WorldWideScience

Sample records for technology supercritical fluid

  1. Supercritical fluids technology. Pt. 1 General topics

    International Nuclear Information System (INIS)

    Marongiu, B.; De Giorgi, M. R.; Porcedda, S.; Cadoni, E.

    1998-01-01

    Supercritical fluids technology is among the emerging 'clean' technologies, that allows the minimization in the use of chemical and thermic treatments and products irradiation, diminishing the quantity of liquid wastes to be treated. In this first article phase equilibria thermodynamics and fluid mechanics of transport phenomena are reviewed [it

  2. Supercritical fluid technology: concepts and pharmaceutical applications.

    Science.gov (United States)

    Deshpande, Praful Balavant; Kumar, G Aravind; Kumar, Averineni Ranjith; Shavi, Gopal Venkatesh; Karthik, Arumugam; Reddy, Meka Sreenivasa; Udupa, Nayanabhirama

    2011-01-01

    In light of environmental apprehension, supercritical fluid technology (SFT) exhibits excellent opportunities to accomplish key objectives in the drug delivery sector. Supercritical fluid extraction using carbon dioxide (CO(2)) has been recognized as a green technology. It is a clean and versatile solvent with gas-like diffusivity and liquid-like density in the supercritical phase, which has provided an excellent alternative to the use of chemical solvents. The present commentary provides an overview of different techniques using supercritical fluids and their future opportunity for the drug delivery industry. Some of the emerging applications of SFT in pharmaceuticals, such as particle design, drug solubilization, inclusion complex, polymer impregnation, polymorphism, drug extraction process, and analysis, are also covered in this review. The data collection methods are based on the recent literature related to drug delivery systems using SFT platforms. SFT has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This cutting-edge technology is growing predominantly to surrogate conventional unit operations in relevance to the pharmaceutical production process. Supercritical fluid technology has recently drawn attention in the field of pharmaceuticals. It is a distinct conception that utilizes the solvent properties of supercritical fluids above their critical temperature and pressure, where they exhibit both liquid-like and gas-like properties, which can enable many pharmaceutical applications. For example, the liquid-like properties provide benefits in extraction processes of organic solvents or impurities, drug solubilization, and polymer plasticization, and the gas-like features facilitate mass transfer processes. It has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This review is

  3. Technology with Supercritical Fluid. Part 2. Applications

    International Nuclear Information System (INIS)

    Marongiu, B.; De Giorgi, M. R.; Porcedda, S.; Cadoni, E.

    1998-01-01

    The present article is based on a bibliographical analysis of the main applications of the supercritical fluid in various fields, as: extraction from solid matrices, division of liquid charges, chromatography HPLC with supercritical eluent, chemical and biochemical reactions in supercritical solvents etc [it

  4. Modern supercritical fluid technology for food applications.

    Science.gov (United States)

    King, Jerry W

    2014-01-01

    This review provides an update on the use of supercritical fluid (SCF) technology as applied to food-based materials. It advocates the use of the solubility parameter theory (SPT) for rationalizing the results obtained when employing sub- and supercritical media to food and nutrient-bearing materials and for optimizing processing conditions. Total extraction and fractionation of foodstuffs employing SCFs are compared and are illustrated by using multiple fluids and unit processes to obtain the desired food product. Some of the additional prophylactic benefits of using carbon dioxide as the processing fluid are explained and illustrated with multiple examples of commercial products produced using SCF media. I emphasize the role of SCF technology in the context of environmentally benign and sustainable processing, as well as its integration into an overall biorefinery concept. Conclusions are drawn in terms of current trends in the field and future research that is needed to secure new applications of the SCF platform as applied in food science and technology.

  5. Supercritical fluid technologies for ceramic-processing applications

    International Nuclear Information System (INIS)

    Matson, D.W.; Smith, R.D.

    1989-01-01

    This paper reports on the applications of supercritical fluid technologies for ceramic processing. The physical and chemical properties of these densified gases are summarized and related to their use as solvents and processing media. Several areas are identified in which specific ceramic processes benefit from the unique properties of supercritical fluids. The rapid expansion of supercritical fluid solutions provides a technique for producing fine uniform powders and thin films of widely varying materials. Supercritical drying technologies allow the formation of highly porous aerogel products with potentially wide application. Hydrothermal processes leading to the formation of large single crystals and microcrystalline powders can also be extended into the supercritical regime of water. Additional applications and potential applications are identified in the areas of extraction of binders and other additives from ceramic compacts, densification of porous ceramics, the formation of powders in supercritical micro-emulsions, and in preceramic polymer processing

  6. Supercritical fluid technology for energy and environmental applications

    CERN Document Server

    Anikeev, Vladimir

    2014-01-01

    Supercritical Fluid Technology for Energy and Environmental Applications covers the fundamental principles involved in the preparation and characterization of supercritical fluids (SCFs) used in the energy production and other environmental applications. Energy production from diversified resources - including renewable materials - using clean processes can be accomplished using technologies like SCFs. This book is focused on critical issues scientists and engineers face in applying SCFs to energy production and environmental protection, the innovative solutions they have found, and the challenges they need to overcome. The book also covers the basics of sub- and supercritical fluids, like the thermodynamics of phase and chemical equilibria, mathematical modeling, and process calculations. A supercritical fluid is any substance at a temperature and pressure above its critical point where distinct liquid and gas phases do not exist. At this state the compound demonstrates unique properties, which can be "fine...

  7. Industrial applications and current trends in supercritical fluid technologies

    Directory of Open Access Journals (Sweden)

    Gamse Thomas

    2005-01-01

    Full Text Available Supercritical fluids have a great potential for wide fields of processes Although CO2 is still one of the most used supercritical gases, for special purposes propane or even fluorinated-chlorinated fluids have also been tested. The specific characteristics of supercritical fluids behaviour were analyzed such as for example the solubilities of different components and the phase equilibria between the solute and solvent. The application at industrial scale (decaffeinating of tea and coffee, hop extraction or removal of pesticides from rice, activity in supercritical extraction producing total extract from the raw material or different fractions by using the fractionated separation of beverages (rum, cognac, whisky, wine, beer cider, of citrus oils and of lipids (fish oils, tall oil were also discussed. The main interest is still for the extraction of natural raw materials producing food ingredients, nutraceuticals and phytopharmaceuticals but also cleaning purposes were tested such as the decontamination of soils the removal of residual solvents from pharmaceutical products, the extraction of flame retardants from electronic waste or precision degreasing and cleaning of mechanical and electronic parts. An increasing interest obviously exists for impregnation purposes based on supercritical fluids behaviour, as well as for the dying of fibres and textiles. The production of fine particles in the micron and submicron range, mainly for pharmaceutical products is another important application of supercritical fluids. Completely new products can be produced which is not possible under normal conditions. Supercritical fluid technology has always had to compete with the widespread opinion that these processes are very expensive due to very high investment costs in comparison with classical low-pressure equipment. Thus the opinion is that these processes should be restricted to high-added value products. A cost estimation for different plant sizes and

  8. Development of Nuclear Decontamination Technology Using Supercritical Fluid

    International Nuclear Information System (INIS)

    Jung, Wonyoung; Park, Kwangheon; Park, Jihye; Lee, Donghee

    2014-01-01

    Soil cleaning technologies that have been developed thus far increase treatment costs in contaminated soil recovery processes because they generate large amounts of secondary wastes. In this respect, this study is intended to develop soil decontamination methods using CO 2 , which is a nontoxic, environmentally friendly substance, in order to fundamentally suppress the generation of secondary wastes from the decontamination process and to create high added values. In this study, to develop decontamination methods for uranium-contaminated soil using supercritical CO 2 , a soil decontamination system using supercritical CO 2 was constructed. In addition, the basic principle of supercritical CO 2 decontamination using a TBP-HNO3 complex was explained. According to the results of the study, sea-sand samples having the same degree of contamination showed different results of decontamination according to the quantities of the TBP-HNO3 complex used as an extraction agent, which resulted in high extraction rates. Thus far, a most widely used method of extracting uranium has been the dissolving of uranium in acids. However, this method has the large adverse effect of generating strong acidic wastes that cannot be easily treated. On the other hand, supercritical CO 2 requires critical conditions that are no more difficult to meet than those of other supercritical fluids, since its density can be changed from a very low state close to that of an ideal gas to a high state close to that of liquids. The critical gas conditions are a pressure of 71 bar and a temperature of 31 .deg. C, both of which are inexpensive to achieve. Moreover, CO 2 is a solvent that is not harmful to the human body and few effects on environmental pollution. Therefore, nontoxic and environment friendly processes can be developed using supercritical CO 2 . Supercritical CO 2 's advantages over prevailing methods suggest its potential for developing innovative decontamination methods, as demonstrated

  9. Industrial applications and current trends in supercritical fluid technologies

    OpenAIRE

    Gamse Thomas

    2005-01-01

    Supercritical fluids have a great potential for wide fields of processes Although CO2 is still one of the most used supercritical gases, for special purposes propane or even fluorinated-chlorinated fluids have also been tested. The specific characteristics of supercritical fluids behaviour were analyzed such as for example the solubilities of different components and the phase equilibria between the solute and solvent. The application at industrial scale (decaffeinating of tea and coffee, hop...

  10. Liposomal preparation by supercritical fluids technology | Zhong ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... technology (SCF) has been utilized in liposomal preparation because of its friendliness, nontoxicity to the environment and its possibility to achieve solvent-free liposomes and industrial-scale of liposome production under the conditions of current good manufacturing practice (cGMP).

  11. Development of Nuclear Decontamination Technology Using Supercritical Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Wonyoung; Park, Kwangheon; Park, Jihye; Lee, Donghee [Kyunghee Univ., Yongin (Korea, Republic of)

    2014-05-15

    Soil cleaning technologies that have been developed thus far increase treatment costs in contaminated soil recovery processes because they generate large amounts of secondary wastes. In this respect, this study is intended to develop soil decontamination methods using CO{sub 2}, which is a nontoxic, environmentally friendly substance, in order to fundamentally suppress the generation of secondary wastes from the decontamination process and to create high added values. In this study, to develop decontamination methods for uranium-contaminated soil using supercritical CO{sub 2}, a soil decontamination system using supercritical CO{sub 2} was constructed. In addition, the basic principle of supercritical CO{sub 2} decontamination using a TBP-HNO3 complex was explained. According to the results of the study, sea-sand samples having the same degree of contamination showed different results of decontamination according to the quantities of the TBP-HNO3 complex used as an extraction agent, which resulted in high extraction rates. Thus far, a most widely used method of extracting uranium has been the dissolving of uranium in acids. However, this method has the large adverse effect of generating strong acidic wastes that cannot be easily treated. On the other hand, supercritical CO{sub 2} requires critical conditions that are no more difficult to meet than those of other supercritical fluids, since its density can be changed from a very low state close to that of an ideal gas to a high state close to that of liquids. The critical gas conditions are a pressure of 71 bar and a temperature of 31 .deg. C, both of which are inexpensive to achieve. Moreover, CO{sub 2} is a solvent that is not harmful to the human body and few effects on environmental pollution. Therefore, nontoxic and environment friendly processes can be developed using supercritical CO{sub 2}. Supercritical CO{sub 2}'s advantages over prevailing methods suggest its potential for developing innovative

  12. Supercritical fluid analytical methods

    International Nuclear Information System (INIS)

    Smith, R.D.; Kalinoski, H.T.; Wright, B.W.; Udseth, H.R.

    1988-01-01

    Supercritical fluids are providing the basis for new and improved methods across a range of analytical technologies. New methods are being developed to allow the detection and measurement of compounds that are incompatible with conventional analytical methodologies. Characterization of process and effluent streams for synfuel plants requires instruments capable of detecting and measuring high-molecular-weight compounds, polar compounds, or other materials that are generally difficult to analyze. The purpose of this program is to develop and apply new supercritical fluid techniques for extraction, separation, and analysis. These new technologies will be applied to previously intractable synfuel process materials and to complex mixtures resulting from their interaction with environmental and biological systems

  13. Supercritical fluids processing: emerging opportunities

    International Nuclear Information System (INIS)

    Kovaly, K.A.

    1985-01-01

    This publication on the emerging opportunities of supercritical fluids processing reveals the latest research findings and development trends in this field. These findings and development trends are highlighted, and the results of applications of technology to the business of supercritical fluids are reported. Applications of supercritical fluids to chemical intermediates, environmental applications, chemical reactions, food and biochemistry processing, and fuels processing are discussed in some detail

  14. Integrated intelligent instruments using supercritical fluid technology for soil analysis

    International Nuclear Information System (INIS)

    Liebman, S.A.; Phillips, C.; Fitzgerald, W.; Levy, E.J.

    1994-01-01

    Contaminated soils pose a significant challenge for characterization and remediation programs that require rapid, accurate and comprehensive data in the field or laboratory. Environmental analyzers based on supercritical fluid (SF) technology have been designed and developed for meeting these global needs. The analyzers are designated the CHAMP Systems (Chemical Hazards Automated Multimedia Processors). The prototype instrumentation features SF extraction (SFE) and on-line capillary gas chromatographic (GC) analysis with chromatographic and/or spectral identification detectors, such as ultra-violet, Fourier transform infrared and mass spectrometers. Illustrations are given for a highly automated SFE-capillary GC/flame ionization (FID) configuration to provide validated screening analysis for total extractable hydrocarbons within ca. 5--10 min, as well as a full qualitative/quantitative analysis in 25--30 min. Data analysis using optional expert system and neural networks software is demonstrated for test gasoline and diesel oil mixtures in this integrated intelligent instrument approach to trace organic analysis of soils and sediments

  15. Supercritical fluid chromatography

    Science.gov (United States)

    Vigdergauz, M. S.; Lobachev, A. L.; Lobacheva, I. V.; Platonov, I. A.

    1992-03-01

    The characteristic features of supercritical fluid chromatography (SCFC) are examined and there is a brief historical note concerning the development of the method. Information concerning the use of supercritical fluid chromatography in the analysis of objects of different nature is presented in the form of a table. The roles of the mobile and stationary phases in the separation process and the characteristic features of the apparatus and of the use of the method in physicochemical research are discussed. The bibliography includes 364 references.

  16. Electrochemistry in supercritical fluids

    Science.gov (United States)

    Branch, Jack A.; Bartlett, Philip N.

    2015-01-01

    A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide–acetonitrile and supercritical HFCs. PMID:26574527

  17. using Supercritical Fluid Extraction

    African Journals Online (AJOL)

    Methods: Supercritical CO2 extraction technology was adopted in this experiment to study the process of extraction of volatile oil from Polygonatum odoratum while gas chromatograph-mass spectrometer ..... Saponin rich fractions from.

  18. Birch Bark Dry Extract by Supercritical Fluid Technology: Extract Characterisation and Use for Stabilisation of Semisolid Systems

    Directory of Open Access Journals (Sweden)

    Markus Armbruster

    2017-03-01

    Full Text Available Triterpene compounds like betulin, betulinic acid, erythrodiol, oleanolic acid and lupeol are known for many pharmacological effects. All these substances are found in the outer bark of birch. Apart from its pharmacological effects, birch bark extract can be used to stabilise semisolid systems. Normally, birch bark extract is produced for this purpose by extraction with organic solvents. Employing supercritical fluid technology, our aim was to develop a birch bark dry extract suitable for stabilisation of lipophilic gels with improved properties while avoiding the use of toxic solvents. With supercritical carbon dioxide, three different particle formation methods from supercritical solutions have been tested. First, particle deposition was performed from a supercritical solution in an expansion chamber. Second, the Rapid Expansion of Supercritical Solutions (RESS method was used for particle generation. Third, a modified RESS-procedure, forming the particles directly into the thereby gelated liquid, was developed. All three methods gave yields from 1% to 5.8%, depending on the techniques employed. The triterpene composition of the three extracts was comparable: all three gave more stable oleogels compared to the use of an extract obtained by organic solvent extraction. Characterizing the rheological behaviour of these gels, a faster gelling effect was seen together with a lower concentration of the extract required for the gel formation with the supercritical fluid (SCF-extracts. This confirms the superiority of the supercritical fluid produced extracts with regard to the oleogel forming properties.

  19. Materials processing using supercritical fluids

    Directory of Open Access Journals (Sweden)

    Orlović Aleksandar M.

    2005-01-01

    Full Text Available One of the most interesting areas of supercritical fluids applications is the processing of novel materials. These new materials are designed to meet specific requirements and to make possible new applications in Pharmaceuticals design, heterogeneous catalysis, micro- and nano-particles with unique structures, special insulating materials, super capacitors and other special technical materials. Two distinct possibilities to apply supercritical fluids in processing of materials: synthesis of materials in supercritical fluid environment and/or further processing of already obtained materials with the help of supercritical fluids. By adjusting synthesis parameters the properties of supercritical fluids can be significantly altered which further results in the materials with different structures. Unique materials can be also obtained by conducting synthesis in quite specific environments like reversed micelles. This paper is mainly devoted to processing of previously synthesized materials which are further processed using supercritical fluids. Several new methods have been developed to produce micro- and nano-particles with the use of supercritical fluids. The following methods: rapid expansion of supercritical solutions (RESS supercritical anti-solvent (SAS, materials synthesis under supercritical conditions and encapsulation and coating using supercritical fluids were recently developed.

  20. Nanotechnology and supercritical fluids | Hamidreza | Journal of ...

    African Journals Online (AJOL)

    Supercritical fluid (SCF) technology has become an important tool of materials processing in the last two decades. Supercritical CO2 and H2O are extensively being used in the preparation of a great variety of nanomaterials. The interest in the preparation and application of nanometer size materials is increasing since they ...

  1. Processing of novel bioactive polymeric matrixes for tissue engineering using supercritical fluid technology

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Ana Rita C., E-mail: aduarte@dep.uminho.pt [3B' s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimaraes (Portugal); IBB, Institute for Biotechnology and Bioengineering, PT Government Associated Laboratory, Guimaraes (Portugal); Caridade, Sofia G.; Mano, Joao F.; Reis, Rui L. [3B' s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimaraes (Portugal); IBB, Institute for Biotechnology and Bioengineering, PT Government Associated Laboratory, Guimaraes (Portugal)

    2009-08-31

    The aim of this study was to develop a new process for the production of bioactive 3D scaffolds using a clean and environmentally friendly technology. The possibility of preparing composite scaffolds of Bioglass and a polymeric blend of starch and poly(L-lactic acid) (SPLA50) was evaluated. Supercritical phase-inversion technique was used to prepare inorganic particles loaded starch-based porous composite matrixes in a one-step process for bone tissue engineering purposes. Due to their osteoconductive properties some glasses and ceramics are interesting materials to be used for bone tissue engineering purposes; however their poor mechanical properties create the need of a polymeric support where the inorganic fraction can be dispersed. Samples impregnated with different concentrations of Bioglass (10 and 15% wt/wt polymer) were prepared at 200 bar and 55 deg. C. The presence of Bioglass did not affect the porosity or interconnectivity of the polymeric matrixes. Dynamic mechanical analysis has proven that the modulus of the SPLA50 scaffolds increases when glass particles are impregnated within the matrix. In vitro bioactivity studies were carried out using simulated body fluid and the results show that a calcium-phosphate layer started to be formed after only 1 day of immersion. Chemical analysis of the apatite layer formed on the surface of the scaffold was performed by different techniques, namely EDS and FTIR spectroscopy and X-ray diffraction (XRD). The ion concentration in the simulated body fluid was also carried out by ICP analysis. Results suggest that a bone-like apatite layer was formed. This study reports the feasibility of using supercritical fluid technology to process, in one step, a porous matrix loaded with a bioactive material for tissue engineering purposes.

  2. Supercritical fluids in ionic liquids

    NARCIS (Netherlands)

    Kroon, M.C.; Peters, C.J.; Plechkova, N.V.; Seddon, K.R.

    2014-01-01

    Ionic liquids and supercritical fluids are both alternative environmentally benign solvents, but their properties are very different. Ionic liquids are non-volatile but often considered highly polar compounds, whereas supercritical fluids are non-polar but highly volatile compounds. The combination

  3. Supercritical fluid technology in materials science and engineering: syntheses, properties, and applications

    National Research Council Canada - National Science Library

    Sun, Ya-Ping

    2002-01-01

    ... and polymer preparations and as alternative solvent systems for materials processing. In fact, materials-related applications have emerged as a new frontier in the development of supercritical fluid technology. I hope that this book will be a timely contribution to this emerging research field by serving at least two purposes. One is to provide intere...

  4. Supercritical fluid carbon dioxide extraction of actinides

    International Nuclear Information System (INIS)

    Rao, Ankita; Tomar, B.S.

    2016-01-01

    Supercritical fluid extraction (SFE) is a process akin to liquid-liquid or solvent extraction where a Supercritical fluid (SCF) is contacted with a solid/ liquid matrix for the purpose of separating the component of interest from the original matrix. Carbon dioxide is a preferred choice as supercritical fluid (SCF) owing to its moderate critical parameter (P c = 7.38 MPa and T c = 304.1K) coupled with radiation and chemical stability, non toxic nature and low cost. Despite widespread applications for extraction of organic compounds and associated advantages especially liquid waste minimization, the SFE of metal ions was left unexplored for quite some time, as direct metal ion extraction is inefficient due charge neutralization requirement and weak solute-solvent interaction. Neutral SCF soluble metal-ligand complexation is imperative and SFE of actinides was reported only in 1994. Several studies have been carried out on SFE of uranium, thorium and plutonium from nitric acid medium employing different sets of ligands (organophosphorus, diketones, amides). Especially attractive is the possibility of direct dissolution and extraction of actinides employing ligand-acid adducts (like TBP.HNO 3 adduct) from solid matrices of different stages of nuclear fuel cycle viz. ores, spent nuclear fuels and radioactive wastes. Also, partitioning of actinides from fission products has been explored in spent nuclear fuel. These studies on supercritical fluid extraction of actinides indicate a more efficient and environmentally sustainable technology. (author)

  5. Supercritical fluid reverse micelle separation

    Science.gov (United States)

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  6. Lipidomics by Supercritical Fluid Chromatography

    Directory of Open Access Journals (Sweden)

    Laurent Laboureur

    2015-06-01

    Full Text Available This review enlightens the role of supercritical fluid chromatography (SFC in the field of lipid analysis. SFC has been popular in the late 1980s and 1990s before almost disappearing due to the commercial success of liquid chromatography (LC. It is only 20 years later that a regain of interest appeared when new commercial instruments were introduced. As SFC is fully compatible with the injection of extracts in pure organic solvent, this technique is perfectly suitable for lipid analysis and can be coupled with either highly universal (UV or evaporative light scattering or highly specific (mass spectrometry detection methods. A short history of the use of supercritical fluids as mobile phase for the separation oflipids will be introduced first. Then, the advantages and drawbacks of SFC are discussed for each class of lipids (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, prenols, polyketides defined by the LIPID MAPS consortium.

  7. Lipidomics by Supercritical Fluid Chromatography

    Science.gov (United States)

    Laboureur, Laurent; Ollero, Mario; Touboul, David

    2015-01-01

    This review enlightens the role of supercritical fluid chromatography (SFC) in the field of lipid analysis. SFC has been popular in the late 1980s and 1990s before almost disappearing due to the commercial success of liquid chromatography (LC). It is only 20 years later that a regain of interest appeared when new commercial instruments were introduced. As SFC is fully compatible with the injection of extracts in pure organic solvent, this technique is perfectly suitable for lipid analysis and can be coupled with either highly universal (UV or evaporative light scattering) or highly specific (mass spectrometry) detection methods. A short history of the use of supercritical fluids as mobile phase for the separation oflipids will be introduced first. Then, the advantages and drawbacks of SFC are discussed for each class of lipids (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, prenols, polyketides) defined by the LIPID MAPS consortium. PMID:26090714

  8. Supercritical fluid regeneration of adsorbents

    Science.gov (United States)

    Defilippi, R. P.; Robey, R. J.

    1983-05-01

    The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.

  9. Fiscal 1996 investigational research on the chemical process technology using supercritical fluids; 1996 nendo chorinkai ryutai wo riyoshita kagaku process gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Importance was studied of making a research on the chemical process technology using the supercritical fluid. As for its effect on global warming, the amount of CO2 emission was compared during the operation between the conventional process and the process using the supercritical fluid, the CO2 reduction rate and amount were trially calculated, and a CO2 reduction of a several ten thousand ton scale in carbon conversion was predicted. As to hazardous materials and the reaction of waste retrieval, it was made clear that the process using the supercritical fluid was valid also for objects for which the chemical process used to be impossible, which indicates a possibility of the widening field of application. Concerning its effect on the energy conservation, energy reduction of several ten thousand tons in heavy oil conversion was predicted by replacing all the existing processes with supercritical fluids. Relating to the recycling, with the use of supercritical fluids, the process is possible which produces higher quality and yield and fewer unnecessary products such as char than the conventional process. 197 refs., 102 figs., 71 tabs.

  10. Green biodiesel production: a review on feedstock, catalyst, monolithic reactor, and supercritical fluid technology

    Directory of Open Access Journals (Sweden)

    Rizo Edwin Gumba

    2016-09-01

    Full Text Available The advancement of alternative energy is primarily catalyzed by the negative environmental impacts and energy depletion caused by the excessive usage of fossil fuels. Biodiesel has emerged as a promising substitute to petrodiesel because it is biodegradable, less toxic, and reduces greenhouse gas emission. Apart from that, biodiesel can be used as blending component or direct replacements for diesel fuel in automotive engines. A diverse range of methods have been reported for the conversion of renewable feedstocks (vegetable oil or animal fat into biodiesel with transesterification being the most preferred method. Nevertheless, the cost of producing biodiesel is higher compared to fossil fuel, thus impeding its commercialization potentials. The limited source of reliable feedstock and the underdeveloped biodiesel production route have prevented the full-scale commercialization of biodiesel in many parts of the world. In a recent development, a new technology that incorporates monoliths as support matrices for enzyme immobilization in supercritical carbon dioxide (SC-CO2 for continuous biodiesel production has been proposed to solve the problem. The potential of SC-CO2 system to be applied in enzymatic reactors is not well documented and hence the purpose of this review is to highlight the previous studies conducted as well as the future direction of this technology.

  11. New dimension of slow food movement using supercritical fluid technology and methods to influence society by effective marketing strategies.

    Science.gov (United States)

    Uzel, Ruhan Aşkın

    2016-07-01

    Although slow food movement is a well-known movement nowadays, in order to make it more widespread to the society, necessity to develop and to adapt new techniques has become inevitable for healthier consumption age. For this purpose, possibility of increased usage of healthy foods with addition of natural extracts using new techniques came out from relevant questionaries applied to people of different age groups. In this study, specific properties of supercritical carbon dioxide at distinct temperatures and water in subcritical conditions were used to obtain extracts rich in water-soluble organic compounds. Experiments were carried out at pressures of 10, 20, 30, and 40 MPa and temperatures ranging from 40 to 200 ℃ with and without modifier for 2 h of extraction time. The flow rate was kept at 4 and 1 ml/min for CO2 and water, respectively. The highest water-soluble organic compound recovery yield was 78.10%. Results were supported by marketing strategies to announce this new application and products to the society. Group of sample questions was prepared to investigate (a) frequency of staple food usage, (b) the brand names and relevant reasons that bring up consumers to buy specifically same branded products, (c) knowledge about the ingredients and how advertising effects purchasing decision, etc. Finally, efficiency increase in slow food consumption was proved with supercritical fluid technology to draw attention to the health of consumers with newer and functional healthy foods. © The Author(s) 2015.

  12. PULSE RADIOLYSIS IN SUPERCRITICAL RARE GAS FLUIDS

    International Nuclear Information System (INIS)

    HOLROYD, R.

    2007-01-01

    Recently, supercritical fluids have become quite popular in chemical and semiconductor industries for applications in chemical synthesis, extraction, separation processes, and surface cleaning. These applications are based on: the high dissolving power due to density build-up around solute molecules, and the ability to tune the conditions of a supercritical fluid, such as density and temperature, that are most suitable for a particular reaction. The rare gases also possess these properties and have the added advantage of being supercritical at room temperature. Information about the density buildup around both charged and neutral species can be obtained from fundamental studies of volume changes in the reactions of charged species in supercritical fluids. Volume changes are much larger in supercritical fluids than in ordinary solvents because of their higher compressibility. Hopefully basic studies, such as discussed here, of the behavior of charged species in supercritical gases will provide information useful for the utilization of these solvents in industrial applications

  13. High Density Thermal Energy Storage with Supercritical Fluids

    Science.gov (United States)

    Ganapathi, Gani B.; Wirz, Richard

    2012-01-01

    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  14. Supercritical fluid extraction of uranium

    International Nuclear Information System (INIS)

    Kumar, Pradeep

    2017-01-01

    Uranium being strategic material, its separation and purification is of utmost importance in nuclear industry, for which solvent extraction is being employed. During solvent extraction significant quantity of radioactive liquid waste gets generated which is of environmental concern. In recent decades supercritical fluid extraction (SFE) has emerged as promising alternative to solvent extraction owing to its inherent advantage of reduction in liquid waste generation and simplification of process. In this paper a brief overview of research work carried out so far on SFE of uranium by BARC has been given

  15. Particle Formation by Supercritical Fluid Extraction and Expansion Process

    Directory of Open Access Journals (Sweden)

    Sujuan Pan

    2013-01-01

    Full Text Available Supercritical fluid extraction and expansion (SFEE patented technology combines the advantages of both supercritical fluid extraction (SFE and rapid expansion of supercritical solution (RESS with on-line coupling, which makes the nanoparticle formation feasible directly from matrix such as Chinese herbal medicine. Supercritical fluid extraction is a green separation technology, which has been developed for decades and widely applied in traditional Chinese medicines or natural active components. In this paper, a SFEE patented instrument was firstly built up and controlled by LABVIEW work stations. Stearic acid was used to verify the SFEE process at optimized condition; via adjusting the preexpansion pressure and temperature one can get different sizes of particles. Furthermore, stearic acid was purified during the SFEE process with HPLC-ELSD detecting device; purity of stearic acid increased by 19%, and the device can purify stearic acid.

  16. Synthesis of alumina nano-sheets via supercritical fluid technology with high uranyl adsorptive capacity

    International Nuclear Information System (INIS)

    Jing Yu; Jun Wang; Zhanshuang Li; Qi Liu; Milin Zhang; Hongbin Bai; Caishan Jiao; Jun Wang; Lianhe Liu

    2012-01-01

    Supercritical carbon dioxide is beneficial to the synthesis of superior ultrafine and uniform materials due to its high chemical stability, low viscosity, high diffusivity, and 'zero' surface tension. γ-Alumina nano-sheets were obtained by a simple hydrothermal route in the presence of supercritical carbon dioxide. XRD, FTIR, SEM, TEM and nitrogen sorption isotherm were employed to characterize the samples. Alumina as-prepared has a high specific surface area of up to 200 ± 6 m 2 g -1 , which presents a high adsorption capacity (4.66 ± 0.02 mg g -1 ) for uranyl ions from aqueous solution. Furthermore, the adsorption process was found to be endothermic and spontaneous in nature. (authors)

  17. Geothermal energy production with supercritical fluids

    Science.gov (United States)

    Brown, Donald W.

    2003-12-30

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  18. Use of the supercritical fluid technology to prepare efficient nanocomposite foams for environmental protection purpose

    OpenAIRE

    Urbanczyk, Laetitia; Thomassin, Jean-Michel; Huynen, Isabelle; Alexandre, Michaël; Jérôme, Christine

    2009-01-01

    This work reports on the preparation of novel nanocomposite foams that are efficient broadband microwave absorbers. Carbon nanotubes are first successfully dispersed into PCL and PMMA by melt blending. Then, foaming is promoted by supercritical CO2 by depressurization. Regular cellular structures are obtained in both cases with cells size around 10-50µm. The electromagnetic interference (EMI) shielding efficiency of these materials are then evaluated and compared to the non-foamed nanocomposi...

  19. Supercritical fluid extraction of hops

    Directory of Open Access Journals (Sweden)

    ZORAN ZEKOVIC

    2007-01-01

    Full Text Available Five cultivars of hop were extracted by the method of supercritical fluid extraction using carbon dioxide (SFE–CO2 as extractant. The extraction (50 g of hop sample using a CO2 flow rate of 97.725 L/h was done in the two steps: 1. extraction at 150 bar and 40°C for 2.5 h (sample of series A was obtained and, after that, the same sample of hop was extracted in the second step: 2. extraction at 300 bar and 40 °C for 2.5 h (sample of series B was obtained. The Magnum cultivar was chosen for the investigation of the extraction kinetics. For the qualitative and quantitative analysis of the obtained hop extracts, the GC-MS method was used. Two of four themost common compounds of hop aroma (a-humulene and b-caryophyllene were detected in samples of series A. In addition, isomerized a-acids and a high content of b-acids were detected. The a-acids content in the samples of series B was the highest in the extract of the Magnum cultivar (it is a bitter variety of hop. The low contents of a-acids in all the other hop samples resulted in extracts with low a-acids content, i.e., that contents were under the prescribed a-acids content.

  20. Theoretical models for supercritical fluid extraction.

    Science.gov (United States)

    Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan

    2012-08-10

    For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Supercritical Fluid Chromatographic Separation of Dimethylpolysiloxane Polymer

    Energy Technology Data Exchange (ETDEWEB)

    Pyo, Dong Jin; Lim, Chang Hyun [Kangwon National University, Chuncheon (Korea, Republic of)

    2005-02-15

    Water was used as a polar modifier and a μ-porasil column as a saturator column. The μ-porasil column was inserted between the pump outlet and the injection valve. During the passage of the supercritical fluid mobile phase through the silica column, a polar modifier (water) can be dissolved in the pressurized supercritical fluid. Dimethylpolysiloxane polymer has been known as more polar polymer than polystyrene polymer. Dimethylpolysiloxane polymer has never been separated using water modified mobile phase. In this paper, using a μ-porasil column as a saturator column, excellent supercritical fluid chromatograms of dimethylpolysiloxane oligomers were obtained. The use of compressed (dense) gases and supercritical fluids as chromatographic mobile phases in conjunction with liquid chromatographic (LC)-type packed columns was first reported by Klesper et al. in 1962. During its relatively short history, supercritical fluid chromatography (SFC) has become an attractive alternative to GC and LC in certain industrially important applications. SFC gives the advantage of high efficiency and allows the analysis of nonvolatile or thermally labile mixtures.

  2. Supercritical Fluid Chromatographic Separation of Dimethylpolysiloxane Polymer

    International Nuclear Information System (INIS)

    Pyo, Dong Jin; Lim, Chang Hyun

    2005-01-01

    Water was used as a polar modifier and a μ-porasil column as a saturator column. The μ-porasil column was inserted between the pump outlet and the injection valve. During the passage of the supercritical fluid mobile phase through the silica column, a polar modifier (water) can be dissolved in the pressurized supercritical fluid. Dimethylpolysiloxane polymer has been known as more polar polymer than polystyrene polymer. Dimethylpolysiloxane polymer has never been separated using water modified mobile phase. In this paper, using a μ-porasil column as a saturator column, excellent supercritical fluid chromatograms of dimethylpolysiloxane oligomers were obtained. The use of compressed (dense) gases and supercritical fluids as chromatographic mobile phases in conjunction with liquid chromatographic (LC)-type packed columns was first reported by Klesper et al. in 1962. During its relatively short history, supercritical fluid chromatography (SFC) has become an attractive alternative to GC and LC in certain industrially important applications. SFC gives the advantage of high efficiency and allows the analysis of nonvolatile or thermally labile mixtures

  3. Heat Transfer Phenomena of Supercritical Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Krau, Carmen Isabella; Kuhn, Dietmar; Schulenberg, Thomas [Forschungszentrum Karlsruhe, Institute for Nuclear and Energy Technologies, 76021 Karlsruhe (Germany)

    2008-07-01

    In concepts for supercritical water cooled reactors, the reactor core is cooled and moderated by water at supercritical pressures. The significant temperature dependence of the fluid properties of water requires an exact knowledge of the heat transfer mechanism to avoid fuel pin damages. Near the pseudo-critical point a deterioration of heat transfer might happen. Processes, that take place in this case, are not fully understood and are due to be examined systematically. In this paper a general overview on the properties of supercritical water is given, experimental observations of different authors will be reviewed in order to identify heat transfer phenomena and onset of occurrence. The conceptional design of a test rig to investigate heat transfer in the boundary layer will be discussed. Both, water and carbon dioxide, may serve as operating fluids. The loop, including instrumentation and safety devices, is shown and suitable measuring methods are described. (authors)

  4. Use and practice of achiral and chiral supercritical fluid chromatography in pharmaceutical analysis and purification.

    Science.gov (United States)

    Lemasson, Elise; Bertin, Sophie; West, Caroline

    2016-01-01

    The interest of pharmaceutical companies for complementary high-performance chromatographic tools to assess a product's purity or enhance this purity is on the rise. The high-throughput capability and economic benefits of supercritical fluid chromatography, but also the "green" aspect of CO2 as the principal solvent, render supercritical fluid chromatography very attractive for a wide range of pharmaceutical applications. The recent reintroduction of new robust instruments dedicated to supercritical fluid chromatography and the progress in stationary phase technology have also greatly benefited supercritical fluid chromatography. Additionally, it was shown several times that supercritical fluid chromatography could be orthogonal to reversed-phase high-performance liquid chromatography and could efficiently compete with it. Supercritical fluid chromatography is an adequate tool for small molecules of pharmaceutical interest: synthetic intermediates, active pharmaceutical ingredients, impurities, or degradation products. In this review, we first discuss about general chromatographic conditions for supercritical fluid chromatography analysis to better suit compounds of pharmaceutical interest. We also discuss about the use of achiral and chiral supercritical fluid chromatography for analytical purposes and the recent applications in these areas. The use of preparative supercritical fluid chromatography by pharmaceutical companies is also covered. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Enhanced oral bioavailability of silymarin using liposomes containing a bile salt: preparation by supercritical fluid technology and evaluation in vitro and in vivo

    Science.gov (United States)

    Yang, Gang; Zhao, Yaping; Zhang, Yongtai; Dang, Beilei; Liu, Ying; Feng, Nianping

    2015-01-01

    The aim of this investigation was to develop a procedure to improve the dissolution and bioavailability of silymarin (SM) by using bile salt-containing liposomes that were prepared by supercritical fluid technology (ie, solution-enhanced dispersion by supercritical fluids [SEDS]). The process for the preparation of SM-loaded liposomes containing a bile salt (SM-Lip-SEDS) was optimized using a central composite design of response surface methodology with the ratio of SM to phospholipids (w/w), flow rate of solution (mL/min), and pressure (MPa) as independent variables. Particle size, entrapment efficiency (EE), and drug loading (DL) were dependent variables for optimization of the process and formulation variables. The particle size, zeta potential, EE, and DL of the optimized SM-Lip-SEDS were 160.5 nm, −62.3 mV, 91.4%, and 4.73%, respectively. Two other methods to produce SM liposomes were compared to the SEDS method. The liposomes obtained by the SEDS method exhibited the highest EE and DL, smallest particle size, and best stability compared to liposomes produced by the thin-film dispersion and reversed-phase evaporation methods. Compared to the SM powder, SM-Lip-SEDS showed increased in vitro drug release. The in vivo AUC0−t of SM-Lip-SEDS was 4.8-fold higher than that of the SM powder. These results illustrate that liposomes containing a bile salt can be used to enhance the oral bioavailability of SM and that supercritical fluid technology is suitable for the preparation of liposomes. PMID:26543366

  6. Fiscal 1995 research investigation on chemical process technology using supercritical fluid; 1995 nendo chorinkai ryutai wo riyoshita kagaku process gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    With relation to the supercritical fluid utilization technology, conducted in fiscal 1995 were collection of basic data, extraction of R and D subjects and survey/analysis of application fields based on the literature survey and overseas field survey. From the research results, the following were selected as research subjects: as to the clean/recycling process technology, non-selection cascade treatment process of mixed waste plastics, hazardous waste treatment process, and radioactive waste treatment process. As to the unused resource utilization process technology, the supercritical submerged combustion power generation process, heavy hydrocarbon resource reutilization process, biomass synthetic utilization process, and carbon dioxide reutilization process. As to the next generation reaction process technology, the simple reaction process, de-organic solvent process, chemical materialization process for methane, and reaction separation combined process. As the innovative material process technology, the plastic forming process, high-functional materials, high-efficiency energy conversion materials, and heightening of function of solid wastes. 537 refs., 116 figs., 54 tabs.

  7. Solid catalyzed isoparaffin alkylation at supercritical fluid and near-supercritical fluid conditions

    Science.gov (United States)

    Ginosar, Daniel M.; Fox, Robert V.; Kong, Peter C.

    2000-01-01

    This invention relates to an improved method for the alkylation reaction of isoparaffins with olefins over solid catalysts including contacting a mixture of an isoparaffin, an olefin and a phase-modifying material with a solid acid catalyst member under alkylation conversion conditions at either supercritical fluid, or near-supercritical fluid conditions, at a temperature and a pressure relative to the critical temperature(T.sub.c) and the critical pressure(P.sub.c) of the reaction mixture. The phase-modifying phase-modifying material is employed to promote the reaction's achievement of either a supercritical fluid state or a near-supercritical state while simultaneously allowing for decreased reaction temperature and longer catalyst life.

  8. Operation and Performance of the Supercritical Fluids Reactor (SFR)

    National Research Council Canada - National Science Library

    Hanush, R

    1996-01-01

    The Supercritical Fluids Reactor (SFR) at Sandia National Laboratories, CA has been developed to examine and solve engineering, process, and fundamental chemistry issues regarding the development of supercritical water oxidation (SCWO...

  9. Structural behavior of supercritical fluids under confinement

    Science.gov (United States)

    Ghosh, Kanka; Krishnamurthy, C. V.

    2018-01-01

    The existence of the Frenkel line in the supercritical regime of a Lennard-Jones (LJ) fluid shown through molecular dynamics (MD) simulations initially and later corroborated by experiments on argon opens up possibilities of understanding the structure and dynamics of supercritical fluids in general and of the Frenkel line in particular. The location of the Frenkel line, which demarcates two distinct physical states, liquidlike and gaslike within the supercritical regime, has been established through MD simulations of the velocity autocorrelation (VACF) and radial distribution function (RDF). We, in this article, explore the changes in the structural features of supercritical LJ fluid under partial confinement using atomistic walls. The study is carried out across the Frenkel line through a series of MD simulations considering a set of thermodynamics states in the supercritical regime (P =5000 bar, 240 K ≤T ≤1500 K ) of argon well above the critical point. Confinement is partial, with atomistic walls located normal to z and extending to "infinity" along the x and y directions. In the "liquidlike" regime of the supercritical phase, particles are found to be distributed in distinct layers along the z axis with layer spacing less than one atomic diameter and the lateral RDF showing amorphous-like structure for specific spacings (packing frustration) and non-amorphous-like structure for other spacings. Increasing the rigidity of the atomistic walls is found to lead to stronger layering and increased structural order. For confinement with reflective walls, layers are found to form with one atomic diameter spacing and the lateral RDF showing close-packed structure for the smaller confinements. Translational order parameter and excess entropy assessment confirms the ordering taking place for atomistic wall and reflective wall confinements. In the "gaslike" regime of the supercritical phase, particle distribution along the spacing and the lateral RDF exhibit features

  10. Supercritical fluid extraction behaviour of polymer matrices

    International Nuclear Information System (INIS)

    Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2007-01-01

    Organic compounds present in polymeric matrices such as neoprene, surgical gloves and PVC were co-extracted during the removal of uranium using supercritical fluid extraction (SFE) technique. Hence SFE studies of these matrices were carried out to establish the extracted species using HPLC, IR and mass spectrometry techniques. The initial study indicated that uranium present in the extract could be purified from the co-extracted organic species. (author)

  11. Chemical deposition methods using supercritical fluid solutions

    Science.gov (United States)

    Sievers, Robert E.; Hansen, Brian N.

    1990-01-01

    A method for depositing a film of a desired material on a substrate comprises dissolving at least one reagent in a supercritical fluid comprising at least one solvent. Either the reagent is capable of reacting with or is a precursor of a compound capable of reacting with the solvent to form the desired product, or at least one additional reagent is included in the supercritical solution and is capable of reacting with or is a precursor of a compound capable of reacting with the first reagent or with a compound derived from the first reagent to form the desired material. The supercritical solution is expanded to produce a vapor or aerosol and a chemical reaction is induced in the vapor or aerosol so that a film of the desired material resulting from the chemical reaction is deposited on the substrate surface. In an alternate embodiment, the supercritical solution containing at least one reagent is expanded to produce a vapor or aerosol which is then mixed with a gas containing at least one additional reagent. A chemical reaction is induced in the resulting mixture so that a film of the desired material is deposited.

  12. Fast infrared spectroscopy in supercritical fluids

    International Nuclear Information System (INIS)

    Sun, X.

    2000-05-01

    Chapter 1: Introduction. A brief introduction to supercritical fluids is given, illustrating why supercritical fluids are unique solvents and why there is a wide application of supercritical fluids in industry and laboratories. Potential ways for solvation in supercritical fluids to affect reactivity are briefly reviewed. A general introduction to the photochemistry of organometallic complexes is also given. Chapter 2: Time resolved vibrational spectroscopy. Time resolved resonance Raman is introduced and compared with Time-resolved infrared spectroscopy (TRIR). The different approaches of TRIR, including microsecond, nanosecond, and ultrafast (picosecond and femtosecond) systems are discussed. The advantages and disadvantages of these systems are also compared. The TRIR apparatus using an IR diode laser used for work in this thesis are described in detail. Experimental procedures for supercritical fluid TRIR experiments are described with emphasis on handling the IR cell for supercritical fluids and preparation of supercritical fluid solutions. Chapter 3: Photochemistry of group VIB hexacarbonyl compounds in supercritical noble gases and CO 2 solutions. A systematic TRIR study of the photolysis of M(CO) 6 in supercritical Ar, Kr, Xe, and CO 2 and the observation of M(CO) 5 L (M = Cr, Mo, and W; L = Ar (W only), Kr, Xe, and CO 2 ) is described. The second-order rate constants for the reaction of M(CO) 5 L with CO have been evaluated and the reactivity for each metal is Kr > Xe ∼ CO 2 . For M(CO) 5 Kr, M(CO) 5 Xe, or M(CO) 5 (CO 2 ), the reactivity is Cr ∼ Mo > W. In supercritical Kr doped with either Xe or CO 2 , the M(CO) 5 moiety interacts with Xe or CO 2 in preference to Kr. The effect of solvent density on the rate of the reaction of W(CO) 5 (CO 2 ) with CO has been investigated. The reaction of W(CO) 5 (CO 2 ) with CO in scCO 2 is predominantly a dissociative process. The activation energies for the reaction of W(CO) 5 Xe and W(CO) 5 (CO 2 ) with CO and

  13. Supercritical Fluids Processing of Biomass to Chemicals and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Norman K. [Iowa State Univ., Ames, IA (United States)

    2011-09-28

    The main objective of this project is to develop and/or enhance cost-effective methodologies for converting biomass into a wide variety of chemicals, fuels, and products using supercritical fluids. Supercritical fluids will be used both to perform reactions of biomass to chemicals and products as well as to perform extractions/separations of bio-based chemicals from non-homogeneous mixtures. This work supports the Biomass Program’s Thermochemical Platform Goals. Supercritical fluids are a thermochemical approach to processing biomass that, while aligned with the Biomass Program’s interests in gasification and pyrolysis, offer the potential for more precise and controllable reactions. Indeed, the literature with respect to the use of water as a supercritical fluid frequently refers to “supercritical water gasification” or “supercritical water pyrolysis.”

  14. Development of a test facility for analyzing supercritical fluid blowdown

    International Nuclear Information System (INIS)

    Roberto, Thiago D.; Alvim, Antonio C.M.

    2015-01-01

    The generation IV nuclear reactors under development mostly use supercritical fluids as the working fluid because higher temperatures improve the thermal efficiency. Supercritical fluids are used by modern nuclear power plants to achieve thermal efficiencies of around 45%. With water as the supercritical working fluid, these plants operate at a high temperature and pressure. However, experiments on supercritical water are limited by technical and financial difficulties. These difficulties can be overcome by using model fluids, which have more feasible supercritical conditions and exhibit a lower critical pressure and temperature. Experimental research is normally used to determine the conditions under which model fluids represent supercritical fluids under steady-state conditions. A fluid-to-fluid scaling approach has been proposed to determine model fluids that can represent supercritical fluids in a transient state. This paper presents an application of fractional scale analysis to determine the simulation parameters for a depressurization test facility. Carbon dioxide (CO 2 ) and R134a gas were considered as the model fluids because their critical point conditions are more feasible than those of water. The similarities of water (prototype), CO 2 (model) and R134a (model) for depressurization in a pressure vessel were analyzed. (author)

  15. Purification of radioactive waste oil by a supercritical fluid

    International Nuclear Information System (INIS)

    Yoo, Jaeryong; Sung, Jinhyun; Park, Kwangheon; Kim, Hongdoo; Kim, Hakwon; Lim, Taeyoon; Yim, Sanghak; Yoon, Weonseob

    2006-01-01

    The radioactive waste oil from the nuclear industry is potentially hazardous due to its possibility to contaminate soil and underwater. Pollutants in waste oil are generally radioactive heavy metals or organo-metals. Radioactive waste oils are highly viscous fluids that are similar to used-motor oils. Several processes have been developed to regenerated used motor oil, such as acid clay treatment, chemical addition, vacuum distillation, thermal cracking and hydrofinishing. However, these technologies are difficult to apply to separating radioactive nuclides from radioactive waste oils. In recent years, our laboratory developed a membrane method for the regeneration of used motor oils. We applied supercritical Co2 (scCO2) as a viscosity reducing additive to waste oils at a lower process temperature in order to improve membrane permeability and thus the energy saving. However, the membrane cannot filter the contaminants in radioactive waste oil that are not particles, such as radioactive ions in impurity water in the oil. In this paper, we suggest a method extracting clean oil from the radioactive waste oil rather than filtering by a supercritical fluid. We selected R22, a refrigerant, as a solvent for extraction. R22 has a mild critical point - 96.1 .deg. and 49.9bar. Regeneration of waste oils by extracting clean oil using a supercritical fluid such as R22 is easy to handle and reduce secondary wastes. In this paper, we examine the feasibility of R22 in extracting clean oil from radioactive waste oils

  16. Application of supercritical fluid extraction in analytical science

    International Nuclear Information System (INIS)

    Kumar, Pradeep

    2015-01-01

    In the recent years, supercritical fluid extraction (SFE) has emerged as a promising alternative to conventional solvent extraction process owing to its potential to minimize the generation of the liquid volume and simplification of the extraction process.This technology is some times referred to as 'green technology' and 'clean technology'. Supercritical fluid extraction process assumes significance as it exhibits practical advantages such as enhanced extraction rate due to rapid mass transfer in supercritical fluid medium and change of solvent properties such as density by tuning pressure/temperature conditions. Supercritical fluids (SCF) offer faster, cleaner and efficient extraction owing to low viscosity, high density, low surface tension and better diffusivity properties. Higher diffusivity than liquids facilitates rapid mass transfer and faster completion of reaction. Due to low viscosity and surface tension, SCF can penetrate deep inside the material, extracting the component of interest. Liquid like solvating characteristics of SCFs enable dissolution of compounds whereas gas like diffusion characteristics provide conditions for high degree of extraction in shorter time duration. CO 2 has been widely employed as supercritical fluid owing to its moderate critical constants (Pc= 72.9 atm, Tc =304.3 K, ñ c = 0.47 g mL -1 ) and attractive properties such as being easily available, recyclable, non-toxic, chemically inert, non inflammable and radio-chemically stable. SCF finds application in variety of fields. In nuclear industry for separation and purification of actinides from liquids and solid matrices. In food industry, Decaffeination of coffee is done by SCF. Pharmaceutical industry, organic compounds can be extracted from plants by SC CO 2 avoiding liquid solvent usage. SCF may also be utilised for the production of fine powders. In polymer and plastics industries, examples of applications include the impregnation of medical material

  17. Bio-oil production from biomass via supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Durak, Halil, E-mail: halildurak@yyu.edu.tr [Yuzuncu Yıl University, Vocational School of Health Services, 65080, Van (Turkey)

    2016-04-18

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  18. Bio-oil production from biomass via supercritical fluid extraction

    International Nuclear Information System (INIS)

    Durak, Halil

    2016-01-01

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  19. Ion mobility spectrometry after supercritical fluid chromatography

    International Nuclear Information System (INIS)

    Morrissey, M.A.

    1988-01-01

    In this work, a Fourier transform ion mobility spectrometer (FT-IMS) was constructed and evaluated as a detector for supercritical fluid chromatography (SFC). The FT-IMS provides both quantitative and qualitative data of a wide range of compounds, selective and nonselective modes of chromatographic detection, and it is compatible with a wide range of SFC mobile phases. Drift spectra are presented for a number of samples, including polymers, lipids, herbicides, antibiotics, and pharmaceuticals. The unique properties of supercritical fluids made it possible to introduce these compounds into the spectrometer. While the drift spectra presented are generally simple, showing only a quasi-molecular ion, a few are surprising complex. Examples of selective and non-selective detection demonstrate the usefulness of the detector. Examples are presented for fish oil concentrate, bacon grease extract, soil extract, and polymer mixtures. In the case of Triton X-100, a non-ionic surfactant, the FT-IMS was able to selectively detect individual oligomers in the polymer mixture. In the case of a polydimethylsilicone mixture the detector isolated a contaminant in the mixture

  20. Correlation of supercritical-fluid extraction recoveries with supercritical-fluid chromatographic retention data: A fundamental study

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1995-01-01

    The possibility of using supercritical-fluid chromatographic retention data for examining the effects of operational parameters, such as pressure and flow rate, on the extraction characteristics in supercritical-fluid extraction (SFE) was investigated. A model was derived for calculating the

  1. Introduction to supercritical fluids a spreadsheet-based approach

    CERN Document Server

    Smith, Richard; Peters, Cor

    2013-01-01

    This text provides an introduction to supercritical fluids with easy-to-use Excel spreadsheets suitable for both specialized-discipline (chemistry or chemical engineering student) and mixed-discipline (engineering/economic student) classes. Each chapter contains worked examples, tip boxes and end-of-the-chapter problems and projects. Part I covers web-based chemical information resources, applications and simplified theory presented in a way that allows students of all disciplines to delve into the properties of supercritical fluids and to design energy, extraction and materials formation systems for real-world processes that use supercritical water or supercritical carbon dioxide. Part II takes a practical approach and addresses the thermodynamic framework, equations of state, fluid phase equilibria, heat and mass transfer, chemical equilibria and reaction kinetics of supercritical fluids. Spreadsheets are arranged as Visual Basic for Applications (VBA) functions and macros that are completely (source code) ...

  2. Impregnation of cinnamaldehyde into cassava starch biocomposite films using supercritical fluid technology for the development of food active packaging.

    Science.gov (United States)

    de Souza, Ana Cristina; Dias, Ana M A; Sousa, Hermínio C; Tadini, Carmen C

    2014-02-15

    In this work, supercritical solvent impregnation (SSI) has been tested for the incorporation of natural compounds into biocomposite materials for food packaging. Cinnamaldehyde, with proved antimicrobial activity against fungi commonly found in bread products, was successfully impregnated on biocomposite cassava starch based materials using supercritical carbon dioxide as solvent. Different process experimental conditions were tested (pressure, impregnation time and depressurization rate) at a fixed temperature (35 °C) in order to study their influence on the amount of impregnated cinnamaldehyde as well as on the morphology of the films. Results showed that all conditions permitted to impregnate antimicrobial active amounts superior to those previously obtained using conventional incorporation methods. Moreover, a significant decrease of the equilibrium water vapor sorption capacity and water vapor permeability of the films was observed after SSI processing which is a clear advantage of the process, considering the envisaged applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Supercritical fluid processing: a new dry technique for photoresist developing

    Science.gov (United States)

    Gallagher-Wetmore, Paula M.; Wallraff, Gregory M.; Allen, Robert D.

    1995-06-01

    Supercritical fluid (SCF) technology is investigated as a dry technique for photoresist developing. Because of their unique combination of gaseous and liquid-like properties, these fluids offer comparative or improved efficiencies over liquid developers and, particularly carbon dioxide, would have tremendous beneficial impact on the environment and on worker safety. Additionally, SCF technology offers the potential for processing advanced resist systems which are currently under investigation as well as those that may have been abandoned due to problems associated with conventional developers. An investigation of various negative and positive photoresist systems is ongoing. Initially, supercritical carbon dioxide (SC CO2) as a developer for polysilane resists was explored because the exposure products, polysiloxanes, are generally soluble in this fluid. These initial studies demonstrated the viability of the SCF technique with both single layer and bilayer systems. Subsequently, the investigation focused on using SC CO2 to produce negative images with polymers that would typically be considered positive resists. Polymers such as styrenes and methacrylates were chemically modified by fluorination and/or copolymerization to render them soluble in SC CO2. Siloxane copolymers and siloxane-modified methacrylates were examined as well. The preliminary findings reported here indicate the feasibility of using SC CO2 for photoresist developing.

  4. Instrumentation for analytical scale supercritical fluid chromatography.

    Science.gov (United States)

    Berger, Terry A

    2015-11-20

    Analytical scale supercritical fluid chromatography (SFC) is largely a sub-discipline of high performance liquid chromatography (HPLC), in that most of the hardware and software can be used for either technique. The aspects that separate the 2 techniques stem from the use of carbon dioxide (CO2) as the main component of the mobile phase in SFC. The high compressibility and low viscosity of CO2 mean that pumps, and autosamplers designed for HPLC either need to be modified or an alternate means of dealing with compressibility needs to be found. The inclusion of a back pressure regulator and a high pressure flow cell for any UV-Vis detector are also necessary. Details of the various approaches, problems and solutions are described. Characteristics, such as adiabatic vs. isothermal compressibility, thermal gradients, and refractive index issues are dealt with in detail. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Fluid dynamic effects on precision cleaning with supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, M.R.; Hogan, M.O.; Silva, L.J.

    1994-06-01

    Pacific Northwest Laboratory staff have assembled a small supercritical fluids parts cleaning test stand to characterize how system dynamics affect the efficacy of precision cleaning with supercritical carbon dioxide. A soiled stainless steel coupon, loaded into a ``Berty`` autoclave, was used to investigate how changes in system turbulence and solvent temperature influenced the removal of test dopants. A pulsed laser beam through a fiber optic was used to investigate real-time contaminant removal. Test data show that cleaning efficiency is a function of system agitation, solvent density, and temperature. These data also show that high levels of cleaning efficiency can generally be achieved with high levels of system agitation at relatively low solvent densities and temperatures. Agitation levels, temperatures, and densities needed for optimal cleaning are largely contaminant dependent. Using proper system conditions, the levels of cleanliness achieved with supercritical carbon dioxide compare favorably with conventional precision cleaning methods. Additional research is currently being conducted to generalize the relationship between cleaning performance and parameters such as contaminant solubilities, mass transfer rates, and solvent agitation. These correlations can be used to optimize cleaning performance, system design, and time and energy consumption for particular parts cleaning applications.

  6. Advanced Materials Deposition for Semiconductor Nanostructures Using Supercritical Fluids

    National Research Council Canada - National Science Library

    Wai, Chien M

    2007-01-01

    ... able to dissolve solutes like a liquid and transport dissolved materials like a gas. Metal and metal sulfide nanoparticles of controllable size can be synthesized in supercritical fluid carbon dioxide using water-in-CO2 microemulsion as template...

  7. Supercritical Fluid Extraction of Seed Oil from Chinese Licorice ...

    African Journals Online (AJOL)

    NJD

    2005-12-17

    Dec 17, 2005 ... a Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Hexing Road 26, 150040, ... Carbon dioxide, the most commonly used supercritical fluid, has ... absorb the remaining water that the chloroform layer had.

  8. Injection of Fluids into Supercritical Environments

    National Research Council Canada - National Science Library

    Oschwald, M

    2004-01-01

    This paper summarizes and compares the results of systematic research programs at two independent laboratories regarding the injection of cryogenic liquids at subcritical and supercritical pressures...

  9. Pushing the speed limit in enantioselective supercritical fluid chromatography.

    Science.gov (United States)

    Regalado, Erik L; Welch, Christopher J

    2015-08-01

    Chromatographic enantioseparations on the order of a few seconds can be achieved by supercritical fluid chromatography using short columns packed with chiral stationary phases. The evolution of 'world record' speeds for the chromatographic separation of enantiomers has steadily dropped from an industry standard of 20-40 min just two decades ago, to a current ability to perform many enantioseparations in well under a minute. Improvements in instrument and column technologies enabled this revolution, but the ability to predict optimal separation time from an initial method development screening assay using the t(min cc) predictor greatly simplifies the development and optimization of high-speed chiral chromatographic separations. In this study, we illustrate how the use of this simple tool in combination with the workhorse technique of supercritical fluid chromatography on customized short chiral columns (1-2 cm length) allows us to achieve ultrafast enantioseparations of pharmaceutically relevant compounds on the 5-20 s scale, bringing the technique of high-throughput enantiopurity analysis out of the specialist realm and into the laboratories of most researchers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Design of preparative-supercritical fluid chromatography.

    Science.gov (United States)

    Rajendran, Arvind

    2012-08-10

    Preparative supercritical fluid chromatography (prep-SFC) is an important separation process in the chromatographers toolbox. Owing to the unique properties of the mobile phase, which is predominantly CO(2), the behavior of SFC is markedly different from high performance liquid chromatography (HPLC). This review article focuses on the scale-up of preparative chromatography. The basics of SFC, with particular focus on highlighting the key differences between SFC and HPLC, are introduced. Then, a framework for rational design of prep-SFC is proposed. This framework is based on obtaining basic system parameters from analytical scale equipment, i.e., with very small amount of material, and performing design and optimization in silico to evaluate process performance and to identify operating conditions for scale-up. The tools required to obtain the input parameters such as adsorption isotherms are discussed and the development of the design and optimization framework is elaborated. Examples from the literature which use this approach for successful scale-up are provided. Finally the design of multi-column SFC systems is discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Thermophysical properties of supercritical fluids and fluid mixtures

    International Nuclear Information System (INIS)

    Sengers, J.V.

    1991-07-01

    This research is concerned with the development of a quantitative scientific description of the thermodynamic and transport properties of supercritical and subcritical fluids and fluid mixtures. It is known that the thermophysical properties of fluids and fluid mixtures asymptotically close to the critical point satisfy scaling laws with universal critical exponents and universal scaling functions. However, the range of validity of these asymptotic scaling laws is quite small. As a consequence, the impact of the modern theory of critical phenomena on chemical engineering has been limited. On the other hand, an a priori estimate of the range of temperatures and densities, where critical fluctuations become significant, can be made on the basis of the so-called Ginzburg criterion. A recent analysis of this criterion suggests that this range is actually quite large and for a fluid like carbon dioxide can easily extend to 100 degrees or so above the critical temperature. Hence, the use of traditional engineering equations like cubic equations is not scientifically justified in a very wide range of temperatures and densities around the critical point. We have therefore embarked on a scientific approach to deal with the global effects of critical fluctuations on the thermophysical properties of fluids and fluid mixtures. For this purpose it is not sufficient to consider the asymptotic critical fluctuations but we need to deal also with the nonasymptotic critical fluctuations. The goal is to develop scientifically based questions that account for the crossover of the thermophysical properties from their asymptotic singular behavior in the near vicinity of the critical point to their regular behavior very far away from the critical point

  12. A fully continuous supercritical fluid extraction system for contaminated soil

    International Nuclear Information System (INIS)

    Ryan, M.; Stiver, W.H.

    2007-01-01

    Brownfield sites are contaminated sites in an urban setting. There are hundreds of thousands of such sites, where contaminants migrate to the atmosphere, seep into groundwater, runoff into surface water and enter the food chain through plant uptake and soil ingestion. The Sydney Tar Ponds alone contain more than a million tonnes of contaminated soils and sediments. Soil vapour extraction, incineration, bioremediation, solvent extraction and land filling are among the remediation techniques that have been developed for brownfield sites over the years. However, no single technology is ideally suited to all cases because of the diversity of contaminants and diversity of site characterization. This paper focused on supercritical fluid extraction (SFE) which is well suited to sites contaminated with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metal. A fully continuous laboratory-scale SFE process for a slurry-based system was designed and constructed to handle the supercritical carbon dioxide (SC-CO 2 ) and the soil slurry. The system continuously pumps carbon dioxide under supercritical conditions and soil slurry into a counter-current contacting column. The testing soil was Delhi loamy sand, spiked with 10 mg/g of naphthalene. The soil slurry ranged from 0.0028 g dry soil per g slurry to 0.072 g/g. The operating temperature was 43 degrees C and the operating pressure was 7.7 MPa. Near steady state, fully continuous flow was achieved with runs lasting up to 2 hours. The quantifiable recoveries of naphthalene from the soil slurry was demonstrated and the mass transfer coefficients for the system were quantified in order to provide the foundation to advance to a full-scale system and costing analysis. 14 refs., 1 tab., 3 figs

  13. A fully continuous supercritical fluid extraction system for contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, M.; Stiver, W.H. [Guelph Univ., ON (Canada). School of Engineering

    2007-04-15

    Brownfield sites are contaminated sites in an urban setting. There are hundreds of thousands of such sites, where contaminants migrate to the atmosphere, seep into groundwater, runoff into surface water and enter the food chain through plant uptake and soil ingestion. The Sydney Tar Ponds alone contain more than a million tonnes of contaminated soils and sediments. Soil vapour extraction, incineration, bioremediation, solvent extraction and land filling are among the remediation techniques that have been developed for brownfield sites over the years. However, no single technology is ideally suited to all cases because of the diversity of contaminants and diversity of site characterization. This paper focused on supercritical fluid extraction (SFE) which is well suited to sites contaminated with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metal. A fully continuous laboratory-scale SFE process for a slurry-based system was designed and constructed to handle the supercritical carbon dioxide (SC-CO{sub 2}) and the soil slurry. The system continuously pumps carbon dioxide under supercritical conditions and soil slurry into a counter-current contacting column. The testing soil was Delhi loamy sand, spiked with 10 mg/g of naphthalene. The soil slurry ranged from 0.0028 g dry soil per g slurry to 0.072 g/g. The operating temperature was 43 degrees C and the operating pressure was 7.7 MPa. Near steady state, fully continuous flow was achieved with runs lasting up to 2 hours. The quantifiable recoveries of naphthalene from the soil slurry was demonstrated and the mass transfer coefficients for the system were quantified in order to provide the foundation to advance to a full-scale system and costing analysis. 14 refs., 1 tab., 3 figs.

  14. Remediation of flare pit soils using supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, V.; Guigard, S.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil Engineering

    2005-09-01

    A laboratory study was conducted to examine the ability of supercritical fluid extraction (SFE) to remove petroleum hydrocarbons (PHCs) from two flare pit soils in Alberta. SFE is a technology for remediation of contaminated soils. In order to determine the optimal extraction conditions and to understand the effects of pressure, temperature, supercritical carbon dioxide flow rate, soil type, and extraction time on the extraction efficiency of SFE, extractions were performed on two flare pit soils at various pressures and temperatures. Chemicals in the study included diesel oil, SAE 10-30W motor oil, n-decane, hexadecane, tetratriacontane and pentacontane. The best extraction conditions were defined as conditions that result in a treated soil with a PHC concentration that meets the regulatory guidelines of the Canadian Council of Ministers of the Environment in the Canada-wide standard for PHC is soil. The study results indicate that the efficiency of the SFE process is solvent-density dependent for the conditions studied. The highest extraction efficiency for both soils was obtained at conditions of 24.1 MPa and 40 degrees C. An increase in pressure at a fixed temperature led to an increase in the extraction efficiency while an increase in temperature at a fixed pressure led to a decrease in the extraction efficiency. The treated soils were observed to be lighter in colour, drier, and grainier than the soil prior to extraction. It was concluded that SFE is an effective method for remediating flare pit soils. 63 refs., 4 tabs., 5 figs.

  15. Supercritical fluid extraction of positron-emitting radioisotopes from solid target matrices

    International Nuclear Information System (INIS)

    Schlyer, D.

    2000-01-01

    Supercritical fluids are attractive as media for both chemical reactions, as well as process extraction, since their physical properties can be manipulated by small changes in pressure and temperature near the critical point of the fluid. Such changes can result in drastic effects on density-dependent properties such as solubility, refractive index, dielectric constant, viscosity and diffusivity of the fluid. This suggests that pressure tuning of a pure supercritical fluid may be a useful means to manipulate chemical reactions on the basis of a thermodynamic solvent effect. It also means that the solvation properties of the fluid can be precisely controlled to enable selective component extraction from a matrix. In recent years there has been a growing interest in applying supercritical fluid extraction to the selective removal of trace metals from solid samples. Much of the work has been done on simple systems comprised of inert matrices such as silica or cellulose. Recently, this process as been expanded to environmental samples as well. However, very little is understood about the exact mechanism of the extraction process. Of course, the widespread application of this technology is highly dependent on the ability of scientists to model and predict accurate phase equilibria in complex systems. In this project, we plan to explore the feasibility of utilizing supercritical fluids as solvents for reaction and extraction of radioisotopes produced from solid enriched targets. The reason for this work is that many of these enriched target materials used for radioisotope production are expensive

  16. Determination of major aromatic constituents in vanilla using an on-line supercritical fluid extraction coupled with supercritical fluid chromatography.

    Science.gov (United States)

    Liang, Yanshan; Liu, Jiaqi; Zhong, Qisheng; Shen, Lingling; Yao, Jinting; Huang, Taohong; Zhou, Ting

    2018-04-01

    An on-line supercritical fluid extraction coupled with supercritical fluid chromatography method was developed for the determination of four major aromatic constituents in vanilla. The parameters of supercritical fluid extraction were systematically investigated using single factor optimization experiments and response surface methodology by a Box-Behnken design. The modifier ratio, split ratio, and the extraction temperature and pressure were the major parameters which have significant effects on the extraction. While the static extraction time, dynamic extraction time, and recycle time had little influence on the compounds with low polarity. Under the optimized conditions, the relative extraction efficiencies of all the constituents reached 89.0-95.1%. The limits of quantification were in the range of 1.123-4.747 μg. The limits of detection were in the range of 0.3368-1.424 μg. The recoveries of the four analytes were in the range of 76.1-88.9%. The relative standard deviations of intra- and interday precision ranged from 4.2 to 7.6%. Compared with other off-line methods, the present method obtained higher extraction yields for all four aromatic constituents. Finally, this method has been applied to the analysis of vanilla from different sources. On the basis of the results, the on-line supercritical fluid extraction-supercritical fluid chromatography method shows great promise in the analysis of aromatic constituents in natural products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fiscal 1997 report on the results of the introductory R and D of the New Sunshine Project under a consignment from NEDO. Introductory R and D of the supercritical fluid use technology; 1997 nendo `New Sunshine keikaku` sendo kenkyu kaihatsu Shin Energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Chorinkai ryutai riyo gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The R and D of chemical reaction using supercritical fluids started in fiscal 1997. In the R and D of solvent reaction, as the research on polymer decomposition with supercritical water, studies were conducted of the mechanism of conversion reaction to chemical materials, cleavage mechanism of stable chemical bonds, and synthetic reaction in the supercritical state reaction field. In the research on oxidation reaction, as the study of complete oxidation in supercritical water for high efficiency energy recovery, studies of complete oxidation of liquid fuels, and complete oxidation of solid fuels. In the research on hydrogenation, studies of lightening of heavy oil in supercritical water, etc. In the R and D of the basic technology, studies of corrosion mechanism of metals in supercritical water, construction of the basic framework for technical database of supercritical fluids, etc. In the survey of technical trends and new research themes, the introductory R and D of element technology, etc. were conducted, and the results were described of the survey of technical trends and new research themes and the trend survey of overseas technology. 314 refs., 87 figs., 81 tabs.

  18. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method.

    Science.gov (United States)

    Kalani, Mahshid; Yunus, Robiah

    2012-01-01

    The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks.

  19. FY 1998 'The New Sunshine Project' leading R and D. Report on the results of the leading R and D of supercritical fluid utilization technology; 1998 nendo 'New Sunshine Keikaku' sendo kenkyu kaihatsu. Chorinkai ryutai riyo gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper reported the FY 1998 achievement of the supercritical fluid utilization leading R and D which started in FY 1997 on a 3-year plan. In the R and D, solvolysis reaction, oxidation reaction and hydrogenation reaction were taken up in the chemical process using supercritical fluid. In the study of solvolysis reaction, the basic data were obtained on decomposition conditions of thermoplastic and thermosetting plastics in supercritical water. Further, concerning the synthesis of environmental friendly type carbonate using CO2, a conversion rate of almost 100% was obtained. About the oxidation reaction, conditions were found out for burning low grade coal in supercritical water without emitting acid gas. This is considered to lead to a possibility of the supercritical water power generation. Relating to the hydrogenation reaction, a study was made on lightening technology of heavy distillate using supercritical water, and the conditions for effective emission of methane and hydrogen were found out. As to the base technology, a study was made of metal materials with high corrosion resistance against supercritical water. (NEDO)

  20. FY 1998 'The New Sunshine Project' leading R and D. Report on the results of the leading R and D of supercritical fluid utilization technology; 1998 nendo 'New Sunshine Keikaku' sendo kenkyu kaihatsu. Chorinkai ryutai riyo gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper reported the FY 1998 achievement of the supercritical fluid utilization leading R and D which started in FY 1997 on a 3-year plan. In the R and D, solvolysis reaction, oxidation reaction and hydrogenation reaction were taken up in the chemical process using supercritical fluid. In the study of solvolysis reaction, the basic data were obtained on decomposition conditions of thermoplastic and thermosetting plastics in supercritical water. Further, concerning the synthesis of environmental friendly type carbonate using CO2, a conversion rate of almost 100% was obtained. About the oxidation reaction, conditions were found out for burning low grade coal in supercritical water without emitting acid gas. This is considered to lead to a possibility of the supercritical water power generation. Relating to the hydrogenation reaction, a study was made on lightening technology of heavy distillate using supercritical water, and the conditions for effective emission of methane and hydrogen were found out. As to the base technology, a study was made of metal materials with high corrosion resistance against supercritical water. (NEDO)

  1. Electrodeposition of germanium from supercritical fluids.

    Science.gov (United States)

    Ke, Jie; Bartlett, Philip N; Cook, David; Easun, Timothy L; George, Michael W; Levason, William; Reid, Gillian; Smith, David; Su, Wenta; Zhang, Wenjian

    2012-01-28

    Several Ge(II) and Ge(IV) compounds were investigated as possible reagents for the electrodeposition of Ge from liquid CH(3)CN and CH(2)F(2) and supercritical CO(2) containing as a co-solvent CH(3)CN (scCO(2)) and supercritical CH(2)F(2) (scCH(2)F(2)). For Ge(II) reagents the most promising results were obtained using [NBu(n)(4)][GeCl(3)]. However the reproducibility was poor and the reduction currents were significantly less than the estimated mass transport limited values. Deposition of Ge containing films was possible at high cathodic potential from [NBu(n)(4)][GeCl(3)] in liquid CH(3)CN and supercritical CO(2) containing CH(3)CN but in all cases they were heavily contaminated by C, O, F and Cl. Much more promising results were obtained using GeCl(4) in liquid CH(2)F(2) and supercritical CH(2)F(2). In this case the reduction currents were consistent with mass transport limited reduction and bulk electrodeposition produced amorphous films of Ge. Characterisation by XPS showed the presence of low levels of O, F and C, XPS confirmed the presence of Ge together with germanium oxides, and Raman spectroscopy showed that the as deposited amorphous Ge could be crystallised by the laser used in obtaining the Raman measurements.

  2. Producing Polymer Fibers by Electrospinning in Supercritical Fluids

    Directory of Open Access Journals (Sweden)

    Lu Li

    2013-01-01

    Full Text Available Nanofibers have a wide range of applications, including filtration and biomedical engineering. Porous or hollow fibers with large surface-to-volume ratios are more popular in some fields than the common nanofibers. Porous nanofibers can be obtained through electrospinning with highly volatile solvents or through special treatment following electrospinning. A new process where electrospinning is conducted in supercritical or near-critical CO2 to produce porous or hollow nanofibers has been summarized. In addition, a process entailing compressed N2-assisted electrospinning was attempted to produce PVP nanofibers in this work, but it was proved to be unsuccessful. Since the fiber morphologies are dependent on the phase behavior of organic solvents in supercritical fluids, ASPEN PLUS 2006 was used to simulate the phase equilibrium of the solvent-supercritical fluid system to explain why porous or hollow fibers can be obtained in compressed CO2, but not in compressed N2.

  3. CO{sub 2}-based supercritical fluids as environmentally-friendly processing solvents

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, J.B.; Davenhall, L.B.; Taylor, C.M.V.; Pierce, T. [Los Alamos National Lab., NM (United States). Physical Organic Chemistry Group; Tiefert, K. [Hewlett-Packard Co., Inc., Santa Clara, CA (United States)

    1999-03-01

    The production of integrated circuits involves a number of discrete steps that utilize hazardous or regulated solvents. Environmental, safety and health considerations associated with these chemicals have prompted a search for alternative, more environmentally benign, solvent systems. An emerging technology for conventional solvent replacement is the use of supercritical fluids based on carbon dioxide (CO{sub 2}). Supercritical CO{sub 2} (SCCO{sub 2}) is an excellent choice for IC manufacturing processes since it is non-toxic, non-flammable, inexpensive, and is compatible with all substrate and metallizations systems. Also, conditions of temperature and pressure needed to achieve the supercritical state are easily achievable with existing process equipment. The authors first describe the general properties of supercritical fluids, with particular emphasis on their application as alternative solvents. Next, they review some of the work which has been published involving the use of supercritical fluids, and particularly CO{sub 2}, as they may be applied to the various steps of IC manufacture, including wafer cleaning, thin film deposition, etching, photoresist stripping, and waste treatment. Next, they describe the research work conducted at Los Alamos, on behalf of Hewlett-Packard, on the use of SCCO{sub 2} in a specific step of the IC manufacturing process: the stripping of hard-baked photoresist.

  4. Preheating of fluid in a supercritical Brayton cycle power generation system at cold startup

    Science.gov (United States)

    Wright, Steven A.; Fuller, Robert L.

    2016-07-12

    Various technologies pertaining to causing fluid in a supercritical Brayton cycle power generation system to flow in a desired direction at cold startup of the system are described herein. A sensor is positioned at an inlet of a turbine, wherein the sensor is configured to output sensed temperatures of fluid at the inlet of the turbine. If the sensed temperature surpasses a predefined threshold, at least one operating parameter of the power generation system is altered.

  5. Disintegration of fluids under supercritical conditions from mixing layer studies

    Science.gov (United States)

    Okong'o, N.; Bellan, J.

    2003-01-01

    Databases of transitional states obtained from Direct Numerical simulations (DNS) of temporal, supercritical mixing layers for two species systems, O2/H2 and C7H16/N2, are analyzed to elucidate species-specific turbulence aspects and features of fluid disintegration.

  6. Supercritical fluid chromatography of fish, shark and seal oils

    DEFF Research Database (Denmark)

    Borch-Jensen, Christina; Mollerup, Jørgen

    1996-01-01

    Various natural and treated fish, shark liver and seal oils have been analyzed by supercritical fluid chromatography (SFC) using a non-polar capillary column. The lipids are separated according to molecular mass. The lipid groups found included free fatty acids, cholesterol, squalene, vitamins, wax...... applications of SFC on fish, seal and shark liver oils are presented....

  7. Supercritical Fluid Chromatography- A Hybrid of GC and LC

    Directory of Open Access Journals (Sweden)

    Kaushal K Chandrul

    2010-03-01

    Full Text Available

    High performance specifications and unique functionality of chromatographic techniques is a demand of pharmaceutical industry and research. This leads to the origin of Supercritical Fluid Chromatography (SFC. It is a rapidly expanding analytical technique. The main feature that differentiates SFC from other chromatographic techniques is the replacement of either the liquid or gas mobile phase with a supercritical fluid mobile phase. It is considered a hybrid of GC and LC technique. High diffusion coefficient and low viscosity of supercritical fluids is responsible for high speed analysis, high efficiency and high sensitivity. Low mobile-phase flow rate, density programming and compatability with GC and LC detectors make SFC a versatile chromatographic technique in analytical research and development. It has a unique characteristic of analyzing thermo labile or non-volatile substances. This review highlights the role of supercritical fluid chromatography in the separation of polymers, thermally labile pesticides, fatty acids, metal chelates and organometallic compounds, chiral and achiral molecules, identification and analysis of polar samples, explosives, drugs of abuse and application of SFC in forensic science (fingerprinting. 

  8. Supercritical fluid chromatography-A Hybrid of GC and LC

    Directory of Open Access Journals (Sweden)

    Neha Sethi

    2010-01-01

    Full Text Available High performance specifications and unique functionality of chromatographic techniques is a demand of pharmaceutical industry and research. This leads to the origin of Supercritical Fluid Chromatography (SFC. It is a rapidly expanding analytical technique. The main feature that differentiates SFC from other chromatographic techniques is the replacement of either the liquid or gas mobile phase with a supercritical fluid mobile phase. It is considered a hybrid of GC and LC technique. High diffusion coefficient and low viscosity of supercritical fluids is responsible for high speed analysis, high efficiency and high sensitivity. Low mobile-phase flow rate, density programming and compatability with GC and LC detectors make SFC a versatile chromatographic technique in analytical re-search and development. It has a unique characteristic of analyzing thermo labile or non-volatile substances. This review highlights the role of supercritical fluid chromatography in the separation of polymers, thermally labile pesticides, fatty acids, metal chelates and organometallic compounds, chiral and achiral molecules, identification and analysis of polar samples, explosives, drugs of abuse and application of SFC in forensic science (fingerprint-ing.

  9. Supercritical fluid chromatography for lipid analysis in foodstuffs.

    Science.gov (United States)

    Donato, Paola; Inferrera, Veronica; Sciarrone, Danilo; Mondello, Luigi

    2017-01-01

    The task of lipid analysis has always challenged separation scientists, and new techniques in chromatography were often developed for the separation of lipids; however, no single technique or methodology is yet capable of affording a comprehensive screening of all lipid species and classes. This review acquaints the role of supercritical fluid chromatography within the field of lipid analysis, from the early developed capillary separations based on pure CO 2 , to the most recent techniques employing packed columns under subcritical conditions, including the niche multidimensional techniques using supercritical fluids in at least one of the separation dimensions. A short history of supercritical fluid chromatography will be introduced first, from its early popularity in the late 1980s, to the sudden fall and oblivion until the last decade, experiencing a regain of interest within the chromatographic community. Afterwards, the subject of lipid nomenclature and classification will be briefly dealt with, before discussing the main applications of supercritical fluid chromatography for food analysis, according to the specific class of lipids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Supercritical fluid extraction of uranium and neodymium nitrates

    International Nuclear Information System (INIS)

    Sujatha, K.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2011-01-01

    Supercritical fluid extraction (SFE) of uranyl nitrate and neodymium nitrate salts from a mixture was investigated in the present study using Sc-CO 2 modified with various ligands such as organophosphorous compounds, amides, and diketones. Preferential extraction of uranyl nitrate over neodymium nitrate was demonstrated using Sc-CO 2 modified with amide, di-(2ethylhexyl) isobutyramide (D2EHIBA). (author)

  11. Supercritical fluid extraction of reed (thypa)

    Energy Technology Data Exchange (ETDEWEB)

    Kucuk, M.; Genel, Y. [YYU Educational Faculty, Van (Turkey); Demir, H. [YYU Science and Art Faculty, Van (Turkey)

    2005-04-15

    Reed (typha) mill was converted to liquid products by using organic solvents (methanol, ethanol and acetone) with catalysts (% 10 NaOH and ZnCl{sub 2}) and without catalyst in an autoclave at temperatures of 533, 553, and 573 K. The liquid products were extracted by liquid-liquid extraction [DSA1] (benzene and diethyl ether). The yields from supercritical methanol, ethanol and acetone conversions were 36.2, 24.5, and 55.1%, respectively, at 573 K. In the catalytic runs with methanol and ethanol extracts were 46.3 and 35.5% (for NaOH catalyst) and 51.8 and 38.5% (for ZnCl{sub 2} catalyst) respectively, at 573 K. The yields from supercritical methanol were increased from 38.2 to 52.4% as the temperature was increased from 533 to 573 K in the catalytic run. (Author)

  12. Supercritical CO2 fluid radiochromatography system used to purify [11C]toluene for PET

    International Nuclear Information System (INIS)

    Muller, Ryan D.; Ferrieri, Richard A.; Gerasimov, Madina; Garza, Victor

    2002-01-01

    Abuse of inhalants in today's society has become such a widespread problem among today's adolescents that in many parts of the world their use exceeds that of many other illicit drugs or alcohol. Even so, little is known how such inhalants affect brain function to an extent that can lead to an abuse liability. While methodologies exist for radiolabeling certain inhalants of interest with short-lived positron emitting radioisotopes that would allow their investigation in human subjects using positron emission tomography (PET), the purification methodologies necessary to separate these volatile substances from the organic starting materials have not been developed. We've adapted supercritical fluid technology to this specific PET application by building a preparative-scale supercritical CO 2 fluid radiochromatograph, and applied it to the purification of [ 11 C]toluene. We've demonstrated that [ 11 C]toluene can be separated from the starting materials using a conventional C 18 HPLC column and pure supercritical CO 2 fluid as the mobile phase operating at 2000 psi and 40 deg. C. We've also shown that the purified radiotracer can be quantitatively captured on Tenax GR, a solid support material, as it exits the supercritical fluid stream, thus allowing for later desorption into a 1.5% cyclodextrin solution that is suitable for human injection, or into a breathing tube for direct inhalation

  13. SUPERCRITICAL FLUID EXTRACTION OF POLYCYCLIC AROMATIC HYDROCARBON MIXTURES FROM CONTAMINATED SOILS

    Science.gov (United States)

    Highly contaminated (with PAHs) topsoils were extracted with supercritical CO2 to determine the feasibility and mechanism of supercritical fluid extraction (SFE). Effect of SCF density, temperature, cosolvent type and amount, and of slurrying the soil with water were ...

  14. Mass transfer in supercritical fluids instancing selected fluids in supercritical carbon dioxide

    Science.gov (United States)

    Hu, Miao; Benning, Rainer; Delgado, Antonio; Ertunc, Oezguer

    The research interests lie in a deeper understanding of the mechanisms of diffusion and nucle-ation of organic solutes in near-and supercritical state of a solvent, which count as important means of mass transfer in the process engineering industry. The use of supercritical fluids in industrial processes, such as extraction and particle handling, has become a more and more popular method. Take a closer look at the two processes one would find that there are obviously two sub-processes involved in each of the process, namely the diffusion/nucleation as well as a phase transition procedure. Because of the operational limitations in the practice, this phase transition can-not be neglected. So it is also included in the theoretical approach. Classically to deduce conclusions from experiment results, mathematical/physical models outlining property changes and summarizing characteristics of the two processes are expected. In order to become an insight of these phenomena from the origin, and also to serve as a fundamental attribute for the numerical simulation later, the theories of statistical thermodynamics are adopted here as a proper means to describe the behaviors of the two processes. As the diffusion coefficients of the samples in our case are only of an order of approx. 10-8m2s-1, it can be assumed that the processes are in equilibrium (local changes are neglectably small), a model can be built on a general macroscopic approach for equilibrium systems, namely the Boltzmann-Gibbs distri-bution. And some rather general methods e.g. linear response theory can be applied. But as the transfer phenomena are genuinely not equilibrium systems, from this aspect a model can also be built based on the microscopic description -the kinetic theory of the behaviors of the particles of this non-equilibrium system. The characteristics under compensated gravity are also to be considered in the models. The differences and constraints between the models are to be compared and

  15. Research activities on supercritical fluid science in food biotechnology.

    Science.gov (United States)

    Khosravi-Darani, Kianoush

    2010-06-01

    This article serves as an overview, introducing the currently popular area of supercritical fluids and their uses in food biotechnology. Within each application, and wherever possible, the basic principles of the technique, as well as a description of the history, instrumentation, methodology, uses, problems encountered, and advantages over the traditional, non-supercritical methods are given. Most current commercial application of the supercritical extraction involve biologically-produced materials; the technique may be particularly relevant to the extraction of biological compounds in cases where there is a requirement for low-temperature processing, high mass-transfer rates, and negligible carrying over of the solvent into the final product. Special applications to food processing include the decaffeination of green coffee beans, the production of hops extracts, the recovery of aromas and flavors from herbs and spices, the extraction and fractionation of edible oils, and the removal of contaminants, among others. New advances, in which the extraction is combined with reaction or crystallization steps, may further increase the attractiveness of supercritical fluids in the bioprocess industries. To develop and establish a novel and effective alternative to heating treatment, the lethal action of high hydrostatic pressure CO(2) on microorganisms, with none or only a minimal heating process, has recently received a great deal of attention.

  16. Discovering geothermal supercritical fluids: a new frontier for seismic exploration.

    Science.gov (United States)

    Piana Agostinetti, Nicola; Licciardi, Andrea; Piccinini, Davide; Mazzarini, Francesco; Musumeci, Giovanni; Saccorotti, Gilberto; Chiarabba, Claudio

    2017-11-06

    Exploiting supercritical geothermal resources represents a frontier for the next generation of geothermal electrical power plant, as the heat capacity of supercritical fluids (SCF),which directly impacts on energy production, is much higher than that of fluids at subcritical conditions. Reconnaissance and location of intensively permeable and productive horizons at depth is the present limit for the development of SCF geothermal plants. We use, for the first time, teleseismic converted waves (i.e. receiver function) for discovering those horizons in the crust. Thanks to the capability of receiver function to map buried anisotropic materials, the SCF-bearing horizon is seen as the 4km-depth abrupt termination of a shallow, thick, ultra-high (>30%) anisotropic rock volume, in the center of the Larderello geothermal field. The SCF-bearing horizon develops within the granites of the geothermal field, bounding at depth the vapor-filled heavily-fractured rock matrix that hosts the shallow steam-dominated geothermal reservoirs. The sharp termination at depth of the anisotropic behavior of granites, coinciding with a 2 km-thick stripe of seismicity and diffuse fracturing, points out the sudden change in compressibility of the fluid filling the fractures and is a key-evidence of deep fluids that locally traversed the supercritical conditions. The presence of SCF and fracture permeability in nominally ductile granitic rocks open new scenarios for the understanding of magmatic systems and for geothermal exploitation.

  17. Supercritical Fluid Chromatography/Fourier Transform Infrared Spectroscopy Of Food Components

    Science.gov (United States)

    Calvey, Elizabeth M.; Page, Samuel W.; Taylor, Larry T.

    1989-12-01

    Supercritical fluid (SF) technologies are being investigated extensively for applications in food processing. The number of SF-related patents issued testifies to the level of interest. Among the properties of materials at temperatures and pressures above their critical points (supercritical fluids) is density-dependent solvating power. Supercritical CO2 is of particular interest to the food industry because of its low critical temperature (31.3°C) and low toxicity. Many of the components in food matrices react or degrade at elevated temperatures and may be adversely affected by high temperature extractions. Likewise, these components may not be amenable to GC analyses. Our SF research has been in the development of methods employing supercritical fluid chromatography (SFC) and extraction (SFE) coupled to a Fourier transform infrared (FT-IR) spectrometer to investigate food composition. The effects of processing techniques on the isomeric fatty acid content of edible oils and the analysis of lipid oxidation products using SFC/FT-IR with a flow-cell interface are described.

  18. Heat transfers and related effects in supercritical fluids

    CERN Document Server

    Zappoli, Bernard; Garrabos, Yves

    2015-01-01

    This book investigates the unique hydrodynamics and heat transfer problems that are encountered in the vicinity of the critical point of fluids. Emphasis is given on weightlessness conditions, gravity effects and thermovibrational phenomena. Near their critical point, fluids indeed obey universal behavior and become very compressible and expandable. Their comportment, when gravity effects are suppressed, becomes quite unusual. The problems that are treated in this book are of interest to students and researchers interested in the original behavior of near-critical fluids as well as to engineers that have to manage supercritical fluids. A special chapter is dedicated to the present knowledge of critical point phenomena. Specific data for many fluids are provided, ranging from cryogenics (hydrogen) to high temperature (water). Basic information in statistical mechanics, mathematics and measurement techniques is also included. The basic concepts of fluid mechanics are given for the non-specialists to be able to ...

  19. Supercritical fluid chromatography in drug analysis: a literature survey.

    Science.gov (United States)

    Salvador, A; Jaime, M A; Becerra, G; Guardia, M de L

    1996-08-01

    The applications of supercritical fluid chromatography to the analysis of drugs have been carefully revised from the literature compiled in the Analytical Abstracts until March 1994. Easy-to-read tables provide useful information about the state-of-the-art and possibilities offered by SFC in pharmaceutical analysis. The tables comprise extensive data about samples analyzed, pharmaceutical principles determined, solvents used and sample quantity injected, supercritical fluids and modifiers employed, injection system, instrumentation, experimental conditions for chromatographic separations (density, pressure, flow, temperature), characteristics of columns employed (type, support, length, diameter, particle film thickness, stationary phase), detectors, type of restrictors, and also some analytical features of the methods developed (such as retention time, resolution, sensitivity, limit of detection and relative standard deviation).

  20. Forensic applications of supercritical fluid chromatography - mass spectrometry.

    Science.gov (United States)

    Pauk, Volodymyr; Lemr, Karel

    2018-06-01

    Achievements of supercritical fluid chromatography with mass spectrometric detection made in the field of forensic science during the last decade are reviewed. The main topics include analysis of traditional drugs of abuse (e.g. cannabis, methamphetamine) as well as new psychoactive substances (synthetic cannabinoids, cathinones and phenethylamines), doping agents (anabolic steroids, stimulants, diuretics, analgesics etc.) and chemical warfare agents. Control of food authenticity, detection of adulteration and identification of toxic substances in food are also pointed out. Main aspects of an analytical workflow, such as sample preparation, separation and detection are discussed. A special attention is paid to the performance characteristics and validation parameters of supercritical fluid chromatography-mass spectrometric methods in comparison with other separation techniques. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Supercritical Fluid Extraction of Plant Flavors and Fragrances

    Directory of Open Access Journals (Sweden)

    Massimo E. Maffei

    2013-06-01

    Full Text Available Supercritical fluid extraction (SFE of plant material with solvents like CO2, propane, butane, or ethylene is a topic of growing interest. SFE allows the processing of plant material at low temperatures, hence limiting thermal degradation, and avoids the use of toxic solvents. Although today SFE is mainly used for decaffeination of coffee and tea as well as production of hop extracts on a large scale, there is also a growing interest in this extraction method for other industrial applications operating at different scales. In this review we update the literature data on SFE technology, with particular reference to flavors and fragrance, by comparing traditional extraction techniques of some industrial medicinal and aromatic crops with SFE. Moreover, we describe the biological activity of SFE extracts by describing their insecticidal, acaricidal, antimycotic, antimicrobial, cytotoxic and antioxidant properties. Finally, we discuss the process modelling, mass-transfer mechanisms, kinetics parameters and thermodynamic by giving an overview of SFE potential in the flavors and fragrances arena.

  2. Drying of supercritical carbon dioxide with membrane processes

    NARCIS (Netherlands)

    Lohaus, Theresa; Scholz, Marco; Koziara, Beata; Benes, Nieck Edwin; Wessling, Matthias

    2015-01-01

    In supercritical extraction processes regenerating the supercritical fluid represents the main cost constraint. Membrane technology has potential for cost efficient regeneration of water-loaded supercritical carbon dioxide. In this study we have designed membrane-based processes to dehydrate

  3. Review on plasmas in extraordinary media: plasmas in cryogenic conditions and plasmas in supercritical fluids

    Science.gov (United States)

    Stauss, Sven; Muneoka, Hitoshi; Terashima, Kazuo

    2018-02-01

    Plasma science and technology has enabled advances in very diverse fields: micro- and nanotechnology, chemical synthesis, materials fabrication and, more recently, biotechnology and medicine. While many of the currently employed plasma tools and technologies are very advanced, the types of plasmas used in micro- and nanofabrication pose certain limits, for example, in treating heat-sensitive materials in plasma biotechnology and plasma medicine. Moreover, many physical properties of plasmas encountered in nature, and especially outer space, i.e. very-low-temperature plasmas or plasmas that occur in high-density media, are not very well understood. The present review gives a short account of laboratory plasmas generated under ’extreme’ conditions: at cryogenic temperatures and in supercritical fluids. The fundamental characteristics of these cryogenic plasmas and cryoplasmas, and plasmas in supercritical fluids, especially supercritical fluid plasmas, are presented with their main applications. The research on such exotic plasmas is expected to lead to further understanding of plasma physics and, at the same time, enable new applications in various technological fields.

  4. Microbial Inactivation by Ultrasound Assisted Supercritical Fluids

    Science.gov (United States)

    Benedito, Jose; Ortuño, Carmen; Castillo-Zamudio, Rosa Isela; Mulet, Antonio

    A method combining supercritical carbon dioxide (SC-CO2) and high power ultrasound (HPU) has been developed and tested for microbial/enzyme inactivation purposes, at different process conditions for both liquid and solid matrices. In culture media, using only SC-CO2, the inactivation rate of E. coli and S. cerevisiae increased with pressure and temperature; and the total inactivation (7-8 log-cycles) was attained after 25 and 140 min of SC-CO2 (350 bar, 36 °C) treatment, respectively. Using SC-CO2+HPU, the time for the total inactivation of both microorganisms was reduced to only 1-2 min, at any condition selected. The SC-CO2+HPU inactivation of both microorganisms was slower in juices (avg. 4.9 min) than in culture media (avg. 1.5 min). In solid samples (chicken, turkey ham and dry-cured pork cured ham) treated with SC-CO2 and SC-CO2+HPU, the inactivation rate of E. coli increased with temperature. The application of HPU to the SC-CO2 treatments accelerated the inactivation rate of E. coli and that effect was more pronounced in treatments with isotonic solution surrounding the solid food samples. The application of HPU enhanced the SC-CO2 inactivation mechanisms of microorganisms, generating a vigorous agitation that facilitated the CO2 solubilization and the mass transfer process. The cavitation generated by HPU could damage the cell walls accelerating the extraction of vital constituents and the microbial death. Thus, using the combined technique, reasonable industrial processing times and mild process conditions could be used which could result into a cost reduction and lead to the minimization in the food nutritional and organoleptic changes.

  5. Subchannel analysis with turbulent mixing rate of supercritical pressure fluid

    International Nuclear Information System (INIS)

    Wu, Jianhui; Oka, Yoshiaki

    2015-01-01

    Highlights: • Subchannel analysis with turbulent mixing rate law of supercritical pressure fluid (SPF) is carried out. • Turbulent mixing rate is enhanced, compared with that calculated by the law of pressurized water reactor (PWR). • Increase in maximum cladding surface temperature (MCST) is smaller comparing with PWR model. • The sensitivities of MCST on non-uniformity of subchannel area and power peaking are reduced by using SPF model. - Abstract: The subchannel analysis with turbulent mixing rate law of supercritical pressure fluid (SPF) is carried out for supercritical-pressurized light water cooled and moderated reactor (Super LWR). It is different from the turbulent mixing rate law of pressurized water reactor (PWR), which is widely adopted in Super LWR subchannel analysis study, the density difference between adjacent subchannels is taken into account for turbulent mixing rate law of SPF. MCSTs are evaluated on three kinds of fuel assemblies with different pin power distribution patterns, gap spacings and mass flow rates. Compared with that calculated by employing turbulent mixing rate law of PWR, the increase in MCST is smaller even when peaking factor is large and gap spacing is uneven. The sensitivities of MCST on non-uniformity of the subchannel area and power peaking are reduced

  6. MOLECULAR DESIGN OF COLLOIDS IN SUPERCRITICAL FLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Keith P. Johnston

    2009-04-06

    The environmentally benign, non-toxic, non-flammable fluids water and carbon dioxide (CO2) are the two most abundant and inexpensive solvents on earth. Emulsions of these fluids are of interest in many industrial processes, as well as CO2 sequestration and enhanced oil recovery. Until recently, formation of these emulsions required stabilization with fluorinated surfactants, which are expensive and often not environmentally friendly. In this work we overcame this severe limitation by developing a fundamental understanding of the properties of surfactants the CO2-water interface and using this knowledge to design and characterize emulsions stabilized with either hydrocarbon-based surfactants or nanoparticle stabilizers. We also discovered a new concept of electrostatic stabilization for CO2-based emulsions and colloids. Finally, we were able to translate our earlier work on the synthesis of silicon and germanium nanocrystals and nanowires from high temperatures and pressures to lower temperatures and ambient pressure to make the chemistry much more accessible.

  7. A numerical study of a supercritical fluid jet

    International Nuclear Information System (INIS)

    Sierra-Pallares, J.; Garcia-Serna, J.; Cocero, M.J.; Parra-Santos, M.T.; Castro-Ruiz, F.

    2009-01-01

    This study affords the numerical solution of the mixing of a submerged turbulent jet under supercritical conditions and near-critical conditions. Turbulence plays a very important role in the behaviour of chemical engineering equipment. An accurate prediction of the turbulence at supercritical conditions with low computational cost is crucial in designing new processes such as reactions in supercritical media, high pressure separation processes, nanomaterials processing and heterogeneous catalysis. At high-pressure, the flow cannot be modelled accurately using the ideal-gas assumption. Therefore, the real gas models must be used in order to solve accurately the fluid flow and heat transfer problems where the working fluid behaviour deviate seriously from the ideal-gas assumption. The jet structure has three parts clearly distinguished: the injection, the transition and the fully developed jet. Once the flow is dominated by the turbulent eddies of the shear layer, the flow is fully developed and the radial profiles match a similarity profile. This work reports the state of the project that is not completed and is being processed now. This work is devoted to establish the distance downstream from the injector where the jet become self-preserving and the shape of the similarity profiles. This system is of interest in the design of supercritical reactor inlets, where two streams should be mixed in the shortest length, or mixing conditions strongly affect the behaviour of the processes. The numerical results have been validated with experimental measurements made in the jet mixing region. The radial profiles for average velocity, density and temperature are analyzed. The parameters of the profile that match better the numerical results are summarized in Table 1. The density requires a lower value of n than these for velocity and temperature, which reflect smoother profiles. These conclusions are in good agreement with the results from Oschwald and Schik. (author)

  8. Supercritical Fluid Extraction of Plutonium and Americium from Soil

    International Nuclear Information System (INIS)

    Fox, R.V.; Mincher, B.J.

    2002-01-01

    Supercritical fluid extraction (SFE) of plutonium and americium from soil was successfully demonstrated using supercritical fluid carbon dioxide solvent augmented with organophosphorus and beta-diketone complexants. Spiked Idaho soils were chemically and radiologically characterized, then extracted with supercritical fluid carbon dioxide at 2,900 psi and 65 C containing varying concentrations of tributyl phosphate (TBP) and thenoyltrifluoroacetone (TTA). A single 45 minute SFE with 2.7 mol% TBP and 3.2 mol% TTA provided as much as 88% ± 6.0 extraction of americium and 69% ± 5.0 extraction of plutonium. Use of 5.3 mol% TBP with 6.8 mol% of the more acidic beta-diketone hexafluoroacetylacetone (HFA) provided 95% ± 3.0 extraction of americium and 83% ± 5.0 extraction of plutonium in a single 45 minute SFE at 3,750 psi and 95 C. Sequential chemical extraction techniques were used to chemically characterize soil partitioning of plutonium and americium in pre-SFE soil samples. Sequential chemical extraction techniques demonstrated that spiked plutonium resides primarily (76.6%) in the sesquioxide fraction with minor amounts being absorbed by the oxidizable fraction (10.6%) and residual fractions (12.8%). Post-SFE soils subjected to sequential chemical extraction characterization demonstrated that 97% of the oxidizable, 78% of the sesquioxide and 80% of the residual plutonium could be removed using SFE. These preliminary results show that SFE may be an effective solvent extraction technique for removal of actinide contaminants from soil

  9. Capillary supercritical fluid chromatography - Fourier transform infrared spectrometry

    International Nuclear Information System (INIS)

    Olesik, S.V.; French, S.B.; Movotny, M.

    1984-01-01

    One of the most demanding tasks asked of an analytical chemist today is to separate and identify the components of a nonvolatile complex mixture. An efficient separation technique combined with a universal detector that provides structural information, therefore, would be a great asset to analytical chemists. Capillary supercritical fluid chromatography (SFC) - Fourier transform infrared spectrometry (FTIR) shows great potential for being such a technique. SFC-FTIR shows great potential as a very powerful technique for separation and identification of thermally labile and nonvolatile compounds. Research is continuing in these labs to further optimize the technique. 2 refs

  10. Computational fluid dynamic model for glycerol gasification in supercritical water in a tee junction shaped cylindrical reactor

    NARCIS (Netherlands)

    Yukananto, Riza; Pozarlik, Artur K.; Brem, Gerrit

    2018-01-01

    Gasification in supercritical water is a very promising technology to process wet biomass into a valuable gas. Providing insight of the process behavior is therefore very important. In this research a computational fluid dynamic model is developed to investigate glycerol gasification in

  11. Thermophysical properties of supercritical fluids and fluid mixtures

    International Nuclear Information System (INIS)

    Sengers, J.V.

    1989-08-01

    The purpose of the research is to extend the theory of critical phenomena in fluids and fluid mixtures to obtain scientifically based equations that include the crossover from the asymptotic singular behavior of the thermophysical properties close to the critical point to the regular behavior of these properties far away from the critical point

  12. FY1995 generic supercritical water technology; 1995 nendo generic technology to shite no chorinkai riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the establishment of the basis of supercritical fluid technology, we perform elucidation of the specific feature of the supercritical fluid as a reaction media and development of some new process. In this study, we first studied the fluid structure of SCF through in-situ spectroscopy and MD simulation. As a result, significant hydrogen bonding amongst water molecules and a solvation structure around the solute were observed in the supercritical state. This fluid structure has new features different from that of high temperature steam or liquid water. We found that this is closely related to the difference of bulk properties of SCF and local one around the solute. On the basis of these fundamental findings and with the better understanding of the specific features of SCF as a reaction media, development of some new process had been conducted more efficiently and successfully. The processes being developed in this study include 1) waste biomass and plastic conversion to recover chemicals, 2) hydrogenation of heavy oil for desulphurization through partial oxidation 1 and 3) hydrothermal synthesis of metal oxide fine particles. (NEDO)

  13. Supercritical fluid extraction of uranium and thorium employing dialkyl amides

    International Nuclear Information System (INIS)

    Rao, Ankita; Kumar, Pradeep

    2014-01-01

    Extraction and purification of actinides from different matrices is of utmost importance to the nuclear industry. In recent decades, supercritical fluid extraction (SFE) has emerged as a promising alternative to solvent extraction owing to its inherent potential of minimization of liquid waste generation. N,N-dialkyl aliphatic amides have been proposed to be an alternative to TBP in the reprocessing of spent nuclear fuel due to several attractive features like innocuous nature of degradation products (mainly carboxylic acids/ amines), possibility of complete incineration of the used extractant leading to reduction in volume of secondary waste. Also, physico-chemical properties of this class of extractants can be tuned by the judicious choice of alkyl groups. In the present work, N,N-dialkyl aliphatic amides with varying alkyl groups viz. N,N-dibutyl-2-ethylhexanamide (DBEHA), N,N-dibutyl-3,3-dimethylbutanamide (DBDMBA), N,N-dihexyloctanamide (DHOA), N,N-disecbutylpentamide (DBPA), N,N-dibutyloctanamide (DBOA), have been evaluated for supercritical fluid extraction (SFE) of uranium and thorium from nitric acid medium as well as tissue paper matrix. Amides were obtained from Department of Chemistry, Delhi University and were used as such. This fact could be exploited for separation of thorium and uranium

  14. Modelling of heat transfer to fluids at a supercritical pressure

    International Nuclear Information System (INIS)

    Shuisheng, He

    2014-01-01

    A key feature of Supercritical Water-cooled Reactor (SCWR) is that, by raising the pressure of the reactor coolant fluid above the critical value, a phase change crisis is avoided. However, the changes in water density as it flows through the core of an SCWR are actually much higher than in the current water-cooled reactors. In a typical design, the ratio of the density of water at the core inlet to that at exit is as high as 7:1. Other fluid properties also vary significantly, especially around the pseudo-critical temperature (at which the specific heat capacity peaks). As a result, turbulent flow and heat transfer behaviour in the core is extremely complex and under certain conditions, significant heat transfer deterioration can potentially occur. Consequently, understanding and being able to predict flow and heat transfer phenomena under normal steady operation conditions and in start-up and hypothetical fault conditions are fundamental to the design of SCWR. There have been intensive studies on flow and heat transfer to fluids at supercritical pressure recently and several excellent review papers have been published. In the talk, we will focus on some turbulence modelling issues encountered in CFD simulations. The talk will first discuss some flow and heat transfer issues related to fluids at supercritical pressures and their potential implications in SCWR, and some recent developments in the understanding and modelling techniques of such problems, which will be followed by an outlook for some future developments.Factors which have a major influence on the flow and will be discussed are buoyancy and flow acceleration due to thermal expansion (both are due to density variations but involve different mechanisms) and the nonuniformity of other fluid properties. In addition, laminar-turbulent flow transition coupled with buoyancy and flow acceleration plays an important role in heat transfer effectiveness and wall temperature in the entrance region but such

  15. Supercritical fluid extraction of bi & multi-layer graphene sheets from graphite by using exfoliation technique

    Science.gov (United States)

    Xavier, Gauravi; Dave, Bhoomi; Khanna, Sakshum

    2018-05-01

    In recent times, researchers have turned to explore the possibility of using Supercritical Fluid (SCFs) system to penetrate into the inert-gaping of graphite and exfoliate it into a number of layer graphene sheets. The supercritical fluid holds excellent wetting surfaces with low interfacial tension and high diffusion coefficients. Although SCFs exfoliation approach looks promising to developed large scale & low-cost graphene sheet but has not received much attention. To arouse interest and reflection on this approach, this review is organized to summarize the recent progress in graphene production by SCF technology. Here we present the simplest route to obtained layers of graphene sheets by intercalating and exfoliating graphite using supercritical CO2 processing. The layers graphene nano-sheets were collected in dichloromethane (DCM) solution which prevents the restocking of sheets. The obtained graphene sheets show the desired characteristics and thus can be used in physical, chemical and biological sciences. Thus this method provides an effortless and eco-friendly approach for the synthesis of layers of graphene sheets.

  16. On-line supercritical fluid extraction-supercritical fluid chromatography-mass spectrometry of polycyclic aromatic hydrocarbons in soil.

    Science.gov (United States)

    Wicker, A Paige; Carlton, Doug D; Tanaka, Kenichiro; Nishimura, Masayuki; Chen, Vivian; Ogura, Tairo; Hedgepeth, William; Schug, Kevin A

    2018-06-01

    On-line supercritical fluid extraction - supercritical fluid chromatography - mass spectrometry (SFE-SFC-MS) has been applied for the determination of polycyclic aromatic hydrocarbons (PAHs) in soil. The purpose of this study was to develop and validate the first on-line SFE-SFC-MS method for the quantification of PAHs in various types of soil. By coupling the sample extraction on-line with chromatography and detection, sample preparation is minimized, diminishing sample loss and contamination, and significantly decreasing the required extraction time. Parameters for on-line extraction coupled to chromatographic analysis were optimized. The method was validated for concentrations of 10-1500 ng of PAHs per gram of soil in Certified Reference Material (CRM) sediment, clay, and sand with R 2  ≥ 0.99. Limits of detection (LOD) were found in the range of 0.001-5 ng/g, and limits of quantification (LOQ) in the range of 5-15 ng/g. The method developed in this study can be effectively applied to the study of PAHs in the environment, and may lay the foundation for further applications of on-line SFE-SFC-MS. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Selective chelation and extraction of lanthanides and actinides with supercritical fluids

    International Nuclear Information System (INIS)

    Brauer, R.D.; Carleson, T.E.; Harrington, J.D.; Jean, F.; Jiang, H.; Lin, Y.; Wai, C.M.

    1994-01-01

    This report is made up of three independent papers: (1) Supercritical Fluid Extraction of Thorium and Uranium with Fluorinated Beta-Diketones and Tributyl Phosphate, (2) Supercritical Fluid Extraction of Lanthanides with Beta-Diketones and Mixed Ligands, and (3) A Group Contribution Method for Predicting the Solubility of Solid Organic Compounds in Supercritical Carbon Dioxide. Experimental data are presented demonstrating the successful extraction of thorium and uranium using fluorinated beta-diketones to form stable complexes that are extracted with supercritical carbon dioxide. The conditions for extracting the lanthanide ions from liquid and solid materials using supercritical carbon dioxide are presented. In addition, the Peng-Robison equation of state and thermodynamic equilibrium are used to predict the solubilities of organic solids in supercritical carbon dioxide from the sublimation pressure, critical properties, and a centric factor of the solid of interest

  18. Obtaining of the antioxidants by supercritical fluid extraction

    Directory of Open Access Journals (Sweden)

    Babović Nada V.

    2011-01-01

    Full Text Available One of the important trends in the food industry today is demand for natural antioxidants from plant material. Synthetic antioxidants such as butylated hydroxytoluene (BHT, and butylated hydroxyanisole (BHA are now being replaced by the natural antioxidants because of theirs possible toxicity and as they may act as promoters of carcinogens. The natural antioxidants may show equivalent or higher antioxidant activity than the endogenous or the synthetic antioxidants. Thus, great effort is being devoted to the search for alternative and cheap sources of natural antioxidants, as well as to the development of efficient and selective extraction techniques. The supercritical fluid extraction (SFE with carbon dioxide is considered to be the most suitable method for producing natural antioxidants for the use in food industry. The supercritical extract does not contain residual organic solvents as in conventional extraction processes, which makes these products suitable for use in food, cosmetic and pharmaceutical industry. The recovery of antioxidants from plant sources involves many problematic aspects: choice of an adequate source (in terms of availability, cost, difference in phenolic content with variety and season; selection of the optimal recovery procedure (in terms of yield, simplicity, industrial application, cost; chemical analysis of extracts (for optimization purposes a fast colorimetric method is more preferable than a chromatographic one; evaluation of the antioxidant power (preferably by the different assay methods. The paper presents information about different operational methods for SFE of bioactive compounds from natural sources. It also includes the various reports on the antioxidant activity of the supercritical extracts from Lamiaceae herbs, in comparison with the activity of the synthetic antioxidants and the extracts from Lamiaceae herbs obtained by the conventional methods.

  19. Occurrence of turbulent flow conditions in supercritical fluid chromatography.

    Science.gov (United States)

    De Pauw, Ruben; Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2014-09-26

    Having similar densities as liquids but with viscosities up to 20 times lower (higher diffusion coefficients), supercritical CO2 is the ideal (co-)solvent for fast and/or highly efficient separations without mass-transfer limitations or excessive column pressure drops. Whereas in liquid chromatography the flow remains laminar in both the packed bed and tubing, except in extreme cases (e.g. in a 75 μm tubing, pure acetonitrile at 5 ml/min), a supercritical fluid can experience a transition from laminar to turbulent flow in more typical operation modes. Due to the significant lower viscosity, this transition for example already occurs at 1.3 ml/min for neat CO2 when using connection tubing with an ID of 127 μm. By calculating the Darcy friction factor, which can be plotted versus the Reynolds number in a so-called Moody chart, typically used in fluid dynamics, higher values are found for stainless steel than PEEK tubing, in agreement with their expected higher surface roughness. As a result turbulent effects are more pronounced when using stainless steel tubing. The higher than expected extra-column pressure drop limits the kinetic performance of supercritical fluid chromatography and complicates the optimization of tubing ID, which is based on a trade-off between extra-column band broadening and pressure drop. One of the most important practical consequences is the non-linear increase in extra-column pressure drop over the tubing downstream of the column which leads to an unexpected increase in average column pressure and mobile phase density, and thus decrease in retention. For close eluting components with a significantly different dependence of retention on density, the selectivity can significantly be affected by this increase in average pressure. In addition, the occurrence of turbulent flow is also observed in the detector cell and connection tubing. This results in a noise-increase by a factor of four when going from laminar to turbulent flow (e.g. going

  20. Optimization of conditions for supercritical fluid extraction of flavonoids from hops (Humulus lupulus L.)*

    Science.gov (United States)

    He, Guo-qing; Xiong, Hao-ping; Chen, Qi-he; Ruan, Hui; Wang, Zhao-yue; Traoré, Lonseny

    2005-01-01

    Waste hops are good sources of flavonoids. Extraction of flavonoids from waste hops (SC-CO2 extracted hops) using supercritical fluids technology was investigated. Various temperatures, pressures and concentrations of ethanol (modifier) and the ratio (w/w) of solvent to material were tested in this study. The results of single factor and orthogonal experiments showed that at 50 °C, 25 MPa, the ratio of solvent to material (50%), ethanol concentration (80%) resulted in maximum extraction yield flavonoids (7.8 mg/g). HPLC-MS analysis of the extracts indicated that flavonoids obtained were xanthohumol, the principal prenylflavonoid in hops. PMID:16187413

  1. Functionalization of whey proteins by reactive supercritical fluid extrusion

    Directory of Open Access Journals (Sweden)

    Khanitta Ruttarattanamongkol

    2012-09-01

    Full Text Available Whey protein, a by-product from cheese-making, is often used in a variety of food formulations due to its unsurpassednutritional quality and inherent functional properties. However, the possibilities for the improvement and upgrading of wheyprotein utilization still need to be explored. Reactive supercritical fluid extrusion (SCFX is a novel technique that has beenrecently reported to successfully functionalize commercially available whey proteins into a product with enhanced functionalproperties. The specific goal of this review is to provide fundamental understanding of the reinforcement mechanism andprocessing of protein functionalization by reactive SCFX process. The superimposed extrusion variables and their interactionmechanism affect the physico-chemical properties of whey proteins. By understanding the structure, functional properties andprocessing relationships of such materials, the rational design criteria for novel functionalized proteins could be developedand effectively utilized in food systems.

  2. Plastic reactor suitable for high pressure and supercritical fluid electrochemistry

    DEFF Research Database (Denmark)

    Branch, Jack; Alibouri, Mehrdad; Cook, David A.

    2017-01-01

    The paper describes a reactor suitable for high pressure, particularly supercritical fluid, electrochemistry and electrodeposition at pressures up to 30 MPa at 115◦C. The reactor incorporates two key, new design concepts; a plastic reactor vessel and the use of o-ring sealed brittle electrodes...... by the deposition of Bi. The application of the reactor to the production of nanostructures is demonstrated by the electrodeposition of ∼80 nm diameter Te nanowires into an anodic alumina on silicon template. Key advantages of the new reactor design include reduction of the number of wetted materials, particularly...... glues used for insulating electrodes, compatability with reagents incompatible with steel, compatability with microfabricated planar multiple electrodes, small volume which brings safety advantages and reduced reagent useage, and a significant reduction in experimental time....

  3. Particle formation with supercritical fluids challenges and limitations

    CERN Document Server

    Türk, Michael

    2014-01-01

    Particle formation with supercritical fluids is a promising alternative to conventional precipitation processes as it allows the reduction of particle size and control of morphology and particle size distribution without degradation or contamination of the product. The book comprehensively examines the current status of research and development and provides perspectives and insights on promising future directions. The introduction to high pressure and high temperature phase equilibria and nucleation phenomena provides the basic principles of the underlying physical and chemical phenomena, allowing the reader an understanding of the relationship between process conditions and particle characteristics. Bridging the gap between theory and application, the book imparts the scientific and engineering fundamentals for innovative particle formation processes. The interdisciplinary "modus operandi" will encourage cooperation between scientists and researchers from different but complementary disciplines. Focuses on ...

  4. Multi-walled carbon nanotubes (MWCNTs) functionalized with amino groups by reacting with supercritical ammonia fluids

    International Nuclear Information System (INIS)

    Shao Lu; Bai Yongping; Huang Xu; Gao Zhangfei; Meng Linghui; Huang Yudong; Ma Jun

    2009-01-01

    For the first time, supercritical ammonia fluid was utilized to simply functionalize multi-walled carbon nanotube (MWCNT) with amino groups. The successful amino functionalization of MWCNTs was proven and the physicochemical properties of MWCNTs before and after supercritical ammonia fluids modifications were characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscope (AFM) and Raman spectroscopy. The results also indicated that the supercritical ammonia fluids had the visible effects on the nanostructure of carbon nanotubes. Our novel modification approach provides an easy way to modify MWCNTs with amino groups, which is very useful for realizing 'carbon nanotube economy' in the near future.

  5. Broken-and-Intact Cell Model for Supercritical Fluid Extraction: Its Origin and Limits.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2017-01-01

    Roč. 129, SI (2017), s. 3-8 ISSN 0896-8446. [Iberoamerican Conference on Supercritical Fluids ProSCiba 2016 /4./. Vina del Mar, 28.03.2016-01.04.2016] Institutional support: RVO:67985858 Keywords : modelling * extraction kinetics * supercritical CO2 Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.991, year: 2016

  6. Supercritical CO{sub 2} fluid radiochromatography system used to purify [{sup 11}C]toluene for PET

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Ryan D.; Ferrieri, Richard A. E-mail: rferrieri@bnl.gov; Gerasimov, Madina; Garza, Victor

    2002-04-01

    Abuse of inhalants in today's society has become such a widespread problem among today's adolescents that in many parts of the world their use exceeds that of many other illicit drugs or alcohol. Even so, little is known how such inhalants affect brain function to an extent that can lead to an abuse liability. While methodologies exist for radiolabeling certain inhalants of interest with short-lived positron emitting radioisotopes that would allow their investigation in human subjects using positron emission tomography (PET), the purification methodologies necessary to separate these volatile substances from the organic starting materials have not been developed. We've adapted supercritical fluid technology to this specific PET application by building a preparative-scale supercritical CO{sub 2} fluid radiochromatograph, and applied it to the purification of [{sup 11}C]toluene. We've demonstrated that [{sup 11}C]toluene can be separated from the starting materials using a conventional C{sub 18} HPLC column and pure supercritical CO{sub 2} fluid as the mobile phase operating at 2000 psi and 40 deg. C. We've also shown that the purified radiotracer can be quantitatively captured on Tenax GR, a solid support material, as it exits the supercritical fluid stream, thus allowing for later desorption into a 1.5% cyclodextrin solution that is suitable for human injection, or into a breathing tube for direct inhalation.

  7. Supercritical fluids in separation science--the dreams, the reality and the future.

    Science.gov (United States)

    Smith, R M

    1999-09-24

    The last 20 years have seen an intense interest in the use of supercritical fluids in separation science. This started with the introduction of commercial instruments first for packed and then for capillary chromatography and it looked as if this would be a technique to rival gas-liquid chromatography and HPLC. The activity developed quite rapidly into packed column supercritical fluid separations then into supercritical fluid extraction. However, in recent years there has been a decline in publications. These later techniques continue to be used but are now principally applied to a limited group of applications where they offer significant advantages over alternative techniques. This review looks back over this period and analyses how these methods were developed and the fluids, detectors and applications that were examined. It suggests why many of the initial applications have vanished and why the initial apparent promise was not fulfilled. The rise and fall of supercritical fluids represents a lesson in the way analysts approach new techniques and how we might view other new separation developments at the end of this millennium. The review looks forward to the future of supercritical fluids and their role at the end of the first century of separation science. Probably the most important idea that supercritical fluids have brought to separation science is a recognition that there is unity in the separation methods and that a continuum exists from gases to liquids.

  8. Pressure drop effects on selectivity and resolution in packed-column supercritical fluid chromatography

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Snijders, H.M.J.; Cramers, C.A.M.G.

    1996-01-01

    The influence of pressure drop on retention, selectivity, plate height and resolution was investigated systematically in packed supercritical fluid chromatography (SFC) using pure carbon dioxide as the mobile phase. Numerical methods developed previously which enabled the prediction of pressure

  9. Supercritical fluid extraction of selected pharmaceuticals from water and serum.

    Science.gov (United States)

    Simmons, B R; Stewart, J T

    1997-01-24

    Selected drugs from benzodiazepine, anabolic agent and non-steroidal anti-inflammatory drug (NSAID) therapeutic classes were extracted from water and serum using a supercritical CO2 mobile phase. The samples were extracted at a pump pressure of 329 MPa, an extraction chamber temperature of 45 degrees C, and a restrictor temperature of 60 degrees C. The static extraction time for all samples was 2.5 min and the dynamic extraction time ranged from 5 to 20 min. The analytes were collected in appropriate solvent traps and assayed by modified literature HPLC procedures. Analyte recoveries were calculated based on peak height measurements of extracted vs. unextracted analyte. The recovery of the benzodiazepines ranged from 80 to 98% in water and from 75 to 94% in serum. Anabolic drug recoveries from water and serum ranged from 67 to 100% and 70 to 100%, respectively. The NSAIDs were recovered from water in the 76 to 97% range and in the 76 to 100% range from serum. Accuracy, precision and endogenous peak interference, if any, were determined for blank and spiked serum extractions and compared with classical sample preparation techniques of liquid-liquid and solid-phase extraction reported in the literature. For the benzodiazepines, accuracy and precision for supercritical fluid extraction (SFE) ranged from 1.95 to 3.31 and 0.57 to 1.25%, respectively (n = 3). The SFE accuracy and precision data for the anabolic agents ranged from 4.03 to 7.84 and 0.66 to 2.78%, respectively (n = 3). The accuracy and precision data reported for the SFE of the NSAIDs ranged from 2.79 to 3.79 and 0.33 to 1.27%, respectively (n = 3). The precision of the SFE method from serum was shown to be comparable to the precision obtained with other classical preparation techniques.

  10. Selective chelation-supercritical fluid extraction of metal ions from waste materials

    International Nuclear Information System (INIS)

    Wai, C.N.; Laintz, K.E.; Yonker, C.R.

    1993-01-01

    The removal of toxic organics, metals, and radioisotopes from solids or liquids is a major concern in the treatment of industrial and nuclear wastes. For this reason, developing methods for selective separation of toxic metals and radioactive materials from solutions of complex matrix is an important problem in environmental research. Recent developments indicate supercritical fluids are good solvents for organic compounds. Many gases become supercritical fluids under moderate temperatures and pressures. For example, the critical temperature and pressure of carbon dioxide are 31 degrees C and 73 atm, respectively. The high diffusivity, low viscosity, and T-P dependence of solvent strength are some attractive properties of supercritical fluid extraction (SFE). Since CO 2 offers the additional benefits of stability and non-toxicity, the SFE technique avoids generation of organic liquid waste and exposure of personnel to toxic solvents. While direct extraction of metal ions by supercritical fluids is highly inefficient, these ions when complexed with organic ligands become quite soluble in supercritical fluids. Specific ligands can be used to achieve selective extraction of metal ions in this process. After SFE, the fluid phase can be depressurized for precipitation of the metal chelates and recycled. The ligand can also be regenerated for repeated use. The success of this selective chelation-supercritical fluid extraction (SC-SFE) process depends on a number of factors including the efficiencies of the selective chelating agents, solubilities of metal chelates in supercritical fluids, rate of extraction, ease of regeneration of the ligands, etc. In this report, the authors present recent results on the studies of the solubilities of metal chelates in supercritical CO 2 , experimental ions from aqueous solution, and the development of selective chelating agents (ionizable crown ethers) for the extraction of lanthanides and actinides

  11. Sustainable extraction of molecules for human food, cosmetic and pharmaceutical products: extraction in supercritical fluids

    International Nuclear Information System (INIS)

    Leone, GianPaolo; Ferri, Donatella

    2015-01-01

    Since several years, the ENEA Innovation Laboratory for Agro-Industrial, proposed activities of research and development of extraction processes with supercritical fluids (SFE, Supercritical Fluid Extraction), focusing on sustainability characteristics of the process. The technique, in fact, makes no use of organic solvents, has a low energy consumption and requires a lower number of process steps compared to conventional extractions. The process also responds to the requirements imposed by the legislation for human food, cosmetic and pharmaceutical extracts. [it

  12. Sustainable extraction of molecules for potable alcohol, cosmetics and pharmaceuticals: extraction in supercritical fluids

    International Nuclear Information System (INIS)

    Leone, Gian Paolo; Ferri, Donatella

    2015-01-01

    Since many years the Laboratory of Agro-Industrial Innovation (UTAGRI-INN) ENEA proposed research and development of extraction processes with supercritical fluids (SFE, Supercritical Fluid Extraction), aiming on the sustainability of the process characteristics. The technique, in fact, makes no use of organic solvents, It has reduced energy consumption and requires a number of process step lower than the extractions traditional. The process also responds to the requirements required by the regulations for food use, cosmetics and pharmaceutical extracts. [it

  13. Supercritical Fluid Extraction (SFE) of uranium and thorium nitrates using carbon dioxide modified with phosphonates

    International Nuclear Information System (INIS)

    Pitchaiah, K.C.; Sujatha, K.; Brahmananda Rao, C.V.S.; Sivaraman, N.; Vasudeva Rao, P.R.

    2014-01-01

    Supercritical Fluid Extraction (SFE) has emerged as a powerful technique for the extraction of metal ions.The liquid like densities and gas like physical properties of supercritical fluids make them unique to act as special solvents. SFE based procedures were developed and demonstrated in our laboratory for the recovery of actinides from various matrices. In the present study, we have examined for the first time, the use of dialkylalkylphosphonates in supercritical carbon dioxide (Sc-CO 2 ) medium to study the extraction behavior of uranium and thorium nitrates. A series of phosphonates were synthesised by Michaelis-Becker reaction in our laboratory and employed for the SFE

  14. Preliminary Hazard Analysis of Supercritical Fluid Separation of Energetic Materials

    National Research Council Canada - National Science Library

    1997-01-01

    .... Army Research Laboratory (ARL) and elsewhere, particularly at the Phasex Corporation, Lawrence, MA, has demonstrated the feasibility of separating the energetic moieties by use of supercritical CO2...

  15. Fluidos supercríticos em química analítica. I. Cromatografia com fluido supercrítico: conceitos termodinâmicos Supercritical fluid in analytical chemistry. I. Supercritical fluid chromatography: thermodynamic definitions

    OpenAIRE

    Emanuel Carrilho; Maria Cecília H. Tavares; Fernando M. Lanças

    2001-01-01

    Under the chromatographic point of view, the physico-chemical properties of a supercritical fluid are intermediate to those of the gases and liquids. Many times they approach the best features of each one, as for example, the solubilization power of liquids and low viscosity of gases. The thermodynamic definitions and main physico-chemical features of a supercritical fluid will be presented in this article. The use of supercritical fluids in analytical chemistry has been extremely modest in B...

  16. Dynamics, thermodynamics and structure of liquids and supercritical fluids: crossover at the Frenkel line

    Science.gov (United States)

    Fomin, Yu D.; Ryzhov, V. N.; Tsiok, E. N.; Proctor, J. E.; Prescher, C.; Prakapenka, V. B.; Trachenko, K.; Brazhkin, V. V.

    2018-04-01

    We review recent work aimed at understanding dynamical and thermodynamic properties of liquids and supercritical fluids. The focus of our discussion is on solid-like transverse collective modes, whose evolution in the supercritical fluids enables one to discuss the main properties of the Frenkel line separating rigid liquid-like and non-rigid gas-like supercritical states. We subsequently present recent experimental evidence of the Frenkel line showing that structural and dynamical crossovers are seen at a pressure and temperature corresponding to the line as predicted by theory and modelling. Finally, we link dynamical and thermodynamic properties of liquids and supercritical fluids by the new calculation of liquid energy governed by the evolution of solid-like transverse modes. The disappearance of those modes at high temperature results in the observed decrease of heat capacity.

  17. Molecular dynamics studies of transport properties and equation of state of supercritical fluids

    Science.gov (United States)

    Nwobi, Obika C.

    Many chemical propulsion systems operate with one or more of the reactants above the critical point in order to enhance their performance. Most of the computational fluid dynamics (CFD) methods used to predict these flows require accurate information on the transport properties and equation of state at these supercritical conditions. This work involves the determination of transport coefficients and equation of state of supercritical fluids by equilibrium molecular dynamics (MD) simulations on parallel computers using the Green-Kubo formulae and the virial equation of state, respectively. MD involves the solution of equations of motion of a system of molecules that interact with each other through an intermolecular potential. Provided that an accurate potential can be found for the system of interest, MD can be used regardless of the phase and thermodynamic conditions of the substances involved. The MD program uses the effective Lennard-Jones potential, with system sizes of 1000-1200 molecules and, simulations of 2,000,000 time-steps for computing transport coefficients and 200,000 time-steps for pressures. The computer code also uses linked cell lists for efficient sorting of molecules, periodic boundary conditions, and a modified velocity Verlet algorithm for particle displacement. Particle decomposition is used for distributing the molecules to different processors of a parallel computer. Simulations have been carried out on pure argon, nitrogen, oxygen and ethylene at various supercritical conditions, with self-diffusion coefficients, shear viscosity coefficients, thermal conductivity coefficients and pressures computed for most of the conditions. Results compare well with experimental and the National Institute of Standards and Technology (NIST) values. The results show that the number of molecules and the potential cut-off radius have no significant effect on the computed coefficients, while long-time integration is necessary for accurate determination of the

  18. Supercritical fluid assisted production of chitosan oligomers micrometric powders.

    Science.gov (United States)

    Du, Zhe; Shen, Yu-Bin; Tang, Chuan; Guan, Yi-Xin; Yao, Shan-Jing; Zhu, Zi-Qiang

    2014-02-15

    Chitosan oligomers (O-chitosan) micrometric particles were produced from aqueous solution using a novel process, i.e. supercritical fluid assisted atomization introduced by hydrodynamic cavitation mixer (SAA-HCM). Hydrodynamic cavitation was introduced to enhance mass transfer and facilitate the mixing between SC-CO2 and liquid solution for fine particles formation. Well defined, separated and spherical microparticles were obtained, and the particles size could be well controlled with narrow distribution ranging from 0.5 μm to 3 μm. XRD patterns showed amorphous structure of O-chitosan microparticles. FTIR, TGA and DSC analyses confirmed that no change in molecular structure and thermal stability after SAA-HCM processing, while the water content was between 5.8% and 8.4%. Finally, tap densities were determined to be below 0.45 g/cm(3) indicating hollow or porous structures of microparticles. By tuning process parameters, theoretical mass median aerodynamic sizes lied inside respirable range of 1-2 μm, which presented the potential of the O-chitosan microparticles in application as inhaled dry powders. SAA-HCM was demonstrated to be very useful in particle size engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Update on Area Production in Mixing of Supercritical Fluids

    Science.gov (United States)

    Okongo, Nora; Bellan, Josette

    2003-01-01

    The focus of this research is on supercritical C7H16/N2 and O2/H2 mixing layers undergoing transitions to turbulence. The C7H16/N2 system serves as a simplified model of hydrocarbon/air systems in gas-turbine and diesel engines; the O2/H2 system is representative of liquid rocket engines. One goal of this research is to identify ways of controlling area production to increase disintegration of fluids and enhance combustion in such engines. As used in this research, "area production" signifies the fractional rate of change of surface area oriented perpendicular to the mass-fraction gradient of a mixing layer. In the study, a database of transitional states obtained from direct numerical simulations of the aforementioned mixing layers was analyzed to investigate global layer characteristics, phenomena in regions of high density-gradient magnitude (HDGM), irreversible entropy production and its relationship to the HDGM regions, and mechanisms leading to area production.

  20. Supercritical fluid molecular spray film deposition and powder formation

    Science.gov (United States)

    Smith, Richard D.

    1986-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. Upon expansion and supersonic interaction with background gases in the low pressure region, any clusters of solvent are broken up and the solvent is vaporized and pumped away. Solute concentration in the solution is varied primarily by varying solution pressure to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solvent clustering and solute nucleation are controlled by manipulating the rate of expansion of the solution and the pressure of the lower pressure region. Solution and low pressure region temperatures are also controlled.

  1. Supercritical fluid molecular spray thin films and fine powders

    Science.gov (United States)

    Smith, Richard D.

    1988-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. The solvent is vaporized and pumped away. Solution pressure is varied to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solution temperature is varied in relation to formation of a two-phase system during expansion to control porosity of the film or powder. A wide variety of film textures and powder shapes are produced of both organic and inorganic compounds. Films are produced with regular textural feature dimensions of 1.0-2.0 .mu.m down to a range of 0.01 to 0.1 .mu.m. Powders are formed in very narrow size distributions, with average sizes in the range of 0.02 to 5 .mu.m.

  2. Preparative supercritical fluid chromatography: A powerful tool for chiral separations.

    Science.gov (United States)

    Speybrouck, David; Lipka, Emmanuelle

    2016-10-07

    In 2012, the 4 biggest pharmaceutical blockbusters were pure enantiomers and separating racemic mixtures is now frequently a key step in the development of a new drug. For a long time, preparative liquid chromatography was the technique of choice for the separation of chiral compounds either during the drug discovery process to get up to a hundred grams of a pure enantiomer or during the clinical trial phases needing kilograms of material. However the advent of supercritical Fluid Chromatography (SFC) in the 1990s has changed things. Indeed, the use of carbon dioxide as the mobile phase in SFC offers many advantages including high flow rate, short equilibration time as well as low solvent consumption. Despite some initial teething troubles, SFC is becoming the primary method for preparative chiral chromatography. This article will cover recent developments in preparative SFC for the separation of enantiomers, reviewing several aspects such as instrumentation, chiral stationary phases, mobile phases or purely preparative considerations including overloading, productivity or large scale chromatography. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Studies on supercritical fluid extraction of uranium from sodium diuranate

    International Nuclear Information System (INIS)

    Prabhat, Parimal; Vithal, G.K.; Rao, Ankita; Kumar, Pradeep; Tomar, B.S.

    2014-01-01

    Crude sodium diuranate (SDU) produced from phosphoric acid by solvent extraction process with di-2-ethyl hexyl phosphoric acid (D2EHPA) and tri-n-butyl phosphate(TBP) contains iron and other rare earth impurities along with uranium. For further use of this uranium for fuel fabrication and its subsequent use in nuclear reactors, it has to be purified up to nuclear grade ammonium diuranate (ADU) specifications. Conventionally crude SDU is being purified by dissolving it in nitric acid followed by solvent extraction process using TBP in diluent. Use of large amount of acid and organic solvents for industrial processes is an environmental concern. Nowadays there are efforts to minimize use of acid and organic solvents in industrial processes. Supercritical Fluid Extraction (SFE) of uranium from different matrices (solid as well as liquid) has been reported by several authors in recent years. Near complete extraction of uranium from UO 2 (powder, green pellet and sintered pellet) using TBP-HNO 3 adduct by SFE has been reported. We attempted to explore possibility to purify crude SDU to nuclear grade by SFE of uranium from crude SDU matrix and study the effect of different operational parameters, mode of extraction and complexation

  4. Instrument modifications that produced reduced plate heights supercritical fluid chromatography.

    Science.gov (United States)

    Berger, Terry A

    2016-04-29

    The concept of peak fidelity was shown to be helpful in modeling tubing and detector cell dimensions. Connection tubing and flow cell variances were modeled to determine appropriate internal ID's, lengths, and volumes. A low dispersion plumbing configuration, based on these calculations, was assembled to replace the standard plumbing and produced the reported results. The modifications made were straightforward using commercially available parts. The full theoretical efficiency of a 3×100 mm column packed with 1.8 μm totally porous particles was achieved for the first time in supercritical fluid chromatography (SFC). Peak fidelity of >0.95 was maintained to below k=2. A reduced plate height as low as 1.87 was measured. Thus, true "ultra high performance" SFC was achieved, with the results a major improvement from all previous SFC reports. Since there were no efficiency losses, none could be attributed to thermal gradients caused by the expansion of the fluid over large pressure drops, under the conditions used. Similarly, changes in diffusion coefficients caused by significant decreases in density during expansion are apparently balanced by the increase in linear velocity, keeping the ratio between the diffusion coefficient and the linear velocity a constant. Changing modifier concentration to change retention was shown to not be a significant problem. All these issues have been a concern in the past. Diffusion coefficients, and viscosity data needs to be collected at high pressures before the actual limits of SFC can be discovered. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Broken-and-Intact Cell Model for Supercritical Fluid Extraction: Its Origin and Limits.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2017-01-01

    Roč. 129, SI (2017), s. 3-8 ISSN 0896-8446. [Iberoamerican Conference on Supercritical Fluid s ProSCiba 2016 /4./. Vina del Mar, 28.03.2016-01.04.2016] Institutional support: RVO:67985858 Keywords : modelling * extraction kinetics * supercritical CO2 Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.991, year: 2016

  6. US-UK Phase 3 Task 1 Oxidation in Supercritical Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2017-03-20

    A presentation of the US-UK Phase 3 Task 1 Oxidation in Supercritical Fluids. Includes slides on Supercritical Steam, sCO2 Power Cycles – Indirect, sCO2 Power Cycles – Direct, Experimental Exposures, Alloys, Why Si, Results—Ni-xCr Alloys (5-24Cr), Fatigue Crack Growth$-$Experiment, and Alloys and Samples, Fatigue Crack Growth—Results (H282).

  7. Separation of furostanol saponins by supercritical fluid chromatography.

    Science.gov (United States)

    Yang, Jie; Zhu, Lingling; Zhao, Yang; Xu, Yongwei; Sun, Qinglong; Liu, Shuchen; Liu, Chao; Ma, Baiping

    2017-10-25

    Supercritical fluid chromatography (SFC) has good separation efficiency and is suitable for separating weakly polar compounds. Furostanol saponins, as an important kind of steroidal saponins, generally have two sugar chains, which are polar and hydrophilic. The hydroxyl group at the C-22 position of furostanol saponins is active and easily reacts with lower alcohols under appropriate conditions. The separation of hydrophilic furostanol saponins was tested by SFC in this study. The effects of chromatographic conditions on the separation of the mixed furostanol saponins and their hydroxyl derivatives at the C-22 position were studied. The conditions for SFC, which included different column polarity, modifier, additive, and column temperature, were tested. After optimization, the mixed 10 similar structures of furostanol saponins were separated in 22min on the Diol column at a temperature of 40°C. The mobile phase was CO 2 (mobile phase A) and methanol (containing 0.2% NH 3 ∙H 2 O and 3% H 2 O) (mobile phase B). The backpressure was maintained isobarically at 11.03MPa. SFC was found to be effective in separating the furostanol saponins that shared the same aglycone but varied in sugar chains. SFC was sensitive to the number and type of sugars. The resolution of furostanol saponin isomers was not ideal. The extract of Dioscorea zingiberensis C. H. Wright was profiled by SFC-quadrupole time-of-flight mass spectrometry. The main saponins of the extract were well separated. Therefore, SFC could be used for separating hydrophilic furostanol saponins and analyzing traditional Chinese medicines that mainly contained steroidal saponins. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    International Nuclear Information System (INIS)

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-01-01

    A method is described for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs

  9. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    Science.gov (United States)

    Wai, Chien M.; Smart, Neil G.; Lin, Yuehe

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent is described. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  10. On the use of semiempirical models of (solid + supercritical fluid) systems to determine solid sublimation properties

    International Nuclear Information System (INIS)

    Tabernero, Antonio; Martin del Valle, Eva M.; Galan, Miguel A.

    2011-01-01

    Research highlights: → We propose a method to determine sublimation properties of solids. → Low deviations were produced calculating sublimation enthalpies and pressures. → It is a required step to determine the vaporization enthalpy of the solid. → It is possible to determine solid properties using semiempirical models solid-SCF. - Abstract: Experimental solubility data of solid-supercritical fluids have significantly increased in the last few years, and semiempirical models are emerging as one of the best choices to fit this type of data. This work establishes a methodology to calculate sublimation pressures using this type of equations. It requires the use of Bartle's equation to model equilibria data solid-supercritical fluids with the aim of determining the vaporization enthalpy of the compound. Using this method, low deviations were obtained by calculating sublimation pressures and sublimation enthalpies. The values of the sublimation pressures were subsequently used to successfully model different multiphasic equilibria, as solid-supercritical fluids and solid-solvent-supercritical fluids with the Peng-Robinson equation of state (without considering the sublimation pressure as an adjustable parameter). On the other hand, the sublimation pressures were also used to calculate solid sublimation properties and acetaminophen solvation properties in some solvents. Also, solubility data solid-supercritical fluids from 62 pharmaceuticals were fitted with different semiempirical equations (Chrastil, Kumar-Johnston and Bartle models) in order to present the values of solvation enthalpies in sc-CO 2 and vaporization enthalpies for these compounds. All of these results highlight that semiempirical models can be used for any other purpose as well as modeling (solid + supercritical fluids) equilibria.

  11. Feasibility of ion-pair/supercritical fluid extraction of an ionic compound--pseudoephedrine hydrochloride.

    Science.gov (United States)

    Eckard, P R; Taylor, L T

    1997-02-01

    The supercritical fluid extraction (SFE) of an ionic compound, pseudoephedrine hydrochloride, from a spiked-sand surface was successfully demonstrated. The effect of carbon dioxide density (CO2), supercritical fluid composition (pure vs. methanol modified), and the addition of a commonly used reversed-phase liquid chromatographic ion-pairing reagent, 1-heptanesulfonic acid, sodium salt, on extraction efficiency was examined. The extraction recoveries of pseudoephedrine hydrochloride with the addition of the ion-pairing reagent from a spiked-sand surface were shown to be statistically greater than the extraction recoveries without the ion-pairing reagent with both pure and methanol-modified carbon dioxide.

  12. Modifier free supercritical fluid extraction of uranium from sintered UO2, soil and ore samples

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Acharya, R.; Mohapatra, P.K.; Manchanda, V.K.

    2011-01-01

    Direct extraction of uranium from different samples viz. sintered UO 2 , soil and ores was carried out by modifier free supercritical fluid using tri-n-butyl phosphate-nitric acid (TBP-HNO 3 ) adduct as extractant. These studies showed that pre-equilibration with more concentrated nitric acid helps in better dissolution and extraction of uranium from sintered UO 2 samples. Modifier free supercritical fluid extraction appears attractive with respect to minimization of secondary wastes. This method resulted 80-100% extraction of uranium from different soil/ore samples. The results were confirmed by performing neutron activation analysis of original (before extraction) and residue (after extraction) samples. (author)

  13. Effect of additives on eremomycin sorbent selectivity in separation of salbutamol enantiomers using supercritical fluid chromatography

    Science.gov (United States)

    Pokrovskiy, O. I.; Kayda, A. S.; Usovich, O. I.; Parenago, O. O.; Lunin, V. V.

    2017-11-01

    A regime is found in which chiral stationary phase based on macrocyclic glycopeptide eremomycin allows separation of salbutamol sulfate enantiomers in supercritical fluid chromatography. Enantioseparation occurs only when two dynamic modifiers are used simultaneously: isopropylamin + trifluoroacetic acid or isopropylamin + ammonium acetate. Amine molar concentration in mobile phase has to be higher than acid molar concentration, otherwise enantiomers coelute. We suppose that with amine excess a mechanism of enantiorecognition is realized which involves ionic sorbent-sorbate interactions. Such mechanism is well-known for glycopeptide chiral selectors in liquid chromatography, but for supercritical fluid chromatography it is reported for the first time.

  14. Temperature and pressure effects on solubility in supercritical carbon dioxide and retention in supercritical fluid chromatography

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1997-01-01

    Solubilities of some polycyclic aromatic hydrocarbons (PAHs) in supercritical carbon dioxide were measured with a procedure based on a direct on-line combination of a saturation cell to a flame ionization detector. Acenaphthene, anthrance and chrysene were selected as the test solutes. A method was

  15. Computational fluid dynamics study of viscous fingering in supercritical fluid chromatography.

    Science.gov (United States)

    Subraveti, Sai Gokul; Nikrityuk, Petr; Rajendran, Arvind

    2018-01-26

    Axi-symmetric numerical simulations are carried out to study the dynamics of a plug introduced through a mixed-stream injection in supercritical fluid chromatographic columns. The computational fluid dynamics model developed in this work takes into account both the hydrodynamics and adsorption equilibria to describe the phenomena of viscous fingering and plug effect that contribute to peak distortions in mixed-stream injections. The model was implemented into commercial computational fluid dynamics software using user-defined functions. The simulations describe the propagation of both the solute and modifier highlighting the interplay between the hydrodynamics and plug effect. The simulated peaks showed good agreement with experimental data published in the literature involving different injection volumes (5 μL, 50 μL, 1 mL and 2 mL) of flurbiprofen on Chiralpak AD-H column using a mobile phase of CO 2 and methanol. The study demonstrates that while viscous fingering is the main source of peak distortions for large-volume injections (1 mL and 2 mL) it has negligible impact on small-volume injections (5 μL and 50 μL). Band broadening in small-volume injections arise mainly due to the plug effect. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  16. Method and apparatus for dissociating metals from metal compounds extracted into supercritical fluids

    Science.gov (United States)

    Wai, Chien M.; Hunt, Fred H.; Smart, Neil G.; Lin, Yuehe

    2000-01-01

    A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.

  17. Modeling the Supercritical Fluid Extraction of Essential Oils from Plant Materials

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2012-01-01

    Roč. 1250, SI (2012), s. 27-33 ISSN 0021-9673 R&D Projects: GA TA ČR TA01010578 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * essential oils * model for kinetics Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.612, year: 2012

  18. Steps of Supercritical Fluid Extraction of Natural Products and Their Characteristic Times

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2012-01-01

    Roč. 66, SI (2012), s. 73-79 ISSN 0896-8446 R&D Projects: GA MŠk 2B06049 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * vegetable oils * essential oils Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.732, year: 2012

  19. Off-line supercritical fluid extraction-capillary GC applications in environmental analysis

    NARCIS (Netherlands)

    David, F.; Verschuere, M.; Sandra, P.J.F.

    1992-01-01

    The successful application of supercrit. fluid extn. for environmental samples requires that the extn. for environmental samples requires that the extn. conditions detd. for spiked samples must be optimized in order to overcome the solute-matrix interactions that are responsible for lower recoveries

  20. Supercritical Fluid Extraction of Minor Components of Vegetable Oils: beta-Sitosterol

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena; Galushko, A.A.; Stateva, R.P.; Rochová, Kristina; Sajfrtová, Marie; Bártlová, Milena

    2010-01-01

    Roč. 101, č. 2 (2010), s. 201-209 ISSN 0260-8774 R&D Projects: GA MŠk 2B06024 Institutional research plan: CEZ:AV0Z40720504 Keywords : supercritical fluid extraction * sea buckthorn oil * beta-sitosterol Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.168, year: 2010

  1. A Novel Model for Multicomponent Supercritical Fluid Extraction and its Application to Ruta graveolens.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena; Sajfrtová, Marie; Stateva, R.P.

    2017-01-01

    Roč. 120, Part 1 (2017), s. 102-112 ISSN 0896-8446 R&D Projects: GA MŠk 2B06049 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * multicomponent equilibrium * kinetics Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.991, year: 2016

  2. Development of artificial neural network models for supercritical fluid solvency in presence of co-solvents

    Energy Technology Data Exchange (ETDEWEB)

    Shokir, Eissa Mohamed El-Moghawry; El-Midany, Ayman Abdel-Hamid [Cairo University, Giza (Egypt); Al-Homadhi, Emad Souliman; Al-Mahdy, Osama [King Saud University, Riyadh (Saudi Arabia)

    2014-08-15

    This paper presents the application of artificial neural networks (ANN) to develop new models of liquid solvent dissolution of supercritical fluids with solutes in the presence of cosolvents. The neural network model of the liquid solvent dissolution of CO{sub 2} was built as a function of pressure, temperature, and concentrations of the solutes and cosolvents. Different experimental measurements of liquid solvent dissolution of supercritical fluids (CO{sub 2}) with solutes in the presence of cosolvents were collected. The collected data are divided into two parts. The first part was used in building the models, and the second part was used to test and validate the developed models against the Peng- Robinson equation of state. The developed ANN models showed high accuracy, within the studied variables range, in predicting the solubility of the 2-naphthol, anthracene, and aspirin in the supercritical fluid in the presence and absence of co-solvents compared to (EoS). Therefore, the developed ANN models could be considered as a good tool in predicting the solubility of tested solutes in supercritical fluid.

  3. Synthesis of biodiesel fuel additives from glycerol using green chemistry and supercritical fluids

    Science.gov (United States)

    For every 3 moles of fatty acid esters produced, 1 mole of glycerol remains, ~11% of the biodiesel volume. One new method of glycerol use could be as a biodiesel fuel additive/extender using eco-friendly heterogeneous catalysts and supercritical fluids (SFs). SFs have advantages such as greater diff...

  4. Supercritical fluid extraction of silicone oil from uranate microspheres prepared by sol-gel process

    International Nuclear Information System (INIS)

    Kumar, R.; Venkatakrishnan, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2005-01-01

    Supercritical fluid extraction of silicone oil from urania microspheres prepared through sol-gel route was investigated. The influence of pressure, temperature, and flow rate on the extraction efficiency was studied. Experimental conditions were optimised for the complete removal of silicone oil from urania microspheres. (author)

  5. Effects of modifiers in packed and open-tubular supercritical fluid chromatography

    NARCIS (Netherlands)

    Janssen, J.G.M.; Schoenmakers, P.J.; Cramers, C.A.M.G.

    1991-01-01

    The applicability of packed and open columns for supercritical fluid chromatography using pure carbon dioxide for the elution of a number of selected test components was investigated. It is showns that the number of solutes that can be eluted as symmetrical peaks is much larger in open-tubular

  6. SEPARATION OF T-MAZ ETHOXYLATED SORBITAN FATTY ACID ESTERS BY SUPERCRITICAL FLUID CHROMATOGRAPHY

    Science.gov (United States)

    The application of supercritical fluid chromatography (SFC) to the analysis of T-MAZ ethoxylated sorbitan fatty acid esters is described. FC separation methods utilize a density programming technique and a 50 um I.D. capillary column. his work demonstrates that capillary column S...

  7. Flow rate control in pressure-programmed capillary supercritical fluid chromatography

    NARCIS (Netherlands)

    Janssen, J.G.M.; Rijks, J.A.; Cramers, C.A.M.G.

    1990-01-01

    A versatile and simple system is described that allows variation of the column flow rate in open-tubular capillary supercritical fluid chromatography using both on-column and postcolumn detection. The system is based on column-effluent splitting in a low-dead-volume T piece at the column exit just

  8. DIRECT-DEPOSITION INFRARED SPECTROMETRY WITH GAS AND SUPERCRITICAL FLUID CHROMATOGRAPHY

    Science.gov (United States)

    A direct-deposition Fourier transform infrared (FT-IR) system has been evaluated for applicability to gas chromatography (GC) and supercritical fluid chromatography (SFC) of environmental analytes. A 100-um i.d. fused-silica transfer line was used for GC, and a 50-um transfer lin...

  9. The use of supercritical fluid extraction as a sample preparation technique for soils

    International Nuclear Information System (INIS)

    Levy, J.M.; Dolata, L.A.; Rosselli, A.C.; Ravey, R.M.

    1994-01-01

    Using off-line supercritical fluid extraction (SFE), polynuclear aromatic hydrocarbons (PAHs) were extracted at different levels from various soil and sediment matrices. Based upon GC/MS measurements a number of SFE operational parameters including pressure, temperature and flow rate, were optimized to yield the highest efficiencies with the best precision

  10. Triticonazole enantiomers: Separation by supercritical fluid chromatography and the effect of the chromatographic conditions.

    Science.gov (United States)

    He, Jianfeng; Fan, Jun; Yan, Yilun; Chen, Xiaodong; Wang, Tai; Zhang, Yaomou; Zhang, Weiguang

    2016-11-01

    Enantiomeric pairs of triticonazole have been successfully separated by supercritical fluid chromatography coupled with a tris(3,5-dimethylphenylcarbamoyl) cellulose-coated chiral stationary phase in this work. The effects of co-solvent, dissolution solvent, flow rate, backpressure, and column temperature have been studied in detail with respect to retention, selectivity, and resolution of triticonazole. As indicated, the co-solvents mostly affected the retention factors and resolution, due to the different molecular structure and polarity. In addition, the dissolution solvents, namely, chloromethanes and alcohols, have been also important for enantioseparation because of the different interaction with stationary phase. Higher flow rate and backpressure led to faster elution of the triticonazole molecules, and the change of column temperature showed slight effect on the resolution of triticonazole racemate. Moreover, a comparative separation experiment between supercritical fluid chromatography and high performance liquid chromatography revealed that chiral supercritical fluid chromatography gave the 3.5 times value of R s /t R2 than high performance liquid chromatography, which demonstrated that supercritical fluid chromatography had much higher separation efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Compressibility effects in packed and open tubular gas and supercritical fluid chromatography

    NARCIS (Netherlands)

    Janssen, J.G.M.; Snijders, H.M.J.; Cramers, C.A.; Schoenmakers, P.J.

    1992-01-01

    The influence of the pressure drop on the efficiency and speed of anal. in packed and open tubular supercrit. fluid chromatog. (SFC) is described: methods previously developed to describe the effects of mobile phase compressibility on the performance of open tubular columns in SFC have been extended

  12. Investigations on the elution behaviour of TOPO complexes of uranium and thorium using supercritical fluid chromatography

    International Nuclear Information System (INIS)

    Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2004-01-01

    In summary uranium and thorium could be separated by supercritical fluid chromatography technique as their TOPO complexes. The elution profiles with pre-complexation of the metal nitrate indicate a better separation than the in-situ complexation. The technique can also be employed for the assay of uranium and thorium at low levels

  13. Investigation of parameters affecting the online combination of supercritical fluid extraction with capillary gas chromatography

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1996-01-01

    Two different injectors, a split/splitless injector and a programmed temperature vaporizer (PTV) injector were investigated as the interface in on-line supercritical fluid extraction (SFE)-capillary gas chromatography (cGC). The parameters affecting the chromatographic peak shapes as well as the

  14. Ionization mechanisms in capillary supercritical fluid chromatography-chemical ionization mass spectrometry

    NARCIS (Netherlands)

    Houben, R.J.; Leclercq, P.A.; Cramers, C.A.M.G.

    1991-01-01

    Ionization mechanisms have been studied for supercritical fluid chromatography (SFC) with mass spectrometric (MS) detection. One of the problems associated with SFC-MS is the interference of mobile phase constituents in the ionization process, which complicates the interpretation of the resulting

  15. Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number

    International Nuclear Information System (INIS)

    Battista, F.; Casciola, C. M.; Picano, F.

    2014-01-01

    Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightly supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures – the so-called ligaments – in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties

  16. Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number

    Energy Technology Data Exchange (ETDEWEB)

    Battista, F.; Casciola, C. M. [Department of Mechanical and Aerospace Engineering, Sapienza University, via Eudossiana 18, 00184 Rome (Italy); Picano, F. [Department of Industrial Engineering, University of Padova, via Venezia 1, 35131 Padova (Italy)

    2014-05-15

    Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightly supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures – the so-called ligaments – in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties.

  17. Model validation and parametric study of fluid flows and heat transfer of aviation kerosene with endothermic pyrolysis at supercritical pressure

    Directory of Open Access Journals (Sweden)

    Keke Xu

    2015-12-01

    Full Text Available The regenerative cooling technology is a promising approach for effective thermal protection of propulsion and power-generation systems. A mathematical model has been used to examine fluid flows and heat transfer of the aviation kerosene RP-3 with endothermic fuel pyrolysis at a supercritical pressure of 5 MPa. A pyrolytic reaction mechanism, which consists of 18 species and 24 elementary reactions, is incorporated to account for fuel pyrolysis. Detailed model validations are conducted against a series of experimental data, including fluid temperature, fuel conversion rate, various product yields, and chemical heat sink, fully verifying the accuracy and reliability of the model. Effects of fuel pyrolysis and inlet flow velocity on flow dynamics and heat transfer characteristics of RP-3 are investigated. Results reveal that the endothermic fuel pyrolysis significantly improves the heat transfer process in the high fluid temperature region. During the supercritical-pressure heat transfer process, the flow velocity significantly increases, caused by the drastic variations of thermophysical properties. Under all the tested conditions, the Nusselt number initially increases, consistent with the increased flow velocity, and then slightly decreases in the high fluid temperature region, mainly owing to the decreased heat absorption rate from the endothermic pyrolytic chemical reactions.

  18. Investigation of R-134a as a modeling fluid for supercritical water

    International Nuclear Information System (INIS)

    Jouvin, J.C.; Pioro, I.

    2014-01-01

    The objective of this paper is to investigate the feasibility of using Refrigerant-134a (R-134a) as a potential modeling fluid by comparing the thermophysical properties with those of water. Operating conditions of SuperCritical Water-cooled Reactors (SCWRs) are scaled into those of R-134a, in order to provide proper SCWR-equivalent conditions. The thermophysical properties for R-134a are obtained from NIST REFPROP software. The results indicate that the thermophysical properties of R-134a undergo significant changes within the critical and pseudocritical regions similar to that of supercritical water. An investigation into the pseudocritical region of R-134a was also conducted. (author)

  19. Supercritical fluid synthesis inthe preparation of β+-emitting labelled compounds

    International Nuclear Information System (INIS)

    Jacobson, G.; Markides, K.E.; Laangstroem, B.

    1994-01-01

    A system for synthesis in supercritical fluids has been developed for the microscale synthesis of pharmaceuticals labelled with 11 C. Supercritical ammonia was selected as the reaction medium and the following variables were studied in detail: trapping efficiency, cell design, substrate concentration, operation design, and temperature and pressure conditions. Alkylation of phenol by [ 11 C]methyl iodide to yield [methyl- 11 C]anisole was used as a model reaction for evaluation of the system. The results show an increased radiochemical yield in the highly compressible near-critical region. (au) (40 refs.)

  20. Removal of plutonium from real time waste using supercritical fluid extraction

    International Nuclear Information System (INIS)

    Sujatha, K.; Sivaraman, N.; Kumar, R.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Supercritical fluid extraction (SFE) technique was carried out for the recovery of plutonium from cellulose waste matrix using supercritical carbon dioxide (SC-CO 2 ) modified with suitable ligands such as octylphenyl N,N-diisobutyl carbamoylmethyl phosphine oxide (φCMPO), tri-n-butyl phosphate (TBP), acetyl acetone, trifluoro acetyl acetone and theonyltrifluoroacetyl acetone (TTA). The maximum plutonium recovery was found to be 99.8% when SC-CO 2 modified with CMPO was employed. About 15mg of plutonium was recovered from waste. (author)

  1. Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources.

    Science.gov (United States)

    Akanda, Mohammed Jahurul Haque; Sarker, Mohammed Zaidul Islam; Ferdosh, Sahena; Manap, Mohd Yazid Abdul; Ab Rahman, Nik Norulaini Nik; Ab Kadir, Mohd Omar

    2012-02-10

    Supercritical fluid extraction (SFE), which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO₂ refers to supercritical fluid extraction (SFE) that uses carbon dioxide (CO₂) as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO₂) extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.

  2. Applications of Supercritical Fluid Extraction (SFE of Palm Oil and Oil from Natural Sources

    Directory of Open Access Journals (Sweden)

    Mohd Omar Ab Kadir

    2012-02-01

    Full Text Available Supercritical fluid extraction (SFE, which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO2 refers to supercritical fluid extraction (SFE that uses carbon dioxide (CO2 as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO2 extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.

  3. Supercritical Fluid Chromatography--Theoretical Background and Applications on Natural Products.

    Science.gov (United States)

    Hartmann, Anja; Ganzera, Markus

    2015-11-01

    The use of supercritical fluid chromatography for natural product analysis as well as underlying theoretical mechanisms and instrumental requirements are summarized in this review. A short introduction focusing on the historical development of this interesting separation technique is followed by remarks on the current instrumental design, also describing possible detection modes and useable stationary phases. The overview on relevant applications is grouped based on their basic intention, may it be (semi)preparative or purely analytical. They indicate that supercritical fluid chromatography is still primarily considered for the analysis of nonpolar analytes like carotenoids, fatty acids, or terpenes. The low polarity of supercritical carbon dioxide, which is used with modifiers almost exclusively as a mobile phase today, combined with high efficiency and fast separations might explain the popularity of supercritical fluid chromatography for the analysis of these compounds. Yet, it has been shown that more polar natural products (e.g., xanthones, flavonoids, alkaloids) are separable too, with the same (if not superior) selectivity and reproducibility than established approaches like HPLC or GC. Georg Thieme Verlag KG Stuttgart · New York.

  4. Direct online extraction and determination by supercritical fluid extraction with chromatography and mass spectrometry of targeted carotenoids from red Habanero peppers (Capsicum chinense Jacq.).

    Science.gov (United States)

    Zoccali, Mariosimone; Giuffrida, Daniele; Dugo, Paola; Mondello, Luigi

    2017-10-01

    Recently, supercritical fluid chromatography coupled to mass spectrometry has gained attention as a fast and useful technology applied to the carotenoids analysis. However, no reports are available in the literature on the direct online extraction and determination by supercritical fluid extraction with chromatography and mass spectrometry. The aim of this research was the development of an online method coupling supercritical fluid extraction and supercritical fluid chromatography for a detailed targeted native carotenoids characterization in red habanero peppers. The online nature of the system, compared to offline approaches, improves run-to-run precision, enables the setting of batch-type applications, and reduces the risks of sample contamination. The extraction has been optimized using different temperatures, starting from 40°C up to 80°C. Multiple extractions, until depletion, were performed on the same sample to evaluate the extraction yield. The range of the first extraction yield, carried out at 80°C, which was the best extraction temperature, was 37.4-65.4%, with a %CV range of 2-12. Twenty-one targeted analytes were extracted and identified by the developed methodology in less than 17 min, including free, monoesters, and diesters carotenoids, in a very fast and efficient way. Quantification of the β-carotene was carried out by using the optimized conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Supercritical fluid extraction of lanthanides and actinides from solid materials with a fluorinated β-diketone

    International Nuclear Information System (INIS)

    Lin, Y.; Brauer, R.D.; Laintz, K.E.; Wai, C.M.

    1993-01-01

    Direct extraction of metal ions by supercritical carbon dioxide is highly inefficient because of the charge neutralization requirement and the weak solute-solvent interactions. One suggested approach of extracting metal ions by supercritical carbon dioxide is to convert the charged species into metal chelates using a chelating agent in the fluid phase. This paper describes a method of extracting lanthanide and uranyl ions from a solid material by supercritical carbon dioxide containing a fluorinated beta-diketone, 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedione(FOD). Potential applications of this SFE method for separating the f-block elements from environmental samples are discussed. 13 refs., 2 tabs

  6. Study on specifics of thermophysical properties of supercritical fluids in power engineering applications

    International Nuclear Information System (INIS)

    Mann, David; Pioro, Igor

    2015-01-01

    SuperCritical Pressures (SCPs) and SuperCritical Fluids (SFCs) are widely used in many industries worldwide. The largest application of SCPs is in the power industry in advanced coal-fired power plants. It is well-known that moving from subcritical-pressure power plants to SCP power plants increases gross thermal efficiency from 38-42% to about 50-55%. Despite all advances in thermal power-plants design and operation worldwide, they are still considered as not “environmentally friendly” due to significant carbon-dioxide emissions and air pollution as a result of the combustion process. In addition, coal-fired power-plants also produce virtual mountains of slag and ash, and other gas emissions that may contribute to acid rains. Therefore, the demand for clean, non-fossil-based electricity is growing. Due to this, nuclear power is considered as a basis for future electricity generation in the world. One of the major problems with current fleet of Nuclear Power Plants (NPPs) is their relatively low thermal efficiencies, especially, of water-cooled-reactor NPPs (the vast majority of NPPs) (30-36%), compared to those of advanced thermal power plants (55-62%). Based on that, next generation or Generation-IV reactors corresponding to those NPPs should definitely be more efficient. Higher level of thermal efficiencies can be reached only due to higher temperatures and, in some cases, higher pressures inside reactors and, especially, in power cycles of Generation-IV NPPs. Analysis of the six concepts of Generation-IV reactors and NPPs shows that three reactor concepts will use SCFs as reactor coolants (helium and water) and all concepts can be linked to SCFs as working fluids in power cycles (SC helium and /or carbon dioxide in the Brayton gas-turbine cycle, and SC water in the Rankine steam-turbine cycle). Therefore, the exact knowledge of specifics of thermophysical properties of SC helium, water and carbon dioxide is very important for any advances in these new

  7. Numerical Study on Heat Transfer Performance of PCHE With Supercritical CO2 as Working Fluid

    International Nuclear Information System (INIS)

    Jeon, Sang Woo; Ngo, Ich-long; Byon, Chan

    2016-01-01

    The printed circuit heat exchanger (PCHE) is regarded as a promising candidate for advanced heat exchangers for the next-generation supercritical CO 2 power generation owing to its high compactness and rigid structure. In this study, an innovative type of PCHE, in which the channel sizes for the heat source fluid and heat sink fluid are different, is considered for analysis. The thermal performance of the PCHE, with supercritical CO 2 as the working fluid, is numerically analyzed. The results have shown that the thermal performance of the PCHE decreases monotonically when the channel size of either the heat source channel or the heat sink channel, because of the decreased flow velocity. On the other hand, the thermal performance of the PCHE is found to be almost independent of the spacing between the channels. In addition, it was found that the channel cross sectional shape has little effect on the thermal performance when the hydraulic diameter of the channel remains constant.

  8. Control of optical transport parameters of 'porous medium – supercritical fluid' systems

    Energy Technology Data Exchange (ETDEWEB)

    Zimnyakov, D A; Ushakova, O V; Yuvchenko, S A [Yuri Gagarin State Technical University of Saratov, Saratov (Russian Federation); Bagratashvili, V N [M. V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2015-11-30

    The possibility of controlling optical transport parameters (in particular, transport scattering coefficient) of porous systems based on polymer fibres, saturated with carbon dioxide in different phase states (gaseous, liquid and supercritical) has been experimentally studied. An increase in the pressure of the saturating medium leads to a rise of its refractive index and, correspondingly, the diffuse-transmission coefficient of the system due to the decrease in the transport scattering coefficient. It is shown that, in the case of subcritical saturating carbon dioxide, the small-angle diffuse transmission of probed porous layers at pressures close to the saturated vapour pressure is determined by the effect of capillary condensation in pores. The immersion effect in 'porous medium – supercritical fluid' systems, where the fluid pressure is used as a control parameter, is considered. The results of reconstructing the values of transport scattering coefficient of probed layers for different refractive indices of a saturating fluid are presented. (radiation scattering)

  9. Antioxidant effects of supercritical fluid garlic extracts in canned artichokes.

    Science.gov (United States)

    Bravi, E; Marconi, O; Sileoni, V; Rollo, M R; Perretti, G

    2016-10-01

    The effects of adding supercritical carbon dioxide extracts of garlic (at two different concentrations of allicin) on select chemical indices in extra-virgin olive oil used to canned artichokes were studied. Tests were performed after processing and over a storage period of 1 year. A sensorial test was also conducted on the canned artichokes to establish the impact on flavor (in particular perceptions of rancidity and garlic flavor). Acidity, peroxide levels and p -anisidine values were measured as quality analytical parameters. Radical scavenging activity was also evaluated using the DPPH assay. The samples containing supercritical garlic extracts were compared with several other formulations, including control sample (prepared by mixing artichokes with powdered chili pepper and fresh garlic), artichokes with only garlic or only chili pepper, and artichokes treated with the synthetic antioxidant BHT. The results suggested that the allicin extract may be superior, or at least comparable, with BHT in preserving canned artichokes as demonstrated by its positive effects on oxidative stability and sensory profile.

  10. Solvent density inhomogeneities and solvation free energies in supercritical diatomic fluids: a density functional approach.

    Science.gov (United States)

    Husowitz, B; Talanquer, V

    2007-02-07

    Density functional theory is used to explore the solvation properties of a spherical solute immersed in a supercritical diatomic fluid. The solute is modeled as a hard core Yukawa particle surrounded by a diatomic Lennard-Jones fluid represented by two fused tangent spheres using an interaction site approximation. The authors' approach is particularly suitable for thoroughly exploring the effect of different interaction parameters, such as solute-solvent interaction strength and range, solvent-solvent long-range interactions, and particle size, on the local solvent structure and the solvation free energy under supercritical conditions. Their results indicate that the behavior of the local coordination number in homonuclear diatomic fluids follows trends similar to those reported in previous studies for monatomic fluids. The local density augmentation is particularly sensitive to changes in solute size and is affected to a lesser degree by variations in the solute-solvent interaction strength and range. The associated solvation free energies exhibit a nonmonotonous behavior as a function of density for systems with weak solute-solvent interactions. The authors' results suggest that solute-solvent interaction anisotropies have a major influence on the nature and extent of local solvent density inhomogeneities and on the value of the solvation free energies in supercritical solutions of heteronuclear molecules.

  11. Recrystallization of andrographolide using the supercritical fluid antisolvent process

    Science.gov (United States)

    Chen, Kexun; Zhang, Xingyuan; Pan, Jian; Yin, Wenhong

    2005-01-01

    The supercritical antisolvent (SAS) process was used to modify the solid-state properties of andrographolide. Ethanol was employed as solvents for the pharmaceutical compound and carbon dioxide was used as an antisolvent. The effect of process parameters on the precipitate crystals such as pressure, organic solution flow rate, and concentration of the andrographolide solution were investigated. The crystal habit is column-like and its size changed from longer and thicker to shorter and thinner when pressure increased and when the solution flow rate increased, the size of the crystal decreased. The X-ray diffraction (XRD) patterns revealed variations of crystallinity and crystal orientation depending on pressure, where the degree of crystallinity increased when pressure increased. The differential scanning calorimetry patterns also showed the same results as XRD.

  12. Investigation on leaching of actinide oxides into supercritical fluids

    International Nuclear Information System (INIS)

    Shafikov, D.N.; Kamachev, V.A.; Babain, V.A.; Murzin, A.A.; Shadrin, A.Yu.; Podojnitsin, S.V.

    2006-01-01

    The extraction of actinide oxides into solutions of the TBP-HNO 3 complex in supercritical (SC) CO 2 was investigated. Experiments on the extraction of the TBP-HNO 3 complex into SC CO 2 were first conducted. It was found that a constant concentration of TBP in SC CO 2 of 13.5-14.8 % vol. can be attained using a constant molar ratio of [HNO 3 ]:[TBP] about 2.5 : 1. Joint leaching of uranium, plutonium and neptunium from mixtures of actinide oxides with solutions of TBP-HNO 3 in SC CO 2 was found feasible. If the leaching of uranium is about 95 %, its purification coefficients from major gamma-emitting radionuclides (Cs and Sr) exceed 100, while the purification coefficients of uranium from rare earth elements are 10-20

  13. Status of advanced ultra-supercritical pulverised coal technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-01

    In pulverised coal combustion (PCC) power plant, increasing the maximum temperature of the steam cycle increases the electrical efficiency, which in turn lowers both coal consumption and flue gas emissions. However, the maximum steam temperature is limited by materials that can operate at these conditions for practical service lifetimes without failure. The EU, USA, Japan, India and China all have material research programmes aiming for the next generation of increased steam temperatures and efficiency, known as advanced ultra-supercritical (AUSC) or 700°C technology. This report reviews developments and status of these major material research programmes.

  14. Economic Operation of Supercritical CO2 Refrigeration Energy Storage Technology

    Science.gov (United States)

    Hay, Ryan

    With increasing penetration of intermittent renewable energy resources, improved methods of energy storage are becoming a crucial stepping stone in the path toward a smarter, greener grid. SuperCritical Technologies is a company based in Bremerton, WA that is developing a storage technology that can operate entirely on waste heat, a resource that is otherwise dispelled into the environment. The following research models this storage technology in several electricity spot markets around the US to determine if it is economically viable. A modification to the storage dispatch scheme is then presented which allows the storage unit to increase its profit in real-time markets by taking advantage of extreme price fluctuations. Next, the technology is modeled in combination with an industrial load profile on two different utility rate schedules to determine potential cost savings. The forecast of facility load has a significant impact on savings from the storage dispatch, so an exploration into this relationship is then presented.

  15. Modeling heat transfer in supercritical fluid using the lattice Boltzmann method.

    Science.gov (United States)

    Házi, Gábor; Márkus, Attila

    2008-02-01

    A lattice Boltzmann model has been developed to simulate heat transfer in supercritical fluids. A supercritical viscous fluid layer between two plates heated from the bottom has been studied. It is demonstrated that the model can be used to study heat transfer near the critical point where the so-called piston effect speeds up the transfer of heat and results in homogeneous heating in the bulk of the layer. We have also studied the onset of convection in a Rayleigh-Bénard configuration. It is shown that our model can well predict qualitatively the onset of convection near the critical point, where there is a crossover between the Rayleigh and Schwarzschild criteria.

  16. Isolation of oxidative degradation products of atorvastatin with supercritical fluid chromatography.

    Science.gov (United States)

    Klobčar, Slavko; Prosen, Helena

    2015-12-01

    The isolation of four oxidative degradation products of atorvastatin using preparative high-performance liquid chromatography applying at least two chromatographic steps is known from the literature. In this paper it is shown that the same four impurities could be isolated from similarly prepared mixtures in only one step using supercritical fluid chromatography. The methods for separation were developed and optimized. The preparation of the mixtures was altered in such a way as to enhance the concentration of desired impurities. Appropriate solvents were applied for collection of separated impurities in order to prevent degradation. The structures of the isolated impurities were confirmed and their purity determined. The preparative supercritical fluid chromatography has proven to be superior to preparative HPLC regarding achieved purity of standards applying fewer chromatographic as well as isolation steps. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  18. Steps of Supercritical Fluid Extraction of Natural Products and Their Characteristic Times

    OpenAIRE

    Sovová, H. (Helena)

    2012-01-01

    Kinetics of supercritical fluid extraction (SFE) from plants is variable due to different micro-structure of plants and their parts, different properties of extracted substances and solvents, and different flow patterns in the extractor. Variety of published mathematical models for SFE of natural products corresponds to this diversification. This study presents simplified equations of extraction curves in terms of characteristic times of four single extraction steps: internal diffusion, exter...

  19. Solute-matrix and Solute-Solute Interactions during Supercritical Fluid Extraction of Sea Buckthorn Leaves

    Czech Academy of Sciences Publication Activity Database

    Sajfrtová, Marie; Sovová, Helena

    2012-01-01

    Roč. 42, SI (2012), s. 1682-1691 E-ISSN 1877-7058. [International Congress of Chemical and Process Engineering CHISA 2012 and 15th Conference PRES 2012 /20./. Prague, 25.08.2012-29.08.2012] R&D Projects: GA TA ČR TA01010578 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * sea buckthom leaves * solute-solute interaction Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  20. Technical design issues for a field-portable supercritical fluid extractor

    Energy Technology Data Exchange (ETDEWEB)

    Wright, B.W.; Zemanian, T.S.; Robins, W.H.; Wright, C.W.

    1995-01-01

    Supercritical fluid extraction is gaining acceptance as an alternative sample preparation method for trace organic analysis. The development of SFE instrumentation optimized for field use requires taking several technical design issues including size and weight requirements, user-friendly operation, and technical performance capabilities into consideration. Parameters associated with a prototype SFE instrument under development for potential use in conducting on-site inspections of the Chemical Weapons Convention and its preliminary technical and operational performance are described.

  1. Monodisperse microbeads of hypercrosslinked polystyrene for liquid and supercritical fluid chromatography

    Science.gov (United States)

    Tsyurupa, M. P.; Blinnikova, Z. K.; Il'in, M. M.; Davankov, V. A.; Parenago, O. O.; Pokrovskii, O. I.; Usovich, O. I.

    2015-11-01

    Monodisperse styrene-divinylbenzene (1 wt %) copolymer microbeads are obtained via the elaborate method of high-productivity precipitation polymerization. The crosslinking of this copolymer with chloromethyl methyl ether in the presence of Friedel-Crafts catalyst yields porous hypercrosslinked polymers with degrees of crosslinking that range from 200 to 500%. Microbead sorbents are shown to be suited for selective stationary phases for high-performance liquid chromatography and supercritical fluid chromatography.

  2. Studies on supercritical fluid extraction behaviour of uranium and thorium nitrates using amides

    International Nuclear Information System (INIS)

    Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2007-01-01

    Supercritical fluid extraction studies of uranyl nitrate and thorium nitrate in mixture were carried out using various amides such as N,N-di(2-ethylhexyl) isobutyramide (D2EHIBA),N,N-dihexyl octanamide (DHOA) and Diisooctyl Butanamide (DiOBA). These studies established a preferential extraction of uranium over thorium. Among the various amides studied, D2EHIBA offered the best rate of preferential extraction of uranium over thorium. (author)

  3. Nitrate conversion and supercritical fluid extraction of UO2-CeO2 solid solution prepared by an electrolytic reduction-coprecipitation method

    International Nuclear Information System (INIS)

    Zhu, L.Y.; Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J.

    2014-01-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N 2 O 4 into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO 2 -CeO 2 solid solution was prepared as a surrogate for a UO 2 -PuO 2 solid solution, and the recovery of U and Ce from the UO 2 -CeO 2 solid solution with liquid N 2 O 4 and supercritical CO 2 containing tri-n-butyl phosphate (TBP) was investigated. The UO 2 -CeO 2 solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N 2 O 4 . The XRD pattern of the nitrates was similar to that of UO 2 (NO 3 ) 2 . 3H 2 O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO 2 containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  4. PROSPECTS FOR USE OF CONDENSED GASES AND SUPERCRITICAL FLUIDS IN PHYTOCHEMICAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Demyanenko DV

    2017-03-01

    Full Text Available In the given review article analysis of the literature and patent sources concerning main methods for intensification of extraction processes of medicinal vegetative raw materials – use of condensed gases and supercritical fluids (SCF on more acceptable extractants has been carried out for last 20 years. Urgency of the specified technologies consists in need for replacement of traditional extraction methods on power- and time-saving ones, and also in use of nontoxic, fire-proof and low-boiling solvents because the most of routine organic solvents (ethanol, methanol, acetone, chloroform, ethylacetate, etc. are toxic and/or flammable or expansive and rather hard to evaporate out from extracts obtained. The abovementioned trends are the most universal for intensification of extraction processes and sometimes purification of final or intermediate products acceptable for commercial scale of manufacture. The main advantages and disadvantages of the given methods are compared for different plant species and groups of biologically active substances (BAS. It has been shown that in most cases supercritical СО2 (SC-СО2 are inferior in its dissolving ability to number of condensed gases and, besides, such technology is much more expensive. The range of BAS taken with SC-СО2 is limited to mainly lipophilic compounds because of zero electrical dipole moment of SC-СО2 and its low polarity. As extractants alternative to SC-СО2 with higher dissolving ability SC - ethane, nitrogen monoxide, freons - R134а, R23, R32, R408 and number of others can be used. Also to enlarge range of extractable BAS it is possible to add different cosolvents, mainly ethanol or methanol in quantity up to 20%. At the same time in phytochemical production prospective alternatives to liquid or supercritical СО2 are certain condensed gases with wider range of physico-chemical properties: fluorinated derivatives of hydrocarbons (freons, liquid ammonia, dimethyl ether (DME

  5. Rapid Determination of Two Triterpenoid Acids in Chaenomelis Fructus Using Supercritical Fluid Extraction On-line Coupled with Supercritical Fluid Chromatography.

    Science.gov (United States)

    Zhang, Xiaotian; Ji, Feng; Li, Yueqi; He, Tian; Han, Ya; Wang, Daidong; Lin, Zongtao; Chen, Shizhong

    2018-01-01

    In this study, an on-line supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC) method was developed for the rapid determination of oleanoic acid and ursolic acid in Chaenomelis Fructus. After optimization of the conditions, the two triterpenoid acids was obtained by SFE using 20% methanol as a modifier at 35°C in 8 min. They were resolved on a Shim-pack UC-X Diol column (4.6 × 150 mm, 3 μm) in 14 min (0 - 10 min, 5 - 10%; 10 - 14 min, 10% methanol in CO 2 ) with a backpressure of 15 MPa at 40°C. The on-line SFE-SFC method could be completed within 40 min (10.79 mg/g dry plant, R s = 2.36), while the ultrasound-assisted extraction and HPLC method required at least 90 min (3.55 mg/g dry plant, R s = 1.92). This on-line SFE-SFC method is powerful to simplify the pre-processing and quantitative analysis of natural products.

  6. Critical phenomena and their effect on thermal energy storage in supercritical fluids

    International Nuclear Information System (INIS)

    Hobold, Gustavo M.; Da Silva, Alexandre K.

    2017-01-01

    Highlights: •High power thermal energy storage using supercritical fluids. •Influence of property variation on energy and power density. •Multi-fluid analysis and generalization for several storage temperatures. •Cost, heat transfer and energy density evaluation for high temperature storage. -- Abstract: Large-scale implementation of concentrated solar power plants requires energy storage systems if fossil sources are to be fully replaced. While several candidates have appeared, most still face major issues such as cost, limited energy density and material compatibility. The present paper explores the influence of property variation in the proximity of the critical point on thermal energy storage using supercritical fluids (sTES) from thermodynamic and heat transfer standpoints. Influence of thermodynamic operational parameters on energy density of isobaric and isochoric sTES and their optima is discussed, showing that the energy density results from a competition between average specific heat and loaded density. Moreover, sTES is shown to be applicable to virtually any storage temperature, depending only on the fluid’s critical point. Finally, a heat transfer and energy density comparison to other existing storage mechanisms is presented and supercritical water is shown to be competitive for high temperature thermal energy storage.

  7. Supercritical fluid extraction of 2-alkylcyclobutanones formed from triglycerides by irradiation

    International Nuclear Information System (INIS)

    Horvatovich, P.; Farkas, J.; Hasselmann, C.; Marchioni, E.

    1998-01-01

    Complete text of publication follows. Radiation processing is employed to improve the microbiological safety of foodstuffs, and at the same time to suit the 'minimal processing' principle. However adequate information for consumers to enable their free choices requires specific detection methods of irradiation processes. For this purpose one of the most suitable methods is the detection of 2-alkylcyclobutanones which are formed - according to the present knowledge - only by irradiation from the fatty acid part of triglycerides. For detection of these compounds a European Norm (EN 1785) has been established. The method consists of Sohxlet extraction of fatty acids from the food sample, separation of 2-alkylcyclobutanones from other fatty components with liquid chromatography on Florisil TM , and the GC-MS analysis of the appropriate fraction with single ion monitoring (SIM) monitoring of 98 and 112 ions. But this method has a relatively high detection limit (∼1 kGy), it is time consuming and needs costly and sophisticated apparates. To improve the detection of 2-alkylcyclobutanones we replaced the Sohxlet extraction step with a supercritical fluid extraction. We optimised trapping and extraction parameters. It was found that supercritical fluid extraction is more selective than Sohxlet extraction used in the standard protocol. The extract obtained by supercritical fluid extraction contains less quantity and number of detection-disturbing components. This work is the first step towards decreasing the detection limit which will be the derivatization of 2-alkylcyclobutanones with halogen-containing reagent, and detection of derivatives with electron-capture detector (ECD)

  8. Supercritical Fluid Extraction of Lovastatin from the Wheat Bran Obtained after Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Ruchir C. Pansuriya

    2009-01-01

    Full Text Available The objective of the present work is to extract lovastatin with minimum impurity by using supercritical carbon dioxide (SC-CO2. A strain of Aspergillus terreus UV 1617 was used to produce lovastatin by solid-state fermentation (SSF on wheat bran as a solid substrate. Extraction of lovastatin and its hydroxy acid form was initially carried out using organic solvents. Among the different screened solvents, acetonitrile was found to be the most efficient. SC-CO2 was used for extraction of lovastatin from the dry fermented matter. The effect of supercritical extraction parameters such as the amount of an in situ pretreatment solvent, temperature, pressure, flow rate and contact time were investigated. The maximum recovery of lovastatin was obtained with 5 mL of methanol as an in situ pretreatment solvent for 1.5 g of solid matrix, flow rate of the supercritical solvent 2 L/min, temperature 50 °C, and contact time 155 min at a pressure 300 bar. The lovastatin extract obtained after optimizing the conditions of supercritical fluid extraction was found to have 5-fold more HPLC purity than the organic solvent extract.

  9. Computational Fluid Dynamics Analysis of Supercritical Carbon Dioxide Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae W.; Kim, Nam H.; Suh, Kune Y. [Seoul National University, Seoul (Korea, Republic of); Kim, Seung O. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    The supercritical carbon dioxide (SCO{sub 2}) gas turbine Brayton cycle has been not only adopted in the secondary loop of the Generation IV nuclear energy systems but also planned to be installed in the high efficiency power conversion cycles of the nuclear fusion reactors. The potential beneficiaries include the Korea Advanced Liquid Metal Reactor (KALIMER), Korea Superconducting Tokamak Advanced Research (KSTAR) and International Thermonuclear Experimental Reactor (ITER). The reason for these welcomed applications is that the cycle can achieve the overall energy conversion efficiency as high as 45%. The SCO{sub 2} turbine efficiency is one of the major parameters affecting the overall Brayton cycle efficiency. Thus, optimal turbine design determines the economics of the Generation IV as well as the future nuclear fission and fusion energy industry. Seoul National University has recently been working on the SCO{sub 2} based Modular Optimized Brayton Integral System (MOBIS). MOBIS includes the Gas Advanced Turbine Operation Study (GATOS), the Loop Operating Brayton Optimization Study (LOBOS), the Nonsteady Operation Multidimensional Online Simulator (NOMOS), and the Turbine Advanced Compressor Operation Study (TACOS). This paper presents first results from GATOS.

  10. Computational Fluid Dynamics Analysis of Supercritical Carbon Dioxide Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae W.; Kim, Nam H.; Suh, Kune Y. [Seoul National University, Seoul (Korea, Republic of); Kim, Seung O. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    The supercritical carbon dioxide (SCO{sub 2}) gas turbine Brayton cycle has been not only adopted in the secondary loop of the Generation IV nuclear energy systems but also planned to be installed in the high efficiency power conversion cycles of the nuclear fusion reactors. The potential beneficiaries include the Korea Advanced Liquid Metal Reactor (KALIMER), the Korea Superconducting Tokamak Advanced Research (KSTAR) as well as the International Thermonuclear Experimental Reactor (ITER). The reason for these welcomed applications is that the cycle can achieve the overall energy conversion efficiency as high as 45%. The SCO{sub 2} turbine efficiency is one of the major parameters affecting the overall Brayton cycle efficiency. Thus, optimal turbine design determines the economics of the Generation IV as well as the future nuclear fission and fusion energy industry. Seoul National University has recently been working on the SCO{sub 2} based Modular Optimized Brayton Integral System (MOBIS). MOBIS includes the Gas Advanced Turbine Operation Study (GATOS), the Loop Operating Brayton Optimization Study (LOBOS), the Nonsteady Operation Multidimensional Online Simulator (NOMOS), and the Turbine Advanced Compressor Operation Study (TACOS). This paper presents results from GATOS.

  11. Computational Fluid Dynamics Analysis of Supercritical Carbon Dioxide Turbine

    International Nuclear Information System (INIS)

    Kim, Tae W.; Kim, Nam H.; Suh, Kune Y.; Kim, Seung O.

    2006-01-01

    The supercritical carbon dioxide (SCO 2 ) gas turbine Brayton cycle has been not only adopted in the secondary loop of the Generation IV nuclear energy systems but also planned to be installed in the high efficiency power conversion cycles of the nuclear fusion reactors. The potential beneficiaries include the Korea Advanced Liquid Metal Reactor (KALIMER), Korea Superconducting Tokamak Advanced Research (KSTAR) and International Thermonuclear Experimental Reactor (ITER). The reason for these welcomed applications is that the cycle can achieve the overall energy conversion efficiency as high as 45%. The SCO 2 turbine efficiency is one of the major parameters affecting the overall Brayton cycle efficiency. Thus, optimal turbine design determines the economics of the Generation IV as well as the future nuclear fission and fusion energy industry. Seoul National University has recently been working on the SCO 2 based Modular Optimized Brayton Integral System (MOBIS). MOBIS includes the Gas Advanced Turbine Operation Study (GATOS), the Loop Operating Brayton Optimization Study (LOBOS), the Nonsteady Operation Multidimensional Online Simulator (NOMOS), and the Turbine Advanced Compressor Operation Study (TACOS). This paper presents first results from GATOS

  12. Supercritical fluid extraction of γ-Pyrones from Ammi visnaga L. fruits

    Directory of Open Access Journals (Sweden)

    Mokhtar Bishr

    2018-06-01

    Full Text Available Extraction with supercritical fluid technique has proved to be effective in many applications including extraction and separation of various active principals from medicinal plants. It was used due to its advantages especially safety, specificity, selectivity and ease of component recovery.Ammi visnaga, L. belongs to the family Apiaceae. The fruits are used specifically for the treatment of kidney stones depending on its γ-Pyrones (mainly khellin and visnagin [2]. The supercritical fluid extraction technique of khellin and visnagin was investigated and the operating conditions for their extraction were optimized. The effect of different pressure (150, 200, 300, 400 and 500 bars, temperature (35, 40, 45, 50 and 55 °C, and particle sizes of the raw material (0.5, 1, 1.4 mm and entire fruits on the extract yield was studied under dynamic conditions for extraction for a run time of 90 min. Optimum supercritical extraction condition was found to be 200 bars at 45 °C and optimum particle size was found to be 1.4 mm. The yield is yellowish white bitter powder and measures 1.74% w/w relative to the dried weight of the fruits containing 38.414% w/w average γ-Pyrones content of which 29.4%w/w khellin, and 9.014%w/w visnagin.The obtained extracts were analyzed by reversed phase HPLC. Keywords: Ammi visnaga fruits, γ-Pyrones (khellin and visnagin, Supercritical fluid extraction and HPLC

  13. Screening of hydrocarbons as supercritical ORCs working fluids by thermal stability

    International Nuclear Information System (INIS)

    Dai, Xiaoye; Shi, Lin; An, Qingsong; Qian, Weizhong

    2016-01-01

    Highlights: • A rapid evaluation method for thermal stability of hydrocarbons for ORCs. • Methane and hydrogen are confirmed to be decomposition indicators. • The decomposition temperatures for some hydrocarbons using the rapid method. • Long carbon chain hydrocarbons are not suitable for supercritical ORCs. - Abstract: Organic Rankine Cycle (ORC) systems are widely used for industrial waste heat recovery and renewable energy utilization. The supercritical ORC is currently one of the main development directions due to its low exergy loss, high thermal efficiency and high work output. The thermal stability is the major limitation of organic working fluid selection with high temperature heat sources. This paper presents a rapid experimental method for assessing the thermal stability of hydrocarbons for ORCs. The fluids were tested in a high temperature reactor with methane and hydrogen theoretically and experimentally confirmed to be the indicators of thermal decomposition. The thermal decomposition temperatures were obtained for n-hexane, n-pentane, isopentane, cyclopentane, n-butane and isobutane using the rapid experimental method. The results show that cycloalkanes are not the good choices by thermal stability and long carbon chain hydrocarbons (longer than C6) are not suitable for supercritical ORCs due to the thermal stability limitation.

  14. RED WINE EXTRACT OBTAINED BY MEMBRANE-BASED SUPERCRITICAL FLUID EXTRACTION: PRELIMINARY CHARACTERIZATION OF CHEMICAL PROPERTIES.

    Directory of Open Access Journals (Sweden)

    W. Silva

    Full Text Available ABSTRACT This study aims to obtain an extract from red wine by using membrane-based supercritical fluid extraction. This technique involves the use of porous membranes as contactors during the dense gas extraction process from liquid matrices. In this work, a Cabernet Sauvignon wine extract was obtained from supercritical fluid extraction using pressurized carbon dioxide as solvent and a hollow fiber contactor as extraction setup. The process was continuously conducted at pressures between 12 and 18 MPa and temperatures ranged from 30 to 50ºC. Meanwhile, flow rates of feed wine and supercritical CO2 varied from 0.1 to 0.5 mL min-1 and from 60 to 80 mL min-1 (NCPT, respectively. From extraction assays, the highest extraction percentage value obtained from the total amount of phenolic compounds was 14% in only one extraction step at 18MPa and 35ºC. A summarized chemical characterization of the obtained extract is reported in this work; one of the main compounds in this extract could be a low molecular weight organic acid with aromatic structure and methyl and carboxyl groups. Finally, this preliminary characterization of this extract shows a remarkable ORAC value equal to 101737 ± 5324 µmol Trolox equivalents (TE per 100 g of extract.

  15. Fingerprints of flower absolutes using supercritical fluid chromatography hyphenated with high resolution mass spectrometry.

    Science.gov (United States)

    Santerre, Cyrille; Vallet, Nadine; Touboul, David

    2018-06-02

    Supercritical fluid chromatography hyphenated with high resolution mass spectrometry (SFC-HRMS) was developed for fingerprint analysis of different flower absolutes commonly used in cosmetics field, especially in perfumes. Supercritical fluid chromatography-atmospheric pressure photoionization-high resolution mass spectrometry (SFC-APPI-HRMS) technique was employed to identify the components of the fingerprint. The samples were separated with a porous graphitic carbon (PGC) Hypercarb™ column (100 mm × 2.1 mm, 3 μm) by gradient elution using supercritical CO 2 and ethanol (0.0-20.0 min (2-30% B), 20.0-25.0 min (30% B), 25.0-26.0 min (30-2% B) and 26.0-30.0 min (2% B)) as mobile phase at a flow rate of 1.5 mL/min. In order to compare the SFC fingerprints between five different flower absolutes: Jasminum grandiflorum absolutes, Jasminum sambac absolutes, Narcissus jonquilla absolutes, Narcissus poeticus absolutes, Lavandula angustifolia absolutes from different suppliers and batches, the chemometric procedure including principal component analysis (PCA) was applied to classify the samples according to their genus and their species. Consistent results were obtained to show that samples could be successfully discriminated. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. A flow-through column electrolytic cell for supercritical fluid chromatography.

    Science.gov (United States)

    Yamamoto, Kazuhiro; Ueki, Tatsuya; Higuchi, Naoyuki; Takahashi, Kouji; Kotani, Akira; Hakamata, Hideki

    2017-10-01

    A novel flow-through column electrolytic cell was proposed as a detector to obtain current signals for supercritical fluid chromatography. The electrochemical cell consisted of two electrodes and its holder, and a working and a counter electrode were fabricated from 192 carbon strings, which were composed of 400 carbon fibers of 10 μm in diameter filled into a heat-shrinkable tube. These electrodes were placed in the center of a holder made from polyether ether ketone blocks and they were separated by polytetrafluoroethylene membrane filters. To evaluate the sensitivity of this cell, a standard solution of ferrocene was injected into the supercritical fluid chromatography system connected to the electrolytic cell. The ferrocene was eluted through a silica gel column using a mixture of a mobile phase of supercritical CO 2 and a modifier of methanol containing ammonium acetate. The current peak area of ferrocene correlated to the ferrocene concentration in the range of 10-400 μmol/L (r = 0.999). Moreover, the limit of detection on the column estimated from a signal-to-noise ratio of 3 was 9.8  × 10 -13  mol. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Isolation, Fractionation, and Identification of Sucrose Esters from Various Oriental Tobaccos Employing Supercritical Fluids

    Directory of Open Access Journals (Sweden)

    Ashraf-Khorassani M

    2014-12-01

    Full Text Available Isolation, fractionation, and identification of sucrose esters from aged oriental tobacco employing supercritical fluids have been completed. Underivatized sucrose ester-rich extracts were obtained using supercritical CO2 at densities greater than 0.73 g/mL. Lower density CO2 provided extracts with notable amounts of tobacco derived material; yet, no detectable sucrose ester content. Preparative supercritical fluid chromatography (SFC provided for an additional purification of the sucrose ester-enriched fraction after column optimization. Structural assignments of the SFC fractions were facilitated using gas chromatography/mass spectrometry (GC/MS accompanied by N, O-bis(trimethylsilyltrifluoroacetamide-dimethylformamide (BSTFA-DMF derivatization of the free hydroxyl groups and high performance-liquid chromatography/mass spectrometry (HPLC/MS. From a relative quantitative perspective regardless of tobacco type, sucrose esters having an acetyl group on C6 of the glucose function (Group III were in higher concentration compared to both the concentration observed for sucrose ester of Group I (acetyl group on C3 of fructose and sucrose ester of Group II (no acetyl group on either glucose or fructose. Saturated fatty acid constituents were found to range from a maximum total of 18 carbons to a minimum total of 13 carbons. Unsaturated and isomeric fatty acid homologues were detected within the Group II sucrose ester.

  18. Tuning the nanostructures and optical properties of undoped and N-doped ZnO by supercritical fluid treatment

    Science.gov (United States)

    Li, Yaping; Wang, Hui-Qiong; Chu, Tian-Jian; Li, Yu-Chiuan; Li, Xiaojun; Liao, Xiaxia; Wang, Xiaodan; Zhou, Hua; Kang, Junyong; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Zheng, Jin-Cheng

    2018-05-01

    Treatment of ZnO films in a supercritical fluid (SCF) has been reported to improve the performance of devices in which the treated ZnO films are incorporated; however, the mechanism of this improvement remains unclear. In this paper, we study the transformation of the surface morphologies and emission properties of ZnO films before and after SCF treatment, establishing the relationship between the treated and untreated structures and thereby enabling tuning of the catalytic or opto-electronic performance of ZnO films or ZnO-film-based devices. Both undoped and N-doped ZnO nanostructures generated by SCF treatment of films are investigated using techniques to characterize their surface morphology (scanning electron microscopy (SEM) and atomic force microscopy (AFM)) as well as room-temperature photoluminescence (RT-PL) spectroscopy. The water-mixed supercritical CO2 (W-SCCO2) technology was found to form nanostructures in ZnO films through a self-catalyzed process enabled by the Zn-rich conditions in the ZnO films. The W-SCCO2 was also found to promote the inhibition of defect luminescence by introducing -OH groups onto the films. Two models are proposed to explain the effects of the treatment with W-SCCO2. This work demonstrates that the W-SCCO2 technology can be used as an effective tool for the nanodesign and property enhancement of functional metal oxides.

  19. Discussion of heat transfer phenomena in fluids at supercritical pressure with the aid of CFD models

    International Nuclear Information System (INIS)

    Sharabi, Medhat; Ambrosini, Walter

    2009-01-01

    The paper discusses heat transfer enhancement and deterioration phenomena observed in experimental data for fluids at supercritical pressure. The results obtained by the application of various CFD turbulence models in the prediction of experimental data for water and carbon dioxide flowing in circular tubes are firstly described. On this basis, the capabilities of the addressed models in predicting the observed phenomena are shortly discussed. Then, the analysis focuses on further results obtained by a low-Reynolds number k - ε model addressing one of the considered experimental apparatuses by changing the operating conditions. In particular, the usual imposed heat flux boundary condition is changed to assigned wall temperature, in order to highlight effects otherwise impossible to point out. The obtained results, supported by considerations drawn from experimental information, allow comparing the trends observed for heat transfer deterioration at supercritical pressure with those typical of the thermal crisis in boiling systems, clarifying old concepts of similarity among them

  20. Squalene Extraction by Supercritical Fluids from Traditionally Puffed Amaranthus hypochondriacus Seeds

    Directory of Open Access Journals (Sweden)

    Teresa Rosales-García

    2017-01-01

    Full Text Available Extraction of squalene, a potent natural antioxidant, from puffed A. hypochondriacus seeds was performed by supercritical fluid extraction (SCFE; besides, to have a blank for comparison, extraction was performed also by Soxhlet method using organic solvents (hexane. Chemical proximal composition and seed morphology were determined in raw, puffed, and SCFE-extracted seeds. Extracts were obtained with a 500 mL capacity commercial supercritical extractor and performed between 10 and 30 MPa at 313, 323, and 333 K under constant CO2 flow of 0.18 kg CO2/h during 8 h. The squalene content was determined and the fatty acids present in the extracts were identified by GC-MS. The extract obtained by SCFE from puffed amaranth seeds reached 460 ± 28.1 g/kg squalene in oily extract at 313 K/20 MPa.

  1. Determination of fat- and water-soluble vitamins by supercritical fluid chromatography: A review.

    Science.gov (United States)

    Tyśkiewicz, Katarzyna; Dębczak, Agnieszka; Gieysztor, Roman; Szymczak, Tomasz; Rój, Edward

    2018-01-01

    Vitamins are compounds that take part in all basic functions of an organism but also are subject of number of studies performed by different researchers. Two groups of vitamins are distinguished taking into consideration their solubility. Chromatography with supercritical CO 2 has found application in the determination, separation, and quantitative analyses of both fat- and water-soluble vitamins. The methods of vitamins separation have developed and improved throughout the years. Both groups of compounds were separated using supercritical fluid chromatography with different detection on different stationary phases. The main aim of this review is to provide an overview of the studies of vitamins separation that have been determined so far. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Supercritical fluid extraction of triterpenes and aliphatic hydrocarbons from olive tree derivatives

    Directory of Open Access Journals (Sweden)

    Aimen Issaoui

    2017-05-01

    Full Text Available Olive leaves and tree bark were extracted through supercritical fluid extraction (SFE and the chemical composition of the extracted mixture was determined by Gas Chromatography–Mass Spectrometry (GC–MS. Both samples contain a great number of triterpenes as squalene, which were used since 1997 as a main constituent of the flu vaccine (FLUAD, and the alpha-tocopherol the most biologically active form of vitamin E. We also underline the presence of many aliphatic compounds such nonacosane and heptacosane in low concentrations. The extractions were carried out at 313 and 333 K, at a pressure varying from 90 to 250 bars and using pure carbon dioxide in its supercritical phase. Therefore, their solubilities at equilibrium were numerically optimized via two assumptions and compared with the experimental values. Indeed, a good agreement between several results was shown.

  3. Study of high-pressure adsorption from supercritical fluids by the potential theory

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Shapiro, Alexander

    2009-01-01

    The multicomponent potential theory of adsorption (MPTA), which has been previously used to study low-pressure adsorption of subcritical fluids, is extended to adsorption equilibria from supercritical fluids up to high pressures. The MPTA describes an adsorbed phase as an inhomogeneous fluid...... the adsorbed and the gas phases. We have also evaluated the performance of the classical Soave-Redlich-Kwong (SRK) EoS. The fluid-solid interactions are described by simple Dubinin-Radushkevich-Astakhov (DRA) potentials. In addition, we test the performance of the 10-4-3 Steele potential. It is shown...... that application of sPC-SAFT slightly improves the performance of the MPTA and that in spite of its simplicity, the DRA model can be considered as an accurate potential, especially, for mixture adsorption. We show that, for the sets of experimental data considered in this work, the MPTA is capable of predicting...

  4. [Fluid dynamics of supercritical helium within internally cooled cabled superconductors

    International Nuclear Information System (INIS)

    Van Sciver, S.W.

    1995-01-01

    The Applied Superconductivity Center of the University of Wisconsin-Madison proposes to conduct research on low temperature helium fluid dynamics as it applies to the cooling of internally cooled cabled superconductors (ICCS). Such conductors are used in fusion reactor designs including most of the coils in ITER. The proposed work is primarily experimental involving measurements of transient and steady state pressure drop in a variety of conductor configurations. Both model and prototype conductors for actual magnet designs will be investigated. The primary goal will be to measure and model the friction factor for these complex geometries. In addition, an effort will be made to study transient processes such as heat transfer and fluid expulsion associated with quench conditions

  5. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    Science.gov (United States)

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  6. Extraction of Plutonium From Spiked INEEL Soil Samples Using the Ligand-Assisted Supercritical Fluid Extraction (LA-SFE) Technique

    International Nuclear Information System (INIS)

    Fox, R.V.; Mincher, B.J.; Holmes, R.G.G.

    1999-01-01

    In order to investigate the effectiveness of ligand-assisted supercritical fluid extraction for the removal of transuranic contaminations from soils an Idaho National Engineering and Environmental Laboratory (INEEL) silty-clay soil sample was obtained from near the Radioactive Waste Management Complex area and subjected to three different chemical preparations before being spiked with plutonium. The spiked INEEL soil samples were subjected to a sequential aqueous extraction procedure to determine radionuclide portioning in each sample. Results from those extractions demonstrate that plutonium consistently partitioned into the residual fraction across all three INEEL soil preparations whereas americium partitioned 73% into the iron/manganese fraction for soil preparation A, with the balance partitioning into the residual fraction. Plutonium and americium were extracted from the INEEL soil samples using a ligand-assisted supercritical fluid extraction technique. Initial supercritical fluid extraction runs produced plutonium extraction technique. Initial supercritical fluid extraction runs produced plutonium extraction efficiencies ranging from 14% to 19%. After a second round wherein the initial extraction parameters were changed, the plutonium extraction efficiencies increased to 60% and as high as 80% with the americium level in the post-extracted soil samples dropping near to the detection limits. The third round of experiments are currently underway. These results demonstrate that the ligand-assisted supercritical fluid extraction technique can effectively extract plutonium from the spiked INEEL soil preparations

  7. Efficient separation of curcumin, demethoxycurcumin, and bisdemethoxycurcumin from turmeric using supercritical fluid chromatography: From analytical to preparative scale.

    Science.gov (United States)

    Song, Wei; Qiao, Xue; Liang, Wen-fei; Ji, Shuai; Yang, Lu; Wang, Yuan; Xu, Yong-wei; Yang, Ying; Guo, De-an; Ye, Min

    2015-10-01

    Curcumin is the major constituent of turmeric (Curcuma longa L.). It has attracted widespread attention for its anticancer and anti-inflammatory activities. The separation of curcumin and its two close analogs, demethoxycurcumin and bisdemethoxycurcumin, has been challenging by conventional techniques. In this study, an environmentally friendly method based on supercritical fluid chromatography was established for the rapid and facile separation of the three curcuminoids directly from the methanol extract of turmeric. The method was first developed and optimized by ultra performance convergence chromatography, and was then scaled up to preparative supercritical fluid chromatography. Eluted with supercritical fluid CO2 containing 8-15% methanol (containing 10 mM oxalic acid) at a flow rate of 80 mL/min, curcumin, demethoxycurcumin and bisdemethoxycurcumin could be well separated on a Viridis BEH OBD column (Waters, 250 mm × 19 mm, 5 μm) within 6.5 min. As a result, 20.8 mg of curcumin (97.9% purity), 7.0 mg of demethoxycurcumin (91.1%), and 4.6 mg of bisdemethoxycurcumin (94.8%) were obtained after a single step of supercritical fluid chromatography separation with a mean recovery of 76.6%. Showing obvious advantages in low solvent consumption, large sample loading, and easy solvent removal, supercritical fluid chromatography was proved to be a superior technique for the efficient separation of natural products. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Carotenoids Functionality, Sources, and Processing by Supercritical Technology: A Review

    Directory of Open Access Journals (Sweden)

    Natália Mezzomo

    2016-01-01

    Full Text Available Carotenoid is a group of pigments naturally present in vegetal raw materials that have biological properties. These pigments have been used mainly in food, pharmaceutical, and cosmetic industries. Currently, the industrial production is executed through chemical synthesis, but natural alternatives of carotenoid production/attainment are in development. The carotenoid extraction occurs generally with vegetal oil and organic solvents, but supercritical technology is an alternative technique to the recovery of these compounds, presenting many advantages when compared to conventional process. Brazil has an ample diversity of vegetal sources inadequately investigated and, then, a major development of optimization and validation of carotenoid production/attainment methods is necessary, so that the benefits of these pigments can be delivered to the consumer.

  9. Solid-state flurbiprofen and methyl-β-cyclodextrin inclusion complexes prepared using a single-step, organic solvent-free supercritical fluid process.

    Science.gov (United States)

    Rudrangi, Shashi Ravi Suman; Kaialy, Waseem; Ghori, Muhammad U; Trivedi, Vivek; Snowden, Martin J; Alexander, Bruce David

    2016-07-01

    The aim of this study was to enhance the apparent solubility and dissolution properties of flurbiprofen through inclusion complexation with cyclodextrins. Especially, the efficacy of supercritical fluid technology as a preparative technique for the preparation of flurbiprofen-methyl-β-cyclodextrin inclusion complexes was evaluated. The complexes were prepared by supercritical carbon dioxide processing and were evaluated by solubility, differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, practical yield, drug content estimation and in vitro dissolution studies. Computational molecular docking studies were conducted to study the possibility of molecular arrangement of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin. The studies support the formation of stable molecular inclusion complexes between the drug and cyclodextrin in a 1:1 stoichiometry. In vitro dissolution studies showed that the dissolution properties of flurbiprofen were significantly enhanced by the binary mixtures prepared by supercritical carbon dioxide processing. The amount of flurbiprofen dissolved into solution alone was very low with 1.11±0.09% dissolving at the end of 60min, while the binary mixtures processed by supercritical carbon dioxide at 45°C and 200bar released 99.39±2.34% of the drug at the end of 30min. All the binary mixtures processed by supercritical carbon dioxide at 45°C exhibited a drug release of more than 80% within the first 10min irrespective of the pressure employed. The study demonstrated the single step, organic solvent-free supercritical carbon dioxide process as a promising approach for the preparation of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin in solid-state. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Supercritical Synthesis of Biodiesel

    Directory of Open Access Journals (Sweden)

    Michel Vaultier

    2012-07-01

    Full Text Available The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF technologies offer an interesting alternative to conventional processes for preparing biodiesel. This review highlights the advances, advantages, drawbacks and new tendencies involved in the use of supercritical fluids (SCFs for biodiesel synthesis.

  11. Comparison of supercritical fluid and Soxhlet extractions for the quantification of hydrocarbons from Euphorbia macroclada.

    Science.gov (United States)

    Ozcan, Adnan; Ozcan, Asiye Safa

    2004-10-08

    This study compares conventional Soxhlet extraction and analytical scale supercritical fluid extraction (SFE) for their yields in extracting of hydrocarbons from arid-land plant Euphorbia macroclada. The plant material was firstly sequentially extracted with supercritical carbon dioxide, modified with 10% methanol (v/v) in the optimum conditions that is a pressure of 400atm and a temperature of 50 degrees C and then it was sonicated in methylene chloride for an additional 4h. E. macroclada was secondly extracted by using a Soxhlet apparatus at 30 degrees C for 8h in methylene chloride. The validated SFE was then compared to the extraction yield of E. macroclada with a Soxhlet extraction by using the Student's t-test at the 95% confidence level. All of extracts were fractionated with silica-gel in a glass column to get better hydrocarbon yields. Thus, the highest hydrocarbons yield from E. macroclada was achieved with SFE (5.8%) when it compared with Soxhlet extractions (1.1%). Gas chromatography (GC) analysis was performed to determine the quantitative hydrocarbons from plant material. The greatest quantitative hydrocarbon recovery from GC was obtained by supercritical carbon dioxide extract (0.6mgg(-1)).

  12. Near-critical and supercritical fluid extraction of polycyclic aromatic hydrocarbons from town gas soil

    International Nuclear Information System (INIS)

    Kocher, B.S.; Azzam, F.O.; Cutright, T.J.; Lee, S.

    1995-01-01

    The contamination of soil by hazardous and toxic organic pollutants is an ever-growing problem facing the global community. One particular family of contaminants that are of major importance are polycyclic aromatic hydrocarbons (PAHs). PAHs are the result of coal gasification and high-temperature processes. Sludges from these town gas operations were generally disposed of into unlined pits and left there for eventual biodegradation. However, the high levels of PAH contained in the pits prevented the occurrence of biodegradation. PAH contaminated soil is now considered hazardous and must be cleaned to environmentally acceptable standards. One method for the remediation is extraction with supercritical water. Water in or about its critical region exhibits enhanced solvating power toward most organic compounds. Contaminated soil containing 4% by mass of hydrocarbons was ultra-cleaned in a 300-cm 3 semicontinuous system to an environmentally acceptable standard of less than 200 ppm residual hydrocarbon concentration. The effects of subcritical or supercritical extraction, solvent temperature, pressure, and density have been studied, and the discerning characteristics of this type of fluid have been identified. The efficiencies of subcritical and supercritical extraction have been discussed from a process engineering standpoint

  13. Extraction of Stevia rebaudiana bertoni sweetener glycosides by supercritical fluid methods.

    Directory of Open Access Journals (Sweden)

    Juan José Hinojosa-González

    2017-05-01

    Full Text Available Aim. The aim was to evaluate the supercritical carbon dioxide extraction method with and without the addition of co-solvent to the system (mixture water: ethanol to obtain the glycosides from leaves of Stevia rebaudiana Bertoni. Methods. A SFT-150 SFE / SFR model with CO2 as a fluid was used for the supercritical extraction. The variables studied were temperature, pressure, extraction time and the presence or absence of the co-solvent (water-ethanol mixture in a concentration of 70:30 v/v, incorporated in different proportions to determine the effect on yield. The amount of glycoside sweeteners was analyzed by High Performance Liquid Chromatography (HPLC. Results. The pressure was the factor that favored the extraction, which was selective in obtaining Rebaudioside A with yields no greater than 2%. The inclusion of the co-solvent achieved an increase in yield to values of 2.9% Conclusion. Supercritical CO2 individually and mixed with ethanol-water as a co-solvent was not efficient to extract Stevia rebaudiana stevioside sweeteners

  14. Effects of process parameters on peanut skins extract and CO2 diffusivity by supercritical fluid extraction

    Science.gov (United States)

    Putra, N. R.; Yian, L. N.; Nasir, H. M.; Idham, Z. Binti; Yunus, M. A. C.

    2018-03-01

    Peanut skins (Arachis hypogea) are an agricultural waste product which has received much attention because they contain high nutritional values and can be potentially utilized in difference industries. At present, only a few studies have been conducted to study the effects of parameters on the peanut skins oil extraction. Therefore, this study aimed to determine the best extraction condition in order to obtain the highest extract yield using supercritical carbon dioxide (SC-CO2) with co-solvent Ethanol as compared to Soxhlet extraction method. Diffusivity of carbon dioxide in supercritical fluid extraction was determined using Crank model. The mean particle size used in this study was 425 µm. The supercritical carbon dioxide was performed at temperature (40 – 70 °C), flow rate of co-solvent ethanol (0 - 7.5% Vethanol/Vtotal), and extraction pressure (10 – 30 MPa) were used in this studies. The results showed that the percentage of oil yields and effective diffusivity increase as the pressure, rate of co-solvent, and temperature increased.

  15. Volatile and Nonvolatile Constituents and Antioxidant Capacity of Oleoresins in Three Taiwan Citrus Varieties as Determined by Supercritical Fluid Extraction

    Directory of Open Access Journals (Sweden)

    Min-Hung Chen

    2016-12-01

    Full Text Available As local varieties of citrus fruit in Taiwan, Ponkan (Citrus reticulata Blanco, Tankan (C. tankan Hayata, and Murcott (C. reticulate × C. sinensis face substantial competition on the market. In this study, we used carbon dioxide supercritical technology to extract oleoresin from the peels of the three citrus varieties, adding alcohol as a solvent assistant to enhance the extraction rate. The supercritical fluid extraction was fractionated with lower terpene compounds in order to improve the oxygenated amounts of the volatile resins. The contents of oleoresin from the three varieties of citrus peels were then analyzed with GC/MS in order to identify 33 volatile compounds. In addition, the analysis results indicated that the non-volatile oleoresin extracted from the samples contains polymethoxyflavones (86.2~259.5 mg/g, limonoids (111.7~406.2 mg/g, and phytosterols (686.1~1316.4 μg/g. The DPPH (1,1-Diphenyl-2-picrylhydrazyl, ABTS [2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid] scavenging and inhibition of lipid oxidation, which test the oleoresin from the three kinds of citrus, exhibited significant antioxidant capacity. The component polymethoxyflavones contributed the greatest share of the overall antioxidant capacity, while the limonoid and phytosterol components effectively coordinated with its effects.

  16. Supercritical fluid extraction: spectroscopic study of interactions comparison to solvent extraction

    International Nuclear Information System (INIS)

    Rustenholtz Farawila, A.

    2005-06-01

    Supercritical fluid carbon dioxide (SF-CO 2 ) was chosen to study Supercritical Fluid Extraction (SFE) of cesium and uranium. At first, crown ethers were considered as chelating agents for the SFE of cesium. The role of water and its interaction with crown ethers were especially studied using Fourier-Transform Infra-Red (FT-IR) spectroscopy in SF-CO 2 . A sandwich configuration between two crown ethers and a water molecule was observed in the SF-CO 2 phase for the first time. The equilibrium between the single and the bridge configurations was defined. The enthalpy of the hydrogen bond formation was also calculated. These results were then compared to the one in different mixtures of chloroform and carbon tetra-chloride using Nuclear Magnetic Resonance (NMR). To conclude this first part and in order to understand the whole picture of the recovery of cesium, I studied the role of water in the equilibrium between the cesium and the di-cyclo-hexano18-crown-6.In a second part, the supercritical fluid extraction of uranium was studied in SF-CO 2 . For this purpose, different complexes of Tributyl Phosphate (TBP), nitric acid and water were used as chelating and oxidizing agents. I first used FT-IR to study the TBP-water interaction in SF-CO 2 . These results were then compared to the one obtained with NMR in chloroform. NMR spectroscopy was also used to understand the TBP-nitric acid-water interaction first alone and then in chloroform. To conclude my research work, I succeeded to improve the efficiency of uranium extraction and stripping into water for a pilot-plant where enriched uranium is extracted from incinerated waste coming from nuclear fuel fabrication. TBP-nitric acid complexes were used in SF-CO 2 for the extraction of uranium from ash. (author)

  17. Supercritical fluid extraction: spectroscopic study of interactions comparison to solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Rustenholtz Farawila, A

    2005-06-15

    Supercritical fluid carbon dioxide (SF-CO{sub 2}) was chosen to study Supercritical Fluid Extraction (SFE) of cesium and uranium. At first, crown ethers were considered as chelating agents for the SFE of cesium. The role of water and its interaction with crown ethers were especially studied using Fourier-Transform Infra-Red (FT-IR) spectroscopy in SF-CO{sub 2}. A sandwich configuration between two crown ethers and a water molecule was observed in the SF-CO{sub 2} phase for the first time. The equilibrium between the single and the bridge configurations was defined. The enthalpy of the hydrogen bond formation was also calculated. These results were then compared to the one in different mixtures of chloroform and carbon tetra-chloride using Nuclear Magnetic Resonance (NMR). To conclude this first part and in order to understand the whole picture of the recovery of cesium, I studied the role of water in the equilibrium between the cesium and the di-cyclo-hexano18-crown-6.In a second part, the supercritical fluid extraction of uranium was studied in SF-CO{sub 2}. For this purpose, different complexes of Tributyl Phosphate (TBP), nitric acid and water were used as chelating and oxidizing agents. I first used FT-IR to study the TBP-water interaction in SF-CO{sub 2}. These results were then compared to the one obtained with NMR in chloroform. NMR spectroscopy was also used to understand the TBP-nitric acid-water interaction first alone and then in chloroform. To conclude my research work, I succeeded to improve the efficiency of uranium extraction and stripping into water for a pilot-plant where enriched uranium is extracted from incinerated waste coming from nuclear fuel fabrication. TBP-nitric acid complexes were used in SF-CO{sub 2} for the extraction of uranium from ash. (author)

  18. Studies on In-situ Chelation/Supercritical Fluid Extraction of Lanthanides and Actinides Using a Radiotracer Technique

    International Nuclear Information System (INIS)

    Lin, Yuehe; Wu, Hong; Smart, Neil G.; Wai, Chien M.

    2001-01-01

    Radioisotope tracer techniques were used to study the process of in-situ chelation/supercritical fluid extraction(SFE) of La3+ and Lu3+ from solid matrix using mixed ligand hexafluoroacetylacetone (HFA) and tributylphosphate (TBP) as chelating agents. A lab-built SFE extactor was used in this study and the extractor design was optimized based on the experimental results. Quantitative recovery of La and Lu was achieved when the extrator design was optimized. Extraction of uranium from real world samples was also investigated to demonstrate the capability of this chelation/SFE technology for environmental remediation applications. A novel on-line back extraction technique for the recovery of metal ions and regeneration of ligands is also reported.

  19. Supercritical fluid extraction (SFE) and gas chromatographic (GC) analysis of products from irradiated foods containing fat

    International Nuclear Information System (INIS)

    Adam, S.T.

    1993-01-01

    Official analytical methods specify the use of organic liquid solvents which may be hazardous to human health. Non-toxic chlorinated fluorocarbons (CFC) which are still recommended for extracting soil samples are known to be detrimental to the stratospheric ozone layer and therefore subject to the ''FCKW-Halon-Verbots-Verordnung''. Therefore, alternative extraction methods using solvents in the supercritical state are currently being developed (Supercritical Fluid Extraction (SFE)). Their low viscosity and the high diffusivity of solutes in the fluids allow selective, efficient and timesaving extractions. Carbon dioxide (CO 2 ) is the fluid of choice in many applications because its critical parameters permit mild operating conditions. CO 2 of high purity is available at low cost, it is neither inflammable nor explosive, physiologically harmless and part of natural cycle processes. Furthermore, it is simply removed from the matrix without any residues left. The combination of SFE and sorptive collection of the extracted substances has been found to lead to high enrichment factors for the analytes. Distillative concentration and solid phase elution steps, required in the classical solvent extraction procedure, are no longer necessary. Loss of analytes occurring in cryogenic or solvent traps is completeley avoided. Plugging of the restrictor as a consequence of the Joule Thomson effect was not observed in the presented method. (orig./vhe)

  20. Recovery of environmental analytes from clays and soils by supercritical fluid extracting/gas chromatography

    International Nuclear Information System (INIS)

    Emery, A.P.; Chesler, S.N.; MacCrehan, W.A.

    1992-01-01

    This paper reports on Supercritical Fluid Extraction (SFE) which promises to provide rapid extractions of organic analytes from environmental sample types without the use of hazardous solvents. In addition, SFE protocols using commercial instrumentation can be automated lowering analysis costs. Because of these benefits, we are investigating SFE as an alternative to the solvent extraction (eg. Soxhlet and sonication) techniques required in many EPA test procedures. SFE, using non-polar carbon dioxide as well as more polar supercritical fluids, was used to determine n-alkane hydrocarbons and polynuclear aromatic hydrocarbons (PAHs) in solid samples. The extraction behavior of these analyte classes from environmentally-contaminated soil matrices and model soil and clay matrices was investigated using a SFE apparatus in which the extracted analytes were collected on a solid phase trap and then selectively eluted with a solvent. The SFE conditions for quantitative recovery of n-alkane hydrocarbons in diesel fuel from a series of clays and soils were determined using materials prepared at the 0.02% level with diesel fuel oil in order to simplify analyte collection and analysis after extraction. The effect of extraction parameters including temperature, fluid flow rate and modifier addition were investigated by monitoring the amount of diesel fuel extracted as a function of time

  1. A field-portable supercritical fluid extractor for characterizing sources of waterborne organic compounds

    International Nuclear Information System (INIS)

    Fruchter, J.S.; Wright, B.W.

    1992-01-01

    Supercritical fluid extraction (SFE) is a viable alternative to current methods of liquid extraction for analyzing semivolatile organic compounds in contaminated solid matrices, such as soil and sediment. Because the SFE method is rapid (less than 30 min), large quantities of glassware and large volumes of solvent are not required, and there are fewer sample-handling and sample-preparation steps than in conventional liquid extraction methods, SFE lends itself to in-the-field extraction of solid samples. Laboratory-scale and portable SFE instruments were designed and tested both in the laboratory and in the field. The SFE method was validated through two recovery studies using individual polycyclic aromatic hydrocarbon (PAH) standards ranging from two to six rings in size and through two Soxhlet extraction comparison studies. Supercritical fluid extraction followed by gas chromatography was applied to 20 coal-tar-contaminated soil samples from three locations, 10 petroleum-oil-tar-contaminated soil samples, and 20 polychlorinated-biphenyl-contaminated soil samples. The SFE apparatus was transported and used in the field at four locations across the United States. Carbon dioxide was used as the extraction fluid

  2. Feasibility studies on supercritical fluid extraction of uranium from phosphoric acid

    International Nuclear Information System (INIS)

    Dubey, B.P.; Agarwal, A.K.

    2014-01-01

    Supercritical fluid extraction (SFE) is a promising novel technology for extraction of many materials. Work has been carried out worldwide on SFE of uranium from various matrices. However, there are no references indicating the R and D on uranium extraction from phosphoric acid using this technology. Heavy Water Board is involved in technology development for recovery of uranium from secondary source, hence it was considered prudent to investigate the technology of SFE for this purpose. Various experiments were carried out with both WPA (P 2 O 5 content 28%) and MGPA (P 2 O 5 content 54%) using bench scale facility available with one of the private party. Extraction experiments were carried out using several chelating agents including TBP, D2EHPA, D2EHPA+TBP/TOPO, TTA, TTA+TBP etc. Feasibility studies revealed the hydrodynamics of operation indicating liquid expansion by about three times during flow of super critical (SC) CO 2 . No flooding was observed when the extraction column filled 20% of its volume capacity, no carryover of entrained/extracted liquid with SC CO 2 with MGPA, material balance of inputs and outputs established i.e. 100% recovery of MGPA and chelating agent, No operational problems with raw MGPA (untreated). No significant extraction of impurities from phosphoric acid to SC CO 2 , 40℃ temperature and 160 bar pressure found ideal for extraction experiments since no other materials found extracted at these conditions and no apparent change/deterioration in PA and chelating agents. Experiments established feasibility of SCE with CO 2 , proper recovery of PA and chelating agents, no need for pretreatment/gunk removal from PA; however, extraction of uranium was found inadequate even though ORP of feed acid was boosted by H 2 O 2 addition. Investigations revealed that SCE column created reducing environment in phosphoric acid, which was not favourable for uranium extraction, which resulted in difficulty in extraction of Uranium. HWB has now designed

  3. Online recovery of radiocesium from soil, tissue paper and plant samples by supercritical fluid extraction

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Mohapatra, P.K.

    2014-01-01

    The feasibility of recovery of radio-cesium from soil, tissue papers, and plant samples has been evaluated by supercritical fluid extraction (SFE) route employing calix(4)arene-mono(crown-6) (CC) dissolved in acetonitrile. These studies showed that quantitative recovery of 137 Cs from soil samples was difficult under the conditions of these studies. However, experiments performed on tissue papers (cellulose matrix) showed quantitative recovery of 137 Cs. On the other hand, 137 Cs recovery from plant samples varied between ∼50 % (for stems) and ∼67.2 % (for leaves) employing 1x10 -3 M CC + 4 M HNO 3 dissolved in acetonitrile. (author)

  4. [Study on condition for extraction of arctiin from fruits of Arctium lappa using supercritical fluid extraction].

    Science.gov (United States)

    Dong, Wen-hong; Liu, Ben

    2006-08-01

    To study the feasibility of supercritical fluid extraction (SFE) for arctiin from the fruits of Arctium lappa. The extracts were analyzed by HPLC, optimum extraction conditions were studied by orthogonal tests. The optimal extraction conditions were: pressure 40 MPa, temperature 70 degrees C, using methanol as modifier carrier at the rate of 0.55 mL x min(-1), static extraction time 5 min, dynamic extraction 30 min, flow rate of CO2 2 L x min(-1). SFE has the superiority of adjustable polarity, and has the ability of extracting arctiin.

  5. Evaluation of various Crown ethers for the supercritical fluid extraction of uranium from nitric acid medium

    International Nuclear Information System (INIS)

    Kumar, Pradeep; Rao, Ankita; Ramakumar, K.L.

    2009-01-01

    Various crowns have been evaluated for supercritical fluid extraction of uranium from nitric acid medium employing HPFOA as counter ion. Uranium extraction efficiency was found to be influenced by cavity size of crown ether and nature of substituents. Complexation tendency of UO 2 2+ increases with increasing cavity size of crown ether. Electron withdrawing substituents decreased the extraction efficiency which could be attributed to decrease in the basicity of four oxygen atoms and hence their bonding ability. Whereas electron donating substituents increased the efficiency due to increases in basicity of oxygen atoms and hence in increase in bonding ability. (author)

  6. Flow Rates in Liquid Chromatography, Gas Chromatography and Supercritical Fluid Chromatography: A Tool for Optimization

    Directory of Open Access Journals (Sweden)

    Joris Meurs

    2016-08-01

    Full Text Available This paper aimed to develop a standalone application for optimizing flow rates in liquid chromatography (LC, gas chromatography (GC and supercritical fluid chromatography (SFC. To do so, Van Deemter’s equation, Knox’ equation and Golay’s equation were implemented in a MATLAB script and subsequently a graphical user interface (GUI was created. The application will show the optimal flow rate or linear velocity and the corresponding plate height for the set input parameters. Furthermore, a plot will be shown in which the plate height is plotted against the linear flow velocity. Hence, this application will give optimized flow rates for any set conditions with minimal effort.

  7. Studies on supercritical fluid extraction of uranium and thorium from liquid and solid matrix

    International Nuclear Information System (INIS)

    Kumar, Pradeep; Pal, Ankita; Saxena, M.K.; Ramakumar, K.L.

    2006-05-01

    Supercritical fluid extraction (SFE) is being widely used in pharmaceutical and food industry. Because of its simplicity, ease of operation and more importantly the reduction in the analytical waste generation, this technique is being viewed as a potential application technique in nuclear industry also. CO 2 is employed as supercritical fluid (SCF) as it is easily recyclable, non-toxic, chemically inert, radiochemically stable and inexpensive. Radioanalytical chemistry section (Radiochemistry and Isotope group) has recently procured a supercritical fluid extraction/chromatography system. The present report describes the work carried out on the system. Detailed study on uranium and thorium extraction from highly acidic medium and tissue paper matrix has been carried out. Direct dissolution and extraction of uranium compounds employing SCF has been carried out. CO 2 was employed as supercritical fluid along with very small amount of Tri n-butyl phosphate (TBP) and Tri n-octyl phosphine oxide (TOPO) as co-solvents. The effect of various operating parameters like CO 2 flow rate, co-solvent percentage, temperature and pressure on extraction was investigated and parameters for maximum extraction were optimized. For comparison, the modes of extraction viz. static and dynamic and modes of complexation viz. in-situ and online were studied. Uranium extraction of ∼98% has been achieved from nitric acid medium employing TBP as co-solvent in 30 minutes extraction time, whereas with TOPO ∼99% uranium extraction could be achieved. Uranium from tissue paper matrix could be extracted upto the extent of 98% with TOPO as co-solvent whereas with TBP extraction of (66.83± 9.80)% was achievable. Direct dissolution of UO 2 , U 3 O 8 , U metal, U-Al alloy solids into SCF CO 2 was carried out employing TBP-HNO 3 complex and SFE of uranium was performed using TBP as co-solvent. UO 2 and U 3 O 8 solids could be dissolved within 20 minutes and extraction of ∼98% was achieved. For U

  8. Evolution and Current Trends in Liquid and Supercritical Fluid Chromatography

    OpenAIRE

    Fekete, Szabolcs; Grand-Guillaume-Perrenoud, Alexandre; Guillarme, Davy

    2014-01-01

    The current trend in high performance liquid chromatography (HPLC) tends toward the achievement of higher separation efficiency and shorter analysis time. Indeed, better performance in LC has become increasingly important in recent years mainly driven by the challenges of either analyzing more complex samples or increasing the numbers of samples per time unit. In the recent development of particle technology, the use of fully porous sub-2 m particles and sub-3 m shell particles have received ...

  9. Optimization and characterization of condensation nucleation light scattering detection coupled with supercritical fluid chromatography

    Science.gov (United States)

    Yang, Shaoping

    This dissertation is an investigation of two aspects of coupling condensation nucleation light scattering detection (CNLSD) with supercritical fluid chromatography (SFC). In the first part, it was demonstrated that CNLSD was compatible with packed column SFC using either pure CO2 or organic solvent modified CO2 as mobile phases. Factors which were expected to affect the interface between SFC and CNLSD were optimized for the detector to reach low detection limits. With SFC using pure CO2 as mobile phase, the detection limit of CNLSD with SFC was observed to be at low nanogram levels, which was at the same level of flame ionization detection (FID) coupled with SFC. For SFC using modified CO2 as mobile phase, detection limits at the picogram level were observed for CNLSD at optimal conditions, which were at least ten times lower than those reached by evaporative light scattering detection. In the second part, particle size distributions of aerosols produced from rapid expansion of supercritical solutions were measured with a scanning mobility particle sizer. The effect of the factors, which were investigated in the first part for their effects on signal intensities and signal to noise ratios (S/N), on particle size distributions (PSDs) of both analyte and background were investigated. Whenever possible, both particle sizes and particle number obtained from PSDs were used to explain the optimization results. In general, PSD data support the observations made in the first part. The detection limits of CNLSD obtained were much higher than predicted. PSDs did not provide direct explanation of this problem. The amount of analyte deposited in the transport tubing, evaporated to gas phase, and condensed to form particles was determined experimentally. Almost no analyte was found in the gas phase. Less than 3% was found in the particle forms. The vast majority of analyte was lost in the transport tubing, especially in the short distance after supercritical fluid expansion. A

  10. Basil (Ocimum basilicum L. essential oil and extracts obtained by supercritical fluid extraction

    Directory of Open Access Journals (Sweden)

    Zeković Zoran P.

    2015-01-01

    Full Text Available The extracts obtained from sweet basil (Ocimum basilicum L. by hydrodistillation and supercritical fluid extraction (SFE were qualitative and quantitative analyzed by GC-MS and GC-FID. Essential oil (EO content of basil sample, determined by an official method, was 0.565% (V/w. The yields of basil obtained by SFE were from 0.719 to 1.483% (w/w, depending on the supercritical fluid (carbon dioxide density (from 0.378 to 0.929 g mL-1. The dominant compounds detected in all investigated samples (EO obtained by hydrodistillation and different SFE extracts were: linalool, as the major compound of basil EO (content from 10.14 to 49.79%, w/w, eugenol (from 3.74 to 9.78% and ä-cardinene (from 3.94 to 8.07%. The quantitative results of GC-MS from peak areas and by GC-FID using external standard method involving main standards, were compared and discussed. [Projekat Ministarstva nauke Republike Srbije, br. TR 31013

  11. Supercritical fluid chromatography approach for a sustainable manufacture of new stereoisomeric anticancer agent.

    Science.gov (United States)

    Ghinet, Alina; Zehani, Yasmine; Lipka, Emmanuelle

    2017-10-25

    Two routes aimed at the manufacture of unprecedented stereoisomeric combretastatin A-4 analogue were described: flash chromatography vs supercritical fluid chromatography. The latter has many advantages over liquid chromatography and was therefore chosen for the small scale separation of methyl 1-[(3-hydroxy-4-methoxyphenyl) (3,4,5-trimethoxyphenyl)methyl]-5-oxo-l-prolinate 5, with potential antitumoral activity. After a screening of six different polysaccharide based chiral stationary phases and four co-solvents, the percentage of co-solvent, the flow-rate and the outlet pressure were optimized through a design of experiments (DoE). The preparation of 50mg of each stereoisomer was achieved successfully on a Chiralpak AD-H with isopropanol as a co-solvent. Productivity (kkd), solvent usage and environmental factor (E Factor) were calculated. Flash chromatography and supercritical fluid chromatography approaches were compared in terms of yield and purity of each stereoisomer manufactured. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Chiral separation of a diketopiperazine pheromone from marine diatoms using supercritical fluid chromatography.

    Science.gov (United States)

    Frenkel, Johannes; Wess, Carsten; Vyverman, Wim; Pohnert, Georg

    2014-03-01

    The proline derived diketopiperazine has been identified in plants, insects and fungi with unknown function and was recently also reported as the first pheromone from a diatom. Nevertheless the stereochemistry and enantiomeric excess of this natural product remained inaccessible using direct analytical methods. Here we introduce a chiral separation of this metabolite using supercritical fluid chromatography/mass spectrometry. Several chromatographic methods for chiral analysis of the diketopiperazine from the diatom Seminavis robusta and synthetic enantiomers have been evaluated but neither gas chromatography nor high performance liquid chromatography on different chiral cyclodextrin phases were successful in separating the enantiomers. In contrast, supercritical fluid chromatography achieved baseline separation within four minutes of run time using amylose tris(3,5-dimethylphenylcarbamate) as stationary phase and 2-propanol/CO2 as mobile phase. This very rapid chromatographic method in combination with ESI mass spectrometry allowed the direct analysis of the cyclic dipeptide out of the complex sea water matrix after SPE enrichment. The method could be used to determine the enantiomeric excess of freshly released pheromone and to follow the rapid degradation observed in diatom cultures. Initially only trace amounts of c(d-Pro-d-Pro) were found besides the dominant c(l-Pro-l-Pro) in the medium. However the enantiomeric excess decreased upon pheromone degradation within few hours indicating that a preferential conversion and thus inactivation of the l-proline derived natural product takes place. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Systematic investigations of peak deformations due to co-solvent adsorption in preparative supercritical fluid chromatography.

    Science.gov (United States)

    Glenne, Emelie; Leek, Hanna; Klarqvist, Magnus; Samuelsson, Jörgen; Fornstedt, Torgny

    2017-05-05

    Strangely shaped overloaded bands were recently reported using a standard supercritical fluid chromatographic system comprising a diol column as the stationary phase and carbon dioxide with methanol as the mobile phase. Some of these overloaded elution profiles appeared strongly deformed and even had "anti-Langmuirian" shapes although their solute compounds had "Langmuirian" adsorption. To obtain a more complete understanding of the generality of these effects, the investigation was expanded to cover also other common co-solvents, such as ethanol, 2-propanol, and acetonitrile, as well as various stationary phase materials, such as silica, and 2-ethylpyridine. From this expanded study it could be confirmed that the effects of deformed overloaded solute band shapes, due to co-solvent adsorption, is general phenomena in supercritical fluid chromatographic. It could also be concluded that these effects as well as previously observed "solvent effects" or "plug effects" are entirely due to competition between the solute and solvent molecules for the adsorption sites on the stationary phase surface. Finally, guidelines were given for how to evaluate the risk of deformations occurring for a given solvent-column combination, based simply on testing retention times of solutes and co-solvent. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Diffusion of Supercritical Fluids through Single-Layer Nanoporous Solids: Theory and Molecular Simulations.

    Science.gov (United States)

    Oulebsir, Fouad; Vermorel, Romain; Galliero, Guillaume

    2018-01-16

    With the advent of graphene material, membranes based on single-layer nanoporous solids appear as promising devices for fluid separation, be it liquid or gaseous mixtures. The design of such architectured porous materials would greatly benefit from accurate models that can predict their transport and separation properties. More specifically, there is no universal understanding of how parameters such as temperature, fluid loading conditions, or the ratio of the pore size to the fluid molecular diameter influence the permeation process. In this study, we address the problem of pure supercritical fluids diffusing through simplified models of single-layer porous materials. Basically, we investigate a toy model that consists of a single-layer lattice of Lennard-Jones interaction sites with a slit gap of controllable width. We performed extensive equilibrium and biased molecular dynamics simulations to document the physical mechanisms involved at the molecular scale. We propose a general constitutive equation for the diffusional transport coefficient derived from classical statistical mechanics and kinetic theory, which can be further simplified in the ideal gas limit. This transport coefficient relates the molecular flux to the fluid density jump across the single-layer membrane. It is found to be proportional to the accessible surface porosity of the single-layer porous solid and to a thermodynamic factor accounting for the inhomogeneity of the fluid close to the pore entrance. Both quantities directly depend on the potential of mean force that results from molecular interactions between solid and fluid atoms. Comparisons with the simulations data show that the kinetic model captures how narrowing the pore size below the fluid molecular diameter lowers dramatically the value of the transport coefficient. Furthermore, we demonstrate that our general constitutive equation allows for a consistent interpretation of the intricate effects of temperature and fluid loading

  15. Nitrate conversion and supercritical fluid extraction of UO{sub 2}-CeO{sub 2} solid solution prepared by an electrolytic reduction-coprecipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L.Y. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology; China Institute of Atomic Energy, Beijing (China); Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2014-04-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N{sub 2}O{sub 4} into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO{sub 2}-CeO{sub 2} solid solution was prepared as a surrogate for a UO{sub 2}-PuO{sub 2} solid solution, and the recovery of U and Ce from the UO{sub 2}-CeO{sub 2} solid solution with liquid N{sub 2}O{sub 4} and supercritical CO{sub 2} containing tri-n-butyl phosphate (TBP) was investigated. The UO{sub 2}-CeO{sub 2} solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N{sub 2}O{sub 4}. The XRD pattern of the nitrates was similar to that of UO{sub 2}(NO{sub 3}){sub 2} . 3H{sub 2}O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO{sub 2} containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  16. Supercritical fluid extraction of uranium and thorium from nitric acid medium using organophosphorous compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pitchaiah, K.C.; Sujatha, K.; Rao, C.V.S. Brahmmananda; Subramaniam, S.; Sivaraman, N.; Rao, P.R. Vasudeva [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Chemistry Group

    2015-06-01

    In recent years, Supercritical Fluid Extraction (SFE) technique has been widely used for the extraction of metal ions. In the present study, extraction of uranium from nitric acid medium was investigated using supercritical carbon dioxide (Sc-CO{sub 2}) containing various organophosphorous compounds such as trialkyl phosphates e.g. tri-iso-amyl phosphate (TiAP), tri-sec-butyl phosphate (TsBP) and tri-n-butyl phosphate (TBP), dialkylalkyl phosphonates, e.g. diamylamyl phosphonate (DAAP) and dibutyl butyl phosphonate (DBBP), dialkyl hydrogen phosphonates, e.g. dioctyl hydrogen phosphonate (DOHP), dioctylphosphineoxide (DOPO), trioctyl phosphine oxide (TOPO), n-octylphenyl N,N-diisobutyl carbamoylmethylphosphine oxide (CMPO) and di-2-ethyl-hexyl phosphoric acid (HDEHP). Some of these ligands have been investigated for the first time in the supercritical phase for the extraction of uranium. The extraction efficiency of uranium was studied with TiAP, DAAP and DBBP as a function of nitric acid concentration; the kinetics of the equilibration period (static extraction) and transportation of the metal complex (dynamic extraction) was investigated. The influence of pressure and temperature on the extraction behaviour of uranium with DAAP was studied from 4 N HNO{sub 3}. The extraction efficiency of uranium from 4 N nitric acid medium was found to increase in the order of phosphates < phosphonates < HDEHP < TOPO < CMPO. In the case of phosphates and phosphonates, the maximum extraction of uranium was found to be from 4 N HNO{sub 3} medium. The acidic extractants, HDEHP and DOHP showed relatively higher extraction at lower acidities. The relative extraction of uranium and thorium from their mixture was also examined using Sc-CO{sub 2} containing phosphates, phosphonates and TOPO. The ligand, TsBP provided better fractionation between uranium and thorium compared to trialkyl phosphates, dialkyl alkyl phosphonates and TOPO.

  17. Modeling of mass transfer of Phospholipids in separation process with supercritical CO2 fluid by RBF artificial neural networks

    Science.gov (United States)

    An artificial Radial Basis Function (RBF) neural network model was developed for the prediction of mass transfer of the phospholipids from canola meal in supercritical CO2 fluid. The RBF kind of artificial neural networks (ANN) with orthogonal least squares (OLS) learning algorithm were used for mod...

  18. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    International Nuclear Information System (INIS)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-01-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean/US/laboratory/university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program

  19. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    Energy Technology Data Exchange (ETDEWEB)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  20. Maximizing kinetic performance in supercritical fluid chromatography using state-of-the-art instruments.

    Science.gov (United States)

    Grand-Guillaume Perrenoud, Alexandre; Hamman, Chris; Goel, Meenakshi; Veuthey, Jean-Luc; Guillarme, Davy; Fekete, Szabolcs

    2013-11-01

    Recently, there has been a renewed interest in supercritical fluid chromatography (SFC), due to the introduction of state-of-the-art instruments and dedicated columns packed with small particles. However, the achievable kinetic performance and practical possibilities of such modern SFC instruments and columns has not been described in details until now. The goal of the present contribution was to provide some information about the optimal column dimensions (i.e. length, diameter and particle size) suitable for such state-of the-art systems, with respect to extra-column band broadening and system upper pressure limit. In addition, the reliability of the kinetic plot methodology, successfully applied in RPLC, was also evaluated under SFC conditions. Taking into account the system variance, measured at ∼85μL(2), on modern SFC instruments, a column of 3mm I.D. was ideally suited for the current technology, as the loss in efficiency remained reasonable (i.e. less than 10% decrease for k>6). Conversely, these systems struggle with 2.1mm I.D. columns (55% loss in N for k=5). Regarding particle size, columns packed with 5μm particles provided unexpectedly high minimum reduced plate height values (hmin=3.0-3.4), while the 3.5 and 1.7μm packing provided lower reduced plate heights hmin=2.2-2.4 and hmin=2.7-3.2, respectively. Considering the system upper pressure limit, it appears that columns packed with 1.7μm particles give the lowest analysis time for efficiencies up to 40,000-60,000 plates, if the mobile phase composition is in the range of 2-19% MeOH. The 3.5μm particles were attractive for higher efficiencies, particularly when the modifier percentage was above 20%, while 5μm was never kinetically relevant with modern SFC instruments, due to an obvious limitation in terms of upper flow rate value. The present work also confirms that the kinetic plot methodology could be successfully applied to SFC, without the need for isopycnic measurements, as the difference

  1. Stability analysis of fluid at supercritical pressure in a heated channel

    International Nuclear Information System (INIS)

    Gallaway, T.; Podowski, M. Z.

    2010-01-01

    The Supercritical Water Reactor (SCWR) is one of several reactor design concepts included in the Generation IV International Advanced Reactor Design Program. This reactor design is based upon current light water reactors and supercritical fossil-fuel power plants. Water at supercritical pressures is used as the reactor coolant. At these conditions, there is no phase change in the coolant; however the fluid properties undergo significant variation, particularly in the pseudo-critical region. The fluid density may decrease by a factor of six with increasing temperature. It has been seen before that variations in fluid density can lead to density-wave oscillations in two-phase flow systems in general and boiling water reactors in particular. Such instabilities may cause many undesired problems for reactor operation and safety. Similar issues must be addressed in the design and safety analysis of SCWRs. The objective of the present work has been the development of a detailed one-dimensional model of instabilities in a heated channel corresponding to the geometry and flow conditions in the proposed typical SCWRs. The new model is capable of analyzing in detail transient effects of local property variations in parallel channels subject to a constant pressure drop boundary condition. In particular, such a model can be used to establish SCWR power limits imposed by the onset of instabilities in the hot channel of the reactor. Both time and frequency-domain methods of stability analysis have been developed. The latter method is particularly important since it is not associated with any numerical issues, is very accurate, and allows for establishing general stability boundaries in a computationally effective manner. Model testing has included a study of dependence of the proposed spatial discretization scheme on the accuracy of calculations. A parametric study has also been performed on the effect of channel operating conditions on flow oscillations. Finally, a stability map

  2. Study of Variable Turbulent Prandtl Number Model for Heat Transfer to Supercritical Fluids in Vertical Tubes

    Science.gov (United States)

    Tian, Ran; Dai, Xiaoye; Wang, Dabiao; Shi, Lin

    2018-06-01

    In order to improve the prediction performance of the numerical simulations for heat transfer of supercritical pressure fluids, a variable turbulent Prandtl number (Prt) model for vertical upward flow at supercritical pressures was developed in this study. The effects of Prt on the numerical simulation were analyzed, especially for the heat transfer deterioration conditions. Based on the analyses, the turbulent Prandtl number was modeled as a function of the turbulent viscosity ratio and molecular Prandtl number. The model was evaluated using experimental heat transfer data of CO2, water and Freon. The wall temperatures, including the heat transfer deterioration cases, were more accurately predicted by this model than by traditional numerical calculations with a constant Prt. By analyzing the predicted results with and without the variable Prt model, it was found that the predicted velocity distribution and turbulent mixing characteristics with the variable Prt model are quite different from that predicted by a constant Prt. When heat transfer deterioration occurs, the radial velocity profile deviates from the log-law profile and the restrained turbulent mixing then leads to the deteriorated heat transfer.

  3. Preliminary Design and Computational Fluid Dynamics Analysis of Supercritical Carbon Dioxide Turbine Blade

    International Nuclear Information System (INIS)

    Jeong, Wi S.; Kim, Tae W.; Suh, Kune Y.

    2007-01-01

    The supercritical gas turbine Brayton cycle has been adopted in the secondary loop of the Generation IV Nuclear Energy Systems, and planned to be installed in power conversion cycles of the nuclear fusion reactors as well. The supercritical carbon dioxide (SCO 2 ) is one of widely considered fluids for this concept. The potential beneficiaries include the Secure Transportable Autonomous Reactor- Liquid Metal (STAR-LM), the Korea Advanced Liquid Metal Reactor (KALIMER) and Battery Omnibus Reactor Integral System (BORIS) which is being developed at the Seoul National University. The reason for these welcomed applications is that the SCO 2 Brayton cycle can achieve higher overall energy conversion efficiency than the steam turbine Rankine cycle. Seoul National University has recently been working on the SCO 2 based Modular Optimized Brayton Integral System (MOBIS). The MOBIS design power conversion efficiency is about 45%. Gas turbine design is crucial part in achieving this high efficiency. In this paper, the preliminary analysis on first stage of gas turbine was performed using CFX as a solver

  4. Supercritical fluid extraction of meat lipids: an alternative approach to the identification of irradiated meats

    International Nuclear Information System (INIS)

    Hampson, J.W.; Jones, K.C.; Foglia, T.A.; Kohout, K.M.

    1996-01-01

    Ionizing radiation is currently under study as an alternative method for extending the shelf life of meats and meat products. Accordingly, methods are needed to determine if a meat or meat product has been exposed to ionizing radiation. In this study, a method is described for the isolation and analysis of volatile hydrocarbons formed in meat lipids after exposure to ionizing radiation. The method is based on supercritical fluid extraction of the hydrocarbons from meat lipids and subsequent identification and quantitation of individual hydrocarbons by gas chromatography (GC) with a mass selection detector (MSD). Supercritical carbon dioxide at 175 bar and 40°C extracted the hydrocarbon fraction from total meat lipids within 20 min. The presence of radiolytic hydrocarbons, as determined by GC/MSD, was then correlated to the degree of irradiation of the meat from 0 to 10 kGy. Besides being faster, this method has the advantage of reduced solvent consumption when compared to current methods for determining if a meat or meat product has been irradiated

  5. Supercritical fluid extraction of volatile and non-volatile compounds from Schinus molle L.

    Directory of Open Access Journals (Sweden)

    M. S. T. Barroso

    2011-06-01

    Full Text Available Schinus molle L., also known as pepper tree, has been reported to have antimicrobial, antifungal, anti-inflammatory, antispasmodic, antipyretic, antitumoural and cicatrizing properties. This work studies supercritical fluid extraction (SFE to obtain volatile and non-volatile compounds from the aerial parts of Schinus molle L. and the influence of the process on the composition of the extracts. Experiments were performed in a pilot-scale extractor with a capacity of 1 L at pressures of 9, 10, 12, 15 and 20 MPa at 323.15 K. The volatile compounds were obtained by CO2 supercritical extraction with moderate pressure (9 MPa, whereas the non-volatile compounds were extracted at higher pressure (12 to 20 MPa. The analysis of the essential oil was carried out by GC-MS and the main compounds identified were sabinene, limonene, D-germacrene, bicyclogermacrene, and spathulenol. For the non-volatile extracts, the total phenolic content was determined by the Folin-Ciocalteau method. Moreover, one of the goals of this study was to compare the experimental data with the simulated yields predicted by a mathematical model based on mass transfer. The model used requires three adjustable parameters to predict the experimental extraction yield curves.

  6. Sedative and hypnotic effects of supercritical carbon dioxide fluid extraction from Schisandra chinensis in mice

    Directory of Open Access Journals (Sweden)

    Hongyan Zhu

    2016-10-01

    Full Text Available Schisandra chinensis is a traditional Chinese medicine that has been used for treating insomnia and neurasthenia for centuries. Lignans, which are considered to be the bioactive components, are apt to be extracted by supercritical carbon dioxide. This study was conducted to investigate the sedative and hypnotic activities of the supercritical carbon dioxide fluid extraction of S. chinensis (SFES in mice and the possible mechanisms. SFES exhibited an obvious sedative effect on shortening the locomotor activity in mice in a dose-dependent (10–200 mg/kg manner. SFES (50 mg/kg, 100 mg/kg, and 200 mg/kg, intragstrically showed a strong hypnotic effect in synergy with pentobarbital in mouse sleep, and reversal of insomnia induced by caffeine, p-chlorophenylalanine and flumazenil by decreasing sleep latency, sleep recovery, and increasing sleeping time. In addition, it produced a synergistic effect with 5-hydroxytryptophan (2.5 mg/kg, intraperitoneally. The behavioral pharmacological results suggest that SFES has significant sedative and hypnotic activities, and the mechanisms might be relevant to the serotonergic and γ-aminobutyric acid (GABAergic system.

  7. Multivessel supercritical fluid extraction of food items in Total Diet Study.

    Science.gov (United States)

    Hopper, M L; King, J W; Johnson, J H; Serino, A A; Butler, R J

    1995-01-01

    An off-line, large capacity, multivessel supercritical fluid extractor (SFE) was designed and constructed for extraction of large samples. The extractor can simultaneously process 1-6 samples (15-25 g) by using supercritical carbon dioxide (SC-CO2), which is relatively nontoxic and nonflammable, as the solvent extraction medium. Lipid recoveries for the SFE system were comparable to those obtained by blending or Soxhlet extraction procedures. Extractions at 10,000 psi, 80 degrees C, expanded gaseous CO2 flow rates of 4-5 L/min (35 degrees C), and 1-3 h extraction times gave reproducible lipid recoveries for pork sausage (relative standard deviation [RSD], 1.32%), corn chips (RSD, 0.46%), cheddar cheese (RSD, 1.14%), and peanut butter (RSD, 0.44%). In addition, this SFE system gave reproducible recoveries (> 93%) for butter fortified with cis-chlordane and malathion at the 100 ppm and 0.1 ppm levels. Six portions each of cheddar cheese, saltine crackers, sandwich cookies, and ground hamburger also were simultaneously extracted with SC-CO2 and analyzed for incurred pesticide residues. Results obtained with this SFE system were reproducible and comparable with results from organic-solvent extraction procedures currently used in the Total Diet Study; therefore, use and disposal of large quantities of organic solvents can be eliminated.

  8. Evaluation of an amide-based stationary phase for supercritical fluid chromatography

    Science.gov (United States)

    Borges-Muñoz, Amaris C.; Colón, Luis A.

    2017-01-01

    A relatively new stationary phase containing a polar group embedded in a hydrophobic backbone (i.e., ACE® C18-amide) was evaluated for use in supercritical fluid chromatography. The amide-based column was compared with columns packed with bare silica, C18 silica, and a terminal-amide silica phase. The system was held at supercritical pressure and temperature with a mobile phase composition of CO2 and methanol as cosolvent. The linear solvation energy relationship model was used to evaluate the behavior of these stationary phases, relating the retention factor of selected probes to specific chromatographic interactions. A five-component test mixture, consisting of a group of drug-like molecules was separated isocratically. The results show that the C18-amide stationary phase provided a combination of interactions contributing to the retention of the probe compounds. The hydrophobic interactions are favorable; however, the electron donating ability of the embedded amide group shows a large positive interaction. Under the chromatographic conditions used, the C18-amide column was able to provide baseline resolution of all the drug-like probe compounds in a text mixture, while the other columns tested did not. PMID:27396487

  9. Fast separation of triterpenoid saponins using supercritical fluid chromatography coupled with single quadrupole mass spectrometry.

    Science.gov (United States)

    Huang, Yang; Zhang, Tingting; Zhou, Haibo; Feng, Ying; Fan, Chunlin; Chen, Weijia; Crommen, Jacques; Jiang, Zhengjin

    2016-03-20

    Triterpenoid saponins (TSs) are the most important components of some traditional Chinese medicines (TCMs) and have exhibited valuable pharmacological properties. In this study, a rapid and efficient method was developed for the separation of kudinosides, stauntosides and ginsenosides using supercritical fluid chromatography coupled with single quadrupole mass spectrometry (SFC-MS). The separation conditions for the selected TSs were carefully optimized after the initial screening of eight stationary phases. The best compromise for all compounds in terms of chromatographic performance and MS sensitivity was obtained when water (5-10%) and formic acid (0.05%) were added to the supercritical carbon dioxide/MeOH mobile phase. Beside the composition of the mobile phase, the nature of the make-up solvent for interfacing SFC with MS was also evaluated. Compared to reversed phase liquid chromatography, the SFC approach showed higher resolution and shorter running time. The developed SFC-MS methods were successfully applied to the separation and identification of TSs present in Ilex latifolia Thunb., Panax quinquefolius L. and Panax ginseng C.A. Meyer. These results suggest that this SFC-MS approach could be employed as a useful tool for the quality assessment of natural products containing TSs as active components. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effect temperature of supercritical CO2 fluid extraction on phytochemical analysis and antioxidant activity of Zingiber officinale Roscoe

    Science.gov (United States)

    Sondari, Dewi; Irawadi, Tun Tedja; Setyaningsih, Dwi; Tursiloadi, Silvester

    2017-11-01

    Supercritical fluid extraction of Zingiber officinale Roscoe has been carried out at a pressure of 16 MPa, with temperatures between 20-40 °C, during extraction time of 6 hours and the flow rate of CO2 fluid 5.5 ml/min. The result of supercritical method was compared with the extraction maceration using a mixture of water and ethanol (70% v/v) for 24 hours. The main content in ginger that has a main role as an antioxidant is a gingerol compound that can help neutralize the damaging effects caused by free radicals in the body, as anti-coagulant, and inhibit the occurrence of blood clots. This study aims to determine the effect of temperature on chemical components contained in rough extract of Zingiber officinale Roscoe and its antioxidant activity, total phenol and total flavonoid content. To determine the chemical components contained in the crude extract of Zingiber officinale Roscoe extracted by supercritical fluid and maceration extraction, GC-MS analysis was performed. Meanwhile, the antioxidant activity of the extract was evaluated based on a 2.2-diphenyl-1-picrylhydrazyl (DPPH) free radical damping method. The results of the analysis show that the result of ginger extract by using the supercritical CO2 extraction method has high antioxidant activity than by using maceration method. The highest total phenol content and total flavonoids were obtained on ginger extraction using supercritical CO2 fluid extraction, indicating that phenol and flavonoid compounds contribute to antioxidant activity. Chromatographic analysis showed that the chemical profile of ginger extract containing oxygenated monoterpenes, monoterpene hydrocarbons, sesquiterpene hydrocarbons, oxygenated monoterpene gingerol and esters. In supercritical fluid extraction, the compounds that can be identified at a temperature of 20-40 °C contain 27 compounds, and 11 compounds from the result of maceration extract. The main component of Zingiber officinale Roscoe extracted using supercritical fluid

  11. Cefuroxime axetil solid dispersions prepared using solution enhanced dispersion by supercritical fluids.

    Science.gov (United States)

    Jun, Seoung Wook; Kim, Min-Soo; Jo, Guk Hyun; Lee, Sibeum; Woo, Jong Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2005-12-01

    Cefuroxime axetil (CA) solid dispersions with HPMC 2910/PVP K-30 were prepared using solution enhanced dispersion by supercritical fluids (SEDS) in an effort to increase the dissolution rate of poorly water-soluble drugs. Their physicochemical properties in solid state were characterized by differential scanning calorimeter (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectrometry (FT-IR) and scanning electron microscopy. No endothermic and characteristic diffraction peaks corresponding to CA were observed for the solid dispersions in DSC and PXRD. FTIR analysis demonstrated the presence of intermolecular hydrogen bonds between CA and HPMC 2910/PVP K-30 in solid dispersions, resulting in the formation of amorphous or non-crystalline CA. Dissolution studies indicated that the dissolution rates were remarkably increased in solid dispersions compared with those in the physical mixture and drug alone. In conclusion, an amorphous or non-crystalline CA solid dispersion prepared using SEDS could be very useful for the formulation of solid dosage forms.

  12. Differentiation of ring-substituted regioisomers of amphetamine and methamphetamine by supercritical fluid chromatography.

    Science.gov (United States)

    Segawa, Hiroki; T Iwata, Yuko; Yamamuro, Tadashi; Kuwayama, Kenji; Tsujikawa, Kenji; Kanamori, Tatsuyuki; Inoue, Hiroyuki

    2017-03-01

    Chromatographic differentiation of the ring-substituted regioisomers of amphetamine (AMP) and methamphetamine (MA) was performed by supercritical fluid chromatography (SFC). The behaviour of the retention against the changes of column temperature and co-solvent proportion was studied. The obtained information facilitated the optimization of the each regioisomer. As a result, 2-, 3-, and 4-ring-substituted analogues of AMP and MA with methyl, methoxy, fluoro, chloro, and bromo groups were separated, generally within 6 min. In addition, we found that the separation pattern of the examined regioisomers was classified into two, which depended on the electron donating/withdrawing effect of the substituent. Our results indicate that SFC could be used in forensic drug analysis for fast, reliable identification of structurally similar drugs of abuse. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Supercritical fluid chromatography for GMP analysis in support of pharmaceutical development and manufacturing activities.

    Science.gov (United States)

    Hicks, Michael B; Regalado, Erik L; Tan, Feng; Gong, Xiaoyi; Welch, Christopher J

    2016-01-05

    Supercritical fluid chromatography (SFC) has long been a preferred method for enantiopurity analysis in support of pharmaceutical discovery and development, but implementation of the technique in regulated GMP laboratories has been somewhat slow, owing to limitations in instrument sensitivity, reproducibility, accuracy and robustness. In recent years, commercialization of next generation analytical SFC instrumentation has addressed previous shortcomings, making the technique better suited for GMP analysis. In this study we investigate the use of modern SFC for enantiopurity analysis of several pharmaceutical intermediates and compare the results with the conventional HPLC approaches historically used for analysis in a GMP setting. The findings clearly illustrate that modern SFC now exhibits improved precision, reproducibility, accuracy and robustness; also providing superior resolution and peak capacity compared to HPLC. Based on these findings, the use of modern chiral SFC is recommended for GMP studies of stereochemistry in pharmaceutical development and manufacturing. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Poly(butylene terephthalate) based novel achiral stationary phase investigated under supercritical fluid chromatography conditions.

    Science.gov (United States)

    Nagai, Kanji; Shibata, Tohru; Shinkura, Satoshi; Ohnishi, Atsushi

    2018-05-11

    Poly(butylene terephthalate) based novel stationary phase (SP), composed of planar aromatic phenyl group together with ester group monomer units, was designed for supercritical fluid chromatography (SFC) use. As expected from its structure, this phase shows planarity recognition of isomeric aromatics and closely similar compounds. Interestingly, for most analytes, the retention behavior of this SP is significantly distinct from that of the 2-ethylpyridine based SPs which is among the most well-known SFC dedicated phases. Although the poly(butylene terephthalate) is coated on silica gel, the performance of the column did not change by using extended range modifiers such as THF, dichloromethane or ethyl acetate and column robustness was confirmed by cycle durability testing. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Rapid purification of diastereoisomers from Piper kadsura using supercritical fluid chromatography with chiral stationary phases.

    Science.gov (United States)

    Xin, Huaxia; Dai, Zhuoshun; Cai, Jianfeng; Ke, Yanxiong; Shi, Hui; Fu, Qing; Jin, Yu; Liang, Xinmiao

    2017-08-04

    Supercritical fluid chromatography (SFC) with chiral stationary phases (CSPs) is an advanced solution for the separation of achiral compounds in Piper kadsura. Analogues and stereoisomers are abundant in natural products, but there are obstacles in separation using conventional method. In this paper, four lignan diastereoisomers, (-)-Galbelgin, (-)-Ganschisandrin, Galgravin and (-)-Veraguensin, from Piper kadsura were separated and purified by chiral SFC. Purification strategy was designed, considering of the compound enrichment, sample purity and purification throughput. Two-step achiral purification method on chiral preparative columns with stacked automated injections was developed. Unconventional mobile phase modifier dichloromethane (DCM) was applied to improve the sample solubility. Four diastereoisomers was prepared at the respective weight of 103.1mg, 10.0mg, 152.3mg and 178.6mg from 710mg extract with the purity of greater than 98%. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Application of supercritical and subcritical fluids for the extraction of hazardous materials from soil

    Directory of Open Access Journals (Sweden)

    Skorupan Dara

    2002-01-01

    Full Text Available Subcritical and supercritical extractions are novel, non destructive techniques which can be applied for the removal of hazardous compounds from contaminated soil without any changes of the soil composition and structure. The aim of the presented review paper is to give information on up-to day results of this method commonly applied by several institutions worldwide. Interest in the application of SC CO2 has been more expressed in the last two decades, which may be related to its favorable characteristics (non-toxic, non-flammable, increase diffusion into small pores, low viscosity under SC conditions, low price and others. However, interest in wet oxidation (WO and especially in SCWO (the application of water under supercritical conditions with air has also increased in the last few years. Interest in H2O as a SC fluid, as well as in extraction with water under subcritical conditions may also be related to specific characteristics and the enhanced rate of extraction. Moreover, the solubility of some specific compounds present in soil can be easily changed by adjusting the pressure and temperature of extraction. The high price of the units designed to operate safely at a pressure and temperature much higher than the a critical one of the applied fluids is the main reason why, at present, there is no more broader application of such techniques for the removal hazardous materials from contaminated soil. In the present paper, among many literature citations and their overall review, some specific details related to the development of specific analytical methods under SC conditions are also considered.

  17. Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases.

    Science.gov (United States)

    Khater, Syame; Lozac'h, Marie-Anne; Adam, Isabelle; Francotte, Eric; West, Caroline

    2016-10-07

    Analysis and production of enantiomerically pure compounds is a major topic of interest when active pharmaceutical ingredients are concerned. Enantioselective chromatography has become a favourite both at the analytical and preparative scales. High-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) are dominating the scene and are often seen as complementary techniques. Nowadays, for economic and ecologic reasons, SFC may be preferred over normal-phase HPLC (NPLC) as it allows significant reductions in solvent consumption. However, the transfer of NPLC methods to SFC is not always straightforward. In this study, we compare the retention of achiral molecules and separation of enantiomers under supercritical fluid (carbon dioxide with ethanol or isopropanol) and liquid normal-phase (heptane with ethanol or isopropanol) elution modes with polysaccharide stationary phases in order to explore the differences between the retention and enantioseparation properties between the two modes. Chemometric methods (namely quantitative structure-retention relationships and discriminant analysis) are employed to compare the results obtained on a large set of analytes (171 achiral probes and 97 racemates) and gain some understanding on the retention and separation mechanisms. The results indicate that, contrary to popular belief, carbon dioxide - solvent SFC mobile phases are often weaker eluents than liquid mobile phases. It appears that SFC and NPLC elution modes provide different retention mechanisms. While some enantioseparations are unaffected, facilitating the transfer between the two elution modes, other enantioseparations may be drastically different due to different types and strength of interactions contributing to enantioselectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Modeling of the Kinetics of Supercritical Fluid Extraction of Lipids from Microalgae with Emphasis on Extract Desorption

    Directory of Open Access Journals (Sweden)

    Helena Sovová

    2016-05-01

    Full Text Available Microalgae contain valuable biologically active lipophilic substances such as omega-3 fatty acids and carotenoids. In contrast to the recovery of vegetable oils from seeds, where the extraction with supercritical CO2 is used as a mild and selective method, economically viable application of this method on similarly soluble oils from microalgae requires, in most cases, much higher pressure. This paper presents and verifies hypothesis that this difference is caused by high adsorption capacity of microalgae. Under the pressures usually applied in supercritical fluid extraction from plants, microalgae bind a large fraction of the extracted oil, while under extremely high CO2 pressures their adsorption capacity diminishes and the extraction rate depends on oil solubility in supercritical CO2. A mathematical model for the extraction from microalgae was derived and applied to literature data on the extraction kinetics in order to determine model parameters.

  19. An oscillation free shock-capturing method for compressible van der Waals supercritical fluid flows

    International Nuclear Information System (INIS)

    Pantano, C.; Saurel, R.; Schmitt, T.

    2017-01-01

    Numerical solutions of the Euler equations using real gas equations of state (EOS) often exhibit serious inaccuracies. The focus here is the van der Waals EOS and its variants (often used in supercritical fluid computations). The problems are not related to a lack of convexity of the EOS since the EOS are considered in their domain of convexity at any mesh point and at any time. The difficulties appear as soon as a density discontinuity is present with the rest of the fluid in mechanical equilibrium and typically result in spurious pressure and velocity oscillations. This is reminiscent of well-known pressure oscillations occurring with ideal gas mixtures when a mass fraction discontinuity is present, which can be interpreted as a discontinuity in the EOS parameters. We are concerned with pressure oscillations that appear just for a single fluid each time a density discontinuity is present. As a result, the combination of density in a nonlinear fashion in the EOS with diffusion by the numerical method results in violation of mechanical equilibrium conditions which are not easy to eliminate, even under grid refinement.

  20. Critical fluid technology for the processing of lipid-related natural products

    Energy Technology Data Exchange (ETDEWEB)

    King, J.W. [Los Alamos National Lab., Supercritical Fluid Facility, Chemistry Div. NM (United States)

    2004-07-01

    In recent years, the technology envelope that embraces critical fluids can involve a wide range of conditions, different types of pure and modified fluids, as well as processing options involving extractions, fractionations or reactions. Technological development drivers continue to be environmentally and consumer-benign processing and/or products, however in recent years expansion of the use of sub- and supercritical fluids has been catalyzed by applications in such opportune fields as nutraceuticals, conversion of biomass (bio-refining), and the ability to modify natural products by reactions. The use of critical fluid technology is an important facet of any sustainable development program, particularly when utilized over a broad, interconnected application platform. In this overview presentation, concepts and applications of critical fluids from the author's research as well as the literature will be cited to support the above trends. A totally 'green' processing platform appears to be viable using carbon dioxide in the appropriate form, ethanol and water as intermediate co-solvents/reactants, and water from above its boiling point to supercritical conditions. These fluids can be combined in overall coupled unit processes, such as combining trans-esterification with hydrogenation, or glycero-lysis of lipid moieties with supercritical fluid fractionation. Such fluids also can exploited sequentially for bio-refining processes or the segregation of value-added products, but may require using coupled fluid or unit operations to obtain the targeted product composition or purity. Changing the reduced temperatures and/or pressures of critical fluids offers a plethora of opportunity, an excellent example being the relative critical fluid state of water. For example, sub-critical water slightly above its boiling point provides a unique medium that mimics polar organic solvents, and has been used even for the extraction of thermally labile solutes or

  1. Production of FAME by palm oil transesterification via supercritical methanol technology

    International Nuclear Information System (INIS)

    Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman

    2009-01-01

    The present study employed non-catalytic supercritical methanol technology to produce biodiesel from palm oil. The research was carried out in a batch-type tube reactor and heated beyond supercritical temperature and pressure of methanol, which are at 239 o C and 8.1 MPa respectively. The effects of temperature, reaction time and molar ratio of methanol to palm oil on the yield of fatty acid methyl esters (FAME) or biodiesel were investigated. The results obtained showed that non-catalytic supercritical methanol technology only required a mere 20 min reaction time to produce more than 70% yield of FAME. Compared to conventional catalytic methods, which required at least 1 h reaction time to obtain similar yield, supercritical methanol technology has been shown to be superior in terms of time and energy consumption. Apart from the shorter reaction time, it was found that separation and purification of the products were simpler since no catalyst is involved in the process. Hence, formation of side products such as soap in catalytic reactions does not occur in the supercritical methanol method.

  2. High performance supercapacitor using N-doped graphene prepared via supercritical fluid processing with an oxime nitrogen source

    International Nuclear Information System (INIS)

    Balaji, S. Suresh; Elavarasan, A.; Sathish, M.

    2016-01-01

    Graphical abstract: N-doped graphene prepared via supercritical fluid processing with oxime nitrogen source (DMG) showed enhanced performance in electrochemical supercapacitor application. A maximum specific capacitance of 286 F g"−"1 at a current density of 0.5 A/g was achieved with a high specific capacity retention of 98% after 1000 cycles at 5 A/g. - Highlights: • N-functionalised graphene synthesized via supercritical fluid processing. • DMG, an oxime based nitrogen precursor. • Maximum specific capacitance of 286 F/g at 0.5 A/g in aqueous solution. • Pyridinic as well as quarternary nitrogen for enhanced capacitance. - Abstract: Heteroatom doped graphene has been proved for its promising applications in electrochemical energy storage systems. Here, nitrogen (N) doped graphene was prepared via two different techniques namely supercritical fluid assisted processing and hydrothermal heat treatment using dimethylglyoxime (DMG) as an oxime nitrogen precursor. The FT-IR and Raman spectra showed the N-containing functional group in the graphene. The XRD analysis revealed the complete reduction of graphene oxide during the supercritical fluid processing. The elemental analysis and X-ray photoelectron spectroscopy revealed the amount and nature of N-doping in the graphene, respectively. The surface morphology and physical nature of the samples were analyzed using scanning and transmission electron microscopic analysis. The electrochemical performance of prepared electrode materials was evaluated using cyclic voltammetry, galvanostatic charge-discharge analysis and electrochemical impedance spectroscopy. The N-doped graphene prepared via supercritical fluid assisted processing exhibit enhanced capacitive behaviour with a maximum specific capacitance of 286 F g"−"1 at a current density of 0.5 A/g. The cycling studies showed 98% specific capacity retention with 100% coulombic efficiency over 1000 cycles at 5 A/g. The enhanced specific capacitance of N

  3. MEASUREMENT OF PYRETHROID RESIDUES IN ENVIRONMENTAL AND FOOD SAMPLES BY ENHANCED SOLVENT EXTRACTION/SUPERCRITICAL FLUID EXTRACTION COUPLED WITH GAS CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY

    Science.gov (United States)

    The abstract summarizes pyrethorid methods development research. It provides a summary of sample preparation and analytical techniques such as supercritical fluid extraction, enhance solvent extraction, gas chromatography and tandem mass spectrometry.

  4. Molecular theory of chromatography for blocklike solutes in isotropic stationary phases and its application to supercritical fluid chromatographic retention of PAHs

    International Nuclear Information System (INIS)

    Chao Yan; Martire, D.E.

    1992-01-01

    This report discusses a molecular theory of chromatography for blocklike solutes in isotropic stationary phases as an extension to the anisotopic phase approach. Its it applied to gas, liquid, and supercritical fluid chromatography

  5. Determination of coumarins in the roots of Angelica dahurica by supercritical fluid chromatography.

    Science.gov (United States)

    Pfeifer, Isabella; Murauer, Adele; Ganzera, Markus

    2016-09-10

    The fact that supercritical fluid chromatography (SFC) offers many desirable features is known for a long time. Yet, the number of applications on natural products is still limited, because robust and user-friendly instrumentation became available just a few years ago. As coumarins hardly have been studied by this technique we developed the first SFC assay for their determination in crude plant material. After method optimization eight standard compounds, including simple coumarins, linear and angular furanocoumarins, could be baseline separated in 6min using an Acquity UPC(2) CSH Fluoro-Phenyl 1.7μm column with supercritical CO2, methanol and diethylamine as mobile phase. Method validation confirmed that the assay is linear (R(2)≥0.9995), precise (intra-day variation≤5.8%; inter-day variation≤4.4%) and accurate (recovery rates from 96.5 to 104.2%). Detection limits determined at 300nm were below 2ng on-column, and the method showed to be well suited for the analysis of coumarins in Angelica dahurica roots. It was observed that qualitative as well as quantitative composition vary significantly. In all samples Imperatorin (0.09-0.28%) was the major coumarin, followed either by Isoimperatorin or Oxypeucedanin; the total coumarin content ranged from 0.16 to 0.77%. The results were in good agreement to published data, so that because of its speed and green nature SFC is definitely an interesting alternative for the analysis of this important class of natural products. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Empirical Modeling of the Viscosity of Supercritical Carbon Dioxide Foam Fracturing Fluid under Different Downhole Conditions

    Directory of Open Access Journals (Sweden)

    Shehzad Ahmed

    2018-03-01

    Full Text Available High-quality supercritical CO2 (sCO2 foam as a fracturing fluid is considered ideal for fracturing shale gas reservoirs. The apparent viscosity of the fracturing fluid holds an important role and governs the efficiency of the fracturing process. In this study, the viscosity of sCO2 foam and its empirical correlations are presented as a function of temperature, pressure, and shear rate. A series of experiments were performed to investigate the effect of temperature, pressure, and shear rate on the apparent viscosity of sCO2 foam generated by a widely used mixed surfactant system. An advanced high pressure, high temperature (HPHT foam rheometer was used to measure the apparent viscosity of the foam over a wide range of reservoir temperatures (40–120 °C, pressures (1000–2500 psi, and shear rates (10–500 s−1. A well-known power law model was modified to accommodate the individual and combined effect of temperature, pressure, and shear rate on the apparent viscosity of the foam. Flow indices of the power law were found to be a function of temperature, pressure, and shear rate. Nonlinear regression was also performed on the foam apparent viscosity data to develop these correlations. The newly developed correlations provide an accurate prediction of the foam’s apparent viscosity under different fracturing conditions. These correlations can be helpful for evaluating foam-fracturing efficiency by incorporating them into a fracturing simulator.

  7. Supercritical Nonlinear Vibration of a Fluid-Conveying Pipe Subjected to a Strong External Excitation

    Directory of Open Access Journals (Sweden)

    Yan-Lei Zhang

    2016-01-01

    Full Text Available Nonlinear vibration of a fluid-conveying pipe subjected to a transverse external harmonic excitation is investigated in the case with two-to-one internal resonance. The excitation amplitude is in the same magnitude of the transverse displacement. The fluid in the pipes flows in the speed larger than the critical speed so that the straight configuration becomes an unstable equilibrium and two curved configurations bifurcate as stable equilibriums. The motion measured from each of curved equilibrium configurations is governed by a nonlinear integro-partial-differential equation with variable coefficients. The Galerkin method is employed to discretize the governing equation into a gyroscopic system consisting of a set of coupled nonlinear ordinary differential equations. The method of multiple scales is applied to analyze approximately the gyroscopic system. A set of first-order ordinary differential equations governing the modulations of the amplitude and the phase are derived via the method. In the supercritical regime, the subharmonic, superharmonic, and combination resonances are examined in the presence of the 2 : 1 internal resonance. The steady-state responses and their stabilities are determined. The various jump phenomena in the amplitude-frequency response curves are demonstrated. The effects of the viscosity, the excitation amplitude, the nonlinearity, and the flow speed are observed. The analytical results are supported by the numerical integration.

  8. Impacts of Extraction Methods in the Rapid Determination of Atrazine Residues in Foods using Supercritical Fluid Chromatography and Enzyme-Linked Immunosorbent Assay: Microwave Solvent vs. Supercritical Fluid Extractions

    Directory of Open Access Journals (Sweden)

    Mohamed H. El-Saeid

    2005-01-01

    Full Text Available It is an accepted fact that many food products that we eat today have the possibility of being contaminated by various chemicals used from planting to processing. These chemicals have been shown to cause illnesses for which some concerned government agencies have instituted regulatory mechanisms to minimize the risks and the effects on humans. It is for these concerns that reliable and accurate rapid determination techniques are needed to effect proper regulatory standards for the protection of people's nutritional health. This paper, therefore, reports the comparative evaluation of the extraction methods in the determination of atrazine (commonly used in agricultural as a herbicide residues in foods using supercritical fluid chromatography (SFC and enzyme-linked immunosorbent assay (ELISA techniques. Supercritical fluid extraction (SFE and microwave solvent extraction (MSE methods were used to test samples of frozen vegetables, fruit juice, and jam from local food markets in Houston. Results showed a high recovery percentage of atrazine residues using supercritical fluid coupled with ELISA and SFC than with MSE. Comparatively, however, atrazine was detected 90.9 and 54.5% using SFC and ELISA techniques, respectively. ELISA technique was, however, less time consuming, lower in cost, and more sensitive with low detection limit of atrazine residues than SFC technique.

  9. Evaluation of supercritical fluid extraction/gas chromatography/matrix isolation-infrared spectrometry for analysis of organic compounds

    International Nuclear Information System (INIS)

    Bopari, A.S.; Bierma, D.R.; Applegate, D.V.

    1991-01-01

    Analysis of soil samples for organic compounds typically first requires Soxhlet extraction or sonication. These processes are time consuming and generate large amounts of waste solvent. Supercritical fluid extraction (SFE), which uses a supercritical fluid such as carbon dioxide, has recently been shown to extract organic compounds from soil samples in good yields. Moreover, SFE does not generate waste solvent and can be performed rapidly. Gas Chromatography/Matrix Isolation-Infrared Spectrometry (GC/MI-IR) has been used in our laboratories for determining organic compounds present in extracts from various matrices. The authors have interfaced an SFE extraction apparatus to GC/MI-IR instruments. In this paper the utility of SPE/GC/MI-IR instrumentation is discussed

  10. HPLC/MS identification of the polyphenols present in an extract of Myrtus communis L. obtained by supercritical fluid extraction

    Directory of Open Access Journals (Sweden)

    Paula Pereira

    2017-12-01

    Full Text Available In this work, we studied an extract obtained by supercritical fluid extraction (SFE using a simpler method of cosolvent (ethanol addition. Instead of using a liquid pump, which is the most common process, the ethanol was directly introduced in the extraction cell, immediately after loading the cell with the plant sample. it was our intent to investigate if this change would have any effect in the composition of the extract obtained. The experimental conditions used were: temperature 48° C, pressure 10 MPa, supercritical fluid (SCF flow rate 130.71dm3h-1 (0.238 kgh-1 and an ethanol volume of 104 cm3. The composition of the extract obtained was different from previous tests, and the compounds identified by HPLC-MS were quinic acid, quinic acid 3,5-di-O-gallate, quinic acid 3,4,5-galloyl, myricetin-galactoside gallate, quercetin-galactoside gallate, quercetin, and myricetin-galactosiderhamnoside.

  11. Supercritical Fluid Extraction and Ultra Performance Liquid Chromatography of Respiratory Quinones for Microbial Community Analysis in Environmental and Biological Samples

    OpenAIRE

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-01-01

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysi...

  12. Cytotoxic Activity of Kenaf Seed Oils from Supercritical Carbon Dioxide Fluid Extraction towards Human Colorectal Cancer (HT29) Cell Lines

    OpenAIRE

    Abd Ghafar, Siti Aisyah; Ismail, Maznah; Saiful Yazan, Latifah; Fakurazi, Sharida; Ismail, Norsharina; Chan, Kim Wei; Md Tahir, Paridah

    2013-01-01

    Kenaf (Hibiscus cannabinus) from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as ? -sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO) was from supercritical carbon dioxide extraction fluid (SFE) at 9 different permutations of parameters based on range of pressures from 200 to 600 bars...

  13. Prediction of wall friction for fluids at supercritical pressure with CFD models

    International Nuclear Information System (INIS)

    Angelucci, M.; Ambrosini, W.; Forgione, N.

    2011-01-01

    In this paper, the STAR-CCM+ CFD code is used in the attempt to reproduce the values of friction factor observed in experimental data at supercritical pressures at various operating conditions. A short survey of available data and correlations for smooth pipe friction in circular pipes puts the basis for the discussion, reporting observed trends of friction factor in the liquid-like and the gas-like regions and within the transitional region around the pseudo-critical temperature. For smooth pipes, a general decrease of the friction factor in the transitional region is reported, constituting one of the relevant effects to be predicted by the computational fluid-dynamic models. A limited number of low-Reynolds number models is adopted, making use of refined near-wall discretisations as required by the constraint y + < 1 at the wall. In particular, the Lien k-ε and the SST k-ω models are considered. The values of the wall shear stress calculated by the code are then post-processed on the basis of bulk fluid properties to obtain the Fanning and then the Darcy-Weisbach friction factors, basing on their classical definitions. The obtained values are compared with those provided by experimental tests and correlations, finding a reasonable qualitative agreement. Expectedly, the agreement is better in the gas-like and liquid-like regions, where fluid property changes are moderate, than in the transitional region, where the trends provided by available correlations are reproduced only in a qualitative way. (author)

  14. Immunomodulatory effects of supercritical fluid CO2 extracts from freeze-dried powder of Tenebrio molitor larvae (yellow mealworm

    Directory of Open Access Journals (Sweden)

    QingFeng TANG

    2016-01-01

    Full Text Available Abstract In order to take full advantage of Tenebrio molitor larvae (yellow mealworm resources, the supercritical CO2 fluid freeze-dried powder of T. molitor larvae (fdTML extraction on the immune systems of mice was carried out. The results about the effects of supercritical CO2 fluid fdTML extraction on carbon expurgation and phagocytosis of peritoneal macrophages experiments of mice indicated that the fdTML extraction enhanced observably carbon expurgatory index, phagocytic rate and phagocytic index. The fdTML extraction could stimulate response of delayed hypersensitivity. The proliferation of ConA-induced mitogenic reponse for spleen lymphocyte was also increased. The amount of hemolytic antibody in mice serum increased compared with those of the control group mice. The half of hemolysis values in serum of treated mice increased compared to the control group. Furthermore, serum NO content in all treatment groups was higher than that of the control group whereas acid phosphatase and alkaline phosphatase activity was only significantly higher relative to the control group. Our findings suggest that supercritical CO2 fluid the fdTML extraction has potential as a health food supplement.

  15. Entropy generation in turbulent mixed convection heat transfer to highly variable property pipe flow of supercritical fluids

    International Nuclear Information System (INIS)

    Mohseni, Mahdi; Bazargan, Majid

    2014-01-01

    Highlights: • The entropy generation in supercritical fluid flows has been numerically investigated. • The mechanisms of entropy generation are different near and away from the walls. • In the near wall region, the energy dissipation is the deciding parameter. • Away from the wall, the heat transfer is the effective factor in entropy generation. • The bulk Be number is greater in the liquid-like region than in vapor-like region. - Abstract: In this study, a two dimensional CFD code has been developed to investigate entropy generation in turbulent mixed convection heat transfer flow of supercritical fluids. Since the fluid properties vary significantly under supercritical conditions, the changes of entropy generation are large. The contribution of each of the mechanisms of entropy production (heat transfer and energy dissipation) is compared in different regions of the flow. The results show that the mechanisms of entropy generation act differently in the near wall region within the viscous sub-layer and in the region away from the wall. The effects of the wall heat flux on the entropy generation are also investigated

  16. Ultra‐high performance supercritical fluid chromatography of lignin‐derived phenols from alkaline cupric oxide oxidation

    Science.gov (United States)

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta

    2016-01-01

    Traditional chromatographic methods for the analysis of lignin‐derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra‐high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin‐derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5–2.5 μM, a limit of quantification of 2.5–5.0 μM, and a dynamic range of 5.0–2.0 mM (R 2 > 0.997). The new ultra‐high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin‐derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin‐derived phenols in complex environmental samples. PMID:27452148

  17. Ultra-high performance supercritical fluid chromatography of lignin-derived phenols from alkaline cupric oxide oxidation.

    Science.gov (United States)

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta; Turner, Charlotta

    2016-08-01

    Traditional chromatographic methods for the analysis of lignin-derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra-high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin-derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5-2.5 μM, a limit of quantification of 2.5-5.0 μM, and a dynamic range of 5.0-2.0 mM (R(2) > 0.997). The new ultra-high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin-derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin-derived phenols in complex environmental samples. © 2016 The Authors, Journal of Separation Science Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fabrication of fluorographene nanosheets with high yield and good quality based on supercritical fluid-phase exfoliation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qi; Ji, Yan; Zhang, Danying; Shi, Jia [Nanjing University of Science and Technology, Key Laboratory of Soft Chemistry and Functional Materials, College of Chemical Engineering (China); Xiao, Yinghong, E-mail: yhxiao@njnu.edu.cn [Nanjing Normal University, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science (China); Che, Jianfei, E-mail: xiaoche@mail.njust.edu.cn [Nanjing University of Science and Technology, Key Laboratory of Soft Chemistry and Functional Materials, College of Chemical Engineering (China)

    2016-07-15

    This article presents a novel and simple method of supercritical fluid-phase exfoliation to fabricate fluorographene (FG) nanosheets with high yield and good quality. After soaking with supercritical CO{sub 2} and glycol at 10 MPa and 50 °C for 24 h, fluoride graphite powder was exfoliated by the intercalated CO{sub 2} and glycol molecules during an abrupt depressurization step. Here, supercritical CO{sub 2} acted as a penetrant and glycol acted as a “molecular wedge” to exfoliate fluoride graphite very well. The properties of FG nanosheets were detected by TEM, AFM, UV spectra, FTIR, XPS, Raman spectra, and XRD, which show the possibility of producing thickness-controlled FG nanosheets by varying numbers of supercritical CO{sub 2} process and the high yield of pure FG nanosheets of 32 wt%, four times higher than that of the sample treated only by the traditional method of sonication. Its simplicity, high productivity, low cost, and short processing time make this technique suitable for large-scale manufacturing of FG nanosheets.

  19. Molecular simulation of CO chemisorption on Co(0001) in presence of supercritical fluid solvent: A potential of mean force study

    Energy Technology Data Exchange (ETDEWEB)

    Asiaee, Alireza; Benjamin, Kenneth M., E-mail: kenneth.benjamin@sdsmt.edu [Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, 501 E. Saint Joseph St., Rapid City, South Dakota 57701 (United States)

    2016-08-28

    For several decades, heterogeneous catalytic processes have been improved through utilizing supercritical fluids (SCFs) as solvents. While numerous experimental studies have been established across a range of chemistries, such as oxidation, pyrolysis, amination, and Fischer-Tropsch synthesis, still there is little fundamental, molecular-level information regarding the role of the SCF on elementary heterogeneous catalytic steps. In this study, the influence of hexane solvent on the adsorption of carbon monoxide on Co(0001), as the first step in the reaction mechanism of many processes involving syngas conversion, is probed. Simulations are performed at various bulk hexane densities, ranging from ideal gas conditions (no SCF hexane) to various near- and super-critical hexane densities. For this purpose, both density functional theory and molecular dynamics simulations are employed to determine the adsorption energy and free energy change during CO chemisorption. Potential of mean force calculations, utilizing umbrella sampling and the weighted histogram analysis method, provide the first commentary on SCF solvent effects on the energetic aspects of the chemisorption process. Simulation results indicate an enhanced stability of CO adsorption on the catalyst surface in the presence of supercritical hexane within the reduced pressure range of 1.0–1.5 at a constant temperature of 523 K. Furthermore, it is shown that the maximum stability of CO in the adsorbed state as a function of supercritical hexane density at 523 K nearly coincides with the maximum isothermal compressibility of bulk hexane at this temperature.

  20. Generic supercritical water technology; Generic technology to shite no chorinkaisui riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Arai, K; Ajiri, M; Inomata, H; Smith, R; Hakuta, Y [Tohoku University, Sendai (Japan). Faculty of Engineering; Yokoyama, C [Tohoku University, Sendai (Japan). The Institute forChemical Reaction Science; Chin, L [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-02-01

    This paper describes the measurement and analysis for clarifying solution structure of supercritical water and exhibition mechanism of solvent functions. It also describes the development of new processes using supercritical water as reaction solvent. The PVT measurements were conducted in the supercritical region using pure water and NaCl aqueous solution, to confirm the reduction of molar volume of the electrolyte solution. The hydration structure was examined in the supercritical aqueous solution by the molecular dynamic simulation. As a result, presence of hydrogen bond structure, where the contribution of two branching hydrogen bond can not be ignored, was suggested under the supercritical condition. Characteristics of supercritical aqueous solutions are analyzed through in-situ Raman and scattered X-ray spectral measurements. Moreover, this paper introduces developments of some processes in the supercritical water, such as decomposition of wasted polymers, recovery of chemical materials, reforming of heavy hydrocarbons by contact hydrogenation, and synthesis of fine powders of metal oxide by reaction crystallization.

  1. Supercritical fluid extraction of ginger (Zingiber Officinale Var. Amarum) : Global yield and composition study

    Science.gov (United States)

    Fitriady, Muhammad Arifuddin; Sulaswatty, Anny; Agustian, Egi; Salahuddin, Aditama, Deska Prayoga Fauzi

    2017-11-01

    An experiment to observe the effect of temperature and time process in ginger rhizome-Supercritical Fluid Extraction (SFE) using CO2 as the solvent has been conducted. The ginger rhizome (Zingiber Officinale Var. Amarum) was washed, drained, sliced, sun-dried, and then stored in a sealed bag prior to usage. The temperature and time process variables are each 35, 40, 45°C and 2, 4, 6 hours respectively with the pressure variable are 3500, 4000, and 4500 psi. It is found that the highest yield (2.9%) was achieved using temperature of 40°C and pressure of 4500 psiwith the process time of 4 hours. However, using the curve-fitting method, it is suggested to use 42°C as the temperature and 5 hours, 7 minutes, and 30 seconds (5.125 Hours) as the time process to obtain the highest yield. The temperature changes will affect both solvent and vapor pressure of diluted compounds of the ginger which will influence the global yield and the composition of the extract. The three major components of the extract are curcumene, zingiberene, and β - sesquipellandrene,

  2. Degradation of brominated flame retardant in computer housing plastic by supercritical fluids.

    Science.gov (United States)

    Wang, Yanmin; Zhang, Fu-Shen

    2012-02-29

    The degradation process of brominated flame retardant (BFR) and BFR-containing waste computer housing plastic in various supercritical fluids (water, methanol, isopropanol and acetone) was investigated. The results showed that the debromination and degradation efficiencies, final products were greatly affected by the solvent type. Among the four tested solvents, isopropanol was the most suitable solvent for the recovery of oil from BFR-containing plastic for its (1) excellent debromination effectiveness (debromination efficiency 95.7%), (2) high oil production (60.0%) and (3) mild temperature and pressure requirements. However, in this case, the removed bromine mostly existed in the oil. Introduction of KOH into the sc-isopropanol could capture almost all the inorganic bromine from the oil thus bromine-free oil could be obtained. Furthermore, KOH could enhance the depolymerization of the plastic. The obtained oil mainly consisted of single- and duplicate-ringed aromatic compounds in a carbon range of C9-C17, which had alkyl substituents or aliphatic bridges, such as butyl-benzene, (3-methylbutyl)-benzene, 1,1'-(1,3-propanediyl)bis benzene. Phenol, alkyl phenols and esters were the major oxygen-containing compounds in the oil. This study provides an efficient approach for debromination and simultaneous recovering valuable chemicals from BFR-containing plastic in e-waste. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Field—Based Supercritical Fluid Extraction of Hydrocarbons at Industrially Contaminated Sites

    Directory of Open Access Journals (Sweden)

    Peggy Rigou

    2002-01-01

    Full Text Available Examination of organic pollutants in groundwaters should also consider the source of the pollution, which is often a solid matrix such as soil, landfill waste, or sediment. This premise should be viewed alongside the growing trend towards field-based characterisation of contaminated sites for reasons of speed and cost. Field-based methods for the extraction of organic compounds from solid samples are generally cumbersome, time consuming, or inefficient. This paper describes the development of a field-based supercritical fluid extraction (SFE system for the recovery of organic contaminants (benzene, toluene, ethylbenzene, and xylene and polynuclear aromatic hydrocarbons from soils. A simple, compact, and robust SFE system has been constructed and was found to offer the same extraction efficiency as a well-established laboratory SFE system. Extraction optimisation was statistically evaluated using a factorial analysis procedure. Under optimised conditions, the device yielded recovery efficiencies of >70% with RSD values of 4% against the standard EPA Soxhlet method, compared with a mean recovery efficiency of 48% for a commercially available field-extraction kit. The device will next be evaluated with real samples prior to field deployment.

  4. Supercritical fluid extraction of uranium for its purification from various yellow cake matrices

    International Nuclear Information System (INIS)

    Prabhat, Parimal; Rao, Ankita; Tomar, B.S.; Kumar, Pradeep

    2016-01-01

    Uranium is produced from different uranium ores as crude yellow cake of different chemical composition such as sodium diuranate (SDU), ammonium diuranate (ADU), magnesium diuranate (MDU), high temperature uranium peroxide (HTUP) etc. This depends on nature of ores and ore processing methods, availability of required facilities at processing site and other economic as well as environmental factors. These yellow cakes are further processed to produce pure uranium suitable for fuel fabrication facility by conventional solvent extraction process. Supercritical Fluid Extraction (SFE) is being developed as an alternate method for separation in nuclear fields due to its inherent potential to minimize liquid waste generation and process simplification. In present study, SFE of uranium from various yellowcake of different chemical composition has been carried out. Chemical parameter such as effect of TBP amount on SFE of uranium has been carried out and optimized at 2 ml for 200 mg SDU. Instrumental parameter such as temperature and pressure on SFE of uranium has been optimized at 323 K and 15.2 MPa. Extraction efficiency (%) achieved at optimized condition is 91.45 ± 0.2, 97.01 ± 0.75 and 96.72 ± 0.27 for SDU, MDU and HTUP respectively. Purity of uranium before SFE and after has been compared. Further studies is in progress for better understanding of chemical composition of matrix on SFE of uranium and improving purity of uranium separated from this route. (author)

  5. Phytochemical Characterization and Biological Evaluation of the Aqueous and Supercritical Fluid Extracts from Salvia sclareoides Brot

    Directory of Open Access Journals (Sweden)

    Batista Daniela

    2017-04-01

    Full Text Available Plants belonging to the genus Salvia (Lamiaceae are known to have a wide range of biological properties. In this work, extracts obtained from the aerial parts of Salvia sclareoides Brot. were evaluated to investigate their chemical composition, toxicity, bioactivity, and stability under in vitro gastrointestinal conditions. The composition of the supercritical fluid extract was determined by GC and GC-MS, while the identification of the infusion constituents was performed by HPLC-DAD and LC-MS. The in vitro cytotoxicity of both extracts (0-2 mg/mL was evaluated in Caco-2 cell lines by the MTT assay. The anti-inflammatory and anticholinesterase activities were determined through the inhibition of cyclooxygenase-1 and acetylcholinesterase enzymes, while β-carotene/linoleic acid bleaching test and the DPPH assays were used to evaluate the antioxidant activity. The infusion inhibited cyclooxygenase-1 (IC50 = 271.0 μg/mL, and acetylcholinesterase (IC50 = 487.7 μg/ mL enzymes, also demonstrated significant antioxidant properties, as evaluated by the DPPH (IC50 = 10.4 μg/mL and β-carotene/linoleic acid (IC50 = 30.0 μg/mL assays. No remarkable alterations in the composition or in the bioactivities of the infusion were observed after in vitro digestion, which supports the potential of S. sclareoides as a source of bioactive ingredients with neuroprotective, anti-inflammatory and antioxidant properties.

  6. A closer study of methanol adsorption and its impact on solute retentions in supercritical fluid chromatography.

    Science.gov (United States)

    Glenne, Emelie; Öhlén, Kristina; Leek, Hanna; Klarqvist, Magnus; Samuelsson, Jörgen; Fornstedt, Torgny

    2016-04-15

    Surface excess adsorption isotherms of methanol on a diol silica adsorbent were measured in supercritical fluid chromatography (SFC) using a mixture of methanol and carbon dioxide as mobile phase. The tracer pulse method was used with deuterium labeled methanol as solute and the tracer peaks were detected using APCI-MS over the whole composition range from neat carbon dioxide to neat methanol. The results indicate that a monolayer (4Å) of methanol is formed on the stationary phase. Moreover, the importance of using the set or the actual methanol fractions and volumetric flows in SFC was investigated by measuring the mass flow respective pressure and by calculations of the actual volume fraction of methanol. The result revealed a significant difference between the value set and the actually delivered volumetric methanol flow rate, especially at low modifier fractions. If relying only on the set methanol fraction in the calculations, the methanol layer thickness should in this system be highly overestimated. Finally, retention times for a set of solutes were measured and related to the findings summarized above concerning methanol adsorption. A strongly non-linear relationship between the logarithms of the retention factors and the modifier fraction in the mobile phase was revealed, prior to the established monolayer. At modifier fractions above that required for establishment of the methanol monolayer, this relationship turns linear which explains why the solute retention factors are less sensitive to changes in modifier content in this region. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A novel gaseous pinacolyl alcohol sensor utilizing cataluminescence on alumina nanowires prepared by supercritical fluid drying.

    Science.gov (United States)

    Yu, Chao; Liu, Guohong; Zuo, Boli; Tang, Yongjun; Zhang, Tian

    2008-06-23

    A cataluminescence (CTL) sensor using Al2O3 nanowires as the sensing material was developed for the determination of trace pinacolyl alcohol in air samples based on the catalytic chemiluminescence (CL) of pinacolyl alcohol on Al2O3 nanowires. Eight catalysts were examined and the CL intensity on Al2O3 nanowires prepared by supercritical fluid drying was the strongest. This novel CL sensor showed high sensitivity and selectivity to gaseous pinacolyl alcohol at optimal temperature of 340 degrees C. Quantitative analysis was performed at a wavelength of 460 nm. The linear range of CTL intensity versus concentration of gaseous pinacolyl alcohol was 0.09 x 10(-6) to 2.56 x 10(-6) g mL(-1) (r=0.9983, n=6) with a detection limit (3 sigma) of 0.0053 x 10(-6) g mL(-1). None or only very low levels of interference were observed while the foreign substances such as water vapor, ethanol, ammonia, chloroform, benzene, nitrogen dioxide, methylbenzene, hydrochloric acid, methanol and butanol were passing through the sensor. The response time of the sensor is less than 100 s, and the sensor had a long lifetime more than 60 h. The sensor would be potentially applied to analysis of the nerve agents such as Soman.

  8. Possibilities and limitations of the kinetic plot method in supercritical fluid chromatography.

    Science.gov (United States)

    De Pauw, Ruben; Desmet, Gert; Broeckhoven, Ken

    2013-08-30

    Although supercritical fluid chromatography (SFC) is becoming a technique of increasing importance in the field of analytical chromatography, methods to compare the performance of SFC-columns and separations in an unbiased way are not fully developed. The present study uses mathematical models to investigate the possibilities and limitations of the kinetic plot method in SFC as this easily allows to investigate a wide range of operating pressures, retention and mobile phase conditions. The variable column length (L) kinetic plot method was further investigated in this work. Since the pressure history is identical for each measurement, this method gives the true kinetic performance limit in SFC. The deviations of the traditional way of measuring the performance as a function of flow rate (fixed back pressure and column length) and the isopycnic method with respect to this variable column length method were investigated under a wide range of operational conditions. It is found that using the variable L method, extrapolations towards other pressure drops are not valid in SFC (deviation of ∼15% for extrapolation from 50 to 200bar pressure drop). The isopycnic method provides the best prediction but its use is limited when operating closer towards critical point conditions. When an organic modifier is used, the predictions are improved for both methods with respect to the variable L method (e.g. deviations decreases from 20% to 2% when 20mol% of methanol is added). Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Supercritical fluid extraction of phenolic compounds and antioxidants from grape (Vitis labrusca B.) seeds.

    Science.gov (United States)

    Ghafoor, Kashif; Al-Juhaimi, Fahad Y; Choi, Yong Hee

    2012-12-01

    Supercritical fluid extraction (SFE) technique was applied and optimized for temperature, CO₂ pressure and ethanol (modifier) concentration using orthogonal array design and response surface methodology for the extract yield, total phenols and antioxidants from grape (Vitis labrusca B.) seeds. Effects of extraction temperature and pressure were found to be significant for all these response variables in SFE process. Optimum SFE conditions (44 ~ 46 °C temperature and 153 ~ 161 bar CO₂ pressure) along with ethanol (extract yield (12.09 %), total phenols (2.41 mg GAE/ml) and antioxidants (7.08 mg AAE/ml), were used to obtain extracts from grape seeds. The predicted values matched well with the experimental values (12.32 % extract yield, 2.45 mg GAE/ml total phenols and 7.08 mg AAE/ml antioxidants) obtained at optimum SFE conditions. The antiradical assay showed that SFE extracts of grape seeds can scavenge more than 85 % of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The grape seeds extracts were also analyzed for hydroxybenzoic acids which included gallic acid (1.21 ~ 3.84 μg/ml), protocatechuic acid (3.57 ~ 11.78 μg/ml) and p-hydroxybenzoic acid (206.72 ~ 688.18 μg/ml).

  10. Optimization of co-solvent addition in supercritical fluid extraction of fat with carbon dioxide

    Directory of Open Access Journals (Sweden)

    Ivanov Dušica S.

    2011-01-01

    Full Text Available This investigation is concerned with supercritical fluid extraction (SFE using CO2, as an analytical technique for total fat extraction from food and feed samples. Its most significant advantages are safety, cleanness, and shorter extraction time. The main limitation of this technique includes the difficulty of extracting polar lipids due to the non-polar character of the solvent (CO2 used for the extraction. The influence of ethanol as a co-solvent on the SFE of mash pig feed was investigated in this paper. Total fat content was determined by SFE and Soxhlet method for ten commercially available mesh pig feeds. Yields of the fat extracted by both methods were plotted one against the other and compared. Statistically significant difference (p ≤ 0.05 has been found only between the total fat obtained by the Soxhlet extraction and SFE by pure CO2. Based on the mathematical model, maximum yield of the extracted fat is achieved at an ethanol addition of 0.67 ml/g of sample, when the other parameters are the same as recommended by the producer’s procedure.

  11. Comparison of supercritical fluid extraction and Soxhlet extraction for the determination of PCBs in seaweed samples.

    Science.gov (United States)

    Punín Crespo, M O; Lage Yusty, M A

    2005-06-01

    The efficiency of supercritical fluid extraction for the determination of 12 polychlorinated biphenyls from algae samples is compared to Soxhlet extraction. Analytical detection limits for the individual congeners ranged from 0.62 microgl(-1) to 19 microgl(-1). Recovery was tested for both methods using standard addition procedure. At maximum spike level of concentration, the mean recoveries were not significantly different (P>0.05) of all PCBs studied, with the exception of PCBs 28, 52, 77 and 169. Method precision for Soxhlet extraction (yield comparable results, SFE offers the advantage of detecting all PCBs studied at lower concentrations, reducing extraction time, and reducing the amount of solvents needed. The optimized methods were applied to the analysis of three real seaweed samples, except for PCB101 the concentrations of all PCBs were low or below the detection limits. The levels of PCB101 found in sample 1 were 6.6+/-0.54 ng g(-1) d.w., in sample 2 the levels were 8.2+/-0.86 ng g(-1) d.w. and in sample 3 they were 7.7+/-0.08 ng g(-1) d.w.

  12. Supercritical Fluid Extraction of Eucalyptus globulus Bark—A Promising Approach for Triterpenoid Production

    Science.gov (United States)

    Domingues, Rui M. A.; Oliveira, Eduardo L. G.; Freire, Carmen S. R.; Couto, Ricardo M.; Simões, Pedro C.; Neto, Carlos P.; Silvestre, Armando J. D.; Silva, Carlos M.

    2012-01-01

    Eucalyptus bark contains significant amounts of triterpenoids with demonstrated bioactivity, namely triterpenic acids and their acetyl derivatives (ursolic, betulinic, oleanolic, betulonic, 3-acetylursolic, and 3-acetyloleanolic acids). In this work, the supercritical fluid extraction (SFE) of Eucalyptus globulus deciduous bark was carried out with pure and modified carbon dioxide to recover this fraction, and the results were compared with those obtained by Soxhlet extraction with dichloromethane. The effects of pressure (100–200 bar), co-solvent (ethanol) content (0, 5 and 8% wt), and multistep operation were studied in order to evaluate the applicability of SFE for their selective and efficient production. The individual extraction curves of the main families of compounds were measured, and the extracts analyzed by GC-MS. Results pointed out the influence of pressure and the important role played by the co-solvent. Ethanol can be used with advantage, since its effect is more important than increasing pressure by several tens of bar. At 160 bar and 40 °C, the introduction of 8% (wt) of ethanol greatly improves the yield of triterpenoids more than threefold. PMID:22837719

  13. Supercritical fluid in the mantle transition zone deduced from H-D interdiffusion of wadsleyite

    Science.gov (United States)

    Sun, Wei; Yoshino, Takashi; Sakamoto, Naoya; Yurimoto, Hisayoshi

    2018-02-01

    Knowledge of the distribution of water in the Earth's mantle is key to understanding the mantle convection and geochemical evolution of the Earth. As wadsleyite and ringwoodite can incorporate large amounts of water in their crystal structures, proton conduction has been invoked to account for the widespread conductive anomalies observed in the mantle wedge, where descending slab stagnates at the transition zone. However, there is a lot of controversy on whether proton conduction by itself is able to explain such anomalies, because of large discrepancy in the extent of the water effect deduced from previous electrical conductivity measurements on hydrous polycrystalline wadsleyite and ringwoodite. Here we report the hydrogen self-diffusion coefficient obtained from H-D interdiffusion experiments in wadsleyite single-crystal couples. Our results demonstrate that the effect of water on the electrical conductivity of wadsleyite is limited and hydrous wadsleyite by itself is unable to explain conductive anomalies in the transition zone. In contrast, the expected hydrogen effective diffusion does not allow the wide propagation of water between the stagnant slab and surrounding mantle, probably leading to persistence of local water saturation and continuous release of supercritical fluids at the stagnant slab roof on geological time scales. This phenomenon provides an alternative explanation for both the high-conductivity and seismic-velocity anomalies observed in the mantle wedge at the transition-zone depth.

  14. Chiral separation of G-type chemical warfare nerve agents via analytical supercritical fluid chromatography.

    Science.gov (United States)

    Kasten, Shane A; Zulli, Steven; Jones, Jonathan L; Dephillipo, Thomas; Cerasoli, Douglas M

    2014-12-01

    Chemical warfare nerve agents (CWNAs) are extremely toxic organophosphorus compounds that contain a chiral phosphorus center. Undirected synthesis of G-type CWNAs produces stereoisomers of tabun, sarin, soman, and cyclosarin (GA, GB, GD, and GF, respectively). Analytical-scale methods were developed using a supercritical fluid chromatography (SFC) system in tandem with a mass spectrometer for the separation, quantitation, and isolation of individual stereoisomers of GA, GB, GD, and GF. Screening various chiral stationary phases (CSPs) for the capacity to provide full baseline separation of the CWNAs revealed that a Regis WhelkO1 (SS) column was capable of separating the enantiomers of GA, GB, and GF, with elution of the P(+) enantiomer preceding elution of the corresponding P(-) enantiomer; two WhelkO1 (SS) columns had to be connected in series to achieve complete baseline resolution. The four diastereomers of GD were also resolved using two tandem WhelkO1 (SS) columns, with complete baseline separation of the two P(+) epimers. A single WhelkO1 (RR) column with inverse stereochemistry resulted in baseline separation of the GD P(-) epimers. The analytical methods described can be scaled to allow isolation of individual stereoisomers to assist in screening and development of countermeasures to organophosphorus nerve agents. © 2014 The Authors. Chirality published by John Wiley Periodicals, Inc.

  15. Au/Graphene Oxide Nanocomposite Synthesized in Supercritical CO2 Fluid as Energy Efficient Lubricant Additive.

    Science.gov (United States)

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2017-11-15

    Au nanoparticles are successfully decorated onto graphene oxide (GO) sheets with the aid of supercritical carbon dioxide (ScCO 2 ) fluid. The synthesized nanocomposite (Sc-Au/GO) was characterized by X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), and transmission electron microscopy (TEM). The characterization results show that the Au nanoparticles are featured with face-centered cubic crystal structure and disperse well on the GO nanosheet surfaces with average diameters of 4-10 nm. The tribological behaviors of Sc-Au/GO as lubricating additive in PAO6 oil were investigated using a ball-on-disc friction tester, and a control experiment by respectively adding GO, nano-Au particles, and Au/GO produced in the absence of ScCO 2 was performed as well. It is found that Sc-Au/GO exhibits the best lubricating performances among all the samples tested. When 0.10 wt % Sc-Au/GO is dispersed into PAO6 oil, the friction coefficient and wear rate are respectively reduced by 33.6% and 72.8% as compared to that of the pure PAO6 oil, indicating that Sc-Au/GO is an energy efficient lubricant additive. A possible lubricating mechanism of Sc-Au/GO additive in PAO6 oil has been tentatively proposed on the basis of the analyzed results of the worn surface examined by scanning electron microscopy (SEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS).

  16. Method of making supercritical fluid molecular spray films, powder and fibers

    Science.gov (United States)

    Smith, Richard D.

    1988-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a heated nozzle having a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. In another embodiment, the temperature of the solution and nozzle is elevated above the melting point of the solute, which is preferably a polymer, and the solution is maintained at a pressure such that, during expansion, the solute precipitates out of solution within the nozzle in a liquid state. Alternatively, a secondary solvent mutually soluble with the solute and primary solvent and having a higher critical temperature than that of primary solvent is used in a low concentration (<20%) to maintain the solute in a transient liquid state. The solute is discharged in the form of long, thin fibers. The fibers are collected at sufficient distance from the orifice to allow them to solidify in the low pressure/temperature region.

  17. Enantioselective potential of polysaccharide-based chiral stationary phases in supercritical fluid chromatography.

    Science.gov (United States)

    Kucerova, Gabriela; Kalikova, Kveta; Tesarova, Eva

    2017-06-01

    The enantioselective potential of two polysaccharide-based chiral stationary phases for analysis of chiral structurally diverse biologically active compounds was evaluated in supercritical fluid chromatography using a set of 52 analytes. The chiral selectors immobilized on 2.5 μm silica particles were tris-(3,5-dimethylphenylcarmabate) derivatives of cellulose or amylose. The influence of the polysaccharide backbone, different organic modifiers, and different mobile phase additives on retention and enantioseparation was monitored. Conditions for fast baseline enantioseparation were found for the majority of the compounds. The success rate of baseline and partial enantioseparation with cellulose-based chiral stationary phase was 51.9% and 15.4%, respectively. Using amylose-based chiral stationary phase we obtained 76.9% of baseline enantioseparations and 9.6% of partial enantioseparations of the tested compounds. The best results on cellulose-based chiral stationary phase were achieved particularly with propane-2-ol and a mixture of isopropylamine and trifluoroacetic acid as organic modifier and additive to CO 2 , respectively. Methanol and basic additive isopropylamine were preferred on amylose-based chiral stationary phase. The complementary enantioselectivity of the cellulose- and amylose-based chiral stationary phases allows separation of the majority of the tested structurally different compounds. Separation systems were found to be directly applicable for analyses of biologically active compounds of interest. © 2017 Wiley Periodicals, Inc.

  18. Enantioselective Analytical- and Preparative-Scale Separation of Hexabromocyclododecane Stereoisomers Using Packed Column Supercritical Fluid Chromatography

    Directory of Open Access Journals (Sweden)

    Nicole Riddell

    2016-11-01

    Full Text Available Hexabromocyclododecane (HBCDD is an additive brominated flame retardant which has been listed in Annex A of the Stockholm Convention for elimination of production and use. It has been reported to persist in the environment and has the potential for enantiomer-specific degradation, accumulation, or both, making enantioselective analyses increasingly important. The six main stereoisomers of technical HBCDD (i.e., the (+ and (− enantiomers of α-, β-, and γ-HBCDD were separated and isolated for the first time using enantioselective packed column supercritical fluid chromatography (pSFC separation methods on a preparative scale. Characterization was completed using published chiral liquid chromatography (LC methods and elution profiles, as well as X-ray crystallography, and the isolated fractions were definitively identified. Additionally, the resolution of the enantiomers, along with two minor components of the technical product (δ- and ε-HBCDD, was investigated on an analytical scale using both LC and pSFC separation techniques, and changes in elution order were highlighted. Baseline separation of all HBCDD enantiomers was achieved by pSFC on an analytical scale using a cellulose-based column. The described method emphasizes the potential associated with pSFC as a green method of isolating and analyzing environmental contaminants of concern.

  19. Development of a sensitive and rapid method for rifampicin impurity analysis using supercritical fluid chromatography.

    Science.gov (United States)

    Li, Wei; Wang, Jun; Yan, Zheng-Yu

    2015-10-10

    A novel simple, fast and efficient supercritical fluid chromatography (SFC) method was developed and compared with RPLC method for the separation and determination of impurities in rifampicin. The separation was performed using a packed diol column and a mobile phase B (modifier) consisting of methanol with 0.1% ammonium formate (w/v) and 2% water (v/v). Overall satisfactory resolutions and peak shapes for rifampicin quinone (RQ), rifampicin (RF), rifamycin SV (RSV), rifampicin N-oxide (RNO) and 3-formylrifamycinSV (3-FR) were obtained by optimization of the chromatography system. With gradient elution of mobile phase, all of the impurities and the active were separated within 4 min. Taking full advantage of features of SFC (such as particular selectivity, non-sloping baseline in gradient elution, and without injection solvent effects), the method was successfully used for determination of impurities in rifampicin, with more impurity peaks detected, better resolution achieved and much less analysis time needed compared with conventional reversed-phase liquid chromatography (RPLC) methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The effect of high concentration additive on chiral separations in supercritical fluid chromatography.

    Science.gov (United States)

    Speybrouck, David; Doublet, Charline; Cardinael, Pascal; Fiol-Petit, Catherine; Corens, David

    2017-08-11

    Supercritical Fluid Chromatography is frequently used to efficiently handle separations of enantiomers. The separation of basic analytes usually requires the addition of a basic additive in the mobile phase to improve the peak shape or even to elute the compounds. The effect of increasing the concentration of 2-propylamine as additive on the elution of a series of basic compounds on a Chiralpak-AD stationary phase was studied. In this study, unusual additive concentrations ranging from 0.3% to 10% of 2-propylamine 2-propylaminein the modifier were explored and the effect on retention, peak shape, selectivity and resolution was evaluated. The addition of a large quantity of additive allowed to drastically improve the selectivity and the resolution, and even enantiomers elution order reversal was observed by changing the concentration of basic additive. The role of the ratio additive/modifier appeared a key to tune the enantioselectivity. Finally, the impact of these drastic conditions on the column material was evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Quantitative determination of major alkaloids in Cinchona bark by Supercritical Fluid Chromatography.

    Science.gov (United States)

    Murauer, Adele; Ganzera, Markus

    2018-06-15

    Chinoline alkaloids found in Cinchona bark still play an important role in medicine, for example as antimalarial and antiarrhythmic drugs. For the first time Supercritical Fluid Chromatography has been utilized for their separation. Six respective derivatives (dihydroquinidine, dihydroquinine, quinidine, quinine, cinchonine and cinchonidine) could be resolved in less than 7 min, and three of them quantified in crude plant extracts. The optimum stationary phase showed to be an Acquity UPC 2 Torus DEA 1.7 μm column, the mobile phase comprised of CO 2 , acetonitrile, methanol and diethylamine. Method validation confirmed that the procedure is selective, accurate (recovery rates from 97.2% to 103.7%), precise (intra-day ≤2.2%, inter-day ≤3.0%) and linear (R 2  ≥ 0.999); at 275 nm the observed detection limits were always below 2.5 μg/ml. In all of the samples analyzed cinchonine dominated (1.87%-2.30%), followed by quinine and cinchonidine. Their total content ranged from 4.75% to 5.20%. These values are in good agreement with published data, so that due to unmatched speed and environmental friendly character SFC is definitely an excellent alternative for the analysis of these important natural products. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. Small scale separation of isoxazole structurally related analogues by chiral supercritical fluid chromatography.

    Science.gov (United States)

    Zehani, Yasmine; Lemaire, Lucas; Millet, Regis; Lipka, Emmanuelle

    2017-07-07

    Chromatographic preparative enantioseparation is now the preferred method to obtain milligram amounts of pure enantiomers in the first step of the development of a therapeutic molecule. Supercritical fluid chromatography has many advantages over liquid chromatography and was therefore chosen for the small scale enantioseparation of four original 3-carboxamido-5-aryl isoxazole molecules, ligands of the CB2 cannabinoid receptors. The preparation of about 10mg of each of the eight enantiomers was achieved successfully on a Chiralpak ® AD-H (tris-3,5-dimethylphenylcarbamate of amylose) polysaccharide based stationary phase with various percentages of ethanol as a co-solvent, through mixed-stream injections and touching-band approach. For the all compounds, no peak distortion is observed during the volume overloading, in spite of the injection mode. Production rate (mgmin -1 ), productivity (kilogram of racemate separated per kilogram of CSP per day (kkd)) and solvent usage were found higher and environmental factors (E Factor) were found lower for compounds 1 and 3. The yields of each purified enantiomer were comprised between 60 and 94%. In order to improve the limit of detection calculated with the diode array detector, the hyphenation with an evaporating light scattering detector was explored and a factor of ten was won. Lastely, the enantiomeric excess and achiral purity of each of the eight individual enantiomer generated was determined and found higher than 98%. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge

    Directory of Open Access Journals (Sweden)

    Koichi Fujie

    2012-03-01

    Full Text Available Supercritical fluid extraction (SFE was used in the analysis of bacterial respiratory quinone (RQ, bacterial phospholipid fatty acid (PLFA, and archaeal phospholipid ether lipid (PLEL from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC. Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS. The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile.

  4. Ultrahigh performance supercritical fluid chromatography of lipophilic compounds with application to synthetic and commercial biodiesel.

    Science.gov (United States)

    Ashraf-Khorassani, M; Yang, J; Rainville, P; Jones, M D; Fountain, K J; Isaac, G; Taylor, L T

    2015-03-01

    Ultrahigh performance supercritical fluid chromatography (UHPSFC) in combination with sub-2μm particles and either diode array ultraviolet (UV), evaporative light scattering, (ELSD), or mass spectrometric (MS) detection has been shown to be a valuable technique for the determination of acylglycerols in soybean, corn, sesame, and tobacco seed oils. Excellent resolution on an un-endcapped single C18 column (3.0mm×150mm) with a mobile phase gradient of acetonitrile and carbon dioxide in as little as 10min served greatly as an improvement on first generation packed column SFC instrumentation. Unlike high resolution gas chromatography and high performance liquid chromatography with mass spectrometric detection, UHPSFC/MS was determined to be a superior analytical tool for both separation and detection of mono-, di-, and tri-acylglycerols as well as free glycerol itself in biodiesel without derivatization. Baseline separation of residual tri-, di-, and mono-acylglycerols alongside glycerol at 0.05% (w/w) was easily obtained employing packed column SFC. The new analytical methodology was applied to both commercial B100 biodiesel (i.e. fatty acid methyl esters) derived from vegetable oil and to an "in-house" synthetic biodiesel (i.e. fatty acid ethyl esters) derived from tobacco seed oil and ethanol both before and after purification via column chromatography on bare silica. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Enantioselective Analytical- and Preparative-Scale Separation of Hexabromocyclododecane Stereoisomers Using Packed Column Supercritical Fluid Chromatography.

    Science.gov (United States)

    Riddell, Nicole; Mullin, Lauren Gayle; van Bavel, Bert; Ericson Jogsten, Ingrid; McAlees, Alan; Brazeau, Allison; Synnott, Scott; Lough, Alan; McCrindle, Robert; Chittim, Brock

    2016-11-10

    Hexabromocyclododecane (HBCDD) is an additive brominated flame retardant which has been listed in Annex A of the Stockholm Convention for elimination of production and use. It has been reported to persist in the environment and has the potential for enantiomer-specific degradation, accumulation, or both, making enantioselective analyses increasingly important. The six main stereoisomers of technical HBCDD (i.e., the (+) and (-) enantiomers of α-, β-, and γ-HBCDD) were separated and isolated for the first time using enantioselective packed column supercritical fluid chromatography (pSFC) separation methods on a preparative scale. Characterization was completed using published chiral liquid chromatography (LC) methods and elution profiles, as well as X-ray crystallography, and the isolated fractions were definitively identified. Additionally, the resolution of the enantiomers, along with two minor components of the technical product (δ- and ε-HBCDD), was investigated on an analytical scale using both LC and pSFC separation techniques, and changes in elution order were highlighted. Baseline separation of all HBCDD enantiomers was achieved by pSFC on an analytical scale using a cellulose-based column. The described method emphasizes the potential associated with pSFC as a green method of isolating and analyzing environmental contaminants of concern.

  6. Supercritical Fluid Extraction of Quinones from Compost for Microbial Community Analysis

    Directory of Open Access Journals (Sweden)

    Ni Luh Gede Ratna Juliasih

    2015-01-01

    Full Text Available Supercritical fluid extraction (SFE was used to extract quinones from compost to monitor the microbial community dynamics during composting. The 0.3 g of dried compost was extracted using 3 mL min−1 of carbon dioxide (90% and methanol (10% at 45°C and 25 MPa for a 30 min extraction time. The extracted quinones were analysed using ultra performance liquid chromatography (UPLC with 0.3 mL min−1 of methanol mobile phase for a 50 min chromatographic run time. A comparable detected amount of quinones was obtained using the developed method and an organic solvent extraction method, being 36.06 μmol kg−1 and 34.54 μmol kg−1, respectively. Significantly low value of dissimilarity index (D between the two methods (0.05 indicated that the quinone profile obtained by both methods was considered identical. The developed method was then applied to determine the maturity of the compost by monitoring the change of quinone during composting. The UQ-9 and MK-7 were predominant quinones in the initial stage of composting. The diversity of quinone became more complex during the cooling and maturation stages. This study showed that SFE had successfully extracted quinones from a complex matrix with simplification and rapidity of the analysis that is beneficial for routine analysis.

  7. Enantioseparation of novel chiral sulfoxides on chlorinated polysaccharide stationary phases in supercritical fluid chromatography.

    Science.gov (United States)

    West, Caroline; Konjaria, Mari-Luiza; Shashviashvili, Natia; Lemasson, Elise; Bonnet, Pascal; Kakava, Rusudan; Volonterio, Alessandro; Chankvetadze, Bezhan

    2017-05-26

    Asymmetric sulfoxides is a particular case of chirality that may be found in natural as well as synthetic products. Twenty-four original molecules containing a sulfur atom as a centre of chirality were analyzed in supercritical fluid chromatography on seven polysaccharide-based chiral stationary phases (CSP) with carbon dioxide - methanol mobile phases. While all the tested CSP provided enantioseparation for a large part of the racemates, chlorinated cellulosic phases proved to be both highly retentive and highly enantioselective towards these species. Favourable structural features were determined by careful comparison of the enantioseparation of the probe molecules. Molecular modelling studies indicate that U-shaped (folded) conformations were most favorable to achieve high enantioresolution on these CSP, while linear (extended) conformations were not so clearly discriminated. For a subset of these species adopting different conformations, a broad range of mobile phase compositions, ranging from 20 to 100% methanol in carbon dioxide, were investigated. While retention decreased continuously in this range, enantioseparation varied in a non-monotonous fashion. Abrupt changes in the tendency curves of retention and selectivity were observed when methanol proportion reaches about 60%, suggesting that a change in the conformation of the analytes and/or chiral selector is occurring at this point. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Film self-assembly properties of vacuum residua from crude oil and correlation to the stability of water/crude oil emulsions[Supercritical fluid extraction and fractional technology (SFEF)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Bo

    2005-07-01

    In this thesis, SFEF technology has been used to obtain a fine separation of vacuum residua. Three kinds of vacuum residua from Iranian Heavy Crude Oil, Iranian Light Crude Oil and Daqing Crude Oil have been separated respectively into three series narrow cut fractions as a function of the average molecular weight. And their molecular parameters have been characterized by Vapour Pressure Osmometry(VPO) system, Ultraviolet(UV) spectroscopy, Infrared(IR) spectroscopy as well as by elemental analysis. The various fractions of vacuum residua have been added to an oil/water model system. The oil phase used was pure heptane, pure toluene, a mixture of heptane and toluene etc. Various properties of the interfacial film have been studied such as the self-assembly properties, interfacial tension and interfacial viscosity, etc. The self-assembly procedure of interfacial film of vacuum residua fractions were focused by means of the Wilhelmy plate method (Paper 1). The self-assembly states of interfacial film of vacuum residua fraction from Iranian Heavy and Daqing crude oil have been revealed by using Langmuir-Blodgett technology respectively (Paper II and Paper III). From measurement of the interfacial shear viscosity, the mechanical strength of the interfacial film formed by the vacuum residua fraction has been described (Paper IV) and the roles of the surfactants added in the interfacial film have been confirmed (Paper V). At the same time, the oil/water interfacial tensions of vacuum residua fractions from the three kinds of crude oil have been studied and compared (Paper VI and Paper VII). Characteristic properties of emulsions stabilized by the vacuum residua, such as Zeta potential (Paper VIII) and particle size distribution (Paper IX), have also been studied. An attempt has been made to explain the variations of emulsion properties in terms of the interfacial self-assembly of vacuum residua fractions. Finally, based up the above research and using chemometric methods

  9. Ionic Liquid and Supercritical Fluid Hyphenated Techniques for Dissolution and Separation of Lanthanides, Actinides, and Fission Products

    International Nuclear Information System (INIS)

    Wai, Chien M.; Mincher, Bruce

    2012-01-01

    This project is investigating techniques involving ionic liquids (IL) and supercritical (SC) fluids for dissolution and separation of lanthanides, actinides, and fission products. The research project consists of the following tasks: Study direct dissolution of lanthanide oxides, uranium dioxide and other actinide oxides in [bmin][Tf 2 N] with TBP(HNO 3 ) 1.8 (H 2 O) 0.6 and similar types of Lewis acid-Lewis base complexing agents; Measure distributions of dissolved metal species between the IL and the sc-CO 2 phases under various temperature and pressure conditions; Investigate the chemistry of the dissolved metal species in both IL and sc-CO 2 phases using spectroscopic and chemical methods; Evaluate potential applications of the new extraction techniques for nuclear waste management and for other projects. Supercritical carbon dioxide (sc-CO 2 ) and ionic liquids are considered green solvents for chemical reactions and separations. Above the critical point, CO 2 has both gas- and liquid-like properties, making it capable of penetrating small pores of solids and dissolving organic compounds in the solid matrix. One application of sc-CO 2 extraction technology is nuclear waste management. Ionic liquids are low-melting salts composed of an organic cation and an anion of various forms, with unique properties making them attractive replacements for the volatile organic solvents traditionally used in liquid-liquid extraction processes. One type of room temperature ionic liquid (RTIL) based on the 1-alkyl-3-methylimidazolium cation [bmin] with bis(trifluoromethylsulfonyl)imide anion [Tf 2 N] is of particular interest for extraction of metal ions due to its water stability, relative low viscosity, high conductivity, and good electrochemical and thermal stability. Recent studies indicate that a coupled IL sc-CO 2 extraction system can effectively transfer trivalent lanthanide and uranyl ions from nitric acid solutions. Advantages of this technique include operation at

  10. The utility of ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS) for clinically relevant steroid analysis.

    Science.gov (United States)

    Storbeck, Karl-Heinz; Gilligan, Lorna; Jenkinson, Carl; Baranowski, Elizabeth S; Quanson, Jonathan L; Arlt, Wiebke; Taylor, Angela E

    2018-05-15

    Liquid chromatography tandem mass spectrometry (LC-MS/MS) assays are considered the reference standard for serum steroid hormone analyses, while full urinary steroid profiles are only achievable by gas chromatography (GC-MS). Both LC-MS/MS and GC-MS have well documented strengths and limitations. Recently, commercial ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS) systems have been developed. These systems combine the resolution of GC with the high-throughput capabilities of UHPLC. Uptake of this new technology into research and clinical labs has been slow, possibly due to the perceived increase in complexity. Here we therefore present fundamental principles of UHPSFC-MS/MS and the likely applications for this technology in the clinical research setting, while commenting on potential hurdles based on our experience to date. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Yourong Li

    2012-08-01

    Full Text Available The performance analysis of a supercritical organic Rankine cycle system driven by exhaust heat using 18 organic working fluids is presented. Several parameters, such as the net power output, exergy efficiency, expander size parameter (SP, and heat exchanger requirement of evaporator and the condenser, were used to evaluate the performance of this recovery cycle and screen the working fluids. The results reveal that in most cases, raising the expander inlet temperature is helpful to improve the net power output and the exergy efficiency. However, the effect of the expander inlet pressure on those parameters is related to the expander inlet temperature and working fluid used. Either lower expander inlet temperature and pressure, or higher expander inlet temperature and pressure, generally makes the net power output more. Lower expander inlet temperature results in larger total heat transfer requirement and expander size. According to the screening criteria of both the higher output and the lower investment, the following working fluids for the supercritical ORC system are recommended: R152a and R143a.

  12. Analysis of new psychoactive substances in human urine by ultra-high performance supercritical fluid and liquid chromatography: Validation and comparison.

    Science.gov (United States)

    Borovcová, Lucie; Pauk, Volodymyr; Lemr, Karel

    2018-05-01

    New psychoactive substances represent serious social and health problem as tens of new compounds are detected in Europe annually. They often show structural proximity or even isomerism, which complicates their analysis. Two methods based on ultra high performance supercritical fluid chromatography and ultra high performance liquid chromatography with mass spectrometric detection were validated and compared. A simple dilute-filter-and-shoot protocol utilizing propan-2-ol or methanol for supercritical fluid or liquid chromatography, respectively, was proposed to detect and quantify 15 cathinones and phenethylamines in human urine. Both methods offered fast separation (chromatography. Limits of detection in urine ranged from 0.01 to 2.3 ng/mL, except for cathinone (5 ng/mL) in supercritical fluid chromatography. Nevertheless, this technique distinguished all analytes including four pairs of isomers, while liquid chromatography was unable to resolve fluoromethcathinone regioisomers. Concerning matrix effects and recoveries, supercritical fluid chromatography produced more uniform results for different compounds and at different concentration levels. This work demonstrates the performance and reliability of supercritical fluid chromatography and corroborates its applicability as an alternative tool for analysis of new psychoactive substances in biological matrixes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Identification of Bioactivity, Volatile and Fatty Acid Profile in Supercritical Fluid Extracts of Mexican arnica

    Directory of Open Access Journals (Sweden)

    J. Saúl García-Pérez

    2016-09-01

    Full Text Available Supercritical fluid extraction (SFE is a sustainable technique used for the extraction of lipophilic metabolites such as pigments and fatty acids. Arnica plant is considered a potential candidate material with high antioxidant and antimicrobial activities. Therefore, in this study, a locally available Heterotheca inuloides, also known as Mexican arnica, was analyzed for the extraction of high-value compounds. Based on different pressure (P, temperature (T, and co-solvent (CoS, four treatments (T were prepared. A maximum 7.13% yield was recovered from T2 (T = 60 °C, P = 10 MPa, CoS = 8 g/min, followed by 6.69% from T4 (T = 60 °C, P = 30 MPa, CoS = 4 g/min. Some bioactive sesquiterpenoids such as 7-hydroxycadalene, caryophyllene and δ-cadinene were identified in the extracts by GC/MS. The fatty acid profile revealed that the main components were palmitic acid (C16:0, followed by linoleic acid (C18:2ω6c, α-linolenic acid (C18:3ω3 and stearic acid (C18:0 differing in percent yield per treatment. Antibacterial activities were determined by the agar diffusion method, indicating that all the treatments exerted strong antibacterial activity against S. aureus, C. albicans, and E. coli strains. The antioxidant capacity of the extracts was also measured by three in vitro assays, DPPH, TEAC and FRAP, using Trolox as a standard. Results showed high antioxidant capacity enabling pharmaceutical applications of Mexican arnica.

  14. Bioassay-guided supercritical fluid extraction of cyclooxygenase-2 inhibiting substances in Plantago major L.

    Science.gov (United States)

    Stenholm, A; Göransson, U; Bohlin, L

    2013-02-01

    Selective extraction of plant materials is advantageous for obtaining extracts enriched with desired constituents, thereby reducing the need for subsequent chromatography purification. Such compounds include three cyclooxygenase-2 (COX-2) inhibitory substances in Plantago major L. targeted in this investigation: α-linolenic acid (α-LNA) (18:3 ω-3) and the triterpenic acids ursolic acid and oleanolic acid. To investigate the scope for tuning the selectivity of supercritical fluid extraction (SFE) using bioassay guidance, and Soxhlet extraction with dichloromethane as solvent as a reference technique, to optimise yields of these substances. Extraction parameters were varied to optimise extracts' COX-2/COX-1 inhibitory effect ratios. The crude extracts were purified initially using a solid phase extraction (SPE) clean-up procedure and the target compounds were identified with GC-MS, LC-ESI-MS and LC-ESI-MS² using GC-FID for quantification. α-LNA was preferentially extracted in dynamic mode using unmodified carbon dioxide at 40°C and 172 bar, at a 0.04% (w/w) yield with a COX-2/COX-1 inhibitory effect ratio of 1.5. Ursolic and oleanolic acids were dynamically extracted at 0.25% and 0.06% yields, respectively, with no traces of (α-LNA) and a COX-2/COX-1-inhibitory effect ratio of 1.1 using 10% (v/v) ethanol as polar modifier at 75°C and 483 bar. The Soxhlet extracts had ursolic acid, oleanolic acid and αLNA yields up to 1.36%, 0.34% and 0.15%, respectively, with a COX-2/COX-1 inhibitory effect ratio of 1.2. The target substances can be extracted selectively by bioassay guided optimisation of SFE conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Supercritical fluid extraction of peach (Prunus persica) almond oil: process yield and extract composition.

    Science.gov (United States)

    Mezzomo, Natália; Mileo, Bruna R; Friedrich, Maria T; Martínez, Julian; Ferreira, Sandra R S

    2010-07-01

    Peach kernels are industrial residues from the peach processing, contain oil with important therapeutic properties and attractive nutritional aspects because of the high concentration of oleic and linoleic acids. The extraction method used to obtain natural compounds from raw matter is critical for product quality definition. Thus, the aim of this work was to compare peach almond extraction yields obtained by different procedures: soxhlet extractions (Sox) with different solvents; hydrodistillation (HD); ethanolic maceration (Mac) followed by fractionation with various solvents, and supercritical fluid extraction (SFE) at 30, 40 and 50 degrees C and at 100, 200 and 300bar, performed with pure CO(2) and with a co-solvent. The extracts were evaluated with respect to fatty acid composition (FAC), fractionated chemical profile (FCP) and total phenolic content (TPC). The Sox total yields were generally higher than those obtained by SFE. The crossover pressure for SFE was between 260 and 280bar. The FAC results show oleic and linoleic acids as main components, especially for Sox and SFE extracts. The FCP for samples obtained by Sox and Mac indicated the presence of benzaldehyde and benzyl alcohol, components responsible for almond flavor and with important industrial uses, whereas the SFE extracts present a high content of a possible flavonoid. The higher TPC values were obtained by Sox and Mac with ethanol. In general, the maximum pressure in SFE produced the highest yield, TPC and oleic acid content. The use of ethanol at 5% as co-solvent in SFE did not result in a significant effect on any evaluated parameter. The production of peach almond oil through all techniques is substantially adequate and SFE presented advantages, with respect to the quality of the extracts due to the high oleic acid content, as presented by some Sox samples. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Quantitative determination of salbutamol sulfate impurities using achiral supercritical fluid chromatography.

    Science.gov (United States)

    Dispas, Amandine; Desfontaine, Vincent; Andri, Bertyl; Lebrun, Pierre; Kotoni, Dorina; Clarke, Adrian; Guillarme, Davy; Hubert, Philippe

    2017-02-05

    In the last years, supercritical fluid chromatography has largely been acknowledged as a singular and performing technique in the field of separation sciences. Recent studies highlighted the interest of SFC for the quality control of pharmaceuticals, especially in the case of the determination of the active pharmaceutical ingredient (API). Nevertheless, quality control requires also the determination of impurities. The objectives of the present work were to (i) demonstrate the interest of SFC as a reference technique for the determination of impurities in salbutamol sulfate API and (ii) to propose an alternative to a reference HPLC method from the European Pharmacopeia (EP) involving ion-pairing reagent. Firstly, a screening was carried out to select the most adequate and selective stationary phase. Secondly, in the context of robust optimization strategy, the method was developed using design space methodology. The separation of salbutamol sulfate and related impurities was achieved in 7min, which is seven times faster than the LC-UV method proposed by European Pharmacopeia (total run time of 50min). Finally, full validation using accuracy profile approach was successfully achieved for the determination of impurities B, D, F and G in salbutamol sulfate raw material. The validated dosing range covered 50 to 150% of the targeted concentration (corresponding to 0.3% concentration level), LODs close to 0.5μg/mL were estimated. The SFC method proposed in this study could be presented as a suitable fast alternative to EP LC method for the quantitative determination of salbutamol impurities. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A systematic investigation of sample diluents in modern supercritical fluid chromatography.

    Science.gov (United States)

    Desfontaine, Vincent; Tarafder, Abhijit; Hill, Jason; Fairchild, Jacob; Grand-Guillaume Perrenoud, Alexandre; Veuthey, Jean-Luc; Guillarme, Davy

    2017-08-18

    This paper focuses on the possibility to inject large volumes (up to 10μL) in ultra-high performance supercritical fluid chromatography (UHPSFC) under generic gradient conditions. Several injection and method parameters have been individually evaluated (i.e. analyte concentration, injection volume, initial percentage of co-solvent in the gradient, nature of the weak needle wash solvent, nature of the sample diluent, nature of the column and of the analyte). The most critical parameters were further investigated using in a multivariate approach. The overall results suggested that several aprotic solvents including methyl tert-butyl ether (MTBE), dichloromethane, acetonitrile or cyclopentyl methyl ether (CPME) were well adapted for the injection of large volume in UHPSFC, while MeOH was generally the worst alternative. However, the nature of the stationary phase also had a strong impact and some of these diluents did not perform equally on each column. This was due to the existence of a competition in the adsorption of the analyte and the diluent on the stationary phase. This observation introduced the idea that the sample diluent should not only be chosen according to the analyte but also to the column chemistry to limit the interactions between the diluent and the ligands. Other important characteristics of the "ideal" SFC sample diluent were finally highlighted. Aprotic solvents with low viscosity are preferable to avoid strong solvent effects and viscous fingering, respectively. In the end, the authors suggest that the choice of the sample diluent should be part of the method development, as a function of the analyte and the selected stationary phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Simultaneous determination of inorganic anions and cations by supercritical fluid chromatography using evaporative light scattering detection.

    Science.gov (United States)

    Foulon, Catherine; Di Giulio, Pauline; Lecoeur, Marie

    2018-01-26

    Supercritical fluid chromatography (SFC) is commonly used for the analysis of non-polar compounds, but remains poorly explored for the separation of polar and ionized molecules. In this paper, SFC has been investigated for the separation of 14 inorganic ions sampled in aqueous solutions. Four polar stationary phases were first screened using CO 2 -methanol-based mobile phases containing water or different acidic or basic additives, in order to select the most efficient conditions for the simultaneous retention of inorganic cations and anions and to favor their detection using evaporative light scattering detector (ELSD). Orthogonal selectivity was obtained depending on the stationary phase used: whereas anions are less retained on HILIC stationary phase, 2-ethylpyridine (2-EP) stationary phase exhibits strong interaction for anions. Best results were obtained under gradient elution mode using a 2-EP stationary phase and by adding 0.2% triethylamine in the CO 2 -methanol-based mobile phase. The composition of the injection solvent was also investigated. The results showed that a methanolic sample containing a percentage of water not exceeding 20% does not affect the analytical performances obtained on 2-EP. Moreover, the presence of triethylamine in the injection solvent contributes to eliminate peaks shoulders. Among the 14 inorganic ions tested, three cations (Li + , Ca 2+ and Mg 2+ ) and five anions (Cl - , Br - , NO 3 - , I - , SCN - ) were totally resolved in 15 min. NO 3 - and NO 2 - still coeluted in the final optimized conditions. The other investigated ions were either strongly retained on the stationary phase or not detected by the ELSD. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography.

    Science.gov (United States)

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2016-08-12

    When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Fluidos supercríticos em química analítica. II. Cromatografia com fluido supercrítico: instrumentação Supercritical fluid in analytical chemistry. II. Supercritical fluid chromatography: instrumentation

    Directory of Open Access Journals (Sweden)

    Emanuel Carrilho

    2003-10-01

    Full Text Available The first paper in this series discussed the basic theory involved in supercritical fluid chromatography (SFC and how the technique progressed from gas and liquid chromatography. The first SFC instruments were simple adaptations of the commercially available liquid chromatographs with packed columns followed by modifications in gas chromatographs using open tubular capillary columns. In this paper, the most important aspects regarding instrumentation are covered, including practical, simple, and the most important, inexpensive solutions to build a home-made SFC system.

  1. Direct measurements of the enthalpy of solution of solid solute in supercritical fluids: study on the CO2-naphthalene system.

    Science.gov (United States)

    Zhang, X; Han, B; Zhang, J; Li, H; He, J; Yan, H

    2001-10-01

    A setup for a calorimeter for simultaneously measuring the solubility and the solution enthalpy of solid solutes in supercritical fluids (SCFs) has been established. The enthalpy of solution of naphthalene in supercritical CO2 was measured at 308.15 K in the pressure range from 8.0-11.0 MPa. It was found that the enthalpy of solution (deltaH) was negative in the pressure range from 8.0 to 9.5 MPa, and the absolute value decreased with increasing pressure. In this pressure range, the dissolution of the solute was enthalpy driven. However, the deltaH became positive at pressures higher than 9.5 MPa, and the dissolution was entropy driven. Monte Carlo simulation was performed to analyze the local structural environment of the solvated naphthalene molecules in supercritical CO2 under the experimental conditions for the calorimetric measurements. By combining the enthalpy data and the simulation results, it can be deduced that the energy level of CO2 in the high compressible region is higher than that at higher pressures, which results in the large negative enthalpy of solution and the larger degree of solvent-solute clustering in the high compressible region.

  2. Solvation in supercritical water

    International Nuclear Information System (INIS)

    Cochran, H.D.; Cummings, P.T.; Karaborni, S.

    1991-01-01

    The aim of this work is to determine the solvation structure in supercritical water composed with that in ambient water and in simple supercritical solvents. Molecular dynamics studies have been undertaken of systems that model ionic sodium and chloride, atomic argon, and molecular methanol in supercritical aqueous solutions using the simple point charge model of Berendsen for water. Because of the strong interactions between water and ions, ionic solutes are strongly attractive in supercritical water, forming large clusters of water molecules around each ion. Methanol is found to be a weakly-attractive solute in supercritical water. The cluster of excess water molecules surrounding a dissolved ion or polar molecule in supercritical aqueous solutions is comparable to the solvent clusters surrounding attractive solutes in simple supercritical fluids. Likewise, the deficit of water molecules surrounding a dissolved argon atom in supercritical aqueous solutions is comparable to that surrounding repulsive solutes in simple supercritical fluids. The number of hydrogen bonds per water molecule in supercritical water was found to be about one third the number in ambient water. The number of hydrogen bonds per water molecule surrounding a central particle in supercritical water was only mildly affected by the identify of the central particle--atom, molecule, or ion. These results should be helpful in developing a qualitative understanding of important processes that occur in supercritical water. 29 refs., 6 figs

  3. Literature survey of heat transfer and hydraulic resistance of water, carbon dioxide, helium and other fluids at supercritical and near-critical pressures

    Energy Technology Data Exchange (ETDEWEB)

    Pioro, I.L.; Duffey, R.B

    2003-04-01

    This survey consists of 430 references, including 269 Russian publications and 161 Western publications devoted to the problems of heat transfer and hydraulic resistance of a fluid at near-critical and supercritical pressures. The objective of the literature survey is to compile and summarize findings in the area of heat transfer and hydraulic resistance at supercritical pressures for various fluids for the last fifty years published in the open Russian and Western literature. The analysis of the publications showed that the majority of the papers were devoted to the heat transfer of fluids at near-critical and supercritical pressures flowing inside a circular tube. Three major working fluids are involved: water, carbon dioxide, and helium. The main objective of these studies was the development and design of supercritical steam generators for power stations (utilizing water as a working fluid) in the 1950s, 1960s, and 1970s. Carbon dioxide was usually used as the modeling fluid due to lower values of the critical parameters. Helium, and sometimes carbon dioxide, were considered as possible working fluids in some special designs of nuclear reactors. (author)

  4. Numerical Study on Heat Transfer Performance of PCHE With Supercritical CO{sub 2} as Working Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Woo; Ngo, Ich-long; Byon, Chan [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    2016-11-15

    The printed circuit heat exchanger (PCHE) is regarded as a promising candidate for advanced heat exchangers for the next-generation supercritical CO{sub 2} power generation owing to its high compactness and rigid structure. In this study, an innovative type of PCHE, in which the channel sizes for the heat source fluid and heat sink fluid are different, is considered for analysis. The thermal performance of the PCHE, with supercritical CO{sub 2} as the working fluid, is numerically analyzed. The results have shown that the thermal performance of the PCHE decreases monotonically when the channel size of either the heat source channel or the heat sink channel, because of the decreased flow velocity. On the other hand, the thermal performance of the PCHE is found to be almost independent of the spacing between the channels. In addition, it was found that the channel cross sectional shape has little effect on the thermal performance when the hydraulic diameter of the channel remains constant.

  5. Profiling of modified nucleosides from ribonucleic acid digestion by supercritical fluid chromatography coupled to high resolution mass spectrometry.

    Science.gov (United States)

    Laboureur, Laurent; Guérineau, Vincent; Auxilien, Sylvie; Yoshizawa, Satoko; Touboul, David

    2018-02-16

    A method based on supercritical fluid chromatography coupled to high resolution mass spectrometry for the profiling of canonical and modified nucleosides was optimized, and compared to classical reverse-phase liquid chromatography in terms of separation, number of detected modified nucleosides and sensitivity. Limits of detection and quantification were measured using statistical method and quantifications of twelve nucleosides of a tRNA digest from E. coli are in good agreement with previously reported data. Results highlight the complementarity of both separation techniques to cover the largest view of nucleoside modifications for forthcoming epigenetic studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Bio-Oil Separation and Stabilization by Supercritical Fluid Fractionation. 2014 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Agblevor, Foster [Utah State Univ., Logan, UT (United States); Petkovic, Lucia [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bennion, Edward [Utah State Univ., Logan, UT (United States); Quinn, Jason [Utah State Univ., Logan, UT (United States); Moses, John [CF Technologies, Hyde Park, MA (United States); Newby, Deborah [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ginosar, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-03-01

    The objective of this project is to use supercritical fluids to separate and fractionate algal-based bio-oils into stable products that can be subsequently upgraded to produce drop-in renewable fuels. To accomplish this objective, algae was grown and thermochemically converted to bio-oils using hydrothermal liquefaction (HTL), pyrolysis, and catalytic pyrolysis. The bio-oils were separated into an extract and a raffinate using near-critical propane or carbon dioxide. The fractions were then subjected to thermal aging studies to determine if the extraction process had stabilized the products. It was found that the propane extract fraction was twice as stable as the parent catalytic pyrolysis bio-oils as measured by the change in viscosity after two weeks of accelerated aging at 80°C. Further, in-situ NMR aging studies found that the propane extract was chemically more stable than the parent bio-oil. Thus the milestone of stabilizing the product was met. A preliminary design of the extraction plant was prepared. The design was based on a depot scale plant processing 20,000,000 gallons per year of bio-oil. It was estimated that the capital costs for such a plant would be $8,700,000 with an operating cost of $3,500,000 per year. On a per gallon of product cost and a 10% annual rate of return, capital costs would represent $0.06 per gallon and operating costs would amount to $0.20 per gallon. Further, it was found that the energy required to run the process represented 6.2% of the energy available in the bio-oil, meeting the milestone of less than 20%. Life cycle analysis and greenhouse gas (GHG) emission analysis found that the energy for running the critical fluid separation process and the GHG emissions were minor compared to all the inputs to the overall well to pump system. For the well to pump system boundary, energetics in biofuel conversion are typically dominated by energy demands in the growth, dewater, and thermochemical process. Bio-oil stabilization by

  7. Preparation of minute particle using supercritical fluid; Chorinkai ryutai wo mochiita biryushi no chosei

    Energy Technology Data Exchange (ETDEWEB)

    Ajiri, T [Tohoku University, Sendai (Japan). Faculty of Engineering

    1995-03-05

    The metal oxide minute particle synthesis method according to the water-heat reaction in supercritical water was described. Metal salt liquid solution was subjected to hydrolysis when heated to become metal hydroxide but dehydration reaction was generated at a high temperature to generate metal oxide minute particle. Metal salt aqueous solution was supplied to a circulation system unit to contact heated water and was rapidly heated to supercritical state and then was subjected to hydrolysis/dehydration reaction, thus continuously collecting metal oxide minute particles. The hydrolysis speed was in first order for the metal ion concentration and the reaction speed was accelerated by several tens of times when entering supercritical region from subcritical region. When the temperature was rapidly increased to the supercritical state, a radical hydrolysis was generated and a high saturation was instantly reached and minute particles tended to be generated easily since the dissolution force of supercritical water for a product was small. A minute particle with a crystallizability of 5 nm was obtained by synthesizing ceria super-minute particle which was the abrasive of an optical glass material. A single phase of a high magnetization characteristic was synthesized continuously and quickly (faster than a conventional method by two orders or more) in the continuous synthesis of Ba ferrite as a magnetic recording material. 12 refs., 3 figs., 1 tab.

  8. Performance optimization of low-temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids

    International Nuclear Information System (INIS)

    Le, Van Long; Feidt, Michel; Kheiri, Abdelhamid; Pelloux-Prayer, Sandrine

    2014-01-01

    This paper presents the system efficiency optimization scenarios of basic and regenerative supercritical ORCs (organic Rankine cycles) using low-GWP (global warming potential) organic compounds as working fluid. A more common refrigerant, i.e. R134a, was also employed to make the comparison. A 150-°C, 5-bar-pressurized hot water is used to simulate the heat source medium. Power optimization was equally performed for the basic configuration of supercritical ORC. Thermodynamic performance comparison of supercritical ORCs using different working fluids was achieved by ranking method and exergy analysis method. The highest optimal efficiency of the system (η sys ) is always obtained with R152a in both basic (11.6%) and regenerative (13.1%) configurations. The highest value of optimum electrical power output (4.1 kW) is found with R1234ze. By using ranking method and considering low-GWP criterion, the best working fluids for system efficiency optimization of basic and regenerative cycles are R32 and R152a, respectively. The best working fluid for net electrical power optimization of basic cycle is R1234ze. Although CO 2 has many desirable environmental and safety properties (e.g. zero ODP (Ozone Depletion Potential), ultra low-GWP, non toxicity, non flammability, etc.), the worst thermodynamic performance is always found with the cycle using this compound as working fluid. - Highlights: • Performance optimizations were carried out for the supercritical ORCs using low-GWP working fluids. • Heat regeneration was used to improve the system efficiency of the supercritical ORC. • Thermodynamic performances of supercritical ORCs at the optima were evaluated by ranking method and exergy analysis

  9. Kinetic models for supercritical CO2 extraction of oilseeds - a review

    Directory of Open Access Journals (Sweden)

    B. Nagy

    2011-01-01

    Full Text Available The supercritical fluid extraction of oilseeds is gaining increasing interest in commercial application for the last few decades, most particularly thanks to technical and environmental advantages of supercritical fluid extraction technology compared to current extraction methods with organic solvents. Furthermore, CO2 as a solvent is generally recognized as safe (GRAS. At present moment, supercritical fluid extractions on a commercial scale are limited to decaffeination, production of soluble hops extracts, sesame seed oil production and extraction of certain petroleum products. When considering industrial application, it is essential to test the applicability of the appropriate model for supercritical fluid extraction of oilseeds used for scale up of laboratory data to industrial design purposes. The aim of this paper is to review the most significant kinetic models reported in the literature for supercritical fluid extraction.

  10. Use of on-line supercritical fluid extraction-supercritical fluid chromatography/tandem mass spectrometry to analyze disease biomarkers in dried serum spots compared with serum analysis using liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Suzuki, Makoto; Nishiumi, Shin; Kobayashi, Takashi; Sakai, Arata; Iwata, Yosuke; Uchikata, Takato; Izumi, Yoshihiro; Azuma, Takeshi; Bamba, Takeshi; Yoshida, Masaru

    2017-05-30

    The analytical stability and throughput of biomarker assays based on dried serum spots (DSS) are strongly dependent on the extraction process and determination method. In the present study, an on-line system based on supercritical fluid extraction-supercritical fluid chromatography coupled with tandem mass spectrometry (SFE-SFC/MS/MS) was established for analyzing the levels of disease biomarkers in DSS. The chromatographic conditions were investigated using the ODS-EP, diol, and SIL-100A columns. Then, we optimized the SFE-SFC/MS/MS method using the diol column, focusing on candidate biomarkers of oral, colorectal, and pancreatic cancer that were identified using liquid chromatography (LC)/MS/MS. By using this system, four hydrophilic metabolites and 17 hydrophobic metabolites were simultaneously detected within 15 min. In an experiment involving clinical samples, PC 16:0-18:2/16:1-18:1 exhibited 93.8% sensitivity and 64.3% specificity, whereas PC 17:1-18:1/17:0-18:2 showed 81.3% sensitivity and 92.9% specificity for detecting oral cancer. In addition, assessments of the creatine levels demonstrated 92.3% sensitivity and 78.6% specificity for detecting colorectal cancer. The results of this study indicate that our method has great potential for clinical diagnosis and would be suitable for large-scale screening. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Optimization of microwave-assisted extraction and supercritical fluid extraction of carbamate pesticides in soil by experimental design methodology.

    Science.gov (United States)

    Sun, Lei; Lee, Hian Kee

    2003-10-03

    Orthogonal array design (OAD) was applied for the first time to optimize microwave-assisted extraction (MAE) and supercritical fluid extraction (SFE) conditions for the analysis of four carbamates (propoxur, propham, methiocarb, chlorpropham) from soil. The theory and methodology of a new OA16 (4(4)) matrix derived from a OA16 (2(15)) matrix were developed during the MAE optimization. An analysis of variance technique was employed as the data analysis strategy in this study. Determinations of analytes were completed using high-performance liquid chromatography (HPLC) with UV detection. Four carbamates were successfully extracted from soil with recoveries ranging from 85 to 105% with good reproducibility (approximately 4.9% RSD) under the optimum MAE conditions: 30 ml methanol, 80 degrees C extraction temperature, and 6-min microwave heating. An OA8 (2(7)) matrix was employed for the SFE optimization. The average recoveries and RSD of the analytes from spiked soil by SFE were 92 and 5.5%, respectively except for propham (66.3+/-7.9%), under the following conditions: heating for 30 min at 60 degrees C under supercritical CO2 at 300 kg/cm2 modified with 10% (v/v) methanol. The composition of the supercritical fluid was demonstrated to be a crucial factor in the extraction. The addition of a small volume (10%) of methanol to CO2 greatly enhanced the recoveries of carbamates. A comparison of MAE with SFE was also conducted. The results indicated that >85% average recoveries were obtained by both optimized extraction techniques, and slightly higher recoveries of three carbamates (propoxur, propham and methiocarb) were achieved using MAE. SFE showed slightly higher recovery for chlorpropham (93 vs. 87% for MAE). The effects of time-aged soil on the extraction of analytes were examined and the results obtained by both methods were also compared.

  12. Complete removal of uranyl nitrate from tissue matrix using supercritical fluid extraction

    International Nuclear Information System (INIS)

    Kumar, R.; Sivaraman, N.; Senthil Vadivu, E.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2003-01-01

    The removal of uranyl nitrate from tissue matrix has been studied with supercritical carbon dioxide modified with methanol alone as well as complexing reagents dissolved in methanol. A systematic study of various complexing agents led to the development of an extraction procedure for the quantitative recovery of uranium from tissue matrix with supercritical carbon dioxide modified with methanol containing small quantities of acetylacetone. The drying time and temperature employed in loading of uranyl nitrate onto tissue paper were found to influence the extraction efficiency significantly

  13. Method developments approaches in supercritical fluid chromatography applied to the analysis of cosmetics.

    Science.gov (United States)

    Lesellier, E; Mith, D; Dubrulle, I

    2015-12-04

    Analyses of complex samples of cosmetics, such as creams or lotions, are generally achieved by HPLC. These analyses are often multistep gradients, due to the presence of compounds with a large range of polarity. For instance, the bioactive compounds may be polar, while the matrix contains lipid components that are rather non-polar, thus cosmetic formulations are usually oil-water emulsions. Supercritical fluid chromatography (SFC) uses mobile phases composed of carbon dioxide and organic co-solvents, allowing for good solubility of both the active compounds and the matrix excipients. Moreover, the classical and well-known properties of these mobile phases yield fast analyses and ensure rapid method development. However, due to the large number of stationary phases available for SFC and to the varied additional parameters acting both on retention and separation factors (co-solvent nature and percentage, temperature, backpressure, flow rate, column dimensions and particle size), a simplified approach can be followed to ensure a fast method development. First, suited stationary phases should be carefully selected for an initial screening, and then the other operating parameters can be limited to the co-solvent nature and percentage, maintaining the oven temperature and back-pressure constant. To describe simple method development guidelines in SFC, three sample applications are discussed in this paper: UV-filters (sunscreens) in sunscreen cream, glyceryl caprylate in eye liner and caffeine in eye serum. Firstly, five stationary phases (ACQUITY UPC(2)) are screened with isocratic elution conditions (10% methanol in carbon dioxide). Complementary of the stationary phases is assessed based on our spider diagram classification which compares a large number of stationary phases based on five molecular interactions. Secondly, the one or two best stationary phases are retained for further optimization of mobile phase composition, with isocratic elution conditions or, when

  14. Evaluation of supercritical fluid chromatography coupled to tandem mass spectrometry for pesticide residues in food.

    Science.gov (United States)

    Cutillas, Víctor; Galera, María Martínez; Rajski, Łukasz; Fernández-Alba, Amadeo R

    2018-04-13

    Supercritical fluid chromatography coupled to triple quadrupole mass spectrometry has been evaluated for pesticide residues in food. In order to check its advantages and limitations it was developed a method to identify and quantify 164 pesticides in three different matrices (tomato, orange and leek). A carbon dioxide gradient with methanol (containing 1 mM ammonium formate) was used allowing a flow rate of 1.5 mL/min that made the total run time of 12 min without any problem of overpressure. Addition of a post column flow 150 μL/min of Methanol with ammonium formate/formic acid was necessary to improve the ionization. The matrix effect study revealed that the percentages of pesticides with irrelevant matrix effect (suppression lower than 20%) was 99% in tomato, 87% in orange and 62% in leek, whereas significant suppression (higher than 50%) was not found in tomato and only 1% of the compounds in orange and 3% in leek.These results compare favorably with that typically obtained in LC-MS/MS. The absence of water in the mobile phase, also provided some important advantages regarding LC-MS/MS as (i) higher retention of polar compounds in the column, which elute with high sensitivity and good peak shape and (ii) a general increase of the sensitivity of the analysis, consequence of the high ionization and ion extraction efficiency. Pesticides evaluated were identified following the SANTE/11813/2017. At the spiking concentration of 5 μg/kg, 98% of the pesticides were identified in tomato, 98% in orange and 94% in leek, whereas for the concentration of 10 μg/kg all the compounds were identified in tomato and only spiromesifen was not identified in orange and leek. At the concentration of 20 μg/kg, spiromesifen was also identified in these two matrices. The linearity and reproducibility of the method were evaluated with results which guarantee high quality in the analytical measurements. Even though only 2 μL of final extract were injected, the

  15. Importance of optimizing chromatographic conditions and mass spectrometric parameters for supercritical fluid chromatography/mass spectrometry.

    Science.gov (United States)

    Fujito, Yuka; Hayakawa, Yoshihiro; Izumi, Yoshihiro; Bamba, Takeshi

    2017-07-28

    Supercritical fluid chromatography/mass spectrometry (SFC/MS) has great potential in high-throughput and the simultaneous analysis of a wide variety of compounds, and it has been widely used in recent years. The use of MS for detection provides the advantages of high sensitivity and high selectivity. However, the sensitivity of MS detection depends on the chromatographic conditions and MS parameters. Thus, optimization of MS parameters corresponding to the SFC condition is mandatory for maximizing performance when connecting SFC to MS. The aim of this study was to reveal a way to decide the optimum composition of the mobile phase and the flow rate of the make-up solvent for MS detection in a wide range of compounds. Additionally, we also showed the basic concept for determination of the optimum values of the MS parameters focusing on the MS detection sensitivity in SFC/MS analysis. To verify the versatility of these findings, a total of 441 pesticides with a wide polarity range (logP ow from -4.21 to 7.70) and pKa (acidic, neutral and basic). In this study, a new SFC-MS interface was used, which can transfer the entire volume of eluate into the MS by directly coupling the SFC with the MS. This enabled us to compare the sensitivity or optimum MS parameters for MS detection between LC/MS and SFC/MS for the same sample volume introduced into the MS. As a result, it was found that the optimum values of some MS parameters were completely different from those of LC/MS, and that SFC/MS-specific optimization of the analytical conditions is required. Lastly, we evaluated the sensitivity of SFC/MS using fully optimized analytical conditions. As a result, we confirmed that SFC/MS showed much higher sensitivity than LC/MS when the analytical conditions were fully optimized for SFC/MS; and the high sensitivity also increase the number of the compounds that can be detected with good repeatability in real sample analysis. This result indicates that SFC/MS has potential for

  16. Maximizing performance in supercritical fluid chromatography using low-density mobile phases.

    Science.gov (United States)

    Gritti, Fabrice; Fogwill, Michael; Gilar, Martin; Jarrell, Joseph A

    2016-10-14

    The performance of a 3.0mm×150mm column packed with 1.8μm fully porous HSS-SB-C 18 particles was investigated in supercritical fluid chromatography (SFC) with low-density, highly expansible carbon dioxide. These conditions are selected for the analysis of semi-volatile compounds. Elevated temperatures (>100°C) were then combined with low column back pressures (<100bar). In this work, the inlet temperature of pure carbon dioxide was set at 107°C, the active back pressure regulator (ABPR) pressure was fixed at 100bar, and the flow rate was set at 2.1mL/min at 12°C (liquefied carbon dioxide) and at an inlet column pressure close to 300bar. Nine n-alkylbenzenes (from benzene to octadecylbenzene) were injected under linear (no sample overload) conditions. The severe steepness of the temperature gradients across the column diameter were predicted from a simplified heat transfer model. Such conditions dramatically lower the column performance by affecting the symmetry of the peak shape. In order to cope with this problem, three different approaches were experimentally tested. They include (1) the decoupling and the proper selection of the inlet eluent temperature with respect to the oven temperature, (2) the partial thermal insulation of the column using polyethylene aerogel, and (3) the application of a high vacuum (10 -5 Torr provided by a turbo-molecular pump) in a housing chamber surrounding the whole column body. The results reveal that (1) the column efficiency can be maximized by properly selecting the difference between the eluent and the oven temperatures, (2) the mere wrapping of the column with an excellent insulating material is insufficient to fully eliminate heat exchanges by conduction and the undesirable radial density gradients across the column i.d., and (3) the complete thermal insulation of the SFC column under high vacuum allows to maximize the column efficiency by maintaining the integrity of the peak shape. Copyright © 2016 Elsevier B.V. All

  17. Enhancement of antioxidant activity of C-phycocyanin of Spirulina powder treated with supercritical fluid carbon dioxide

    Directory of Open Access Journals (Sweden)

    Monchai Dejsungkranont

    2017-10-01

    Full Text Available The functionality and activity of proteins can be modified by supercritical fluid CO2 (SCFCO2. The objectives of this study were to investigate the possibility of enhanced antioxidant activity of C-phycocyanin (C-PC proteins from light-harvested Spirulina maxima powder using the SCFCO2 pretreatment and to optimize the SCFCO2 pretreatment conditions enhancing the antioxidant activity of C-PC. The Taguchi method was used to determine the optimum conditions for the SCFCO2 pretreatment. The experimental factors were the pretreatment temperature, pressure, pretreatment mode (static, dynamic and conjugated and duration. The optimal conditions of SCFCO2 pretreatment were: 60 °C, 24.13 MPa and 60 min in static batch mode. Using these pretreatment conditions, the maximum antioxidant activity of C-PC from the treated residual biomass was 410.1 μmole trolox/mg, which was 1.7-fold higher than the untreated biomass (control. The factor that most affected the antioxidant activity of C-PC was temperature (59%. A high pretreatment temperature could damage C-PC, but promoted antioxidant activity. Of note is that this work was the first to explore SCFCO2 treatment enhancing the antioxidant activity of C-PC in Spirulina sp. powder. Keywords: Antioxidant activity, C-phycocyanin, Spirulina sp., Supercritical fluid carbon dioxide pretreatment, Taguchi method

  18. Structural Characterisation of Acetogenins from Annona muricata by Supercritical Fluid Chromatography Coupled to High-Resolution Tandem Mass Spectrometry.

    Science.gov (United States)

    Laboureur, Laurent; Bonneau, Natacha; Champy, Pierre; Brunelle, Alain; Touboul, David

    2017-11-01

    Acetogenins are plant polyketides known to be cytotoxic and proposed as antitumor candidates. They are also suspected to be alimentary neurotoxins. Their occurrence as complex mixtures renders their dereplication and structural identification difficult using liquid chromatography coupled to tandem mass spectrometry and efforts are required to improve the methodology. To develop a supercritical fluid chromatography (SFC) high-resolution tandem mass spectrometry method, involving lithium post-column cationisation, for the structural characterisation of Annonaceous acetogenins in crude extracts. The seeds of Annona muricata L. were extracted with methanol. Supercritical fluid chromatography of the extract, using a 2-ethylpyridine stationary phase column, was monitored using a high-resolution quadrupole time-of-flight mass spectrometer. Lithium iodide was added post-column in the make-up solvent. For comparison, the same extract was analysed using high-pressure liquid chromatography coupled to the same mass spectrometer, with a column based on solid core particles. Sensitivity was similar for both HPLC and SFC approaches. Retention behaviour and fragmentation pathways of three different isomer groups are described. A previously unknown group of acetogenins was also evidenced for the first time. The use of SFC-MS/MS allows the reduction of the time of analysis, of environmental impact and an increase in the chromatographic resolution, compared to liquid chromatography. This new methodology enlightened a new group of acetogenins, isomers of montanacin-D. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Supercritical fluid extraction-gas chromatography of volatile organic compounds (VOC) from Tenax devices. Final report, November 1985-September 1986

    International Nuclear Information System (INIS)

    Wright, B.W.; Kopriva, A.J.; Smith, R.D.

    1987-11-01

    This report describes the development and evaluation of on-line supercritical-fluid extraction - gas-chromatography instrumentation and methodology for the analysis of volatile organic compounds (VOC) from adsorbent sampling devices. Supercritical fluid extraction offers potential advantages for the removal and transport of organic components from adsorbent matrices including rapid and efficient extraction at mild temperatures. Extraction at mild temperatures eliminates potential problems such as analyte decomposition that can be encountered with the high temperatures needed for thermal desorption analysis. Since a major objective of the study was to develop viable instrumentation and methodology, a relatively detailed description of the instrumentation design requirements and present limitations are discussed. The results of several series of methodology validation studies are also presented. These studies included recovery studies of model VOC spiked on three types of Tenax sampling devices including authentic actively pumped (VOST) and passive (EPA) devices. Replicate devices spiked in an exposure chamber were also subjected to parallel analyses using the new methodology and traditional thermal-desorption gas chromatography

  20. Development and validation of spectroscopic methods for monitoring density changes in pressurized gaseous and supercritical fluid systems.

    Science.gov (United States)

    Blatchford, Marc A; Wallen, Scott L

    2002-04-15

    The further development of new processes utilizing liquid or supercritical CO2 as a solvent will benefit from the rational design of new CO2-philes. Understanding solvation structures and mechanisms of these molecules is an important part of this process. In such studies, determining the change in density as a function of the measured thermodynamic conditions (pressure and temperature) provides an excellent means of directly monitoring the solution conditions in the detection volume for a given technique. By integrating spectroscopic peaks, changes in area can be used to determine changes in analyte concentration in the detection volume, and thus, it should be possible to monitor the system density in situ. In the present study, we examine the utility of Raman and NMR spectroscopy as a means of following changes in solution density conditions and validate this approach in pure fluids and gases (N2 and CO2) and supercritical fluid mixtures (acetaldehyde vapor in N2). In addition, we present the design of a simple, inexpensive cell for conducting Raman and NMR measurements under moderate pressure conditions.

  1. Pharmaceutical production of nano particles using supercritical or dense gas technology

    International Nuclear Information System (INIS)

    Regtop, H.

    2002-01-01

    . Dense gas technology using fluids, near or above the critical point, as a solvent or antisolvent have been developed in recent years. Eiffel has considered various dense gas methods as in the production of nano particles. The first method is known as Rapid Expansion of Supercritical Solutions (RESS), and involves expanding a supercritical solution of the drug through a nozzle. Whilst providing very effective methods of producing fine particles, the application of the RESS method is limited by the low solubility of drugs in dense carbon dioxide (which is usually the gas of choice since it is operated at moderate critical temperature of 31.1 degrees centigrade). The second method, known as Gas Antisolvent Process (GAS), involves rapid precipitation of the drug from organic solutions, typically using carbon dioxide as the antisolvent. The third mode which is called the Aerosol Solvent Extraction System (ASES), involves continuous introduction of a solution containing the drug of interest through a nozzle into a flowing dense gas stream

  2. Extraction with supercritical gases

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, G M; Wilke, G; Stahl, E

    1980-01-01

    The contents of this book derives from a symposium on the 5th and 6th of June 1978 in the ''Haus der Technik'' in Essen. Contributions were made to separation with supercritical gases, fluid extraction of hops, spices and tobacco, physicochemical principles of extraction, phase equilibria and critical curves of binary ammonia-hydrocarbon mixtures, a quick method for the microanalytical evaluation of the dissolving power of supercritical gases, chromatography with supercritical fluids, the separation of nonvolatile substances by means of compressed gases in countercurrent processes, large-scale industrial plant for extraction with supercritical gases, development and design of plant for high-pressure extraction of natural products.

  3. Supercritical fluid extraction of hydrocarbons and 2-alkylcyclobutanones for the detection of irradiated foodstuffs

    NARCIS (Netherlands)

    Horvatovich, P; Miesch, M; Hasselmann, C; Marchioni, E

    2000-01-01

    Supercritical carbon dioxide can be used to carry out a selective and fast extraction (30 min) of volatile hydrocarbons and 2-alkylcyclobutanones contained in irradiated foods. After elimination of the traces of triglycerides still contained in the extracts on a silica column, the compounds were

  4. Supercritical Fluid Behavior at Nanoscale Interfaces: Implications for CO2 Sequestration in Geologic Formations

    Czech Academy of Sciences Publication Activity Database

    Cole, D.R.; Chialvo, A. A.; Rother, G.; Vlček, Lukáš; Cummings, P. T.

    2010-01-01

    Roč. 90, 17-18 (2010), s. 2329-2363 ISSN 1478-6435 Institutional research plan: CEZ:AV0Z40720504 Keywords : sequestration * nanostructures * supercritical CO2 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.302, year: 2010

  5. Supercritical fluid extraction for the detection of 2-dodecylcyclobutanone in low dose irradiated plant foods

    NARCIS (Netherlands)

    Horvatovich, Peter; Miesch, Michel; Hasselmann, Claude; Marchioni, Eric

    2002-01-01

    Supercritical carbon dioxide extraction [152 bar (15,200 kPa), 80 degrees C, 4 ml min(-1), 60 min], performed on lipids (2 g) previously extracted from irradiated plant foods, allowed a selective extraction of 2-dodecylcyclobutanone and its further detection by gas chromatography-mass spectrometry

  6. Supercritical fluid extraction of uranium and thorium using modifier free delivery of ligands

    International Nuclear Information System (INIS)

    Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2009-01-01

    The modifier free controlled delivery of octyl (phenyl)-N,N-diisobutylcarbamoylmethy phosphineoxide (CMPO) using supercritical carbon dioxide was established for the extraction of uranyl nitrate as well as uranyl nitrate sorbed on tissue paper matrix and the results were compared with modifier method. The preferential extraction of uranium over thorium was also demonstrated using di (2-ethylhexyl)isobutyramide (D2EHIBA). (author)

  7. Supercritical fluid extraction of uranium from tissue paper matrix using organic extractants

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Bhattacharyya, A.; Pathak, P.N.; Mohapatra, P.K.; Manchanda, V.K.

    2009-01-01

    Direct extraction of dried uranyl nitrate from tissue paper matrix was carried out using supercritical carbon dioxide modified with methanol solutions of extractants such as tri-n-butyl phosphate (TBP) and di-n-hexyl octanamide (DHOA)). The effects of temperature, pressure, extractant and nitric acid concentration on the extraction of uranyl ion were investigated. (author)

  8. Design and technology development of solid breeder blanket cooled by supercritical water in Japan

    Science.gov (United States)

    Enoeda, M.; Kosaku, Y.; Hatano, T.; Kuroda, T.; Miki, N.; Honma, T.; Akiba, M.; Konishi, S.; Nakamura, H.; Kawamura, Y.; Sato, S.; Furuya, K.; Asaoka, Y.; Okano, K.

    2003-12-01

    This paper presents results of conceptual design activities and associated R&D of a solid breeder blanket system for demonstration of power generation fusion reactors (DEMO blanket) cooled by supercritical water. The Fusion Council of Japan developed the long-term research and development programme of the blanket in 1999. To make the fusion DEMO reactor more attractive, a higher thermal efficiency of more than 40% was strongly recommended. To meet this requirement, the design of the DEMO fusion reactor was carried out. In conjunction with the reactor design, a new concept of a solid breeder blanket cooled by supercritical water was proposed and design and technology development of a solid breeder blanket cooled by supercritical water was performed. By thermo-mechanical analyses of the first wall, the tresca stress was evaluated to be 428 MPa, which clears the 3Sm value of F82H. By thermal and nuclear analyses of the breeder layers, it was shown that a net TBR of more than 1.05 can be achieved. By thermal analysis of the supercritical water power plant, it was shown that a thermal efficiency of more than 41% is achievable. The design work included design of the coolant flow pattern for blanket modules, module structure design, thermo-mechanical analysis and neutronics analysis of the blanket module, and analyses of the tritium inventory and permeation. Preliminary integration of the design of a solid breeder blanket cooled by supercritical water was achieved in this study. In parallel with the design activities, engineering R&D was conducted covering all necessary issues, such as development of structural materials, tritium breeding materials, and neutron multiplier materials; neutronics experiments and analyses; and development of the blanket module fabrication technology. Upon developing the fabrication technology for the first wall and box structure, a hot isostatic pressing bonded F82H first wall mock-up with embedded rectangular cooling channels was

  9. COMPARISONS OF SOXHLET EXTRACTION, PRESSURIZED LIQUID EXTRACTION, SUPERCRITICAL FLUID EXTRACTION, AND SUBCRITICAL WATER EXTRACTION FOR ENVIRONMENTAL SOLIDS: RECOVERY, SELECTIVITY, AND EFFECTS ON SAMPLE MATRIX. (R825394)

    Science.gov (United States)

    Extractions of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a former manufactured gas plant site were performed with a Soxhlet apparatus (18 h), by pressurized liquid extraction (PLE) (50 min at 100°C), supercritical fluid extraction (SFE) (1 h at 150°...

  10. Development and optimization of ultra-high performance supercritical fluid chromatography mass spectrometry method for high-throughput determination of tocopherols and tocotrienols in human serum

    Czech Academy of Sciences Publication Activity Database

    Pilařová, V.; Gottvald, T.; Svoboda, P.; Novák, Ondřej; Benešová, K.; Běláková, S.; Nováková, L.

    2016-01-01

    Roč. 934, AUG 31 (2016), s. 252-265 ISSN 0003-2670 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Ultra-high performance supercritical fluid chromatography * Mass spectrometry * Liquid liquid extraction Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.950, year: 2016

  11. Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones.

    Science.gov (United States)

    Carnes, Stephanie; O'Brien, Stacey; Szewczak, Angelica; Tremeau-Cayel, Lauriane; Rowe, Walter F; McCord, Bruce; Lurie, Ira S

    2017-09-01

    A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite-5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Quantitative aspects of directly coupled supercritical fluid extraction-capillary gas chromatography with a conventional split/splitless injector as interface

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.

    1993-01-01

    The quant. aspects of online supercrit. fluid extn.-capillary gas chromatog. (SFE-GC) with a split/splitless injector as interface were studied. Special attention was paid to the discrimination behavior and the reproducibility of the split/splitless interface. A simple exptl. set-up is proposed that

  13. Mass transfer of Disperse Red 153 and its crude dye in supercritical CO2 fluid

    Directory of Open Access Journals (Sweden)

    Zheng Huan-Da

    2017-01-01

    Full Text Available In this paper, polyester fibers were dyed with Disperse Red 153 and its crude dye in supercritical CO2. The effect of dyeing temperature, dyeing time, dyeing pressure, as well as auxiliaries in the commercialized Disperse Red 153 on the dyeing performance of polyester fibers was investigated. The obtained results showed that the dyeing effect of crude dye for polyester was better than that of Disperse Red 153 in the same dyeing condition. The color strength values of the dyed polyester samples were increased gradually with the increase of temperature and pressure since mass transfer of dye was improved. In addition, the mass transfer model of Disperse Red 153 in supercritical CO2 was also proposed.

  14. Understanding and diminishing the extra-column band broadening effects in supercritical fluid chromatography.

    Science.gov (United States)

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2015-07-17

    Supercritical fluid chromatography, where a low-viscosity mobile phase such as carbon dioxide is used, proves to be an excellent technique for fast and efficient separations, especially when sub-2μm particles are used. However, to achieve high velocities when using these small particles, and in order to stay within the flow rate range of current SFC-instruments, narrow columns (e.g. 2.1mm ID) must be used. Unfortunately, state-of-the-art instrumentation is limiting the full separation power of these narrower columns due to significant extra-column band broadening effects. The present work identifies and quantifies the different contributions to extra-column band broadening in SFC such as the influence of the sample solvent, injection volume, extra-column volumes and detector cell volume/design. When matching the sample solvent to the mobile phase in terms of elution strength and polarity (e.g. using hexane/ethanol/isopropanol 85/10/5vol%) and lowering the injection volume to 0.4μL, the plate count can be increased from 7600 to 21,300 for a low-retaining compound (k'=2.3) on a 2.1mm×150mm column (packed with 1.8μm particles). The application of a water/acetonitrile mixture as sample solvent was also investigated. It was found that when the volumetric ratio of water/acetonitrile was optimized, only a slightly lower plate count was measured compared to the hexane-based solvent when minimizing injection and extra-column volume. This confirms earlier results that water/acetonitrile can be used if water-soluble samples are considered or when a less volatile solvent is preferred. Minimizing the ID of the connection capillaries from 250 to 65μm, however, gives no further improvement in obtained efficiency for early-eluting compounds when a standard system configuration with optimized sample solvent was used. When switching to a state-of-the-art detector design with reduced (dispersion) volume (1.7-0.6μL), an increase in plate count is observed (from 11,000 to 14

  15. Optimisation of supercritical fluid extraction of polycyclic aromatic hydrocarbons and their nitrated derivatives adsorbed on highly sorptive diesel particulate matter

    International Nuclear Information System (INIS)

    Portet-Koltalo, F.; Oukebdane, K.; Dionnet, F.; Desbene, P.L.

    2009-01-01

    Supercritical fluid extraction (SFE) was performed to extract complex mixtures of polycyclic aromatic hydrocarbons (PAHs), nitrated derivatives (nitroPAHs) and heavy n-alkanes from spiked soot particulates that resulted from the incomplete combustion of diesel oils. This polluted material, resulting from combustion in a light diesel engine and collected at high temperature inside the particulate filter placed just after the engine, was particularly resistant to conventional extraction techniques, such as soxhlet extraction, and had an extraction behaviour that differed markedly from certified reference materials (SRM 1650). A factorial experimental design was performed, simultaneously modelling the influence of four SFE experimental factors on the recovery yields, i.e.: the temperature and the pressure of the supercritical fluid, the nature and the percentage of the organic modifier added to CO 2 (chloroform, tetrahydrofuran, methylene chloride), as a means to reach the optimal extraction yields for all the studied target pollutants. The results of modelling showed that the supercritical fluid pressure had to be kept at its maximum level (30 MPa) and the temperature had to be kept relatively low (75 o C). Under these operating conditions, adding 15% of methylene chloride to the CO 2 permitted quantitative extraction of not only light PAHs and their nitrated derivatives, but also heavy n-alkanes from the spiked soots. However, heavy polyaromatics were not quantitatively extracted from the refractory carbonaceous solid surface. As such, original organic modifiers were tested, including pyridine, which, as a strong electron donor cosolvent (15% into CO 2 ), was the most successful. The addition of diethylamine to pyridine, which enhanced the electron donor character of the cosolvent, even increased the extraction yields of the heaviest PAHs, leading to a quantitative extraction of all PAHs (more than 79%) from the diesel particulate matter, with detection limits

  16. Supercritical Fluid Extraction of Lignans and Cinnamic Acid from Schizandra chinensis.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena; Opletal, L.; Bártlová, Milena; Sajfrtová, Marie; Křenková, M.

    2007-01-01

    Roč. 42, 1 (2007) , s. 88-95 ISSN 0896-8446 R&D Projects: GA ČR(CZ) GA203/01/0550; GA AV ČR IAA4072102; GA AV ČR KSK4040110 Institutional research plan: CEZ:AV0Z40720504 Keywords : supercritical extraction * solubility * lignans Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.189, year: 2007

  17. Partitioning behaviour of organic compounds between ionic liquids and supercritical fluids

    Czech Academy of Sciences Publication Activity Database

    Roth, Michal

    2009-01-01

    Roč. 1216, č. 10 (2009), s. 1861-1880 ISSN 0021-9673 R&D Projects: GA ČR GA203/08/1465; GA ČR GA203/08/1536 Institutional research plan: CEZ:AV0Z40310501 Keywords : ionic liquid * supercritical carbon dioxide * review Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.101, year: 2009

  18. Inverse supercritical fluid extraction as a sample preparation method for the analysis of the nanoparticle content in sunscreen agents.

    Science.gov (United States)

    Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; de Vries, Tjerk; Portugal-Cohen, Meital; Antonio, Diana C; Cascio, Claudia; Calzolai, Luigi; Gilliland, Douglas; de Mello, Andrew

    2016-04-01

    We demonstrate the use of inverse supercritical carbon dioxide (scCO2) extraction as a novel method of sample preparation for the analysis of complex nanoparticle-containing samples, in our case a model sunscreen agent with titanium dioxide nanoparticles. The sample was prepared for analysis in a simplified process using a lab scale supercritical fluid extraction system. The residual material was easily dispersed in an aqueous solution and analyzed by Asymmetrical Flow Field-Flow Fractionation (AF4) hyphenated with UV- and Multi-Angle Light Scattering detection. The obtained results allowed an unambiguous determination of the presence of nanoparticles within the sample, with almost no background from the matrix itself, and showed that the size distribution of the nanoparticles is essentially maintained. These results are especially relevant in view of recently introduced regulatory requirements concerning the labeling of nanoparticle-containing products. The novel sample preparation method is potentially applicable to commercial sunscreens or other emulsion-based cosmetic products and has important ecological advantages over currently used sample preparation techniques involving organic solvents. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Supercritical fluid extraction from spent coffee grounds and coffee husks: antioxidant activity and effect of operational variables on extract composition.

    Science.gov (United States)

    Andrade, Kátia S; Gonçalvez, Ricardo T; Maraschin, Marcelo; Ribeiro-do-Valle, Rosa Maria; Martínez, Julian; Ferreira, Sandra R S

    2012-01-15

    The present study describes the chemical composition and the antioxidant activity of spent coffee grounds and coffee husks extracts, obtained by supercritical fluid extraction (SFE) with CO(2) and with CO(2) and co-solvent. In order to evaluate the high pressure method in terms of process yield, extract composition and antioxidant activity, low pressure methods, such as ultrasound (UE) and soxhlet (SOX) with different organic solvents, were also applied to obtain the extracts. The conditions for the SFE were: temperatures of 313.15K, 323.15K and 333.15K and pressures from 100 bar to 300 bar. The SFE kinetics and the mathematical modeling of the overall extraction curves (OEC) were also investigated. The extracts obtained by LPE (low pressure extraction) with ethanol showed the best results for the global extraction yield (X(0)) when compared to SFE results. The best extraction yield was 15±2% for spent coffee grounds with ethanol and 3.1±04% for coffee husks. The antioxidant potential was evaluated by DPPH method, ABTS method and Folin-Ciocalteau method. The best antioxidant activity was showed by coffee husk extracts obtained by LPE. The quantification and the identification of the extracts were accomplished using HPLC analysis. The main compounds identified were caffeine and chlorogenic acid for the supercritical extracts from coffee husks. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Supercritical fluid extraction and ultra performance liquid chromatography of respiratory quinones for microbial community analysis in environmental and biological samples.

    Science.gov (United States)

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-03-05

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA) detector was successfully applied to the simultaneous determination of ubiquinones (UQ) and menaquinones (MK) without tedious pretreatment. Supercritical carbon dioxide (scCO(2)) extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost) and biological samples (swine and Japanese quail feces).

  1. Effects of liquid post-column addition in electrospray ionization performance in supercritical fluid chromatography-mass spectrometry.

    Science.gov (United States)

    Akbal, Laura; Hopfgartner, Gérard

    2017-09-29

    In supercritical fluid chromatography coupled to atmospheric pressure ionization mass spectrometry (SFC-MS), the use of a make-up post-column is almost mandatory to avoid analyte precipitation, especially when using low percentage of modifier (supercritical conditions (1mL/min 40°C, 150bar) to gaseous state (room temperature, atmospheric pressure), the CO 2 expands around 430 times, contributing to almost 5% of the nebulizing process. In positive mode, the presence of ammonium ions either in the mobile phase or in the make-up did significantly increase the MS signal, even at basic apparent pH. The ionization performance of electrospray is influenced by the acidic buffer power of the carbon dioxide, and was found to be restricted in the apparent pH range of 3.8-7.2 in the various conditions investigated. This may challenge sensitive detection in negative mode, as illustrated for bosentan. The use of DMSO as make-up additive (up to 30%) showed a simplification of the full scan spectrum regarding the adducts. Finally, the optimization of make-up composition leads to an enhancement up to a factor of 69 on the electrospray MS response signal, for the SFC-SRM/MS analysis of HIV protease inhibitors in plasma extracted from Dried Plasma Spots. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Supercritical Fluid Extraction and Ultra Performance Liquid Chromatography of Respiratory Quinones for Microbial Community Analysis in Environmental and Biological Samples

    Directory of Open Access Journals (Sweden)

    Koichi Fujie

    2012-03-01

    Full Text Available Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE and ultra performance liquid chromatography (UPLC method for the analysis of bacterial respiratory quinones (RQ in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA detector was successfully applied to the simultaneous determination of ubiquinones (UQ and menaquinones (MK without tedious pretreatment. Supercritical carbon dioxide (scCO2 extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost and biological samples (swine and Japanese quail feces.

  3. Supercritical fluid chromatography coupled with in-source atmospheric pressure ionization hydrogen/deuterium exchange mass spectrometry for compound speciation.

    Science.gov (United States)

    Cho, Yunju; Choi, Man-Ho; Kim, Byungjoo; Kim, Sunghwan

    2016-04-29

    An experimental setup for the speciation of compounds by hydrogen/deuterium exchange (HDX) with atmospheric pressure ionization while performing chromatographic separation is presented. The proposed experimental setup combines the high performance supercritical fluid chromatography (SFC) system that can be readily used as an inlet for mass spectrometry (MS) and atmospheric pressure photo ionization (APPI) or atmospheric pressure chemical ionization (APCI) HDX. This combination overcomes the limitation of an approach using conventional liquid chromatography (LC) by minimizing the amount of deuterium solvents used for separation. In the SFC separation, supercritical CO2 was used as a major component of the mobile phase, and methanol was used as a minor co-solvent. By using deuterated methanol (CH3OD), AP HDX was achieved during SFC separation. To prove the concept, thirty one nitrogen- and/or oxygen-containing standard compounds were analyzed by SFC-AP HDX MS. The compounds were successfully speciated from the obtained SFC-MS spectra. The exchange ions were observed with as low as 1% of CH3OD in the mobile phase, and separation could be performed within approximately 20min using approximately 0.24 mL of CH3OD. The results showed that SFC separation and APPI/APCI HDX could be successfully performed using the suggested method. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid

    International Nuclear Information System (INIS)

    Sung, J.; Kim, J.; Lee, Y.; Seol, J.; Ryu, J.; Park, K.

    2011-01-01

    The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 deg. C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined. (authors)

  5. Supercritical fluid extraction and chromatographic analysis (HRGC-FID and HRGC-MS of Lupinus spp. alkaloids

    Directory of Open Access Journals (Sweden)

    Nossack Ana C.

    2000-01-01

    Full Text Available The alkaloid extracts from Lupinus spp., obtained by conventional methods (maceration/sonication - solid phase extraction; maceration/sonication - liquid-liquid extraction and SFE (supercritical fluid extraction using CO2 and modified CO2 (CO2/MeOH, CO2/EtOH, CO2/iPrOH and CO2/H2O were analysed by HRGC-FID (high resolution gas chromatography - flame ionization detector and HRGC-MS (high resolution gas chromatography - mass spectrometry. The HRGC-FID quantitative analyses were performed with an internal standard method for quantification of lupanine, multiflorine and a spartein-like alkaloid. HRGC-MS allowed identification of the chemical constituents (alkaloids and other compounds from these extracts.

  6. Determination and theoretical analysis of supercritical fluid chromatographic retention of polycyclic aromatic hydrocarbons in a polymeric smectic phase

    International Nuclear Information System (INIS)

    Chao Yan; Martire, D.E.

    1992-01-01

    A mean-field lattice model is used to describe the partitioning of blocklike molecules between an isotropic mobile phase and an anisotropic stationary phase in chromatography by applying it to supercritical fluid retention of polycyclic aromatic hydrocarbons in a polymeric smectic phase. This concludes that the logarithm of the capacity factor (1) increases linearly with increasing reciprocal temperature, (2) decreases with increasing mobile phase density more rapidly for solute molecules with a relatively larger contact area with the mobile phase, and (3) is a linear function of the minimum area. The van't Hoff plot slope is also determined to be more negative for solute molecules with a relatively larger ratio of contact area with the stationary phase versus the mobile phase. 18 refs., 9 figs., 5 tabs

  7. High-Throughput Analysis of Sucrose Fatty Acid Esters by Supercritical Fluid Chromatography/Tandem Mass Spectrometry

    Science.gov (United States)

    Hori, Katsuhito; Tsumura, Kazunobu; Fukusaki, Eiichiro; Bamba, Takeshi

    2014-01-01

    Supercritical fluid chromatography (SFC) coupled with triple quadrupole mass spectrometry was applied to the profiling of sucrose fatty acid esters (SEs). The SFC conditions (column and modifier gradient) were optimized for the effective separation of SEs. In the column test, a silica gel reversed-phase column was selected. Then, the method was used for the detailed characterization of commercial SEs and the successful analysis of SEs containing different fatty acids. The present method allowed for fast and high-resolution separation of monoesters to tetra-esters within a shorter time (15 min) as compared to the conventional high-performance liquid chromatography. The applicability of our method for the analysis of SEs was thus demonstrated. PMID:26819875

  8. Extraction of uranium from simulated ore by the supercritical carbon dioxide fluid extraction method with nitric acid-TBP complex

    International Nuclear Information System (INIS)

    Dung, Le Thi Kim; Imai, Tomoki; Tomioka, Osamu; Nakashima, Mikio; Takahashi, Kuniaki; Meguro, Yoshihiro

    2006-01-01

    The supercritical fluid extraction (SFE) method using CO 2 as a medium with an extractant of HNO 3 -tri-n-butyl phosphate (TBP) complex was applied to extract uranium from several uranyl phosphate compounds and simulated uranium ores. An extraction method consisting of a static extraction process and a dynamic one was established, and the effects of the experimental conditions, such as pressure, temperature, and extraction time, on the extraction of uranium were ascertained. It was found that uranium could be efficiently extracted from both the uranyl phosphates and simulated ores by the SFE method using CO 2 . It was thus demonstrated that the SFE method using CO 2 is useful as a pretreatment method for the analysis of uranium in ores. (author)

  9. Pesticide residues in canned foods, fruits, and vegetables: the application of Supercritical Fluid Extraction and chromatographic techniques in the analysis.

    Science.gov (United States)

    El-Saeid, Mohamed H

    2003-12-11

    Multiple pesticide residues have been observed in some samples of canned foods, frozen vegetables, and fruit jam, which put the health of the consumers at risk of adverse effects. It is quite apparent that such a state of affairs calls for the need of more accurate, cost-effective, and rapid analytical techniques capable of detecting the minimum concentrations of the multiple pesticide residues. The aims of this paper were first, to determine the effectiveness of the use of Supercritical Fluid Extraction (SFE) and Supercritical Fluid Chromatography (SFC) techniques in the analysis of the levels of pesticide residues in canned foods, vegetables, and fruits; and second, to contribute to the promotion of consumer safety by excluding pesticide residue contamination from markets. Fifteen different types of imported canned and frozen fruits and vegetables samples obtained from the Houston local food markets were investigated. The major types of pesticides tested were pyrethroids, herbicides, fungicides, and carbamates. By using these techniques, the overall data showed 60.82% of the food samples had no detection of any pesticide residues under this investigation. On the other hand, 39.15% different food samples were contaminated by four different pyrethroid residues +/- RSD% ranging from 0.03 +/- 0.005 to 0.05 +/- 0.03 ppm, of which most of the pyrethroid residues were detected in frozen vegetables and strawberry jam. Herbicide residues in test samples ranged from 0.03 +/- 0.005 to 0.8 +/- 0.01 ppm. Five different fungicides, ranging from 0.05 +/- 0.02 to 0.8 +/- 0.1 ppm, were found in five different frozen vegetable samples. Carbamate residues were not detected in 60% of investigated food samples. It was concluded that SFE and SFC techniques were accurate, reliable, less time consuming, and cost effective in the analysis of imported canned foods, fruits, and vegetables and are recommended for the monitoring of pesticide contaminations.

  10. Variability of standard artificial soils: Physico-chemical properties and phenanthrene desorption measured by means of supercritical fluid extraction

    International Nuclear Information System (INIS)

    Bielská, Lucie; Hovorková, Ivana; Komprdová, Klára; Hofman, Jakub

    2012-01-01

    The study is focused on artificial soil which is supposed to be a standardized “soil like” medium. We compared physico-chemical properties and extractability of Phenanthrene from 25 artificial soils prepared according to OECD standardized procedures at different laboratories. A substantial range of soil properties was found, also for parameters which should be standardized because they have an important influence on the bioavailability of pollutants (e.g. total organic carbon ranged from 1.4 to 6.1%). The extractability of Phe was measured by supercritical fluid extraction (SFE) at harsh and mild conditions. Highly variable Phe extractability from different soils (3–89%) was observed. The extractability was strongly related (R 2 = 0.87) to total organic carbon content, 0.1–2 mm particle size, and humic/fulvic acid ratio in the following multiple regression model: SFE (%) = 1.35 * sand (%) − 0.77 * TOC (%)2 + 0.27 * HA/FA. - Highlights: ► We compared properties and extractability of Phe from 25 different artificial soils. ► Substantial range of soil properties was found, also for important parameters. ► Phe extractability was measured by supercritical fluid extraction (SFE) at 2 modes. ► Phe extractability was highly variable from different soils (3–89%). ► Extractability was strongly related to TOC, 0.1–2 mm particles, and HA/FA. - Significant variability in physico-chemical properties exists between artificial soils prepared at different laboratories and affects behavior of contaminants in these soils.

  11. Hyphenation of supercritical fluid chromatography with tandem mass spectrometry for fast determination of four aflatoxins in edible oil.

    Science.gov (United States)

    Lei, Fang; Li, Chenglong; Zhou, Shuang; Wang, Dan; Zhao, Yunfeng; Wu, Yongning

    2016-08-01

    Aflatoxins (AFTs) are of great concern all over the world. Supercritical fluid chromatography (SFC) has the advantage of fast, high resolution and excellent compatibility with a broad range of organic solvents and samples, thus hyphenating SFC with tandem mass spectrometry (MS/MS) can be used for the easy and fast determination of AFTs in edible oils. Edible oil was spiked with isotope-labeled aflatoxin standards, diluted with hexane and extracted with acetonitrile. The extraction was directly loaded to an SFC apparatus and separated on a UPC(2) 2-EP column with CO2 -methanol gradient elution. A post-column make-up flow was introduced to facilitate mass spectrometry performance, and the mixture was analyzed by MS/MS with an electrospray ionization (ESI) source. The SFC conditions including separation column, modifier and sample solvent were optimized, and the four target aflatoxins were baseline separated. The ESI interface parameters were also investigated, implicating the make-up flow as a critical factor for sensitive determination by SFC-MS/MS. The LOQs for the AFTs were 0.05-0.12 μg L(-1) , while the RSDs were lower than 8.5%. Supercritical fluid chromatography was successfully coupled to tandem mass spectrometry to establish a simple, fast and sensitive method for the analysis of four aflatoxins in edible oil. This shows the combination of SFC-MS/MS has great potential in determination of trace contaminants in food. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Pesticide Residues in Canned Foods, Fruits, and Vegetables: The Application of Supercritical Fluid Extraction and Chromatographic Techniques in the Analysis

    Directory of Open Access Journals (Sweden)

    Mohamed H. EL-Saeid

    2003-01-01

    Full Text Available Multiple pesticide residues have been observed in some samples of canned foods, frozen vegetables, and fruit jam, which put the health of the consumers at risk of adverse effects. It is quite apparent that such a state of affairs calls for the need of more accurate, cost-effective, and rapid analytical techniques capable of detecting the minimum concentrations of the multiple pesticide residues. The aims of this paper were first, to determine the effectiveness of the use of Supercritical Fluid Extraction (SFE and Supercritical Fluid Chromatography (SFC techniques in the analysis of the levels of pesticide residues in canned foods, vegetables, and fruits; and second, to contribute to the promotion of consumer safety by excluding pesticide residue contamination from markets. Fifteen different types of imported canned and frozen fruits and vegetables samples obtained from the Houston local food markets were investigated. The major types of pesticides tested were pyrethroids, herbicides, fungicides, and carbamates.By using these techniques, the overall data showed 60.82% of the food samples had no detection of any pesticide residues under this investigation. On the other hand, 39.15% different food samples were contaminated by four different pyrethroid residues ± RSD% ranging from 0.03 ± 0.005 to 0.05 ± 0.03 ppm, of which most of the pyrethroid residues were detected in frozen vegetables and strawberry jam. Herbicide residues in test samples ranged from 0.03 ± 0.005 to 0.8 ± 0.01 ppm. Five different fungicides, ranging from 0.05 ± 0.02 to 0.8 ±0.1 ppm, were found in five different frozen vegetable samples. Carbamate residues were not detected in 60% of investigated food samples. It was concluded that SFE and SFC techniques were accurate, reliable, less time consuming, and cost effective in the analysis of imported canned foods, fruits, and vegetables and are recommended for the monitoring of pesticide contaminations.

  13. Analysis of non-phthalates plasticizers on porous graphitic carbon by supercritical fluid chromatography using evaporative light scattering detection.

    Science.gov (United States)

    Vaccher, Claude; Decaudin, Bertrand; Sautou, Valérie; Lecoeur, Marie

    2014-09-12

    The analysis of several plasticizers, widely used in the production of medical devices, was investigated on porous graphitic carbon (PGC) stationary phase in supercritical fluid chromatography (SFC) with an evaporative light scattering detector (ELSD). Due to strong interaction of compounds with the PGC support, solvents of strong eluotropic strength were added to the CO2 supercritical fluid. The effect of alkyl chain (pentane, hexane, heptane) and chlorinated (CH2Cl2, CHCl3, CCl4) solvents was studied on the retention and on the ELSD detection of plasticizers. A co-solvent mixture composed of CHCl3/heptane, eluted under gradient mode, allowed a significant improvement of the ELSD response compared to the use of each solvent individually. Then, a central composite design (CCD) was implemented to optimize both the separation and the detection of plasticizers. The parameters involved were the outlet pressure, the gradient slope, the co-solvent composition and the drift tube temperature of the ELSD. After optimization, baseline separation of plasticizers was achieved in 7min and best signal-to-noise ratios were obtained with outlet pressure and drift tube temperature of ELSD set at 200bar and 31°C, respectively. The co-solvent mixture was also composed of CHCl3/heptane (35/65 v/v) and a gradient from 15 to 60% of co-solvent in 2.2min was employed. The results demonstrated that CCD is a powerful tool for the optimization of SFC/ELSD method and the response surface model analysis can provide statistical understandings of the significant factors required to achieve optimal separation and ELSD sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Viability and adaptation potential of indigenous microorganisms from natural gas field fluids in high pressure incubations with supercritical CO2.

    Science.gov (United States)

    Frerichs, Janin; Rakoczy, Jana; Ostertag-Henning, Christian; Krüger, Martin

    2014-01-21

    Carbon Capture and Storage (CCS) is currently under debate as large-scale solution to globally reduce emissions of the greenhouse gas CO2. Depleted gas or oil reservoirs and saline aquifers are considered as suitable reservoirs providing sufficient storage capacity. We investigated the influence of high CO2 concentrations on the indigenous bacterial population in the saline formation fluids of a natural gas field. Bacterial community changes were closely examined at elevated CO2 concentrations under near in situ pressures and temperatures. Conditions in the high pressure reactor systems simulated reservoir fluids i) close to the CO2 injection point, i.e. saturated with CO2, and ii) at the outer boundaries of the CO2 dissolution gradient. During the incubations with CO2, total cell numbers remained relatively stable, but no microbial sulfate reduction activity was detected. After CO2 release and subsequent transfer of the fluids, an actively sulfate-respiring community was re-established. The predominance of spore-forming Clostridiales provided evidence for the resilience of this taxon against the bactericidal effects of supercritical (sc)CO2. To ensure the long-term safety and injectivity, the viability of fermentative and sulfate-reducing bacteria has to be considered in the selection, design, and operation of CCS sites.

  15. Supercritical fluid extraction and characterization of lipids from algae Scenedesmus obliquus

    Science.gov (United States)

    Choi, K. J.; Nakhost, Z.; Krukonis, V. J.; Karel, M.

    1987-01-01

    Lipids were extracted from a protein concentrate of green algae (Scenedesmus obliquus), using a one-step supercritical carbon dioxide extraction procedure in presence of ethanol as an entrainer, and were characterized. The compositions of neutral lipids, glycolipids, and phospholipids, separated into individual components by column, thin-layer, and gas-liquid chromatography procedures, are presented. Fatty acid composition patterns indicated that the major fatty acids were 16:0, 16:1, 16:2, 16:3, 16:4, 18:1, 18:2, and 18:3. The lipids of S. obliquus were found to contain relatively high concentrations of polyunsaturated fatty acids and essential fatty acids.

  16. Supercritical fluid extraction of soybean oil from the surface of spiked quartz sand - modelling study

    OpenAIRE

    Stela Jokić; B. Nagy; K. Aladić; B. Simándi

    2013-01-01

    The extraction of soybean oil from the surface of spiked quartz sand using supercritical CO2 was investigated. Sand as solid was used; it is not porous material so the internal diffusion does not exist, all the soluble material is in the surface of the particles. Sovová’s model has been used in order to obtain an analytical solution to develop the required extraction yield curves. The model simplifies when the internal diffusion can be neglected. The external mass transfer coefficient was det...

  17. A rapid supercritical fluid extraction method for the qualitative detection of 2-alkylcyclobutanones in gamma-irradiated fresh and sea water fish

    International Nuclear Information System (INIS)

    Tewfik, I.H.; Ismail, H.M.; Sumar, S.

    1999-01-01

    2-Alkylcyclobutanones are routinely used as chemical markers for irradiated foods containing lipids. However, current extraction procedures (soxhlet-Florisil chromatography) for the isolation of these markers involve a long and tedious clean-up regime prior to GC-MS identification. A simple and rapid method for the isolation of these markers using carbon dioxide as a super critical fluid is described for low lipid content fish samples (fresh and sea water) irradiated up to 8kGy. The presence of 2-dodecylcyclobutanone (2-DCB), a radiolytic marker, was confirmed in all irradiated fish samples at all doses. This was a clear indication that the fish samples had been irradiated and that both methods of isolation (florisil and supercritical fluid extraction) were capable of qualitatively extracting this marker. Supercritical fluid extraction is proposed as an alternative extraction procedure to the florisil chromatography method currently in use and has the added advantage of a considerably shorter extraction time

  18. Evolution of supercritical fluid in deeply subducted continental crust: a case study of composite granite-quartz veins in the Sulu belt, China

    Science.gov (United States)

    Wang, S.; Wang, L.; Brown, M.

    2016-12-01

    Although fluid plays a key role in element transport and rock strength during subduction to and exhumation from ultrahigh pressure (UHP) metamorphic conditions, the source of supercritical fluid at P above the second critical endpoints (SCE) and the subsequent evolution are not well constrained. To provide insight into the evolution of supercritical fluid in continental subduction zones, we undertook an integrated study of composite granite-quartz veins in retrogressed and migmatitic UHP eclogite at General's Hill, N of Qingdao, in the central Sulu belt. The composite veins are irregularly distributed in the eclogite, which occurs as blocks within gneiss. The granite component is enriched in large ion lithophile elements and light rare earth elements but depleted in high field strength elements and heavy rare earth elements, indicating crystallization from a melt phase of crustal origin. Additionally, the granite contains high modal phengite (22-30 vol%) and clinozoisite/epidote (3-10 vol%), implying precipitation from a H2O-rich silicate melt. By contrast, the quartz component is dominated by SiO2 (99.10 wt%), and contains low total rare earth elements (ΣREE = 0.46 ppm), indicating precipitation from an aqueous fluid. The crystallization age of the composite veins is 221 ± 2 Ma, which is younger than the UHP metamorphism in the Sulu belt at ca 230 Ma, consistent with formation during exhumation. Initial 176Hf/177Hf ratios and δ18O values of metamorphic zircons from the composite veins, and Sr-Nd isotope compositions of the granites all lie between values for eclogite and gneiss, indicating a mixed source. Accordingly, we propose that a supercritical fluid generated from the gneiss and the included blocks of eclogite at P-T conditions above the SCE for both compositions became trapped in the eclogite during exhumation. At P below the SCE for the hydrous granite system, the mixed supercritical fluid separated into immiscible aqueous melt and aqueous fluid and

  19. SUPERCRITICAL FLUID TREATMENT OF THREE-DIMENSIONAL HYDROGEL MATRICES, COMPOSED OF CHITOSAN DERIVATIVES

    Directory of Open Access Journals (Sweden)

    P. S. Timashev

    2016-01-01

    Full Text Available Aim. Controlled treatment of the physico-chemical and mechanical properties of a three-dimensional crosslinked matrix based on reactive chitosan. Materials and methods. The three-dimensional matrices were obtained using photosensitive composition based on allyl chitosan (5 wt%, poly(ethylene glycol diacrylate (8 wt% and the photoinitiator Irgacure 2959 (1 wt% by laser stereolithography setting. The kinetic swelling curves were constructed for structures in the base and salt forms of chitosan using gravimetric method and the contact angles were measured using droplet spreading. The supercritical fl uid setting (40 °C, 12 MPa was used to process matrices during 1.5 hours. Using nanohardness Piuma Nanoindenter we calculated values of Young’s modulus. The study of cytotoxicity was performed by direct contact with the culture of the NIH 3T3 mouse fi broblast cell line. Results. Architectonics of matrices fully repeats the program model. Matrices are uniform throughout and retain their shape after being transferred to the base form. Matrices compressed by 5% after treatment in supercritical carbon dioxide (scCO2 . The elastic modulus of matrices after scCO2 treatment is 4 times higher than the original matrix. The kinetic swelling curves have similar form. In this case the maximum degree of swelling for matrices in base form is 2–2.5 times greater than that of matrices in salt form. There was a surface hydrophobization after the material was transferred to the base form: the contact angle is 94°, and for the salt form it is 66°. The basic form absorbs liquid approximately 1.6 times faster. The fi lm thickness was increased in the area of contact with the liquid droplets after absorption by 133 and 87% for the base and the salt forms, respectively. Treatment of samples in scCO2 reduces their cytotoxicity from 2 degree of reaction (initial samples down to 1 degree of reaction. Conclusion. The use of supercritical carbon dioxide for scaffolds

  20. Chemical kinetics and transport processes in supercritical fluid extraction of coal. Final report, August 10, 1990--December 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, B.J.; Smith, J.M.; Wang, M.; Zhang, C.J.

    1993-02-01

    The overall objective of this project was to study the supercritical fluid extraction of hydrocarbons from coal. Beyond the practical concern of deriving products from coal, the research has provided insights into the structure, properties, and reactivities of coal. Information on engineering fundamentals of coal thermolysis and extraction, including physical and chemical processes, is presented in this final report. To accomplish the goals of the project we developed continuous-flow experiments for fixed-bed samples of coal that allow two types of analysis of the extract: continuous spectrophotometric absorbance measurements of the lumped concentration of extract, and chromatographic determinations of molecular-weight distributions as a function of time. Thermolysis of coal yields a complex mixture of many extract products whose molecular-weight distribution (MWD) varies with time for continuous-flow, semibatch experiments. The flow reactor with a differential, fixed bed of coal particles contacted by supercritical t-butanol was employed to provide dynamic MWD data by means of HPLC gel permeation chromatography of the extract. The experimental results, time-dependent MWDs of extract molecules, were interpreted by a novel mathematical model based on continuous-mixture kinetics for thermal cleavage of chemical bonds in the coal network. The parameters for the MWDs of extractable groups in the coal and the rate constants for one- and two-fragment reaction are determined from the experimental data. The significant effect of temperature on the kinetics of the extraction was explained in terms of one- and two-fragment reactions in the coal.

  1. Hydraulic fracturing chemicals and fluids technology

    CERN Document Server

    Fink, Johannes

    2013-01-01

    When classifying fracturing fluids and their additives, it is important that production, operation, and completion engineers understand which chemical should be utilized in different well environments. A user's guide to the many chemicals and chemical additives used in hydraulic fracturing operations, Hydraulic Fracturing Chemicals and Fluids Technology provides an easy-to-use manual to create fluid formulations that will meet project-specific needs while protecting the environment and the life of the well. Fink creates a concise and comprehensive reference that enables the engineer to logically select and use the appropriate chemicals on any hydraulic fracturing job. The first book devoted entirely to hydraulic fracturing chemicals, Fink eliminates the guesswork so the engineer can select the best chemicals needed on the job while providing the best protection for the well, workers and environment. Pinpoints the specific compounds used in any given fracturing operation Provides a systematic approach to class...

  2. The influence of chemical composition of LNG on the supercritical heat transfer in an intermediate fluid vaporizer

    Science.gov (United States)

    Xu, Shuangqing; Chen, Xuedong; Fan, Zhichao; Chen, Yongdong; Nie, Defu; Wu, Qiaoguo

    2018-04-01

    A three-dimensional transient computational fluid dynamics (CFD) model has been established for the simulations of supercritical heat transfer of real liquefied natural gas (LNG) mixture in a single tube and a tube bundle of an intermediate fluid vaporizer (IFV). The influence of chemical composition of LNG on the thermal performance has been analyzed. The results have also been compared with those obtained from the one-dimensional steady-state calculations using the distributed parameter model (DPM). It is found that the current DPM approach can give reasonable prediction accuracy for the thermal performance in the tube bundle but unsatisfactory prediction accuracy for that in a single tube as compared with the corresponding CFD data. As benchmarked against pure methane, the vaporization of an LNG containing about 90% (mole fraction) of methane would lead to an absolute deviation of 5.5 K in the outlet NG temperature and a maximum relative deviation of 11.4% in the tube side HTC in a bundle of about 816 U tubes at the inlet pressure of 12 MPa and mass flux of 200 kg·m-2·s-1. It is concluded that the influence of LNG composition on the thermal performance should be taken into consideration in order to obtain an economic and reliable design of an IFV.

  3. MODELING OF SUPERCRITICAL FLUID EXTRACTION KINETIC OF FLAXSEED OIL BY DIFFUSION CONTROL METHOD

    Directory of Open Access Journals (Sweden)

    Emir Zafer HOŞGÜN

    2013-06-01

    Full Text Available In this study, Flaxseed oil was extracted by Supercritical Carbondioxide Extraction, and extractionkinetics was modelled using diffusion controlled method.The effect of process parameters, such as pressure (20, 35, 55 MPa, temperature (323 and 343 K, and CO2 flow rate (1 and 3 L CO2 /min on the extraction yield and effective diffusivity (De was investigated. The effective diffusion coefficient varied between 2.4 x10-12 and 10.8 x10-12 m2s-1 for the entire range of experiments and increased with the pressure and flow rate. The model fitted well theexperimental data (ADD varied between 2.35 and 7.48%.

  4. Highly Selective Deethylation of Rhodamine B on Prepared in Supercritical Fluids

    Directory of Open Access Journals (Sweden)

    Yuzun Fan

    2012-01-01

    Full Text Available Pure phase anatase TiO2 nanoparticles with sizes of 5–8 nm and varying crystallinity were synthesized in supercritical isopropanol/water using a continuous flow reactor. Their photodegradation of rhodamine B (RhB was evaluated under visible light irradiation. The as-prepared TiO2 nanoparticles show much higher photodegradation efficiencies than commercial Degussa P25 TiO2. Moreover, the photodegradation of RhB on the as-prepared TiO2 follows a different process from that on P25 TiO2, quicker N-deethylation and slower cleavage of conjugated chromophore structure. Based on PXRD, TEM, and BET measurements, these two photodegradation properties have been explained by the physicochemical properties of TiO2.

  5. Investigation of Heat Transfer in Supercritical Fluids for Application to the Generation IV

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y. Y.; Kim, H. D.; Song, J. H.; Kim, H. Y.; Cho, B. H.; Kim, H.; Kang, D. J.

    2007-08-15

    Using a facility named SPHINX, which can accommodate a heat transfer test with CO{sub 2} at supercritical pressure, a series of tests was performed. The test geometries include tubes with the inner diameter of 4.4, 6.32 and 9 mm. a concentric annular passages with 8 x 10 mm, and an eccentric annular passages with 9.5 x 12.5 mm. Based on the test results, heat transfer correlations were developed and compared with the existing correlations. The heat transfer deterioration which may occur at certain conditions of heat and mass flux, were carefully studied and the published criteria were reviewed against our test results. Numerical calculation by using commercial CFD code, Fluent, were performed in order to provide the pre-test information for the heat transfer tests. Various turbulence models were evaluated and reliable models were suggested for each case

  6. Quality of Cosmetic Argan Oil Extracted by Supercritical Fluid Extraction from Argania spinosa L.

    Directory of Open Access Journals (Sweden)

    Chouaa Taribak

    2013-01-01

    Full Text Available Argan oil has been extracted using supercritical CO2. The influence of the variables pressure (100, 200, 300, and 400 bar and temperature (35, 45, 55°C was investigated. The best extraction yields were achieved at a temperature of 45°C and a pressure of 400 bar. The argan oil extracts were characterized in terms of acid, peroxide and iodine values, total tocopherol, carotene, and fatty acids content. Significant compositional differences were not observed between the oil samples obtained using different pressures and temperatures. The antioxidant capacity of the argan oil samples was high in comparison to those of walnut, almond, hazelnut, and peanut oils and comparable to that of pistachio oil. The physicochemical parameters of the extracted oils obtained by SFE, Soxhlet, and traditional methods are comparable. The technique used for oil processing does not therefore markedly alter the quality of argan oil.

  7. Modelling small angle neutron scattering data from polymers in supercritical fluids

    International Nuclear Information System (INIS)

    Triolo, F.; Triolo, A.; Lo Celso, F.; Donato, D. I.; Triolo, R.; Johnson, J. S. Jr.

    2000-01-01

    In this paper we report a SANS investigation of micelle formation by fluorocarbon-hydrocarbon block copolymers in supercritical CO 2 (scCO 2 ) at 313K. A sharp unimer-micelle transition is obtained due to the tuning of the solvating ability of scCO 2 by profiling pressure. At high pressure the copolymer is in a monomeric state with a random coil structure. By lowering the pressure aggregates are formed with the hydrocarbon segments forming the core and the fluorocarbon segments forming the corona of spherical aggregates. This aggregate-unimer transition is driven by the gradual penetration of CO 2 molecules toward the core of the aggregate and is critically related to the density of the solvent, thus suggesting the definition of a critical micellization density (CMD)

  8. A new analysing approach for the structure of density fluctuation of supercritical fluid

    International Nuclear Information System (INIS)

    Sato, T; Sugiyama, M; Itoh, K; Mori, K; Fukunaga, T; Misawa, M; Otomo, T; Takata, S

    2008-01-01

    Large scale structural evolution of supercritical carbon dioxide along the isotherm at 32 deg. C was investigated with small-angle neutron scattering. The maximum of the density fluctuation, the so-called 'ridge', was confirmed with Ornstein-Zernike analysis. To investigate the structural change in more detail, the molecular distribution over a large domain was determined with a newly developed reverse Monte Carlo method. From the molecular distribution obtained, the pair distribution function and cluster-size distribution can be calculated. With increasing density of carbon dioxide, the cluster size increases monotonically, whereas the pair distribution function for the range of sizes shorter than 10 A shows a monotonic decrease. From this result, it is suggested that the structural change along the isotherm is caused by the change of balance between growth of clusters and increase of the average density

  9. Destruction of DOE/DP surrogate wastes with supercritical water oxidation technology

    International Nuclear Information System (INIS)

    Bramlette, T.T.; Mills, B.E.; Hencken, K.R.; Brynildson, M.E.; Johnston, S.C.; Hruby, J.M.; Freemster, H.C.; Odegard, B.C.; Modell, M.

    1990-11-01

    Surrogate wastes of specific interest to DOE/DP production facilities (Hanford and Rocky Flats), and the electronics industry have been successfully processed in a laboratory-scale, supercritical water oxidation flow reactor. In all cases, the observed destruction/reduction efficiencies for the organic components were in excess of 99.9%, limited by instrumentation detection capability. Separation of the inorganic components of the Hanford process stream was more difficult to accomplish than destruction of the organic component. Large fractions of all metals contained in this stream were found both in the solids separator effluent and in deposits removed from the reactor. Mass closure was not achieved. Of the process stream's non-metallic, inorganic components, the sulfates and phosphates precipitated, while the nitrates tended to stay in solution. The inorganic material that did precipitate from the simulated Hanford mixed waste accumulated in zones that may be associated with changes in the chemical and physical properties of the supercritical fluid. Corrosion is expected to be a significant problem. Witness wires of Inconel 625, Hastalloy C-276, and titanium placed in the preheater, reactor and cooldown exchanger indicated selective dissolution of chromium, nickel, and molybdenum for some conditions, and non-selective dissolution for others. While these results are very promising, further research is required to evaluate the scalability, reliability, and economics of SCWO reactor components and systems, particularly for mixed wastes. Future research must explore a parameter space (temperature, pressure, pH, residence time, etc.) focused on selecting conditions and materials for specific process streams

  10. Comparison study of moisture content, colour properties and essential oil compounds extracted by hydrodistillation and supercritical fluid extraction between stem and leaves of lemongrass (Cymbopogun citratus)

    Science.gov (United States)

    Kamaruddin, Shazlin; Mustapha, Wan Aida Wan; Haiyee, Zaibunnisa Abdul

    2018-04-01

    The objectives of this study were to compare the properties of moisture content, colour and essential oil compounds between stem and leaves of lemongrass (Cymbopogun citratus). The essential oil was extracted using two different methods which are hydrodistillation and supercritical fluid extraction (SFE). There was no significant difference of moisture content between stem and leaves of lemongrass. The lightness (L) and yellowness (+b) values of the stems were significantly higher (pleaves. The highest yield of essential oil was obtained by extraction using supercritical fluid extraction (SFE) in leaves (˜ 0.7%) by treatment at 1700psi and 50°C. The main compound of extracted essential oil was citral (geranial and neral).

  11. Rayleigh-Bénard convection of a supercritical fluid : PIV and heat transfer study

    NARCIS (Netherlands)

    Valori, V.

    2018-01-01

    Fluids above the critical point are widely used in industry. Chemical, pharmaceutical, food industry and energy production are some examples. In the energy production sector they are mainly used as cooling fluids, because they allow to increase the thermal efficiency of the power plants. However,

  12. Investigation of Thermal and Thermomechanical Properties of Biodegradable PLA/PBSA Composites Processed via Supercritical Fluid-Assisted Foam Injection Molding

    Directory of Open Access Journals (Sweden)

    Sai Aditya Pradeep

    2017-01-01

    Full Text Available Bio-based polymer foams have been gaining immense attention in recent years due to their positive contribution towards reducing the global carbon footprint, lightweighting, and enhancing sustainability. Currently, polylactic acid (PLA remains the most abundant commercially consumed biopolymer, but suffers from major drawbacks such as slow crystallization rate and poor melt processability. However, blending of PLA with a secondary polymer would enhance the crystallization rate and the thermal properties based on their compatibility. This study investigates the physical and compatibilized blends of PLA/poly (butylene succinate-co-adipate (PBSA processed via supercritical fluid-assisted (ScF injection molding technology using nitrogen (N2 as a facile physical blowing agent. Furthermore, this study aims at understanding the effect of blending and ScF foaming of PLA/PBSA on crystallinity, melting, and viscoelastic behavior. Results show that compatibilization, upon addition of triphenyl phosphite (TPP, led to an increase in molecular weight and a shift in melting temperature. Additionally, the glass transition temperature (Tg obtained from the tanδ curve was observed to be in agreement with the Tg value predicted by the Gordon–Taylor equation, further confirming the compatibility of PLA and PBSA. The compatibilization of ScF-foamed PLA–PBSA was found to have an increased crystallinity and storage modulus compared to their physically foamed counterparts.

  13. Quantitative aspects of directly coupled supercritical fluid extraction-capillary gas chromatography with a conventional split/splitless injector as interface

    OpenAIRE

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.

    1993-01-01

    The quant. aspects of online supercrit. fluid extn.-capillary gas chromatog. (SFE-GC) with a split/splitless injector as interface were studied. Special attention was paid to the discrimination behavior and the reproducibility of the split/splitless interface. A simple exptl. set-up is proposed that allows accurate quantitation in online SFE-split GC. The results obtained in online SFE-GC compare favorably with those from conventional GC with split injection. Discrimination is absent when wor...

  14. Fluidos supercríticos em química analítica. III.: aplicações Supercritical fluids in analytical chemistry. III.: applications

    Directory of Open Access Journals (Sweden)

    Emanuel Carrilho

    2006-07-01

    Full Text Available The first two papers in this series described the basic theory involved in supercritical fluid chromatography (SFC, how the technique evolved from gas and liquid chromatography and how the instrumentation was developed. Over the last two years, a commercial, dedicated packed-column SFC/MS instrument appeared on the market. The SFC continues to grow in use, with fundamental developments, coupled with a steady rise in the number of industrial users and applications.

  15. Small angle X-ray scattering study on the conformation of polystyrene in the anti-solvent process of supercritical fluids

    International Nuclear Information System (INIS)

    Liu Yi; Wang Hongli; Zhao Xin; Chen Na; Li Dan; Liu Zhimin; Han Buxing; Rong Lixia; Zhao Hui; Wang Jun; Dong Baozhong

    2003-01-01

    The conformation of polystyrene in the anti-solvent process of supercritical fluids (compressed CO 2 + polystyrene + tetrahydrofuran) is studied by synchrotron radiation X-ray small angle scattering (SAXS). Coil-to-globule transform of polystyrene chain is observed with increasing the concentration of CO 2 . It is found that polystyrene coils at the pressure lower than cloud point pressure (p c ) and changes into globule with uniform density at the pressure higher than p c

  16. Environmentally Friendly Procedure Based on Supercritical Fluid Chromatography and Tandem Mass Spectrometry Molecular Networking for the Discovery of Potent Antiviral Compounds from Euphorbia semiperfoliata.

    Science.gov (United States)

    Nothias, Louis-Félix; Boutet-Mercey, Stéphanie; Cachet, Xavier; De La Torre, Erick; Laboureur, Laurent; Gallard, Jean-François; Retailleau, Pascal; Brunelle, Alain; Dorrestein, Pieter C; Costa, Jean; Bedoya, Luis M; Roussi, Fanny; Leyssen, Pieter; Alcami, José; Paolini, Julien; Litaudon, Marc; Touboul, David

    2017-10-27

    A supercritical fluid chromatography-based targeted purification procedure using tandem mass spectrometry and molecular networking was developed to analyze, annotate, and isolate secondary metabolites from complex plant extract mixture. This approach was applied for the targeted isolation of new antiviral diterpene esters from Euphorbia semiperfoliata whole plant extract. The analysis of bioactive fractions revealed that unknown diterpene esters, including jatrophane esters and phorbol esters, were present in the samples. The purification procedure using semipreparative supercritical fluid chromatography led to the isolation and identification of two new jatrophane esters (13 and 14) and one known (15) and three new 4-deoxyphorbol esters (16-18). The structure and absolute configuration of compound 16 were confirmed by X-ray crystallography. This compound was found to display antiviral activity against Chikungunya virus (EC 50 = 0.45 μM), while compound 15 proved to be a potent and selective inhibitor of HIV-1 replication in a recombinant virus assay (EC 50 = 13 nM). This study showed that a supercritical fluid chromatography-based protocol and molecular networking can facilitate and accelerate the discovery of bioactive small molecules by targeting molecules of interest, while minimizing the use of toxic solvents.

  17. Supercritical fluid chromatography coupled with tandem mass spectrometry: A high-efficiency detection technique to quantify Taxane drugs in whole-blood samples.

    Science.gov (United States)

    Jin, Chan; Guan, Jibin; Zhang, Dong; Li, Bing; Liu, Hongzhuo; He, Zhonggui

    2017-10-01

    We present a technique to rapid determine taxane in blood samples by supercritical fluid chromatography together with mass spectrometry. The aim of this study was to develop a supercritical fluid chromatography with mass spectrometry method for the analysis of paclitaxel, cabazitaxel, and docetaxel in whole-blood samples of rats. Liquid-dry matrix spot extraction was selected in sample preparation procedure. Supercritical fluid chromatography separation of paclitaxel, cabazitaxel, docetaxel, and glyburide (internal standard) was accomplished within 3 min by using the gradient mobile phase consisted of methanol as the compensation solvent and carbon dioxide at a flow rate of 1.0 mL/min. The method was validated regarding specificity, the lower limit of quantification, repeatability, and reproducibility of quantification, extraction recovery, and matrix effects. The lower limit of quantification was found to be 10 ng/mL since it exhibited acceptable precision and accuracy at the corresponding level. All interday accuracies and precisions were within the accepted criteria of ±15% of the nominal value and within ±20% at the lower limit of quantification, implying that the method was reliable and reproducible. In conclusion, this method is a promising tool to support and improve preclinical or clinical pharmacokinetic studies with the taxanes anticancer drugs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Simultaneous micronization and purification of bioactive fraction by supercritical antisolvent technology

    Directory of Open Access Journals (Sweden)

    Stevanus Hiendrawan

    2017-01-01

    Full Text Available Simultaneous micronization and purification of DLBS3233 bioactive fraction, a combination of two Indonesian herbals Lagerstroemia speciosa and Cinnamomum burmannii has been successfully performed via supercritical anti-solvent (SAS technology. The objective of the present study was to investigate the effectiveness of SAS technology to micronize and reduce coumarin content of DLBS3233. The effects of four SAS process parameters, i.e. pressure, temperature, concentration and solution flow rate on particle formation were investigated. In SAS process, DLBS3233 was dissolved in dimethylformamide (DMF as the liquid solvent. The solution was then pumped through a nozzle into a chamber simultaneously with supercritical carbon dioxide (SC-CO2 which acts as the anti-solvent, resulting in DLBS3233 precipitation. Physicochemical properties of unprocessed DLBS3233 and SAS-processed DLBS3233 particles were analyzed using scanning electron microscopy (SEM and high pressure liquid chromatography (HPLC. Total polyphenol content (TPC was also analyzed.Particles with mean particle size ranging from 0.107±0.028 μm to 0.298±0.138 μm were obtained by varying the process parameters. SAS-processed DLBS3233 particles showed no coumarin content in all experiments studied in this work. Results of TPC analysis revealed no significant change in SAS-processed DLBS3233 particles compared to unprocessed DLBS3233. Nano-sized DLBS3233 particles with no coumarin content have been successfully produced using SAS process. This study demonstrates the ability of SAS for processing herbal medicine in single step process.

  19. Supercritical fluid extraction (SFE) of ketamine metabolites from dried urine and on-line quantification by supercritical fluid chromatography and single mass detection (on-line SFE-SFC-MS).

    Science.gov (United States)

    Hofstetter, Robert; Fassauer, Georg M; Link, Andreas

    2018-02-15

    On-line solid-phase supercritical fluid extraction (SFE) and chromatography (SFC) coupled to mass spectrometry (MS) has been evaluated for its usefulness with respect to metabolic profiling and pharmacological investigations of ketamine in humans. The aim of this study was to develop and validate a rapid, highly selective and sensitive SFE-SFC-MS method for the quantification of ketamine and its metabolites in miniature amounts in human urine excluding liquid-liquid extraction (LLE). Several conditions were optimized systematically following the requirements of the European Medicines Agency: selectivity, carry-over, calibration curve parameters (LLOQ, range and linearity), within- and between-run accuracy and precision, dilution integrity, matrix effect, and stability. The method, which required a relatively small volume of human urine (20 μL per sample), was validated for pharmacologically and toxicologically relevant concentrations ranging from 25.0 to 1000 ng/mL (r 2  > 0.995). The lower limit of quantification (LLOQ) for all compounds was found to be as low as 0.5 ng. In addition, stability of analytes during removal of water from the urine samples using different conditions (filter paper or ISOLUTE® HM-N) was studied. In conclusion, the method developed in this study can be successfully applied to studies of ketamine metabolites in humans, and may pave the way for routine application of on-line SFE-SFC-MS in clinical investigations. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: anti-inflammatory properties based on cytokine response on THP-1 macrophages.

    Science.gov (United States)

    Ocaña-Fuentes, A; Arranz-Gutiérrez, E; Señorans, F J; Reglero, G

    2010-06-01

    Two fractions (S1 and S2) of an oregano (Origanum vulgare) extract obtained by supercritical fluid extraction have been used to test anti-inflammatory effects on activated human THP-1 cells. The main compounds present in the supercritical extract fractions of oregano were trans-sabinene hydrate, thymol and carvacrol. Fractions toxicity was assessed using the mitochondrial-respiration-dependent 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) reduction method for several concentrations during 24 and 48 h of incubation. Concentrations higher than 30 microg/mL of both supercritical S1 and S2 oregano fractions caused a reduction in cell viability in a dose-dependent manner. Oxidized-LDLs (oxLDLs) activated THP-1 macrophages were used as cellular model of atherogenesis and the release/secretion of cytokines (TNT-alpha, IL-1beta, IL-6 and IL-10) and their respective mRNA expressions were quantified both in presence or absence of supercritical oregano extracts. The results showed a decrease in pro-inflammatory TNF-alpha, IL-1beta and IL-6 cytokines synthesis, as well as an increase in the production of anti-inflammatory cytokine IL-10. These results may suggest an anti-inflammatory effect of oregano extracts and their compounds in a cellular model of atherosclerosis. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Chemical composition and antioxidant/antimicrobial activities in supercritical carbon dioxide fluid extract of Gloiopeltis tenax.

    Science.gov (United States)

    Zheng, Jiaojiao; Chen, Yicun; Yao, Fen; Chen, Weizhou; Shi, Ganggang

    2012-12-01

    Gloiopeltis tenax (G. tenax) is widely distributed along the Chinese coastal areas and is commonly used in the treatment of diarrhea and colitis. This study aimed at investigating the bioactivities of the volatile constituents in G. tenax. We extracted the essential constituents of G. tenax by supercritical carbon dioxide extraction (CO₂-SFE), then identified and analyzed the constituents by gas chromatography-mass spectrometry (GC-MS). In total, 30 components were identified in the G. tenax extract. The components showed remarkable antioxidant activity (radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH)), lipid peroxidation inhibition capacity (in a β-carotene/linoleic acid-coupled oxidation reaction), and hydroxyl radical-scavenging activity (by deoxyribose degradation by iron-dependent hydroxyl radical), compared to butylated hydroxytoluene. In microdilution assays, G. tenax extracts showed a moderate inhibitory effects on Staphyloccocus aureus (minimum inhibitory concentration (MIC) = 3.9 mg/mL), Enterococcus faecalis (7.8 mg/mL), Pseudomonas aeruginosa (15.6 mg/mL), and Escherichia coli (3.9 mg/mL). Antioxidant and antimicrobial activities of G. tenax were related to the active chemical composition. These results suggest that the CO₂-SFE extract from G. tenax has potential to be used as a natural antioxidant and antimicrobial agent in food processing.

  2. Scalable organic solvent free supercritical fluid spray drying process for producing dry protein formulations.

    Science.gov (United States)

    Nuchuchua, O; Every, H A; Hofland, G W; Jiskoot, W

    2014-11-01

    In this study, we evaluated the influence of supercritical carbon dioxide (scCO2) spray drying conditions, in the absence of organic solvent, on the ability to produce dry protein/trehalose formulations at 1:10 and 1:4 (w/w) ratios. When using a 4L drying vessel, we found that decreasing the solution flow rate and solution volume, or increasing the scCO2 flow rate resulted in a significant reduction in the residual water content in dried products (Karl Fischer titration). The best conditions were then used to evaluate the ability to scale the scCO2 spray drying process from 4L to 10L chamber. The ratio of scCO2 and solution flow rate was kept constant. The products on both scales exhibited similar residual moisture contents, particle morphologies (SEM), and glass transition temperatures (DSC). After reconstitution, the lysozyme activity (enzymatic assay) and structure (circular dichroism, HP-SEC) were fully preserved, but the sub-visible particle content was slightly increased (flow imaging microscopy, nanoparticle tracking analysis). Furthermore, the drying condition was applicable to other proteins resulting in products of similar quality as the lysozyme formulations. In conclusion, we established scCO2 spray drying processing conditions for protein formulations without an organic solvent that holds promise for the industrial production of dry protein formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Method optimization for drug impurity profiling in supercritical fluid chromatography: Application to a pharmaceutical mixture.

    Science.gov (United States)

    Muscat Galea, Charlene; Didion, David; Clicq, David; Mangelings, Debby; Vander Heyden, Yvan

    2017-12-01

    A supercritical chromatographic method for the separation of a drug and its impurities has been developed and optimized applying an experimental design approach and chromatogram simulations. Stationary phase screening was followed by optimization of the modifier and injection solvent composition. A design-of-experiment (DoE) approach was then used to optimize column temperature, back-pressure and the gradient slope simultaneously. Regression models for the retention times and peak widths of all mixture components were built. The factor levels for different grid points were then used to predict the retention times and peak widths of the mixture components using the regression models and the best separation for the worst separated peak pair in the experimental domain was identified. A plot of the minimal resolutions was used to help identifying the factor levels leading to the highest resolution between consecutive peaks. The effects of the DoE factors were visualized in a way that is familiar to the analytical chemist, i.e. by simulating the resulting chromatogram. The mixture of an active ingredient and seven impurities was separated in less than eight minutes. The approach discussed in this paper demonstrates how SFC methods can be developed and optimized efficiently using simple concepts and tools. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid

    Science.gov (United States)

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-08-01

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2-16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process.

  5. Chemical Composition and Antioxidant/Antimicrobial Activities in Supercritical Carbon Dioxide Fluid Extract of Gloiopeltis tenax

    Directory of Open Access Journals (Sweden)

    Jiaojiao Zheng

    2012-11-01

    Full Text Available Gloiopeltis tenax (G. tenax is widely distributed along the Chinese coastal areas and is commonly used in the treatment of diarrhea and colitis. This study aimed at investigating the bioactivities of the volatile constituents in G. tenax. We extracted the essential constituents of G. tenax by supercritical carbon dioxide extraction (CO2-SFE, then identified and analyzed the constituents by gas chromatography-mass spectrometry (GC-MS. In total, 30 components were identified in the G. tenax extract. The components showed remarkable antioxidant activity (radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH, lipid peroxidation inhibition capacity (in a β-carotene/linoleic acid-coupled oxidation reaction, and hydroxyl radical-scavenging activity (by deoxyribose degradation by iron-dependent hydroxyl radical, compared to butylated hydroxytoluene. In microdilution assays, G. tenax extracts showed a moderate inhibitory effects on Staphyloccocus aureus (minimum inhibitory concentration (MIC = 3.9 mg/mL, Enterococcus faecalis (7.8 mg/mL, Pseudomonas aeruginosa (15.6 mg/mL, and Escherichia coli (3.9 mg/mL. Antioxidant and antimicrobial activities of G. tenax were related to the active chemical composition. These results suggest that the CO2-SFE extract from G. tenax has potential to be used as a natural antioxidant and antimicrobial agent in food processing.

  6. Supercritical fluid extraction for the determination of optimum oil recovery conditions

    Energy Technology Data Exchange (ETDEWEB)

    Al-Marzouqi, Ali H.; Zekri, Abdulrazag Y.; Jobe, Baboucarr; Dowaidar, Ali [Chemical and Petroleum Engineering Department, U.A.E. University, P.O. Box: 17555, Al-Ain (United Arab Emirates)

    2007-01-15

    CO{sub 2} under supercritical (SC) conditions is a powerful solvent capable of extracting hydrocarbons from crude oil. The extraction capacity of CO{sub 2} is a function of pressure, temperature and composition of the crude oil. This paper presents the results of a laboratory study investigating the capacity of CO{sub 2} to extract hydrocarbons from an oil-saturated soil under a wide range of pressures and temperatures (80-120 bar for temperatures ranging from 40 to 60 C and 200-300 bar for temperatures varying from 100 to 140 C). The soil samples were collected from Sahel oil filed, which is near Bu Hasa oil field (Abu Dhabi, UAE) where the crude oil was obtained from. The extracted oil from the SC CO{sub 2} process and the residual oil remaining in the soil sample were analyzed by gas chromatography to shed more light on the extraction phenomenon. Extraction efficiency of CO{sub 2} increased with pressure and decreased with temperature. Moreover, the amount of extracted heavy fractions increased with pressure for all temperatures. On the other hand, the amount of extracted heavy hydrocarbons decreased with temperature for the low pressure range (80-120 bar) and remained the same for the pressure range of 250-300 bar. The maximum extraction efficiency of CO{sub 2} was 72.4%, which was obtained at the highest pressure (300 bar) and a temperature of 100 C. (author)

  7. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxy-combustion technology

    Directory of Open Access Journals (Sweden)

    Balicki Adrian

    2014-06-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of ‘zeroemission’ technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.

  8. Optimization and simulation of tandem column supercritical fluid chromatography separations using column back pressure as a unique parameter.

    Science.gov (United States)

    Wang, Chunlei; Tymiak, Adrienne A; Zhang, Yingru

    2014-04-15

    Tandem column supercritical fluid chromatography (SFC) has demonstrated to be a useful technique to resolve complex mixtures by serially coupling two columns of different selectivity. The overall selectivity of a tandem column separation is the retention time weighted average of selectivity from each coupled column. Currently, the method development merely relies on extensive screenings and is often a hit-or-miss process. No attention is paid to independently adjust retention and selectivity contributions from individual columns. In this study, we show how tandem column SFC selectivity can be optimized by changing relative dimensions (length or inner diameter) of the coupled columns. Moreover, we apply column back pressure as a unique parameter for SFC optimization. Continuous tuning of tandem column SFC selectivity is illustrated through column back pressure adjustments of the upstream column, for the first time. In addition, we show how and why changing coupling order of the columns can produce dramatically different separations. Using the empirical mathematical equation derived in our previous study, we also demonstrate a simulation of tandem column separations based on a single retention time measurement on each column. The simulation compares well with experimental results and correctly predicts column order and back pressure effects on the separations. Finally, considerations on instrument and column hardware requirements are discussed.

  9. SFC-APLI-(TOF)MS: Hyphenation of Supercritical Fluid Chromatography to Atmospheric Pressure Laser Ionization Mass Spectrometry.

    Science.gov (United States)

    Klink, Dennis; Schmitz, Oliver Johannes

    2016-01-05

    Atmospheric-pressure laser ionization mass spectrometry (APLI-MS) is a powerful method for the analysis of polycyclic aromatic hydrocarbon (PAH) molecules, which are ionized in a selective and highly sensitive way via resonance-enhanced multiphoton ionization. APLI was presented in 2005 and has been hyphenated successfully to chromatographic separation techniques like high performance liquid chromatography (HPLC) and gas chromatography (GC). In order to expand the portfolio of chromatographic couplings to APLI, a new hyphenation setup of APLI and supercritical-fluid chromatography (SFC) was constructed and aim of this work. Here, we demonstrate the first hyphenation of SFC and APLI in a simple designed way with respect to different optimization steps to ensure a sensitive analysis. The new setup permits qualitative and quantitative determination of native and also more polar PAH molecules. As a result of the altered ambient characteristics within the source enclosure, the quantification of 1-hydroxypyrene (1-HP) in human urine is possible without prior derivatization. The limit of detection for 1-HP by SFC-APLI-TOF(MS) was found to be 0.5 μg L(-1), which is lower than the 1-HP concentrations found in exposed persons.

  10. Fatty acid composition and antioxidant activity of oils from two cultivars of Cantaloupe extracted by supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, M.; Mariod, A.; Bagalkotkar, G.; Ling, H. S

    2010-07-01

    The effect of supercritical fluid extraction (SFE) fractionation of three oil fractions (1st, 2nd, 3rd fraction) on the fatty acid composition and antioxidant activity of oils from two cultivars of cantaloupe were investigated. Rock melon oil (RMO) and Golden Langkawi oil (GLO) were extracted using SFE and the major fatty acids for both cultivars were linoleic, oleic, palmitic, and stearic acid. The SFA decreased from 15.78 to 14.14% in RMO 1st fraction, and MUFA decreased from 18.30 to 16.56% in RMO 2nd fraction, while PUFA increased from 65.9 to 69.30% in RMO 3rd fraction. On the other hand SFA decreased from 16.35 to 13.91% in GLO 1{sup s}t fraction, and MUFA decreased from 17.50 to 15.57% in GLO 2nd fraction, while PUFA increased from 66.15 to 70.52% in GLO 3rd fraction. The different fractions of the two oils showed high antioxidant activity in reducing the oxidation of {beta}-carotene in beta-carotene bleaching assay (BCB) and the quenching of 1,1-diphenyl-2-picrylhydrazyl (DPPH). (Author) 41 refs.

  11. Cytotoxic Activity of Kenaf Seed Oils from Supercritical Carbon Dioxide Fluid Extraction towards Human Colorectal Cancer (HT29 Cell Lines

    Directory of Open Access Journals (Sweden)

    Siti Aisyah Abd Ghafar

    2013-01-01

    Full Text Available Kenaf (Hibiscus cannabinus from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as β-sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO was from supercritical carbon dioxide extraction fluid (SFE at 9 different permutations of parameters based on range of pressures from 200 to 600 bars and temperature from 40 to 80°C. They were 200/40, 200/60, 200/80, 400/40, 400/60, 400/80, 600/40, 600/60, and 600/80. Extraction from 9 parameters of KSO-SFE was screened for cytotoxicity towards human colorectal cancer cell lines (HT29 and mouse embryonic fibroblast (NIH/3T3 cell lines using MTS assay. KSO-SFE at 600/40 showed the strongest cytotoxicity towards HT29 with IC50 of 200 µg/mL. The IC50 for NIH/3T3 was not detected even at highest concentration employed. Cell cycle analysis showed a significant increase in the accumulation of KSO-SFE-treated cells at sub-G1 phase, indicating the induction of apoptosis by KSO-SFE. Further apoptosis induction was confirmed by Annexin V/PI and AO/PI staining.

  12. Characterization of Linum usitatissimum L. oil obtained from different extraction technique and in vitro antioxidant potential of supercritical fluid extract

    Science.gov (United States)

    Chauhan, Rishika; Chester, Karishma; Khan, Yasmeen; Tamboli, Ennus Tajuddin; Ahmad, Sayeed

    2015-01-01

    Aim: Present investigation was aimed to characterize the fixed oil of Linum usitatissimum L. using five different extraction methods: Supercritical fluid extraction (SFE), ultrasound-assistance, soxhlet extraction, solvent extraction, and three phase partitioning method. Materials and Methods: The SFE conditions (temperature, pressure, and volume of CO2) were optimized prior for better yield. The extracted oils were analyzed and compared for their physiochemical parameters, high performance thin layer chromatography (HPTLC), gas chromatography-mass spectrometry (GC-MS), and Fourier-transformed infrared spectroscopy (FT-IR) fingerprinting. Antioxidant activity was also determined using 1,1-diphenyl-2-picrylhydrazyl and superoxide scavenging method. Result: The main fatty acids were α-linolenic acid, linoleic acid, palmitic acid, and stearic acid as obtained by GC-MS. HPTLC analysis revealed the presence of similar major components in chromatograms. Similarly, the pattern of peaks, as obtained in FT-IR and GC-MS spectra of same oils by different extraction methods, were superimposable. Conclusion: Analysis reported that the fixed oil of L. usitatissimum L. is a good source of n-3 fatty acid with the significant antioxidant activity of oil obtained from SFE extraction method. PMID:26681884

  13. Widely-targeted quantitative lipidomics methodology by supercritical fluid chromatography coupled with fast-scanning triple quadrupole mass spectrometry.

    Science.gov (United States)

    Takeda, Hiroaki; Izumi, Yoshihiro; Takahashi, Masatomo; Paxton, Thanai; Tamura, Shohei; Koike, Tomonari; Yu, Ying; Kato, Noriko; Nagase, Katsutoshi; Shiomi, Masashi; Bamba, Takeshi

    2018-05-03

    Lipidomics, the mass spectrometry-based comprehensive analysis of lipids, has attracted attention as an analytical approach to provide novel insight into lipid metabolism and to search for biomarkers. However, an ideal method for both comprehensive and quantitative analysis of lipids has not been fully developed. Herein, we have proposed a practical methodology for widely-targeted quantitative lipidome analysis using supercritical fluid chromatography fast-scanning triple-quadrupole mass spectrometry (SFC/QqQMS) and theoretically calculated a comprehensive lipid multiple reaction monitoring (MRM) library. Lipid classes can be separated by SFC with a normal phase diethylamine-bonded silica column with high-resolution, high-throughput, and good repeatability. Structural isomers of phospholipids can be monitored by mass spectrometric separation with fatty acyl-based MRM transitions. SFC/QqQMS analysis with an internal standard-dilution method offers quantitative information for both lipid class and individual lipid molecular species in the same lipid class. Additionally, data acquired using this method has advantages including reduction of misidentification and acceleration of data analysis. Using the SFC/QqQMS system, alteration of plasma lipid levels in myocardial infarction-prone rabbits to the supplementation of eicosapentaenoic acid was first observed. Our developed SFC/QqQMS method represents a potentially useful tool for in-depth studies focused on complex lipid metabolism and biomarker discovery. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Understanding the structural differences between spherical and rod-shaped human insulin nanoparticles produced by supercritical fluids precipitation.

    Science.gov (United States)

    Park, Yeonju; Seo, Yongil; Chae, Boknam; Pyo, Dongjin; Chung, Hoeil; Hwang, Hyonseok; Jung, Young Mee

    2015-02-02

    In this study, the thermal denaturation mechanism and secondary structures of two types of human insulin nanoparticles produced by a process of solution-enhanced dispersion by supercritical fluids using dimethyl sulfoxide (DMSO) and ethanol (EtOH) solutions of insulin are investigated using spectroscopic approaches and molecular dynamics calculations. First, the temperature-dependent IR spectra of spherical and rod-shaped insulin nanoparticles prepared from DMSO and EtOH solution, respectively, are analyzed using principal component analysis (PCA) and 2D correlation spectroscopy to obtain a deeper understanding of the molecular structures and thermal behavior of the two insulin particle shapes. All-atom molecular dynamics (AAMD) calculations are performed to investigate the influence of the solvent molecules on the production of the insulin nanoparticles and to elucidate the geometric differences between the two types of nanoparticles. The results of the PCA, the 2D correlation spectroscopic analysis, and the AAMD calculations clearly reveal that the thermal denaturation mechanisms and the degrees of hydrogen bonding in the spherical and rod-shaped insulin nanoparticles are different. The polarity of the solvent might not alter the structure or function of the insulin produced, but the solvent polarity does influence the synthesis of different shapes of insulin nanoparticles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Quality Parameters of Curcuma Longa L. Extracts by Supercritical Fluid Extraction (SFE) and Ultrasonic Assisted Extraction (UAE)

    International Nuclear Information System (INIS)

    Zaibunnisa Abdul Haiyee; Siti Hafsah Mohd Shah; Khudzir Ismail; Nooraain Hashim; Wan Iryani Wan Ismail

    2016-01-01

    Turmeric is one of the prominently use herbal plants due to its diverse beneficial effects especially in Indian medicine. The rhizome part of the turmeric contains valuable compounds which have been said to owe its antimicrobial effects, anti-cancer, anti-inflammatory and enhance wound healing. Due to its short-life span and perishable properties, the conversion of the rhizome into turmeric extract is desirable. Several methods have been used for extraction such as Soxhlet extraction and pressurized liquid extraction (PLE). However, these techniques are tedious, laborious, time consuming and involves the usage of toxic organic solvent, of which safeness of the end product is doubtful. In this study, a rapid, reliable and green extraction method of supercritical fluid extraction (SFE) and ultrasonic assisted extraction (UAE) were used. SFE without modifier has resulted in 0.0006 mg/ 100 g of curcuminoids concentration and 5.62 % of yield (dry weight basis). UAE using ethanol was able to produce significantly the highest yield (6.40 %, dry weight basis) and the highest curcuminoids concentration (0.1020 mg/ 100 g). However, SFE was able to produce extract that contain significantly higher major volatile compounds; tumerone, ar-turmerone and curlone. Therefore, this study proves that both extraction methods were able to produce high quality turmeric extract. (author)

  16. A comparative study of conventional and supercritical fluid extraction methods for the recovery of secondary metabolites from Syzygium campanulatum Korth#

    Science.gov (United States)

    Memon, Abdul Hakeem; Hamil, Mohammad Shahrul Ridzuan; Laghari, Madeeha; Rithwan, Fahim; Zhari, Salman; Saeed, Mohammed Ali Ahmed; Ismail, Zhari; Majid, Amin Malik Shah Abdul

    2016-01-01

    Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%‒84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%‒66.00%). PMID:27604860

  17. A comparative study of conventional and supercritical fluid extraction methods for the recovery of secondary metabolites from Syzygium campanulatum Korth.

    Science.gov (United States)

    Memon, Abdul Hakeem; Hamil, Mohammad Shahrul Ridzuan; Laghari, Madeeha; Rithwan, Fahim; Zhari, Salman; Saeed, Mohammed Ali Ahmed; Ismail, Zhari; Majid, Amin Malik Shah Abdul

    2016-09-01

    Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%‒84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%‒66.00%).

  18. Supercritical fluid chromatography hyphenated with twin comprehensive two-dimensional gas chromatography for ultimate analysis of middle distillates.

    Science.gov (United States)

    Adam, Frédérick; Thiébaut, Didier; Bertoncini, Fabrice; Courtiade, Marion; Hennion, Marie-Claire

    2010-02-19

    This paper reports the conditions of online hyphenation of supercritical fluid chromatography (SFC) with twin comprehensive two-dimensional gas chromatography (twin-GCxGC) for detailed characterization of middle distillates; this is essential for a better understanding of reactions involved in refining processes. In this configuration, saturated and unsaturated compounds that have been fractionated by SFC are transferred on two different GC x GC columns sets (twin-GCxGC) placed in the same GC oven. Cryogenic focusing is used for transfer of fractions into the first dimension columns before simultaneous GCxGC analysis of both saturated and unsaturated fractions. The benefits of SFC-twin-GC x GC are demonstrated for the extended alkane, iso-alkane, alkene, naphthenes and aromatics analysis (so-called PIONA analysis) of diesel samples which can be achieved in one single injection. For that purpose, saturated and unsaturated compounds have been separated by SFC using a silver loaded silica column prior to GC x GC analysis. Alkenes and naphthenes are quantitatively recovered in the unsaturated and saturated fractions, respectively, allowing their identification in various diesel samples. Thus, resolution between each class of compounds is significantly improved compared to a single GCxGC run, and for the first time, an extended PIONA analysis of diesel samples is presented. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Cytotoxic Activity of Kenaf Seed Oils from Supercritical Carbon Dioxide Fluid Extraction towards Human Colorectal Cancer (HT29) Cell Lines.

    Science.gov (United States)

    Abd Ghafar, Siti Aisyah; Ismail, Maznah; Saiful Yazan, Latifah; Fakurazi, Sharida; Ismail, Norsharina; Chan, Kim Wei; Md Tahir, Paridah

    2013-01-01

    Kenaf (Hibiscus cannabinus) from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as β -sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO) was from supercritical carbon dioxide extraction fluid (SFE) at 9 different permutations of parameters based on range of pressures from 200 to 600 bars and temperature from 40 to 80°C. They were 200/40, 200/60, 200/80, 400/40, 400/60, 400/80, 600/40, 600/60, and 600/80. Extraction from 9 parameters of KSO-SFE was screened for cytotoxicity towards human colorectal cancer cell lines (HT29) and mouse embryonic fibroblast (NIH/3T3) cell lines using MTS assay. KSO-SFE at 600/40 showed the strongest cytotoxicity towards HT29 with IC50 of 200 µg/mL. The IC50 for NIH/3T3 was not detected even at highest concentration employed. Cell cycle analysis showed a significant increase in the accumulation of KSO-SFE-treated cells at sub-G1 phase, indicating the induction of apoptosis by KSO-SFE. Further apoptosis induction was confirmed by Annexin V/PI and AO/PI staining.

  20. Characterization of Linum usitatissimum L. oil obtained from different extraction technique and in vitro antioxidant potential of supercritical fluid extract

    Directory of Open Access Journals (Sweden)

    Rishika Chauhan

    2015-01-01

    Full Text Available Aim: Present investigation was aimed to characterize the fixed oil of Linum usitatissimum L. using five different extraction methods: Supercritical fluid extraction (SFE, ultrasound-assistance, soxhlet extraction, solvent extraction, and three phase partitioning method. Materials and Methods: The SFE conditions (temperature, pressure, and volume of CO2 were optimized prior for better yield. The extracted oils were analyzed and compared for their physiochemical parameters, high performance thin layer chromatography (HPTLC, gas chromatography-mass spectrometry (GC-MS, and Fourier-transformed infrared spectroscopy (FT-IR fingerprinting. Antioxidant activity was also determined using 1,1-diphenyl-2-picrylhydrazyl and superoxide scavenging method. Result: The main fatty acids were α-linolenic acid, linoleic acid, palmitic acid, and stearic acid as obtained by GC-MS. HPTLC analysis revealed the presence of similar major components in chromatograms. Similarly, the pattern of peaks, as obtained in FT-IR and GC-MS spectra of same oils by different extraction methods, were superimposable. Conclusion: Analysis reported that the fixed oil of L. usitatissimum L. is a good source of n-3 fatty acid with the significant antioxidant activity of oil obtained from SFE extraction method.

  1. A case of Z/E-isomers elution order inversion caused by cosolvent percentage change in supercritical fluid chromatography.

    Science.gov (United States)

    Pokrovskiy, Oleg I; Ustinovich, Konstantin B; Usovich, Oleg I; Parenago, Olga O; Lunin, Valeriy V; Ovchinnikov, Denis V; Kosyakov, Dmitry S

    2017-01-06

    A case of elution order inversion caused by cosolvent percentage change in supercritical fluid chromatography was observed and investigated in some detail. Z- and E-isomers of phenylisobutylketone oxime experience an elution order reversal on most columns if the mobile phase consists of CO 2 and alcohol. At lower percentages of alcohol Z-oxime is retained less, somewhere at 2-5% coelution occurs and at larger cosolvent volume elution order reverses - Z-oxime is eluted later than E-oxime. We suppose inversion with CO 2 -ROH phases happens due to a shift in balance between two main interactions governing retention. At low ROH percentages stationary phase surface is only slightly covered by ROH molecules so oximes primarily interact with adsorption sites via hydrogen bond formation. Due to intramolecular sterical hindrance Z-oxime is less able to form hydrogen bonds and consequently is eluted first. At higher percentages alcohols occupy most of strong hydrogen bonding sites on silica surface thus leaving non-specific electrostatic interactions predominantly responsible for Z/E selectivity. Z-oxime has a much larger dipole moment than E-oxime and at these conditions it is eluted later. Additional experimental data with CO 2 -CH 3 CN, hexane-iPrOH and CHF 3 -ROH mobile phases supporting this explanation are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Simple, rapid, and environmentally friendly method for the separation of isoflavones using ultra-high performance supercritical fluid chromatography.

    Science.gov (United States)

    Wu, Wenjie; Zhang, Yuan; Wu, Hanqiu; Zhou, Weie; Cheng, Yan; Li, Hongna; Zhang, Chuanbin; Li, Lulu; Huang, Ying; Zhang, Feng

    2017-07-01

    Isoflavones are natural substances that exhibit hormone-like pharmacological activities. The separation of isoflavones remains an analytical challenge because of their similar structures. We show that ultra-high performance supercritical fluid chromatography can be an appropriate tool to achieve the fast separation of 12 common dietary isoflavones. Among the five tested columns the Torus DEA column was found to be the most effective column for the separation of these isoflavones. The impact of individual parameters on the retention time and separation factor was evaluated. These parameters were optimized to develop a simple, rapid, and green method for the separation of the 12 target analytes. It only took 12.91 min using gradient elution with methanol as an organic modifier and formic acid as an additive. These isoflavones were determined with limit of quantitation ranging from 0.10 to 0.50 μg/mL, which was sufficient for reliable determination of various matrixes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Supercritical Fluid Chromatography of Drugs: Parallel Factor Analysis for Column Testing in a Wide Range of Operational Conditions

    Science.gov (United States)

    Al-Degs, Yahya; Andri, Bertyl; Thiébaut, Didier; Vial, Jérôme

    2017-01-01

    Retention mechanisms involved in supercritical fluid chromatography (SFC) are influenced by interdependent parameters (temperature, pressure, chemistry of the mobile phase, and nature of the stationary phase), a complexity which makes the selection of a proper stationary phase for a given separation a challenging step. For the first time in SFC studies, Parallel Factor Analysis (PARAFAC) was employed to evaluate the chromatographic behavior of eight different stationary phases in a wide range of chromatographic conditions (temperature, pressure, and gradient elution composition). Design of Experiment was used to optimize experiments involving 14 pharmaceutical compounds present in biological and/or environmental samples and with dissimilar physicochemical properties. The results showed the superiority of PARAFAC for the analysis of the three-way (column × drug × condition) data array over unfolding the multiway array to matrices and performing several classical principal component analyses. Thanks to the PARAFAC components, similarity in columns' function, chromatographic trend of drugs, and correlation between separation conditions could be simply depicted: columns were grouped according to their H-bonding forces, while gradient composition was dominating for condition classification. Also, the number of drugs could be efficiently reduced for columns classification as some of them exhibited a similar behavior, as shown by hierarchical clustering based on PARAFAC components. PMID:28695040

  4. Supercritical fluid chromatography applied to the highly selective isolation of urinary steroid hormones prior to GC/MS analysis.

    Science.gov (United States)

    Doué, Mickael; West, Caroline; Bichon, Emmanuelle; Le Bizec, Bruno; Lesellier, Eric

    2018-06-01

    To assess the presence of prohibited anabolic substances used to promote growth in livestock, calf urine is the most relevant matrix. However, the sample preparation methods (required to remove unwanted matrix components and fractionate isobaric species that may be unresolved by gas chromatography- mass spectrometry GC/MS) are long and complex. In this context, semi-preparative supercritical fluid chromatography (SFC) was considered to possibly simplify the sample preparation in reducing the number of procedures. Fifteen stationary phases were screened with SFC combined with UV and evaporative light-scattering detection (ELSD), among which two columns (Cosmosil π-NAP and Princeton DIOL) were retained for their ability to isolate steroid hormones from other matrix components and, for the second column, for the additional possibility to fractionate steroid hormones into different families (estrogens, mono-hydroxylated and di-hydroxylated androgens). The fractions were further analysed with GC/MS showing the benefit of class fractionation. The final method allows for significant time, solvent and money savings compared to the previously widely used method (solid-phase extraction combined with semi-preparative high-performance liquid chromatography). Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Use of Immobilised Lipase from Candida antarctica in Supercritical Fluid Extraction of Borage (Borago officinalis L. Seed Oil

    Directory of Open Access Journals (Sweden)

    Egidijus Daukšas

    2008-01-01

    Full Text Available This study aims at the investigation of the possibilities to use immobilised lipase from Candida antarctica in supercritical fluid extraction (SFE of borage (Borago officinalis L. see doil. The first series of experiments was performed to measure the extract yields obtained with pure CO2 and with the added entrainer (ethanol. The yield increased more than twice after increasing the extraction pressure from 15 to 25 MPa. Further increase to 35 MPa was less effective. The effect of the entrainer was not significant in most cases. Palmitic (13.1–16.1 %, oleic (13.4–23.8 %, linoleic (33.8–48.4 % and linolenic (8.8–16.3 % acids were dominant in all extracted oils. Further experiments involved the use of enzyme. In this case the first extractor was loaded with ground borage seeds, the second one was filled with the enzyme. The total yield obtained at 15, 25 and 35 MPa was (8.8±0.2, (23.6±0.2 and (28.9±1.1 %, respectively. Thin layer chromatography (TLC of fatty acid ethyl esters showed that the content of esters was higher in the extract obtained in one extractor system at 15 MPa, compared to 35 MPa.

  6. Simultaneous analysis of nucleobases, nucleosides and ginsenosides in ginseng extracts using supercritical fluid chromatography coupled with single quadrupole mass spectrometry.

    Science.gov (United States)

    Huang, Yang; Zhang, Tingting; Zhao, Yumei; Zhou, Haibo; Tang, Guangyun; Fillet, Marianne; Crommen, Jacques; Jiang, Zhengjin

    2017-09-10

    Nucleobases, nucleosides and ginsenosides, which have a significant impact on the physiological activity of organisms, are reported to be the active components of ginseng, while they are less present in ginseng extracts. Few analytical methods have been developed so far to simultaneously analyze these three classes of compounds with different polarities present in ginseng extracts. In the present study, a simple and efficient analytical method was successfully developed for the simultaneous separation of 17 nucleobases, nucleosides and ginsenosides in ginseng extracts using supercritical fluid chromatography coupled with single quadrupole mass spectrometry (SFC-MS). The effect of various experimental factors on the separation performance, such as the column type, temperature and backpressure, the type of modifier and additive, and the concentration of make-up solvent were systematically investigated. Under the selected conditions, the developed method was successfully applied to the quality evaluation of 14 batches of ginseng extracts from different origins. The results obtained for the different batches indicate that this method could be employed for the quality assessment of ginseng extracts. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Simultaneous achiral-chiral analysis of pharmaceutical compounds using two-dimensional reversed phase liquid chromatography-supercritical fluid chromatography.

    Science.gov (United States)

    Venkatramani, C J; Al-Sayah, Mohammad; Li, Guannan; Goel, Meenakshi; Girotti, James; Zang, Lisa; Wigman, Larry; Yehl, Peter; Chetwyn, Nik

    2016-02-01

    A new interface was designed to enable the coupling of reversed phase liquid chromatography (RPLC) and supercritical fluid chromatography (SFC). This online two-dimensional chromatographic system utilizing RPLC in the first dimension and SFC in the second was developed to achieve simultaneous achiral and chiral analysis of pharmaceutical compounds. The interface consists of an eight-port, dual-position switching valve with small volume C-18 trapping columns. The peaks of interest eluting from the first RPLC dimension column were effectively focused as sharp concentration pulses on small volume C-18 trapping column/s and then injected onto the second dimension SFC column. The first dimension RPLC separation provides the achiral purity result, and the second dimension SFC separation provides the chiral purity result (enantiomeric excess). The results are quantitative enabling simultaneous achiral, chiral analysis of compounds. The interface design and proof of concept demonstration are presented. Additionally, comparative studies to conventional SFC and case studies of the applications of 2D LC-SFC in pharmaceutical analysis is presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Supercritical Fluid Chromatography of Drugs: Parallel Factor Analysis for Column Testing in a Wide Range of Operational Conditions

    Directory of Open Access Journals (Sweden)

    Ramia Z. Al Bakain

    2017-01-01

    Full Text Available Retention mechanisms involved in supercritical fluid chromatography (SFC are influenced by interdependent parameters (temperature, pressure, chemistry of the mobile phase, and nature of the stationary phase, a complexity which makes the selection of a proper stationary phase for a given separation a challenging step. For the first time in SFC studies, Parallel Factor Analysis (PARAFAC was employed to evaluate the chromatographic behavior of eight different stationary phases in a wide range of chromatographic conditions (temperature, pressure, and gradient elution composition. Design of Experiment was used to optimize experiments involving 14 pharmaceutical compounds present in biological and/or environmental samples and with dissimilar physicochemical properties. The results showed the superiority of PARAFAC for the analysis of the three-way (column × drug × condition data array over unfolding the multiway array to matrices and performing several classical principal component analyses. Thanks to the PARAFAC components, similarity in columns’ function, chromatographic trend of drugs, and correlation between separation conditions could be simply depicted: columns were grouped according to their H-bonding forces, while gradient composition was dominating for condition classification. Also, the number of drugs could be efficiently reduced for columns classification as some of them exhibited a similar behavior, as shown by hierarchical clustering based on PARAFAC components.

  9. Application of ultra-high performance supercritical fluid chromatography for the determination of carotenoids in dietary supplements.

    Science.gov (United States)

    Li, Bing; Zhao, Haiyan; Liu, Jing; Liu, Wei; Fan, Sai; Wu, Guohua; Zhao, Rong

    2015-12-18

    A quick and simple ultra-high performance supercritical fluid chromatography-photodiode array detector method was developed and validated for the simultaneous determination of 9 carotenoids in dietary supplements. The influences of stationary phase, co-solvent, pressure, temperature and flow rate on the separation of carotenoids were evaluated. The separation of the carotenoids was carried out using an Acquity UPC(2) HSS C18 SB column (150mm×3.0mm, 1.8μm) by gradient elution with carbon dioxide and a 1:2 (v:v) methanol/ethanol mixture. The column temperature was set to 35°C and the backpressure was 15.2MPa. Under these conditions, 9 carotenoids and the internal standard, β-apo-8'-carotenal, were successfully separated within 10min. The correlation coefficients (R(2)) of the calibration curves were all above 0.997, the limits of detection for the 9 carotenoids were in the range of 0.33-1.08μg/mL, and the limits of quantification were in the range of 1.09-3.58μg/mL. The mean recoveries were from 93.4% to 109.5% at different spiking levels, and the relative standard deviations were between 0.8% and 6.0%. This method was successfully applied to the determination of 9 carotenoids in commercial dietary supplements. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes

    Science.gov (United States)

    Hegde, Uday; Hicks, Michael

    2013-01-01

    The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.

  11. Determination of persistent organic pollutants in solid environmental samples using accelerated solvent extraction and supercritical fluid extraction. Exhaustive extraction and sorption/desorption studies of PCBs

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerklund, E.

    1998-10-01

    Human activity is constantly causing environmental problems due to production and release of numerous chemicals. A group of compounds of special concern is persistent organic pollutants (POP). These toxic, lipophilic chemicals have a high chemical and biological stability, and tend to accumulate in the lipid phase of living organisms. A major sink for POPs are sediments, and consequently these are important for the distribution of POPs in the aquatic environment. Traditionally, determination of POPs relay on exhaustive extraction using liquid extraction techniques (e.g. Soxhlet extraction developed in the late 19th century) followed by gas chromatographic analysis. Since liquid-solid extraction normally requires large volumes of organic solvents in combination with long extraction times and extract clean-up, there has been an increasing demand for improved technology. This should result in reduced organic solvent consumption and sample preparation time, at the same time improving the environment and cutting costs for POP monitoring. In this thesis two modern techniques with capability of fulfilling at least one of these goals have been investigated: (1) Supercritical Fluid Extraction (SFE), and (2) Accelerated Solvent Extraction (ASE). Polychlorinated biphenyls (PCBs) were chosen as model compounds in all experiments performed on environmental matrices, since they cover a relatively large range of physiochemical parameters. Important parameters influencing the overall extraction efficiency in ASE and SFE, are discussed and illustrated for a large number of sediments. It was demonstrated that, by careful consideration of the experimental parameters, both techniques are capable of replacing old methods such as Soxhlet extraction. ASE is somewhat faster than SFE, but the extracts generated in SFE are much cleaner and can be analyzed without sample clean-up. Consequently the overall sample preparation time may be substantially lower using SFE. However, ASE is important

  12. Comparison of CFD results for a supercritical CO{sub 2} compressor with compressible and incompressible working fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Gu; Baik, Seungjoon; Cho, Seong Kuk; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Kwon, Jinsu [Hanyang University, Seoul (Korea, Republic of)

    2015-10-15

    The authors compared flow parameters of S-CO{sub 2} compressor with various fluids to investigate fluid characteristic of S-CO{sub 2}, and performance of pump-derived type (shrouded impeller) compressor. The CFD results showed that the isentropic efficiency of CO{sub 2} case has a comparable performance in comparison to the water since S-CO{sub 2} has a meta-incompressible characteristic near the critical point. Because of the low rotating speed and non-optimized geometry of impeller, the pressure ratio of the compressor is low. However, the authors confirmed that this shrouded type impeller for S-CO{sub 2} compressor showed good performance as much as water case. This results will be reflected in the future S-CO{sub 2} compressor design. As the generation IV reactors are being researched, the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle is identified as one of the promising power conversion cycles. The S-CO{sub 2} cycle has several advantages: high efficiency it has compact cycle components and simple layout. It can be also used for a power conversion system of sodium-cooled fast reactor (SFR) since it can eliminate potential safety issue of the sodium-water reactions. Moreover, the S-CO{sub 2} cycle can be used for small modular reactors (SMR) application since it occupies small footprint and it can designed as an economical dry-cooling system for SMRs. Design of a compressor is the major technical issue in development of S-CO{sub 2} cycle. Main purposes of this experiment are to accumulate operating experience of the S-CO{sub 2} loop, and to obtain fundamental data for the compressor design optimization near the critical point. However, inside the compressor, it is hard to know flow parameters by measurements. Therefore, the authors performed a CFD analysis to obtain useful flow parameters inside the compressor. The main goal of this paper is studying the flow parameters of pump-derived type compressor with S-CO{sub 2}, water, and air fluids to

  13. Supercritical fluid extraction-capillary gas chromatography: on-line coupling with a programmed temperature vaporizer

    NARCIS (Netherlands)

    Houben, R.J.; Janssen, J.G.M.; Leclercq, P.A.; Rijks, J.A.; Cramers, C.A.M.G.

    1990-01-01

    A simple and versatile system is described for the on-line coupling of SFE to capillary GC. The interfacing consists of a programmed temperature vaporizer (PTV) injector. With this injector it is possible to combine solute trapping, elimination of a high flow of extraction fluid, and quantitative

  14. TECHNIQUE AND TECHNOLOGY OF USING CARBON DIOXIDE IN SUB- AND SUPERCRITICAL STATE

    Directory of Open Access Journals (Sweden)

    G. I. Kasjanov

    2014-01-01

    Full Text Available Summary. Solving problems of deep processing of agricultural raw materials is largely dependent on the use of biotechnological methods of processing raw material components, the use of high-tech methods for the purpose of long-term storage of raw materials, preparative separation of the chemical components of raw materials, creation of natural food supplements based on secondary agricultural inputs. It is known that modern processes of agricultural raw materials are accompanied by changes in gas-liquid media in a wide range of humidity, temperature and pressure. Gas-liquid technology effectively influence the flow of raw materials, which acquires new characteristics or quality can be divided into separate classes of chemical compounds. Results of author’s researches in the area of agricultural raw material gas-liquid treatment are represented in the article. Idea of new scientific direction - unified system of carbon dioxide application in the branches of food industry for creation of principally new high technologies of various origin raw material. Technological opportunities vegetative and animal raw material gas-liquid treatment for production of highly concentrated natural food agents have been analyzed. Application of carbon dioxide as extraction agent in sub- and supercritical state made possible to solve several problems of vegetative raw material chemical components preparative separation, activate the activity of animal raw material inner enzymes, achieve the raw material hyperfine de-composition by method of gas-liquid explosion.

  15. Study on the possibility of supercritical fluid extraction for reprocessing of spent nuclear fuel from high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Duan Wuhua; Zhu Liyang; Zhu Yongjun; Xu Jingming

    2011-01-01

    International interest in high temperature gas-cooled reactor (HTGR) has been increasing in recent years. It is important to study on reprocessing of spent nuclear fuel from HTGR for recovery of nuclear resource and reduction of nuclear waste. Treatment of UO 2 pellets for preparing fuel elements of the 10 MW high temperature gas-cooled reactor (HTR-10) using supercritical fluid extraction was investigated. UO 2 pellets are difficult to be directly dissolved and extracted with TBP-HNO 3 complex in supercritical CO 2 (SC-CO 2 ), and the extraction efficiency is only about 7% under experimental conditions. UO 2 pellets are also difficult to be converted completely into nitrate with N 2 O 4 . When UO 2 pellets break spontaneously into U 3 O 8 powders with particle size below 100 μm under O 2 flow and 600degc, the extraction efficiency of U 3 O 8 powders with TBP-HNO 3 complex in SC-CO 2 can reach more than 98%. U 3 O 8 powders are easy to be completely converted into nitrate with N 2 O 4 . The extraction efficiency of the nitrate product with TBP in SC-CO 2 can reach more than 99%. So it has a potential prospect that application of supercritical fluid extraction in reprocessing of spent nuclear fuel from HTGR. (author)

  16. Simultaneous analysis for water- and fat-soluble vitamins by a novel single chromatography technique unifying supercritical fluid chromatography and liquid chromatography.

    Science.gov (United States)

    Taguchi, Kaori; Fukusaki, Eiichiro; Bamba, Takeshi

    2014-10-03

    Chromatography techniques usually use a single state in the mobile phase, such as liquid, gas, or supercritical fluid. Chromatographers manage one of these techniques for their purpose but are sometimes required to use multiple methods, or even worse, multiple techniques when the target compounds have a wide range of chemical properties. To overcome this challenge, we developed a single method covering a diverse compound range by means of a "unified" chromatography which completely bridges supercritical fluid chromatography and liquid chromatography. In our method, the phase state was continuously changed in the following order; supercritical, subcritical and liquid. Moreover, the gradient of the mobile phase starting at almost 100% CO2 was replaced with 100% methanol at the end completely. As a result, this approach achieved further extension of the polarity range of the mobile phase in a single run, and successfully enabled the simultaneous analysis of fat- and water-soluble vitamins with a wide logP range of -2.11 to 10.12. Furthermore, the 17 vitamins were exceptionally separated in 4min. Our results indicated that the use of dense CO2 and the replacement of CO2 by methanol are practical approaches in unified chromatography covering diverse compounds. Additionally, this is a first report to apply the novel approach to unified chromatography, and can open another door for diverse compound analysis in a single chromatographic technique with single injection, single column and single system. Copyright © 2014. Published by Elsevier B.V.

  17. Preparation of acellular scaffold for corneal tissue engineering by supercritical carbon dioxide extraction technology.

    Science.gov (United States)

    Huang, Yi-Hsun; Tseng, Fan-Wei; Chang, Wen-Hsin; Peng, I-Chen; Hsieh, Dar-Jen; Wu, Shu-Wei; Yeh, Ming-Long

    2017-08-01

    In this study, we developed a novel method using supercritical carbon dioxide (SCCO 2 ) to prepare acellular porcine cornea (APC). Under gentle extraction conditions using SCCO 2 technology, hematoxylin and eosin staining showed that cells were completely lysed, and cell debris, including nuclei, was efficiently removed from the porcine cornea. The SCCO 2 -treated corneas exhibited intact stromal structures and appropriate mechanical properties. Moreover, no immunological reactions and neovascularization were observed after lamellar keratoplasty in rabbits. All transplanted grafts and animals survived without complications. The transplanted APCs were opaque after the operation but became transparent within 2weeks. Complete re-epithelialization of the transplanted APCs was observed within 4weeks. In conclusion, APCs produced by SCCO 2 extraction technology could be an ideal and useful scaffold for corneal tissue engineering. We decellularized the porcine cornea using SCCO 2 extraction technology and investigated the characteristics, mechanical properties, and biocompatibility of the decellularized porcine cornea by lamellar keratoplasty in rabbits. To the best of our knowledge, this is the first report describing the use of SCCO 2 extraction technology for preparation of acellular corneal scaffold. We proved that the cellular components of porcine corneas had been efficiently removed, and the biomechanical properties of the scaffold were well preserved by SCCO 2 extraction technology. SCCO 2 -treated corneas maintained optical transparency and exhibited appropriate strength to withstand surgical procedures. In vivo, the transplanted corneas showed no evidence of immunological reactions and exhibited good biocompatibility and long-term stability. Our results suggested that the APCs developed by SCCO 2 extraction technology could be an ideal and useful scaffold for corneal replacement and corneal tissue engineering. Copyright © 2017 Acta Materialia Inc. Published by

  18. Development of Nordic Standard for analysis of oil and fat in water based on supercritical fluid extraction. Preliminary study, part 2

    International Nuclear Information System (INIS)

    Jenssen, L.

    1994-06-01

    This report describes a preliminary study of a method of determining oil in water. The method is based on solid phase extraction and supercritical fluid extraction (SPE-SFE). The oil is extracted from the water by absorption to extraction disks from which it is then desorbed by supercritical carbon dioxide and detected by means of infrared spectrophotometry or gas chromatography. The results of the study will indicate if the method is suitable as a future substitute for the present Norwegian Standard, NS 9803 (Swedish Standard, SS 02 8145). The method has been validated using water samples with addition of real oil to 1-100 ppm. The accuracy is almost 70%, and the method has good repeatability and is linear in the 1-100 ppm range. 5 refs., 6 figs., 10 tabs

  19. Functionalization of silicon oxide using supercritical fluid deposition of 3,4-epoxybutyltrimethoxysilane for the immobilization of amino-modified oligonucleotide

    Energy Technology Data Exchange (ETDEWEB)

    Rull, Jordi [Université Grenoble Alpes, Grenoble F38000 (France); CEA, LETI, MINATEC Campus, Grenoble Cedex 9 F38054 (France); CEA, iRTSV, LCBM, Grenoble 38054 (France); CNRS, UMR 5249, Grenoble (France); Nonglaton, Guillaume, E-mail: guillaume.nonglaton@cea.fr [Université Grenoble Alpes, Grenoble F38000 (France); CEA, LETI, MINATEC Campus, Grenoble Cedex 9 F38054 (France); Costa, Guillaume; Fontelaye, Caroline [Université Grenoble Alpes, Grenoble F38000 (France); CEA, LETI, MINATEC Campus, Grenoble Cedex 9 F38054 (France); Marchi-Delapierre, Caroline; Ménage, Stéphane [Université Grenoble Alpes, Grenoble F38000 (France); CEA, iRTSV, LCBM, Grenoble 38054 (France); CNRS, UMR 5249, Grenoble (France); Marchand, Gilles [Université Grenoble Alpes, Grenoble F38000 (France); CEA, LETI, MINATEC Campus, Grenoble Cedex 9 F38054 (France)

    2015-11-01

    Graphical abstract: - Highlights: • First example of grafting of 3,4-epoxybutyltrimethoxysilane (EBTMOS) onto silicon oxide by supercritical fluid deposition. • Extraordinary efficiency of the supercritical fluid deposition for the grafting of the EBTMOS compared with the conventional solution or vapor phase methodologies. • Demonstration of the efficiency of this functionalization process for the immobilization of amino-modified oligonucleotides. - Abstract: The functionalization of silicon oxide based substrates using silanes is generally performed through liquid phase methodologies. These processes involve a huge quantity of potentially toxic solvents and present some important disadvantages for the functionalization of microdevices or porous materials, for example the low diffusion. To overcome this drawback, solvent-free methodologies like molecular vapor deposition (MVD) or supercritical fluid deposition (SFD) have been developed. In this paper, the deposition process of 3,4-epoxybutyltrimethoxysilane (EBTMOS) on silicon oxide using supercritical carbon dioxide (scCO{sub 2}) as a solvent is studied for the first time. The oxirane ring of epoxy silanes readily reacts with amine group and is of particular interest for the grafting of amino-modified oligonucleotides or antibodies for diagnostic application. Then the ability of this specific EBTMOS layer to react with amine functions has been evaluated using the immobilization of amino-modified oligonucleotide probes. The presence of the probes is revealed by fluorescence using hybridization with a fluorescent target oligonucleotide. The performances of SFD of EBTMOS have been optimized and then compared with the dip coating and molecular vapor deposition methods, evidencing a better grafting efficiency and homogeneity, a lower reaction time in addition to the eco-friendly properties of the supercritical carbon dioxide. The epoxysilane layers have been characterized by surface enhanced ellipsometric

  20. The influence of different diffusion pattern to the sub- and super-critical fluid flow in brown coal

    Science.gov (United States)

    Peng, Peihuo

    2018-03-01

    Sub- and super-critical CO2 flowing in nanoscale pores are recently becoming of great interest due to that it is closely related to many engineering applications, such as geological burial and sequestration of carbon dioxide, Enhanced Coal Bed Methane recovery ( ECBM), super-critical CO2 fracturing and so on. Gas flow in nanopores cannot be described simply by the Darcy equation. Different diffusion pattern such as Fick diffusion, Knudsen diffusion, transitional diffusion and slip flow at the solid matrix separate the seepage behaviour from Darcy-type flow. According to the principle of different diffusion pattern, the flow of sub- and super-critical CO2 in brown coal was simulated by numerical method, and the results were compared with the experimental results to explore the contribution of different diffusion pattern and swelling effect in sub- and super-critical CO2 flow in nanoscale pores.

  1. Selective extraction of hydrocarbons, phosphonates and phosphonic acids from soils by successive supercritical fluid and pressurized liquid extractions.

    Science.gov (United States)

    Chaudot, X; Tambuté, A; Caude, M

    2000-01-14

    Hydrocarbons, dialkyl alkylphosphonates and alkyl alkylphosphonic acids are selectively extracted from spiked soils by successive implementation of supercritical carbon dioxide, supercritical methanol-modified carbon dioxide and pressurized water. More than 95% of hydrocarbons are extracted during the first step (pure supercritical carbon dioxide extraction) whereas no organophosphorus compound is evidenced in this first extract. A quantitative extraction of phosphonates is achieved during the second step (methanol-modified supercritical carbon dioxide extraction). Polar phosphonic acids are extracted during a third step (pressurized water extraction) and analyzed by gas chromatography under methylated derivatives (diazomethane derivatization). Global recoveries for these compounds are close to 80%, a loss of about 20% occurring during the derivatization process (co-evaporation with solvent). The developed selective extraction method was successfully applied to a soil sample during an international collaborative exercise.

  2. Lipidomic analysis of biological samples: Comparison of liquid chromatography, supercritical fluid chromatography and direct infusion mass spectrometry methods.

    Science.gov (United States)

    Lísa, Miroslav; Cífková, Eva; Khalikova, Maria; Ovčačíková, Magdaléna; Holčapek, Michal

    2017-11-24

    Lipidomic analysis of biological samples in a clinical research represents challenging task for analytical methods given by the large number of samples and their extreme complexity. In this work, we compare direct infusion (DI) and chromatography - mass spectrometry (MS) lipidomic approaches represented by three analytical methods in terms of comprehensiveness, sample throughput, and validation results for the lipidomic analysis of biological samples represented by tumor tissue, surrounding normal tissue, plasma, and erythrocytes of kidney cancer patients. Methods are compared in one laboratory using the identical analytical protocol to ensure comparable conditions. Ultrahigh-performance liquid chromatography/MS (UHPLC/MS) method in hydrophilic interaction liquid chromatography mode and DI-MS method are used for this comparison as the most widely used methods for the lipidomic analysis together with ultrahigh-performance supercritical fluid chromatography/MS (UHPSFC/MS) method showing promising results in metabolomics analyses. The nontargeted analysis of pooled samples is performed using all tested methods and 610 lipid species within 23 lipid classes are identified. DI method provides the most comprehensive results due to identification of some polar lipid classes, which are not identified by UHPLC and UHPSFC methods. On the other hand, UHPSFC method provides an excellent sensitivity for less polar lipid classes and the highest sample throughput within 10min method time. The sample consumption of DI method is 125 times higher than for other methods, while only 40μL of organic solvent is used for one sample analysis compared to 3.5mL and 4.9mL in case of UHPLC and UHPSFC methods, respectively. Methods are validated for the quantitative lipidomic analysis of plasma samples with one internal standard for each lipid class. Results show applicability of all tested methods for the lipidomic analysis of biological samples depending on the analysis requirements

  3. Instrument for Solvent Extraction and Analysis (ISEE) of Organics from Regolith Simulant Using Supercritical Fluid Extraction and Chromatography

    Science.gov (United States)

    Franco, Carolina; Hintze, Paul E.

    2017-01-01

    ISEE is an instrument with the potential to perform extractions from regolith found on the surface of asteroids and planets, followed by characterization and quantitation of the extracts using supercritical fluid extraction (SFE) and chromatography (SFC). SFE is a developed technique proven to extract a wide range of organic compounds. SFC is similar to High Performance Liquid Chromatography (HPLC) but has the advantage of performing chiral separations without needing to derivatize the chiral compounds. CO2 will be the solvent for both stages as it is readily available in the Mars atmosphere. ISEE will capture CO2 from the environment, and use it for SFE and SFC. If successful, this would allow ISEE to perform analysis of organic compounds without using consumables. This paper will present results on a preliminary, proof-of-principle effort to use SFE and SFC to extract and analyze lunar regolith simulant spiked with organic compounds representing a range of organics that ISEE would expect to characterize. An optimization of variables for the extraction of the organics from the spiked regolith was successfully developed, using 138 bar pressure and 40 C temperature. The extraction flow rate was optimized at 2% SLPM with 30% methanol modifier. The extractions were successful with a value of 77.3+/- 0.9% of organics extracted. However, the recovery of organics after the extraction was very low with only 48.5+/-14.2%. Moreover, three columns were selected to analyze multiple samples at a time; two of them are Viridis HSS C18 SB and Torus DIOL, and the third column, specific for chiral separations, has not yet been selected yet.

  4. The differences in matrix effect between supercritical fluid chromatography and reversed phase liquid chromatography coupled to ESI/MS.

    Science.gov (United States)

    Svan, Alfred; Hedeland, Mikael; Arvidsson, Torbjörn; Pettersson, Curt E

    2018-02-13

    For many sample matrices, matrix effects are a troublesome phenomenon using the electrospray ionization source. The increasing use of supercritical fluid chromatography with CO 2 in combination with the electrospray ionization source for MS detection is therefore raising questions: is the matrix effect behaving differently using SFC in comparison with reversed phase LC? This was investigated using urine, plasma, influent- and effluent-wastewater as sample matrices. The matrix effect was evaluated using the post-extraction addition method and through post-column infusions. Matrix effect profiles generated from the post-column infusions in combination with time of flight-MS detection provided the most valuable information for the study. The combination of both qualitative and semi-quantitative information with the ability to use HRMS-data for identifying interfering compounds from the same experiment was very useful, and has to the authors' knowledge not been used this way before. The results showed that both LC and SFC are affected by matrix effects, however differently depending on sample matrix. Generally, both suppressions and enhancements were seen, with a higher amount of enhancements for LC, where 65% of all compounds and all sample matrices were enhanced, compared to only 7% for SFC. Several interferences were tentatively identified, with phospholipids, creatinine, and metal ion clusters as examples of important interferences, with different impact depending on chromatographic technique. SFC needs a different strategy for limiting matrix interferences, owing to its almost reverse retention order compared to RPLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Ammonia as a preferred additive in chiral and achiral applications of supercritical fluid chromatography for small, drug-like molecules.

    Science.gov (United States)

    Ventura, Manuel; Murphy, Brent; Goetzinger, Wolfgang

    2012-01-13

    Supercritical fluid chromatography is routinely utilized by analytical separations groups in the pharmaceutical industry to efficiently handle separations for discovery medicinal chemistry purposes. Purifications are performed on samples ranging from a few milligrams up to hundreds of grams. Basic additives dissolved into the liquid component of the SFC mobile phase are commonly used to improve peak shape and efficiency in achiral and chiral separations. While for purposes of analysis there is minimal consequence to additive introduction in the mobile phase, for preparative separations one needs to consider the potential effect of an additive's presence when concentrated with the desired compound. Following an SFC purification using an additive-containing modifier, the resulting fractions will contain an easily evaporated modifier, and after its evaporation perhaps still significant levels of the less volatile additive. Depending on the aqueous solubility and basicity of the final product, the process of removing basic amine additives can be time-consuming and can result in reduced yields. NMR analysis following preparative isolation and evaporation often reveals the fact of insufficient removal of the chromatographic additive even after aqueous work up steps. In this study, ammonia is evaluated as an alternative additive to strong bases such as diethylamine (DEA) in SFC purification and analysis and to the authors' knowledge no previous publication has been written describing the application of methanolic ammonia as an additive for SFC separations. Dimethylethylamine (DMEA), a more volatile additive than DEA, is also evaluated relative to ammonia for its potential to simplify the isolation process after purification and in terms of chromatographic performance. The loss in concentration of ammonia in methanol modifier over time due to evaporation and effects of that loss are also described. Furthermore, for ammonia the analytical benefit is shown to extend to on

  6. Evaluation of innovative stationary phase ligand chemistries and analytical conditions for the analysis of basic drugs by supercritical fluid chromatography.

    Science.gov (United States)

    Desfontaine, Vincent; Veuthey, Jean-Luc; Guillarme, Davy

    2016-03-18

    Similar to reversed phase liquid chromatography, basic compounds can be highly challenging to analyze by supercritical fluid chromatography (SFC), as they tend to exhibit poor peak shape, especially those with high pKa values. In this study, three new stationary phase ligand chemistries available in sub -2 μm particle sizes, namely 2-picolylamine (2-PIC), 1-aminoanthracene (1-AA) and diethylamine (DEA), were tested in SFC conditions for the analysis of basic drugs. Due to the basic properties of these ligands, it is expected that the repulsive forces may improve peak shape of basic substances, similarly to the widely used 2-ethypyridine (2-EP) phase. However, among the 38 tested basic drugs, less of 10% displayed Gaussian peaks (asymmetry between 0.8 and 1.4) using pure CO2/methanol on these phases. The addition of 10mM ammonium formate as mobile phase additive, drastically improved peak shapes and increased this proportion to 67% on 2-PIC. Introducing the additive in the injection solvent rather than in the organic modifier, gave acceptable results for 2-PIC only, with 31% of Gaussian peaks with an average asymmetry of 1.89 for the 38 selected basic drugs. These columns were also compared to hybrid silica (BEH), DIOL and 2-EP stationary phases, commonly employed in SFC. These phases commonly exhibit alternative retention and selectivity. In the end, the two most interesting ligands used as complementary columns were 2-PIC and BEH, as they provided suitable peak shapes for the basic drugs and almost orthogonal selectivities. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Kinetic performance of a 50mm long 1.8μm chiral column in supercritical fluid chromatography.

    Science.gov (United States)

    Berger, Terry A

    2016-08-12

    Reduced plate heights (hr) of supercritical fluid chromatography (SFC). The enantiomers of trans-stilbene oxide, were separated on a 4.6×50mm, 1.8μm R,R-Whelk-O1 column, with hr as low as 1.93. The plumbing of a commercial SFC instrument was modified to create a low dispersion version. Without the modification performance was considerably worse. vanDeemter like plots of reduced plate height vs. flow rate, for trans-stilbene oxide, indicate that the optimum flow varied with% modifier. On a 4.6×250mm, 5μm R,R- Whelk-O1 column, the optimum flow was >4mL/min for 5% methanol in CO2, decreasing to 5mL/min with 2.5%, 5%, and 10% methanol, decreasing to between 3 and 3.5mL/min at 40% methanol. This is the first time such shifts have been characterized. Since the solutes were the same in all cases, the differences are likely due to changes in solute diffusion coefficients caused by changes in modifier concentration, and pressure. Pump pressure requirements sometimes exceeded 500bar. It is shown that a 5mL/min flow rate is inadequate for use with 1.8μm particles in a 4.6mm ID column format. Instead, it is suggested to decrease the ID of the column to 3mm, where the optimum flow rates are on the order of 2mL/min with decreased tubing variance. Nevertheless, a number of sub-1min chromatograms are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Supercritical fluid chromatography for separation and preparation of tautomeric 7-epimeric spiro oxindole alkaloids from Uncaria macrophylla.

    Science.gov (United States)

    Yang, Wenzhi; Zhang, Yibei; Pan, Huiqin; Yao, Changliang; Hou, Jinjun; Yao, Shuai; Cai, Luying; Feng, Ruihong; Wu, Wanying; Guo, Dean

    2017-02-05

    Increasing challenge arising from configurational interconversion in aqueous solvent renders it rather difficult to isolate high-purity tautomeric reference standards and thus largely hinders the holistic quality control of traditional Chinese medicine (TCM). Spiro oxindole alkaloids (SOAs), as the markers for the medicinal Uncaria herbs, can easily isomerize in polar or aqueous solvent via a retro-Mannich reaction. In the present study, supercritical fluid chromatography (SFC) is utilized to separate and isolate two pairs of 7-epimeric SOAs, including rhynchophylline (R) and isorhynchophylline (IR), corynoxine (C) and corynoxine B (CB), from Uncaria macrophylla. Initially, the solvent that can stabilize SOA epimers was systematically screened, and acetonitrile was used to dissolve and as the modifier in SFC. Then, key parameters of ultra-high performance SFC (ultra-performance convergence chromatography, UPC 2 ), comprising stationary phase, additive in modifier, column temperature, ABPR pressure, and flow rate, were optimized in sequence. Two isocratic UPC 2 methods were developed on the achiral Torus 1-AA and Torus Diol columns, suitable for UV and MS detection, respectively. MCI gel column chromatography fractionated the U. macrophylla extract into two mixtures (R/IR and C/CB). Preparative SFC, using a Viridis Prep Silica 2-EP OBD column and acetonitrile-0.2% diethylamine in CO 2 as the mobile phase, was finally employed for compound purification. As a result, the purity of four SOA compounds was all higher than 95%. Different from reversed-phase HPLC, SFC, by use of water-free mobile phase (inert CO 2 and aprotic modifier), provides a solution to rapid analysis and isolation of tautomeric reference standards for quality control of TCM. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Speed-resolution advantage of turbulent supercritical fluid chromatography in open tubular columns: II - Theoretical and experimental evidences.

    Science.gov (United States)

    Gritti, Fabrice; Fogwill, Michael

    2017-06-09

    The potential advantage of turbulent supercritical fluid chromatography (TSFC) in open tubular columns (OTC) was evaluated on both theoretical and practical viewpoints. First, the dispersion model derived by Golay in 1958 and recently extended from laminar to turbulent flow regime is used for the predictions of the speed-resolution performance in TSFC. The average dispersion coefficient of matter in the turbulent flow regime was taken from the available experimental data over a range of Reynolds number from 2000 to 6000. Kinetic plots are built at constant pressure drop (ΔP=4500psi) and Schmidt number (Sc=15) for four inner diameters (10, 30, 100, and 300μm) of the OTC and for three retention factors (0, 1, and 10). Accordingly, in turbulent flow regime, for a Reynolds number of 4000 and a retention factor of 1 (the stationary film thickness is assumed to be negligible with respect to the OTC diameter), the theory projects that a 300μm i.d. OTC has the same speed-resolution power (200,000 theoretical plates; 2.4min hold-up time) as that of a 10μm i.d. OTC operated in laminar flow regime. Secondly, the experimental plate heights of n-butylbenzene are measured in laminar and turbulent flow regimes for a 180μm×4.8m fused silica capillary column using pure carbon dioxide as the mobile phase. The back pressure regulator was set at 1500psi, the temperature was uniform at 297K, and the flow rate was increased step-wise from 0.50 to 3.60mL/min so that the experimental Reynolds number increases from 700 to 5400. The experiments are in good agreement with the plate heights projected in TSFC at high flow rates and with those expected at low flow rates in a laminar flow regime. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Development of a split-flow system for high precision variable sample introduction in supercritical fluid chromatography.

    Science.gov (United States)

    Sakai, Miho; Hayakawa, Yoshihiro; Funada, Yasuhiro; Ando, Takashi; Fukusaki, Eiichiro; Bamba, Takeshi

    2017-09-15

    In this study, we propose a novel variable sample injection system based on full-loop injection, named the split-flow sample introduction system, for application in supercritical fluid chromatography (SFC). In this system, the mobile phase is split by the differential pressure between two back pressure regulators (BPRs) after full-loop injection suitable for SFC, and this differential pressure determines the introduction rate. Nine compounds with a wide range of characteristics were introduced with high reproducibility and universality, confirming that a robust variable sample injection system was achieved. We also investigated the control factors of our proposed system. Sample introduction was controlled by the ratio between the column-side pressure drops in splitless and split flow, ΔP columnsideinsplitless and ΔP columnsideinsplit , respectively, where ΔP columnsideinsplitless is related to the mobile phase flow rate and composition and the column resistance. When all other conditions are kept constant, increasing the make-up flow induces an additional pressure drop on the column side of the system, which leads to a reduced column-side flow rate, and hence decreased the amount of sample injected, even when the net pressure drop on the column side remains the same. Thus, sample introduction could be highly controlled at low sample introduction rate, regardless of the introduction conditions. This feature is advantageous because, as a control factor, the solvent in the make-up pump is independent of the column-side pressure drop. Copyright © 2017. Published by Elsevier B.V.

  11. A Review of Enzymatic Transesterification of Microalgal Oil-Based Biodiesel Using Supercritical Technology

    Science.gov (United States)

    Taher, Hanifa; Al-Zuhair, Sulaiman; Al-Marzouqi, Ali H.; Haik, Yousef; Farid, Mohammed M.

    2011-01-01

    Biodiesel is considered a promising replacement to petroleum-derived diesel. Using oils extracted from agricultural crops competes with their use as food and cannot realistically satisfy the global demand of diesel-fuel requirements. On the other hand, microalgae, which have a much higher oil yield per hectare, compared to oil crops, appear to be a source that has the potential to completely replace fossil diesel. Microalgae oil extraction is a major step in the overall biodiesel production process. Recently, supercritical carbon dioxide (SC-CO2) has been proposed to replace conventional solvent extraction techniques because it is nontoxic, nonhazardous, chemically stable, and inexpensive. It uses environmentally acceptable solvent, which can easily be separated from the products. In addition, the use of SC-CO2 as a reaction media has also been proposed to eliminate the inhibition limitations that encounter biodiesel production reaction using immobilized enzyme as a catalyst. Furthermore, using SC-CO2 allows easy separation of the product. In this paper, conventional biodiesel production with first generation feedstock, using chemical catalysts and solvent-extraction, is compared to new technologies with an emphasis on using microalgae, immobilized lipase, and SC-CO2 as an extraction solvent and reaction media. PMID:21915372

  12. A fast and sensitive method for the separation of carotenoids using ultra-high performance supercritical fluid chromatography-mass spectrometry.

    Science.gov (United States)

    Jumaah, Firas; Plaza, Merichel; Abrahamsson, Victor; Turner, Charlotta; Sandahl, Margareta

    2016-08-01

    In this study, a rapid and sensitive ultra-high performance supercritical fluid chromatography-mass spectrometry (UHPSFC-MS) method has been developed and partially validated for the separation of carotenoids within less than 6 min. Six columns of orthogonal selectivity were examined, and the best separation was obtained by using a 1-aminoanthracene (1-AA) column. The length of polyene chain as well as the number of hydroxyl groups in the structure of the studied carotenoids determines their differences in the physiochemical properties and thus the separation that is achieved on this column. All of the investigated carotenoids were baseline separated with resolution values greater than 1.5. The effects of gradient program, back pressure, and column temperature were studied with respect to chromatographic properties such as retention and selectivity. Electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) were compared in both positive and negative mode, using both direct infusion and hyphenated with UHPSFC. The ESI in positive mode provided the highest response. The coefficient of determination (R (2)) for all calibration curves were greater than 0.998. Limit of detection (LOD) was in the range of 2.6 and 25.2 ng/mL for α-carotene and astaxanthin, respectively, whereas limit of quantification (LOQ) was in the range of 7.8 and 58.0 ng/mL for α-carotene and astaxanthin, respectively. Repeatability and intermediate precision of the developed UHPSFC-MS method were determined and found to be RSD supercritical fluid extracts of microalgae and rosehip. Graphical Abstract Ultra-high performance supercritical fluid chromatography-a rapid separation method for the analysis of carotenoids in rosehip and microalgae samples.

  13. Research Update: Nickel filling in nanofeatures using supercritical fluid and its application to fabricating a novel catalyst structure for continuous growth of nanocarbon fibers

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Watanabe

    2014-10-01

    Full Text Available A novel catalyst structure for continuous growth of nanocarbon fibers is proposed. In this structure, catalyst nanofibers are embedded in a membrane that separates the growth ambient into carbon-supplying and carbon-precipitating environments. The catalyst nanofibers pierce through the membrane so that carbon source gas is supplied only to one end of the catalyst fibers and nanocarbon fibers grow continuously at the other end. To realize this structure, self-supporting anodized alumina was used as a membrane, and its nano-through-holes were filled with catalyst Ni in supercritical CO2 fluid. Direct carbon growth from the Ni nanofibers was confirmed using this catalyst structure.

  14. Fundamental study of CO2-H2O-mineral interactions for carbon sequestration, with emphasis on the nature of the supercritical fluid-mineral interface.

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R.; Dewers, Thomas A.; Heath, Jason E.; Wang, Yifeng; Matteo, Edward N.; Meserole, Stephen P.; Tallant, David Robert

    2013-09-01

    In the supercritical CO2-water-mineral systems relevant to subsurface CO2 sequestration, interfacial processes at the supercritical fluid-mineral interface will strongly affect core- and reservoir-scale hydrologic properties. Experimental and theoretical studies have shown that water films will form on mineral surfaces in supercritical CO2, but will be thinner than those that form in vadose zone environments at any given matric potential. The theoretical model presented here allows assessment of water saturation as a function of matric potential, a critical step for evaluating relative permeabilities the CO2 sequestration environment. The experimental water adsorption studies, using Quartz Crystal Microbalance and Fourier Transform Infrared Spectroscopy methods, confirm the major conclusions of the adsorption/condensation model. Additional data provided by the FTIR study is that CO2 intercalation into clays, if it occurs, does not involve carbonate or bicarbonate formation, or significant restriction of CO2 mobility. We have shown that the water film that forms in supercritical CO2 is reactive with common rock-forming minerals, including albite, orthoclase, labradorite, and muscovite. The experimental data indicate that reactivity is a function of water film thickness; at an activity of water of 0.9, the greatest extent of reaction in scCO2 occurred in areas (step edges, surface pits) where capillary condensation thickened the water films. This suggests that dissolution/precipitation reactions may occur preferentially in small pores and pore throats, where it may have a disproportionately large effect on rock hydrologic properties. Finally, a theoretical model is presented here that describes the formation and movement of CO2 ganglia in porous media, allowing assessment of the effect of pore size and structural heterogeneity on capillary trapping efficiency. The model results also suggest possible engineering approaches for optimizing trapping capacity and for

  15. Influence of various aspects of low Reynolds number k-ε turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chen-Ru; Zhang, Zhen [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Centre, Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Jiang, Pei-Xue, E-mail: jiangpx@tsinghua.edu.cn [Beijing Key Laboratory of CO_2 Utilization and Reduction Technology/Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Bo, Han-Liang [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Centre, Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China)

    2017-03-15

    Highlights: • Understanding of the mechanism of buoyancy effect on supercritical heat transfer. • Turbulence related parameters in upward and downward flows were compared. • Turbulent Prandtl number affected the prediction insignificantly. • Buoyancy production was insignificant compared with shear production. • Damping function had the greatest effect and is a priority for further modification. - Abstract: Heat transfer to supercritical pressure fluids was modeled for normal and buoyancy affected conditions using several low Reynolds number k-ε models, including the Launder and Sharma, Myong and Kasagi, and Abe, Kondoh and Nagano, with the predictions compared with experimental data. All three turbulence models accurately predicted the cases without heat transfer deterioration, but failed to accurately predict the cases with heat transfer deterioration although the general trends were captured, indicating that further improvements and modifications are needed for the low Reynolds number k-ε turbulence models to better predict buoyancy deteriorated heat transfer. Further investigations studied the influence of various aspects of the low Reynolds number k-ε turbulence models, including the turbulent Prandtl number, the buoyancy production of turbulent kinetic energy, and the damping function to provide guidelines for model development to more precisely predict buoyancy affected heat transfer. The results show that the turbulent Prandtl number and the buoyancy production of turbulent kinetic energy have little influence on the predictions for cases in this study, while new damping functions with carefully selected control parameters are needed in the low Reynolds number k-ε turbulence models to correctly predict the buoyancy effect for heat transfer simulations in various applications such as supercritical pressure steam generators (SPSGs) in the high temperature gas cooled reactor (HTR) and the supercritical pressure water reactor (SCWR).

  16. Influence of various aspects of low Reynolds number k-ε turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids

    International Nuclear Information System (INIS)

    Zhao, Chen-Ru; Zhang, Zhen; Jiang, Pei-Xue; Bo, Han-Liang

    2017-01-01

    Highlights: • Understanding of the mechanism of buoyancy effect on supercritical heat transfer. • Turbulence related parameters in upward and downward flows were compared. • Turbulent Prandtl number affected the prediction insignificantly. • Buoyancy production was insignificant compared with shear production. • Damping function had the greatest effect and is a priority for further modification. - Abstract: Heat transfer to supercritical pressure fluids was modeled for normal and buoyancy affected conditions using several low Reynolds number k-ε models, including the Launder and Sharma, Myong and Kasagi, and Abe, Kondoh and Nagano, with the predictions compared with experimental data. All three turbulence models accurately predicted the cases without heat transfer deterioration, but failed to accurately predict the cases with heat transfer deterioration although the general trends were captured, indicating that further improvements and modifications are needed for the low Reynolds number k-ε turbulence models to better predict buoyancy deteriorated heat transfer. Further investigations studied the influence of various aspects of the low Reynolds number k-ε turbulence models, including the turbulent Prandtl number, the buoyancy production of turbulent kinetic energy, and the damping function to provide guidelines for model development to more precisely predict buoyancy affected heat transfer. The results show that the turbulent Prandtl number and the buoyancy production of turbulent kinetic energy have little influence on the predictions for cases in this study, while new damping functions with carefully selected control parameters are needed in the low Reynolds number k-ε turbulence models to correctly predict the buoyancy effect for heat transfer simulations in various applications such as supercritical pressure steam generators (SPSGs) in the high temperature gas cooled reactor (HTR) and the supercritical pressure water reactor (SCWR).

  17. Adiabatic packed column supercritical fluid chromatography using a dual-zone still-air column heater.

    Science.gov (United States)

    Helmueller, Shawn C; Poe, Donald P; Kaczmarski, Krzysztof

    2018-02-02

    An approach to conducting SFC separations under pseudo-adiabatic condition utilizing a dual-zone column heater is described. The heater allows for efficient separations at low pressures above the critical temperature by imposing a temperature profile along the column wall that closely matches that for isenthalpic expansion of the fluid inside the column. As a result, the efficiency loss associated with the formation of radial temperature gradients in this difficult region can be largely avoided in packed analytical scale columns. For elution of n-octadecylbenzene at 60 °C with 5% methanol modifier and a flow rate of 3 mL/min, a 250 × 4.6-mm column packed with 5-micron Kinetex C18 particles began to lose efficiency (8% decrease in the number of theoretical plates) at outlet pressures below 142 bar in a traditional forced air oven. The corresponding outlet pressure for onset of excess efficiency loss was decreased to 121 bar when the column was operated in a commercial HPLC column heater, and to 104 bar in the new dual-zone heater operated in adiabatic mode, with corresponding increases in the retention factor for n-octadecylbenzene from 2.9 to 6.8 and 14, respectively. This approach allows for increased retention and efficient separations of otherwise weakly retained analytes. Applications are described for rapid SFC separation of an alkylbenzene mixture using a pressure ramp, and isobaric separation of a cannabinoid mixture. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. CFD Analysis of a Centrifugal Pump with Supercritical Carbon Dioxide as a Working Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Gu; Lee, Jeong Ik; Ahn, Yoonhan; Lee, Jekyoung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Cha, Jae Eun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Addad, Yacine [Khalifa Univ. of Science Technology and Research, Abu Dhabi (United Arab Emirates)

    2013-05-15

    The research team is conducting a S-CO{sub 2} pump experiment to obtain fundamental data for the advanced pump design and measure the overall performance of the pump near the critical point. The S-CO{sub 2} pump testing loop configuration is similar to SNL and JAEA testing loop while the operating conditions and focus of experiment are different from other test facilities. This paper presents the methodology of a 3-dimensional flow analysis for the S-CO{sub 2} pump by using the commercial CFD code. In Figure 2, the results at the 1.5kg/s mass flow rate seems to be close agreement between the CFD efficiency and S-CO{sub 2} test results. In the low mass flow rate of 1.0kg/s, CFD predicted 17∼25% higher efficiency than the test result. In the real test facility, the steel structure of pump is not an adiabatic wall and also the mechanical losses such as suction, blade loading and leakage exist in the pump. The reason why CFD analysis showed higher pump efficiency at the low mass flow is the above mentioned losses were excluded from the model. However, as the mass flow rate increases these have less effect on the efficiency. If the heat transfer through the structure and pump losses are applied in the analysis, other losses can be estimated. From the S-CO{sub 2} pump experiment, more data will be obtained and compared to the CFD analyses under the methodology presented in this paper. After the fluid behavior in the pump are well understood, these analysis results will be used for optimizing impeller for advanced S-CO{sub 2} compressor design in the future. However, it is very encouraging that even at very small mass flow rate the efficiency of S-CO{sub 2} pump near the critical point operation is very high compared to the manufacturer water test. The reason behind such phenomenon will be more carefully studied in the future.

  19. What are the current solutions for interfacing supercritical fluid chromatography and mass spectrometry?

    Science.gov (United States)

    Guillarme, Davy; Desfontaine, Vincent; Heinisch, Sabine; Veuthey, Jean-Luc

    2018-04-15

    Mass spectrometry (MS) is considered today as one of the most popular detection methods, due to its high selectivity and sensitivity. In particular, this detector has become the gold standard for the analysis of complex mixtures such as biological samples. The first successful SFC-MS hyphenation was reported in the 80's, and since then, several ionization sources, mass analyzers and interfacing technologies have been combined. Due to the specific physicochemical properties and compressibility of the SFC mobile phase, directing the column effluent into the ionization source is more challenging than in LC. Therefore, some specific interfaces have to be employed in SFC-MS, to i) avoid (or at least limit) analytes precipitation due to CO 2 decompression, when the SFC mobile phase is not anymore under backpressure control, ii) achieve adequate ionization yield, even with a low proportion of MeOH in the mobile phase and iii) preserve the chromatographic integrity (i.e. maintaining retention, selectivity, and efficiency). The goal of this review is to describe the various SFC-MS interfaces and highlight the most favorable ones in terms of reliability, flexibility, sensitivity and user-friendliness. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Ultra-high performance supercritical fluid chromatography-mass spectrometry procedure for analysis of monosaccharides from plant gum binders.

    Science.gov (United States)

    Pauk, Volodymyr; Pluháček, Tomáš; Havlíček, Vladimír; Lemr, Karel

    2017-10-09

    The ultra-high performance supercritical fluid chromatography-mass spectrometry (UHPSFC/MS) procedure for analysis of native monosaccharides was developed. Chromatographic conditions were investigated to separate a mixture of four hexoses, three pentoses, two deoxyhexoses and two uronic acids. Increasing water content in methanol modifier to 5% and formic acid to 4% improved peak shapes of neutral monosaccharides and allowed complete elution of highly polar uronic acids in a single run. An Acquity HSS C18SB column outperformed other three tested stationary phases (BEH (silica), BEH 2-ethylpyridine, CSH Fluoro-Phenyl) in terms of separation of isomers and analysis time (4.5 min). Limits of detection were in the range 0.01-0.12 ng μL -1 . Owing to separation of anomers, identification of critical pairs (arabinose-xylose and glucose-galactose) was possible. Feasibility of the new method was demonstrated on plant-derived polysaccharide binders. Samples of watercolor paints, painted paper and three plant gums widely encountered in painting media (Arabic, cherry and tragacanth) were decomposed prior the analysis by microwave-assisted hydrolysis at 40 bar initial pressure using 2 mol L -1 trifluoroacetic acid. Among tested temperatures, 120 °C ensured appropriate hydrolysis efficiency for different types of gum and avoided excessive degradation of labile monosaccharides. Procedure recovery tested on gum Arabic was 101% with an RSD below 8%. Aqueous hydrolysates containing monosaccharides in different ratios specific to each type of plant gum were diluted or analyzed directly. Filtration of samples before hydrolysis reduced interferences from a paper support and identification of gum Arabic in watercolor-painted paper samples was demonstrated. Successful identification of pure gum Arabic was confirmed for sample quantities as little as 1 μg. Two classification approaches were compared and principal component analysis was superior to analysis based on peak area

  1. A new method based on supercritical fluid extraction for polyacetylenes and polyenes from Echinacea pallida (Nutt.) Nutt. roots.

    Science.gov (United States)

    Tacchini, Massimo; Spagnoletti, Antonella; Brighenti, Virginia; Prencipe, Francesco Pio; Benvenuti, Stefania; Sacchetti, Gianni; Pellati, Federica

    2017-11-30

    The genus Echinacea (Asteraceae) includes species traditionally used in phytotherapy. Among them, Echinacea pallida (Nutt.) Nutt. root extracts are characterized by a representative antiproliferative activity, due to the presence of acetylenic compounds. In this study, supercritical fluid extraction (SFE) was applied and compared with conventional Soxhlet extraction (SE) in order to obtain a bioactive extract highly rich in polyacetylenes and polyenes from E. pallida roots. The composition of the extracts was monitored by means of HPLC-UV/DAD and HPLC-ESI-MS n by using an Ascentis Express C 18 column (150mm×3.0mm I.D., 2.7μm, Supelco, Bellefonte, PA, USA) with a mobile phase composed of (A) water and (B) acetonitrile, under gradient elution. By keeping SFE time at the threshold of 1h (15min static and 45min dynamic for 1 cycle) with the oven temperature set at 40-45°C and 90bar of pressure, an overall extraction yield of 1.18-1.21% (w/w) was obtained, with a high selectivity for not oxidized lipophilic compounds. The biological activity of the extracts was evaluated against human non-small lung A549 and breast carcinoma MCF-7 cancer cell lines. The cytotoxic effect of the SFE extract was more pronounced towards the MCF-7 than the A549 cancer cells, with IC 50 values ranging from 21.01±2.89 to 31.11±2.l4μg/mL; cell viability was affected mainly between 24 and 48h of exposure. The results show the possibility of a new "green" approach to obtain extracts highly rich in genuine polyacetylenes and polyenes from E. pallida roots. The bioactivity evaluation confirmed the cytotoxicity of E. pallida extracts against the considered cancer cell lines, especially against MCF-7 cells, thus suggesting to represent a valuable tool for applicative purposes in cancer prevention. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Comparison of the Apoptotic Effects of Supercritical Fluid Extracts of Antrodia cinnamomea Mycelia on Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Hsiu-Man Lien

    2014-06-01

    Full Text Available Antrodia cinnamomea (AC has been widely used as a folk medicine in the prevention and treatment of liver diseases, such as hepatitis, hepatic fibrosis, and hepatocellular carcinoma. Previous studies have indicated that triterpenoids and benzenoids show selective cytotoxicity against human hepatoma cell lines. The aim of the study was to compare the triterpenoid content of extract and the extract-induced cytotoxicity in HepG2 cells from mycelia extracts of solid state cultured AC obtained by supercritical fluid extraction (SFE and the conventional solvent extraction method. SFE with CO2 mixed with a constant amount of ethanol co-solvent (10% of CO2 volume applied at different temperatures and pressures (40, 60 and 80 °C and, 20.7, 27.6 and 34.5 Mpa was also compared in the study. Although the extraction yield of triterpenoids (59.7 mg/g under the optimal extraction conditions of 34.5 MPa (5000 psi/60 °C (designated as sample S-5000-60 was equivalent to the extraction yield using conventional liquid solvent extraction with ethanol (ETOH-E at room temperature (60.33 mg/g, the cytotoxicity of the former against the proliferation of HepG2 cell line measured as the inhibition of 50% of cell growth activity (IC50 at dosages of 116.15, 57.82 and 43.96 µg/mL was superior to that of EtOH-E at 131.09, 80.04 and 48.30 µg/mL at 24, 48 and 72 h, respectively. Additionally, we further proved that the apoptotic effect of S-5000-60 presented a higher apoptosis ratio (21.5% than ETOH-E (10.5% according to annexin V-FITC and propidium iodide double staining assay results. The high affinity and selectivity of SFE on bioactive components resulted in a higher extraction efficiency than conventional solvent extraction. The chemical profile of the obtained extracts from solid state cultivated mycelium of AC was also determined by high-performance liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS/MS, whereby three benzenoids and four

  3. Unravelling the effects of mobile phase additives in supercritical fluid chromatography. Part I: Polarity and acidity of the mobile phase.

    Science.gov (United States)

    West, Caroline; Melin, Jodie; Ansouri, Hassna; Mengue Metogo, Maïly

    2017-04-07

    The mobile phases employed in current supercritical fluid chromatography (SFC) are usually composed of a mixture of pressurized carbon dioxide and a co-solvent. The co-solvent is most often an alcohol and may contain a third component in small proportions, called an additive (acid, base or salt). The polarity of such mobile phase compositions is here re-evaluated with a solvatochromic dye (Nile Red), particularly to assess the contribution of additives. It appears that additives, when employed in usual concentration range (0.1% or 20mM) do not modify the polarity in the immediate environment of the probe. In addition, the combination of carbon dioxide and an alcohol is known to form alkoxylcarbonic acid, supposedly conferring some acidic character to SFC mobile phases. Direct measurements of the apparent pH are impossible, but colour indicators of pH can be used to define the range of apparent pH provided by carbon dioxide-alcohol mixtures, with or without additives. Five colour indicators (Thymol Blue, Bromocresol Green, Methyl Red, Bromocresol Purple, and Bromothymol Blue) were selected to provide a wide range of aqueous pK a values (from 1.7 to 8.9). UV-vis absorption spectra measured in liquid phases of controlled pH were compared to those measured with a diode-array detector employed in SFC, with the help of chemometric methods. Based on these observations, it is concluded that the apparent pH range in carbon dioxide-methanol mobile phases is close to 5. Increasing the proportion of methanol (in the course of a gradient elution for instance) causes decreasing apparent pH. Strong acids can further decrease the apparent pH below 1.7; strong bases have little influence on the apparent pH, probably because, in this range of concentrations, they are titrated by alkoxylcarbonic acid or form ion pairs with alkoxycarbonate. However, bases and salts could stabilize the acidity in the course of gradient runs. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Measurement of polychlorinated biphenyls in solid waste such as transformer insulation paper by supercritical fluid extraction and gas chromatography electron capture detection.

    Science.gov (United States)

    Chikushi, Hiroaki; Fujii, Yuka; Toda, Kei

    2012-09-21

    In this work, a method for measuring polychlorinated biphenyls (PCBs) in contaminated solid waste was investigated. This waste includes paper that is used in electric transformers to insulate electric components. The PCBs in paper sample were extracted by supercritical fluid extraction and analyzed by gas chromatography-electron capture detection. The recoveries with this method (84-101%) were much higher than those with conventional water extraction (0.08-14%), and were comparable to those with conventional organic solvent extraction. Limit of detection was 0.0074 mg kg(-1) and measurable up to 2.5 mg kg(-1) for 0.5 g of paper sample. Data for real insulation paper by the proposed method agreed well with those by the conventional organic solvent extraction. Extraction from wood and concrete was also investigated and good performance was obtained as well as for paper samples. The supercritical fluid extraction is simpler, faster, and greener than conventional organic solvent extraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Purification of lignans from Fructus Arctii using off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography.

    Science.gov (United States)

    Yang, Bichao; Xin, Huaxia; Wang, Feier; Cai, Jianfeng; Liu, Yanfang; Fu, Qing; Jin, Yu; Liang, Xinmiao

    2017-08-01

    As a common traditional Chinese medicine, Fructus Arctii has important clinical medical values. Its main components are lignans, which are difficult to separate and analyze because of the complex composition, similar chemical structures, and close properties. In this study, an off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography method, as well as an effective sample pretreatment method based on hydrophilic interaction chromatography material, was developed to enrich the minor lignan fractions and obtain high-purity compounds. In total, 12 high-purity compounds were isolated from Fructus Arctii. Their structures were identified by using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy, which showed that all were lignans and that most of them were isomers. The results demonstrated the effective off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography method for the purification of lignans from Fructus Arctii. The separation protocol established here will be beneficial for the separation of complex samples from other kinds of natural products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Development of an analytical method for polycyclic aromatic hydrocarbons in coffee beverages and dark beer using novel high-sensitivity technique of supercritical fluid chromatography/mass spectrometry.

    Science.gov (United States)

    Yoshioka, Toshiaki; Nagatomi, Yasushi; Harayama, Koichi; Bamba, Takeshi

    2018-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic substances that are mainly generated during heating in food; therefore, the European Union (EU) has regulated the amount of benzo[a]pyrene and PAH4 in various types of food. In addition, the Scientific Committee on Food of the EU and the Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives have recommended that 16 PAHs should be monitored. Since coffee beverages and dark beer are roasted during manufacture, monitoring these 16 PAHs is of great importance. On the other hand, supercritical fluid chromatography (SFC) is a separation method that has garnered attention in recent years as a complement for liquid and gas chromatography. Therefore, we developed a rapid high-sensitivity analytical method for the above-mentioned 16 PAHs in coffee beverages and dark beer involving supercritical fluid chromatography/atmospheric pressure chemical ionization-mass spectrometry (SFC/APCI-MS) and simple sample preparation. In this study, we developed a novel analytical technique that increased the sensitivity of MS detection by varying the back-pressure in SFC depending on the elution of PAHs. In addition, analysis of commercially available coffee and dark beer samples in Japan showed that the risk of containing the 16 PAHs may be low. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Consequences of transition from liquid chromatography to supercritical fluid chromatography on the overall performance of a chiral zwitterionic ion-exchanger.

    Science.gov (United States)

    Wolrab, Denise; Frühauf, Peter; Gerner, Christopher; Kohout, Michal; Lindner, Wolfgang

    2017-09-29

    Major differences in the chromatographic performance of a zwitterion ion-exchange type (ZWIX) chiral stationary phase (CSP) in supercritical fluid chromatography (SFC) and high-performance liquid chromatography (HPLC) have been observed. To explain these differences, transition from HPLC to SFC conditions has been performed. The amount of a protic organic modifier in supercritical carbon dioxide (scCO 2 ) was stepwise increased and the effect of this change studied using acidic, basic and ampholytic analytes. At the same time, the effect of various basic additives to the mobile phase and transient acidic buffer species, formed by the reaction of scCO 2 with the organic modifier and additives, was assessed. Evidence is provided that a transient acid together with the intrinsic counter-ions present in the ZWIX selector structure drive the elution of analytes even when no buffer is employed. We show that the tested analytes can be enantioseparated under both SFC and HPLC conditions; the best conditions for the resolution of ampholytes are in the so-called enhanced-fluidity mobile phase region. As a consequence, subcritical fluid and enhanced-fluidity mobile phase regions seem to be chromatographic modes with a high potential for operating ZWIX CSPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Modeling of the Kinetics of Supercritical Fluid Extraction of Lipids from Microalgae with Emphasis on Extract Desorption.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena; Nobre, B.P.; Palavra, A.

    2016-01-01

    Roč. 9, č. 6 (2016), s. 423-441 ISSN 1996-1944 Grant - others:FCT(PT) UID/QUI/00100/2013; FCT(PT) SFRH/BPD/100283/2014 Institutional support: RVO:67985858 Keywords : microalgae * supercritical extraction * kinetics Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.654, year: 2016

  9. Thermal stability of biodiesel in supercritical methanol

    Energy Technology Data Exchange (ETDEWEB)

    Hiroaki Imahara; Eiji Minami; Shusaku Hari; Shiro Saka [Kyoto University, Kyoto (Japan). Department of Socio-Environmental Energy Science

    2008-01-15

    Non-catalytic biodiesel production technologies from oils/fats in plants and animals have been developed in our laboratory employing supercritical methanol. Due to conditions in high temperature and high pressure of the supercritical fluid, thermal stability of fatty acid methyl esters and actual biodiesel prepared from various plant oils was studied in supercritical methanol over a range of its condition between 270{sup o}C/17 MPa and 380{sup o}C/56 MPa. In addition, the effect of thermal degradation on cold flow properties was studied. As a result, it was found that all fatty acid methyl esters including poly-unsaturated ones were stable at 270{sup o}C/17 MPa, but at 350{sup o}C/43 MPa, they were partly decomposed to reduce the yield with isomerization from cis-type to trans-type. These behaviors were also observed for actual biodiesel prepared from linseed oil, safflower oil, which are high in poly-unsaturated fatty acids. Cold flow properties of actual biodiesel, however, remained almost unchanged after supercritical methanol exposure at 270{sup o}C/17 MPa and 350{sup o}C/43 MPa. For the latter condition, however, poly-unsaturated fatty acids were sacrificed to be decomposed and reduced in yield. From these results, it was clarified that reaction temperature in supercritical methanol process should be lower than 300{sup o}C, preferably 270{sup o}C with a supercritical pressure higher than 8.09 MPa, in terms of thermal stabilization for high-quality biodiesel production. 9 refs., 3 figs., 4 tabs.

  10. Fiscal 1999 achievement report on regional consortium research and development project. Regional consortium on energy research in its 3rd year (Development of an environmentally-friendly industrial cleaning system using supercritical CO2 fluid); 1999 nendo chorinkai ryutai wo mochiita kankyo chowagata kogyo senjo sochi no kaihatsu seika hokokusho. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In high-technology industries such as the semiconductor industry, cleaning operations are indispensable. In these industries, replacement of the current method with a new one has become an urgent matter, thanks to the new control imposed on pollutant CFC (chlorofluorocarbon). Using a supercritical fluid, whose density and other features may be regulated extensively and continuously by controlling temperature and pressure, various conditions may be set in detail for the cleaning element, such as the dissolving power, dispersion force, surface activity, and chemical reactivity. The fluid is environmentally friendly and free of pollution. Facilities for recovering, regenerating, and circulating the solvent are incorporated into a test cleaner built in the preceding fiscal year, and a new system is completed. The system is operated in a test run for performance assessment, and data are collected to specify cleaning conditions best for each kind of the target items. Studies are made to expand the scope of system application for use under supercritical conditions. An experiment is conducted using a pollutant model, and a method to analyze the degree of cleaning is studied using an effective diffusion coefficient. A self-cleaning method is studied for the filter for the regeneration of the supercritical cleaning solvent. A market research is carried out for the commercialization of the industrial cleaning system. (NEDO)

  11. Magnelok technology: a complement to magnetorheological fluids

    Science.gov (United States)

    Carlson, J. David

    2004-07-01

    Magnetorheological or MR fluids have been successfully used to enable highly effective semi-active control systems in automobile primary suspensions to control unwanted motions in civil engineering structures and to provide force-feedback in steer-by-wire systems. A key to the successful use of MR fluids is an appreciation and understanding of the balance and trade-off between the magnetically controlled on-state force and the ever-present off-state viscous force. In all MR fluid applications, one must deal with the fact that MR fluids never fully decouple or go to zero force in their off-state. Magnelok devices are a magnetically controlled compliment to traditional MR fluid devices that have been developed to enable a true force decoupling in the off-state. Magnelok devices may be embodied as linear or rotary dampers, brakes, lockable struts or position holding devices. They are particularly suitable for lock/un-lock applications. Unlike MR fluid devices they contain no fluid yet they do provide a variable level of friction damping that is controlled by the magnitude of the applied magnetic field. Magnelok devices are low cost as they easily accommodate relatively loose mechanical tolerances and require no seals or accumulator. A variety of controllable Magnelok devices and applications are described.

  12. Phytosterols and their extraction from various plant matrices using supercritical carbon dioxide: a review.

    Science.gov (United States)

    Uddin, Md Salim; Sarker, Md Zaidul Islam; Ferdosh, Sahena; Akanda, Md Jahurul Haque; Easmin, Mst Sabina; Bt Shamsudin, Siti Hadijah; Bin Yunus, Kamaruzzaman

    2015-05-01

    Phytosterols provide important health benefits: in particular, the lowering of cholesterol. From environmental and commercial points of view, the most appropriate technique has been searched for extracting phytosterols from plant matrices. As a green technology, supercritical fluid extraction (SFE) using carbon dioxide (CO2) is widely used to extract bioactive compounds from different plant matrices. Several studies have been performed to extract phytosterols using supercritical CO2 (SC-CO2) and this technology has clearly offered potential advantages over conventional extraction methods. However, the efficiency of SFE technology fully relies on the processing parameters, chemistry of interest compounds, nature of the plant matrices and expertise of handling. This review covers SFE technology with particular reference to phytosterol extraction using SC-CO2. Moreover, the chemistry of phytosterols, properties of supercritical fluids (SFs) and the applied experimental designs have been discussed for better understanding of phytosterol solubility in SC-CO2. © 2014 Society of Chemical Industry.