quality were identified and used to assess molecular diversity among 89 accessions of B. napus, B. rapa, B. juncea, and B. carinata collected from different parts of the world. Hierarchical cluster and principal component analyses based on genetic distance matrices identified distinct populations clustering mainly according to their origin/pedigrees. DArT markers were also mapped in a new doubled haploid population comprising 131 lines from a cross between spring rapeseed lines 'Lynx-037DH' and 'Monty-028DH'. Linkage groups were assigned on the basis of previously mapped simple sequence repeat (SSRs), intron polymorphism (IP), and gene-based markers. The map consisted of 437 DArT, 135 SSR, 6 IP, and 6 gene-based markers and spanned 2288 cM. Our results demonstrate that DArT markers are suitable for genetic diversity analysis and linkage map construction in rapeseed.

  19. NASA Taxonomies for Searching Problem Reports and FMEAs

    Science.gov (United States)

    Malin, Jane T.; Throop, David R.

    2006-01-01

    Many types of hazard and risk analyses are used during the life cycle of complex systems, including Failure Modes and Effects Analysis (FMEA), Hazard Analysis, Fault Tree and Event Tree Analysis, Probabilistic Risk Assessment, Reliability Analysis and analysis of Problem Reporting and Corrective Action (PRACA) databases. The success of these methods depends on the availability of input data and the analysts knowledge. Standard nomenclature can increase the reusability of hazard, risk and problem data. When nomenclature in the source texts is not standard, taxonomies with mapping words (sets of rough synonyms) can be combined with semantic search to identify items and tag them with metadata based on a rich standard nomenclature. Semantic search uses word meanings in the context of parsed phrases to find matches. The NASA taxonomies provide the word meanings. Spacecraft taxonomies and ontologies (generalization hierarchies with attributes and relationships, based on terms meanings) are being developed for types of subsystems, functions, entities, hazards and failures. The ontologies are broad and general, covering hardware, software and human systems. Semantic search of Space Station texts was used to validate and extend the taxonomies. The taxonomies have also been used to extract system connectivity (interaction) models and functions from requirements text. Now the Reconciler semantic search tool and the taxonomies are being applied to improve search in the Space Shuttle PRACA database, to discover recurring patterns of failure. Usual methods of string search and keyword search fall short because the entries are terse and have numerous shortcuts (irregular abbreviations, nonstandard acronyms, cryptic codes) and modifier words cannot be used in sentence context to refine the search. The limited and fixed FMEA categories associated with the entries do not make the fine distinctions needed in the search. The approach assigns PRACA report titles to problem classes in

  20. 现代测绘技术的发展与新技术对测绘的影响%Influence of the Development of Modern Surveying and Mapping Technology and New Technology of Surveying and Mapping

    Institute of Scientific and Technical Information of China (English)

    陈江; 丛凤波

    2014-01-01

    Along with the unceasing progress and development of science and information technology in China, new technology and new means to affect the social from all walks of life, and the information science and technology has brought great influence to the engineering of Surveying and mapping. Therefore, research on the development direction of modern surveying and map-ping technology has significant impact on the work of Surveying and mapping. This paper mainly discusses all kinds of new tech-nology of modern surveying and mapping technology, and the direction of development of Surveying and mapping technology in the future is discussed in this paper, we hope this research of Surveying and mapping technology and application of modern all kinds of new and better have some help.%随着为我国科学信息技术的不断进步和发展,新技术和新的手段影响到社会上的各行各业,同时新的信息科学技术给工程测绘带来了较大的影响。因此,研究现代测绘技术的发展方向对开展测绘工作有着显著的影响。该文主要对现代测绘技术中的各种新技术进行了论述,并对测绘技术未来的发展方向进行了论述,希望本次研究对更好的应用现代各种新的测绘技术有一定的帮助。

  1. Do Science and Technology Teachers and Pre-Service Primary Teachers Have Different Thoughts about Concept Maps in Science and Technology Lessons?

    Science.gov (United States)

    Karakuyu, Yunus

    2011-01-01

    The purpose of this study is to determine the thoughts of primary science and technology teachers, primary class teachers, pre-service primary class teachers and pre-service primary science and technology teachers' about concept maps. This scale applied the use of basic and random method on the chosen 125 4th and 5th grade primary class teachers…

  2. 结合光谱图像技术和SAM分类法的甘蓝中杂草识别研究%Research on Identification of Cabbages and Weeds Combining Spectral Imaging Technology and SAM Taxonomy

    Institute of Scientific and Technical Information of China (English)

    祖琴; 张水发; 曹阳; 赵会义; 党长青

    2015-01-01

    Weeds automatic identification is the key technique and also the bottleneck for implementation of variable spraying and precision pesticide.Therefore,accurate,rapid and non-destructive automatic identification of weeds has become a very important research direction for precision agriculture.Hyperspectral imaging system was used to capture the hyperspectral images of cab-bage seedlings and five kinds of weeds such as pigweed,barnyard grass,goosegrass,crabgrass and setaria with the wavelength ranging from 1 000 to 2 500 nm.In ENVI,by utilizing the MNF rotation to implement the noise reduction and de-correlation of hyperspectral data and reduce the band dimensions from 256 to 11,and extracting the region of interest to get the spectral library as standard spectra,finally,using the SAM taxonomy to identify cabbages and weeds,the classification effect was good when the spectral angle threshold was set as 0.1 radians.In HSI Analyzer,after selecting the training pixels to obtain the standard spectrum,the SAM taxonomy was used to distinguish weeds from cabbages.Furthermore,in order to measure the recognition accuracy of weeds quantificationally,the statistical data of the weeds and non-weeds were obtained by comparing the SAM classi-fication image with the best classification effects to the manual classification image.The experimental results demonstrated that, when the parameters were set as 5-point smoothing,0-order derivative and 7-degree spectral angle,the best classification result was acquired and the recognition rate of weeds,non-weeds and overall samples was 80%,97. 3% and 96. 8% respectively.The method that combined the spectral imaging technology and the SAM taxonomy together took full advantage of fusion information of spectrum and image.By applying the spatial classification algorithms to establishing training sets for spectral identification, checking the similarity among spectral vectors in the pixel level,integrating the advantages of spectra and images

  3. A Taxonomy of Metrics for Hosted Databases

    Directory of Open Access Journals (Sweden)

    Jordan Shropshire

    2006-04-01

    Full Text Available The past three years has seen exponential growth in the number of organizations who have elected to entrust core information technology functions to application service providers. Of particular interest is the outsourcing of critical systems such as corporate databases. Major banks and financial service firms are contracting with third party organizations, sometimes overseas, for their database needs. These sophisticated contracts require careful supervision by both parties. Due to the complexities of web- based applications and the complicated nature of databases, an entire class of software suites has been developed to measure the quality of service the database is providing. This article investigates the performance metrics which have evolved to satisfy this need and describes a taxonomy of performance metrics for hosted databases.

  4. Taxonomy of Data Prefetching for Multicore Processors

    Institute of Scientific and Technical Information of China (English)

    Surendra Byna; Yong Chen; Xian-He Sun

    2009-01-01

    Data prefetching is an effective data access latency hiding technique to mask the CPU stall caused by cache misses and to bridge the performance gap between processor and memory. With hardware and/or software support, data prefetching brings data closer to a processor before it is actually needed. Many prefetching techniques have been developed for single-core processors. Recent developments in processor technology have brought multicore processors into mainstream.While some of the single-core prefetching techniques are directly applicable to multicore processors, numerous novel strategies have been proposed in the past few years to take advantage of multiple cores. This paper aims to provide a comprehensive review of the state-of-the-art prefetching techniques, and proposes a taxonomy that classifies various design concerns in developing a prefetching strategy, especially for multicore processors. We compare various existing methods through analysis as well.

  5. Optical gesture sensing and depth mapping technologies for head-mounted displays: an overview

    Science.gov (United States)

    Kress, Bernard; Lee, Johnny

    2013-05-01

    Head Mounted Displays (HMDs), and especially see-through HMDs have gained renewed interest in recent time, and for the first time outside the traditional military and defense realm, due to several high profile consumer electronics companies presenting their products to hit market. Consumer electronics HMDs have quite different requirements and constrains as their military counterparts. Voice comments are the de-facto interface for such devices, but when the voice recognition does not work (not connection to the cloud for example), trackpad and gesture sensing technologies have to be used to communicate information to the device. We review in this paper the various technologies developed today integrating optical gesture sensing in a small footprint, as well as the various related 3d depth mapping sensors.

  6. Abu Dhabi Basemap Update Using the LiDAR Mobile Mapping Technology

    Science.gov (United States)

    Alshaiba, Omar; Amparo Núñez-Andrés, M.; Lantada, Nieves

    2016-04-01

    Mobile LiDAR system provides a new technology which can be used to update geospatial information by direct and rapid data collection. This technology is faster than the traditional survey ways and has lower cost. Abu Dhabi Municipal System aims to update its geospatial system frequently as the government entities have invested heavily in GIS technology and geospatial data to meet the repaid growth in the infrastructure and construction projects in recent years. The Emirate of Abu Dhabi has witnessed a huge growth in infrastructure and construction projects in recent years. Therefore, it is necessary to develop and update its basemap system frequently to meet their own organizational needs. Currently, the traditional ways are used to update basemap system such as human surveyors, GPS receivers and controller (GPS assigned computer). Then the surveyed data are downloaded, edited and reviewed manually before it is merged to the basemap system. Traditional surveying ways may not be applicable in some conditions such as; bad weather, difficult topographic area and boundary area. This paper presents a proposed methodology which uses the Mobile LiDAR system to update basemap in Abu Dhabi by using daily transactions services. It aims to use and integrate the mobile LiDAR technology into the municipality's daily workflow such that it becomes the new standard cost efficiency operating procedure for updating the base-map in Abu Dhabi Municipal System. On another note, the paper will demonstrate the results of the innovated workflow for the base-map update using the mobile LiDAR point cloud and few processing algorithms.

  7. Mapping Trends in Pedagogical Approaches and Learning Technologies: Perspectives from the Canadian, International, and Military Education Contexts

    Science.gov (United States)

    Scoppio, Grazia; Covell, Leigha

    2016-01-01

    Increased technological advances, coupled with new learners' needs, have created new realities for higher education contexts. This study explored and mapped trends in pedagogical approaches and learning technologies in postsecondary education and identified how these innovations are affecting teaching and learning practices in higher education…

  8. A Taxonomy of Workflow Management Systems for Grid Computing

    OpenAIRE

    Yu, Jia; Buyya, Rajkumar

    2005-01-01

    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifi...

  9. Taxonomy Icon Images (PNG format) - Taxonomy Icon | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us ...se Database Description Download License Update History of This Database Site Policy | Contact Us Taxonomy Icon Images (PNG format) - Taxonomy Icon | LSDB Archive ...

  10. Taxonomy of the extrasolar planet.

    Science.gov (United States)

    Plávalová, Eva

    2012-04-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1.

  11. Spatial Mapping of NEO 2008 EV5 Using Small Satellite Formation Flying and Steresoscopic Technology

    Science.gov (United States)

    Gonzalez, Juan; Singh Derewa, Chrishma

    2016-10-01

    NASA is currently developing the first-ever robotic Asteroid Redirect Robotic Mission (ARRM) to the near-Earth asteroid 2008 EV5 with the objective to capture a multi-ton boulder from the asteroids surface and use its mass to redirect its parent into a CIS lunar orbit where astronauts will study its physical and chemical composition.A critical step towards achieving this mission is to effectively map the target asteroid, identify the candidate boulder for retrieval and characterize its critical parameters. Currently, ARRM utilizes a laser altimeter to characterize the height of the boulders and mapping for final autonomous control of the capture. The proposed Lava-Kusha mission provides the increased of stereoscopic imaging and mapping, not only the Earthward side of the asteroid which has been observed for possible landing sites, but mapping the whole asteroid. LKM will enhance the fidelity of the data collected by the laser altimeter and gather improved topographic data for future Orion missions to 2008 EV5 once in cis lunar space.LKM consists of two low cost small satellites (6U) as a part of the ARRM. They will launch with ARRM as an integrated part of the system. Once at the target, this formation of pathfinder satellites will image the mission critical boulder to ensure the system design can support its removal. LKM will conduct a series of flybys prior to ARRM's rendezvous. LKMs stereoscopic cameras will provide detailed surveys of the boulder's terrain and environment to ensure ARRM can operate safely, reach the location and interface with the boulder. The LKM attitude control and cold gas propulsion system will enable formation maintenance maneuvers for global mapping of asteroid 2008 EV5 at an altitude of 100 km to a high-spatial resolution imaging altitude of 5 km.LKM will demonstrate formation flying in deep space and the reliability of stereoscopic cameras to precisely identify a specific target and provide physical characterization of an asteroid. An

  12. Advanced geospatial technologies applied to gravel-bed river mapping and modeling

    Science.gov (United States)

    Aggett, Graeme Richard

    Mapping and modeling of river channels is essential in defining the Channel Migration Zone (CMZ). CMZ delineation is necessary to mitigate hazards, create opportunities to protect riparian habitat, predict channel response to changing land cover and disturbances, and design more environmentally-aligned engineering structures. This provides a compelling challenge to the GIScientist because of the need to understand fluvial process dynamics in space and time, and the narrow, elongated, and sinuous geometry of fluvial systems which complicates data collection, management and modeling of digital data describing these. This requires creation, management and correlation of a vast array of data of varying density and quality. Research presented here develops and applies advanced geospatial data, technologies, and modeling to CMZ mapping of a dynamic gravel-bed river in the state of Washington, USA. Chapter 2 demonstrates how new, object-based image processing techniques enhance river mapping accuracies and data modeling opportunities by incorporating the spatial characteristics and relationships of hydrogeomorphic objects into the classification process, by fusing high resolution DEMs with image data, and by accounting for uncertainty. In chapter 3, development and assimilation of a high resolution topographic LiDAR-based DEM with a one-dimensional hydraulic model enables the avulsion hazard of a reach of the Naches River in the state of Washington to be determined for multiple flow and channel-change scenarios. The DEM is used to optimize performance of the 1D hydraulic model HEC-RAS, post-processed output of which facilitates calculation of spatially explicit shear stress (tau0) and specific stream power per unit bed area (o). In Chapter 4 a new data intensive GIS-based framework for delineating CMZs is implemented and assessed. The approach incorporates historical maps, field-survey data, and LiDAR derived data products as well as a system design that provides a

  13. Digital Technology in the protection of cultural heritage Bao Fan Temple mural digital mapping survey

    Science.gov (United States)

    Zheng, Y.

    2015-08-01

    Peng Xi county, Sichuan province, the Bao Fan temple mural digitization survey mapping project: we use three-dimensional laserscanning, multi-baseline definition digital photography, multi-spectral digital image acquisition and other technologies for digital survey mapping. The purpose of this project is to use modern mathematical reconnaissance mapping means to obtain accurate mural shape, color, quality and other data. Combined with field investigation and laboratory analysis results, and based on a comprehensive survey and study, a comprehensive analysis of the historical Bao Fan Temple mural artistic and scientific value was conducted. A study of the mural's many qualities (structural, material, technique, preservation environment, degradation, etc.) reveal all aspects of the information carried by the Bao Fan Temple mural. From multiple angles (archeology, architecture, surveying, conservation science and other disciplines) an assessment for the Bao Fan Temple mural provides basic data and recommendations for conservation of the mural. In order to achieve the conservation of cultural relics in the Bao Fan Temple mural digitization survey mapping process, we try to apply the advantages of three-dimensional laser scanning equipment. For wall murals this means obtaining three-dimensional scale data from the scan of the building and through the analysis of these data to help determine the overall condition of the settlement as well as the deformation of the wall structure. Survey analysis provides an effective set of conclusions and suggestions for appropriate mural conservation. But before data collection, analysis and research need to first to select the appropriate scanning equipment, set the appropriate scanning accuracy and layout position of stations necessary to determine the scope of required data. We use the fine features of the three-dimensional laser scanning measuring arm to scan the mural surface deformation degradation to reflect the actual state of

  14. Indoor radiation mapping using the Laser Assisted Ranging and Data System (LARADS). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The US Department of Energy`s (DOE`s) nuclear facilities require characterization and documentation of the results as part of planning and decision-making for decontamination and decommissioning (D and D) projects and to release areas that have been cleaned up. Conducting radiation surveys of indoor and outdoor surfaces and generating accurate survey reports is an important component of the D and D program. The Laser Assisted Ranging and Data System (LARADS) is a characterization technology that provides real-time data on the location and concentration levels of radiological contamination. The system can be utilized with a number of available detection instruments and can be integrated with existing data analysis and mapping software technologies to generate superior quality survey data reports. This innovative technology is competitive with baseline technologies in terms of cost and survey times, but is much more flexible and provides more useful reports. The system also has the capability of electronically logging survey data, making it easy to store and retrieve. Such data are scientifically derived and not subject to interpretation. The LARADS is an extremely attractive alternative to manually generated survey data reports.

  15. Use of Open Standards and Technologies at the Lunar Mapping and Modeling Project

    Science.gov (United States)

    Law, E.; Malhotra, S.; Bui, B.; Chang, G.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Sadaqathulla, S.; Rodriguez, L.

    2011-12-01

    The Lunar Mapping and Modeling Project (LMMP), led by the Marshall Space Flight center (MSFC), is tasked by NASA. The project is responsible for the development of an information system to support lunar exploration activities. It provides lunar explorers a set of tools and lunar map and model products that are predominantly derived from present lunar missions (e.g., the Lunar Reconnaissance Orbiter (LRO)) and from historical missions (e.g., Apollo). At Jet Propulsion Laboratory (JPL), we have built the LMMP interoperable geospatial information system's underlying infrastructure and a single point of entry - the LMMP Portal by employing a number of open standards and technologies. The Portal exposes a set of services to users to allow search, visualization, subset, and download of lunar data managed by the system. Users also have access to a set of tools that visualize, analyze and annotate the data. The infrastructure and Portal are based on web service oriented architecture. We designed the system to support solar system bodies in general including asteroids, earth and planets. We employed a combination of custom software, commercial and open-source components, off-the-shelf hardware and pay-by-use cloud computing services. The use of open standards and web service interfaces facilitate platform and application independent access to the services and data, offering for instances, iPad and Android mobile applications and large screen multi-touch with 3-D terrain viewing functions, for a rich browsing and analysis experience from a variety of platforms. The web services made use of open standards including: Representational State Transfer (REST); and Open Geospatial Consortium (OGC)'s Web Map Service (WMS), Web Coverage Service (WCS), Web Feature Service (WFS). Its data management services have been built on top of a set of open technologies including: Object Oriented Data Technology (OODT) - open source data catalog, archive, file management, data grid framework

  16. LEADERSHIP BEHAVIORAL TAXONOMIES IN UNIVERSITIES

    Directory of Open Access Journals (Sweden)

    Riaz Ahmed Mangi

    2011-10-01

    Full Text Available The study was intended to recognize and replicate the Yukl’s (1989-2004 behavioral taxonomies in the university settings in Sindh. A comprehensive questionnaire based on the items in taxonomies was developed, face validity of the questionnaire was test and found suitable. A total of 90 university Deans and head of Departments were randomly selected from public and private universities of Sindh. Categorical reliability of the data was checked and found highly reliable. The majority of the respondents were male, post graduate, above 50 years of age, married and had more than 15 years of experience. The statistical analysis describes the typical Sindhi culture among the respondents. A large number of university leadership focused on the relation as compared to task and change at the universities. This research also supports partial replication of three dimensions i.e., Relation, Task and Change as Yukl’s behavioral taxonomies with first order factor analysis. Relation factor was replicated completely, while other two were replicated in two different facets each i.e., Change was replicated in two facets – Improvement and Process and Task was also replicated in two facets – Improvement and Process. Making a second order factor analysis assured these two factors were replicated completely.

  17. A taxonomy fuzzy filtering approach

    Directory of Open Access Journals (Sweden)

    Vrettos S.

    2003-01-01

    Full Text Available Our work proposes the use of topic taxonomies as part of a filtering language. Given a taxonomy, a classifier is trained for each one of its topics. The user is able to formulate logical rules combining the available topics, e.g. (Topic1 AND Topic2 OR Topic3, in order to filter related documents in a stream. Using the trained classifiers, every document in the stream is assigned a belief value of belonging to the topics of the filter. These belief values are then aggregated using logical operators to yield the belief to the filter. In our study, Support Vector Machines and Naïve Bayes classifiers were used to provide topic probabilities. Aggregation of topic probabilities based on fuzzy logic operators was found to improve filtering performance on the Renters text corpus, as compared to the use of their Boolean counterparts. Finally, we deployed a filtering system on the web using a sample taxonomy of the Open Directory Project.

  18. Combining Google Earth and GIS mapping technologies in a dengue surveillance system for developing countries

    Directory of Open Access Journals (Sweden)

    Sobieszczyk Magdalena E

    2009-07-01

    Full Text Available Abstract Background Dengue fever is a mosquito-borne illness that places significant burden on tropical developing countries with unplanned urbanization. A surveillance system using Google Earth and GIS mapping technologies was developed in Nicaragua as a management tool. Methods and Results Satellite imagery of the town of Bluefields, Nicaragua captured from Google Earth was used to create a base-map in ArcGIS 9. Indices of larval infestation, locations of tire dumps, cemeteries, large areas of standing water, etc. that may act as larval development sites, and locations of the homes of dengue cases collected during routine epidemiologic surveying were overlaid onto this map. Visual imagery of the location of dengue cases, larval infestation, and locations of potential larval development sites were used by dengue control specialists to prioritize specific neighborhoods for targeted control interventions. Conclusion This dengue surveillance program allows public health workers in resource-limited settings to accurately identify areas with high indices of mosquito infestation and interpret the spatial relationship of these areas with potential larval development sites such as garbage piles and large pools of standing water. As a result, it is possible to prioritize control strategies and to target interventions to highest risk areas in order to eliminate the likely origin of the mosquito vector. This program is well-suited for resource-limited settings since it utilizes readily available technologies that do not rely on Internet access for daily use and can easily be implemented in many developing countries for very little cost.

  19. Breast cancer pathology: the impact of molecular taxonomy on morphological taxonomy.

    Science.gov (United States)

    Masuda, Shinobu

    2012-05-01

    The concept of having an 'intrinsic subtype,' or a molecular taxonomy, lets us clearly recognize that breast cancers have characteristically different patterns of gene expression, thus giving newfound significance to morphological taxonomy. In this review, the concept of the 'intrinsic subtype' is discussed, research questions are introduced to refine the significance of morphological taxonomy, and a corresponding example is presented between microarray analysis and 'immunohistochemical subtype,' or histological taxonomy.

  20. MAPPING OF ILLITERACY AND INFORMATION AND COMMUNICATION TECHNOLOGY INDICATORS USING GEOGRAPHICALLY WEIGHTED REGRESSION

    Directory of Open Access Journals (Sweden)

    Rokhana Dwi Bekti

    2014-01-01

    Full Text Available Geographically Weighted Regression (GWR is a technique that brings the framework of a simple regression model into a weighted regression model. Each parameter in this model is calculated at each point geographical location. The significantly parameter can be used for mapping. In this research GWR model use for mapping Information and Communication Technology (ICT indicators which influence on illiteracy. This problem was solved by estimation GWR model. The process was developing optimum bandwidth, weighted by kernel bisquare and parameter estimation. Mapping of ICT indicators was done by P-value. This research use data 29 regencies and 9 cities in East Java Province, Indonesia. GWR model compute the variables that significantly affect on illiteracy (α = 5% in some locations, such as percent households members with a mobile phone (x2, percent of household members who have computer (x3 and the percent of households who access the internet at school in the last month (x4. Ownership of mobile phone was significant (α = 5% at 20 locations. Ownership of computer and internet access were significant at 3 locations. Coefficient determination at all locations has R2 between 73.05-92.75%. The factors which affecting illiteracy in each location was very diverse. Mapping by P-value or critical area shows that ownership of mobile phone significantly affected at southern part of East Java. Then, the ownership of computer and internet access were significantly affected on illiteracy at northern area. All the coefficient regression in these locations was negative. It performs that if the number of mobile phone ownership, computer ownership and internet access were high then illiteracy will be decrease.

  1. MapSite - an Internet map service of the National Land Survey of Finland gets dressed up with modern technology

    Directory of Open Access Journals (Sweden)

    Jere Rajalin

    2003-03-01

    Full Text Available MapSite of the National Land Survey of Finland was the first national Internet map service in Europe. It was launched in September 1996. Since then the service has been a huge success. Until now it has almost 300,000 users in all, the number of paying customers is over 2,000. In the spring of 2001 National Land Survey (NLS started a project to produce a new Internet map service to replace the old MapSite. The developing project is divided in three phases. In the first phase services of paying customers are renewed. Free of charge map browsing service is being modernised in the second phase. Totally new services may be produced in the third phase.

  2. Diversity and Taxonomy in Cultural Heritage

    OpenAIRE

    Myridis, N. E.

    2012-01-01

    The discipline of Cultural Heritage is nowadays developing very well. Moreover, the field of Cultural Heritage Preservation is also developing well. The necessity of well-organized taxonomy and classification now seems to be an outstanding significant topic. The scope of this paper regards such taxonomy; more precisely, it proposes this kind of taxonomy. The final products of this paper are the Diagram of Cultural Heritage & its Preservation and the Universal Cultural Heritage & Preservation ...

  3. MAPPING PROVISION OF LANDSCAPE-ENVIRONMENTAL SUSTAINABILITY FOR AREAS OF PRODUCTION, PROCESSING AND TRANSPORTATION OF HYDROCARBON RAW MATERIALS WITH USING REMOTE SENSING DATA AND GIS TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    G. V. Geldieva

    2015-01-01

    Full Text Available The article describes the wide range of applications at all stages of development of hydrocarbon deposits mapping method. On the model region – Karachaganak gas condensate field to demonstrate the use of modern geoinformation technologies in creating a series of inventory and assessment of landscape-ecological maps, maps of general scientific content, maps application and purpose.

  4. Interactive web-based mapping: bridging technology and data for health

    Directory of Open Access Journals (Sweden)

    Highfield Linda

    2011-12-01

    Full Text Available Abstract Background The Community Health Information System (CHIS online mapping system was first launched in 1998. Its overarching goal was to provide researchers, residents and organizations access to health related data reflecting the overall health and well-being of their communities within the Greater Houston area. In September 2009, initial planning and development began for the next generation of CHIS. The overarching goal for the new version remained to make health data easily accessible for a wide variety of research audiences. However, in the new version we specifically sought to make the CHIS truly interactive and give the user more control over data selection and reporting. Results In July 2011, a beta version of the next-generation of the application was launched. This next-generation is also a web based interactive mapping tool comprised of two distinct portals: the Breast Health Portal and Project Safety Net. Both are accessed via a Google mapping interface. Geographic coverage for the portals is currently an 8 county region centered on Harris County, Texas. Data accessed by the application include Census 2000, Census 2010 (underway, cancer incidence from the Texas Cancer Registry (TX Dept. of State Health Services, death data from Texas Vital Statistics, clinic locations for free and low-cost health services, along with service lists, hours of operation, payment options and languages spoken, uninsured and poverty data. Conclusions The system features query on the fly technology, which means the data is not generated until the query is provided to the system. This allows users to interact in real-time with the databases and generate customized reports and maps. To the author's knowledge, the Breast Health Portal and Project Safety Net are the first local-scale interactive online mapping interfaces for public health data which allow users to control the data generated. For example, users may generate breast cancer incidence rates

  5. A taxonomy of dignity: a grounded theory study

    Directory of Open Access Journals (Sweden)

    Jacobson Nora

    2009-02-01

    Full Text Available Abstract Background This paper has its origins in Jonathan Mann's insight that the experience of dignity may explain the reciprocal relationships between health and human rights. It follows his call for a taxonomy of dignity: "a coherent vocabulary and framework to characterize dignity." Methods Grounded theory procedures were use to analyze literature pertaining to dignity and to conduct and analyze 64 semi-structured interviews with persons marginalized by their health or social status, individuals who provide health or social services to these populations, and people working in the field of health and human rights. Results The taxonomy presented identifies two main forms of dignity–human dignity and social dignity–and describes several elements of these forms, including the social processes that violate or promote them, the conditions under which such violations and promotions occur, the objects of violation and promotion, and the consequences of dignity violation. Together, these forms and elements point to a theory of dignity as a quality of individuals and collectives that is constituted through interaction and interpretation and structured by conditions pertaining to actors, relationships, settings, and the broader social order. Conclusion The taxonomy has several implications for work in health and human rights. It suggests a map to possible points of intervention and provides a language in which to talk about dignity.

  6. Quality control for terms and definitions in ontologies and taxonomies

    Directory of Open Access Journals (Sweden)

    Rüegg Alexander

    2006-04-01

    Full Text Available Abstract Background Ontologies and taxonomies are among the most important computational resources for molecular biology and bioinformatics. A series of recent papers has shown that the Gene Ontology (GO, the most prominent taxonomic resource in these fields, is marked by flaws of certain characteristic types, which flow from a failure to address basic ontological principles. As yet, no methods have been proposed which would allow ontology curators to pinpoint flawed terms or definitions in ontologies in a systematic way. Results We present computational methods that automatically identify terms and definitions which are defined in a circular or unintelligible way. We further demonstrate the potential of these methods by applying them to isolate a subset of 6001 problematic GO terms. By automatically aligning GO with other ontologies and taxonomies we were able to propose alternative synonyms and definitions for some of these problematic terms. This allows us to demonstrate that these other resources do not contain definitions superior to those supplied by GO. Conclusion Our methods provide reliable indications of the quality of terms and definitions in ontologies and taxonomies. Further, they are well suited to assist ontology curators in drawing their attention to those terms that are ill-defined. We have further shown the limitations of ontology mapping and alignment in assisting ontology curators in rectifying problems, thus pointing to the need for manual curation.

  7. Taxonomy development and knowledge representation of nurses' personal cognitive artifacts.

    Science.gov (United States)

    McLane, Sharon; Turley, James P

    2009-11-14

    Nurses prepare knowledge representations, or summaries of patient clinical data, each shift. These knowledge representations serve multiple purposes, including support of working memory, workload organization and prioritization, critical thinking, and reflection. This summary is integral to internal knowledge representations, working memory, and decision-making. Study of this nurse knowledge representation resulted in development of a taxonomy of knowledge representations necessary to nursing practice.This paper describes the methods used to elicit the knowledge representations and structures necessary for the work of clinical nurses, described the development of a taxonomy of this knowledge representation, and discusses translation of this methodology to the cognitive artifacts of other disciplines. Understanding the development and purpose of practitioner's knowledge representations provides important direction to informaticists seeking to create information technology alternatives. The outcome of this paper is to suggest a process template for transition of cognitive artifacts to an information system.

  8. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Hastie, Alex R.; Cao, Dandan

    2014-01-01

    mutations; however, none of the current detection methods are comprehensive, and currently available methodologies are incapable of providing sufficient resolution and unambiguous information across complex regions in the human genome. To address these challenges, we applied a high-throughput, cost......BACKGROUND: Structural variants (SVs) are less common than single nucleotide polymorphisms and indels in the population, but collectively account for a significant fraction of genetic polymorphism and diseases. Base pair differences arising from SVs are on a much higher order (>100 fold) than point...... mapping technology as a comprehensive and cost-effective method for detecting structural variation and studying complex regions in the human genome, as well as deciphering viral integration into the host genome....

  9. Geospatial Technology in Disease Mapping, E- Surveillance and Health Care for Rural Population in South India

    Science.gov (United States)

    Praveenkumar, B. A.; Suresh, K.; Nikhil, A.; Rohan, M.; Nikhila, B. S.; Rohit, C. K.; Srinivas, A.

    2014-11-01

    Providing Healthcare to rural population has been a challenge to the medical service providers especially in developing countries. For this to be effective, scalable and sustainable, certain strategic decisions have to be taken during the planning phase. Also, there is a big gap between the services available and the availability of doctors and medical resources in rural areas. Use of Information Technology can aid this deficiency to a good extent. In this paper, a mobile application has been developed to gather data from the field. A cloud based interface has been developed to store the data in the cloud for effective usage and management of the data. A decision tree based solution developed in this paper helps in diagnosing a patient based on his health parameters. Interactive geospatial maps have been developed to provide effective data visualization facility. This will help both the user community as well as decision makers to carry out long term strategy planning.

  10. Landslide Susceptibility Mapping Using Geospatial Technology in South Eastern Part of Nilgiri District, Tamilnadu, India

    Science.gov (United States)

    Thangasamy, N.; Varathan, R.

    2013-05-01

    Landslides are often destructive and periodically affect the Nilgiris district. Two method viz., Frequency ratio (FR) and Weights of evidence (WofE) were used to reclassify the sub-variables and the landslide susceptibility index (LSI) was calculated by weighted sum overlay analysis. The final LS Zonation map was prepared from the LSI and the area was classified into two zones. Validation of the LSM was the next step and was accomplished by excluding some landslide points in the GIS analyses and overlying the unused landslides points over the LSM. The LSMs prepared using the FR and WofE methods are reliable as more than 75% of the excluded slides fall in high and very high landslide susceptibility zones and the error of mismatch in the two maps is negligible.During the course of this study landslides devastated the Kethi, Coonoor, Barliyar and Kothagiri areas due to an extreme event with 374 to 1,171 mm rainfall received in these stations in just three days on 8th to 10th November, 2009. The rainfall event is unprecedented and such extreme rainfall has not occurred in the region since meteorological records are maintained. Over 100 landslides took place in the area of which 75 are major slides and more 43 people died and 200 houses were damaged. The event was documented and a data base containing the location, details of death, slide characteristics and photographs was prepared. Further, the probability of landslide occurrence may change over time due to changes in land use, unscientific massive developmental activities and establishing settlements without adopting proper safety measures. The study also highlights the need for maintenance of landslide database and installation of more rain gauge stations to update and improve the LSM so as to reduce the risk of landslide hazard faced by the Community. NaveenRaj.T INDIA LANDSLIDE SUSCEPTIBILITY MAPPING USING GEOSPATIAL TECHNOLOGY IN SOUTH EASTERN PART OF NILGIRI DISTRICT, TAMILNADU, INDIA.

  11. Mentoring Entrepreneurial Networks: mapping conceptions of participants in technological-based business incubators in Brazil.

    Directory of Open Access Journals (Sweden)

    Pontes Regis, Helder

    2007-12-01

    Full Text Available The recent entrepreneurship research agenda includes the analysis of cognitive structures of successful entrepreneurs, revealing an important tool for the examination of an entrepreneurial career. Using techniques of cognitive maps, this study explores the concepts of a successful career and the network itself, as a whole, for career development. Fifty-three entrepreneurs were studied, in seven technological incubators in the city of Recife, Pernambuco, Brazil. Specifically, this study aimed to map the shared meanings of the incubated entrepreneurs regarding informal support networks. Such networks support the entrepreneurial career and the present study explores the characteristics and the conceptual model that underlies the networks. The data collection was achieved through interviews through a free evocation technique. The shared meanings indicate the existence of inherent thought categories that support network context in the incubator environment, mainly the mentoring networks. The results endorse the interpretation of an informal mentoring model emerging from the dominant evocations concerning a successful career and of the network itself as promoter of career development.

  12. Reads2Type: a web application for rapid microbial taxonomy identification

    DEFF Research Database (Denmark)

    Saputra, Dhany; Rasmussen, Simon; Larsen, Mette Voldby

    2015-01-01

    genome of microbial isolates. Therefore we have developed Reads2Type, a web-based tool for taxonomy identification based on whole bacterial genome sequence data. Raw sequencing data provided by the user are mapped against a set of marker probes that are derived from currently available bacteria complete...

  13. A taxonomy of systems of corporate governance

    NARCIS (Netherlands)

    Weimer, J.; Pape, J.C.

    1999-01-01

    This paper argues that debate on corporate governance in an international context is hampered by the lack of a coherent framework. A taxonomy of systems of corporate governance is proposed as a remedy. The taxonomy is based upon eight characteristics: the prevailing concept of the firm, the board

  14. Taxonomy for Assessing Evaluation Competencies in Extension

    Science.gov (United States)

    Rodgers, Michelle S.; Hillaker, Barbara D.; Haas, Bruce E.; Peters, Cheryl

    2012-01-01

    Evaluation of public service programming is becoming increasingly important with current funding realities. The taxonomy of evaluation competencies compiled by Ghere et al. (2006) provided the starting place for Taxonomy for Assessing Evaluation Competencies in Extension. The Michigan State University Extension case study described here presents a…

  15. [Taxonomy and typology: are they really synonymous?].

    Science.gov (United States)

    Borgès Da Silva, Roxane

    2013-01-01

    Typology and taxonomy constructions are increasingly used as a method of analysis in health services and public health research. Although taxonomy and typology have different definitions in the dictionary, these terms are often used synonymously. The objective of this paper is to propose a theoretical framework derived from organizational theory in which the concepts of taxonomy and typology are clearly defined. The configurational approach emerged in the 1980s. It is designed to analyse the elements constituting an entity under study as a whole and not in isolation. In this approach, conceptually developed configurations are defined as typologies, while empirically derived configurations are defined as taxonomies. Based on this theoretical framework, taxonomies are used much more often than typologies in the scientific literature in the field of public health. Taxonomies can process large sets of multidimensional variables by generating relatively homogeneous groups that take into account interactions between variables. Taxonomies are usually built from classification methods or factor analyses combined with a classification. In conclusion, this paper proposes a theoretical framework to differentiate typologies from taxonomies to provide public health stakeholders with a common language in relation to classifications. This article provides the basis for discussion of theoretical frameworks underlying the definition of these concepts.

  16. In the Cells of the 'Bloom Taxonomy'.

    Science.gov (United States)

    Calder, J. R.

    1983-01-01

    The Bloom Taxonomy of Educational Objectives is criticized because its distinctions between cognitive, affective, and psychomotor domains are invalid; its categories are ill-defined and do not denote homogenous types of objectives; its structural base is inconsistent; and it is debatable whether it is a true taxonomy. (IS)

  17. Fracture detection and mapping for geothermal reservoir definition: an assessment of current technology, research, and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N.E.

    1984-11-01

    The detection and mapping of fractures and other zones of high permeability, whether natural or manmade, has been a subject of considerable economic and scientific interest to the pertroleum industry and to the geothermal community. Research related to fractured geothermal reservoirs has been conducted under several past DOE geothermal energy development programs. In this paper we review the present state of technology in fracture detection and mapping. We outline the major problems and limitations of the ''conventional'' techniques, and current research in new technologies. We also present research needs.

  18. Comprehensive Social Skills Taxonomy: Development and Application.

    Science.gov (United States)

    Kauffman, Nancy A; Kinnealey, Moya

    2015-01-01

    We developed a comprehensive social skills taxonomy based on archived children's social skill goal sheets, and we applied the taxonomy to 6,897 goals of children in 6 diagnostic categories to explore patterns related to diagnosis. We used a grounded theory approach to code and analyze social skill goals and develop the taxonomy. Multivariate analysis of variance and Tukey post hoc honestly significant difference test were used to analyze differences in social skill needs among diagnostic groups. We developed a taxonomy of 7 social skill constructs or categories, descriptions, and behavioral indicators. The 7 social skill categories were reflected across 6 diagnostic groups, and differences in social skill needs among groups were identified. This comprehensive taxonomy of social skills can be useful in developing research-based individual, group, or institutional programming to improve social skills. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  19. TAXONOMIES OF PHYSICS PROBLEMS IN PHYSICS EDUCATION

    Directory of Open Access Journals (Sweden)

    Monika Hanáková

    2016-09-01

    Full Text Available Taxonomies of physics problems serve as useful tools to define and analyze the requirements of pupils and students in solving physics problems and tasks. The connection between taxonomies of educational objectives is important, and these were considered in selecting taxonomies of physics problems. Different approaches to classification are briefly described in this article, as well as the importance of a balance of physics problems in instruction, according to the selected taxonomy. Two taxonomies of physics problems were chosen according to our criteria and then analyzed and described in detail. A strength, weakness, opportunity, and threat SWOT analysis was performed on the tools as well as an example of the use of the tools on a particular physics problem.

  20. Systematically reviewing the potential of concept mapping technologies to promote self-regulated learning in primary and secondary science education

    DEFF Research Database (Denmark)

    Stevenson, Matthew Peter; Hartmeyer, Rikke; Bentsen, Peter

    2017-01-01

    analysis assessing how each technology affects self-regulated learning through cognitive, metacognitive, and motivation strategies, according to Schraw et al. (2006)'s model. We suggest concept mapping technologies may affect self-regulated learning through enhancing these strategies to varying degrees....... Computer software was particularly useful for developing cognitive strategies through ease of use. Teaching agents were particularly useful for developing metacognitive strategies by coupling visualisation of knowledge patterns with performance monitoring, aided by a teaching metaphor. Finally, mobile......We systematically searched five databases to assess the potential of concept mapping-based technologies to promote self-regulated learning in science education. Our search uncovered 17 relevant studies that investigated seven different types of learning technologies. We performed a narrative...

  1. Surfacing the deep data of taxonomy

    Directory of Open Access Journals (Sweden)

    Roderic Page

    2016-12-01

    Full Text Available Taxonomic databases are perpetuating approaches to citing literature that may have been appropriate before the Internet, often being little more than digitised 5 × 3 index cards. Typically the original taxonomic literature is either not cited, or is represented in the form of a (typically abbreviated text string. Hence much of the “deep data” of taxonomy, such as the original descriptions, revisions, and nomenclatural actions are largely hidden from all but the most resourceful users. At the same time there are burgeoning efforts to digitise the scientific literature, and much of this newly available content has been assigned globally unique identifiers such as Digital Object Identifiers (DOIs, which are also the identifier of choice for most modern publications. This represents an opportunity for taxonomic databases to engage with digitisation efforts. Mapping the taxonomic literature on to globally unique identifiers can be time consuming, but need be done only once. Furthermore, if we reuse existing identifiers, rather than mint our own, we can start to build the links between the diverse data that are needed to support the kinds of inference which biodiversity informatics aspires to support. Until this practice becomes widespread, the taxonomic literature will remain balkanized, and much of the knowledge that it contains will linger in obscurity.

  2. Generalized metamaterials: Definitions and taxonomy.

    Science.gov (United States)

    Kim, Noori; Yoon, Yong-Jin; Allen, Jont B

    2016-06-01

    This article reviews the development of metamaterials (MM), starting from Newton's discovery of the wave equation, and ends with a discussion of the need for a technical taxonomy (classification) of these materials, along with a better defined definition of metamaterials. It is intended to be a technical definition of metamaterials, based on a historical perspective. The evolution of MMs began with the discovery of the wave equation, traceable back to Newton's calculation of the speed of sound. The theory of sound evolved to include quasi-statics (Helmholtz) and the circuit equations of Kirchhoff's circuit laws, leading to the ultimate development of Maxwell's equations and the equation for the speed of light. Be it light, or sound, the speed of the wave-front travel defines the wavelength, and thus the quasi-static (QS) approximation. But there is much more at stake than QSs. Taxonomy requires a proper statement of the laws of physics, which includes at least the six basic network postulates: (P1) causality (non-causal/acausal), (P2) linearity (non-linear), (P3) real (complex) time response, (P4) passive (active), (P5) time-invariant (time varying), and (P6) reciprocal (non-reciprocal). These six postulates are extended to include MMs.

  3. My Home is my Bazaar - A Taxonomy and Classification of Current Wireless Home Network Protocols

    DEFF Research Database (Denmark)

    Hjorth, Theis S.

    2011-01-01

    . First, we review the technical details of a number of established wireless technologies currently sold in the market. Second, a taxonomy is constructed based on the ISO 9126 quality framework. A number of evaluation criteria are determined such as maturity, replaceability, openness, resource efficiency......, cost, security, etc. Third, a classification based on the taxonomy and the collected data is presented. In the final discussion, we identify a number of key aspects that could be important technology criteria for future development of home automation protocols....

  4. The role of enterprise systems in supply chain networks: a taxonomy of supply chain strategies

    DEFF Research Database (Denmark)

    Møller, Charles

    2006-01-01

    This paper proposes a taxonomy for supply chain integration strategies. The taxonomy is based on the contingencies of supply chain network coupling and the Extended Enterprise Systems (EES) architecture in the supply chain. The purpose of this model is to map the portfolio of relations...... in the supply chain and to choose the right supply chain strategy. The work is based on a comprehensive study of the Supply Chain Management (SCM) and Enterprise Resource Planning (ERP) literature and the study suggests that there is an emerging new research potential for Enterprise Systems (ES) in the supply...

  5. The role of enterprise systems in supply chain networks: a taxonomy of supply chain strategies

    DEFF Research Database (Denmark)

    Møller, Charles

    2006-01-01

    in the supply chain and to choose the right supply chain strategy. The work is based on a comprehensive study of the Supply Chain Management (SCM) and Enterprise Resource Planning (ERP) literature and the study suggests that there is an emerging new research potential for Enterprise Systems (ES) in the supply......This paper proposes a taxonomy for supply chain integration strategies. The taxonomy is based on the contingencies of supply chain network coupling and the Extended Enterprise Systems (EES) architecture in the supply chain. The purpose of this model is to map the portfolio of relations...

  6. A taxonomy for mechanical ventilation: 10 fundamental maxims.

    Science.gov (United States)

    Chatburn, Robert L; El-Khatib, Mohamad; Mireles-Cabodevila, Eduardo

    2014-11-01

    The American Association for Respiratory Care has declared a benchmark for competency in mechanical ventilation that includes the ability to "apply to practice all ventilation modes currently available on all invasive and noninvasive mechanical ventilators." This level of competency presupposes the ability to identify, classify, compare, and contrast all modes of ventilation. Unfortunately, current educational paradigms do not supply the tools to achieve such goals. To fill this gap, we expand and refine a previously described taxonomy for classifying modes of ventilation and explain how it can be understood in terms of 10 fundamental constructs of ventilator technology: (1) defining a breath, (2) defining an assisted breath, (3) specifying the means of assisting breaths based on control variables specified by the equation of motion, (4) classifying breaths in terms of how inspiration is started and stopped, (5) identifying ventilator-initiated versus patient-initiated start and stop events, (6) defining spontaneous and mandatory breaths, (7) defining breath sequences (8), combining control variables and breath sequences into ventilatory patterns, (9) describing targeting schemes, and (10) constructing a formal taxonomy for modes of ventilation composed of control variable, breath sequence, and targeting schemes. Having established the theoretical basis of the taxonomy, we demonstrate a step-by-step procedure to classify any mode on any mechanical ventilator.

  7. Taxonomy

    Science.gov (United States)

    1991-01-01

    subdivision of Proteobacteria, dog pathogen Ehrlichia canis and thf. human pathogen but belongs to subgroup 2 and is specifically related to Rickettsia...fever group rickettsia ? tu res: similarities to the growth cycle of Ehrlichia canis . from humans in Japan. J. Infect. Dis. 159:1122-1126. Infect. Immun...fever oroup; genotypes; Rickettsiae; Ehrlichia ; Proteobacteria; Chlamydiae; serologic relat’i’onships; bacteriology; -, " -I" taxon; phylogeny

  8. PEDAGOGICAL TECHNOLOGY ON THE BASIS OF INFORMATIVE-COMMUNICATIVE MAPS: EXPERIENCE OF DEVELOPMENT AND USE AT THE LESSONS OF HISTORY

    Directory of Open Access Journals (Sweden)

    Svetlana G. Ostrizhnyaya

    2015-01-01

    Full Text Available The aim of the research is to check the efficiency of use of logicalstructural graph format while studying material in the form of informative-communicative maps (IC-maps in formation of informative-communicative skills of pupils. Methods. Theoretical: analysis of means of pupils’ informative-communicative skills formation in the process of learning activity, comparison of their possibilities for the study of school course of History; empirical: expert assessment of IC-maps (teachers of History are experts, experimental work on pupils’ informative-communicative skills formation (forming experiment, supervising of the pupils’ team work (work in groups and assessment of the degree of importance and activity of their communicative interaction, surveying of pupils (self-assessment of received results, testing (success evaluation of studying material understanding; mathematical: statistical processing of surveying and testing results. Results. The efficiency of IC-maps use in the studying process is proved. More than 80% of pupils consider that the work with maps allow them to understand and memorize studying material better, communication culture increases due to the joint work with the map, skills of information structuring and generalizing are formed. Recommendations on IC-maps development and its use for humanitarian subjects are given for school teachers. Criteria of assessment of pupils’ work with IC-map are developed. Scientific novelty. The new definition of «informative-communicative map» is introduced; own author interpretation as didactic means, having the form of structuring graph analogue of studying text and helping informative-communicative skills formation, creative thinking development and learning big amount of studying information are given. Methodological peculiarities of IC-maps use in the studying process and its possibilities of building on the basis of pedagogic technology of informative-communicative skills

  9. Building a taxonomy of GI knowledge

    DEFF Research Database (Denmark)

    Arleth, Mette

    2004-01-01

    This paper reports on and ongoing study concerning non-professional users` understanding of GI. Online access to GI are offered by many public authorities, in order to make the public able to serve them selves online and gain insight in the physical planning and area administration. The aim...... of this project is to investigate how and how well non-professional users actually understand GI. For that purpose a taxonomy of GI knowledge is built, drawing on Bloom`s taxonomy. The elements of this taxonomy are described after a presentation of the main research question of the study, the applications chosen...

  10. Organising knowledge taxonomies, knowledge and organisational effectiveness

    CERN Document Server

    Lambe, Patrick

    2007-01-01

    Taxonomies are often thought to play a niche role within content-oriented knowledge management projects. They are thought to be 'nice to have' but not essential. In this ground-breaking book, Patrick Lambe shows how they play an integral role in helping organizations coordinate and communicate effectively. Through a series of case studies, he demonstrates the range of ways in which taxonomies can help organizations to leverage and articulate their knowledge. A step-by-step guide in the book to running a taxonomy project is full of practical advice for knowledge managers and business owners ali

  11. Building a taxonomy of GI knowledge

    DEFF Research Database (Denmark)

    Arleth, Mette

    2004-01-01

    of this project is to investigate how and how well non-professional users actually understand GI. For that purpose a taxonomy of GI knowledge is built, drawing on Bloom`s taxonomy. The elements of this taxonomy are described after a presentation of the main research question of the study, the applications chosen...... for the study and the definition of the non-professional user group. Finally considerations are made concerning the difference between this study and a traditional usability study as well as the further implications of the outcome of the study....

  12. A taxonomy of automatic differentiation tools

    Energy Technology Data Exchange (ETDEWEB)

    Juedes, D.W. (Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Computer Science)

    1991-01-01

    Many of the current automatic differentiation (AD) tools have similar characteristics. Unfortunately, the similarities between these various AD tools often cannot be easily ascertained by reading the corresponding documentation. To clarify this situation, a taxonomy of AD tools is presented. The taxonomy places AD tools into the Elemental, Extensional, Integral, Operational, and Symbolic classes. This taxonomy is used to classify twenty-nine AD tools. Each tool is examined individually with respect to the mode of differentiation used and the degree of derivatives computed. A list detailing the availability of the surveyed AD tools is provided in the Appendix. 54 refs., 3 figs., 1 tab.

  13. The ethanol industry from the analysis technology road maps; A industria do etanol a partir da analise de roadmaps tecnologicos

    Energy Technology Data Exchange (ETDEWEB)

    Calil Neto, Antonio; Guimaraes, Maria Jose de Oliveira Cavalacanti; Freire, Estevao [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2012-07-01

    The behavior of the ethanol industry in the coming years should be buoyed by several factors, among which gain prominence: feedstock, conversion technologies and products. This article aims, from the analysis of technological road maps, is dealing with Brazil in the face of the global market, is primarily addressing the international context, to assess which technologies tend to predominate, with emphasis on the ethanol industry, addressing convergent and complementary the technology road maps, especially regarding the barriers and challenges, costs and logistics, and other broader issues that govern the production of sustainable feedstock, conversion technologies and biofuels industry, with emphasis on ethanol. Conventional biofuels today are generally not competitive with fossil fuels at market prices, except for the cane ethanol already has a good performance in economic terms. Moreover, strategies for first generation ethanol differ from those for the second generation, which is at an earlier stage of technology development and still subject to comparatively high production costs. The non-economic fundamental barrier to the development of biofuels, particularly ethanol, is the uncertainty as to its sustainability. The debate sometimes on competition with food production and the potential destruction of valuable ecosystems put biofuels in the center of the discussion about sustainability. The challenges facing the ethanol industry range from the need to implement on a large scale to reduce costs along the production chain, through the need for second-generation technologies to reach the level of market, with the behavior of these factors and others will depend on each setting route. (author)

  14. The evolution of trypanosomatid taxonomy.

    Science.gov (United States)

    Kaufer, Alexa; Ellis, John; Stark, Damien; Barratt, Joel

    2017-06-08

    Trypanosomatids are protozoan parasites of the class Kinetoplastida predominately restricted to invertebrate hosts (i.e. possess a monoxenous life-cycle). However, several genera are pathogenic to humans, animals and plants, and have an invertebrate vector that facilitates their transmission (i.e. possess a dixenous life-cycle). Phytomonas is one dixenous genus that includes several plant pathogens transmitted by phytophagous insects. Trypanosoma and Leishmania are dixenous genera that infect vertebrates, including humans, and are transmitted by hematophagous invertebrates. Traditionally, monoxenous trypanosomatids such as Leptomonas were distinguished from morphologically similar dixenous species based on their restriction to an invertebrate host. Nonetheless, this criterion is somewhat flawed as exemplified by Leptomonas seymouri which reportedly infects vertebrates opportunistically. Similarly, Novymonas and Zelonia are presumably monoxenous genera yet sit comfortably in the dixenous clade occupied by Leishmania. The isolation of Leishmania macropodum from a biting midge (Forcipomyia spp.) rather than a phlebotomine sand fly calls into question the exclusivity of the Leishmania-sand fly relationship, and its suitability for defining the Leishmania genus. It is now accepted that classic genus-defining characteristics based on parasite morphology and host range are insufficient to form the sole basis of trypanosomatid taxonomy as this has led to several instances of paraphyly. While improvements have been made, resolution of evolutionary relationships within the Trypanosomatidae is confounded by our incomplete knowledge of its true diversity. The known trypanosomatids probably represent a fraction of those that exist and isolation of new species will help resolve relationships in this group with greater accuracy. This review incites a dialogue on how our understanding of the relationships between certain trypanosomatids has shifted, and discusses new knowledge

  15. Taxonomy Icon Data - Taxonomy Icon | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available rch Image Search Home About Archive Update History Data ...name of species Taxonomy ID NCBI Taxonomy ID (Link to NCBI in Simple Search) Icon Taxonomy Taxonomy informat...d icon (The icon is displayed in Simple Search.) Icon (Large) No Background File name of the large-sized ico...n with no background (The icon is displayed in Simple Search.) Icon (Small) File ...name of the small-sized icon (The icon is displayed in Simple Search.) Icon (Small) No Background File name

  16. Graphene enterprise: mapping innovation and business development in a strategic emerging technology

    Science.gov (United States)

    Shapira, Philip; Gök, Abdullah; Salehi, Fatemeh

    2016-09-01

    This paper explores enterprise development and commercialization in the field of graphene. Firm characteristics and relationships, value chain positioning, and factors associated with product entry are examined for a set of 65 graphene-oriented small and medium-sized enterprises located in 16 different countries. As well as secondary sources and bibliometric methods to profile developments in graphene, we use computerized data mining and analytical techniques, including cluster and regression modeling, to identify patterns from publicly available online information on enterprise web sites. We identify groups of graphene small and medium-sized enterprises differentiated by how they are involved with graphene, the materials they target, whether they make equipment, and their orientation toward science and intellectual property. In general, access to finance and the firms' location are significant factors that are associated with graphene product introductions. We also find that patents and scientific publications are not statistically significant predictors of product development in our sample of graphene enterprises. We further identify a cohort of graphene-oriented firms that are signaling plans to develop intermediate graphene products that should have higher value in the marketplace. Our findings suggest that policy needs to ensure attention to the introduction and scale-up of downstream intermediate and final graphene products and associated financial, intermediary, and market identification support. The paper demonstrates novel data methods that can be combined with existing information for real-time intelligence to understand and map enterprise development and commercialization in a rapidly emerging and growing new technology.

  17. Graphene enterprise: mapping innovation and business development in a strategic emerging technology.

    Science.gov (United States)

    Shapira, Philip; Gök, Abdullah; Salehi, Fatemeh

    This paper explores enterprise development and commercialization in the field of graphene. Firm characteristics and relationships, value chain positioning, and factors associated with product entry are examined for a set of 65 graphene-oriented small and medium-sized enterprises located in 16 different countries. As well as secondary sources and bibliometric methods to profile developments in graphene, we use computerized data mining and analytical techniques, including cluster and regression modeling, to identify patterns from publicly available online information on enterprise web sites. We identify groups of graphene small and medium-sized enterprises differentiated by how they are involved with graphene, the materials they target, whether they make equipment, and their orientation toward science and intellectual property. In general, access to finance and the firms' location are significant factors that are associated with graphene product introductions. We also find that patents and scientific publications are not statistically significant predictors of product development in our sample of graphene enterprises. We further identify a cohort of graphene-oriented firms that are signaling plans to develop intermediate graphene products that should have higher value in the marketplace. Our findings suggest that policy needs to ensure attention to the introduction and scale-up of downstream intermediate and final graphene products and associated financial, intermediary, and market identification support. The paper demonstrates novel data methods that can be combined with existing information for real-time intelligence to understand and map enterprise development and commercialization in a rapidly emerging and growing new technology.

  18. Using the Remote Sensing and GIS Technology for Erosion Risk Mapping of Kartalkaya Dam Watershed in Kahramanmaras, Turkey

    Directory of Open Access Journals (Sweden)

    Abdullah E. Akay

    2008-08-01

    Full Text Available The soil erosion is the most serious environmental problem in watershed areas in Turkey. The main factors affecting the amount of soil erosion include vegetation cover, topography, soil, and climate. In order to describe the areas with high soil erosion risks and to develop adequate erosion prevention measures in the watersheds of dams, erosion risk maps should be generated considering these factors. Remote Sensing (RS and Geographic Information System (GIS technologies were used for erosion risk mapping in Kartalkaya Dam Watershed of Kahramanmaras, Turkey, based on the methodology implemented in COoRdination of INformation on the Environment (CORINE model. ASTER imagery was used to generate a land use/cover classification in ERDAS Imagine. The digital maps of the other factors (topography, soil types, and climate were generated in ArcGIS v9.2, and were then integrated as CORINE input files to produce erosion risk maps. The results indicate that 33.82%, 35.44%, and 30.74% of the study area were under low, moderate, and high actual erosion risks, respectively. The CORINE model integrated with RS and GIS technologies has great potential for producing accurate and inexpensive erosion risk maps in Turkey.

  19. Architecture design study and technology road map for the Planet Formation Imager (PFI)

    Science.gov (United States)

    Monnier, John D.; Ireland, Michael J.; Kraus, Stefan; Baron, Fabien; Creech-Eakman, Michelle; Dong, Ruobing; Isella, Andrea; Merand, Antoine; Michael, Ernest; Minardi, Stefano; Mozurkewich, David; Petrov, Romain; Rinehart, Stephen; ten Brummelaar, Theo; Vasisht, Gautam; Wishnow, Ed; Young, John; Zhu, Zhaohuan

    2016-08-01

    of PFI, including the potential to resolve protoplanetary disks in emission lines to measure planet masses using position-velocity diagrams. We advocate for a specific technology road map in order to reduce the current cost driver (telescopes) and to validate high accuracy fringe tracking and high dynamic range imaging at L, M band. In conclusion, no technology show-stoppers have been identified for PFI to date, however there is high potential for breakthroughs in medium-aperture (4-m class) telescopes architecture that could reduce the cost of PFI by a factor of 2 or more.

  20. A psychologically-based taxonomy of misdirection.

    Science.gov (United States)

    Kuhn, Gustav; Caffaratti, Hugo A; Teszka, Robert; Rensink, Ronald A

    2014-01-01

    Magicians use misdirection to prevent you from realizing the methods used to create a magical effect, thereby allowing you to experience an apparently impossible event. Magicians have acquired much knowledge about misdirection, and have suggested several taxonomies of misdirection. These describe many of the fundamental principles in misdirection, focusing on how misdirection is achieved by magicians. In this article we review the strengths and weaknesses of past taxonomies, and argue that a more natural way of making sense of misdirection is to focus on the perceptual and cognitive mechanisms involved. Our psychologically-based taxonomy has three basic categories, corresponding to the types of psychological mechanisms affected: perception, memory, and reasoning. Each of these categories is then divided into subcategories based on the mechanisms that control these effects. This new taxonomy can help organize magicians' knowledge of misdirection in a meaningful way, and facilitate the dialog between magicians and scientists.

  1. A Psychologically-based taxonomy of misdirection

    Directory of Open Access Journals (Sweden)

    Gustav eKuhn

    2014-12-01

    Full Text Available Magicians use misdirection to prevent you from realizing the methods used to create a magical effect, thereby allowing you to experience an apparently impossible event. Magicians have acquired much knowledge about misdirection, and have suggested several taxonomies of misdirection. These describe many of the fundamental principles in misdirection, focusing on how misdirection is achieved by magicians. In this article we review the strengths and weaknesses of past taxonomies, and argue that a more natural way of making sense of misdirection is to focus on the perceptual and cognitive mechanisms involved. Our psychologically-based taxonomy has three basic categories, corresponding to the types of psychological mechanisms affected: perception, memory, and reasoning. Each of these categories is then divided into subcategories based on the mechanisms that control these effects. This new taxonomy can help organize the magicians’ knowledge of misdirection in a meaningful way, and facilitate the dialogue between magicians and scientists.

  2. Toward a cognitive taxonomy of medical errors.

    Science.gov (United States)

    Zhang, Jiajie; Patel, Vimla L; Johnson, Todd R; Shortliffe, Edward H

    2002-01-01

    One critical step in addressing and resolving the problems associated with human errors is the development of a cognitive taxonomy of such errors. In the case of errors, such a taxonomy may be developed (1) to categorize all types of errors along cognitive dimensions, (2) to associate each type of error with a specific underlying cognitive mechanism, (3) to explain why, and even predict when and where, a specific error will occur, and (4) to generate intervention strategies for each type of error. Based on Reason's (1992) definition of human errors and Norman's (1986) cognitive theory of human action, we have developed a preliminary action-based cognitive taxonomy of errors that largely satisfies these four criteria in the domain of medicine. We discuss initial steps for applying this taxonomy to develop an online medical error reporting system that not only categorizes errors but also identifies problems and generates solutions.

  3. Assessing clustering results with reference taxonomies.

    Science.gov (United States)

    Valiente, Gabriel

    2006-01-01

    The comparative analysis of phylogenies obtained using different phylogenetic methods or different gene sequences for a given set of species, is usually done by computing some quantitative measure of similarity between the phylogenetic trees. Such a quantitative approach provides little insight into the actual similarities and differences between the alternative phylogenies. In this paper, we present a method for the qualitative assessment of a phylogenetic tree against a reference taxonomy, based on highlighting their common clusters. Our algorithms build a reference taxonomy for the taxa present in a given phylogenetic tree and produce a dendogram for the input phylogenetic tree, with branches in those clusters common to the reference taxonomy highlighted. Our implementation of the algorithms produces publication-quality graphics. For unrooted phylogenies, the method produces a radial cladogram for the input phylogenetic tree, with branches in common clusters to the reference taxonomy highlighted.

  4. 浅议MAPGIS地质测绘数字化应用技术%MAPGIS Geological Surveying and Mapping Digital Technology

    Institute of Scientific and Technical Information of China (English)

    曹琴

    2013-01-01

    笔者在本文中主要侧重分析地质测绘技术,探讨MAPGIS在数字地形地质图的成图方式、组织原则、图形的属性管理等相关方面。%This article focuses on analysis of geological surveying and mapping technology, explores the mapping mode, organization principle, property management of the MAPGIS in digital geological map and terrain mapping.

  5. Modern Grid Initiative Distribution Taxonomy Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Kevin P.; Chen, Yousu; Chassin, David P.; Pratt, Robert G.; Engel, David W.; Thompson, Sandra E.

    2008-11-01

    This is the final report for the development of a toxonomy of prototypical electrical distribution feeders. Two of the primary goals of the Department of Energy's (DOE) Modern Grid Initiative (MGI) are 'to accelerate the modernization of our nation's electricity grid' and to 'support demonstrations of systems of key technologies that can serve as the foundation for an integrated, modern power grid'. A key component to the realization of these goals is the effective implementation of new, as well as existing, 'smart grid technologies'. Possibly the largest barrier that has been identified in the deployment of smart grid technologies is the inability to evaluate how their deployment will affect the electricity infrastructure, both locally and on a regional scale. The inability to evaluate the impacts of these technologies is primarily due to the lack of detailed electrical distribution feeder information. While detailed distribution feeder information does reside with the various distribution utilities, there is no central repository of information that can be openly accessed. The role of Pacific Northwest National Laboratory (PNNL) in the MGI for FY08 was to collect distribution feeder models, in the SynerGEE{reg_sign} format, from electric utilities around the nation so that they could be analyzed to identify regional differences in feeder design and operation. Based on this analysis PNNL developed a taxonomy of 24 prototypical feeder models in the GridLAB-D simulations environment that contain the fundamental characteristics of non-urban core, radial distribution feeders from the various regions of the U.S. Weighting factors for these feeders are also presented so that they can be used to generate a representative sample for various regions within the United States. The final product presented in this report is a toolset that enables the evaluation of new smart grid technologies, with the ability to aggregate their effects

  6. Taxonomy of the order Mononegavirales: update 2016

    Science.gov (United States)

    Afonso, C.L.; Kurath, Gael; 82 Additional Authors,

    2016-01-01

    In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).

  7. Toward a cognitive taxonomy of medical errors.

    OpenAIRE

    Zhang, Jiajie; Patel, Vimla L.; Johnson, Todd R.; Shortliffe, Edward H.

    2002-01-01

    One critical step in addressing and resolving the problems associated with human errors is the development of a cognitive taxonomy of such errors. In the case of errors, such a taxonomy may be developed (1) to categorize all types of errors along cognitive dimensions, (2) to associate each type of error with a specific underlying cognitive mechanism, (3) to explain why, and even predict when and where, a specific error will occur, and (4) to generate intervention strategies for each type of e...

  8. Taxonomy of the order Mononegavirales: update 2016

    Energy Technology Data Exchange (ETDEWEB)

    Afonso, Claudio L.; Amarasinghe, Gaya K.; Bányai, Krisztián; Bào, Yīmíng; Basler, Christopher F.; Bavari, Sina; Bejerman, Nicolás; Blasdell, Kim R.; Briand, François-Xavier; Briese, Thomas; Bukreyev, Alexander; Calisher, Charles H.; Chandran, Kartik; Chéng, Jiāsēn; Clawson, Anna N.; Collins, Peter L.; Dietzgen, Ralf G.; Dolnik, Olga; Domier, Leslie L.; Dürrwald, Ralf; Dye, John M.; Easton, Andrew J.; Ebihara, Hideki; Farkas, Szilvia L.; Freitas-Astúa, Juliana; Formenty, Pierre; Fouchier, Ron A. M.; Fù, Yànpíng; Ghedin, Elodie; Goodin, Michael M.; Hewson, Roger; Horie, Masayuki; Hyndman, Timothy H.; Jiāng, Dàohóng; Kitajima, Elliot W.; Kobinger, Gary P.; Kondo, Hideki; Kurath, Gael; Lamb, Robert A.; Lenardon, Sergio; Leroy, Eric M.; Li, Ci-Xiu; Lin, Xian-Dan; Liú, Lìjiāng; Longdon, Ben; Marton, Szilvia; Maisner, Andrea; Mühlberger, Elke; Netesov, Sergey V.; Nowotny, Norbert; Patterson, Jean L.; Payne, Susan L.; Paweska, Janusz T.; Randall, Rick E.; Rima, Bertus K.; Rota, Paul; Rubbenstroth, Dennis; Schwemmle, Martin; Shi, Mang; Smither, Sophie J.; Stenglein, Mark D.; Stone, David M.; Takada, Ayato; Terregino, Calogero; Tesh, Robert B.; Tian, Jun-Hua; Tomonaga, Keizo; Tordo, Noël; Towner, Jonathan S.; Vasilakis, Nikos; Verbeek, Martin; Volchkov, Viktor E.; Wahl-Jensen, Victoria; Walsh, John A.; Walker, Peter J.; Wang, David; Wang, Lin-Fa; Wetzel, Thierry; Whitfield, Anna E.; Xiè, Jiǎtāo; Yuen, Kwok-Yung; Zhang, Yong-Zhen; Kuhn, Jens H.

    2016-05-23

    In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).

  9. Bloom's taxonomy of cognitive learning objectives.

    Science.gov (United States)

    Adams, Nancy E

    2015-07-01

    Information professionals who train or instruct others can use Bloom's taxonomy to write learning objectives that describe the skills and abilities that they desire their learners to master and demonstrate. Bloom's taxonomy differentiates between cognitive skill levels and calls attention to learning objectives that require higher levels of cognitive skills and, therefore, lead to deeper learning and transfer of knowledge and skills to a greater variety of tasks and contexts.

  10. Is Bloom's Taxonomy Appropriate for Computer Science?

    OpenAIRE

    Johnson, Colin G.; Fuller, Ursula

    2007-01-01

    Bloom's taxonomy attempts to provide a set of levels of cognitive engagement with material being learned. It is usually presented as a generic framework. In this paper we outline some studies which examine whether the taxonomy is appropriate for computing, and how its application in computing might differ from its application elsewhere. We place this in the context of ongoing debates concerning graduateness and attempts to benchmark the content of a computing degree.

  11. A taxonomy for user-healthcare robot interaction.

    Science.gov (United States)

    Bzura, Conrad; Im, Hosung; Liu, Tammy; Malehorn, Kevin; Padir, Taskin; Tulu, Bengisu

    2012-01-01

    This paper evaluates existing taxonomies aimed at characterizing the interaction between robots and their users and modifies them for health care applications. The modifications are based on existing robot technologies and user acceptance of robotics. Characterization of the user, or in this case the patient, is a primary focus of the paper, as they present a unique new role as robot users. While therapeutic and monitoring-related applications for robots are still relatively uncommon, we believe they will begin to grow and thus it is important that the spurring relationship between robot and patient is well understood.

  12. Texture Mapping Technology Based on OpenGL%基于OpenGL的纹理贴图技术

    Institute of Scientific and Technical Information of China (English)

    杨键; 张敏

    2011-01-01

    Texture map is a technical basis for enhancing realistic 3D scene.This paper mainly introduces the texture mapping technology based on OpenGL,including the basic steps for realizing texture map base on OpenGL,and technical key points of each link of textu%纹理贴图是增强3D场景真实感的技术基础,主要介绍了基于OpenGL的纹理贴图技术,包含实现OpenGL纹理贴图的基本步骤,以及纹理贴图各环节的技术要点,对OpenGL Mip贴图的原理和实现方法也进行了简要的介绍。

  13. IPv6 Addressing Proxy: Mapping Native Addressing from Legacy Technologies and Devices to the Internet of Things (IPv6

    Directory of Open Access Journals (Sweden)

    Peter Kirstein

    2013-05-01

    Full Text Available Sensors utilize a large number of heterogeneous technologies for a varied set of application environments. The sheer number of devices involved requires that this Internet be the Future Internet, with a core network based on IPv6 and a higher scalability in order to be able to address all the devices, sensors and things located around us. This capability to connect through IPv6 devices, sensors and things is what is defining the so-called Internet of Things (IoT. IPv6 provides addressing space to reach this ubiquitous set of sensors, but legacy technologies, such as X10, European Installation Bus (EIB, Controller Area Network (CAN and radio frequency ID (RFID from the industrial, home automation and logistic application areas, do not support the IPv6 protocol. For that reason, a technique must be devised to map the sensor and identification technologies to IPv6, thus allowing homogeneous access via IPv6 features in the context of the IoT. This paper proposes a mapping between the native addressing of each technology and an IPv6 address following a set of rules that are discussed and proposed in this work. Specifically, the paper presents a technology-dependent IPv6 addressing proxy, which maps each device to the different subnetworks built under the IPv6 prefix addresses provided by the internet service provider for each home, building or user. The IPv6 addressing proxy offers a common addressing environment based on IPv6 for all the devices, regardless of the device technology. Thereby, this offers a scalable and homogeneous solution to interact with devices that do not support IPv6 addressing. The IPv6 addressing proxy has been implemented in a multi-protocol Sensors 2013, 13 6688 card and evaluated successfully its performance, scalability and interoperability through a protocol built over IPv6.

  14. IPv6 addressing proxy: mapping native addressing from legacy technologies and devices to the Internet of Things (IPv6).

    Science.gov (United States)

    Jara, Antonio J; Moreno-Sanchez, Pedro; Skarmeta, Antonio F; Varakliotis, Socrates; Kirstein, Peter

    2013-05-17

    Sensors utilize a large number of heterogeneous technologies for a varied set of application environments. The sheer number of devices involved requires that this Internet be the Future Internet, with a core network based on IPv6 and a higher scalability in order to be able to address all the devices, sensors and things located around us. This capability to connect through IPv6 devices, sensors and things is what is defining the so-called Internet of Things (IoT). IPv6 provides addressing space to reach this ubiquitous set of sensors, but legacy technologies, such as X10, European Installation Bus (EIB), Controller Area Network (CAN) and radio frequency ID (RFID) from the industrial, home automation and logistic application areas, do not support the IPv6 protocol. For that reason, a technique must be devised to map the sensor and identification technologies to IPv6, thus allowing homogeneous access via IPv6 features in the context of the IoT. This paper proposes a mapping between the native addressing of each technology and an IPv6 address following a set of rules that are discussed and proposed in this work. Specifically, the paper presents a technology-dependent IPv6 addressing proxy, which maps each device to the different subnetworks built under the IPv6 prefix addresses provided by the internet service provider for each home, building or user. The IPv6 addressing proxy offers a common addressing environment based on IPv6 for all the devices, regardless of the device technology. Thereby, this offers a scalable and homogeneous solution to interact with devices that do not support IPv6 addressing. The IPv6 addressing proxy has been implemented in a multi-protocol Sensors 2013, 13 6688 card and evaluated successfully its performance, scalability and interoperability through a protocol built over IPv6.

  15. Taxonomy for Common-Cause Failure Vulnerability and Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Korsah, Kofi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mullens, James Allen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pullum, Laura L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Applying current guidance and practices for common-cause failure (CCF) mitigation to digital instrumentation and control (I&C) systems has proven problematic, and the regulatory environment has been unpredictable. The potential for CCF vulnerability inhibits I&C modernization, thereby challenging the long-term sustainability of existing plants. For new plants and advanced reactor concepts, concern about CCF vulnerability in highly integrated digital I&C systems imposes a design burden that results in higher costs and increased complexity. The regulatory uncertainty in determining which mitigation strategies will be acceptable (e.g., what diversity is needed and how much is sufficient) drives designers to adopt complicated, costly solutions devised for existing plants. To address the conditions that constrain the transition to digital I&C technology by the US nuclear industry, crosscutting research is needed to resolve uncertainty, demonstrate necessary characteristics, and establish an objective basis for qualification of digital technology for nuclear power plant (NPP) I&C applications. To fulfill this research need, Oak Ridge National Laboratory is investigating mitigation of CCF vulnerability for nuclear-qualified applications. The outcome of this research is expected to contribute to a fundamentally sound, comprehensive basis to qualify digital technology for nuclear power applications. This report documents the development of a CCF taxonomy. The basis for the CCF taxonomy was generated by determining consistent terminology and establishing a classification approach. The terminology is based on definitions from standards, guides, and relevant nuclear power industry technical reports. The classification approach is derived from identified classification schemes focused on I&C systems and key characteristics, including failure modes. The CCF taxonomy provides the basis for a systematic organization of key systems aspects relevant to analyzing the potential for

  16. The perceptual domain: a taxonomy for allied health educators.

    Science.gov (United States)

    Hooker, E Z

    1981-08-01

    A taxonomy of the perceptual domain was proposed over a decade ago. It is hierarchical, as are the taxonomies in the cognitive, affective, and psychomotor domains. Perception involves extraction of information from presenting stimuli, and there is progression of information extraction as the hierarchy is ascended. Perceptual performance at the higher levels of the taxonomy assumes perceptual abilities at the lower levels. A modified version of the perceptual taxonomy applicable to allied health education is presented. Methods concerning application of the taxonomy are suggested. Use of the taxonomy of the perceptual domain would help allied health educators plan instruction and evaluate teaching.

  17. The taxobook principles and practices of building taxonomies

    CERN Document Server

    Hlava, Marjorie

    2014-01-01

    This book outlines the basic principles of creation and maintenance of taxonomies and thesauri. It also provides step by step instructions for building a taxonomy or thesaurus and discusses the various ways to get started on a taxonomy construction project.Often, the first step is to get management and budgetary approval, so I start this book with a discussion of reasons to embark on the taxonomy journey. From there I move on to a discussion of metadata and how taxonomies and metadata are related, and then consider how, where, and why taxonomies are used.Information architecture has its corner

  18. Using the Remote Sensing and GIS Technology for Erosion Risk Mapping of Kartalkaya Dam Watershed in Kahramanmaras, Turkey

    OpenAIRE

    2008-01-01

    The soil erosion is the most serious environmental problem in watershed areas in Turkey. The main factors affecting the amount of soil erosion include vegetation cover, topography, soil, and climate. In order to describe the areas with high soil erosion risks and to develop adequate erosion prevention measures in the watersheds of dams, erosion risk maps should be generated considering these factors. Remote Sensing (RS) and Geographic Information System (GIS) technologies were used for erosio...

  19. Mapping. Stuff That Works! A Technology Curriculum for the Elementary Grades.

    Science.gov (United States)

    Neujahr, James L.; Benenson, Gary

    This book focuses on the understanding and development of graphical representations of physical spaces. Contents are divided into six chapters: (1) "Appetizers" includes activities that can be done individually to become familiar with the topic of mapping; (2) "Concepts" provides a basis for mapping and graphical representation development; (3)…

  20. Computer technology of genogeographic analysis of a gene pool: II. Statistical transformation of maps

    Energy Technology Data Exchange (ETDEWEB)

    Balanovskaya, E.V.; Nurbaev, S.D.; Rychkov, Yu.G. [Vavilov Institute of General Genetics, Moscow (Russian Federation)

    1994-11-01

    Transformations of computer maps of geographic distribution of gene frequencies using basic mathematical statistical procedures are considered. These transformations are designated as statistical transformation of maps. Two transformation groups are considered: of one map separately and of a group of maps. Transformations possess a value beyond their use as intermediate stages of more complicated cartographical analysis: the resulting maps carry entirely new information on the geography of genes or a gene pool. This article considers three examples of obtaining new genetic profiles using statistical transformation algorithms. These profiles are of: (1) heterozygosity (of HLA-A, B, C loci in northeastern Eurasia); (2) disease risk (Rh-incompatibility of mother and child with simultaneous registration of Rh and ABO blood groups in Eastern Europe); (3) genetic distances (from own mean ethnic values for Belarus and from mean Russian values for the gene pool of Eastern Europe). 15 refs., 9 figs., 1 tab.

  1. Taxonomies of networks from community structure.

    Science.gov (United States)

    Onnela, Jukka-Pekka; Fenn, Daniel J; Reid, Stephen; Porter, Mason A; Mucha, Peter J; Fricker, Mark D; Jones, Nick S

    2012-09-01

    The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: They can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi.

  2. Taxonomies of networks from community structure

    Science.gov (United States)

    Onnela, Jukka-Pekka; Fenn, Daniel J.; Reid, Stephen; Porter, Mason A.; Mucha, Peter J.; Fricker, Mark D.; Jones, Nick S.

    2012-09-01

    The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: They can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi.

  3. 76 FR 74050 - Measured Building Energy Performance Data Taxonomy

    Science.gov (United States)

    2011-11-30

    ... energy performance data taxonomy as part of its DOE Buildings Performance Database project. This... energy performance data taxonomy as part of its DOE Buildings Performance Database project. This... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF...

  4. Computer-Based Concept Mapping: Enhancing Literacy with Tools for Visual Thinking (Technology Tidbits).

    Science.gov (United States)

    Anderson-Inman, Lynne; Horney, Mark

    1997-01-01

    Shares details about two prewriting strategies (brainstorming and synthesizing information), and discusses some practical issues related to the use of computer-based concept mapping in the classroom. (SR)

  5. Taxonomy and origin of reindeer

    Directory of Open Access Journals (Sweden)

    Knut H. Røed

    2007-04-01

    Full Text Available Reindeer and caribou was probably the key species for the human immigration and colonization in the Arctic and sub-Arctic by the retreat of the ice in the last glacial period. The close connection between human and reindeer has contributed to great interest and variation in reindeer taxonomy and origin. Through the history several both species, subspecies and types of reindeer and caribou have been described. The early taxonomy of the species is marked by comparisons of individual specimen using traits as body size, skin colour or antler formations - characteristics known to be highly variable and subjected to environmental and nutritional level. During the mid 1900s the taxonomy was more based on variation of morphological traits among populations by analysing a large series of specimens representative of the various geographic populations and a consensus of classification of several subspecies, all belonging to the same species, evolved. During late 1900 the development of modern molecular techniques procured tools for revealing genetic structure of populations reflecting different origin and isolation rather than environmental influences. The genetic structure revealed a major genetic dichotomy between American woodland caribou on the one hand and all other types of reindeer and caribou on the other which gave evidence that the ancestors of present woodland caribou had survived and evolved in ice free refugium south to the glacier in North America and the ancestors of all other types of reindeer and caribou had evolved separated from these in refugium in Eurasia and Beringia. The ancestors of present reindeer in Scandinavia appear furthermore to have evolved from different populations separated during the last glaciation period and the colonization and origin of present wild and domestic reindeer will be discussed in this perspective.Taksonomi og opprinnelse til reinAbstract in Norwegian / Sammendrag: Rein og caribou har hatt stor betydning

  6. Developing a Computer Science-specific Learning Taxonomy

    OpenAIRE

    Fuller, Ursula; Johnson, Colin G.; Ahoniemi, Tuukka; Cukierman, Diana; Hernán-Losada, Isidoro; Jackova, Jana; Lahtinen, Essi; Lewis, Tracy L.; McGee Thompson, Donna; Riesdel, Charles; Thompson, Errol

    2007-01-01

    Bloom's taxonomy of the cognitive domain and the SOLO taxonomy are being increasingly widely used in the design and assessment of courses, but there are some drawbacks to their use in computer science. This paper reviews the literature on educational taxonomies and their use in computer science education, identifies some of the problems that arise, proposes a new taxonomy and discusses how this can be used in application-oriented courses such as programming.

  7. An Offline-Online Android Application for Hazard Event Mapping Using WebGIS Open Source Technologies

    Science.gov (United States)

    Olyazadeh, Roya; Jaboyedoff, Michel; Sudmeier-Rieux, Karen; Derron, Marc-Henri; Devkota, Sanjaya

    2016-04-01

    Nowadays, Free and Open Source Software (FOSS) plays an important role in better understanding and managing disaster risk reduction around the world. National and local government, NGOs and other stakeholders are increasingly seeking and producing data on hazards. Most of the hazard event inventories and land use mapping are based on remote sensing data, with little ground truthing, creating difficulties depending on the terrain and accessibility. Open Source WebGIS tools offer an opportunity for quicker and easier ground truthing of critical areas in order to analyse hazard patterns and triggering factors. This study presents a secure mobile-map application for hazard event mapping using Open Source WebGIS technologies such as Postgres database, Postgis, Leaflet, Cordova and Phonegap. The objectives of this prototype are: 1. An Offline-Online android mobile application with advanced Geospatial visualisation; 2. Easy Collection and storage of events information applied services; 3. Centralized data storage with accessibility by all the service (smartphone, standard web browser); 4. Improving data management by using active participation in hazard event mapping and storage. This application has been implemented as a low-cost, rapid and participatory method for recording impacts from hazard events and includes geolocation (GPS data and Internet), visualizing maps with overlay of satellite images, viewing uploaded images and events as cluster points, drawing and adding event information. The data can be recorded in offline (Android device) or online version (all browsers) and consequently uploaded through the server whenever internet is available. All the events and records can be visualized by an administrator and made public after approval. Different user levels can be defined to access the data for communicating the information. This application was tested for landslides in post-earthquake Nepal but can be used for any other type of hazards such as flood, avalanche

  8. Forensic Taxonomy of Android Social Apps.

    Science.gov (United States)

    Azfar, Abdullah; Choo, Kim-Kwang Raymond; Liu, Lin

    2017-03-01

    An Android social app taxonomy incorporating artifacts that are of forensic interest will enable users and forensic investigators to identify the personally identifiable information (PII) stored by the apps. In this study, 30 popular Android social apps were examined. Artifacts of forensic interest (e.g., contacts lists, chronology of messages, and timestamp of an added contact) were recovered. In addition, images were located, and Facebook token strings used to tie account identities and gain access to information entered into Facebook by a user were identified. Based on the findings, a two-dimensional taxonomy of the forensic artifacts of the social apps is proposed. A comparative summary of existing forensic taxonomies of different categories of Android apps, designed to facilitate timely collection and analysis of evidentiary materials from Android devices, is presented.

  9. Arctic BioMap: Building Participatory Technologies for Community-Specific Environmental Monitoring and Decision Making in the North

    Science.gov (United States)

    Murray, M. S.; Panikkar, B.; Liang, S.; Kutz, S.

    2016-12-01

    The Arctic continues to undergo unprecedented and accelerated system-wide environmental change. For people who live in the north this presents challenges to resource management, subsistence, health and well-being, and yet, there is very little community-specific data on wildlife (including wildlife health), local environmental conditions and emerging hazards in Northern Canada. A novel approach that integrates community expertise with developing technologies can simplify data collection and improve understanding of current and future conditions. It can also improve our ability to manage and adapt to the rapidly transforming Arctic. Arctic BioMap is a data platform for real-time monitoring and a geospatial informational database of wildlife and environmental information useful for assessment, research, management, and education. It enables monitoring of wildlife and environmental variables including hazards to inform decision-making at multiples scales. Using participatory technologies Arctic BioMap incorporates indigenous research needs and the ensuing data can be used to inform policy making. Arctic BioMap provides a forum for continuous exchange and communication among community members, scientists, resources managers, and other stakeholders.

  10. Test of the Capability of Laser Line Scan Technology to Support Benthic Habitat Mapping in Coral Reef Ecosystems, Maui Island, November 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The utility of Laser Line Scan (LLS) Technology for optical validation of benthic habitat map data from coral reef ecosystems was tested with a deployment of a...

  11. Binary Keys for Classification and Taxonomy of Behaviour

    Science.gov (United States)

    Nieminen, Timo A.; Choi, Serene Hyun-Jin

    2008-01-01

    Quantitative behaviour analysis requires the classification of behaviour to produce the basic data. This can be challenging when the theoretical taxonomy does not match observational limitations, or if a theoretical taxonomy is unavailable. Binary keys allow qualitative observation to be used to modify a theoretical taxonomy to produce a practical…

  12. The Importance of Taxonomy in Biological Education at Advanced Level.

    Science.gov (United States)

    Honey, John N.; Paxman, Heather M.

    1986-01-01

    Reports on the status of the teaching of taxonomy in advanced biology classes in the United Kingdom. Reviews findings related to examination requirements, the principles, terminology, and methods of taxonomy, the understanding and attitudes of teachers of taxonomy principles, and the position of the topic in the advanced biology syllabus. (ML)

  13. Type material in the NCBI Taxonomy Database.

    Science.gov (United States)

    Federhen, Scott

    2015-01-01

    Type material is the taxonomic device that ties formal names to the physical specimens that serve as exemplars for the species. For the prokaryotes these are strains submitted to the culture collections; for the eukaryotes they are specimens submitted to museums or herbaria. The NCBI Taxonomy Database (http://www.ncbi.nlm.nih.gov/taxonomy) now includes annotation of type material that we use to flag sequences from type in GenBank and in Genomes. This has important implications for many NCBI resources, some of which are outlined below.

  14. Transferring architectural management into practice: A taxonomy framework

    Directory of Open Access Journals (Sweden)

    Mohammed Alharbi

    2015-09-01

    Full Text Available This research aimed to develop a unique framework to help architects understand and apply architectural management (AM in their practices. A comprehensive literature review identified several components belonging to different specialist fields. A pragmatic methodology for developing the framework was adopted by combining the methodology of Japareen for building conceptual frameworks with the Concept Mapping and Qualitative Met-Synthesis techniques. The resulting framework underwent a series of testing stages aimed at refining the framework further. The testing process targeted two groups (researchers and professionals by adopting a mixed method approach, which included a facilitated workshop, interviews, and a questionnaire survey. The feedback from the testing phase was used to create the final AM Taxonomy Framework (AMTF, and served as an original and practical guide for practitioners, further extending their understanding of AM. Further validation and refinement are planned in the long term by applying the framework to selected architectural practices.

  15. Bridging Real World Semantics to Model World Semantics for Taxonomy Based Knowledge Representation System

    Institute of Scientific and Technical Information of China (English)

    Ju-Hum Kwon; Chee-Yang Song; Chang-Joo Moon; Doo-Kwon Baik

    2005-01-01

    As a mean to map ontology concepts, a similarity technique is employed. Especially a context dependent concept mapping is tackled, which needs contextual information from knowledge taxonomy. Context-based semantic similarity differs from the real world similarity in that it requires contextual information to calculate similarity. The notion of semantic coupling is introduced to derive similarity for a taxonomy-based system. The semantic coupling shows the degree of semantic cohesiveness for a group of concepts toward a given context. In order to calculate the semantic coupling effectively, the edge counting method is revisited for measuring basic semantic similarity by considering the weighting attributes from where they affect an edge's strength. The attributes of scaling depth effect, semantic relation type, and virtual connection for the edge counting are considered. Furthermore, how the proposed edge counting method could be well adapted for calculating context-based similarity is showed. Thorough experimental results are provided for both edge counting and context-based similarity. The results of proposed edge counting were encouraging compared with other combined approaches, and the context-based similarity also showed understandable results. The novel contributions of this paper come from two aspects.First, the similarity is increased to the viable level for edge counting. Second, a mechanism is provided to derive a contextbased similarity in taxonomy-based system, which has emerged as a hot issue in the literature such as Semantic Web, MDR,and other ontology-mapping environments.

  16. The accidental potential of diffractive thinking technologies. Mapping and colouring social differentiation in/of school

    DEFF Research Database (Denmark)

    Staunæs, Dorthe; Brown, Rikke; Bjerg, Helle

    This paper presents our joint work with using and developing Donna Haraways concept of thinking technologies for putting research into play in cooperation with practitioners within the field of education. First we shortly present the conceptualization of thinking technologies and why we have found...... this conceptualization useful in our work and cooperation with practitioners. Secondly we present the development of the ‘colour map’ as a specific example of a thinking technology and introduce what we shall coin as the accidental potential of working with research informed thinking technologies on the particular...

  17. Singlet oxygen triplet energy transfer-based imaging technology for mapping protein-protein proximity in intact cells.

    Science.gov (United States)

    To, Tsz-Leung; Fadul, Michael J; Shu, Xiaokun

    2014-01-01

    Many cellular processes are carried out by large protein complexes that can span several tens of nanometres. Whereas forster resonance energy transfer has a detection range of technology with a detection range of up to several tens of nanometres: singlet oxygen triplet energy transfer. We demonstrate that our method confirms the topology of a large protein complex in intact cells, which spans from the endoplasmic reticulum to the outer mitochondrial membrane and the matrix. This new method is thus suited for mapping protein proximity in large protein complexes.

  18. Mapping Pre-Service Teachers' Evolving Information and Communication Technologies Pedagogy

    Science.gov (United States)

    Savage, Moira

    2016-01-01

    The research examined the nature and scope of e-portfolio reflective writing by primary pre-service teachers about their classroom implementation of information and communication technologies. Familiar and new technologies require a teacher to be able to confidently identify the pedagogical potential for effective learning and teaching. With the…

  19. Using Cognitive Mapping to Represent and Share Users’ Interpretations of Technology

    DEFF Research Database (Denmark)

    Kjærgaard, Annemette Leonhardt; Jensen, Tina Blegind

    2014-01-01

    An assumption implied by much of the literature in information systems (IS) research is that people’s interpretations of technology influence the way in which technology gets adapted in organizations. Despite this acknowledgment, little insight is provided for how these interpretations can...

  20. Mapping Pre-Service Teachers' Evolving Information and Communication Technologies Pedagogy

    Science.gov (United States)

    Savage, Moira

    2016-01-01

    The research examined the nature and scope of e-portfolio reflective writing by primary pre-service teachers about their classroom implementation of information and communication technologies. Familiar and new technologies require a teacher to be able to confidently identify the pedagogical potential for effective learning and teaching. With the…

  1. Toward an embodiment-disembodiment taxonomy.

    Science.gov (United States)

    Stocker, Kurt

    2012-08-01

    Psychological, neuroscientific, and linguistic evidence suggests that a mental scene is in principle cognized with a mental gaze that can take on one of three forms: embodied physical gaze, embodied mental gaze, or disembodied mental gaze. Combinations of these forms also occur. A first sketch of the embodiment-disembodiment taxonomy that emerges from this threefold distinction is presented.

  2. A Taxonomy of Software for Mathematics Instruction

    Science.gov (United States)

    Kurz, Terri L.; Middleton, James A.; Yanik, H. Bahadir

    2005-01-01

    The potential to use mathematics software to enhance student thinking and development is discussed and a taxonomy of software categories is outlined in this paper. Briefly, there are five categories of tool-based mathematics software that can be used fruitfully in a mathematics curriculum: (a) review and practice, (b) general, (c) specific, (d)…

  3. Visualizing a Taxonomy for Virtual Worlds

    Science.gov (United States)

    Downey, Steve

    2012-01-01

    Since the mid-1990s, however, the popularity, diversity, and application of virtual worlds have spread rapidly. As a result, existing taxonomies and topologies increasingly are becoming less effective at being able to classify and organize the growing diversification of content available in today's virtual worlds. This article presents the…

  4. Classification and Taxonomy of Vegetable Macergens.

    Science.gov (United States)

    Aremu, Bukola R; Babalola, Olubukola O

    2015-01-01

    Macergens are bacteria capable of releasing pectic enzymes (pectolytic bacteria). These enzymatic actions result in the separation of plant tissues leading to total plant destruction. This can be attributed to soft rot diseases in vegetables. These macergens primarily belong to the genus Erwinia and to a range of opportunistic pathogens namely: the Xanthomonas spp., Pseudomonas spp., Clostridium spp., Cytophaga spp., and Bacillus spp. They consist of taxa that displayed considerable heterogeneity and intermingled with members of other genera belonging to the Enterobacteriaceae. They have been classified based on phenotypic, chemotaxonomic and genotypic which obviously not necessary in the taxonomy of all bacterial genera for defining bacterial species and describing new ones These taxonomic markers have been used traditionally as a simple technique for identification of bacterial isolates. The most important fields of taxonomy are supposed to be based on clear, reliable and worldwide applicable criteria. Hence, this review clarifies the taxonomy of the macergens to the species level and revealed that their taxonomy is beyond complete. For discovery of additional species, further research with the use modern molecular methods like phylogenomics need to be done. This can precisely define classification of macergens resulting in occasional, but significant changes in previous taxonomic schemes of these macergens.

  5. Classification and taxonomy of vegetable macergens

    Directory of Open Access Journals (Sweden)

    Bukola Rhoda Aremu

    2015-11-01

    Full Text Available Macergens are bacteria capable of releasing pectic enzymes (pectolytic bacteria. These enzymatic actions result in the separation of plant tissues leading to total plant destruction. This can be attributed to soft rot diseases in vegetables. These macergens primarily belong to the genus Erwinia and to a range of opportunistic pathogens namely: the Xanthomonas spp, Pseudomonas spp., Clostridium spp., Cytophaga spp. and Bacillus spp. They consist of taxa that displayed considerable heterogeneity and intermingled with members of other genera belonging to the Enterobacteriaceae. They have been classified based on phenotypic, chemotaxonomic and genotypic which obviously not necessary in the taxonomy of all bacterial genera for defining bacterial species and describing new ones These taxonomic markers have been used traditionally as a simple technique for identification of bacterial isolates. The most important fields of taxonomy are supposed to be based on clear, reliable and worldwide applicable criteria. Hence, this review clarifies the taxonomy of the macergens to the species level and revealed that their taxonomy is beyond complete. For discovery of additional species, further research with the use modern molecular methods like phylogenomics need to be done. This can precisely define classification of macergens resulting in occasional, but significant changes in previous taxonomic schemes of these macergens.

  6. An Android Communication App Forensic Taxonomy.

    Science.gov (United States)

    Azfar, Abdullah; Choo, Kim-Kwang Raymond; Liu, Lin

    2016-09-01

    Due to the popularity of Android devices and applications (apps), Android forensics is one of the most studied topics within mobile forensics. Communication apps, such as instant messaging and Voice over IP (VoIP), are one popular app category used by mobile device users, including criminals. Therefore, a taxonomy outlining artifacts of forensic interest involving the use of Android communication apps will facilitate the timely collection and analysis of evidentiary materials from such apps. In this paper, 30 popular Android communication apps were examined, where a logical extraction of the Android phone images was collected using XRY, a widely used mobile forensic tool. Various information of forensic interest, such as contact lists and chronology of messages, was recovered. Based on the findings, a two-dimensional taxonomy of the forensic artifacts of the communication apps is proposed, with the app categories in one dimension and the classes of artifacts in the other dimension. Finally, the artifacts identified in the study of the 30 communication apps are summarized using the taxonomy. It is expected that the proposed taxonomy and the forensic findings in this paper will assist forensic investigations involving Android communication apps. © 2016 American Academy of Forensic Sciences.

  7. Visualizing a Taxonomy for Virtual Worlds

    Science.gov (United States)

    Downey, Steve

    2012-01-01

    Since the mid-1990s, however, the popularity, diversity, and application of virtual worlds have spread rapidly. As a result, existing taxonomies and topologies increasingly are becoming less effective at being able to classify and organize the growing diversification of content available in today's virtual worlds. This article presents the…

  8. The Use of Geospatial Technologies in Flood Hazard Mapping and Assessment: Case Study from River Evros

    Science.gov (United States)

    Mentzafou, Angeliki; Markogianni, Vasiliki; Dimitriou, Elias

    2016-11-01

    Many scientists link climate change to the increase of the extreme weather phenomena frequency, which combined with land use changes often lead to disasters with severe social and economic effects. Especially floods as a consequence of heavy rainfall can put vulnerable human and natural systems such as transboundary wetlands at risk. In order to meet the European Directive 2007/60/EC requirements for the development of flood risk management plans, the flood hazard map of Evros transboundary watershed was produced after a grid-based GIS modelling method that aggregates the main factors related to the development of floods: topography, land use, geology, slope, flow accumulation and rainfall intensity. The verification of this tool was achieved through the comparison between the produced hazard map and the inundation maps derived from the supervised classification of Landsat 5 and 7 satellite imageries of four flood events that took place at Evros delta proximity, a wetland of international importance. The comparison of the modelled output (high and very high flood hazard areas) with the extent of the inundated areas as mapped from the satellite data indicated the satisfactory performance of the model. Furthermore, the vulnerability of each land use against the flood events was examined. Geographically Weighted Regression has also been applied between the final flood hazard map and the major factors in order to ascertain their contribution to flood events. The results accredited the existence of a strong relationship between land uses and flood hazard indicating the flood susceptibility of the lowlands and agricultural land. A dynamic transboundary flood hazard management plan should be developed in order to meet the Flood Directive requirements for adequate and coordinated mitigation practices to reduce flood risk.

  9. The Use of Geospatial Technologies in Flood Hazard Mapping and Assessment: Case Study from River Evros

    Science.gov (United States)

    Mentzafou, Angeliki; Markogianni, Vasiliki; Dimitriou, Elias

    2017-02-01

    Many scientists link climate change to the increase of the extreme weather phenomena frequency, which combined with land use changes often lead to disasters with severe social and economic effects. Especially floods as a consequence of heavy rainfall can put vulnerable human and natural systems such as transboundary wetlands at risk. In order to meet the European Directive 2007/60/EC requirements for the development of flood risk management plans, the flood hazard map of Evros transboundary watershed was produced after a grid-based GIS modelling method that aggregates the main factors related to the development of floods: topography, land use, geology, slope, flow accumulation and rainfall intensity. The verification of this tool was achieved through the comparison between the produced hazard map and the inundation maps derived from the supervised classification of Landsat 5 and 7 satellite imageries of four flood events that took place at Evros delta proximity, a wetland of international importance. The comparison of the modelled output (high and very high flood hazard areas) with the extent of the inundated areas as mapped from the satellite data indicated the satisfactory performance of the model. Furthermore, the vulnerability of each land use against the flood events was examined. Geographically Weighted Regression has also been applied between the final flood hazard map and the major factors in order to ascertain their contribution to flood events. The results accredited the existence of a strong relationship between land uses and flood hazard indicating the flood susceptibility of the lowlands and agricultural land. A dynamic transboundary flood hazard management plan should be developed in order to meet the Flood Directive requirements for adequate and coordinated mitigation practices to reduce flood risk.

  10. 论现今地质测绘技术与发展%Discussion on Current Geological Mapping Technology and Development

    Institute of Scientific and Technical Information of China (English)

    孙志鹏; 王文龙

    2012-01-01

    介绍了测绘技术的基本概念,并通过传统地质测绘与当代地质测绘的比较,重点介绍了新时期地质测绘的几种技术,并探讨了地质测绘的发展趋势.%In this paper, the basic concepts of topographic technique is introduced, by the comparison of traditional geological mapping and contemporary geological mapping, several technologies of geological mapping in the new era are mainly described, and the development trend of the geological mapping is explored.

  11. Searching for optimal setting conditions in technological processes using parametric estimation models and neural network mapping approach: a tutorial.

    Science.gov (United States)

    Fjodorova, Natalja; Novič, Marjana

    2015-09-03

    Engineering optimization is an actual goal in manufacturing and service industries. In the tutorial we represented the concept of traditional parametric estimation models (Factorial Design (FD) and Central Composite Design (CCD)) for searching optimal setting parameters of technological processes. Then the 2D mapping method based on Auto Associative Neural Networks (ANN) (particularly, the Feed Forward Bottle Neck Neural Network (FFBN NN)) was described in comparison with traditional methods. The FFBN NN mapping technique enables visualization of all optimal solutions in considered processes due to the projection of input as well as output parameters in the same coordinates of 2D map. This phenomenon supports the more efficient way of improving the performance of existing systems. Comparison of two methods was performed on the bases of optimization of solder paste printing processes as well as optimization of properties of cheese. Application of both methods enables the double check. This increases the reliability of selected optima or specification limits. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The landscape of research on smartphone medical apps: Coherent taxonomy, motivations, open challenges and recommendations.

    Science.gov (United States)

    Hussain, Muzammil; Al-Haiqi, Ahmed; Zaidan, A A; Zaidan, B B; Kiah, M L M; Anuar, Nor Badrul; Abdulnabi, Mohamed

    2015-12-01

    To survey researchers' efforts in response to the new and disruptive technology of smartphone medical apps, mapping the research landscape form the literature into a coherent taxonomy, and finding out basic characteristics of this emerging field represented on: motivation of using smartphone apps in medicine and healthcare, open challenges that hinder the utility, and the recommendations to improve the acceptance and use of medical apps in the literature. We performed a focused search for every article on (1) smartphone (2) medical or health-related (3) app, in four major databases: MEDLINE, Web of Science, ScienceDirect, and IEEE Xplore. Those databases are deemed broad enough to cover both medical and technical literature. The final set included 133 articles. Most articles (68/133) are reviews and surveys that refer to actual apps or the literature to describe medical apps for a specific specialty, disease, or purpose; or to provide a general overview of the technology. Another group (43/133) carried various studies, from evaluation of apps to exploration of desired features when developing them. Few researchers (17/133) presented actual attempts to develop medical apps, or shared their experiences in doing so. The smallest portion (5/133) proposed general frameworks addressing the production or operation of apps. Since 2010, researchers followed the trend of medical apps in several ways, though leaving areas or aspect for further attention. Regardless of their category, articles focus on the challenges that hinder the full utility of medical apps and do recommend mitigations to them. Research on smartphone medical apps is active and various. We hope that this survey contribute to the understanding of the available options and gaps for other researchers to join this line of research. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. [Mapping stakeholders' preferences in prioritization criteria for horizon scanning in healthcare technologies].

    Science.gov (United States)

    Nascimento, Aline do; Vidal, Avila Teixeira; Almeida, Rosimary Terezinha de

    2016-08-01

    Filtration and prioritization are two basics steps in horizon scanning systems. This article aimed to map stakeholders' preferences in the Brazilian Unified National Health System (SUS) regarding filtration and prioritization criteria. Two filtration criteria (time horizon and innovation) and eight prioritization criteria (relevance to epidemiology, health policies, and clinical practice; potential impact on SUS budget, healthcare providers' costs, and mortality; safety; and legal, ethical, and social aspects) were selected. Multiple correspondence analysis was used to map stakeholders' preferences within and between groups. Two groups were more homogeneous and determinant for selection of prioritization criteria. Stakeholders' professional experience had more influence than institutional affiliations. The approach showed transparent criteria selection and analysis of stakeholders' individual preferences.

  14. A technological evaluation of the Microsoft Kinect for automated behavioural mapping at bed rest.

    Science.gov (United States)

    Gibson, Simon; McBride, Simon J; McClelland, Coen; Watson, Marcus

    2013-01-01

    Behavioural mapping (BM) is a long established method of structured observational study used to understand where patients are and what they are doing within a hospital setting. BM is prominent in stroke rehabilitation research, where that research indicates patients spend most of their time at bed rest. We evaluate the technical feasibility of using the Microsoft Kinect to automate patient physical activity classification at bed rest.

  15. Applying nitrogen site-specifically using soil electrical conductivity maps and precision agriculture technology.

    Science.gov (United States)

    Lund, E D; Wolcott, M C; Hanson, G P

    2001-10-16

    Soil texture varies significantly within many agricultural fields. The physical properties of soil, such as soil texture, have a direct effect on water holding capacity, cation exchange capacity, crop yield, production capability, and nitrogen (N) loss variations within a field. In short, mobile nutrients are used, lost, and stored differently as soil textures vary. A uniform application of N to varying soils results in a wide range of N availability to the crop. N applied in excess of crop usage results in a waste of the grower"s input expense, a potential negative effect on the environment, and in some crops a reduction of crop quality, yield, and harvestability. Inadequate N levels represent a lost opportunity for crop yield and profit. The global positioning system (GPS)-referenced mapping of bulk soil electrical conductivity (EC) has been shown to serve as an effective proxy for soil texture and other soil properties. Soils with a high clay content conduct more electricity than coarser textured soils, which results in higher EC values. This paper will describe the EC mapping process and provide case studies of site-specific N applications based on EC maps. Results of these case studies suggest that N can be managed site-specifically using a variety of management practices, including soil sampling, variable yield goals, and cropping history.

  16. Applying Nitrogen Site-Specifically Using Soil Electrical Conductivity Maps and Precision Agriculture Technology

    Directory of Open Access Journals (Sweden)

    E.D. Lund

    2001-01-01

    Full Text Available Soil texture varies significantly within many agricultural fields. The physical properties of soil, such as soil texture, have a direct effect on water holding capacity, cation exchange capacity, crop yield, production capability, and nitrogen (N loss variations within a field. In short, mobile nutrients are used, lost, and stored differently as soil textures vary. A uniform application of N to varying soils results in a wide range of N availability to the crop. N applied in excess of crop usage results in a waste of the grower’s input expense, a potential negative effect on the environment, and in some crops a reduction of crop quality, yield, and harvestability. Inadequate N levels represent a lost opportunity for crop yield and profit. The global positioning system (GPS-referenced mapping of bulk soil electrical conductivity (EC has been shown to serve as an effective proxy for soil texture and other soil properties. Soils with a high clay content conduct more electricity than coarser textured soils, which results in higher EC values. This paper will describe the EC mapping process and provide case studies of site-specific N applications based on EC maps. Results of these case studies suggest that N can be managed site-specifically using a variety of management practices, including soil sampling, variable yield goals, and cropping history.

  17. 浅议海洋科技专著中地图的规范化%Map Standardization in Marine Technology Monograph

    Institute of Scientific and Technical Information of China (English)

    白燕; 彭珺

    2014-01-01

    The existing problems of maps are discussed and analyzed. It is believed that maps should meet the requirements of self -evident, abstract and simplistic. As for the map name, line graphs, and image maps, the suggestions of map standardization are proposed to improve maps' information transfer functions and visual effects in marine technology monographs.%讨论分析了目前海洋科技专著中地图所存在的问题,提出了地图应符合自明性、抽象性和简明性的要求,并针对图名、线划图和影像图提出地图制作的规范化建议,以便增强地图在海洋科技专著中的信息传递功能和视觉效果。

  18. Creating Communications, Computing, and Networking Technology Development Road Maps for Future NASA Human and Robotic Missions

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeffrey L.

    2005-01-01

    For human and robotic exploration missions in the Vision for Exploration, roadmaps are needed for capability development and investments based on advanced technology developments. A roadmap development process was undertaken for the needed communications, and networking capabilities and technologies for the future human and robotics missions. The underlying processes are derived from work carried out during development of the future space communications architecture, an d NASA's Space Architect Office (SAO) defined formats and structures for accumulating data. Interrelationships were established among emerging requirements, the capability analysis and technology status, and performance data. After developing an architectural communications and networking framework structured around the assumed needs for human and robotic exploration, in the vicinity of Earth, Moon, along the path to Mars, and in the vicinity of Mars, information was gathered from expert participants. This information was used to identify the capabilities expected from the new infrastructure and the technological gaps in the way of obtaining them. We define realistic, long-term space communication architectures based on emerging needs and translate the needs into interfaces, functions, and computer processing that will be required. In developing our roadmapping process, we defined requirements for achieving end-to-end activities that will be carried out by future NASA human and robotic missions. This paper describes: 10 the architectural framework developed for analysis; 2) our approach to gathering and analyzing data from NASA, industry, and academia; 3) an outline of the technology research to be done, including milestones for technology research and demonstrations with timelines; and 4) the technology roadmaps themselves.

  19. Geographic information technology monitoring and mapping of coal fires in Ukraine, according to the space survey

    Energy Technology Data Exchange (ETDEWEB)

    Pivnyak, G.; Busygin, B.; Garkusha, I. [National Mining Univ., Dnipropetrovsk (Ukraine)

    2010-07-01

    Coal fires are a significant problem around the world, particularly in China, India, and the United States. Coal fires burn thousands of tons of coal reserves and lead to serious problems for the environment, degradation and destruction of landscape, and harm public health. Technology, such as spectrology analysis of signatures with high temperature activity can be used to calculate vegetation algorithms and soil indexes, and multispectral survey data in the thermal channels of scanners. This paper presented the perspectives of technology development in coal fires and the approach to the detection, monitoring, and quantitative estimation of coal fires by the instruments using geographic information systems. Specifically, the paper considered the use of coal fire fragment monitoring technology from data of a diachronous survey obtained by Landsat satellites, to classify dangerous coal waste banks of the Donbass Mine located in Ukraine. The paper provided a description of the study area and discussed the detection technology of temperature-active waste banks. It was concluded that geoinformation technology provides an opportunity to effectively mark mining dumps, in particular, waste banks in multispectrum space images made by Landsat satellites. 7 refs., 6 figs.

  20. De novo assembly of Dekkera bruxellensis: a multi technology approach using short and long-read sequencing and optical mapping.

    Science.gov (United States)

    Olsen, Remi-Andre; Bunikis, Ignas; Tiukova, Ievgeniia; Holmberg, Kicki; Lötstedt, Britta; Pettersson, Olga Vinnere; Passoth, Volkmar; Käller, Max; Vezzi, Francesco

    2015-01-01

    It remains a challenge to perform de novo assembly using next-generation sequencing (NGS). Despite the availability of multiple sequencing technologies and tools (e.g., assemblers) it is still difficult to assemble new genomes at chromosome resolution (i.e., one sequence per chromosome). Obtaining high quality draft assemblies is extremely important in the case of yeast genomes to better characterise major events in their evolutionary history. The aim of this work is two-fold: on the one hand we want to show how combining different and somewhat complementary technologies is key to improving assembly quality and correctness, and on the other hand we present a de novo assembly pipeline we believe to be beneficial to core facility bioinformaticians. To demonstrate both the effectiveness of combining technologies and the simplicity of the pipeline, here we present the results obtained using the Dekkera bruxellensis genome. In this work we used short-read Illumina data and long-read PacBio data combined with the extreme long-range information from OpGen optical maps in the task of de novo genome assembly and finishing. Moreover, we developed NouGAT, a semi-automated pipeline for read-preprocessing, de novo assembly and assembly evaluation, which was instrumental for this work. We obtained a high quality draft assembly of a yeast genome, resolved on a chromosomal level. Furthermore, this assembly was corrected for mis-assembly errors as demonstrated by resolving a large collapsed repeat and by receiving higher scores by assembly evaluation tools. With the inclusion of PacBio data we were able to fill about 5 % of the optical mapped genome not covered by the Illumina data.

  1. Towards an understanding of driver inattention: taxonomy and theory.

    Science.gov (United States)

    Regan, Michael A; Strayer, David L

    2014-01-01

    There is little agreement in the scientific literature about what the terms "driver distraction" and "driver inattention" mean, and what the relationship is between them. In 2011, Regan, Hallett and Gordon proposed a taxonomy of driver inattention in which driver distraction is conceptualized as just one of several processes that give rise to driver inattention. Since publication of that paper, two other papers have emerged that bear on the taxonomy. In one, the Regan et al taxonomy was used, for the first time, to classify data from an in-depth crash investigation in Australia. In the other, another taxonomy of driver inattention was proposed and described. In this paper we revisit the original taxonomy proposed by Regan et al. in light of these developments, and make recommendations for how the original taxonomy might be improved to make it more useful as a tool for classifying and coding crash and critical incident data. In addition, we attempt to characterize, theoretically, the processes within each category of the original taxonomy that are assumed to give rise to driver inattention. Recommendations are made for several lines of research: to further validate the original taxonomy; to understand the impact of each category of inattention in the taxonomy on driving performance, crash type and crash risk; and to revise and align with the original taxonomy existing crash and incident investigation protocols, so that they provide more comprehensive, reliable and consistent information regarding the contribution of inattention to crashes of all types.

  2. From single gene to integrative molecular concept MAPS: pitfalls and potentials of microarray technology.

    Science.gov (United States)

    Chiorino, G; Mello Grand, M; Scatolini, M; Ostano, P

    2008-01-01

    Microarray experiments have a large variety of applications and several important achievements have been obtained by means of this technology, especially within the field of whole genome expression profiling, which undoubtedly is the most diffused world-wide. Nevertheless, care must be taken in unconditionally applying such high-throughput techniques and in extracting/interpreting their results. Both the validity and the reproducibility of microarray-based clinical research have recently been challenged. Pitfalls and potentials of the microarray technology for gene expression profiling are critically reviewed in this paper.

  3. Solar photovoltaic hydrogen: the technologies and their place in our road-maps and energy economics

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, L.L. [National Renewable Energy Laboratory, Golden, Colorado (United States); Broussard, K. [Southern Univ., Baton Rouge, LA (United States)

    2004-07-01

    Future solar photovoltaic-hydrogen systems are discussed in terms of the evolving hydrogen economy. The focus is on distributed hydrogen, relying on the same distributed-energy strengths of solar-photovoltaic electricity in the built environment. Solar-hydrogen residences/buildings, as well as solar parks, are presented. The economics, feasibility, and potential of these approaches are evaluated in terms of road-map predictions on photovoltaic and hydrogen pathways and whether solar-hydrogen fit in these strategies and time-frames. Issues with the ''hydrogen future'' are considered, and alternatives to this hydrogen future are examined. (authors)

  4. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Hastie, Alex R.; Cao, Dandan;

    2014-01-01

    than 1 kb. Excluding the 59 SVs (54 insertions/deletions, 5 inversions) that overlap with N-base gaps in the reference assembly hg19, 666 non-gap SVs remained, and 396 of them (60%) were verified by paired-end data from whole-genome sequencing-based re-sequencing or de novo assembly sequence from...... fosmid data. Of the remaining 270 SVs, 260 are insertions and 213 overlap known SVs in the Database of Genomic Variants. Overall, 609 out of 666 (90%) variants were supported by experimental orthogonal methods or historical evidence in public databases. At the same time, genome mapping also provides...

  5. Empirical evidence of the effectiveness of concept mapping as a learning intervention for nuclear medicine technology students in a distance learning radiation protection and biology course.

    Science.gov (United States)

    Passmore, Gregory G; Owen, Mary Anne; Prabakaran, Krishnan

    2011-12-01

    Metacognitive learning strategies are based on instructional learning theory, which promotes deep, meaningful learning. Educators in a baccalaureate-level nuclear medicine technology program demonstrated that students enrolled in an online, distance learning section of an introductory radiation protection and radiobiology course performed better when traditional instruction was supplemented with nontraditional metacognitive learning strategies. The metacognitive learning strategy that was used is best known as concept mapping. The concept map, in addition to the standard homework problem assignment and opportunity for question-answer sessions, became the template for misconception identification and remediation interactions between the instructor and the student. The control group relied on traditional homework problems and question-answer sessions alone. Because students in both the "treatment" groups (i.e., students who used concept mapping) and the control group were distance learning students, all personal communications were conducted via e-mail or telephone. The final examination of the course was used to facilitate a quantitative comparison of the performance of students who used concept mapping and the performance of students who did not use concept mapping. The results demonstrated a significantly higher median final examination score for the concept mapping group than for the non-concept mapping group (z = -2.0381, P = 0.0415), with an appropriately large effect size (2.65). Concept mapping is a cognitive learning intervention that effectively enables meaningful learning and is suitable for use in the independent learner-oriented distance learning environments used by some nuclear medicine technology programs.

  6. A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems

    CERN Document Server

    Beloglazov, Anton; Lee, Young Choon; Zomaya, Albert

    2010-01-01

    Traditionally, the development of computing systems has been focused on performance improvements driven by the demand of applications from consumer, scientific and business domains. However, the ever increasing energy consumption of computing systems has started to limit further performance growth due to overwhelming electricity bills and carbon dioxide footprints. Therefore, the goal of the computer system design has been shifted to power and energy efficiency. To identify open challenges in the area and facilitate future advancements it is essential to synthesize and classify the research on power and energy-efficient design conducted to date. In this work we discuss causes and problems of high power / energy consumption, and present a taxonomy of energy-efficient design of computing systems covering the hardware, operating system, virtualization and data center levels. We survey various key works in the area and map them to our taxonomy to guide future design and development efforts. This chapter is conclu...

  7. Why Do People Regulate Their Emotions? A Taxonomy of Motives in Emotion Regulation.

    Science.gov (United States)

    Tamir, Maya

    2016-08-01

    Emotion regulation involves the pursuit of desired emotional states (i.e., emotion goals) in the service of superordinate motives. The nature and consequences of emotion regulation, therefore, are likely to depend on the motives it is intended to serve. Nonetheless, limited attention has been devoted to studying what motivates emotion regulation. By mapping the potential benefits of emotion to key human motives, this review identifies key classes of motives in emotion regulation. The proposed taxonomy distinguishes between hedonic motives that target the immediate phenomenology of emotions, and instrumental motives that target other potential benefits of emotions. Instrumental motives include behavioral, epistemic, social, and eudaimonic motives. The proposed taxonomy offers important implications for understanding the mechanism of emotion regulation, variation across individuals and contexts, and psychological function and dysfunction, and points to novel research directions.

  8. Assessing the crossdisciplinarity of technology-enhanced learning with science overlay maps and diversity measures

    NARCIS (Netherlands)

    Kalz, Marco; Specht, Marcus

    2013-01-01

    This paper deals with the assessment of the crossdisciplinarity of technology-enhanced learning (TEL). Based on a general discussion of the concept interdisciplinarity and a summary of the discussion in the field two empirical methods from scientometrics are introduced and applied. Science overlay m

  9. Mapping Beliefs about Teaching to Patterns of Instruction within Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Allendoerfer, Cheryl; Wilson, Denise; Kim, Mee Joo; Burpee, Elizabeth

    2014-01-01

    In this paper, we identify beliefs about teaching and patterns of instruction valued and emphasized by science, technology, engineering, and mathematics faculty in higher education in the USA. Drawing on the notion that effective teaching is student-centered rather than teacher-centered and must include a balance of knowledge-, learner-,…

  10. Mapping Engineering Concepts for Secondary Level Education. Final Report. Research in Engineering and Technology Education

    Science.gov (United States)

    Daugherty, Jenny L.

    2011-01-01

    Much of the national attention on science, technology, engineering, and mathematics (STEM) education tends to concentrate on science and mathematics, with its emphasis on standardized test scores. However as the National Academy of Engineering Committee on K-12 Engineering Education stressed, engineering can contribute to the development of an…

  11. Mapping Knowledge Exchange in Early Modern Europe : Intellectual and Technological Geographies and Network Representations

    NARCIS (Netherlands)

    van den Heuvel, C.M.J.M.

    2015-01-01

    This paper discusses the development of digital intellectual and technological geographies showing spatial distributions of information and proposes to combine these with network representations of actors and documents relevant for the history knowledge exchange in Early Modern Europe. The amount of

  12. The Effect of Computer Assisted Mind Mapping on Students’ Academic Achievement, Attitudes and Retention in Science and Technology Course

    Directory of Open Access Journals (Sweden)

    Mehmet Nuri GÖMLEKSİZ

    2013-12-01

    Full Text Available This study aims at determining the effects of computer assisted mind mapping (CAMM technique on students’ academic achievement, attitudes and retention in Science and Technology course. Mixed-method research design which included both quantitative and qualitative methods was used in the study. Pretest-posttest control group experimental design, interview and observation techniques were used. The study included one experimental (N:36 one control group (N:32. The study was conducted on seventh grade students at an elementary school in 2011-2012 academic year. While experimental group used CAMM technique, control group used traditional method. The achievement test, administered as a pre-, post- and delayed post-test, included 34 questions. The mean difficulty of the test was calculated to be .54 and KR-20 reliability coefficient was measured to be .73. To determine students' attitudes towards Science and Technology course, a 20-item five-point Likert-style attitude scale (α: .89 developed by Akınoğlu (2001 was used. The results revealed that CAMM technique had a positive effect on students’ achievement and attitudes towards learning science and technology

  13. Linking Virus Genomes with Host Taxonomy.

    Science.gov (United States)

    Mihara, Tomoko; Nishimura, Yosuke; Shimizu, Yugo; Nishiyama, Hiroki; Yoshikawa, Genki; Uehara, Hideya; Hingamp, Pascal; Goto, Susumu; Ogata, Hiroyuki

    2016-03-01

    Environmental genomics can describe all forms of organisms--cellular and viral--present in a community. The analysis of such eco-systems biology data relies heavily on reference databases, e.g., taxonomy or gene function databases. Reference databases of symbiosis sensu lato, although essential for the analysis of organism interaction networks, are lacking. By mining existing databases and literature, we here provide a comprehensive and manually curated database of taxonomic links between viruses and their cellular hosts.

  14. Taxonomy of Indonesian giant clams (Cardiidae, Tridacninae)

    OpenAIRE

    UDHI EKO HERNAWAN

    2012-01-01

    Hernawan E. 2012. Taxonomy of Indonesian giant clams (Cardiidae, Tridacninae). Biodiversitas 13: 118-123. A taxonomic study was conducted on the giant clam’s specimens deposited in Museum Zoologicum Bogoriense (MZB), Cibinong Indonesia. Taxonomic overviews of the examined specimens are given with diagnostic characters, remarks, habitat and distribution. Discussion is focused on specific characters distinguishing each species. From seven species known to distribute in Indonesian waters, there ...

  15. Bloom's Taxonomy and Training in Programming Style

    OpenAIRE

    Teodosi TEODOSIEV

    2013-01-01

    Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013 The presented work is using Bloom's taxonomy to set the goals of teaching programming. Here are shown the elements of programming style, in which you can teach novices. Elements of programming style are at different levels of Bloom's pyramid. Association for the Development of the Information Society, Institute of Mathematics and Informatics Bulgarian Academ...

  16. Systematic mapping study of information communication technology research for agriculture (in case of developing Countries)

    DEFF Research Database (Denmark)

    Zewge, Amanuel; Dittrich, Yvonne

    2015-01-01

    Context: A rural community in a developing country is a socially complex and infrastructural weak environment that demands clear understanding of the social, economical, cultural, and political precondition before implementing information commutation technology (ICT) innovations. Objective: This ...... for an ongoing discourse to fill identified gaps from software engineering, computer science or information system research perspective. Keywords: design method, information system, development, agriculture....... with number of contributions but still there is long ways to go. The review shows that currently there are limited knowledge areas in methods, user interface design, and theory in how to design information system for rural community settings. Conclusion: This paper first presents an overview of research......Context: A rural community in a developing country is a socially complex and infrastructural weak environment that demands clear understanding of the social, economical, cultural, and political precondition before implementing information commutation technology (ICT) innovations. Objective...

  17. Unsupervised organization of image collections: taxonomies and beyond.

    Science.gov (United States)

    Bart, Evgeniy; Welling, Max; Perona, Pietro

    2011-11-01

    We introduce a nonparametric Bayesian model, called TAX, which can organize image collections into a tree-shaped taxonomy without supervision. The model is inspired by the Nested Chinese Restaurant Process (NCRP) and associates each image with a path through the taxonomy. Similar images share initial segments of their paths and thus share some aspects of their representation. Each internal node in the taxonomy represents information that is common to multiple images. We explore the properties of the taxonomy through experiments on a large (~10(4)) image collection with a number of users trying to locate quickly a given image. We find that the main benefits are easier navigation through image collections and reduced description length. A natural question is whether a taxonomy is the optimal form of organization for natural images. Our experiments indicate that although taxonomies can organize images in a useful manner, more elaborate structures may be even better suited for this task.

  18. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Vakhrushev, Sergey; Joshi, Hiren Jitendra

    2013-01-01

    -glycosylation is highly limited. This type of glycosylation is unique in being regulated by 20 polypeptide GalNAc-transferases attaching the initiating GalNAc monosaccharides to Ser and Thr (and likely some Tyr) residues. We have developed a genetic engineering approach using human cell lines to simplify O......-glycosylation (SimpleCells) that enables proteome-wide discovery of O-glycan sites using 'bottom-up' ETD-based mass spectrometric analysis. We implemented this on 12 human cell lines from different organs, and present a first map of the human O-glycoproteome with almost 3000 glycosites in over 600 O......-glycoproteins as well as an improved NetOGlyc4.0 model for prediction of O-glycosylation. The finding of unique subsets of O-glycoproteins in each cell line provides evidence that the O-glycoproteome is differentially regulated and dynamic. The greatly expanded view of the O-glycoproteome should facilitate...

  19. Intelligent Control of the Complex Technology Process Based on Adaptive Pattern Clustering and Feature Map

    Directory of Open Access Journals (Sweden)

    Wushan Cheng

    2008-01-01

    Full Text Available A kind of fuzzy neural networks (FNNs based on adaptive pattern clustering and feature map (APCFM is proposed to improve the property of the large delay and time varying of the sintering process. By using the density clustering and learning vector quantization (LVQ, the sintering process is divided automatically into subclasses which have similar clustering center and labeled fitting number. Then these labeled subclass samples are taken into fuzzy neural network (FNN to be trained; this network is used to solve the prediction problem of the burning through point (BTP. Using the 707 groups of actual training process data and the FNN to train APCFM algorithm, experiments prove that the system has stronger robustness and wide generality in clustering analysis and feature extraction.

  20. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy.

    Science.gov (United States)

    Glaeser, Stefanie P; Kämpfer, Peter

    2015-06-01

    To obtain a higher resolution of the phylogenetic relationships of species within a genus or genera within a family, multilocus sequence analysis (MLSA) is currently a widely used method. In MLSA studies, partial sequences of genes coding for proteins with conserved functions ('housekeeping genes') are used to generate phylogenetic trees and subsequently deduce phylogenies. However, MLSA is not only suggested as a phylogenetic tool to support and clarify the resolution of bacterial species with a higher resolution, as in 16S rRNA gene-based studies, but has also been discussed as a replacement for DNA-DNA hybridization (DDH) in species delineation. Nevertheless, despite the fact that MLSA has become an accepted and widely used method in prokaryotic taxonomy, no common generally accepted recommendations have been devised to date for either the whole area of microbial taxonomy or for taxa-specific applications of individual MLSA schemes. The different ways MLSA is performed can vary greatly for the selection of genes, their number, and the calculation method used when comparing the sequences obtained. Here, we provide an overview of the historical development of MLSA and critically review its current application in prokaryotic taxonomy by highlighting the advantages and disadvantages of the method's numerous variations. This provides a perspective for its future use in forthcoming genome-based genotypic taxonomic analyses. Copyright © 2015 Elsevier GmbH. All rights reserved.