WorldWideScience

Sample records for technology space science

  1. Office of Space Science: Integrated technology strategy

    Science.gov (United States)

    Huntress, Wesley T., Jr.; Reck, Gregory M.

    1994-01-01

    This document outlines the strategy by which the Office of Space Science, in collaboration with the Office of Advanced Concepts and Technology and the Office of Space Communications, will meet the challenge of the national technology thrust. The document: highlights the legislative framework within which OSS must operate; evaluates the relationship between OSS and its principal stakeholders; outlines a vision of a successful OSS integrated technology strategy; establishes four goals in support of this vision; provides an assessment of how OSS is currently positioned to respond to the goals; formulates strategic objectives to meet the goals; introduces policies for implementing the strategy; and identifies metrics for measuring success. The OSS Integrated Technology Strategy establishes the framework through which OSS will satisfy stakeholder expectations by teaming with partners in NASA and industry to develop the critical technologies required to: enhance space exploration, expand our knowledge of the universe, and ensure continued national scientific, technical and economic leadership.

  2. Ghana Space Science and Technology Institute (GSSTI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The Ghana Space Science and Technology Institute (GSSTI) of the Ghana Atomic Energy Commission was established to exploit space science and technology for socio-economic development of Ghana. The report gives the structure of GSSTI and the detailed activities of the year. Various activities include: training and seminars, projects and workshops. Publications and their abstracts are also listed. The report also highlights some of the challenges, provides some recommendations and points to some expectation for the following year.

  3. Education and Outreach on Space Sciences and Technologies in Taiwan

    Science.gov (United States)

    Tiger Liu, Jann-Yeng; Chen, hao-Yen; Lee, I.-Te

    2014-05-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Regarding the space technologies, we focus on remote sensing of Earth's surface by FORMOSAT-2 and occultation sounding by FORMOSAT-3/COSMIC of Taiwan space mission. Moreover, scientific camps are given to lead students a better understanding and interesting on space sciences/ technologies. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  4. The Science and Technology of Future Space Missions

    Science.gov (United States)

    Bonati, A.; Fusi, R.; Longoni, F.

    1999-12-01

    The future space missions span over a wide range of scientific objectives. After different successful scientific missions, other international cornerstone experiments are planned to study of the evolution of the universe and of the primordial stellar systems, and our solar system. Space missions for the survey of the microwave cosmic background radiation, deep-field search in the near and mid-infrared region and planetary exploration will be carried out. Several fields are open for research and development in the space business. Three major categories can be found: detector technology in different areas, electronics, and software. At LABEN, a Finmeccanica Company, we are focusing the technologies to respond to this challenging scientific demands. Particle trackers based on silicon micro-strips supported by lightweight structures (CFRP) are studied. In the X-ray field, CCD's are investigated with pixels of very small size so as to increase the spatial resolution of the focal plane detectors. High-efficiency and higly miniaturized high-voltage power supplies are developed for detectors with an increasingly large number of phototubes. Material research is underway to study material properties at extreme temperatures. Low-temperature mechanical structures are designed for cryogenic ( 20 K) detectors in order to maintain the high precision in pointing the instrument. Miniaturization of front end electronics with low power consumption and high number of signal processing channels is investigated; silicon-based microchips (ASIC's) are designed and developed using state-of-the-art technology. Miniaturized instruments to investigate the planets surface using X-Ray and Gamma-Ray scattering techniques are developed. The data obtained from the detectors have to be processed, compressed, formatted and stored before their transmission to ground. These tasks open up additional strategic areas of development such as microprocessor-based electronics for high-speed and parallel data

  5. Solar and Space Physics: A Science for a Technological Society

    Science.gov (United States)

    2013-01-01

    From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.

  6. Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics

    Science.gov (United States)

    Singh, R.; Bermudez, L. E.

    2013-12-01

    Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics The Open Geospatial Consortium (OGC) mission is to serve as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The OGC coordinates with over 400 institutions in the development of geospatial standards. In the last years two main trends are making disruptions in geospatial applications: mobile and context sharing. People now have more and more mobile devices to support their work and personal life. Mobile devices are intermittently connected to the internet and have smaller computing capacity than a desktop computer. Based on this trend a new OGC file format standard called GeoPackage will enable greater geospatial data sharing on mobile devices. GeoPackage is perhaps best understood as the natural evolution of Shapefiles, which have been the predominant lightweight geodata sharing format for two decades. However the format is extremely limited. Four major shortcomings are that only vector points, lines, and polygons are supported; property names are constrained by the dBASE format; multiple files are required to encode a single data set; and multiple Shapefiles are required to encode multiple data sets. A more modern lingua franca for geospatial data is long overdue. GeoPackage fills this need with support for vector data, image tile matrices, and raster data. And it builds upon a database container - SQLite - that's self-contained, single-file, cross-platform, serverless, transactional, and open source. A GeoPackage, in essence, is a set of SQLite database tables whose content and layout is described in the candidate GeoPackage Implementation Specification available at https://portal.opengeospatial.org/files/?artifact_id=54838&version=1. The second trend is sharing client 'contexts'. When a user is looking into an article or a product on the web

  7. Operational Concept of the NEXTSat-1 for Science Mission and Space Core Technology Verification

    Directory of Open Access Journals (Sweden)

    Goo-Hwan Shin

    2014-03-01

    Full Text Available The next generation small satellite-1 (NEXTSat-1 program has been kicked off in 2012, and it will be launched in 2016 for the science missions and the verification of space core technologies. The payloads for these science missions are the Instrument for the Study of Space Storms (ISSS and NIR Imaging Spectrometer for Star formation history (NISS. The ISSS and the NISS have been developed by Korea Advanced Institute of Science and Technology (KAIST and Korea Astronomy and Space science Institute (KASI respectively. The ISSS detects plasma densities and particle fluxes of 10 MeV energy range near the Earth and the NISS uses spectrometer. In order to verify the spacecraft core technologies in the space, the total of 7 space core technologies (SCT will be applied to the NEXTSat-1 for space verification and those are under development. Thus, the operation modes for the ISSS and the NISS for space science missions and 7 SCTs for technology missions are analyzed for the required operation time during the NEXTSat-1’s mission life time of 2 years. In this paper, the operational concept of the NEXTSat-1’s science missions as well as the verification of space core technologies are presented considering constraints of volume, mass, and power after launch.

  8. Space Technology Research Grants Program

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Technology Research Grants Program will accelerate the development of "push" technologies to support the future space science and exploration...

  9. Regional Centres for Space Science and Technology Education Affiliated to the United Nations

    Science.gov (United States)

    Aquino, A. J. A.; Haubold, H. J.

    2010-05-01

    Based on resolutions of the United Nations General Assembly, Regional Centres for space science and technology education were established in India, Morocco, Nigeria, Brazil and Mexico. Simultaneously, education curricula were developed for the core disciplines of remote sensing, satellite communications, satellite meteorology, and space and atmospheric science. This paper provides a brief report on the status of the operation of the Regional Centres and draws attention to their educational activities.

  10. Department of Defense Space Science and Technology Strategy 2015

    Science.gov (United States)

    2015-01-01

    Nanosatellite Effort (SMDC-ONE) placed five 3U cubesats into orbit. These five satellites represented the first Army- developed spacecraft to be...enabled tactical communications in contested environments and diverse terrains Comms/data exfiltration nanosatellite SMDC Nanosatellite ...Acoustic Suppression (HiPAcS) Technology Development NASA FY 15 Test Orbital transport for nanosatellites Nanolauncher Technologies Initiative

  11. UNIESPAÇO A Space Technology and Science Program for Brazillian Universities

    Science.gov (United States)

    Ferreira, Jose Leonardo; Gurgel, Carlos

    This work describes the activioties of The UNIESPAÇO Program of the Brazillian Space Agency AEB. This program was stablished in 1997, just three years after the official announcement of the Brazillian Space Agency. Its objective is to integrate the university sector to the goals of the Brazillian National Space Activities Program - PNAE in order to attend the requirements of the Brazillian space sector by developing processes, products, analysis and studies relevants to PNAE development. Its main goal is to form a solid base for space research and development composed by specialized groups capable to execute projects for the space sector. In summary the main tasks for the UNIESPAÇO program are: - Stimulate and amplify the participation of universities and others related research institutionsd in the PNAE. - To promote research projects on selected topics to generate products, processes, analysis and studies that can be applied on the brazillian space program with emphasis on possible prototype instruments development as a result of the research projects. - To improve research and development groups on space science and technology in order to give and increase capacities to execute projects with higher complexity. The guidelines of the UNIESPAÇO program are determined by represetants from AEB, Brazillian Universities, Brazillian Academy of Sciences (ABC), INPE (Brazillian Space Institute) and IAE(Institute of Space and Aeronautics from DCTA).

  12. Policy for Robust Space-based Earth Science, Technology and Applications

    Science.gov (United States)

    Brown, Molly Elizabeth; Escobar, Vanessa Marie; Aschbacher, Josef; Milagro-Pérez, Maria Pilar; Doorn, Bradley; Macauley, Molly K.; Friedl, Lawrence

    2013-01-01

    Satellite remote sensing technology has contributed to the transformation of multiple earth science domains, putting space observations at the forefront of innovation in earth science. With new satellite missions being launched every year, new types of earth science data are being incorporated into science models and decision-making systems in a broad array of organizations. Policy guidance can influence the degree to which user needs influence mission design and when, and ensure that satellite missions serve both the scientific and user communities without becoming unfocused and overly expensive. By considering the needs of the user community early on in the mission-design process, agencies can ensure that satellites meet the needs of multiple constituencies. This paper describes the mission development process in NASA and ESA and compares and contrasts the successes and challenges faced by these agencies as they try to balance science and applications within their missions.

  13. Proceedings of The Twentieth International Symposium on Space Technology and Science. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-31

    The 20th international symposium on space technology and science was held in Nagaragawa city, Gifu prefecture on May 19-25, 1996, and 401 papers were made public. Out of those, 112 papers were summed up as Volume 2 following the previous Volume 1. As to space transportation, the paper included reports titled as follows: Conceptual study of H-IIA rocket (upgraded H-II rocket); Test flight of the launch vehicle; International cooperation in space transportation; etc. Concerning microgravity science, Recent advances in microgravity research; Use of microgravity environment to investigate the effect of magnetic field on flame shape; etc. Relating to satellite communications and broadcasting, `Project GENESYS`: CRL`s R and D project for realizing high data rate satellite communications networks; The Astrolink {sup TM/SM} system; etc. Besides, the paper contained reports on the following fields: lunar and planetary missions and utilization, space science and balloons, earth observations, life science and human presence, international cooperation and space environment, etc

  14. The space telescope: A study of NASA, science, technology, and politics

    Science.gov (United States)

    Smith, Robert William

    1989-01-01

    Scientific, technological, economic, and political aspects of NASA efforts to orbit a large astronomical telescope are examined in a critical historical review based on extensive interviews with participants and analysis of published and unpublished sources. The scientific advantages of large space telescopes are explained; early plans for space observatories are summarized; the history of NASA and its major programs is surveyed; the redesign of the original Large Space Telescope for Shuttle deployability is discussed; the impact of the yearly funding negotiations with Congress on the development of the final Hubble Space Telescope (HST) is described; and the implications of the HST story for the future of large space science projects are explored. Drawings, photographs, a description of the HST instruments and systems, and lists of the major contractors and institutions participating in the HST program are provided.

  15. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Northern Illinois U.; Piot, P. [Northern Illinois U.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  16. The Science and Technology in Future Remote Sensing Space Missions of Alenia Aerospazio

    Science.gov (United States)

    Angino, G.; Borgarelli, L.

    1999-12-01

    The Space Division of Alenia Aerospazio, a Finmeccanica company, is the major Italian space industry. It has, in seven plants, design facilities and laboratories for advanced technological research that are amongst the most modern and well equipped in Europe. With the co-ordinated companies Alenia Aerospazio is one of Europe's largest space industries. In the field of Remote Sensing, i.e. the acquisition of information about objects without being in physical contact with them, the Space Division has proven their capability to manage all of the techniques from space (ranging from active instruments as Synthetic Aperture Radar, Radar Altimeter, Scatterometer, etc… to passive ones as radiometer) in different programs with the main international industries and agencies. Space techniques both for Monitoring/Observation (i.e. operational applications) and Exploration (i.e. research for science demonstration) according to the most recent indication from international committees constitute guidelines. The first is devoted to market for giving innovation, added-value to services and, globally, enhancement of quality of life. The second has the basic purpose of pursuing the scientific knowledge. Advanced technology allows to design for multi-functions instruments (easy in configuration, adaptable to impredictable environment), to synthesise, apparently, opposite concepts (see for instance different requirement from military and civil applications). Space Division of Alenia Aerospazio has knowledge and capability to face the challenge of new millennium in space missions sector. In this paper, it will be described main remote sensing missions in which Space Division is involved both in terms of science and technology definition. Two main segments can be defined: Earth and interplanetary missions. To the first belong: ENVISAT (Earth surface), LIGHTSAR (Earth imaging), CRYOSAT (Earth ice) and to the second: CASSINI (study of Titan and icy satellites), MARS EXPRESS (detection

  17. Proceedings of the Twentieth International Symposium on Space Technology and Science. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-31

    The 20th International Symposium on Space Technology and Science was held in Japan on May 19-25, 1996, and a lot of papers were made public. This proceedings has 252 papers of all the papers read in the symposium including the following: Computational fluid dynamics in the design of M-V rocket motors in the propulsion field; Joint structures of carbon-carbon composites in the field of materials and structures; On-orbit attitude control experiment of ETS-VI in the field of astrodynamics, navigation, guidance and control; Magnetic transport of bubbles in liquid in microgravity; The outline and development status of JEM-EF in the field of on-orbit and ground support systems. The proceedings also includes the papers titled Conceptual study of H-IIA rocket in the space transportation field; Microgravity research in the microgravity science field; `Project Genesys` in the field of satellite communications and broadcasting.

  18. Managing the space sciences

    Science.gov (United States)

    1995-01-01

    In April 1994 the National Research Council received a request from NASA that the NRC's Space Studies Board provide guidance on questions relating to the management of NASA's programs in the space sciences. The issues raised in the request closely reflect questions posed in the agency's fiscal year 1994 Senate appropriations report. These questions included the following: Should all the NASA space science programs be gathered into a 'National Institute for Space Science'? What other organizational changes might be made to improve the coordination and oversight of NASA space science programs? What processes should be used for establishing interdisciplinary science priorities based on scientific merit and other criteria, while ensuring opportunities for newer fields and disciplines to emerge? And what steps could be taken to improve utilization of advanced technologies in future space scienc missions? This report details the findings of the Committee on the Future of Space Science (FOSS) and its three task groups: the Task Group on Alternative Organizations, Task Group on Research Prioritization, and the Task Group on Technology.

  19. Regional centres for space science and technology education affiliated to the United Nations

    Science.gov (United States)

    Gadimova, Sharafat

    Capacity-building efforts in space science and technology are a major focus of the activities of the Office of Outer Space Affairs. Such efforts include providing support to the regional centres for space science and technology education, affiliated to the United Nations, whose goal is to develop, through in-depth education, an indigenous capability for research and applications in the core disciplines of: (a) remote sensing and geographical information systems; (b) satellite communications; (c) satellite meteorology and global climate; and (d) space and atmospheric sciences and data management. The regional centres are located in Morocco and Nigeria for Africa, in Brazil and Mexico for Latin America and the Caribbean and in India for Asia and the Pacific. The overall policy-making body of each Centre is its Governing Board and consists of member States (within the region where the Centre is located), that have agreed, through their endorsement of the Centre's agreement, to the goals and objectives of the Centre. The United Nations Programme on Space Applications, with the support of prominent educators, has developed standard education curricula, which were adopted by the Centres for teaching each of the four core disciplines. Within the framework of the International Committee on global navigation satellite systems (ICG), which is established as an informal body for the purpose of promoting the use and application of global navigation satellite systems (GNSS) on a global basis, the Regional Centres will also be acting as the ICG Information Centres. The ICG Information Centres aim to foster a more structured approach to information exchange in order to fulfil the reciprocal expectations of a network between ICG and Regional Centres.

  20. The National Space Science and Technology Center's Education and Public Outreach Program

    Science.gov (United States)

    Cox, G. N.; Denson, R. L.

    2004-12-01

    The objective of the National Space Science and Technology Center's (NSSTC) Education and Public Outreach program (EPO) is to support K-20 education by coalescing academic, government, and business constituents awareness, implementing best business/education practices, and providing stewardship over funds and programs that promote a symbiotic relationship among these entities, specifically in the area of K-20 Science, Technology, Engineering, and Mathematics (STEM) education. NSSTC EPO Program's long-term objective is to showcase its effective community-based integrated stakeholder model in support of STEM education and to expand its influence across the Southeast region for scaling ultimately across the United States. The Education and Public Outreach program (EPO) is coordinated by a supporting arm of the NSSTC Administrative Council called the EPO Council (EPOC). The EPOC is funded through federal, state, and private grants, donations, and in-kind contributions. It is comprised of representatives of NSSTC Research Centers, both educators and scientists from the Alabama Space Science and Technology Alliance (SSTA) member institutions, the Alabama Space Grant Consortium and the NASA Marshall Space Flight Center's (MSFC) Education Office. Through its affiliation with MSFC and the SSTA - a consortium of Alabama's research universities that comprise the NSSTC, EPO fosters the education and development of the next generation of Alabama scientists and engineers by coordinating activities at the K-20 level in cooperation with the Alabama Department of Education, the Alabama Commission on Higher Education, and Alabama's businesses and industries. The EPO program's primary objective is to be Alabama's premiere organization in uniting academia, government, and private industry by way of providing its support to the State and Federal Departments of Education involved in systemic STEM education reform, workforce development, and innovative uses of technology. The NSSTC EPO

  1. Overview of Human-Centric Space Situational Awareness (SSA) Science and Technology (S&T)

    Science.gov (United States)

    Ianni, J.; Aleva, D.; Ellis, S.

    2012-09-01

    A number of organizations, within the government, industry, and academia, are researching ways to help humans understand and react to events in space. The problem is both helped and complicated by the fact that there are numerous data sources that need to be planned (i.e., tasked), collected, processed, analyzed, and disseminated. A large part of the research is in support of the Joint Space Operational Center (JSpOC), National Air and Space Intelligence Center (NASIC), and similar organizations. Much recent research has been specifically targeting the JSpOC Mission System (JMS) which has provided a unifying software architecture. This paper will first outline areas of science and technology (S&T) related to human-centric space situational awareness (SSA) and space command and control (C2) including: 1. Object visualization - especially data fused from disparate sources. Also satellite catalog visualizations that convey the physical relationships between space objects. 2. Data visualization - improve data trend analysis as in visual analytics and interactive visualization; e.g., satellite anomaly trends over time, space weather visualization, dynamic visualizations 3. Workflow support - human-computer interfaces that encapsulate multiple computer services (i.e., algorithms, programs, applications) into a 4. Command and control - e.g., tools that support course of action (COA) development and selection, tasking for satellites and sensors, etc. 5. Collaboration - improve individuals or teams ability to work with others; e.g., video teleconferencing, shared virtual spaces, file sharing, virtual white-boards, chat, and knowledge search. 6. Hardware/facilities - e.g., optimal layouts for operations centers, ergonomic workstations, immersive displays, interaction technologies, and mobile computing. Secondly we will provide a survey of organizations working these areas and suggest where more attention may be needed. Although no detailed master plan exists for human

  2. Life as a Mather Intern at the Committee on Science, Space, and Technology

    Science.gov (United States)

    Stankus, Katherine

    2014-03-01

    The AIP Mather Public Policy Internship, sponsored by Nobel Laureate Dr. John Mather and facilitated by the American Institute of Physics Society of Physics Students Summer Internship Program, was designed to help undergraduate physics students explore the interface between science and policy. As a Mather Public Policy Intern in 2013, I worked for the U.S. House of Representatives Committee on Science, Space, and Technology where I conducted written research and analyses for staff members, prepared background materials and reports, and assisted at hearings and markups. In addition to my internship duties I also had the opportunity to meet several different representatives, go to various receptions and luncheons held on the Hill, and meet some influential people in society. During this talk I will discuss my experience and how it helped further my interest in doing analytical work and gave me exposure to public policy issues at the national level. AIP Society of Physics Students.

  3. REU Site: CUNY/GISS CGCR - Increasing Diversity in Earth and Space Science and Space Technology Research

    Science.gov (United States)

    Johnson, L. P.; Marchese, P.; Carlson, B. E.; Howard, A. M.; Damas, M. C.; Boxe, C.; Sohl, L. E.; Cheung, T. D.; Zavala-Gutierrez, R.; Jiang, M.

    2016-12-01

    This presentation describes student projects and accomplishments of the NSF REU Site: The City University of New York / NASA Goddard Institute for Space Studies Center for Global Climate Research. These student experiences contribute to the preparation of a diverse workforce in the areas of ocean modeling, planetary atmospheres, atmospheric science, climate change, heliophysics and space technology. It is important to motivate students to continue their studies towards advanced degrees and pursue careers related to these fields of study. This is best accomplished by involving undergraduates in research. For the past three years, this REU Site has supported research for more than 35 students, approximately 60 percent from underrepresented minorities and 35 percent female. All the students have progressed towards their degrees and some have advanced to graduate study. This program is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research and the NASA New York State Space Grant Consortium and in collaboration with the NASA Goddard Institute for Space Studies (GISS).

  4. An Overview of SBIR Phase 2 Physical Sciences and Biomedical Technologies in Space

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in physical sciences and biomedical technologies in space, which is one of six core competencies at NASA Glenn Research Center. There are twenty two technologies featured with emphasis on a wide spectrum of applications such as reusable handheld electrolyte, sensor for bone markers, wideband single crystal transducer, mini treadmill for musculoskeletal, and much more. Each article in this report describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  5. USSR Space Life Sciences Digest

    Science.gov (United States)

    Lewis, C. S. (Editor); Donnelly, K. L. (Editor)

    1980-01-01

    Research in exobiology, life sciences technology, space biology, and space medicine and physiology, primarily using data gathered on the Salyut 6 orbital space station, is reported. Methods for predicting, diagnosing, and preventing the effects of weightlessness are discussed. Psychological factors are discussed. The effects of space flight on plants and animals are reported. Bioinstrumentation advances are noted.

  6. ENGage: The use of space and pixel art for increasing primary school children's interest in science, technology, engineering and mathematics

    Science.gov (United States)

    Roberts, Simon J.

    2014-01-01

    The Faculty of Engineering at The University of Nottingham, UK, has developed interdisciplinary, hands-on workshops for primary schools that introduce space technology, its relevance to everyday life and the importance of science, technology, engineering and maths. The workshop activities for 7-11 year olds highlight the roles that space and satellite technology play in observing and monitoring the Earth's biosphere as well as being vital to communications in the modern digital world. The programme also provides links to 'how science works', the environment and citizenship and uses pixel art through the medium of digital photography to demonstrate the importance of maths in a novel and unconventional manner. The interactive programme of activities provides learners with an opportunity to meet 'real' scientists and engineers, with one of the key messages from the day being that anyone can become involved in science and engineering whatever their ability or subject of interest. The methodology introduces the role of scientists and engineers using space technology themes, but it could easily be adapted for use with any inspirational topic. Analysis of learners' perceptions of science, technology, engineering and maths before and after participating in ENGage showed very positive and significant changes in their attitudes to these subjects and an increase in the number of children thinking they would be interested and capable in pursuing a career in science and engineering. This paper provides an overview of the activities, the methodology, the evaluation process and results.

  7. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    Science.gov (United States)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  8. Ghana Space Science and Technology Institute (GSSTI),Ghana Atomic Energy Commission: Annual Report 2013/2014

    International Nuclear Information System (INIS)

    2014-01-01

    The report presents the structure as well as the research projects of the newly established Ghana Space Science and Technology Institute of the Ghana Atomic Energy Commission from January to December 2014. Research projects listed are in the areas of Astronomy and Astrophysics; Remote Sensing; Electronics and Instrumentation; and Satellite Communication.

  9. Regional Centres for Space Science and Technology Education and ICG Information Centres affiliated to the United Nations

    Science.gov (United States)

    Gadimova, S.; Haubold, H. J.

    2009-06-01

    Based on resolutions of the United Nations General Assembly, Regional Centres for Space Science and Technology Education were established in India, Morocco, Nigeria, Brazil and Mexico. Simultaneously, education curricula were developed for the core disciplines of remote sensing, satellite communications, satellite meteorology, and space and atmospheric science. This paper provides a brief summary on the status of the operation of the regional centres with a view to use them as information centres of the International Committee on Global Navigation Satellite Systems (ICG), and draws attention to their educational activities.

  10. Social Sciences and Space Exploration

    Science.gov (United States)

    1988-01-01

    The relationship between technology and society is a subject of continuing interest, because technological change and its effects confront and challenge society. College students are especially interested in technological change, knowing that they must cope with the pervasive and escalating effect of wide-ranging technological change. The space shuttle represents a technological change. The book's role is to serve as a resource for college faculty and students who are or will be interested in the social science implications of space technology. The book is designed to provide introductory material on a variety of space social topics to help faculty and students pursue teaching, learning, and research. Space technologies, perspectives on individual disciplines (economics, history, international law, philosophy, political science, psychology, and sociology) and interdiscipline approaches are presented.

  11. Space Sciences Focus Area

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Geoffrey D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-10

    To advance our understanding of the space environment (from the Sun to the Earth and beyond) and to advance our ability to operate systems in space that protect life and society. Space Science is distinct from other field, such as astrophysics or cosmology, in that Space Science utilizes in-situ measurements from high altitude rockets, balloons and spacecraft or ground-based measurements of objects and conditions in space.

  12. Selling the Space Telescope - The interpenetration of science, technology, and politics

    Science.gov (United States)

    Smith, Robert W.

    1991-01-01

    Attention is given to the politics of initiating the Space Telescope program and to the manner in which the coalition, or working consensus, for the Telescope was assembled, in particular, the role played by astronomers. It is contended that what ensued was a case study in the influence of government patronage on a large-scale scientific and technological program. It is concluded that while a politically feasible Space Telescope did result, in the selling process the Telescope had been both oversold and underfunded.

  13. Science and technology results from the OSS-1 payload on the Space Shuttle.

    Science.gov (United States)

    Chipman, E G

    1983-01-01

    The OSS-1 Payload of nine experiments was carried on the STS-3 Space Shuttle flight in March of 1982. The OSS-1 Payload contained four instruments that evaluated specific aspects of the Orbiter's environment, including the levels of particulate, gaseous and electromagnetic emissions given off by the Orbiter, and the interactions between the Orbiter and the surrounding plasma. In addition to these environmental observations, these instruments performed scientific investigations in astronomy and in space plasma physics, including active experiments in electron beam propagation. Other experiments were in the areas of solar physics, plant growth, micrometeorite studies and the technology of actively controlled heat pipes. We present the initial results from these experiments, with some implications of these results for future operation of space experiments from the Shuttle payload bay. One major result was the unexpected discovery of a faint surface-induced optical glow created near the Shuttle surfaces by impacts of ambient atmospheric atoms and molecules.

  14. Life Science Research in Outer Space: New Platform Technologies for Low-Cost, Autonomous Small Satellite Missions

    Science.gov (United States)

    Ricco, Antonio J.; Parra, Macarena P.; Niesel, David; McGinnis, Michael; Ehrenfreund, Pascale; Nicholson, Wayne; Mancinelli, Rocco; Piccini, Matthew E.; Beasley, Christopher C.; Timucin, Linda R.; hide

    2009-01-01

    We develop integrated instruments and platforms suitable for economical, frequent space access for autonomous life science experiments and processes in outer space. The technologies represented by three of our recent free-flyer small-satellite missions are the basis of a rapidly growing toolbox of miniaturized biologically/biochemically-oriented instrumentation now enabling a new generation of in-situ space experiments. Autonomous small satellites ( 1 50 kg) are less expensive to develop and build than fullsize spacecraft and not subject to the comparatively high costs and scheduling challenges of human-tended experimentation on the International Space Station, Space Shuttle, and comparable platforms. A growing number of commercial, government, military, and civilian space launches now carry small secondary science payloads at far lower cost than dedicated missions; the number of opportunities is particularly large for so-called cube-sat and multicube satellites in the 1 10 kg range. The recent explosion in nano-, micro-, and miniature technologies, spanning fields from telecommunications to materials to bio/chemical analysis, enables development of remarkably capable autonomous miniaturized instruments to accomplish remote biological experimentation. High-throughput drug discovery, point-of-care medical diagnostics, and genetic analysis are applications driving rapid progress in autonomous bioanalytical technology. Three of our recent missions exemplify the development of miniaturized analytical payload instrumentation: GeneSat-1 (launched: December 2006), PharmaSat (launched: May 2009), and O/OREOS (organism/organics exposure to orbital stresses; scheduled launch: May 2010). We will highlight the overall architecture and integration of fluidic, optical, sensor, thermal, and electronic technologies and subsystems to support and monitor the growth of microorganisms in culture in these small autonomous space satellites, including real-time tracking of their culture

  15. Assessment of Capacity Building by UN Centre For Space Science and Technology Education in Asia and Pacific

    Science.gov (United States)

    Mukund, Rao; Deekshatulu, B. L.; Sundarramiah, V.; Kasturirangan, K.

    2002-01-01

    Space technology has introduced new dimensions into the study and understanding of Earth's processes and in improving the quality of life for the humanity. The benefits from the space technology are mostly confined to the space faring nations. United Nations Office for Outer Space Affairs (UN-OOSA) has taken initiative to disseminate the scientific and technology knowledge to developing countries through the establishment of regional Centres mainly dedicated to the education, training and research. The establishment of the UN Centre for Space Science and Technology Education in Asia and the Pacific (UN CSSTE-AP), in 1995 in India, has opened up new vistas for sharing and learning from experiences and also in capacity building in the region. The Centre has education and research programmes in the field of Remote Sensing, Satellite Communications, Satellite Meteorology and Space Sciences. The education courses are comprising of two phases viz. Phase I, of 9 months duration and is a resident programme in India. The 9 months programme is modular in structure dealing with fundamentals, applications and pilot projects. The Phase II, of 12 months duration, concludes with the submission of a project work assignment in the home country institution. The research programmes are oriented towards carrying out advanced research and development in these fields and provides an opportunity to Asia Pacific students to build their academic capabilities. The education course curriculum is primarily aimed to disseminate the Space Science and Technology in the Asia Pacific region and draws on the experiences and needs of the region. The Centre also assists in research and consultancy in environmental analysis, monitoring, judicious exploitation, rural/urban communication, understanding weather system, conservation of natural resources and sustainable development. The issues are of utmost importance in the backdrop of high population density, unstable economic status, depleting natural

  16. SCIENCE AND TECHNOLOGY PARKS

    Directory of Open Access Journals (Sweden)

    Miroslav Milutinović

    2014-04-01

    Full Text Available The establishment of science and technology parks is necessarily accompanied by the establishment of a base of professional staff as the foundation of the park and the base of the potential management that will manage the park and the professional staff. Science and Technology Park is a broader term used to describe a variety of attempts directed at enhancing the entrepreneurship development by means of establishing knowledge – based, small and medium-sized enterprises. The enterprise at the top of the technology pyramid receives support in the form of capital, administration, space and access to new information technologies. The overall objective of the development of industrial enterprises in the technology park is the introduction of economically profitable production with the efficient usage of nonrenewable resources and the application of the highest environmental standards. Achieving the primary developmental objective of the Technology Park includes: creating a favorable business atmosphere in the local community, attractive to both foreign and domestic investors – providing support to the establishment of small and medium-sized enterprises using different models of joint ventures and direct foreign investment.

  17. The New York City Research Initiative: A Model for Undergraduate and High School Student Research in Earth and Space Sciences and Space Technology

    Science.gov (United States)

    Scalzo, F.; Frost, J.; Carlson, B. E.; Marchese, P.; Rosenzweig, C.; Austin, S. A.; Peteet, D. M.; Druyan, L.; Fulakeza, M.; Gaffin, S.; Baruh, H.; Decker, S.; Thangam, S.; Miles, J.; Moshary, F.; Rossow, W.; Greenbaum, S.; Cheung, T. K.; Johnson, L. P.

    2010-12-01

    1 Frank Scalzo, 1 Barbara Carlson, 2 Leon Johnson, 3 Paul Marchese, 1 Cynthia Rosenzweig, 2 Shermane Austin, 1 Dorothy Peteet, 1 Len Druyan, 1 Matthew Fulakeza, 1 Stuart Gaffin, 4 Haim Baruh, 4 Steven Decker, 5 Siva Thangam, 5 Joe Miles, 6 James Frost, 7 Fred Moshary, 7 William Rossow, 7 Samir Ahmed, 8 Steven Greenbaum and 3 Tak Cheung 1 NASA Goddard Institute for Space Studies, USA 2 Physical, Environmental and Computer Sciences, Medgar Evers College, CUNY, Brooklyn, NY, USA 3 Physics, Queensborough Community College, CUNY, Queens, NY, USA 4 Rutgers University, Newark, NJ, USA 5 Stevens Institute of Technology, Hoboken, NJ, USA 6 Physics, LaGuardia Community College, CUNY, Queens, NY, USA 7 Electrical Engineering, City College of New York, CUNY, USA 8 Physics, Hunter College, CUNY, USA The New York City Research Initiative (NYCRI) is a research and academic program that involves high school, undergraduate and graduate students, and high school teachers in research teams under the mentorship of college/university principal investigator of NASA funded projects and/or NASA scientists. The principal investigators are at 7 colleges/universities within a 20-mile radius of New York City (NYC and Northern New Jersey), as well as the NASA Goddard Institute of Space Studies. The program supports research in Earth Science, Space Science, and Space Technology. Research investigations include: Sea Surface Temperature and Precipitation in the West African Monsoon, Urban Heat Island: Sun and Rain Effects, Decadal Changes in Aerosol and Asthma, Variations in Salinity and River Discharge in the Hudson River Estuary, Environmental Change in the Hudson Estuary Wetlands, Verification of Winter Storm Scale Developed for Nor’easters, Solar Weather and Tropical Cyclone Activity, Tropospheric and Stratospheric Ozone Investigation in Metropolitan NYC, Aerosol Optical Depth through use of a MFRSR, Detection of Concentration in the Atmosphere Using a Quantum Cascade Laser System

  18. Computer science: Key to a space program renaissance. The 1981 NASA/ASEE summer study on the use of computer science and technology in NASA. Volume 2: Appendices

    Science.gov (United States)

    Freitas, R. A., Jr. (Editor); Carlson, P. A. (Editor)

    1983-01-01

    Adoption of an aggressive computer science research and technology program within NASA will: (1) enable new mission capabilities such as autonomous spacecraft, reliability and self-repair, and low-bandwidth intelligent Earth sensing; (2) lower manpower requirements, especially in the areas of Space Shuttle operations, by making fuller use of control center automation, technical support, and internal utilization of state-of-the-art computer techniques; (3) reduce project costs via improved software verification, software engineering, enhanced scientist/engineer productivity, and increased managerial effectiveness; and (4) significantly improve internal operations within NASA with electronic mail, managerial computer aids, an automated bureaucracy and uniform program operating plans.

  19. Vacuum science, technology, and applications

    CERN Document Server

    Naik, Pramod K

    2018-01-01

    Vacuum plays an important role in science and technology. The study of interaction of charged particles, neutrals and radiation with each other and with solid surfaces requires a vacuum environment for reliable investigations. Vacuum has contributed immensely to advancements made in nuclear science, space, metallurgy, electrical/electronic technology, chemical engineering, transportation, robotics and many other fields. This book is intended to assist students, scientists, technicians and engineers to understand the basics of vacuum science and technology for application in their projects. The fundamental theories, concepts, devices, applications, and key inventions are discussed.

  20. NASA Earth Science Update with Information Science Technology

    Science.gov (United States)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  1. Technology Enhanced Learning Spaces

    NARCIS (Netherlands)

    Specht, Marcus

    2016-01-01

    Today’s tools and learning environments are often not designed for supporting situated, social, and mobile learning experiences and linking them to real world experiences. The talk will discuss some of the approaches for linking information space and real world space with new technology. By linking

  2. Smart space technology innovations

    CERN Document Server

    Chen, Mu-Yen

    2013-01-01

    Recently, ad hoc and wireless communication technologies have made available the device, service and information rich environment for users. Smart Space and ubiquitous computing extend the ""Living Lab"" vision of everyday objects and provide context-awareness services to users in smart living environments. This ebook investigates smart space technology and its innovations around the Living Labs. The final goal is to build context-awareness smart space and location-based service applications that integrate information from independent systems which autonomously and securely support human activ

  3. Connecting Science and Technology

    Science.gov (United States)

    Pleasants, Jacob

    2017-01-01

    Helping students understand the Nature of Science (NOS) is a long-standing goal of science education. One method is to provide students examples of science history in the form of short stories. This article modifies that approach, using historical case studies to address both the history of science and the history of technology, as well as the…

  4. Science and Technology Facilities

    Science.gov (United States)

    Moonen, Jean-Marie; Buono, Nicolas; Handfield, Suzanne

    2004-01-01

    These four articles relate to science and technology infrastructure for secondary and tertiary institutions. The first article presents a view on approaches to teaching science in school and illustrates ideal science facilities for secondary education. The second piece reports on work underway to improve the Science Complex at the "Universite…

  5. Advanced space transportation technologies

    Science.gov (United States)

    Raj, Rishi S.

    1989-01-01

    A wide range of propulsion technologies for space transportation are discussed in the literature. It is clear from the literature review that a single propulsion technology cannot satisfy the many mission needs in space. Many of the technologies tested, proposed, or in experimental stages relate to: chemical and nuclear fuel; radiative and corpuscular external energy source; tethers; cannons; and electromagnetic acceleration. The scope and limitation of these technologies is well tabulated in the literature. Prior experience has shown that an extensive amount of fuel needs to be carried along for the return mission. This requirement puts additional constraints on the lift off rocket technology and limits the payload capacity. Consider the possibility of refueling in space. If the return fuel supply is guaranteed, it will not only be possible to lift off more payload but also to provide security and safety of the mission. Exploration to deep space where solar sails and thermal effects fade would also be possible. Refueling would also facilitate travel on the planet of exploration. This aspect of space transportation prompts the present investigation. The particle emissions from the Sun's corona will be collected under three different conditions: in space closer to the Sun, in the Van Allen Belts; and on the Moon. It is proposed to convert the particle state into gaseous, liquid, or solid state and store it for refueling space vehicles. These facilities may be called space pump stations and the fuel collected as space fuel. Preliminary estimates of fuel collection at all three sites will be made. Future work will continue towards advancing the art of collection rate and design schemes for pumping stations.

  6. Hubble Space Telescope - Scientific, Technological and Social Contributions to the Public Discourse on Science

    Science.gov (United States)

    Wiseman, Jennifer

    2012-01-01

    The Hubble Space Telescope has unified the world with a sense of awe and wonder for 2 I years and is currently more scientifically powerful than ever. I will present highlights of discoveries made with the Hubble Space Telescope, including details of planetary weather, star formation, extra-solar planets, colliding galaxies, and a universe expanding with the acceleration of dark energy. I will also present the unique technical challenges and triumphs of this phenomenal observatory, and discuss how our discoveries in the cosmos affect our sense of human unity, significance, and wonder.

  7. Education in space science

    Science.gov (United States)

    Philbrick, C. Russell

    2005-08-01

    The educational process for teaching space science has been examined as a topic at the 17th European Space Agency Symposium on European Rocket and Balloon, and Related Research. The approach used for an introductory course during the past 18 years at Penn State University is considered as an example. The opportunities for using space science topics to motivate the thinking and efforts of advanced undergraduate and beginning graduate students are examined. The topics covered in the introductory course are briefly described in an outline indicating the breath of the material covered. Several additional topics and assignments are included to help prepare the students for their careers. These topics include discussions on workplace ethics, project management, tools for research, presentation skills, and opportunities to participate in student projects.

  8. Space-Based Astronomy: An Educator Guide with Activities for Science, Mathematics, and Technology Education

    Science.gov (United States)

    Vogt, Gregory L.

    2001-01-01

    If you go to the country, far from city lights, you can see about 3,000 stars on a clear night. If your eyes were bigger, you could see many more stars. With a pair of binoculars, an optical device that effectively enlarges the pupil of your eye by about 30 times, the number of stars you can see increases to the tens of thousands. With a medium-sized telescope with a light-collecting mirror 30 centimeters in diameter, you can see hundreds of thousands of stars. With a large observatory telescope, millions of stars become visible. This curriculum guide uses hands-on activities to help students and teachers understand the significance of space-based astronomy--astronomical observations made from outer space. It is not intended to serve as a curriculum. Instead, teachers should select activities from this guide that support and extend existing study. The guide contains few of the traditional activities found in many astronomy guides such as constellation studies, lunar phases, and planetary orbits. It tells, rather, the story of why it is important to observe celestial objects from outer space and how to study the entire electromagnetic spectrum. Teachers are encouraged to adapt these activities for the particular needs of their students. When selected activities from this guide are used in conjunction with traditional astronomy curricula, students benefit from a more complete experience.

  9. Commercial Space with Technology Maturation

    Science.gov (United States)

    McCleskey, Carey M.; Rhodes, Russell E.; Robinson, John W.

    2013-01-01

    To provide affordable space transportation we must be capable of using common fixed assets and the infrastructure for multiple purposes simultaneously. The Space Shuttle was operated for thirty years, but was not able to establish an effective continuous improvement program because of the high risk to the crew on every mission. An unmanned capability is needed to provide an acceptable risk to the primary mission. This paper is intended to present a case where a commercial space venture could share the large fixed cost of operating the infrastructure with the government while the government provides new advanced technology that is focused on reduced operating cost to the common launch transportation system. A conceivable commercial space venture could provide educational entertainment for the country's youth that would stimulate their interest in the science, technology, engineering, and mathematics (STEM) through access at entertainment parks or the existing Space Visitor Centers. The paper uses this example to demonstrate how growing public-private space market demand will re-orient space transportation industry priorities in flight and ground system design and technology development, and how the infrastructure is used and shared.

  10. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    International Nuclear Information System (INIS)

    Sanders, Y.D.; Freeman, Y.B.; George, M.C.

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements)

  11. Lunar and planetary surface conditions advances in space science and technology

    CERN Document Server

    Weil, Nicholas A

    1965-01-01

    Lunar and Planetary Surface Conditions considers the inferential knowledge concerning the surfaces of the Moon and the planetary companions in the Solar System. The information presented in this four-chapter book is based on remote observations and measurements from the vantage point of Earth and on the results obtained from accelerated space program of the United States and U.S.S.R. Chapter 1 presents the prevalent hypotheses on the origin and age of the Solar System, followed by a brief description of the methods and feasibility of information acquisition concerning lunar and planetary data,

  12. JPRS Report, Science & Technology, Japan

    Science.gov (United States)

    1988-10-05

    This is Japan Report with Science and Technology. It contains the issues with different topics on biotecnology , defense industry, nuclear engineering, Marine technology, science and technology policy.

  13. Science and Technology Policy

    DEFF Research Database (Denmark)

    Baark, Erik

    1996-01-01

    This paper examines the status of science and technology in Mongolia, and discusses the policy issues which have emerged with the transition to market economy in recent years.......This paper examines the status of science and technology in Mongolia, and discusses the policy issues which have emerged with the transition to market economy in recent years....

  14. INSA Virtual Labs: a new R+D framework for innovative space science and technology

    Science.gov (United States)

    Cardesin Moinelo, Alejandro; Sanchez Portal, Miguel

    2012-10-01

    The company INSA (Ingeniería y Servicios Aeroespaciales) has given support to ESA Scientific missions for more than 20 years and is one of the main companies present in the European Space Astronomy Centre (ESAC) in Madrid since its creation. INSA personnel at ESAC provide high level technical and scientific support to ESA for all Astronomy and Solar System missions. In order to improve and maintain the scientific and technical competences among the employees, a research group has been created with the name "INSA Virtual Labs". This group coordinates all the R+D activities carried out by INSA personnel at ESAC and aims to establish collaborations and improve synergies with other research groups, institutes and universities. This represents a great means to improve the visibility of these activities towards the scientific community and serves as breeding ground for new innovative ideas and future commercial products.

  15. The Development of Plasma Thrusters and Its Importance for Space Technology and Science Education at University of Brasilia

    Science.gov (United States)

    Ferreira, Jose Leonardo; Calvoso, Lui; Gessini, Paolo; Ferreira, Ivan

    Helicon Double Layer Thruster based on plasma expiation along diverging magnetic field lines within similar conditons that can be met in auroral plasma formation. HDLT is sometimes called an Auroral thruster because during the plasma expiation in the cusped magnetic field a current free double layer is formed accelerating ions and a supersonic ion beam. The development fo this type of thruster are been made in several laboratories around the world and tis application for high specific impulce space mission in the solar system is foreseen. Since the beginning of this project we have about 20 undergraduate students working at the laboratory as junior scientist with CNPq schollarships for Scientific Initiation Program called PIBIC. More than 10 graduate students were involved in master and doctoral thesis work related to space science and technology problems concerning the application of plasma space propulsion for satellite and spacecrafts for solar system missions.

  16. Space Science in Action: Space Exploration [Videotape].

    Science.gov (United States)

    1999

    In this videotape recording, students learn about the human quest to discover what is out in space. Students see the challenges and benefits of space exploration including the development of rocket science, a look back at the space race, and a history of manned space travel. A special section on the Saturn V rocket gives students insight into the…

  17. Leveraging Current Initiatives to Bring Earth and Space Science into Elementary and Early Childhood Classrooms: NGSS in the Context of the Classroom Technology Push

    Science.gov (United States)

    Pacheco-Guffrey, H. A.

    2016-12-01

    Classroom teachers face many challenges today such as new standards, the moving targets of high stakes tests and teacher evaluations, inconsistent/insufficient access to resources and evolving education policies. Science education in the K-5 context is even more complex. NGSS can be intimidating, especially to K-5 educators with little science background. High stakes science tests are slow to catch up with newly drafted state level science standards, leaving teachers unsure about what to change and when to implement updated standards. Amid all this change, many schools are also piloting new technology programs. Though exciting, tech initiatives can also be overwhelming to teachers who are already overburdened. A practical way to support teachers in science while remaining mindful of these stressors is to design and share resources that leverage other K-5 school initiatives. This is often done by integrating writing or math into science learning to meet Common Core requirements. This presentation will suggest a method for bringing Earth and space science learning into elementary / early childhood classrooms by utilizing the current push for tablet technology. The goal is to make science integration reasonable by linking it to technology programs that are in their early stages. The roles and uses of K-5 Earth and space science apps will be examined in this presentation. These apps will be linked to NGSS standards as well as to the science and engineering practices. To complement the app resources, two support frameworks will also be shared. They are designed to help educators consider new technologies in the context of their own classrooms and lessons. The SAMR Model (Puentadura, 2012) is a conceptual framework that helps teachers think critically about the means and purposes of integrating technology into existing lessons. A practical framework created by the author will also be shared. It is designed to help teachers identify and address the important logistical

  18. International space science

    International Nuclear Information System (INIS)

    Mark, H.

    1988-01-01

    The author begins his paper by noting the range of international cooperation which has occured in science since its earliest days. The brightest minds were allowed to cross international frontiers even in the face of major wars, to work on their interests and to interact with like minded scientists in other countries. There has of course been a political side to this movement at times. The author makes the point that doing science on an international basis is extemely important but it is not a way of conducting foreign policy. Even though governments may work together on scientific efforts, it is no glue which will bind them to work together on larger political or economic issues. The reason for doing science on an international basis is that it will lead to better science, not better international relations. There are a limited number of great scientists in the world, and they must be allowed to develop their talents. He then discusses two internationl space programs which have has such collaboration, the Soviet-American Space Biology Program, and the Infrared Astronomical Satellite (IRAS). He then touches on the NASA space exploration program, and the fact that its basic objectives were laid out in the 1940's and l950's. With this laid out he argues in favor of establishment of a lunar base, one of the key elements of NASA's plan, arguing for the value of this step based upon the infrared astronomical work which could be done from a stable lunar site, away from the earth's atmosphere

  19. CERN and space science

    CERN Multimedia

    2009-01-01

    The connection between CERN and space is tangible this week, as former CERN Fellow and ESA astronaut Christer Fuglesang begins the second week of his mission on space shuttle flight STS-128. I had the pleasure to meet Christer back in October 2008 at an IEEE symposium in Dresden, and he asked me whether we could give him something related to CERN for his official flight kit. We thought of caps and tee-shirts, but in the end decided to give him a neutralino as a symbol of the link between particle physics and the science of the Universe. Neutralinos are theoretical particles that the LHC will be looking for, and if they exist, they’re strong candidates for the Universe’s dark matter. Christer’s neutralino is just a model, of course, escaped from the particle zoo, but what better symbol of the connectedness of science? Christer Fuglesang is not the only link CERN has with the space shuttle programme. We’ve recently learned that...

  20. Space Station: NASA's software development approach increases safety and cost risks. Report to the Chairman, Committee on Science, Space, and Technology, House of Representatives

    Science.gov (United States)

    1992-06-01

    The House Committee on Science, Space, and Technology asked NASA to study software development issues for the space station. How well NASA has implemented key software engineering practices for the station was asked. Specifically, the objectives were to determine: (1) if independent verification and validation techniques are being used to ensure that critical software meets specified requirements and functions; (2) if NASA has incorporated software risk management techniques into program; (3) whether standards are in place that will prescribe a disciplined, uniform approach to software development; and (4) if software support tools will help, as intended, to maximize efficiency in developing and maintaining the software. To meet the objectives, NASA proceeded: (1) reviewing and analyzing software development objectives and strategies contained in NASA conference publications; (2) reviewing and analyzing NASA, other government, and industry guidelines for establishing good software development practices; (3) reviewing and analyzing technical proposals and contracts; (4) reviewing and analyzing software management plans, risk management plans, and program requirements; (4) reviewing and analyzing reports prepared by NASA and contractor officials that identified key issues and challenges facing the program; (5) obtaining expert opinions on what constitutes appropriate independent V-and-V and software risk management activities; (6) interviewing program officials at NASA headquarters in Washington, DC; at the Space Station Program Office in Reston, Virginia; and at the three work package centers; Johnson in Houston, Texas; Marshall in Huntsville, Alabama; and Lewis in Cleveland, Ohio; and (7) interviewing contractor officials doing work for NASA at Johnson and Marshall. The audit work was performed in accordance with generally accepted government auditing standards, between April 1991 and May 1992.

  1. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  2. Dual Space Technology Transfer

    Science.gov (United States)

    Kowbel, W.; Loutfy, R.

    2009-03-01

    Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.

  3. History of science and technology

    International Nuclear Information System (INIS)

    Jang, Byeong Ju

    1986-04-01

    This book shows origin of technology and development of civilization, origin of science and dissemination of ironware, accumulation of science and technology in the Middle Age society, the era of the Renaissance and science, factory-made manual industry and mechanistic nature view, the era of scientific enlightenment, industrial revolution, science and technology of Korea, formation of modern science and technology, modern technology and approach to science and technology, science and technology in the twenty century such as biochemistry and physics, and cooperation of science and technology.

  4. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States)

    1998-12-31

    This complete survey of modern environmental science covers the four traditional spheres of the environment: water, air, earth, and life, and introduces a fifth sphere -- the anthrosphere -- which the author defines as the sphere of human activities, especially technology, that affect the earth. The book discusses how technology can be used in a manner that minimizes environmental disruption.

  5. Astrbiology Science and Technology for Instrument Development (ASTID)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Astrobiology Science and Technology for Instrument Development (ASTID) develops instrumentation capabilities to help meet Astrobiology science requirements on...

  6. Statement of Aaron Cohen, Director, Research and Engineering, Johnson Space Center and Chairman, Space Station Advanced Technology Advisory Committee, National Aeronautics and Space Administration, before the Subcommittee on Science, Technology, and Space, Committee on Commerce, Science, and Transportation, United States Senate

    Science.gov (United States)

    Cohen, A.

    1985-01-01

    The activities of NASA's Space Station Advanced Technology Advisory Committee is discussed. Advanced Technology Advisory Committee (ATAC) activities over the last year are reviewed in preparation of the report to Congress on the potential for advancing automation and robotics technology for the space station and for the U.S. economy.

  7. Space Sciences and Idealism

    Science.gov (United States)

    Popov, M.

    Erwin Schrodinger suggested that " Scientific knowledge forms part of the idealistic background of human life", which exalted man from a nude and savage state to true humanity [Science and Humanism, Cambridge, 1961, p9]. Modern space sciences an space exploration are a brilliant demonstration of the validity of Schrodinger's thesis on Idealism. Moreover, Schrodingers thesis could be considered also as a basic principle for the New Educational Space Philosophical Project "TIMAEUS"."TIMAEUS" is not only an attempt to to start a new dialogue between Science, the Humanities and Religion; but also it is an origin of the cultural innovations of our so strange of globilisation. TIMAEUS, thus, can reveal Idealism as something more fundamental , more refined, more developed than is now accepted by the scientific community and the piblic. TIMAEUS has a significant cultural agenda, connected with the high orbital performance of the synthetic arts, combining a knowledge of the truly spiritual as well as the universal. In particular, classical ballet as a synthetic art can be a new and powerful perfector and re-creator of the real human, real idealistic, real complex culture in orbit. As is well known, Carlo Blasis, the most important dance theorist of the 19t h .century, made probably the first attempts to use the scientific ideas of Leonardo da Vinci and Isaac Newton for the understanding of the gravitational nature of balance and allegro in ballet. In particular Blasis's idea of the limited use of the legs in classical dance realised by the gifted pupils of Enrico Cecchetti - M.Fokine, A.Pavlova and V.Nijinsky, with thinkable purity and elegance of style. V.Nijinsky in his remarkable animation of the dance of two dimensional creatures of a Euclidean flat world (L'Apres Midi d'un Faune,1912) discovered that true classical dance has some gravitational limits. For example, Nijinsky's Faunes and Nymphs mut use running on the heels (In accordance with "Partitura" 1916); they

  8. Science and technology

    CERN Document Server

    Chorafas, Dimitris N

    2014-01-01

    The aim of this book is to explore science and technology from the viewpoint of creating new knowledge, as opposed to the reinterpretation of existing knowledge in ever greater but uncertain detail. Scientists and technologists make progress by distinguishing between what they regard as meaningful and what they consider as secondary or unimportant. The meaningful is dynamic; typically, the less important is static. Science and technology have made a major contribution to the culture and to the standard of living of our society. From antiquity to the present day, the most distinguished scientis

  9. The Aula EspaZio Gela and the Master of Space Science and Technology in the Universidad del País Vasco (University of the Basque Country)

    Science.gov (United States)

    Sánchez-Lavega, Agustín; Pérez-Hoyos, Santiago; Hueso, Ricardo; del Río-Gaztelurrutia, Teresa; Oleaga, Alberto

    2014-09-01

    We present the Aula EspaZio Gela, a facility dedicated to teaching Space Science and Technology at the master and doctorate level at the University of the Basque Country (Spain), and to promoting the development of this field in both public and private sectors. The one-year master's degree in Space Science and Technology (60 ECTS (European Credit Transfer and Accumulation System)) offers a group of compulsory courses which give way afterwards to a set of elective matters in which students choose one of two tracks: the scientific, primarily oriented to basic research at the University, or the technological, leading to the space industry and space agencies. After completion of the master thesis, our students have direct access to a PhD in both curricular lines. Here we detail the main features of the master's degree and the experience acquired in three years, including a comparative opinion survey to the students. We also describe the facilities at the Faculty of Engineering consisting of a specific classroom (Aula EspaZio Gela), an Astronomical Observatory, and different laboratories.

  10. Canadian Activities in Space Debris Mitigation Technologies

    Science.gov (United States)

    Nikanpour, Darius; Jiang, Xin Xiang; Goroshin, Samuel; Haddad, Emile; Kruzelecky, Roman; Hoa, Suong; Merle, Philippe; Kleiman, Jacob; Gendron, Stephane; Higgins, Andrew; Jamroz, Wes

    The space environment, and in particular the Low Earth Orbit (LEO), is becoming increasingly populated with space debris which include fragments of dysfunctional spacecraft parts and materials traveling at speeds up to 15 km per second. These pose an escalating potential threat to LEO spacecraft, the international space station, and manned missions. This paper presents the Canadian activities to address the concerns over space debris in terms of debris mitigation measures and technologies; these include novel spacecraft demise technologies to safely decommission the spacecraft at the end of the mission, integrated self-healing material technologies for spacecraft structures to facilitate self-repair and help maintain the spacecraft structural and thermal performance, hypervelocity ground test capability to predict the impact of space debris on spacecraft performance, and ways of raising awareness within the space community through participation in targeted Science and Technology conferences and international forums.

  11. Science & technology review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This document is the August, 1995 issue of the Science and Technology review, a Lawrence Berkeley Laboratory publication. It contains two major articles, one on Scanning Tunneling Microscopy - as applied to materials engineering studies, and one on risk assessment, in this case looking primarily at a health care problem. Separate articles will be indexed from this journal to the energy database.

  12. Technological Spaces: An Initial Appraisal

    NARCIS (Netherlands)

    Ivanov, Ivan; Bézivin, Jean; Aksit, Mehmet

    2002-01-01

    In this paper, we propose a high level view of technological spaces (TS) and relations among these spaces. A technological space is a working context with a set of associated concepts, body of knowledge, tools, required skills, and possibilities. It is often associated to a given user community with

  13. The Attached Payload Facility Program: A Family of In-Space Commercial Facilities for Technology, Science and Industry

    Science.gov (United States)

    Avery, Don E.; Kaszubowski, Martin J.; Kearney, Michael E.; Howard, Trevor P.

    1996-01-01

    It is anticipated that as the utilization of space increases in both the government and commercial sec tors the re will be a high degree of interest in materials and coatings research as well as research in space environment definition, deployable structures, multi-functional structures and electronics. The International Space Station (ISS) is an excellent platform for long-term technology development because it provides large areas for external attached payloads, power and data capability, and ready access for experiment exchange and return. An alliance of SPACEHAB, MicroCraft, Inc. and SpaceTec, Inc. has been formed to satisfy this research need through commercial utilization of the capabilities of ISS. The alliance will provide a family of facilities designed to provide low-cost, reliable access to space for experimenters. This service would start as early as 1997 and mature to a fully functional attached facility on ISS by 2001. The alliances facilities are based on early activities by NASA, Langley Research Center (LaRC) to determine the feasibility of a Material Exposure Facility (MEF).

  14. National Space Science Data Center Master Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — The National Space Science Data Center serves as the permanent archive for NASA space science mission data. 'Space science' means astronomy and astrophysics, solar...

  15. Progress in space power technology

    Science.gov (United States)

    Mullin, J. P.; Randolph, L. P.; Hudson, W. R.

    1980-01-01

    The National Aeronautics and Space Administration's Space Power Research and Technology Program has the objective of providing the technology base for future space power systems. The current technology program which consists of photovoltaic energy conversion, chemical energy conversion and storage, thermal-to-electric conversion, power systems management and distribution, and advanced energetics is discussed. In each area highlights, current programs, and near-term directions will be presented.

  16. Space technology needs nuclear power

    International Nuclear Information System (INIS)

    Leidinger, B.J.G.

    1993-01-01

    Space technology needs nuclear power to solve its future problems. Manned space flight to Mars is hardly feasible without nuclear propulsion, and orbital nuclear power lants will be necessary to supply power to large satellites or large space stations. Nuclear power also needs space technology. A nuclear power plant sited on the moon is not going to upset anybody, because of the high natural background radiation level existing there, and could contribute to terrestrial power supply. (orig./HP) [de

  17. Terahertz Science, Technology, and Communication

    Science.gov (United States)

    Chattopadhyay, Goutam

    2013-01-01

    The term "terahertz" has been ubiquitous in the arena of technology over the past couple of years. New applications are emerging every day which are exploiting the promises of terahertz - its small wavelength; capability of penetrating dust, clouds, and fog; and possibility of having large instantaneous bandwidth for high-speed communication channels. Until very recently, space-based instruments for astrophysics, planetary science, and Earth science missions have been the primary motivator for the development of terahertz sensors, sources, and systems. However, in recent years the emerging areas such as imaging from space platforms, surveillance of person-borne hidden weapons or contraband from a safe stand-off distance and reconnaissance, medical imaging and DNA sequencing, and in the world high speed communications have been the driving force for this area of research.

  18. Ethics, science and technology

    Directory of Open Access Journals (Sweden)

    Ivan Domingues

    2006-01-01

    Full Text Available The article aims at thinking the relation between ethics, science and technology, emphasising the problem of their re-linking, after the split into judgements of fact and judgements of value, which happened in the beginning of modern times. Once the warlike Aristocracy's ethics and the saint man's moral are examined, one tries to outline the way by taking as a reference the ethics of responsibility, whose prototype is the wise man's moral, which disappeared in the course of modern times, due to the fragmentation of knowing and the advent of the specialist. At the end of the study, the relation between ethics and metaphysics is discussed, aiming at adjusting the anthropological question to the cosmological perspective, as well as at providing the bases of a new humanism, objectifying the humanising of technique and the generation of a new man, literate at science, technology and the humanities.

  19. Technologies for Medical Sciences

    CERN Document Server

    Tavares, João; Barbosa, Marcos; Slade, AP

    2012-01-01

    This book presents novel and advanced technologies for medical sciences in order to solidify knowledge in the related fields and define their key stakeholders.   The fifteen papers included in this book were written by invited experts of international stature and address important technologies for medical sciences, including: computational modeling and simulation, image processing and analysis, medical imaging, human motion and posture, tissue engineering, design and development medical devices, and mechanic biology. Different applications are treated in such diverse fields as biomechanical studies, prosthesis and orthosis, medical diagnosis, sport, and virtual reality.   This book is of interest to researchers, students and manufacturers from  a wide range of disciplines related to bioengineering, biomechanics, computational mechanics, computational vision, human motion, mathematics, medical devices, medical image, medicine and physics.

  20. Science & Technology Digital Library

    OpenAIRE

    Solodovnik, Iryna

    2014-01-01

    This document contains information on the activities carried out within the project Science & Technology Digital Library and in particular, it describes the Metadata Core Reference Model. Metadata are strategic for semantic interoperability to and, from the repository. Metadata are essential for available and safe management of digital objects, and for their sustainability and preservation. For these reasons, the project needs to define a specific metadata model. The purpose of this document ...

  1. China Report, Science & Technology

    Science.gov (United States)

    1987-04-30

    Contracting System Examined (Wang Shengqiao; KEXUEXUE YU KEXUE JISHU GUANLI, No 1, Jan 87) 3 Wu Wushu Discusses New Scientific, Technical Legislation...research units and must not impose uniformity on them across the board. 12581 CSO: 4008/2074 10 NATIONAL DEVELOPMENTS WU WUSHU DISCUSSES NEW...and Technical Legislation Research Work Conference, State Science and Technology Commission Secretary Wu Wushu [0702 2976 2885] made a request about

  2. Determination of Misconceptions Belonging to the "Solar System and Beyond: Space Puzzle" Unit in 7th Grade Science and Technology Curriculum with Two-Tier Diagnostic Tests

    Science.gov (United States)

    Töman, Ögr. Gör. Ufuk; Ergen, Yusuf

    2014-01-01

    Today's World is in period of rapid development of science and technology. There is science and technology education that not based on rote, practical on the basis of development in science and technology. Misconceptions are a major obstacle in order to take the desired efficiency. Because concepts that learned wrong obstacle attainment of right…

  3. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Environmental Science and Technology developed at the Chemical and Environmental Technology Center comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalysts) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization). The Chemical and Environmental Technology Center was established in 1995, as an evolution of the former Department of Chemistry Engineering (1970). The program on environment science and technology was structured as consequence of the continuous growth of environmental activities on areas related to nuclear programs of IPEN. Moreover, it was an answer to the society concerning the climate changes and biodiversity preservation. All activities of research and development, services, supervision of graduate and under graduated students and courses performance at the center were related to the development, improvement and establishment of new technologies. The highlights of this period (2011 - 2013) were: - Development and use of modern analytical technology for the characterization of persistent pollutants and endocrine disrupters (metals, PAHA’s, PCBs, Pesticides, hormones, surfactants, plasticizer and human pharmaceuticals) in order to evaluate water quality and/or sediments; - Atmospheric chemistry and greenhouse gases: Evaluating an estimation of surface trace gas fluxes from aircraft measurements above the Amazon; - Cooperation with SABESP (Water and Sewage Company) and CETESB (State Environment Agency) in program for the development of public policies; - Studies and development in biodegradable polymers, polyolefins and advanced methods for polymer and rubber recycling and re-use; - Studies

  4. Environmental science and technology

    International Nuclear Information System (INIS)

    2014-01-01

    The Program on Environmental Science and Technology developed at the Chemical and Environmental Technology Center comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalysts) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization). The Chemical and Environmental Technology Center was established in 1995, as an evolution of the former Department of Chemistry Engineering (1970). The program on environment science and technology was structured as consequence of the continuous growth of environmental activities on areas related to nuclear programs of IPEN. Moreover, it was an answer to the society concerning the climate changes and biodiversity preservation. All activities of research and development, services, supervision of graduate and under graduated students and courses performance at the center were related to the development, improvement and establishment of new technologies. The highlights of this period (2011 - 2013) were: - Development and use of modern analytical technology for the characterization of persistent pollutants and endocrine disrupters (metals, PAHA’s, PCBs, Pesticides, hormones, surfactants, plasticizer and human pharmaceuticals) in order to evaluate water quality and/or sediments; - Atmospheric chemistry and greenhouse gases: Evaluating an estimation of surface trace gas fluxes from aircraft measurements above the Amazon; - Cooperation with SABESP (Water and Sewage Company) and CETESB (State Environment Agency) in program for the development of public policies; - Studies and development in biodegradable polymers, polyolefins and advanced methods for polymer and rubber recycling and re-use; - Studies

  5. Nuclear science and technology

    International Nuclear Information System (INIS)

    Daud Mohamad; Abd Khalik Wood; Azali Muhammad; Idris Besar; Jaafar Abdullah; Mohd Tadza Abdul Rahman; Muhammad Lebai Juri; Noriah Mod Ali; Samsurdin Ahamad; Syed Abdul Malik Syed Zain; Zaharudin Ahmad

    2005-01-01

    The Nuclear Science and Technology contains valuable information on many aspects of nuclear sciences and technology particularly, its application in various socio-economic sectors, presented in 26 chapters. In general, the book addresses 5 main subjects, covering the following: 1] Introduction; contains basic information on ionising radiation and radioactivity including the what of ionising radiation is all about, interaction with matter and sources of radiation. 2] Detection and measurements; describes detection system and methods capable of detecting specific type of radiation and exposure rate. The QA/QC aspects are also given due consideration in this segment. 3] Safety and health. Outlines the effects of radiation on man, proper working procedures and the organisational radiation protection programme required in accordance to the Atomic Energy Licensing Act 1984 (Act 304) and its subsidiaries. 4] Techniques and applications; as the nucleus of the book, focussing on the various applications and some success stories; power production (for electricity) and other utilizations from both sealed and unsealed sources used in industry, medical and non-medical sectors for the benefit of mankind. 5] Prospects; provides information on the current situation and status of nuclear technology, and prominent organisations responsible in the development of the technology. The direction and future outlook of the technology are also presented to gauge the position and possible contribution that the nuclear technology can play a significant role for the socio-economic progress and nation, well being. Each, chapter in this book is developed around three pillars - basic principle, equipment and system, techniques and operational aspects - as a backbone of the chapter, to ease the understanding of the readers, step by step. Those dealing, with ionising radiation related matters, be it a researcher, a scientist, a laboratory worker or even a member of the public would find this book

  6. Food technology in space habitats

    Science.gov (United States)

    Karel, M.

    1979-01-01

    The research required to develop a system that will provide for acceptable, nutritious, and safe diets for man during extended space missions is discussed. The development of a food technology system for space habitats capable of converting raw materials produced in the space habitats into acceptable food is examined.

  7. Space technology developments in Malaysia:

    Science.gov (United States)

    Sabirin, A.

    The venture of space is, by nature, a costly one. However, exploring space is not just an activity reserved for international superpowers. Smaller and emerging space nations, some with burgeoning space programs of their own, can play a role in space technology development and interplanetary exploration, sometimes simply by just being there. Over the past four decades, the range of services delivered by space technologies in Malaysia has grown enormously. For many business and public services, space based technologies have become the primary means of delivery of such services. Space technology development in Malaysia started with Malaysia's first microsatellite, TiungSAT-1. TiungSAT-1 has been successfully launched from the Baikonur Cosmodrome, Kazakhstan on the 26th of September 2000 on a Russian-Ukrainian Dnepr rocket. There have been wide imaging applications and information extraction using data from TiungSAT-1. Various techniques have been applied to the data for different applications in environmental assessment and monitoring as well as resource management. As a step forward, Malaysia has also initiated another space technology programme, RAZAKSAT. RAZAKSAT is a 180kg class satellite designed to provide 2.5meter ground sampling distance resolution imagery on a near equatorial orbit. Its mission objective is to demonstrate the capability of a medium high resolution remote sensing camera using a cost effective small satellite platform and a multi-channel linear push-broom electro-optical instrument. Realizing the immense benefits of space technology and its significant role in promoting sustainable development, Malaysia is committed to the continuous development and advancement of space technology within the scope of peaceful use of outer space and boosting its national economic growth through space related activities.

  8. CubeSat Capabilities for Space Science Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — The CubeSat Capabilities for Space Science Missions provides an assessment of current CubeSat capabilities and identifies the advanced technology needed to support...

  9. Quantum Opportunities and Challenges for Fundamental Sciences in Space

    Science.gov (United States)

    Yu, Nan

    2012-01-01

    Space platforms offer unique environment for and measurements of quantum world and fundamental physics. Quantum technology and measurements enhance measurement capabilities in space and result in greater science returns.

  10. The global politics of science and technology

    CERN Document Server

    Carpes, Mariana; Knoblich, Ruth

    2014-01-01

    An increasing number of scholars have begun to see science and technology as relevant issues in International Relations (IR), acknowledging the impact of material elements, technical instruments, and scientific practices on international security, statehood, and global governance. This two-volume collection brings the debate about science and technology to the center of International Relations. It shows how integrating science and technology translates into novel analytical frameworks, conceptual approaches and empirical puzzles, and thereby offers a state-of-the-art review of various methodological and theoretical ways in which sciences and technologies matter for the study of international affairs and world politics. The authors not only offer a set of practical examples of research frameworks for experts and students alike, but also propose a conceptual space for interdisciplinary learning in order to improve our understanding of the global politics of science and technology.

  11. Towards a results-based management approach for capacity-building in space science, technology and applications to support the implementation of the 2030 agenda for sustainable development

    Science.gov (United States)

    Balogh, Werner R.; St-Pierre, Luc; Di Pippo, Simonetta

    2017-10-01

    The United Nations Office for Outer Space Affairs (UNOOSA) has the mandate to assist Member States with building capacity in using space science, technology and their applications in support of sustainable economic, social and environmental development. From 20 to 21 June 2018 the international community will gather in Vienna for UNISPACE + 50, a special segment of the 61st session of the Committee on the Peaceful Uses of Outer Space (COPUOS), to celebrate the 50th anniversary of the first UNISPACE conference and to reach consensus on a global space agenda for the next two decades. ;Capacity-building for the twenty-first century; is one of the seven thematic priorities of UNISPACE + 50, identified and agreed upon by COPUOS. The Committee has tasked UNOOSA with undertaking the work under this thematic priority and with reporting regularly to the Committee and its Subcommittees on the progress of its work. It is therefore appropriate, in this context, to take stock of the achievements of the capacity-building activities of the Office, to review the relevant mandates and activities and to consider the necessity to strengthen and better align them with the future needs of the World and in particular with the 2030 Agenda for Sustainable Development. This paper describes the efforts on-going at UNOOSA, building on its experiences with implementing the United Nations Programme on Space Applications and the United Nations Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER) and working with Member States and other United Nations entities, to develop a results-based management approach, based on an indicator framework and a database with space solutions, for promoting the use of space-based solutions to help Member States achieve the Sustainable Development Goals (SDGs) and successfully implement the 2030 Agenda for Sustainable Development.

  12. Essays in Space Science

    International Nuclear Information System (INIS)

    Ramaty, R.; Cline, T.L.; Ormes, J.F.

    1987-06-01

    The papers presented cover a broad segment of space research and are an acknowledgement of the personal involvement of Frank McDonald in many of these efforts. The totality of the papers were chosen so as to sample the scientific areas influenced by him in a significant manner. Three broad areas are covered: particles and fields of the solar system; cosmic ray astrophysics; and gamma ray, x ray, and infrared astronomics

  13. Space construction technology needs

    Science.gov (United States)

    Jenkins, L. M.

    1981-01-01

    Space construction systems made feasible by an operational Space Shuttle are discussed with a view toward assembly, installation and construction support equipment. The level of construction capability will be reflected in the number of launches to accomplish a certain mission, either in terms of the mission time line or on the density of packaging in the Orbiter payload bay. It is noted that the development of construction support equipment in zero-gravity simulations should be the most productive initial activity. Crew EVAs, as well as the beam builder, cherrypicker and power distribution buses are covered in detail.

  14. Strategic Technologies for Deep Space Transport

    Science.gov (United States)

    Litchford, Ronald J.

    2016-01-01

    Deep space transportation capability for science and exploration is fundamentally limited by available propulsion technologies. Traditional chemical systems are performance plateaued and require enormous Initial Mass in Low Earth Orbit (IMLEO) whereas solar electric propulsion systems are power limited and unable to execute rapid transits. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, key deep space transport mission capability objectives are reviewed in relation to STMD technology portfolio needs, and the advanced propulsion technology solution landscape is examined including open questions, technical challenges, and developmental prospects. Options for potential future investment across the full compliment of STMD programs are presented based on an informed awareness of complimentary activities in industry, academia, OGAs, and NASA mission directorates.

  15. Accelerators in Science and Technology

    CERN Document Server

    Kailas, S

    2002-01-01

    Accelerators built for basic research in frontier areas of science have become important and inevitable tools in many areas of science and technology. Accelerators are examples of science driven high technology development. Accelerators are used for a wide ranging applications, besides basic research. Accelerator based multidisciplinary research holds great promise

  16. STAIF96: space technology and applications international forum. Proceedings

    International Nuclear Information System (INIS)

    El-Genk, M.S.

    1996-01-01

    These proceedings represent papers presented at the Space Technology and Applications International Forum-STAIF. STAIF-96 hosted four technical conferences sharing the common interest in space exploration, technology, and commercialization. Topics discussed include space station, space transportation, materials processing in space, commercial forum, space power, commercial space ports, microelectronics, automation of robotics-space application, remote sensing, small business innovative research and communications. There were 243 papers presented at the forum, and 138 have been abstracted for the Energy Science and Technology database. STAIF-96 was partly sponsored by the U.S. Department of Energy

  17. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 2. Science and Technology of Ceramics - Advanced Ceramics: Structural Ceramics and Glasses. Sheela K Ramasesha. Series Article Volume 5 Issue 2 February 2000 pp 4-11 ...

  18. Deep Space Gateway Science Opportunities

    Science.gov (United States)

    Quincy, C. D.; Charles, J. B.; Hamill, Doris; Sidney, S. C.

    2018-01-01

    The NASA Life Sciences Research Capabilities Team (LSRCT) has been discussing deep space research needs for the last two years. NASA's programs conducting life sciences studies - the Human Research Program, Space Biology, Astrobiology, and Planetary Protection - see the Deep Space Gateway (DSG) as affording enormous opportunities to investigate biological organisms in a unique environment that cannot be replicated in Earth-based laboratories or on Low Earth Orbit science platforms. These investigations may provide in many cases the definitive answers to risks associated with exploration and living outside Earth's protective magnetic field. Unlike Low Earth Orbit or terrestrial locations, the Gateway location will be subjected to the true deep space spectrum and influence of both galactic cosmic and solar particle radiation and thus presents an opportunity to investigate their long-term exposure effects. The question of how a community of biological organisms change over time within the harsh environment of space flight outside of the magnetic field protection can be investigated. The biological response to the absence of Earth's geomagnetic field can be studied for the first time. Will organisms change in new and unique ways under these new conditions? This may be specifically true on investigations of microbial communities. The Gateway provides a platform for microbiology experiments both inside, to improve understanding of interactions between microbes and human habitats, and outside, to improve understanding of microbe-hardware interactions exposed to the space environment.

  19. Space development and space science together, an historic opportunity

    Science.gov (United States)

    Metzger, P. T.

    2016-11-01

    The national space programs have an historic opportunity to help solve the global-scale economic and environmental problems of Earth while becoming more effective at science through the use of space resources. Space programs will be more cost-effective when they work to establish a supply chain in space, mining and manufacturing then replicating the assets of the supply chain so it grows to larger capacity. This has become achievable because of advances in robotics and artificial intelligence. It is roughly estimated that developing a lunar outpost that relies upon and also develops the supply chain will cost about 1/3 or less of the existing annual budgets of the national space programs. It will require a sustained commitment of several decades to complete, during which time science and exploration become increasingly effective. At the end, this space industry will capable of addressing global-scale challenges including limited resources, clean energy, economic development, and preservation of the environment. Other potential solutions, including nuclear fusion and terrestrial renewable energy sources, do not address the root problem of our limited globe and there are real questions whether they will be inadequate or too late. While industry in space likewise cannot provide perfect assurance, it is uniquely able to solve the root problem, and it gives us an important chance that we should grasp. What makes this such an historic opportunity is that the space-based solution is obtainable as a side-benefit of doing space science and exploration within their existing budgets. Thinking pragmatically, it may take some time for policymakers to agree that setting up a complete supply chain is an achievable goal, so this paper describes a strategy of incremental progress. The most crucial part of this strategy is establishing a water economy by mining on the Moon and asteroids to manufacture rocket propellant. Technologies that support a water economy will play an

  20. NASA Space Laser Technology

    Science.gov (United States)

    Krainak, Michael A.

    2015-01-01

    Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.

  1. The space shuttle program technologies and accomplishments

    CERN Document Server

    Sivolella, Davide

    2017-01-01

    This book tells the story of the Space Shuttle in its many different roles as orbital launch platform, orbital workshop, and science and technology laboratory. It focuses on the technology designed and developed to support the missions of the Space Shuttle program. Each mission is examined, from both the technical and managerial viewpoints. Although outwardly identical, the capabilities of the orbiters in the late years of the program were quite different from those in 1981. Sivolella traces the various improvements and modifications made to the shuttle over the years as part of each mission story. Technically accurate but with a pleasing narrative style and simple explanations of complex engineering concepts, the book provides details of many lesser known concepts, some developed but never flown, and commemorates the ingenuity of NASA and its partners in making each Space Shuttle mission push the boundaries of what we can accomplish in space. Using press kits, original papers, newspaper and magazine articles...

  2. WOMEN POWER IN SPACE SCIENCE

    Indian Academy of Sciences (India)

    TSC

    Venues for Space Science Research. The payload integration, test facilities and the launch of sounding rockets are provided by ISRO. In addition to ISRO, expertise and facilities for development, fabrication and testing of payloads for scientific experiments onboard Indian Satellites are available to Indian scientists in other ...

  3. The United Nations Basic Space Science Initiative

    Science.gov (United States)

    Haubold, Hans; Balogh, Werner

    2014-05-01

    were held in Egypt in 2010 for Western Asia, Nigeria in 2011 for Africa, and Ecuador in 2012 for Latin America and the Caribbean. The International Center for Space Weather Science and Education at Kyushu University, Fukuoka, Japan 9www.serc.kyushu-u.ac.jp/index_e.html), was established through the basic space science initiative in 2012. Similar research and education centres were also established in Nigeria(www.cbssonline.com/aboutus.html) and India (www.cmsintl.org). Activities of basic space science initiative were also coordinated with the Regional Centres for Space Science and Technology Education, affiliated to the United Nations (www.unoosa.org/oosa/en/SAP/centres/index.html). Prospective future directions of the initiative will be discussed in this paper.

  4. Understanding space science under the northern lights

    Science.gov (United States)

    Koskinen, H.

    What is space science? The answers to this question can be very variable indeed. In fact, space research is a field where science, technology, and applications are so closely tied together that it is often difficult to recognize the central role of science. However, as paradoxical as it may sound, it appears that the less-educated public often appreciates the value of space science better than highly educated policy makers and bureaucrats who tend to evaluate the importance of space activities in terms of economic and societal benefits only. In a country like Finland located below the zone, where auroras are visible during the long dark winter nights, the space is perhaps closer to the public than in countries where the visible objects are the Moon, planets and stars somewhere far away. This positive fact has been very useful, for example, in popularization of such an abstract concept as space weather. In Finland it is possible to see space weather and this rises the curiosity about the processes behind this magnificent phenomenon. Of course, also in Finland the beautiful SOHO images of the Sun and the Hubble Space Telescope pictures of the remote universe attract the attention of the large public. We also have an excellent vehicle in increasing the public understanding in the society of Finnish amateur astronomers Ursa. It is an organization for anyone interested in practically everything from visual phenomena in the air to the remote galaxies and the Big Bang. Ursa publishes a high-quality monthly magazine in Finnish and runs local amateur clubs. Last year its 80th birthday exhibition was one of the best-visited public events in Helsinki. It clearly gave a strong evidence of wide public interest in space in general and in space science in particular. Only curious people can grasp the beauty and importance of the underlying science. Thus, we should focus our public space science education and outreach primarily on waking up the curiosity of the public instead of

  5. Space weapon technology and policy

    Science.gov (United States)

    Hitchens, Theresa

    2017-11-01

    The military use of space, including in support of nuclear weapons infrastructure, has greatly increased over the past 30 years. In the current era, rising geopolitical tensions between the United States and Russia and China have led to assumptions in all three major space powers that warfighting in space now is inevitable, and possible because of rapid technological advancements. New capabilities for disrupting and destroying satellites include radio-frequency jamming, the use of lasers, maneuverable space objects and more capable direct-ascent anti-satellite weapons. This situation, however, threatens international security and stability among nuclear powers. There is a continuing and necessary role for diplomacy, especially the establishment of normative rules of behavior, to reduce risks of misperceptions and crisis escalation, including up to the use of nuclear weapons. U.S. policy and strategy should seek a balance between traditional military approaches to protecting its space assets and diplomatic tools to create a more secure space environment.

  6. Physical Sciences 2007 Science & Technology Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A U

    2008-04-07

    The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007.

  7. Physical Sciences 2007 Science and Technology Highlights

    International Nuclear Information System (INIS)

    Hazi, A.U.

    2008-01-01

    The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007

  8. Science & Technology Review September 2017

    Energy Technology Data Exchange (ETDEWEB)

    Duoss, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kotta, Paul R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meissner, Caryn N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chinn, Ken [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-16

    This is the September 2017 edition of the LLNL, Science and Technology Review. At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  9. The Space Science Enterprise Strategic Plan

    Science.gov (United States)

    2000-01-01

    It is a pleasure to present our new Space Science Strategic Plan. It represents contributions by hundreds of members of the space science community, including researchers, technologists, and educators, working with staff at NASA, over a period of nearly two years. Our time is an exciting one for space science. Dramatic advances in cosmology, planetary research, and solar-terrestrial science form a backdrop for this ambitious plan. Our program boldly addresses the most fundamental questions that science can ask: (1) how the universe began and is changing, (2) what are the past and future of humanity, and (3) whether we are alone. In taking up these questions, researchers and the general public--for we are all seekers in this quest--will draw upon all areas of science and the technical arts. Our Plan outlines how we will communicate our findings to interested young people and adults. The program that you will read about in this Plan includes forefront research and technology development on the ground as well as development and operation of the most complex spacecraft conceived. The proposed flight program is a balanced portfolio of small missions and larger spacecraft. Our goal is to obtain the best science at the lowest cost, taking advantage of the most advanced technology that can meet our standards for expected mission success. In driving hard to achieve this goal, we experienced some very disappointing failures in 1999. But NASA, as a research and development agency, makes progress by learning also from mistakes, and we have learned from these.

  10. Advanced Technology in Small Packages Enables Space Science Research Nanosatellites: Examples from the NASA Miniature X-ray Solar Spectrometer CubeSat

    Science.gov (United States)

    Woods, T. N.

    2017-12-01

    Nanosatellites, including the CubeSat class of nanosatellites, are about the size of a shoe box, and the CubeSat modular form factor of a Unit (1U is 10 cm x 10 cm x 10 cm) was originally defined in 1999 as a standardization for students developing nanosatellites. Over the past two decades, the satellite and instrument technologies for nanosatellites have progressed to the sophistication equivalent to the larger satellites, but now available in smaller packages through advanced developments by universities, government labs, and space industries. For example, the Blue Canyon Technologies (BCT) attitude determination and control system (ADCS) has demonstrated 3-axis satellite control from a 0.5-Unit system with 8 arc-second stability using reaction wheels, torque rods, and a star tracker. The first flight demonstration of the BCT ADCS was for the NASA Miniature X-ray Solar Spectrometer (MinXSS) CubeSat. The MinXSS CubeSat mission, which was deployed in May 2016 and had its re-entry in May 2017, provided space weather measurements of the solar soft X-rays (SXR) variability using low-power, miniaturized instruments. The MinXSS solar SXR spectra have been extremely useful for exploring flare energetics and also for validating the broadband SXR measurements from the NOAA GOES X-Ray Sensor (XRS). The technology used in the MinXSS CubeSat and summary of science results from the MinXSS-1 mission will be presented. Web site: http://lasp.colorado.edu/home/minxss/

  11. Zimbabwe Journal of Technological Sciences

    African Journals Online (AJOL)

    The Zimbabwe Journal of Technological Sciences receives and publishes articles that address issues in Technology as a developmental field in Africa. The aim is to develop new technological knowledge that is geared to enhance the lives of the African people through solving pertinent problems that affect them.

  12. Nuclear science and technology

    International Nuclear Information System (INIS)

    2014-01-01

    The Program on Nuclear Science and Technology comprehends Nuclear and Condensed Matter Physics, Neutron Activation Analysis, Radiation Metrology, Radioprotection and Radioactive Waste Management. These activities are developed at the Research Reactor Center, the Radiation Metrology Center and the Radioactive Waste Management Laboratory. The Radioprotection activities are developed at all radioactive and nuclear facilities of IPEN-CNEN/SP. The Research Reactor Center at IPEN-CNEN/SP is responsible for the operation and maintenance of the Research Reactor IEA-R1 and has a three-fold mission: promoting basic and applied research in nuclear and neutron related sciences, providing educational opportunities for students in these fields and providing services and applications resulting from the reactor utilization. Specific research programs include nuclear structure study from beta and gamma decay of radioactive nuclei and nuclear reactions, nuclear and neutron metrology, neutron diffraction and neutron multiple-diffraction study for crystalline and magnetic structure determination, perturbed -angular correlation (PAC) using radioactive nuclear probes to study the nuclear hyperfine interactions in solids and instrumental neutron activation analysis, with comparative or ko standardization applied to the fields of health, agriculture, environment, archaeology, reference material production, geology and industry. The research in the areas of applied physics includes neutron radiography, scientific computation and nuclear instrumentation. During the last several years a special effort was made to refurbish the old components and systems of the reactor, particularly those related with the reactor safety improvement, in order to upgrade the reactor power. The primary objective was to modernize the IEA-R1 reactor for safe and sustainable operation to produce primary radioisotopes, such as 99 Mo and 131 I, among several others, used in nuclear medicine, by operating the reactor

  13. Nuclear science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Nuclear Science and Technology comprehends Nuclear and Condensed Matter Physics, Neutron Activation Analysis, Radiation Metrology, Radioprotection and Radioactive Waste Management. These activities are developed at the Research Reactor Center, the Radiation Metrology Center and the Radioactive Waste Management Laboratory. The Radioprotection activities are developed at all radioactive and nuclear facilities of IPEN-CNEN/SP. The Research Reactor Center at IPEN-CNEN/SP is responsible for the operation and maintenance of the Research Reactor IEA-R1 and has a three-fold mission: promoting basic and applied research in nuclear and neutron related sciences, providing educational opportunities for students in these fields and providing services and applications resulting from the reactor utilization. Specific research programs include nuclear structure study from beta and gamma decay of radioactive nuclei and nuclear reactions, nuclear and neutron metrology, neutron diffraction and neutron multiple-diffraction study for crystalline and magnetic structure determination, perturbed -angular correlation (PAC) using radioactive nuclear probes to study the nuclear hyperfine interactions in solids and instrumental neutron activation analysis, with comparative or ko standardization applied to the fields of health, agriculture, environment, archaeology, reference material production, geology and industry. The research in the areas of applied physics includes neutron radiography, scientific computation and nuclear instrumentation. During the last several years a special effort was made to refurbish the old components and systems of the reactor, particularly those related with the reactor safety improvement, in order to upgrade the reactor power. The primary objective was to modernize the IEA-R1 reactor for safe and sustainable operation to produce primary radioisotopes, such as {sup 99}Mo and {sup 131}I, among several others, used in nuclear medicine, by operating

  14. 75 FR 10845 - Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council

    Science.gov (United States)

    2010-03-09

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council ACTION: General Notice. Nominations for Interagency Working Group participants. SUMMARY: The Subcommittee on Forensic Science of the National Science and Technology Council's...

  15. WikiScience: Wikipedia for science and technology

    OpenAIRE

    Aibar Puentes, Eduard

    2015-01-01

    Peer-reviewed Presentació de la conferència "WikiScience: Wikipedia for science and technology". Presentación de la conferencia "WikiScience: Wikipedia for science and technology". Presentation of the conference "Science Wiki: Wikipedia for science and technology".

  16. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 12. Science and Technology of Ceramics - Functional Ceramics. Sheela K Ramasesha. Series Article Volume 4 Issue 12 December 1999 pp 21-30. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Science and Technology of Ceramics - Traditional Ceramics. Sheela K Ramasesha. Series Article Volume 4 Issue 8 August 1999 pp 16-24. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Constructivism, Education, Science, and Technology

    Science.gov (United States)

    Boudourides, Moses A.

    2003-01-01

    The purpose of this paper is to present a brief review of the various streams of constructivism in studies of education, society, science and technology. It is intended to present a number of answers to the question (what really is constructivism?) in the context of various disciplines from the humanities and the sciences (both natural and…

  19. Proceedings of the Twelfth International Symposium on Space Terahertz Technology

    Science.gov (United States)

    Mehdi, Imran (Editor)

    2001-01-01

    The Twelfth International Symposium on Space Terahertz Technology was held February 14-16, 2001 in San Diego, California, USA. This symposium was jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory, California Institute of Technology. The symposium featured sixty nine presentations covering a wide variety of technical topics relevant to Terahertz Technology. The presentations can be divided into five broad technology areas: Hot Electron Bolometers, superconductor insulator superconductor (SIS) technology, local oscillator (LO) technology, Antennas and Measurements, and Direct Detectors. The symposium provides scientists, engineers, and researchers working in the terahertz technology and science fields to engineers their work and exchange ideas with colleagues.

  20. Space Science Education Resource Directory

    Science.gov (United States)

    Christian, C. A.; Scollick, K.

    The Office of Space Science (OSS) of NASA supports educational programs as a by-product of the research it funds through missions and investigative programs. A rich suite of resources for public use is available including multimedia materials, online resources, hardcopies and other items. The OSS supported creation of a resource catalog through a group lead by individuals at STScI that ultimately will provide an easy-to-use and user-friendly search capability to access products. This paper describes the underlying architecture of that catalog, including the challenge to develop a system for characterizing education products through appropriate metadata. The system must also be meaningful to a large clientele including educators, scientists, students, and informal science educators. An additional goal was to seamlessly exchange data with existing federally supported educational systems as well as local systems. The goals, requirements, and standards for the catalog will be presented to illuminate the rationale for the implementation ultimately adopted.

  1. 75 FR 57520 - NASA Advisory Council; Planetary Science Subcommittee; Supporting Research and Technology Working...

    Science.gov (United States)

    2010-09-21

    ... Science Subcommittee; Supporting Research and Technology Working Group; Meeting AGENCY: National... announces a meeting of the Supporting Research and Technology Working Group of the Planetary Science... INFORMATION CONTACT: Dr. Michael New, Planetary Science Division, National Aeronautics and Space...

  2. The Space Technology 5 Avionics System

    Science.gov (United States)

    Speer, Dave; Jackson, George; Stewart, Karen; Hernandez-Pellerano, Amri

    2004-01-01

    The Space Technology 5 (ST5) mission is a NASA New Millennium Program project that will validate new technologies for future space science missions and demonstrate the feasibility of building launching and operating multiple, miniature spacecraft that can collect research-quality in-situ science measurements. The three satellites in the ST5 constellation will be launched into a sun-synchronous Earth orbit in early 2006. ST5 fits into the 25-kilogram and 24-watt class of very small but fully capable spacecraft. The new technologies and design concepts for a compact power and command and data handling (C&DH) avionics system are presented. The 2-card ST5 avionics design incorporates new technology components while being tightly constrained in mass, power and volume. In order to hold down the mass and volume, and quali& new technologies for fUture use in space, high efficiency triple-junction solar cells and a lithium-ion battery were baselined into the power system design. The flight computer is co-located with the power system electronics in an integral spacecraft structural enclosure called the card cage assembly. The flight computer has a full set of uplink, downlink and solid-state recording capabilities, and it implements a new CMOS Ultra-Low Power Radiation Tolerant logic technology. There were a number of challenges imposed by the ST5 mission. Specifically, designing a micro-sat class spacecraft demanded that minimizing mass, volume and power dissipation would drive the overall design. The result is a very streamlined approach, while striving to maintain a high level of capability, The mission's radiation requirements, along with the low voltage DC power distribution, limited the selection of analog parts that can operate within these constraints. The challenge of qualifying new technology components for the space environment within a short development schedule was another hurdle. The mission requirements also demanded magnetic cleanliness in order to reduce

  3. Science & Technology Review June 2016

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Ramona L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chinn, Ken B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kotta, Paul [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meissner, Caryn N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-01

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  4. Maturing Technologies for Stirling Space Power Generation

    Science.gov (United States)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  5. New frontiers in space propulsion sciences

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Glen A. [Gravi Atomic Research, Madison, AL 35757 (United States)], E-mail: glen.a.robertson@nasa.gov; Murad, P.A. [Vienna, VA 22182 (United States); Davis, Eric [Institute for Advanced Studies at Austin, Austin, TX 78759 (United States)

    2008-03-15

    Mankind's destiny points toward a quest for the stars. Realistically, it is difficult to achieve this using current space propulsion science and develop the prerequisite technologies, which for the most part requires the use of massive amounts of propellant to be expelled from the system. Therefore, creative approaches are needed to reduce or eliminate the need for a propellant. Many researchers have identified several unusual approaches that represent immature theories based upon highly advanced concepts. These theories and concepts could lead to creating the enabling technologies and forward thinking necessary to eventually result in developing new directions in space propulsion science. In this paper, some of these theoretical and technological concepts are examined - approaches based upon Einstein's General Theory of Relativity, spacetime curvature, superconductivity, and newer ideas where questions are raised regarding conservation theorems and if some of the governing laws of physics, as we know them, could be violated or are even valid. These conceptual ideas vary from traversable wormholes, Krasnikov tubes and Alcubierre's warpdrive to Electromagnetic (EM) field propulsion with possible hybrid systems that incorporate our current limited understanding of zero point fields and quantum mechanics.

  6. Making Space Science and Exploration Accessible

    Science.gov (United States)

    Runyon, C. J.; Guimond, K. A.; Hurd, D.; Heinrich, G.

    There are currently 28 million hard of hearing and deaf Americans, approximately 10 to 11 million blind and visually impaired people in North America, and more than 50 million Americans with disabilities, approximately half of whom are students. The majority of students with disabilities in the US are required to achieve the same academic levels as their non-impaired peers. Unfortunately, there are few specialized materials to help these exceptional students in the formal and informal settings. To assist educators in meeting their goals and engage the students, we are working with NASA product developers, scientists and education and outreach personnel in concert with teachers from exceptional classrooms to identify the types of materials they need and which mediums work best for the different student capabilities. Our goal is to make the wonders of space science and exploration accessible to all. As such, over the last four years we have been hosting interactive workshops, observing classroom settings, talking and working with professional educators, product developers, museum and science center personnel and parents to synthesize the most effective media and method for presenting earth and space science materials to audiences with exceptional needs. We will present a list of suggested best practices and example activities that can help engage and encourage a person with special needs to study the sciences, technology, engineering, and mathematics.

  7. eScience and archiving for space science

    Directory of Open Access Journals (Sweden)

    Timothy E Eastman

    2006-01-01

    Full Text Available A confluence of technologies is leading towards revolutionary new interactions between robust data sets, state-of-the-art models and simulations, high-data-rate sensors, and high-performance computing. Data and data systems are central to these new developments in various forms of eScience or grid systems. Space science missions are developing multi-spacecraft, distributed, communications- and computation-intensive, adaptive mission architectures that will further add to the data avalanche. Fortunately, Knowledge Discovery in Database (KDD tools are rapidly expanding to meet the need for more efficient information extraction and knowledge generation in this data-intensive environment. Concurrently, scientific data management is being augmented by content-based metadata and semantic services. Archiving, eScience and KDD all require a solid foundation in interoperability and systems architecture. These concepts are illustrated through examples of space science data preservation, archiving, and access, including application of the ISO-standard Open Archive Information System (OAIS architecture.

  8. Science, Technology and Skills

    OpenAIRE

    Pardey, Philip; James, Jennifer; Alston, Julian; Wood, Stanley; Koo, Bonwoo; Binenbaum, Eran; Hurley, Terrance; Glewwe, Paul

    2008-01-01

    Improvements in agricultural productivity have alleviated much poverty and starvation and fuelled economic progress. However, comparatively little agricultural R&D and "technology tailoring" has been done for the conditions confronting African agriculture. Innovation in African agriculture and other regions of the developing world will be critical to solving the scourge of hunger and lifting the lot of the billions of the world's people who rely on agriculture for a living, and the entire wor...

  9. Radiation technology science

    International Nuclear Information System (INIS)

    Song, Jae Gwan

    1988-02-01

    This book deals with radiation technology and introduces various contents. It includes concept of radiation, fundamental physics, atom, electromagnetic radiation, electricity and magnetism, electromagnetism, interaction between X-rays and matter, process of latent image, intensifying screen, quality of radiography, special X-ray equipment, mammography, summary of computer, X-ray emission, nuclear magnetic resonance, grounded theory of radiation biology, initial effect of radiation, late effect of radiation, health physics, radiation protection, ultrasonic diagnosis.

  10. Exploring the Dialogic Space of Public Participation in Science

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    in public misconceptions of science. This paper uses the dialogic space proposed by Callon et al. to explore relationships between public and science. The dialogic space spans collective versus scientific dimensions. The collective (or public) is constituted by aggregation (opinion polls) or by composition......The participatory turn in science communication embraces a range of activities and concepts, from citizen science to multistakeholder dialogue and public access to information and even juridical redress, when necessary. Public participation in science breaks with the underlying assumptions...... of public understanding of science and scientific literacy approaches: that scientific knowledge in some sense is privileged, that understanding the science will lead to appreciative attitudes toward science and technology in general, and that controversial issues involving science and the public are rooted...

  11. Optical Computers and Space Technology

    Science.gov (United States)

    Abdeldayem, Hossin A.; Frazier, Donald O.; Penn, Benjamin; Paley, Mark S.; Witherow, William K.; Banks, Curtis; Hicks, Rosilen; Shields, Angela

    1995-01-01

    The rapidly increasing demand for greater speed and efficiency on the information superhighway requires significant improvements over conventional electronic logic circuits. Optical interconnections and optical integrated circuits are strong candidates to provide the way out of the extreme limitations imposed on the growth of speed and complexity of nowadays computations by the conventional electronic logic circuits. The new optical technology has increased the demand for high quality optical materials. NASA's recent involvement in processing optical materials in space has demonstrated that a new and unique class of high quality optical materials are processible in a microgravity environment. Microgravity processing can induce improved orders in these materials and could have a significant impact on the development of optical computers. We will discuss NASA's role in processing these materials and report on some of the associated nonlinear optical properties which are quite useful for optical computers technology.

  12. Policy Document Department: Science and Technology | South ...

    African Journals Online (AJOL)

    Policy Document Department: Science and Technology. DST South Africa. Abstract. Foreword: Mr Mosibudi Mangena, Minister of Science and Technology Mr D Hanekom, Deputy Minister of Science and Technology Dr Rob Adam, Director-General of the Department of Science and Technology Preamble The Government ...

  13. Science-Technology-Society or Technology-Society-Science? Insights from an Ancient Technology

    Science.gov (United States)

    Lee, Yeung Chung

    2010-01-01

    Current approaches to science-technology-society (STS) education focus primarily on the controversial socio-scientific issues that arise from the application of science in modern technology. This paper argues for an interdisciplinary approach to STS education that embraces science, technology, history, and social and cultural studies. By employing…

  14. Science and technology policy

    DEFF Research Database (Denmark)

    Who is responsible for environmental and technological policy in Denmark? And how are those "policy-makers" made accountable to the public for their decisions?   This report attempts to answer these important questions by presenting the Danish contribution to the EU-funded project, Analysing Public...... Accountability Procedures in Europe.   The first chapter presents Danish public accountability procedures and places them in historical perspective. The other chapters are case studies of genetically modified food, transport policy in the Copenhagen area with a focus on the Metro, and local waste management...

  15. Constructivism, Education, Science, and Technology

    OpenAIRE

    Moses A. Boudourides

    2003-01-01

    Abstract: The purpose of this paper is to present a brief review of the various streams of constructivism in studies of education, society, science and technology. It is intended to present a number of answers to the question (what really is constructivism?) in the context of various disciplines from the humanities and the sciences (both natural and social). In particular the discussion will focus on four varieties of constructivism: philosophical, cybernetic, educational, and sociological co...

  16. Constructivism, Education, Science, and Technology

    Directory of Open Access Journals (Sweden)

    Moses A. Boudourides

    2003-10-01

    Full Text Available Abstract: The purpose of this paper is to present a brief review of the various streams of constructivism in studies of education, society, science and technology. It is intended to present a number of answers to the question (what really is constructivism? in the context of various disciplines from the humanities and the sciences (both natural and social. In particular the discussion will focus on four varieties of constructivism: philosophical, cybernetic, educational, and sociological constructivism.

  17. Space science--a fountain of exploration and discovery

    International Nuclear Information System (INIS)

    Gu Yidong

    2014-01-01

    Space science is a major part of space activities, as well as one of the most active areas in scientific exploration today. This paper gives a brief introduction regarding the main achievements in space science involving solar physics and space physics, space astronomy, moon and planetary science, space geo- science, space life science, and micro- gravity science. At the very frontier of basic research, space science should be developed to spearhead breakthroughs in China's fundamental sciences. (author)

  18. Soviet satellite communications science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Birch, J.N.; Campanella, S.J.; Gordon, G.D.; McElroy, D.R.; Pritchard, W.L.; Stamminger, R.

    1991-08-01

    This is a report by six US scientists and engineers concerning the current state of the art and projections of future Soviet satellite communications technologies. The panel members are experts in satellite stabilization, spacecraft environments, space power generation, launch systems, spacecraft communications sciences and technologies, onboard processing, ground stations, and other technologies that impact communications. The panel assessed the Soviet ability to support high-data-rate space missions at 128 Mbps by evaluating current and projected Soviet satellite communications technologies. A variety of space missions were considered, including Earth-to-Earth communications via satellites in geostationary or highly elliptical orbits, those missions that require space-to-Earth communications via a direct path and those missions that require space-to-Earth communications via a relay satellite. Soviet satellite communications capability, in most cases, is 10 years behind that of the United States and other industrialized nations. However, based upon an analysis of communications links needed to support these missions using current Soviet capabilities, it is well within the current Soviet technology to support certain space missions outlined above at rates of 128 Mbps or higher, although published literature clearly shows that the Soviet Union has not exceeded 60 Mbps in its current space system. These analyses are necessary but not sufficient to determine mission data rates, and other technologies such as onboard processing and storage could limit the mission data rate well below that which could actually be supported via the communications links. Presently, the Soviet Union appears to be content with data rates in the low-Earth-orbit relay via geostationary mode of 12 Mbps. This limit is a direct result of power amplifier limits, spacecraft antenna size, and the utilization of K{sub u}-band frequencies. 91 refs., 16 figs., 15 tabs.

  19. Separation science and technology

    International Nuclear Information System (INIS)

    Smith, B.F.; Sauer, N.; Chamberlin, R.M.; Gottesfeld, S.; Mattes, B.R.; Li, D.Q.; Swanson, B.

    1998-01-01

    The focus of this project is the demonstration and advancement of membrane-based separation and destruction technologies. The authors are exploring development of membrane systems for gas separations, selective metal ion recovery, and for separation or destruction of hazardous organics. They evaluated existing polymers and polymer formulations for recovery of toxic oxyanionic metals such as chromate and arsenate from selected waste streams and developed second-generation water-soluble polymeric systems for highly selective oxyanion removal and recovery. They optimized the simultaneous removal of radioactive strontium and cesium from aqueous solutions using the new nonhazardous separations agents, and developed recyclable, redox-active extractants that permitted recovery of the radioactive ions into a minimal waste volume. They produced hollow fibers and fabricated prototype hollow-fiber membrane modules for applications to gas separations and the liquid-liquid extraction and recovery of actinides and nuclear materials from process streams. They developed and fabricated cyclodextrin-based microporous materials that selectively absorb organic compounds in an aqueous environment; the resultant products gave pure water with organics at less than 0.05 parts per billion. They developed new, more efficient, membrane-based electrochemical reactors for use in organic destruction in process waste treatment. They addressed the need for advanced oxidation technologies based on molecular-level materials designs that selectively remove or destroy target species. They prepared and characterized surface-modified TiO 2 thin films using different linking approaches to attach ruthenium photosensitizers, and they started the measurement of the photo-degradation products generated using surface modified TiO 2 films in reaction with chlorophenol

  20. Separation science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F.; Sauer, N.; Chamberlin, R.M.; Gottesfeld, S.; Mattes, B.R.; Li, D.Q.; Swanson, B.

    1998-12-31

    The focus of this project is the demonstration and advancement of membrane-based separation and destruction technologies. The authors are exploring development of membrane systems for gas separations, selective metal ion recovery, and for separation or destruction of hazardous organics. They evaluated existing polymers and polymer formulations for recovery of toxic oxyanionic metals such as chromate and arsenate from selected waste streams and developed second-generation water-soluble polymeric systems for highly selective oxyanion removal and recovery. They optimized the simultaneous removal of radioactive strontium and cesium from aqueous solutions using the new nonhazardous separations agents, and developed recyclable, redox-active extractants that permitted recovery of the radioactive ions into a minimal waste volume. They produced hollow fibers and fabricated prototype hollow-fiber membrane modules for applications to gas separations and the liquid-liquid extraction and recovery of actinides and nuclear materials from process streams. They developed and fabricated cyclodextrin-based microporous materials that selectively absorb organic compounds in an aqueous environment; the resultant products gave pure water with organics at less than 0.05 parts per billion. They developed new, more efficient, membrane-based electrochemical reactors for use in organic destruction in process waste treatment. They addressed the need for advanced oxidation technologies based on molecular-level materials designs that selectively remove or destroy target species. They prepared and characterized surface-modified TiO{sub 2} thin films using different linking approaches to attach ruthenium photosensitizers, and they started the measurement of the photo-degradation products generated using surface modified TiO{sub 2} films in reaction with chlorophenol.

  1. Outreach Education Modules on Space Sciences in Taiwan

    Science.gov (United States)

    Lee, I.-Te; Tiger Liu, Jann-Yeng; Chen, Chao-Yen

    2013-04-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Meanwhile, scientific camps are given to lead students a better understanding and interesting on space science. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  2. Encyclopedia of color science and technology

    CERN Document Server

    2016-01-01

    The Encyclopedia of Color Science and Technology provides an authoritative single source for understanding and applying the concepts of color to all fields of science and technology, including artistic and historical aspects of color. Many topics are discussed in this timely reference, including an introduction to the science of color, and entries on the physics, chemistry and perception of color. Color is described as it relates to optical phenomena of color and continues on through colorants and materials used to modulate color and also to human vision of color. The measurement of color is provided as is colorimetry, color spaces, color difference metrics, color appearance models, color order systems and cognitive color. Other topics discussed include industrial color, color imaging, capturing color, displaying color and printing color. Descriptions of color encodings, color management, processing color and applications relating to color synthesis for computer graphics are included in this work. The Encyclo...

  3. The law for the establishment of Science and Technology Agency

    International Nuclear Information System (INIS)

    1985-01-01

    The law provides for the scope of the administrative activities and the powers and authority of the Science and Technology Agency. This law also assists, the agency to perform its administrative work efficiently. The Agency is set up for purpose of promoting science and technology, thereby contributing to the advancement of the national economy, by carrying out the administrative function regarding science and technology in the most efficient way possible. The range of activities by the STA includes the following : basic policy for science and technology such as atomic energy, subsidies, etc. for science and technology, the relations of disaster prevention science, aviation and space science and technology, utilization of atomic energy, and so on. (Kubozono, M.)

  4. [Earth Science Technology Office's Computational Technologies Project

    Science.gov (United States)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  5. Science & Technology Review: September 2016

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Ramona L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meissner, Caryn N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chinn, Ken B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-30

    This is the September issue of the Lawrence Livermore National Laboratory's Science & Technology Review, which communicates, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. This month, there are features on "Laboratory Investments Drive Computational Advances" and "Laying the Groundwork for Extreme-Scale Computing." Research highlights include "Nuclear Data Moves into the 21st Century", "Peering into the Future of Lick Observatory", and "Facility Drives Hydrogen Vehicle Innovations."

  6. NASA Ames and Future of Space Exploration, Science, and Aeronautics

    Science.gov (United States)

    Cohen, Jacob

    2015-01-01

    Pushing the frontiers of aeronautics and space exploration presents multiple challenges. NASA Ames Research Center is at the forefront of tackling these issues, conducting cutting edge research in the fields of air traffic management, entry systems, advanced information technology, intelligent human and robotic systems, astrobiology, aeronautics, space, earth and life sciences and small satellites. Knowledge gained from this research helps ensure the success of NASA's missions, leading us closer to a world that was only imagined as science fiction just decades ago.

  7. The Information Science Experiment System - The computer for science experiments in space

    Science.gov (United States)

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  8. Science and Exploration Deep Space Gateway Workshop

    Science.gov (United States)

    Spann, James F.

    2017-01-01

    We propose a workshop whose outcome is a publically disseminated product that articulates SMD investigations and HEOMD Life Science research, including international collaborations, that are made possible by the new opportunities in space that result from the Deep Space Gateway.

  9. The New Millenium Program: Serving Earth and Space Sciences

    Science.gov (United States)

    Li, Fuk K.

    2000-01-01

    NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints. Many of these technology needs are common to both NASA's Office of Earth Science (OES) and Office of Space Sciences (OSS). Even though some breakthrough technologies have been identified to address these needs, project managers have traditionally been reluctant to incorporate them into flight programs because their inherent development risk. To accelerate the infusion of new technologies into its OES and OSS missions, NASA established the New Millennium Program (NMP). This program analyzes the capability needs of these enterprises, identifies candidate technologies to address these needs, incorporates advanced technology suites into validation flights, validates them in the relevant space environment, and then proactively infuses the validated technologies into future missions to enhance their capabilities while reducing their life cycle cost. The NMP employs a cross-enterprise Science Working Group, the NASA Enterprise science and technology roadmaps to define the capabilities needed by future Earth and Space science missions. Additional input from the science community is gathered through open workshops and peer-reviewed NASA Research Announcement (NRAs) for advanced measurement concepts. Technology development inputs from the technology organizations within NASA, other government agencies, federally funded research and development centers (FFRDC's), U.S. industry, and academia are sought to identify breakthrough technologies that might address these needs. This approach significantly extends NASA's technology infrastructure. To complement other flight test programs that develop or validate of individual components, the NMP places its highest priority on system-level validations of technology suites in the relevant space

  10. Teaching Science with Technology

    Science.gov (United States)

    Gornostaeva, Svetlana

    2015-04-01

    This is a short introduction about me, description of different teaching methods, which is used in my teaching practice of Geography, biology and GIS systems education. The main part is tell about practical lesson with lab Vernier. My name is Svetlana Gornostaeva. I am a geography, biology and GIS systems teacher in Tallinn Mustjõe Gymnasium (www.mjg.ee) and private school Garant (http://www.erakoolgarant.ee/). In my teaching practice I do all to show that science courses are very important, interesting, and do not difficult. I use differentiated instruction methods also consider individual needs. At lessons is used different active teaching methods such as individual work of various levels of difficulty, team works, creative tasks, interactive exercises, excursions, role-playing games, meeting with experts. On my lessons I use visual aids (maps, a collection of rocks and minerals, herbarium, posters, Vernier data logger). My favorite teaching methods are excursions, meeting with experts and practical lesson with lab Vernier. A small part of my job demonstrate my poster. In the next abstract I want to bring a one practical work with Vernier which I do with my students, when we teach a theme "Atmosphere and climate". OUTDOOR LEARNING. SUBJECT "ATMOSPHERE AND CLIMATE". WEATHER OBSERVATIONS WITH VERNIER DATA LOGGER. The aim: students teach to use Vernier data logger and measure climatic parameters such as: temperature, humidity, atmospheric pressure, solar radiation, ultraviolet light radiation, wind speed. In working process pupils also teach work together, observe natural processes, analyze. Children are working by small groups, 4-5 in each group. Every one should personally measure all parameters and put numbers into the table. After it group observe cloudiness, analyze table and give conclusion "Is at this moment dominates cyclone or anticyclone ?". Children really like this kind of job. Vernier data logger it is really fantastic tool. It is mobile lab. This

  11. In-Space Internet-Based Communications for Space Science Platforms Using Commercial Satellite Networks

    Science.gov (United States)

    Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.

    1999-01-01

    The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.

  12. Science, Technology, and Innovation Policy

    DEFF Research Database (Denmark)

    Lundvall, Bengt-Åke; Borrás, Susana

    2005-01-01

    is to illustrate that innovation policy covers a wide set of issues that have been on the agenda far back in history while still remaining important today. We move on to sketch the history of innovation policy, splitting it up into the three ideal types: science, technology, and innovation policy. We use OECD...

  13. Neutrons for technology and science

    International Nuclear Information System (INIS)

    Aeppli, G.

    1995-01-01

    We reviewed recent work using neutrons generated at nuclear reactors an accelerator-based spallation sources. Provided that large new sources become available, neutron beams will continue to have as great an impact on technology and science as in the past

  14. Space technology and robotics in school projects

    Science.gov (United States)

    Villias, Georgios

    2016-04-01

    Space-related educational activities is a very inspiring and attractive way to involve students into science courses, present them the variety of STEM careers that they can follow, while giving them at the same time the opportunity to develop various practical and communication skills necessary for their future professional development. As part of a large scale extracurricular course in Space Science, Space Technology and Robotics that has been introduced in our school, our students, divided in smaller groups of 3-4 students in each, try to understand the challenges that current and future space exploration is facing. Following a mixture of an inquiry-based learning methodology and hands-on practical activities related with constructions and experiments, students get a glimpse of the pre-mentioned fields. Our main goal is to gain practical knowledge and inspiration from the exciting field of Space, to attain an adequate level of team spirit and effective cooperation, while developing technical and research data-mining skills. We use the following two approaches: 1. Constructive (Technical) approach Designing and constructing various customized robotic machines, that will simulate the future space exploration vehicles and satellites needed to study the atmosphere, surface and subsurface of planets, moons or other planetary bodies of our solar system that have shown some promising indications for the existence of life, taking seriously into account their special characteristics and known existing conditions (like Mars, Titan, Europa & Enceladus). The STEM tools we use are the following: - LEGO Mindstorms: to construct rovers for surface exploration. - Hydrobots: an MIT's SeaPerch program for the construction of submarine semi-autonomous robots. - CanSats: Arduino-based microsatellites able to receive, record & transmit data. - Space balloons: appropriate for high altitude atmospheric measurements & photography. 2. Scientific approach Conducting interesting physics

  15. Careers in science and technology

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The objective of this book is to expose junior and senior high school students to the science and technology fields. It also will convey the importance of getting a general education in science and mathematics while still in high school and of continuing such studies in college. This is intended to encourge students, particularly underrepresented minorities and women, to consider and prepare for careers in science and technology. This book attempts to point out the increasing importance of such knowledge in daily life regardless of occupational choice. This book is intended to be used by junior and senior high school students, as a classroom reference by teachers, and by scientist and engineers participating in outreach activities.

  16. Journal of Applied Science, Engineering and Technology

    African Journals Online (AJOL)

    The Journal of Applied Science, Engineering and Technology covers research activities and development in the field of Applied Sciences and Technology as it relates to Agricultural Engineering, Biotechnology, Computer Science and Engineering Computations, Civil Engineering, Food Science and Technology, Electrical ...

  17. Science technology, way to go? or logic to be broken?

    International Nuclear Information System (INIS)

    Kim, O Sik

    1994-10-01

    This book deals with development and prospect of science technology, effectiveness and limitation of science technology method, introduction of oriental reasons toward science technology, practice and management of science technology, and process of assimilation of modern science technology. It also covers historic background of modern science technology, logic and error of science technology, ignorance and science technology, freedom and values and compensation of a systematic study, integrated development of science technology, and point for the future of science technology.

  18. A Technology Plan for Enabling Commercial Space Business

    Science.gov (United States)

    Lyles, Garry M.

    1997-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems

  19. Innovative Technologies for Global Space Exploration

    Science.gov (United States)

    Hay, Jason; Gresham, Elaine; Mullins, Carie; Graham, Rachael; Williams-Byrd; Reeves, John D.

    2012-01-01

    Under the direction of NASA's Exploration Systems Mission Directorate (ESMD), Directorate Integration Office (DIO), The Tauri Group with NASA's Technology Assessment and Integration Team (TAIT) completed several studies and white papers that identify novel technologies for human exploration. These studies provide technical inputs to space exploration roadmaps, identify potential organizations for exploration partnerships, and detail crosscutting technologies that may meet some of NASA's critical needs. These studies are supported by a relational database of more than 400 externally funded technologies relevant to current exploration challenges. The identified technologies can be integrated into existing and developing roadmaps to leverage external resources, thereby reducing the cost of space exploration. This approach to identifying potential spin-in technologies and partnerships could apply to other national space programs, as well as international and multi-government activities. This paper highlights innovative technologies and potential partnerships from economic sectors that historically are less connected to space exploration. It includes breakthrough concepts that could have a significant impact on space exploration and discusses the role of breakthrough concepts in technology planning. Technologies and partnerships are from NASA's Technology Horizons and Technology Frontiers game-changing and breakthrough technology reports as well as the External Government Technology Dataset, briefly described in the paper. The paper highlights example novel technologies that could be spun-in from government and commercial sources, including virtual worlds, synthetic biology, and human augmentation. It will consider how these technologies can impact space exploration and will discuss ongoing activities for planning and preparing them.

  20. JPRS Report Science & Technology USSR: Life Sciences

    National Research Council Canada - National Science Library

    1988-01-01

    ...: Life sciences, aerospace medicine, agriculture science, biochemistry, biophysics, genetics, immunology, industrial medicine, laser bioeffects, medicine, molecular biology, nonionizing radiation...

  1. Space Development and Space Science Together, an Historic Opportunity

    OpenAIRE

    Metzger, Philip

    2016-01-01

    The national space programs have an historic opportunity to help solve the global-scale economic and environmental problems of Earth while becoming more effective at science through the use of space resources. Space programs will be more cost-effective when they work to establish a supply chain in space, mining and manufacturing then replicating the assets of the supply chain so it grows to larger capacity. This has become achievable because of advances in robotics and artificial intelligence...

  2. Science teachers' perceptions of the effectiveness of technology in the laboratories: Implications for science education leadership

    Science.gov (United States)

    Yaseen, Niveen K.

    2011-12-01

    The purpose of this study was to identify science teachers' perceptions concerning the use of technology in science laboratories and identify teachers' concerns and recommendations for improving students' learning. Survey methodology with electronic delivery was used to gather data from 164 science teachers representing Texas public schools. The data confirmed that weaknesses identified in the 1990s still exist. Lack of equipment, classroom space, and technology access, as well as large numbers of students, were reported as major barriers to the implementation of technology in science laboratories. Significant differences were found based on gender, grade level, certification type, years of experience, and technology proficiency. Females, elementary teachers, traditionally trained teachers, and less experienced teachers revealed a more positive attitude toward the use of technology in science laboratories. Participants in this study preferred using science software simulations to support rather than replace traditional science laboratories. Teachers in this study recommended professional development programs that focused on strategies for a technology integrated classroom.

  3. Technologies Advance UAVs for Science, Military

    Science.gov (United States)

    2010-01-01

    A Space Act Agreement with Goddard Space Flight Center and West Virginia University enabled Aurora Flight Sciences Corporation, of Manassas, Virginia, to develop cost-effective composite manufacturing capabilities and open a facility in West Virginia. The company now employs 160 workers at the plant, tasked with crafting airframe components for the Global Hawk unmanned aerial vehicle (UAV) program. While one third of the company's workforce focuses on Global Hawk production, the rest of the company develops advanced UAV technologies that are redefining traditional approaches to unmanned aviation. Since the company's founding, Aurora s cutting-edge work has been supported with funding from NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs.

  4. The science of space weather.

    Science.gov (United States)

    Eastwood, Jonathan P

    2008-12-13

    The basic physics underpinning space weather is reviewed, beginning with a brief overview of the main causes of variability in the near-Earth space environment. Although many plasma phenomena contribute to space weather, one of the most important is magnetic reconnection, and recent cutting edge research in this field is reviewed. We then place this research in context by discussing a number of specific types of space weather in more detail. As society inexorably increases its dependence on space, the necessity of predicting and mitigating space weather will become ever more acute. This requires a deep understanding of the complexities inherent in the plasmas that fill space and has prompted the development of a new generation of scientific space missions at the international level.

  5. Preservice Science Teachers' Views on Science-Technology-Society

    Science.gov (United States)

    Dikmentepe, Emel; Yakar, Zeha

    2016-01-01

    The aim of this study is to investigate the views of pre-service science teachers on Science-Technology-Society (STS). In the research, a descriptive research method was used and data were collected using the Views on Science-Technology-Society (VOSTS) Questionnaire. In general, the results of this study revealed that pre-service science teachers…

  6. Archives: Ethiopian Journal of Science and Technology

    African Journals Online (AJOL)

    Items 1 - 17 of 17 ... Archives: Ethiopian Journal of Science and Technology. Journal Home > Archives: Ethiopian Journal of Science and Technology. Log in or Register to get access to full text downloads.

  7. International Journal of Engineering, Science and Technology ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: Journal Sponsorship. Journal Home > About the Journal > International Journal of Engineering, Science and Technology: Journal Sponsorship. Log in or Register to get access to full text downloads.

  8. International Journal of Engineering, Science and Technology ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: About this journal. Journal Home > International Journal of Engineering, Science and Technology: About this journal. Log in or Register to get access to full text downloads.

  9. Archives: Science, Technology and Arts Research Journal

    African Journals Online (AJOL)

    Items 1 - 16 of 16 ... Archives: Science, Technology and Arts Research Journal. Journal Home > Archives: Science, Technology and Arts Research Journal. Log in or Register to get access to full text downloads.

  10. Archives: Journal of Science and Technology (Ghana)

    African Journals Online (AJOL)

    Items 1 - 38 of 38 ... Archives: Journal of Science and Technology (Ghana). Journal Home > Archives: Journal of Science and Technology (Ghana). Log in or Register to get access to full text downloads.

  11. Archives: African Journal of Science and Technology

    African Journals Online (AJOL)

    Items 1 - 15 of 15 ... Archives: African Journal of Science and Technology. Journal Home > Archives: African Journal of Science and Technology. Log in or Register to get access to full text downloads.

  12. Communicating in English for Science and Technology

    DEFF Research Database (Denmark)

    Mousten, Birthe

    Communicating in English for Science and Technology covers some of the most important questions in connection with communication models, stylistics and genre conventions within the area of English used in science and technology texts. Moreover,knowledge management, terminology management...

  13. In-Space Propulsion (346620) Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technologies include, but are not limited to, electric and advanced chemical propulsion, propellantless propulsion such as aerocapture and solar sails, sample return...

  14. Department of Defense Space Technology Guide

    Science.gov (United States)

    2001-01-01

    image processing • Exploitation technologies for bistatic phenom- enology of targets and clutter characteristics – Bistatic space-time adaptive...optical sensors, processors, links, and host spacecraft integration technolo- gies • Exploitation technologies for bistatic phenom- enology of

  15. English for Science and Technology - Theoretical Part

    DEFF Research Database (Denmark)

    Mousten, Birthe

    The books covers the most basic, theoretical approaches to English for Science and Technology. The book is aimed at BA Students or as an introduction to English in the genres of science and technology writing.......The books covers the most basic, theoretical approaches to English for Science and Technology. The book is aimed at BA Students or as an introduction to English in the genres of science and technology writing....

  16. Space Internet Architectures and Technologies for NASA Enterprises

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeffrey L.

    2001-01-01

    NASA's future communications services will be supplied through a space communications network that mirrors the terrestrial Internet in its capabilities and flexibility. The notional requirements for future data gathering and distribution by this Space Internet have been gathered from NASA's Earth Science Enterprise (ESE), the Human Exploration and Development in Space (HEDS), and the Space Science Enterprise (SSE). This paper describes a communications infrastructure for the Space Internet, the architectures within the infrastructure, and the elements that make up the architectures. The architectures meet the requirements of the enterprises beyond 2010 with Internet 'compatible technologies and functionality. The elements of an architecture include the backbone, access, inter-spacecraft and proximity communication parts. From the architectures, technologies have been identified which have the most impact and are critical for the implementation of the architectures.

  17. Welcome to Quantum Science and Technology

    Science.gov (United States)

    Thew, Rob

    2016-03-01

    Quantum information science and related technologies now involve thousands of researchers worldwide, cutting across physics, chemistry, engineering, bioscience, applied mathematics and computer science, extending from fundamental science to novel applications and industry. This situation defines the scope and mission of Quantum Science and Technology, a new IOP journal serving the interests of this multidisciplinary field by publishing research of the highest quality and impact.

  18. African Journals Online: Technology, Computer Science ...

    African Journals Online (AJOL)

    Items 1 - 29 of 29 ... The Journal of Applied Science, Engineering and Technology covers research activities and development in the field of Applied Sciences and Technology as it relates to Agricultural Engineering, Biotechnology, Computer Science and Engineering Computations, Civil Engineering, Food Science and ...

  19. The future of nuclear (science and) technology

    International Nuclear Information System (INIS)

    Walker, R.

    2011-01-01

    This paper outlines the future of nuclear science and technology. It discusses the implications of nuclear renaissance, nuclear social contract and Fukushima for nuclear science and technology. Nuclear science and technology priorities for Canada are to understand and address the fear of radiation, reduce the threats and address the fear of nuclear proliferation and terrorism, preclude core melt and make used fuel an asset.

  20. Space Launch System for Exploration and Science

    Science.gov (United States)

    Klaus, K.

    2013-12-01

    low-risk, direct return of Martian material. For the Europa Clipper mission the SLS eliminates Venus and Earth flybys, providing a direct launch to the Jovian system, arriving four years earlier than missions utilizing existing launch vehicles. This architecture allows increased mass for radiation shielding, expansion of the science payload and provides a model for other outer planet missions. SLS provides a direct launch to the Uranus system, reducing travel time by two years when compared to existing launch capabilities. SLS can launch the Advanced Technology Large-Aperture Space Telescope (ATLAST 16 m) to SEL2, providing researchers 10 times the resolution of the James Webb Space Telescope and up to 300 times the sensitivity of the Hubble Space Telescope. SLS is the only vehicle capable of deploying telescopes of this mass and size in a single launch. It simplifies mission design and reduces risks by eliminating the need for multiple launches and in-space assembly. SLS greatly shortens interstellar travel time, delivering the Interstellar Explorer to 200 AU in about 15 years with a maximum speed of 63 km/sec--13.3 AU per year (Neptune orbits the sun at an approximate distance of 30 AU ).

  1. 75 FR 35851 - Partially Closed Meeting of the President's Council of Advisors on Science and Technology

    Science.gov (United States)

    2010-06-23

    ... TECHNOLOGY POLICY Partially Closed Meeting of the President's Council of Advisors on Science and Technology... closed meeting of the President's Council of Advisors on Science and Technology (PCAST), and describes... scheduled to hear presentations on space policy and science, technology, ] and diplomacy. PCAST members will...

  2. Science and Technology Parks in the Context of Social Technologies

    Directory of Open Access Journals (Sweden)

    Edgaras Leichteris

    2013-08-01

    Full Text Available This article aims to present a new approach to science and technology park concept and the development prospects in the context of social technologies. Globalization and the spread of social technologies are expanding the influence of science and technology parks on national innovation systems. It opens new directions for research in this area, as well as the practical use of social technologies in the development of science and technology parks. The paper also examines the science and technology park as an institutionalized concept of social technology. In this article the interdisciplinary approach for analyzing the complex concept of science and technology parks is used to explore the theoretical relationships with the social technologies concept. The possible links are identified and illustrated by practical examples ofLithuanian science and technology parks. Finally suggestions for further research are made. Based on the analysis and synthesis of scientific literature in both fields (science and technology parks; social technologies three possible theoretical links are established: a the use of social technologies in science and technology parks b the role of a science park as an intermediate body in the humanization and socialization of technologies c science and technology parks as an institutionalized concept of social technology. The theoretical model is supported by empirical illustrations from the development of Lithuanian science and technology parks, therefore further research in all three directions is feasible and needed. As this research takes a merely theoretical approach to the social systems investigation, it can be qualified only as a preparational stage for further research. The practical examples used in the article are more illustrative than evidence based and shall not be considered as case studies. The research offers an initial framework for researching science and technology parks in the context of social technologies

  3. Science and Technology Parks in the Context of Social Technologies

    Directory of Open Access Journals (Sweden)

    Edgaras Leichteris

    2011-08-01

    Full Text Available Summary. This article aims to present a new approach to science and technology park concept and the development prospects in the context of social technologies. Globalization and the spread of social technologies are expanding the influence of science and technology parks on national innovation systems. It opens new directions for research in this area, as well as the practical use of social technologies in the development of science and technology parks. The paper also examines the science and technology park as an institutionalized concept of social technology. In this article the interdisciplinary approach for analyzing the complex concept of science and technology parks is used to explore the theoretical relationships with the social technologies concept. The possible links are identified and illustrated by practical examples of Lithuanian science and technology parks. Finally suggestions for further research are made. Based on the analysis and synthesis of scientific literature in both fields (science and technology parks; social technologies three possible theoretical links are established: a the use of social technologies in science and technology parks b the role of a science park as an intermediate body in the humanization and socialization of technologies c science and technology parks as an institutionalized concept of social technology. The theoretical model is supported by empirical illustrations from the development of Lithuanian science and technology parks, therefore further research in all three directions is feasible and needed. As this research takes a merely theoretical approach to the social systems investigation, it can be qualified only as a preparational stage for further research. The practical examples used in the article are more illustrative than evidence based and shall not be considered as case studies. The research offers an initial framework for researching science and technology parks in the context of social

  4. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1970-01-01

    Advances in Nuclear Science and Technology, Volume 5 presents the underlying principles and theory, as well as the practical applications of the advances in the nuclear field. This book reviews the specialized applications to such fields as space propulsion.Organized into six chapters, this volume begins with an overview of the design and objective of the Fast Flux Test Facility to provide fast flux irradiation testing facilities. This text then examines the problem in the design of nuclear reactors, which is the analysis of the spatial and temporal behavior of the neutron and temperature dist

  5. 75 FR 81678 - Aeronautics Science and Technology Subcommittee; Committee on Technology; National Science and...

    Science.gov (United States)

    2010-12-28

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Aeronautics Science and Technology Subcommittee; Committee... requested on the National Aeronautics Research, Development, Test and Evaluation (RDT&E) Infrastructure Plan. SUMMARY: The Aeronautics Science and Technology Subcommittee (ASTS) of the National Science and Technology...

  6. 77 FR 13159 - Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology...

    Science.gov (United States)

    2012-03-05

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology, National Science and Technology Council Workshop ACTION: Notice of... Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National...

  7. Science& Technology Review November 2003

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, D

    2003-11-01

    This issue of Science & Technology Review covers the following topics: (1) We Will Always Need Basic Science--Commentary by Tomas Diaz de la Rubia; (2) When Semiconductors Go Nano--experiments and computer simulations reveal some surprising behavior of semiconductors at the nanoscale; (3) Retinal Prosthesis Provides Hope for Restoring Sight--A microelectrode array is being developed for a retinal prosthesis; (4) Maglev on the Development Track for Urban Transportation--Inductrack, a Livermore concept to levitate train cars using permanent magnets, will be demonstrated on a 120-meter-long test track; and (5) Power Plant on a Chip Moves Closer to Reality--Laboratory-designed fuel processor gives power boost to dime-size fuel cell.

  8. International Space Station External Contamination Environment for Space Science Utilization

    Science.gov (United States)

    Soares, Carlos E.; Mikatarian, Ronald R.; Steagall, Courtney A.; Huang, Alvin Y.; Koontz, Steven; Worthy, Erica

    2014-01-01

    The International Space Station (ISS) is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.

  9. How science is applied in technology.

    NARCIS (Netherlands)

    Boon, Mieke

    2006-01-01

    Unlike basic sciences, scientific research in advanced technologies aims to explain, predict, and (mathematically) describe not phenomena in nature, but phenomena in technological artefacts, thereby producing knowledge that is utilized in technological design. This article first explains why the

  10. A Science Cloud: OneSpaceNet

    Science.gov (United States)

    Morikawa, Y.; Murata, K. T.; Watari, S.; Kato, H.; Yamamoto, K.; Inoue, S.; Tsubouchi, K.; Fukazawa, K.; Kimura, E.; Tatebe, O.; Shimojo, S.

    2010-12-01

    Main methodologies of Solar-Terrestrial Physics (STP) so far are theoretical, experimental and observational, and computer simulation approaches. Recently "informatics" is expected as a new (fourth) approach to the STP studies. Informatics is a methodology to analyze large-scale data (observation data and computer simulation data) to obtain new findings using a variety of data processing techniques. At NICT (National Institute of Information and Communications Technology, Japan) we are now developing a new research environment named "OneSpaceNet". The OneSpaceNet is a cloud-computing environment specialized for science works, which connects many researchers with high-speed network (JGN: Japan Gigabit Network). The JGN is a wide-area back-born network operated by NICT; it provides 10G network and many access points (AP) over Japan. The OneSpaceNet also provides with rich computer resources for research studies, such as super-computers, large-scale data storage area, licensed applications, visualization devices (like tiled display wall: TDW), database/DBMS, cluster computers (4-8 nodes) for data processing and communication devices. What is amazing in use of the science cloud is that a user simply prepares a terminal (low-cost PC). Once connecting the PC to JGN2plus, the user can make full use of the rich resources of the science cloud. Using communication devices, such as video-conference system, streaming and reflector servers, and media-players, the users on the OneSpaceNet can make research communications as if they belong to a same (one) laboratory: they are members of a virtual laboratory. The specification of the computer resources on the OneSpaceNet is as follows: The size of data storage we have developed so far is almost 1PB. The number of the data files managed on the cloud storage is getting larger and now more than 40,000,000. What is notable is that the disks forming the large-scale storage are distributed to 5 data centers over Japan (but the storage

  11. Governing Science, Technology and Innovation:

    DEFF Research Database (Denmark)

    Jensen, Jens Stissing

    2007-01-01

    Abstract: As an object of public management, Science, Technology and Innovation (STI) is characterised by a high level of uncertainty and complexity. The paper argues that to cope with the phenomenon of STI as a coherent area of policy formulation and regulation, a balancing of rational-, reflexive......- and responsive-regulatory-strategies is needed. Utilising this approach the Danish policy on STI is evaluated. The Danish strategy has been a strong centralisation of research and innovation in a single ministry. Despite reflexive-regulatory-strategies in certain areas, such as reforms of public research...

  12. Daylight Science and Daylighting Technology

    CERN Document Server

    Kittler, Richard; Darula, Stanislav

    2012-01-01

    Sunlight profoundly influences the Earth's atmosphere and biosphere. Nature fuels the evolution of all living things, their visual systems, and the manner in which they adapt, accommodate, and habituate. Sun luminance measurements serve as data to calculate typical changes in the daily, monthly, and annual variability characteristics of daylight. Climate-based sky luminance patterns are used as models in predicting daylighting calculation and computer programs applied in architecture and building design. Historically, daylight science and daylighting technology has prioritized photometric methods of measurements, calculation, and graphical tools aimed at predicting or evaluating the daylighting of architectural design alternatives. However, due to a heightened awareness of general health and well-being, sunlight exposure and freedom from visual discomfort while undertaking visual tasks are now equally prioritized. Therefore, in order to assure optimal environmental quality, daylighting technology must be base...

  13. Science & Technology Review September 2009

    Energy Technology Data Exchange (ETDEWEB)

    Bearinger, J P

    2009-07-24

    This month's issue has the following articles: (1) Remembering the Laboratory's First Director - Commentary by Harold Brown; (2) Herbert F. York (1921-2009): A Life of Firsts, an Ambassador for Peace - The Laboratory's first director, who died on May 19, 2009, used his expertise in science and technology to advance arms control and prevent nuclear war; (3) Searching for Life in Extreme Environments - DNA will help researchers discover new marine species and prepare to search for life on other planets; (4) Energy Goes with the Flow - Lawrence Livermore is one of the few organizations that distills the big picture about energy resources and use into a concise diagram; and (5) The Radiant Side of Sound - An experimental method that converts sound waves into light may lead to new technologies for scientific and industrial applications.

  14. USSR Space Life Sciences Digest, issue 13

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor)

    1987-01-01

    This is the thirteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 39 papers recently published in Russian-language periodicals and bound collections, two papers delivered at an international life sciences symposium, and three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet-French symposium on Space Cytology. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 31 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, space biology, and space medicine.

  15. Space and Industrial Brine Drying Technologies

    Science.gov (United States)

    Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali

    2014-01-01

    This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.

  16. WOMEN POWER IN SPACE SCIENCE

    Indian Academy of Sciences (India)

    TSC

    Responsibility of DOS. ❖Research & Development. ❖Provision of sustainable and self reliant space based services in areas such as telecommunication,. TV broadcasting, meteorological applications, natural resources monitoring and management, developmental education, Tele medicine, disaster warning, environmental.

  17. Microgravity Science Glovebox (MSG), Space Science's Past, Present and Future Aboard the International Space Station (ISS)

    Science.gov (United States)

    Spivey, Reggie; Spearing, Scott; Jordan, Lee

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS), which accommodates science and technology investigations in a "workbench' type environment. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. In fact, the MSG has been used for over 10,000 hours of scientific payload operations and plans to continue for the life of ISS. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume and allows researchers a controlled pristine environment for their needs. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, + 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. MSG investigations have involved research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, and plant growth technologies. Modifications to the MSG facility are currently under way to expand the capabilities and provide for investigations involving Life Science and Biological research. In addition, the MSG video system is being replaced with a state-of-the-art, digital video system with high definition/high speed capabilities, and with near real-time downlink capabilities. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an

  18. Uptake of Space Technologies - An Educational Programme

    Science.gov (United States)

    Bacai, Hina; Zolotikova, Svetlana; Young, Mandy; Cowsill, Rhys; Wells, Alan; Monks, Paul; Archibald, Alexandra; Smith, Teresa

    2013-04-01

    Earth Observation data and remote sensing technologies have been maturing into useful tools that can be utilised by local authorities and businesses to aid in activates such as monitoring climate change trends and managing agricultural land and water uses. The European Earth observation programme Copernicus, previously known as GMES (Global Monitoring for Environment and Security), provides the means to collect and process multi-source EO and environmental data that supports policy developments at the European level. At the regional and local level, the Copernicus programme has been initiated through Regional Contact Office (RCO), which provide knowledge, training, and access to expertise both locally and at a European level through the network of RCOs established across Europe in the DORIS_Net (Downstream Observatory organised by Regions active In Space - Network) project (Grant Agreement No. 262789 Coordination and support action (Coordinating) FP7 SPA.2010.1.1-07 "Fostering downstream activities and links with regions"). In the East Midlands UK RCO, educational and training workshops and modules have been organised to highlight the wider range of tools and application available to businesses and local authorities in the region. Engagement with businesses and LRA highlighted the need to have a tiered system of training to build awareness prior to investigating innovative solutions and space technology uses for societal benefits. In this paper we outline education and training programmes which have been developed at G-STEP (GMES - Science and Technology Education Partnership), University of Leicester, UK to open up the Copernicus programme through the Regional Contact Office to downstream users such as local businesses and LRAs. Innovative methods to introduce the operational uses of Space technologies in real cases through e-learning modules and web-based tools will be described and examples of good practice for educational training in these sectors will be

  19. European Space Science Scales New Heights

    Science.gov (United States)

    1995-06-01

    , Ulysses will have an unprecedented birds'-eye view of the day star's northern reaches. will it find the same anomaly as that observed last year above the south pole? Will the north magnetic pole prove to be as astonishingly inexistent as its southerly counterpart did last summer? The measurements collected during the next three months will be decisive in continuing the global investigation of the star that heats and sustains life on Earth. Moreover, there; could be other surprises in store for solar astrophysicists. For, at their request, ESA and NASA have decided to extend the Ulysses mission by six yews, from 1995 to 2001, so as to allow them to observe the Sun during a period of magnetic activity. With three new missions - ISO, Soho and Cluster - due to be launched and a fourth - Ulysses - embarking on a critical exploration phase, 1995 marks a crucial stage in the history of European space science. But all this is no mere coincidence. It should rather be seen as the result of a sustained planning effort that started ten years ago and is now coming up to its half-way point. For in 1985, at the request of the scientists themselves, ESA set up a 20-year (1985-2005) programme designed to pave the way for ambitious science missions. In other words, giving Europe the wherewithal to play its proper part in peaceful exploration of the universe. The "Horizon 2000" plan was devised solely according to certain key criteria: scientific excellence, project coherence, balance, technological content and realistic budgeting. Management efficiency in particular has allowed Horizon 2000 today to work to a budget of ECU 343 million (12.8iln of ESA's general budget), equivalent in terms of purchasing power to European space science funding twenty-five yews ago. The missions comprising Horizon 2000 were proposed by the scientific community and then selected by groups of leading research scien16sts. They include qualified beacon projects, "Cornerstone missions", costing the equivalent of

  20. 2015 Science Mission Directorate Technology Highlights

    Science.gov (United States)

    Seablom, Michael S.

    2016-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation, e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  1. NASA's Space Life Sciences Training Program

    Science.gov (United States)

    Coulter, G.; Lewis, L.; Atchison, D.

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D. C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  2. JPRS Report, Science & Technology, USSR: Life Sciences

    National Research Council Canada - National Science Library

    1987-01-01

    Partial Contents: Aerospace Medicine, Agricultural Science, Biochemistry, Biophysics, Biotechnology, Epidemiology, Genetics, Immunology, Industrial Medicine, Laser Bioeffects, Marine Mammals, Medicine, Microbiology...

  3. JPRS Report Science & Technology USSR: Life Sciences

    National Research Council Canada - National Science Library

    1990-01-01

    Partial Contents: Agricultural Science, Biochemistry, Biophysics, Epidemiology, Genetics, Laser Bioeffects, Medicine, Microbiology, Molecular Biology, Nonionizing Radiation Effects, Physiology, Public Health...

  4. The Space House TM : Space Technologies in Architectural Design

    Science.gov (United States)

    Gampe, F.; Raitt, D.

    2002-01-01

    The word "space" has always been associated with and had a profound impact upon architectural design. Until relatively recently, however, the term has been used in a different sense to that understood by the aerospace community - for them, space was less abstract, more concrete and used in the context of space flight and space exploration, rather than, say, an empty area or space requiring to be filled by furniture. However, the two senses of the word space have now converged to some extent. Interior designers and architects have been involved in designing the interior of Skylab, the structure of the International Space Station, and futuristic space hotels. Today, architects are designing, and builders are building, houses, offices and other structures which incorporate a plethora of new technologies, materials and production processes in an effort not only to introduce innovative and adventurous ideas but also in an attempt to address environmental and social issues. Foremost among these new technologies and materials being considered today are those that have been developed for and by the space industry. This paper examines some of these space technologies, such as energy efficient solar cells, durable plastics, air and water filtration techniques, which have been adapted to both provide power while reducing energy consumption, conserve resources and so on. Several of these technologies have now been employed by the European Space Agency to develop a Space House TM - the first of its kind, which will be deployed not so much on planets like Mars, but rather here on Earth. The Space House TM, which exhibits many innovative features such as high strength light-weight carbon composites, active noise-damped, (glass and plastic) windows, low-cost solar arrays and latent heat storage, air and water purification systems will be described.

  5. Philosophy of technology and engineering sciences

    CERN Document Server

    2009-01-01

    The Handbook Philosophy of Technology and Engineering Sciences addresses numerous issues in the emerging field of the philosophy of those sciences that are involved in the technological process of designing, developing and making of new technical artifacts and systems. These issues include the nature of design, of technological knowledge, and of technical artifacts, as well as the toolbox of engineers. Most of these have thus far not been analyzed in general philosophy of science, which has traditionally but inadequately regarded technology as mere applied science and focused on physics, biology, mathematics and the social sciences.

  6. Space technology transfer to developing countries: opportunities and difficulties

    Science.gov (United States)

    Leloglu, U. M.; Kocaoglan, E.

    Space technology, with its implications on science, economy and security, is mostly chosen as one of the priority areas for technological development by developing countries. Most nations aspiring to begin playing in the space league prefer technology transfer programs as a first step. Decreasing initial costs by small satellite technology made this affordable for many countries. However, there is a long way from this first step to establishment of a reliable space industry that can both survive in the long term with limited financial support from the government and meet national needs. This is especially difficult when major defense companies of industrialized countries are merging to sustain their competitiveness. The prerequisites for the success are implementation of a well-planned space program and existence of industrialization that can support basic testing and manufacturing activities and supply qualified manpower. In this study, the difficulties to be negotiated and the vicious circles to be broken for latecomers, that is, developing countries that invest on space technologies are discussed. Especially, difficulties in the technology transfer process itself, brain drain from developing countries to industrialized countries, strong competition from big space companies for domestic needs, costs of establishing and maintaining an infrastructure necessary for manufacturing and testing activities, and finally, the impact of export control will be emphasized. We will also try to address how and to what extent collaboration can solve or minimize these problems. In discussing the ideas mentioned above, lessons learned from the BILSAT Project, a technology transfer program from the UK, will be referred.

  7. Space and Earth Science Data Compression Workshop

    Science.gov (United States)

    Tilton, James C. (Editor)

    1991-01-01

    The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.

  8. The science of space-time

    International Nuclear Information System (INIS)

    Raine, D.J.; Heller, M.

    1981-01-01

    Analyzing the development of the structure of space-time from the theory of Aristotle to the present day, the present work attempts to sketch a science of relativistic mechanics. The concept of relativity is discussed in relation to the way in which space-time splits up into space and time, and in relation to Mach's principle concerning the relativity of inertia. Particular attention is given to the following topics: Aristotelian dynamics Copernican kinematics Newtonian dynamics the space-time of classical dynamics classical space-time in the presence of gravity the space-time of special relativity the space-time of general relativity solutions and problems in general relativity Mach's principle and the dynamics of space-time theories of inertial mass the integral formation of general relativity and the frontiers of relativity

  9. Educational Technologies in Health Science Libraries: Teaching Technology Skills

    Science.gov (United States)

    Hurst, Emily J.

    2014-01-01

    As technology rapidly changes, libraries remain go-to points for education and technology skill development. In academic health sciences libraries, trends suggest librarians provide more training on technology topics than ever before. While education and training have always been roles for librarians, providing technology training on new mobile devices and emerging systems requires class creation and training capabilities that are new to many. To appeal to their users, many health sciences librarians are interested in developing technology-based classes. This column explores the question: what skills are necessary for developing and teaching technology in an academic health sciences library setting? PMID:24528269

  10. Educational technologies in health sciences libraries: teaching technology skills.

    Science.gov (United States)

    Hurst, Emily J

    2014-01-01

    As technology rapidly changes, libraries remain go-to points for education and technology skill development. In academic health sciences libraries, trends suggest librarians provide more training on technology topics than ever before. While education and training have always been roles for librarians, providing technology training on new mobile devices and emerging systems requires class creation and training capabilities that are new to many librarians. To appeal to their users, many health sciences librarians are interested in developing technology-based classes. This column explores the question: what skills are necessary for developing and teaching technology in an academic health sciences library setting?

  11. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    Science.gov (United States)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  12. Science & Technology Review April 2007

    Energy Technology Data Exchange (ETDEWEB)

    Radousky, H B

    2007-02-27

    This month's issue has the following articles: (1) Shaking the Foundations of Solar-System Science--Commentary by William H. Goldstein; (2) Stardust Results Challenge Astronomical Convention--The first samples retrieved from a comet are a treasure trove of surprises to Laboratory researchers; (3) Fire in the Hole--Underground coal gasification may help to meet future energy supply challenges with a production process from the past; (4) Big Physics in Small Spaces--A newly developed computer model successfully simulates particle-laden fluids flowing through complex microfluidic systems; (5) A New Block on the Periodic Table--Livermore and Russian scientists add a new block to the periodic table with the creation of element 118; and (6) A Search for Patterns and Connections--Throughout his career, Edward Teller searched for mathematical solutions to explain the physical world.

  13. 77 FR 56681 - Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National...

    Science.gov (United States)

    2012-09-13

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National Science and Technology Council; Public Engagement Through Nano.gov Webinar AGENCY: Executive Office of the President, Office of Science and Technology Policy. ACTION...

  14. Is Computer Science Compatible with Technological Literacy?

    Science.gov (United States)

    Buckler, Chris; Koperski, Kevin; Loveland, Thomas R.

    2018-01-01

    Although technology education evolved over time, and pressure increased to infuse more engineering principles and increase links to STEM (science technology, engineering, and mathematics) initiatives, there has never been an official alignment between technology and engineering education and computer science. There is movement at the federal level…

  15. Access from Space: A New Perspective on NASA's Space Transportation Technology Requirements and Opportunities

    Science.gov (United States)

    Rasky, Daniel J.

    2004-01-01

    The need for robust and reliable access from space is clearly demonstrated by the recent loss of the Space Shuttle Columbia; as well as the NASA s goals to get the Shuttle re-flying and extend its life, build new vehicles for space access, produce successful robotic landers and s a q k retrr? llisrions, and maximize the science content of ambitious outer planets missions that contain nuclear reactors which must be safe for re-entry after possible launch aborts. The technology lynch pin of access from space is hypersonic entry systems such the thermal protection system, along with navigation, guidance and control (NG&C). But it also extends to descent and landing systems such as parachutes, airbags and their control systems. Current space access technology maturation programs such as NASA s Next Generation Launch Technology (NGLT) program or the In-Space Propulsion (ISP) program focus on maturing laboratory demonstrated technologies for potential adoption by specific mission applications. A key requirement for these programs success is a suitable queue of innovative technologies and advanced concepts to mature, including mission concepts enabled by innovative, cross cutting technology advancements. When considering space access, propulsion often dominates the capability requirements, as well as the attention and resources. From the perspective of access from space some new cross cutting technology drivers come into view, along with some new capability opportunities. These include new miniature vehicles (micro, nano, and picosats), advanced automated systems (providing autonomous on-orbit inspection or landing site selection), and transformable aeroshells (to maximize capabilities and minimize weight). This paper provides an assessment of the technology drivers needed to meet future access from space mission requirements, along with the mission capabilities that can be envisioned from innovative, cross cutting access from space technology developments.

  16. Thinking again about science in technology.

    Science.gov (United States)

    Alexander, Jennifer Karns

    2012-09-01

    How to characterize the relationship between science and technology has been a sensitive issue for historians of technology. This essay uses a recent and controversial piece by Paul Forman as a springboard for reexamining the concept of applied science and asks whether "applied science" remains a useful term. Scholars have often taken "applied science" to mean the subordination of technological knowledge to scientific knowledge-and thus the subordination of history of technology to history of science. This essay argues that the historical moment for sensitivity on the subject of applied science has passed, that even in instances where technology can accurately be described as subordinate to science it need not follow that its history is subordinate, and that the concept can be useful in addressing issues in the history and contemporary practice of engineering education.

  17. NASA Space Science Day Events-Engaging Students in Science

    Science.gov (United States)

    Foxworth, S.; Mosie, A.; Allen, J.; Kent, J.; Green, A.

    2015-01-01

    The NASA Space Science Day Event follows the same format of planning and execution at all host universities and colleges. These institutions realized the importance of such an event and sought funding to continue hosting NSSD events. In 2014, NASA Johnson Space Center ARES team has supported the following universities and colleges that have hosted a NSSD event; the University of Texas at Brownsville, San Jacinto College, Georgia Tech University and Huston-Tillotson University. Other universities and colleges are continuing to conduct their own NSSD events. NASA Space Science Day Events are supported through continued funding through NASA Discovery Program. Community Night begins with a NASA speaker and Astromaterials display. The entire community surrounding the host university or college is invited to the Community Night. This year at the Huston-Tillotson (HTU) NSSD, we had Dr. Laurie Carrillo, a NASA Engineer, speak to the public and students. She answered questions, shared her experiences and career path. The speaker sets a tone of adventure and discovery for the NSSD event. After the speaker, the public is able to view Lunar and Meteorite samples and ask questions from the ARES team. The students and teachers from nearby schools attended the NSSD Event the following day. Students are able to see the university or college campus and the university or college mentors are available for questions. Students rotate through hour long Science Technology Engineering and Mathematics (STEM) sessions and a display area. These activities are from the Discovery Program activities that tie in directly with k- 12 instruction. The sessions highlight the STEM in exploration and discovery. The Lunar and Meteorite display is again available for students to view and ask questions. In the display area, there are also other interactive displays. Angela Green, from San Jacinto College, brought the Starlab for students to watch a planetarium exhibit for the NSSD at Huston

  18. The Space Science Suitcase—Instruments for Exploring Near-Earth Space from the Classroom

    Science.gov (United States)

    Olafsson, Kjartan; Ostgaard, Nikolai; Tanskanen, Eija

    2009-04-01

    The aurora and other phenomena in near Earth space are becoming a considerable part of the science curriculum in upper secondary school (high school) in Norway. Introducing scientific methods to the young students is an important objective of the education, but experimental experience is mainly restricted to simple laboratory exercises under controlled conditions; observations of uncontrollable natural phenomena are generally left to academic scientists and researchers. The Space Physics Group and The Science Education and Outreach Group at The Department of Physics and Technology, University of Bergen, are constructing a Space Science Suitcase with a set of simple versions of instruments for monitoring solar and geophysical activity in near Earth space. The instruments will be lent to physics classes in upper secondary schools.

  19. Space transportation propulsion USSR launcher technology, 1990

    Science.gov (United States)

    1991-01-01

    Space transportation propulsion U.S.S.R. launcher technology is discussed. The following subject areas are covered: Energia background (launch vehicle summary, Soviet launcher family) and Energia propulsion characteristics (booster propulsion, core propulsion, and growth capability).

  20. Advancing Radar Technologies for Space Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — Remote sensing technologies remain the primary means by which scientific knowledge about the surrounding universe is gathered in lieu of human exploration. Radar...

  1. JPRS Report, Science & Technology, USSR: Science & Technology Policy

    Science.gov (United States)

    1988-04-28

    Marina Nikolayevna Stroganova, docent, staff members of the same university; Candidate of Biological Sciences Alek- sandr Vladimirovich Khabarov...Mikhail Gukasovich Abramov , professor, Doctor JPRS-UST-88-005 28 April 1988 26 Awards, Prizes of Medical Sciences Natalya Yevgenyevna Andreyeva...docent, Doctor of Medical Sciences Lev Iosifovich Idel- son, senior scientific associate, Candidate of Medical Sciences Marina Davydovna Brilliant

  2. ANSTO: Australian Nuclear Science and Technology Organization

    International Nuclear Information System (INIS)

    1989-01-01

    The Australian Nuclear Science and Technology Organization conducts or is engaged in collaborative research and development in the application of nuclear science and associated technology. Through its Australian radio-isotopes unit, it markets radioisotopes, their products and other services for nuclear medicine industry and research. It also operates national nuclear facilities ( HIFAR and Moata research reactors), promote training, provide advice and disseminates information on nuclear science and technology. The booklet briefly outlines these activities. ills

  3. Space Photovoltaic Research and Technology 1985: High Efficiency, Space Environment, and Array Technology

    Science.gov (United States)

    1985-01-01

    The seventh NASA Conference on Space Photovoltaic Research and Technology was held at NASA Lewis Research Center, Cleveland, Ohio, from 30 April until 2 May 1985. Its purpose was to assess the progress made, the problems remaining, and future strategy for space photovoltaic research. Particular emphasis was placed on high efficiency, space environment, and array technology.

  4. A commercial space technology testbed on ISS

    Science.gov (United States)

    Boyle, David R.

    2000-01-01

    There is a significant and growing commercial market for new, more capable communications and remote sensing satellites. Competition in this market strongly motivates satellite manufacturers and spacecraft component developers to test and demonstrate new space hardware in a realistic environment. External attach points on the International Space Station allow it to function uniquely as a space technology testbed to satisfy this market need. However, space industry officials have identified three critical barriers to their commercial use of the ISS: unpredictable access, cost risk, and schedule uncertainty. Appropriate NASA policy initiatives and business/technical assistance for industry from the Commercial Space Center for Engineering can overcome these barriers. .

  5. Science& Technology Review October 2003

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, D H

    2003-10-01

    The October 2003 issue of Science & Technology Review consists of the following articles: (1) Award-Winning Technologies from Collaborative Efforts--Commentary by Hal Graboske; (2) BASIS Counters Airborne Bioterrorism--The Biological Aerosol Sentry and Information System is the first integrated biodefense system; (3) In the Chips for the Coming Decade--A new system is the first full-field lithography tool for use at extreme ultraviolet wavelengths; (4) Smoothing the Way to Print the Next Generation of Computer Chips--With ion-beam thin-film planarization, the reticles and projection optics made for extreme ultraviolet lithography are nearly defect-free; (5) Eyes Can See Clearly Now--The MEMS-based adaptive optics phoropter improves the process of measuring and correcting eyesight aberrations; (6) This Switch Takes the Heat--A thermally compensated Q-switch reduces the light leakage on high-average-power lasers; (7) Laser Process Forms Thick, Curved Metal Parts--A new process shapes parts to exact specifications, improving their resistance to fatigue and corrosion cracking; and (8) Characterizing Tiny Objects without Damaging Them--Livermore researchers are developing nondestructive techniques to probe the Lilliputian world of mesoscale objects.

  6. Biology and the space sciences.

    Science.gov (United States)

    Klein, H. P.

    The intellectual content in the field of exobiology goes far beyond attempts to detect life on another planet. Thus, while exobiology has historically been narrowly viewed as the search for extraterrestrial life, in point of fact, the field today is better described as an interdisciplinary science devoted to the study of evolutionary biology. As such, it encompasses the origins and history of the major elements required for life; their processing in the interstellar medium and in protostellar systems; their incorporation into organic compounds on the primitive Earth and on other celestial objects; the interactions of an evolving planet with the evolution of complex organic compounds; the conditions under which chemical evolution resulted in replicating molecules; and the subsequent interactions between an evolving biota and further planetary evolution.

  7. White paper on science and technology, 1993

    International Nuclear Information System (INIS)

    1993-01-01

    From now on, science and technology is expected to play the role of finding solutions to a variety of problems, such as the grave situation of global environment and the problems specific to Japan like aging population and declining birth rate. However, young people are losing their interest in science and technology, and it is an extremely grave concern. The White Paper in this year adopts the relation of young people with science and technology as its main theme, and the declining popularity of science and technology among young people, the danger of its consequence, its background and others are analyzed. The measures toward the society in which science and technology come in contact with daily life are discussed. As to the present status of science and technology in Japan and other countries, research and development expenditures, research personnel and the trend related to research performance are reported. As to the development of science and technology policy in Japan, the general guideline, the Council for Science and Technology, the structures for promoting science and technology and the promotion of research activities are described. (K.I.)

  8. 76 FR 38430 - Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council

    Science.gov (United States)

    2011-06-30

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council ACTION: Notice of Panel Session. Public input is requested... Sciences 2009 report: ``Strengthening Forensic Science in the United States: A Path Forward'' ( http://www...

  9. Nuclear Technologies for Space Exploration Conference

    International Nuclear Information System (INIS)

    Dudenhoefer, J.E.; Winter, J.M.; Alger, D.

    1992-08-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC

  10. Advanced Information Technology Investments at the NASA Earth Science Technology Office

    Science.gov (United States)

    Clune, T.; Seablom, M. S.; Moe, K.

    2012-12-01

    The NASA Earth Science Technology Office (ESTO) regularly makes investments for nurturing advanced concepts in information technology to enable rapid, low-cost acquisition, processing and visualization of Earth science data in support of future NASA missions and climate change research. In 2012, the National Research Council published a mid-term assessment of the 2007 decadal survey for future spacemissions supporting Earth science and applications [1]. The report stated, "Earth sciences have advanced significantly because of existing observational capabilities and the fruit of past investments, along with advances in data and information systems, computer science, and enabling technologies." The report found that NASA had responded favorably and aggressively to the decadal survey and noted the role of the recent ESTO solicitation for information systems technologies that partnered with the NASA Applied Sciences Program to support the transition into operations. NASA's future missions are key stakeholders for the ESTO technology investments. Also driving these investments is the need for the Agency to properly address questions regarding the prediction, adaptation, and eventual mitigation of climate change. The Earth Science Division has championed interdisciplinary research, recognizing that the Earth must be studied as a complete system in order toaddress key science questions [2]. Information technology investments in the low-mid technology readiness level (TRL) range play a key role in meeting these challenges. ESTO's Advanced Information Systems Technology (AIST) program invests in higher risk / higher reward technologies that solve the most challenging problems of the information processing chain. This includes the space segment, where the information pipeline begins, to the end user, where knowledge is ultimatelyadvanced. The objectives of the program are to reduce the risk, cost, size, and development time of Earth Science space-based and ground

  11. USSR Space Life Sciences Digest, issue 29

    Science.gov (United States)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1991-01-01

    This is the twenty-ninth issue of NASA's Space Life Sciences Digest. It is a double issue covering two issues of the Soviet Space Biology and Aerospace Medicine Journal. Issue 29 contains abstracts of 60 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a book on environmental hygiene and a list of papers presented at a Soviet conference on space biology and medicine are also included. The materials in this issue were identified as relevant to 28 areas of space biology and medicine. The areas are: adaptation, aviation medicine, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, digestive system, endocrinology, equipment and instrumentation, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, personnel selection, psychology, radiobiology, reproductive system, space biology and medicine, and the economics of space flight.

  12. Connecting Learning Spaces Using Mobile Technology

    Science.gov (United States)

    Chen, Wenli; Seow, Peter; So, Hyo-Jeong; Toh, Yancy; Looi, Chee-Kit

    2010-01-01

    The use of mobile technology can help extend children's learning spaces and enrich the learning experiences in their everyday lives where they move from one context to another, switching locations, social groups, technologies, and topics. When students have ubiquitous access to mobile devices with full connectivity, the in-situ use of the mobile…

  13. USSR Space Life Sciences Digest, issue 14

    Science.gov (United States)

    Hooke, Lydia Razran; Teeter, Ronald; Radtke, Mike; Rowe, Joseph

    1988-01-01

    This is the fourteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 32 papers recently published in Russian language periodicals and bound collections and of three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet conference on Space Biology and Aerospace Medicine. Current Soviet life sciences titles available in English are cited. The materials included in this issue have been identified as relevant to the following areas of aerospace medicine and space biology: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, habitability and environment effects, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  14. A Network Enabled Platform for Canadian Space Science Data

    Science.gov (United States)

    Rankin, R.; Boteler, D. R.; Jayachandran, T. P.; Mann, I. R.; Sofko, G.; Yau, A. W.

    2008-12-01

    The internet is an example of a pervasive disruptive technology that has transformed society on a global scale. The term "cyberinfrastructure" refers to technology underpinning the collaborative aspect of large science projects and is synonymous with terms such as e-Science, intelligent infrastructure, and/or e- infrastructure. In the context of space science, a significant challenge is to exploit the internet and cyberinfrastructure to form effective virtual organizations (VOs) of scientists that have common or agreed- upon objectives. A typical VO is likely to include universities and government agencies specializing in types of instrumentation (ground and/or space based), which in deployment produce large quantities of space data. Such data is most effectively described by metadata, which if defined in a standard way, facilitates discovery and retrieval of data over the internet by intelligent interfaces and cyberinfrastructure. One recent and significant approach is SPASE, which is being developed by NASA as a data-standard for its Virtual Observatories (VxOs) programs. The space science community in Canada has recently formed a VO designed to complement the e-POP microsatellite mission, and new ground-based observatories (GBOs) that collect data over a large fraction of the Canadian land-mass. The VO includes members of the CGSM community (www.cgsm.ca), which is funded operationally by the Canadian Space Agency. It also includes the UCLA VMO team, and scientists in the NASA THEMIS mission. CANARIE (www.canarie.ca), the federal agency responsible for management, design and operation of Canada's research internet, has recently recognized the value of cyberinfrastucture through the creation of a Network-Enabled-Platforms (NEPs) program. An NEP for space science was funded by CANARIE in its first competition. When fully implemented, the Space Science NEP will consist of a front-end portal providing access to CGSM data. It will utilize an adaptation of the SPASE

  15. Wisconsin Earth and Space Science Education

    Science.gov (United States)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  16. Women in science and technology | Hussein | Zimbabwe Science ...

    African Journals Online (AJOL)

    The constraints to girls and women in the science and technology field, especially those living in developing countries are discussed. In an effort to overcome these constraints, there are a number of national and international organizations promoting the role of women in science and technology. The work of some of these ...

  17. In-Space Propulsion (ISP) Aerocapture Technology

    Science.gov (United States)

    Munk, Michelle M.; James, Bonnie F.; Moon, Steve

    2005-01-01

    A viewgraph presentation is shown to raise awareness of aerocapture technology through in-space propulsion. The topics include: 1) Purpose; 2) In-Space Propulsion Program; 3) Aerocapture Overview; 4) Aerocapture Technology Alternatives; 5) Aerocapture Technology Project Process; 6) Results from 2002 Aerocapture TAG; 7) Bounding Case Requirements; 8) ST9 Flight Demonstration Opportunity; 9) Aerocapture NRA Content: Cycles 1 and 2; 10) Ames Research Center TPS Development; 11) Applied Research Associates TPS Development; 12) LaRC Structures Development; 13) Lockheed Martin Astronautics Aeroshell Development; 14) ELORET/ARC Sensor Development; 15) Ball Aerospace Trailing Ballute Development; 16) Cycle 2 NRA Selections - Aerocapture; and 17) Summary.

  18. Space Photovoltaic Research and Technology 1986. High Efficiency, Space Environment, and Array Technology

    Science.gov (United States)

    1987-01-01

    The conference provided a forum to assess the progress made, the problems remaining, and the strategy for the future of photovoltaic research. Cell research and technology, space environmental effects, array technology and applications were discussed.

  19. USSR Space Life Sciences Digest, issue 28

    Science.gov (United States)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-eighth issue of NASA's Space Life Sciences Digest. It contains abstracts of 60 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 20 areas of space biology and medicine. These areas include: adaptation, aviation medicine, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, hematology, human performance, immunology, life support systems, mathematical modeling, musculoskeletal system, neurophysiology, personnel selection, psychology, radiobiology, reproductive system, and space medicine.

  20. USSR Space Life Sciences Digest, issue 30

    Science.gov (United States)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1991-01-01

    This is the thirtieth issue of NASA's Space Life Sciences Digest. It contains abstracts of 47 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 20 areas of space biology and medicine. These areas include: adaptation, biospheric research, cardiovascular and respiratory systems, endocrinology, equipment and instrumentation, gastrointestinal system, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, psychology, radiobiology, and space biology and medicine.

  1. USSR Space Life Sciences Digest, issue 31

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the thirty first issue of NASA's Space Life Sciences Digest. It contains abstracts of 55 journal papers or book chapters published in Russian and of 5 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 18 areas of space biology and medicine. These areas include: adaptation, biological rhythms, cardiovascular and respiratory systems, endocrinology, enzymology, genetics, group dynamics, habitability and environmental effects, hematology, life support systems, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, and space biology and medicine.

  2. 75 FR 36722 - Aeronautics Science and Technology Subcommittee; Committee on Technology; National Science and...

    Science.gov (United States)

    2010-06-28

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Aeronautics Science and Technology Subcommittee; Committee... requested to assist in the development of the draft National Aeronautics Research, Development, Test and Evaluation (RDT&E) Infrastructure Plan. SUMMARY: The Aeronautics Science and Technology Subcommittee (ASTS...

  3. Science and Technology Teachers' Views of Primary School Science and Technology Curriculum

    Science.gov (United States)

    Yildiz-Duban, Nil

    2013-01-01

    This phenomenographic study attempts to explicit science and technology teachers' views of primary school science and technology curriculum. Participants of the study were selected through opportunistic sampling and consisted of 30 science and technology teachers teaching in primary schools in Afyonkarahisar, Turkey. Data were collected through an…

  4. Advanced Mirror Technology Development for Very Large Space Telescopes

    Science.gov (United States)

    Stahl, H. P.

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a NASA Strategic Astrophysics Technology project to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. The developed mirror technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. Just as JWST’s architecture was driven by launch vehicle, a future UVOIR mission’s architectures (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, to provide the science community with options, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We derived engineering specifications for potential future monolithic or segmented space telescopes based on science needs and implement constraints. And we are maturing six inter-linked critical technologies to enable potential future large aperture UVOIR space telescope: 1) Large-Aperture, Low Areal Density, High Stiffness Mirrors, 2) Support Systems, 3) Mid/High Spatial Frequency Figure Error, 4) Segment Edges, 5) Segment-to-Segment Gap Phasing, and 6) Integrated Model Validation Science Advisory Team and a Systems Engineering Team. We are maturing all six technologies simultaneously because all are required to make a primary mirror assembly (PMA); and, it is the PMA’s on-orbit performance which determines science return. PMA stiffness depends on substrate and support stiffness. Ability to cost-effectively eliminate mid/high spatial figure errors and polishing edges depends on substrate stiffness. On-orbit thermal and mechanical performance depends on substrate stiffness, the coefficient of thermal expansion (CTE) and thermal mass. And, segment-to-segment phasing depends on substrate & structure stiffness

  5. Zimbabwe Journal of Technological Sciences: Submissions

    African Journals Online (AJOL)

    Author Guidelines. Guidelines For Contributors The editorial policy of the Zimbabwe Journal Technological Sciences is to review and publish high quality original research findings and well-written articles on theory and practice in Technological Sciences. The editorial board welcomes articles that contribute to the overall ...

  6. Science, Technology and Innovation in Uganda

    Science.gov (United States)

    Brar, Sukhdeep; Farley, Sara E.; Hawkins, Robert; Wagner, Caroline S.

    2010-01-01

    Science, Technology and Innovation in Uganda is part of the World Bank Studies series. These papers are published to communicate the results of the Bank's ongoing research and to stimulate public discussion. This study presents a unique methodology to view science, technology and innovation (STI) in developing countries. The study provides a set…

  7. International Journal of Engineering, Science and Technology ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: Editorial Policies ... Original theoretical work and application-based studies, which contributes to a better understanding of engineering, science and technological challenges, are ... The time between review and publication can range from 2-6 months ...

  8. Journal of Science and Technology (Zambia)

    African Journals Online (AJOL)

    The University of Zambia Journal of Science and Technology provides an outlet for research findings and reviews in areas of science and technology found to be relevant for national and international development. The bi-annual journal is intended, in its publications, to stimulate new research and foster practical ...

  9. Journal of Agriculture, Science and Technology

    African Journals Online (AJOL)

    The Journal of Agriculture, Science and Technology publishes original papers in areas of Agriculture, Science, Technology, Biotechnology, Medicine and Architecture. It serves the scientific community in Africa. Vol 16, No 2 (2014). DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access ...

  10. Journal of Science and Technology (Ghana)

    African Journals Online (AJOL)

    The Journal of Science and Technology (JUST) aims principally at publishing articles resulting from original research whether pure or applied in the various aspects of academic endeavour broadly classified as Science (Physical, Biological and Chemical), Humanities and Technology. It aims at serving the academic ...

  11. Mozambique Science, Technology and Innovation Review | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project aims to strengthen the capacity of the Mozambique Ministry of Science and Technology (MOST) to govern the country's science, technology and innovation (STI) system, and of researchers and policymakers to conduct systematic reviews of STI policy implementation. It will do so by supporting a review of the ...

  12. Space power technology 21: Photovoltaics

    Science.gov (United States)

    Wise, Joseph

    1989-01-01

    The Space Power needs for the 21st Century and the program in photovoltaics needed to achieve it are discussed. Workshops were conducted in eight different power disciplines involving industry and other government agencies. The Photovoltaics Workshop was conducted at Aerospace Corporation in June 1987. The major findings and recommended program from this workshop are discussed. The major finding is that a survivable solar power capability is needed in photovoltaics for critical Department of Defense missions including Air Force and Strategic Defense Initiative. The tasks needed to realize this capability are described in technical, not financial, terms. The second finding is the need for lightweight, moderately survivable planar solar arrays. High efficiency thin III-V solar cells can meet some of these requirements. Higher efficiency, longer life solar cells are needed for application to both future planar and concentrator arrays with usable life up to 10 years. Increasing threats are also anticipated and means for avoiding prolonged exposure, retraction, maneuvering and autonomous operation are discussed.

  13. JPRS Report, Science & Technology, USSR: Life Sciences.

    Science.gov (United States)

    1988-02-12

    above peptides. It was demonstrated that tritium planigraphy helped to distinguish the intramembrane aminoacid residues and the polypeptide sequences...other factors on tritium inclusion: nature of aminoacid residues, amphilicity of the spirals, packing density of intramembrane fragments and lipid...Ellanskaya and A. G. Sarafanov, Institute of Nutrition , USSR Academy of Medical Sciences, Moscow, Institute of Microbiology and Virology, Ukrainian SSR

  14. JPRS Report Science & Technology USSR: Life Sciences.

    Science.gov (United States)

    1990-07-09

    more often (p < 0.01) among the causes of hospital death than are myocardial rupture, arrhythmia , thromboembolisms, etc. Thus, the data obtained in... newborn infants. This research is financed by the UkSSR Academy of Sciences within the framework of the scientific-technical program "Ecology of the

  15. JPRS Report, Science & Technology, USSR: Life Sciences.

    Science.gov (United States)

    1987-09-25

    Escherichia coli with the 5uiiK~in SIH genf wi^h a 9enetic engineering technique developed by the Academy of Sciences of the USSR and the NPO "Ferment...damage to left side of cortex; 5—flexion on right side. An account of the research that followed requires a brief explanation con- cerning a recently

  16. Introduction to the history of science and technology

    International Nuclear Information System (INIS)

    Jang, Byeong Ju

    1998-08-01

    This book contains origin of technology and development of civilization, national philosophy and ancient science and technology, Middle Age society and accumulation of science and technology, the era of the Renaissance and science and technology, development of science revolution and experimental science, technology and Mechanistic nature view of the manufacture time, science and evolution theory of the time of enlightenment idea, science and technology of the Industrial Revolution time, Korea's science and technology, modern technique and scientific approach, science and technology of the twenty-first century, and the role of science and technology in modern society.

  17. USSR Space Life Sciences Digest, issue 7

    Science.gov (United States)

    Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)

    1986-01-01

    This is the seventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 29 papers recently published in Russian language periodicals and bound collections and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include two interviews with the Soviet Union's cosmonaut physicians and others knowledgable of the Soviet space program. The topics discussed at a Soviet conference on problems in space psychology are summarized. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 29 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space medicine.

  18. Johnson Space Center Research and Technology Report

    Science.gov (United States)

    Pido, Kelle; Davis, Henry L. (Technical Monitor)

    1999-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA's development of human spacecraft, human support systems, and human spacecraft operations. To implement this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space--technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described.

  19. African Journal of Science and Technology

    African Journals Online (AJOL)

    The African Journal of Science and Technology (AJST) is a biannual technical publication of the African Network of Scientific and Technical Institutions (ANSTI). Le Journal Africain de Science et de Technologie est une revue scientifique du Journal Africain de Science et de Technologie est une revue scientifique du ...

  20. ESA Technologies for Space Debris Remediation

    Science.gov (United States)

    Wormnes, K.; Le Letty, R.; Summerer, L.; Schonenborg, R.; Dubois-Matra, O.; Luraschi, E.; Cropp, A.; Krag, H.; Delaval, J.

    2013-08-01

    Space debris is an existing and growing problem for space operations. Studies show that for a continued use of LEO, 5 - 10 large and strategically chosen debris need to be removed every year. The European Space Agency (ESA) is actively pursuing technologies and systems for space debris removal under its Clean Space initiative. This overview paper describes the activities that are currently ongoing at ESA and that have already been completed. Additionally it outlines the plan for the near future. The technologies under study fall in two main categories corresponding to whether a pushing or a pulling manoeuvre is required for the de-orbitation. ESA is studying the option of using a tethered capture system for controlled de-orbitation through pulling where the capture is performed using throw-nets or alternatively a harpoon. The Agency is also studying rigid capture systems with a particular emphasis on tentacles (potentially combined with a robotic arm). Here the de-orbitation is achieved through a push-manoeuvre. Additionally, a number of activities will be discussed that are ongoing to develop supporting technologies for these scenarios, or to develop systems for de-orbiting debris that can be allowed to re-enter in an uncontrolled manner. The short term goal and main driver for the current technology developments is to achieve sufficient TRL on required technologies to support a potential de-orbitation mission to remove a large and strategically chosen piece of debris.

  1. Technology transfer trends in Indian space programme

    Science.gov (United States)

    Sridhara Murthi, K. R.; Shoba, T. S.

    2010-10-01

    Indian space programme, whose objectives involve acceleration of economic and social development through applications of space technology, has been engaged in the development of state-of-the-art satellite systems, launch vehicles and equipment necessary for applications. Even during the early phase of evolution of this Programme, deliberate policies have been adopted by the national space agency, namely, Indian Space Research Organisation (ISRO), to promote spin-off benefit from the technologies developed for the use of space projects. Consistently adhering to this policy, ISRO has transferred over 280 technologies till date, spanning a wide spectrum of disciplines. This has resulted in a fruitful two-way cooperation between a number of SMEs and the ISRO. In order to make the technology transfer process effective, ISRO has adopted a variety of functional and organizational policies that included awareness building measures, licensee selection methods, innovative contract systems, diverse transfer processes, post licencing services and feedback mechanisms. Besides analyzing these policies and their evolution, the paper discusses various models adopted for technology transfer and their impact on assessment. It also touches upon relevant issues relating to creating interface between public funded R&D and the private commercial enterprises. It suggests few models in which international cooperation could be pursued in this field.

  2. 59 MDW/Science and Technology Poster

    Science.gov (United States)

    2017-04-28

    SGYU SUBJECT: Professional Presentation Approval • ’ ...... -""""’ ~ 18 APR 20 17 1. Your paper, entitled 59 MDW/ Science & Technology Poster...presented at/published 59m Medical Wing Chief Scientists Office - Science & Technology to in accordance with MDWI 41-108, has been approved and assigned...Ambulatory Surgical Center (WHASC) internship and residency programs. 3. Please know that if you are a Graduate Health Sciences Education student and

  3. USSR Space Life Sciences Digest, issue 11

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor)

    1987-01-01

    This is the eleventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of four new Soviet monographs. Selected abstracts are illustrated. Additional features include the translation of a paper presented in Russian to the United Nations, a review of a book on space ecology, and report of a conference on evaluating human functional capacities and predicting health. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 30 areas of aerospace medicine and space biology. These areas are: adaptation, aviation physiology, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, group dynamics, genetics, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, and radiobiology.

  4. USSR Space Life Sciences Digest, issue 3

    Science.gov (United States)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the third issue of NASA's USSR Space Life Sciences Digest. Abstracts are included for 46 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the second third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for seven Russian books on six topics related to NASA's life science concerns are presented. Areas covered are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, endocrinology, exobiology, gravitational biology, habitability and environmental effects, health and medical treatment, immunology, life support systems, metabolism, microbiology, musculoskeletal system; neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space physiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  5. USSR Space Life Sciences Digest, issue 2

    Science.gov (United States)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    The second issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 39 Soviet periodical articles in 16 areas of aerospace medicine and space biology and published in Russian during the first half of 1985. Selected articles are illustrated with figures from the original. Translated introductions and tables of contents for 14 Russian books on 11 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biospheric, body fluids, botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, gastrointestinal system, group dynamics, habitability and environmental effects, health and medical treatment, hematology, immunology, life support systems, metabolism, musculoskeletal system, neurophysiology, psychology, radiobiology, and space biology. Two book reviews translated from Russian are included and lists of additional relevant titles available either in English or in Russian only are appended.

  6. Bauman Moscow State Technical University Youth Space Centre: Student's Way in Space Technologies

    Science.gov (United States)

    Mayorova, Victoria; Zelentsov, Victor

    2002-01-01

    The Youth Space Center (YSC) was established in Bauman Moscow State Technical University (BMSTU) in 1989 to provide primary aerospace education for young people, stimulate youth creative research thinking, promote space science and technology achievements and develop cooperation with other youth organizations in the international aerospace community. The center is staffed by the Dr. Victoria Mayorova, BMSTU Associate Professor, the YSC director, Dr. Boris Kovalev, BMSTU Associate Professor, the YSC scientific director, 5 student consultants and many volunteers. Informally YSC is a community of space enthusiasts, an open club for BMSTU students interested in space science and technology and faculty teaching in this field. YSC educational activities are based on the concept of uninterrupted aerospace education, developed and implemented by the center. The concept includes working with young space interested people both in school and university and then assisting them in getting interesting job in Russian Space Industry. The school level educational activities of the center has got different forms, such as lecturing, summer scientific camps and even Classes from Space given by Mir space station flight crew in Mission Control Center - Moscow and done in cooperation with All- Russian Aerospace Society Soyuz (VAKO Soyuz). This helps to stimulate the young people interest to the fundamental sciences ( physics, mathematics, computer science, etc.) exploiting and developing their interest to space and thus increase the overall educational level in the country. YSC hosts annual Cosmonautics conference for high school students that provides the University with capability to select well-prepared and motivated students for its' rocket and space related departments. For the conference participants it's a good opportunity to be enrolled to the University without entrance examinations. BMSTU students can participate in such YSC activities as annual international workshop for space

  7. Space Biosensor Systems: Implications for Technology Transfer

    Science.gov (United States)

    Hines, J. W.; Somps, C. J.; Madou, M.; Imprescia, Clifford C. (Technical Monitor)

    1997-01-01

    To meet the need for continuous, automated monitoring of animal subjects, including; humans, during space flight, NASA is developing advanced physiologic sensor and biotelemetry system technologies. The ability to continuously track basic physiological parameters, such as heart rate, blood pH, and body temperature, in untethered subjects in space is a challenging task. At NASA's Ames Research Center, where a key focus is gravitational biology research, engineers have teamed with life scientists to develop wireless sensor systems for automated physiologic monitoring of animal models as small as the rat. This technology is also being adapted, in collaboration with medical professionals, to meet human clinical monitoring needs both in space and on the ground. Thus, these advanced monitoring technologies have important dual-use functions; they meet space flight data collection requirements and constraints, while concurrently addressing a number of monitoring and data acquisition challenges on the ground in areas of clinical monitoring and biomedical research. Additional applications for these and related technologies are being sought and additional partnerships established that enhance development efforts, reduce costs and facilitate technology infusion between the public and private sectors. This paper describes technology transfer and co-development projects that have evolved out of NASA's miniaturized, implantable chemical sensor development efforts.

  8. 75 FR 4882 - Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council

    Science.gov (United States)

    2010-01-29

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council ACTION: Notice of Panel Session. Public input is requested concerning appropriate Federal Executive Branch responses to the National Academy of Sciences 2009 report...

  9. 76 FR 6163 - Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council

    Science.gov (United States)

    2011-02-03

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council ACTION: Notice of meeting. Public input is requested concerning... Branch responses to the AFIS interoperability issues identified in the National Academy of Sciences 2009...

  10. Pre-Service Science Teachers' Cognitive Structures Regarding Science, Technology, Engineering, Mathematics (STEM) and Science Education

    Science.gov (United States)

    Hacioglu, Yasemin; Yamak, Havva; Kavak, Nusret

    2016-01-01

    The aim of this study is to reveal pre-service science teachers' cognitive structures regarding Science, Technology, Engineering, Mathematics (STEM) and science education. The study group of the study consisted of 192 pre-service science teachers. A Free Word Association Test (WAT) consisting of science, technology, engineering, mathematics and…

  11. 78 FR 24241 - Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National...

    Science.gov (United States)

    2013-04-24

    ... TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National Science and Technology Council; Notice of Public Meeting AGENCY: Executive Office of the President, Office of Science and Technology Policy. ACTION: Notice of Public Meeting. SUMMARY: The National...

  12. National Aeronautics and Space Administration plans for space communication technology

    Science.gov (United States)

    Alexovich, R. E.

    1979-01-01

    A program plan is presented for a space communications application utilizing the 30/20 GHz frequency bands (30 GHz uplink and 20 GHz downlink). Results of market demand studies and spacecraft systems studies which significantly affect the supporting research and technology program are also presented, along with the scheduled activities of the program plan.

  13. JPRS Report, Science & Technology, USSR: Life Sciences

    Science.gov (United States)

    1989-03-07

    Sf4104 5 USSR: Life Sciences 7 March 1989 Diet of Pregnant Turkmen Women in Ashkhabad [G. Ye. Khodzhayeva, Zh. M. Apresyan, et ai; ZDRA...219 of the cases, 4 of which led to complications. Cholecystectomy , hydatidectomy, selective proximal vagotomy (with drainage), duodenal resection...gastroenterectomy, hemi- colectomy, and resection of the liver were among the other procedures performed. Prevention of post -op com- plications

  14. The Case of the Great Space Exploration: An Educator Guide with Activities in Mathematics, Science, and Technology. The NASA SCI Files. EG-2004-09-12-LARC

    Science.gov (United States)

    Ricles, Shannon; Jaramillo, Becky; Fargo, Michelle

    2004-01-01

    In this companion to the "NASA SCI Files" episode "The Case of the Great Space Exploration," the tree house detectives learn about NASA's new vision for exploring space. In four segments aimed at grades 3-5, students learn about a variety of aspects of space exploration. Each segment of the guide includes an overview, a set of objectives,…

  15. The United Nations Human Space Technology Initiative

    Science.gov (United States)

    Balogh, Werner; Miyoshi, Takanori

    2016-07-01

    The United Nations Office for Outer Space Affairs (OOSA) launched the Human Space Technology Initiative (HSTI) in 2010 within the United Nations Programme on Space Applications, based on relevant recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III). The activities of HSTI are characterized by the following "Three Pillars": International Cooperation, Outreach, and Capacity-building. For International Cooperation, OOSA and the Japan Aerospace Exploration Agency (JAXA) jointly launched a new programme entitled "KiboCUBE". KiboCUBE aims to provide educational or research institutions located in developing countries with opportunities to deploy cube satellites of their own design and manufacture from Japanese Experiment Module "Kibo" on-board the International Space Station (ISS). The Announcement of Opportunity was released on 8 September 2015 and the selected institution is to be announced by 1 August 2016. OOSA is also collaborating with WHO and with the COPUOS Expert Group on Space and Global Health to promote space technologies and ground- and space-based research activities that can contribute to improving global health. For Outreach, OOSA and the government of Costa Rica are jointly organising the United Nations/Costa Rica Workshop on Human Space Technology from 7 to 11 March 2016. Participants will exchange information on achievements in human space programmes and discuss how to promote international cooperation by further facilitating the participation of developing countries in human space exploration-related activities. Also, it will address the role of space industries in human space exploration and its related activities, considering that they have become significant stakeholders in this field. For Capacity-building, OOSA has been carrying out two activities: the Zero-Gravity Instrument Project (ZGIP) and the Drop Tower Experiment Series (DropTES). In ZGIP, OOSA has annually distributed

  16. Laboratory science with space data accessing and using space-experiment data

    CERN Document Server

    van Loon, Jack J W A; Zell, Martin; Beysens, Daniel

    2011-01-01

    For decades experiments conducted on space stations like MIR and the ISS have been gathering data in many fields of research in the natural sciences, medicine and engineering. The European Union-sponsored ULISSE project focused on exploring the wealth of unique experimental data provided by revealing raw and metadata from these studies via an Internet Portal. This book complements the portal. It serves as a handbook of space experiments and describes the various types of experimental infrastructure areas of research in the life and physical sciences and technology space missions that hosted scientific experiments the types and structures of the data produced and how one can access the data through ULISSE for further research. The book provides an overview of the wealth of space experiment data that can be used for additional research and will inspire academics (e.g. those looking for topics for their PhD thesis) and research departments in companies for their continued development.

  17. JPRS Report, Science & Technology, USSR: Science & Technology Policy

    Science.gov (United States)

    1988-04-05

    Yevstigneyev, Ruben Nikolayevich—doctor of eco- nomic sciences, professor. Yegiazaryan, Gevork Ashotovich—doctor of economic sciences...that leguminous plants, being in symbiosis with nitrogen-fixing bacteria which form nodules on their root system, substantially enrich the soil...significantly the development of the con- ditions of the effective symbiosis of agricultural plants and microorganisms that improve the nutrition of

  18. NEEMO 21: Tools, Techniques, Technologies & Training for Science Exploration EVA

    Science.gov (United States)

    Graff, Trevor

    2016-01-01

    The 21st mission of the NASA Extreme Environment Mission Operations (NEEMO) was a highly integrated operational test and evaluation of tools, techniques, technologies, and training for science driven exploration during Extravehicular Activity (EVA).The 16-day mission was conducted from the Aquarius habitat, an underwater laboratory, off the coast of Key Largo, FL. The unique facility, authentic science objectives, and diverse skill-sets of the crew/team facilitate the planning and design for future space exploration.

  19. Technology transfer from the space exploration initiative

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Space exploration has demonstrated that it stimulates the national economy by creating new and improved products, increased employment, and provides a stimulus to education. The exploration of the Moon and Mars under the Space Exploration Initiative has the potential of accelerating this stimulates to the economy. It is difficult to identify all of the concrete ways this will be accomplished. However, many areas can be identified. The space exploration building blocks of power, propulsion, spacecraft, robotics, rovers, mining and manufacturing, communications, navigation, habitats, life support and infrastructures are reviewed to identify possible technology areas. For example, better means for working in hazardous areas and handling hazardous waste are potential outcomes of this initiative. Methods to produce higher quality goods and improve America's competitiveness in manufacturing will undoubtedly evolve from the need to produce products that must last many years in the harsh environments of space and planetary surfaces. Some ideas for technology transfer are covered in this paper

  20. Improving Early Career Science Teachers' Ability to Teach Space Science

    Science.gov (United States)

    Schultz, G. R.; Slater, T. F.; Wierman, T.; Erickson, J. G.; Mendez, B. J.

    2012-12-01

    The GEMS Space Science Sequence is a high quality, hands-on curriculum for elementary and middle schools, created by a national team of astronomers and science educators with NASA funding and support. The standards-aligned curriculum includes 24 class sessions for upper elementary grades targeting the scale and nature of Earth's, shape, motion and gravity, and 36 class sessions for middle school grades focusing on the interactions between our Sun and Earth and the nature of the solar system and beyond. These materials feature extensive teacher support materials which results in pre-test to post-test content gains for students averaging 22%. Despite the materials being highly successful, there has been a less than desired uptake by teachers in using these materials, largely due to a lack of professional development training. Responding to the need to improve the quantity and quality of space science education, a collaborative of space scientists and science educators - from the University of California, Berkeley's Lawrence Hall of Science (LHS) and Center for Science Education at the Space Sciences Laboratory (CSE@SSL), the Astronomical Society of the Pacific (ASP), the University of Wyoming, and the CAPER Center for Astronomy & Physics Education - experimented with a unique professional development model focused on helping master teachers work closely with pre-service teachers during their student teaching internship field experience. Research on the exodus of young teachers from the teaching profession clearly demonstrates that early career teachers often leave teaching because of a lack of mentoring support and classroom ready curriculum materials. The Advancing Mentor and Novice Teachers in Space Science (AMANTISS) team first identified master teachers who supervise novice, student teachers in middle school, and trained these master teachers to use the GEMS Space Science Sequence for Grades 6-8. Then, these master teachers were mentored in how to coach their

  1. The Personal Health Technology Design Space

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Frost, Mads

    2016-01-01

    . To enable designers to make informed and well-articulated design decision, the authors propose a design space for personal health technologies. This space consists of 10 dimensions related to the design of data sampling strategies, visualization and feedback approaches, treatment models, and regulatory......Interest is increasing in personal health technologies that utilize mobile platforms for improved health and well-being. However, although a wide variety of these systems exist, each is designed quite differently and materializes many different and more or less explicit design assumptions...

  2. UWB Technology and Applications on Space Exploration

    Science.gov (United States)

    Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    Ultra-wideband (UWB), also known as impulse or carrier-free radio technology, is one promising new technology. In February 2002, the Federal Communications Commission (FCC) approved the deployment of this technology. It is increasingly recognized that UWB technology holds great potential to provide significant benefits in many terrestrial and space applications such as precise positioning/tracking and high data rate mobile wireless communications. This talk presents an introduction to UWB technology and some applications on space exploration. UWB is characterized by several uniquely attractive features, such as low impact on other RF systems due to its extremely low power spectral densities, immunity to interference from narrow band RF systems due to its ultra-wide bandwidth, multipath immunity to fading due to ample multipath diversity, capable of precise positioning due to fine time resolution, capable of high data rate multi-channel performance. The related FCC regulations, IEEE standardization efforts and industry activities also will be addressed in this talk. For space applications, some projects currently under development at NASA Johnson Space Center will be introduced. These include the UWB integrated communication and tracking system for Lunar/Mars rover and astronauts, UWB-RFID ISS inventory tracking, and UWB-TDOA close-in high resolution tracking for potential applications on robonaut.

  3. National Aeronautics and Space Administration Science and Engineering Apprentice Program

    Science.gov (United States)

    1997-01-01

    The National Aeronautics and Space Administration's Science and Engineering Apprentice Program for high school students is one of NASA's many efforts toward a goal of scientific literacy. It embraces science, mathematics, and technology as keys to purposeful and sustained progress and security for our nation and its people. It serves as a model for helping reform education by striving to address mechanisms to influence the knowledge, skills, and attitudes of our students. It focuses on what to do today to meet the challenges of tomorrow.

  4. PREFACE: Nanoscale science and technology

    Science.gov (United States)

    Bellucci, Stefano

    2008-11-01

    modulated by tuning the strength of the spin-orbit interaction as well as by changing a constructive parameter of the junctions. Nanomechanical properties of conch shell by M Petraroli, showed how to use nanoindentation methods to explore, at the nanoscale, the mechanical properties of the Conus Mediterraneus conch, in order to compare nanohardness and elastic modulus with respect to the microstructural architecture and sample orientation. For the experimental tests a Nano Indenter XP (MTS Nano Instruments, Oak Ridge TN) has been used. The mechanical tests have been carried out on the inner surface of the shell and on three layers of its cross section (inner, middle and outer). On each of these surfaces the indentation has been performed at different maximum depth: from 250 nm to 4 μm, with a step of 250 nm. Data obtained suggest the following considerations: the inner surface of the conch shell, from the mechanical point of view, results homogeneous, while the shell structure is not homogeneous along its cross section; nanohardness and elastic modulus grow from the inner side to the outer side. No sensible difference has been observed with regards to the nanoindentation depth. The analysis supports the idea that artificial bio-inspired super-composites could be realized in the near future. CsPbCl3 nanocrystals dispersed in the Rb0,8Cs0,2Cl matrix: vibrational studies by P Savchyn reported the results of the infrared spectroscopy measurements and analysis intended to clarify the influence of CsPbCl3 nano-complexes, dispersed in the Rb0,8Cs0,2Cl matrix on the vibrational spectra of the host. Selected papers, based on conference original presentations and follow-up discussions, appear in the present dedicated issue of Journal of Physics: Condensed Matter. Tutorial lectures delivered at the school will be published by Springer Verlag Heidelberg, Germany, in their Lecture Notes in Nanoscale Science and Technology Series. The next edition of the meeting, n&n2008, planned in 20

  5. Medical and surgical applications of space biosensor technology

    Science.gov (United States)

    Hines, John W.

    1996-02-01

    Researchers in space life sciences are rapidly approaching a technology impasse. Many of the critical questions on the impact of spaceflight on living systems simply cannot be answered with the limited available technologies. Research subjects, particularly small animal models like the rat, must be allowed to function relatively untended and unrestrained for long periods to fully reflect the impact of microgravity and spaceflight on their behavior and physiology. These requirements preclude the use of present hard-wired instrumentation techniques and limited data acquisition systems. Implantable sensors and miniaturized biotelemetry are the only means of capturing the fundamental and critical data. This same biosensor and biotelemetry technology has direct application to Earth-based medicine and surgery. Continuous, on-line data acquisition and improved measurement capabilities combined with the ease and flexibility offered by automated, wireless, and portable instruments and data systems, should provide a boon to the health care industry. Playing a key role in this technology revolution is the Sensors 2000! (S2K!) Program at NASA Ames Research Center. S2K!, in collaboration with space life sciences researchers and managers, provides an integrated capability for sensor technology development and applications, including advanced biosensor technology development, spaceflight hardware development, and technology transfer and commercialization. S2K! is presently collaborating on several spaceflight projects with dual-use medical applications. One prime example is a collaboration with the Fetal Treatment Center (FTC) at the University of California at San Francisco. The goal is to develop and apply implantable chemical sensor and biotelemetry technology to continuously monitor fetal patients during extra-uterine surgery, replacement into the womb, through birth and beyond. Once validated for ground use, the method will be transitioned to spaceflight applications to

  6. USSR Space Life Sciences Digest, issue 19

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 19th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 47 papers published in Russian language periodicals or presented at conferences and of 5 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Reports on two conferences, one on adaptation to high altitudes, and one on space and ecology are presented. A book review of a recent work on high altitude physiology is also included. The abstracts in this issue have been identified as relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  7. Progress in containerless science and technologies

    Science.gov (United States)

    Wang, T. G.

    1983-01-01

    One of the unique features of space which cannot be reproduced on earth is long duration zero gravity. Experiments that take the greatest advantage that space can offer are containerless processing experiments. This is precisely the reason why NASA has developed a variety of containerless processing technologies and facilities to allow the scientific community to perform experiments prior to and during Space Shuttle flights. This paper will briefly review recent progress in some of these technologies and facilities.

  8. Why do science in space? Researchers' Night at CERN 2017

    CERN Multimedia

    Nellist, Clara

    2017-01-01

    Space topic and debate "Why do science in space?" With the special presence of Matthias Maurer, European Space Agency astronaut, and Mercedes Paniccia, PhD, Senior Research Associate for space experiment AMS.

  9. In-Space Inspection Technologies Vision

    Science.gov (United States)

    Studor, George

    2012-01-01

    Purpose: Assess In-Space NDE technologies and needs - current & future spacecraft. Discover & build on needs, R&D & NDE products in other industries and agencies. Stimulate partnerships in & outside NASA to move technologies forward cooperatively. Facilitate group discussion on challenges and opportunities of mutual benefit. Focus Areas: Miniaturized 3D Penetrating Imagers Controllable Snake-arm Inspection systems Miniature Free-flying Micro-satellite Inspectors

  10. Science and technology: socialising what for whom?

    Directory of Open Access Journals (Sweden)

    Sally Wyatt

    2009-09-01

    Full Text Available In the Handbook on the socialisation of scientific and technological research, edited by Wiebe Bijker and Luciano d’Andrea, ‘socialisation’ is used to both describe and prescribe the ways in which science and technology are used in society. In this comment, ‘socialisation’ is discussed from two other points of view. First, the ways in which science and technology are sometimes used to organize, structure and dominate the social are identified. Second, drawing on Merton’s norms of science, an argument is made against over-socialising science and in favour of acknowledging and preserving the ‘special’ nature of science, for its own sake and because, at its best, science can offer an alternative model for other social activities.

  11. Nonproliferation Challenges in Space Defense Technology - PANEL

    Science.gov (United States)

    Houts, Michael G.

    2016-01-01

    The use of highly enriched uranium (HEU) almost always "helps" space fission systems. Nuclear Thermal Propulsion (NTP) and high power fission electric systems appear able to use < 20% enriched uranium with minimal / acceptable performance impacts. However, lower power, "entry level" systems may be needed for space fission technology to be developed and utilized. Low power (i.e. approx.1 kWe) fission systems may have an unacceptable performance penalty if LEU is used instead of HEU. Are there Ways to Support Non-Proliferation Objectives While Simultaneously Helping Enable the Development and Utilization of Modern Space Fission Power and Propulsion Systems?

  12. The metrics of science and technology

    CERN Document Server

    Geisler, Eliezer

    2000-01-01

    Dr. Geisler's far-reaching, unique book provides an encyclopedic compilation of the key metrics to measure and evaluate the impact of science and technology on academia, industry, and government. Focusing on such items as economic measures, patents, peer review, and other criteria, and supported by an extensive review of the literature, Dr. Geisler gives a thorough analysis of the strengths and weaknesses inherent in metric design, and in the use of the specific metrics he cites. His book has already received prepublication attention, and will prove especially valuable for academics in technology management, engineering, and science policy; industrial R&D executives and policymakers; government science and technology policymakers; and scientists and managers in government research and technology institutions. Geisler maintains that the application of metrics to evaluate science and technology at all levels illustrates the variety of tools we currently possess. Each metric has its own unique strengths and...

  13. Students build glovebox at Space Science Center

    Science.gov (United States)

    2001-01-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  14. JPRS Report, Science & Technology, USSR: Science & Technology Policy

    Science.gov (United States)

    1989-03-22

    the sugges- tion to review and change the organization of the man- agement of science. Namely, the USSR Academy of Medical Sciences should...hundreds of works in the bibliography. We have only a few articles and one review . Nonetheless, definite shifts are taking place. At the symposium, we...34Lesnaya fito- patologiya" [Forest Phytopathology ], which was pub- lished in 1986. [Signed] Secretary of the Central Committee of the Communist Party

  15. JPRS Report, Science & Technology, USSR: Science & Technology Policy.

    Science.gov (United States)

    1987-07-15

    prologue to the establishment of a Soviet-Czechoslovak scientific production association. The chronicles of interaction also include moments that can...an exceptionally alarming symptom of the disease of sectorial science, and this was discussed with concern at the last party congress. The...sciences without a dissertation defense. In 1936 he defended his dissertation on the theme "Respiratory Reflexes During Vascular Intoxication in

  16. White paper on science and technology, 1990

    International Nuclear Information System (INIS)

    1991-01-01

    Today, it is apparent that science and technology are major driving force for nation's economic growth. Japan is utilizing its scientific and technological ability to produce superior products. Thus Japan has become an economic giant. The citizenry of Japan are enjoying the benefits of these scientific and technological advances. In recent years, the socioeconomic situation in the country has improved. As a result, the people of Japan want the quality of life in addition to material goods. There are expectations for improving the quality of life, while at the same time, solving such problems as the aging of the society and global environmental concerns. From these perspectives, in this paper, how science and technology have contributed to improve the quality of life and how those have been applied are analyzed. It is hoped that this paper is useful as a basic reference in considering Japanese socioeconomic goals for the 21st century. Furthermore, the government tries to address the problems pointed out in this paper, and promote the advancement of Japanese science and technology. The status of Japanese science and technology, expectations for science and technology and the science and technology policy in foreign countries and Japan are described. (K.I.)

  17. USSR Space Life Sciences Digest, issue 9

    Science.gov (United States)

    Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Rowe, Joseph E.

    1987-01-01

    This is the ninth issue of NASA's USSR Space Lifes Sciences Digest. It contains abstracts of 46 papers recently published in Russian language periodicals and bound collections and of a new Soviet monograph. Selected abstracts are illustrated with figures and tables from the original. Additional features include reviews of a Russian book on biological rhythms and a description of the papers presented at a conference on space biology and medicine. A special feature describes two paradigms frequently cited in Soviet space life sciences literature. Information about English translations of Soviet materials available to readers is provided. The abstracts included in this issue have been identified as relevant to 28 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal system, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, nutrition, neurophysiology, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  18. Science and technology in the global Cold War

    CERN Document Server

    Krige, John

    2014-01-01

    The Cold War period saw a dramatic expansion of state-funded science and technology research. Government and military patronage shaped Cold War technoscientific practices, imposing methods that were project oriented, team based, and subject to national-security restrictions. These changes affected not just the arms race and the space race but also research in agriculture, biomedicine, computer science, ecology, meteorology, and other fields. This volume examines science and technology in the context of the Cold War, considering whether the new institutions and institutional arrangements that emerged globally constrained technoscientific inquiry or offered greater opportunities for it. The contributors find that whatever the particular science, and whatever the political system in which that science was operating, the knowledge that was produced bore some relation to the goals of the nation-state. These goals varied from nation to nation; weapons research was emphasized in the United States and the Soviet Unio...

  19. China nuclear science and technology report. Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1993 (Report Numbers CNIC-00675∼CNIC-00800) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  20. Technology for NASA's Planetary Science Vision 2050.

    Science.gov (United States)

    Lakew, B.; Amato, D.; Freeman, A.; Falker, J.; Turtle, Elizabeth; Green, J.; Mackwell, S.; Daou, D.

    2017-01-01

    NASAs Planetary Science Division (PSD) initiated and sponsored a very successful community Workshop held from Feb. 27 to Mar. 1, 2017 at NASA Headquarters. The purpose of the Workshop was to develop a vision of planetary science research and exploration for the next three decades until 2050. This abstract summarizes some of the salient technology needs discussed during the three-day workshop and at a technology panel on the final day. It is not meant to be a final report on technology to achieve the science vision for 2050.

  1. Status of Propulsion Technology Development Under the NASA In-Space Propulsion Technology Program

    Science.gov (United States)

    Anderson, David; Kamhawi, Hani; Patterson, Mike; Pencil, Eric; Pinero, Luis; Falck, Robert; Dankanich, John

    2014-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems/Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Halleffect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The NEXT Long Duration Test (LDT) recently exceeded 50,000 hours of operation and 900 kg throughput, corresponding to 34.8 MN-s of total impulse delivered. The HEP system is composed of the High Voltage Hall Accelerator (HIVHAC) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HIVHAC are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs: MAV propulsion and electric propulsion. And finally, one focus of the Systems/Mission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.

  2. Science and Technology in France.

    Science.gov (United States)

    Friedman, Abraham S.

    1983-01-01

    Discusses current activities to revitalize French science and industry and this nation's economy. These include increasing the civil research and development budget nearly 20 percent per year, establishing new links between science and industry, and involving scientists in research policy. (JN)

  3. Science, Technology, and YA Lit

    Science.gov (United States)

    Clemmons, Karina; Sheehy, Colleen

    2011-01-01

    Science teachers today need engaging projects to help students build 21st-century skills (NSTA 2011). Contemporary young adult literature (YA lit) can form the basis of one such project. YA lit--a genre of fiction geared toward 2 to 20-year-olds--opens a powerful avenue to connect with students and cover science topics in greater depth. YA lit is…

  4. Sscience & technology review; Science Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This review is published ten times a year to communicate, to a broad audience, Lawrence Livermore National Laboratory`s scientific and technological accomplishments, particularly in the Laboratory`s core mission areas - global security, energy and the environment, and bioscience and biotechnology. This review for the month of July 1996 discusses: Frontiers of research in advanced computations, The multibeam Fabry-Perot velocimeter: Efficient measurement of high velocities, High-tech tools for the American textile industry, and Rock mechanics: can the Tuff take the stress.

  5. Integrating technology into radiologic science education.

    Science.gov (United States)

    Wertz, Christopher Ira; Hobbs, Dan L; Mickelsen, Wendy

    2014-01-01

    To review the existing literature pertaining to the current learning technologies available in radiologic science education and how to implement those technologies. Only articles from peer-reviewed journals and scholarly reports were used in the research for this review. The material was further restricted to those articles that emphasized using new learning technologies in education, with a focus on radiologic science education. Teaching in higher education is shifting from a traditional classroom-based lecture format to one that incorporates new technologies that allow for more varied and diverse educational models. Radiologic technology educators must adapt traditional education delivery methods to incorporate current technologies. Doing so will help engage the modern student in education in ways in which they are already familiar. As students' learning methods change, so must the methods of educational delivery. The use of new technologies has profound implications for education. If implemented properly, these technologies can be effective tools to help educators.

  6. The Status of Spacecraft Bus and Platform Technology Development under the NASA In-Space Propulsion Technology Program

    Science.gov (United States)

    Anderson, David; Pencil, Eric J.; Glaab, Louis; Falck, Robert D.; Dankanich, John

    2013-01-01

    NASA's In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. The technology areas include electric propulsion technologies, spacecraft bus technologies, entry vehicle technologies, and design tools for systems analysis and mission trajectories. The electric propulsion technologies include critical components of both gridded and non-gridded ion propulsion systems. The spacecraft bus technologies under development include an ultra-lightweight tank (ULTT) and advanced xenon feed system (AXFS). The entry vehicle technologies include the development of a multi-mission entry vehicle, mission design tools and aerocapture. The design tools under development include system analysis tools and mission trajectory design tools.

  7. Recent trends in space mapping technology

    DEFF Research Database (Denmark)

    Bandler, John W.; Cheng, Qingsha S.; Hailu, Daniel

    2004-01-01

    We review recent trends in the art of Space Mapping (SM) technology for modeling and design of engineering devices and systems. The SM approach aims at achieving a satisfactory solution with a handful of computationally expensive so-called "fine" model evaluations. SM procedures iteratively update...

  8. Nuclear Science and Technology for Thai Society

    International Nuclear Information System (INIS)

    Thailand Institute of Nuclear Technology, Bangkok

    2009-07-01

    Full text: Full text: The 11th conference on the nuclear science and technology was held on 2-3 July 2009 in Bangkok. This conference contain paper on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for the infestation tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed

  9. The Pisgah Astronomical Research Institute Space Science Lab

    Science.gov (United States)

    Castelaz, Michael W.; Whitworth, C.

    2010-01-01

    High school students in rural Western North Carolina conduct planetary science research monitoring the Earth's Moon for impacts by meteors. NASA has a program dedicated to monitoring the Moon as part of the NASA Vision for Space Exploration and future human missions to the Moon. The primary goal is to reach students who otherwise would not have this opportunity and motivate them to develop the critical thinking skills necessary for objective scientific inquiry. Students develop skills in electronics, computer sciences, astronomy, optics, physics and earth sciences. Equally important is the hope that the students will become interested in pursuing careers in research or other science-related areas. The program involves 30 students per year over a three year period. We are in the first year of the program. The students work with PARI scientists and science educators, alumni SSL scholars, and retiree volunteers from the community whose careers span science, technology, engineering, and math. Students spend a week at PARI where they learn to use the PARI 0.4-m optical telescope for lunar observations, and build their own telescope. The Space Science Lab students learn to analyze the data searching for lunar impacts. Additionally, students bring their newly constructed telescopes home so they can continue their observations as part of continuing school-related projects. We have monthly follow-up sessions throughout the school year, and a website where students upload their most recent lunar images. The Space Science Lab is based at the PARI, the former NASA east coast tracking station near Brevard, NC.

  10. Next-Generation Electronic Systems for Innovative New Space Technologies and for the Nation’s Science, Exploration and Economic Future

    Data.gov (United States)

    National Aeronautics and Space Administration — In this study, the applicant (Ms Jaemi Herzberger) will focus on identifying the reliability challenges in long-life electronic systems that have to endure sustained...

  11. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 7, No 3 (2015) >. Log in or Register to get access to full text downloads.

  12. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 11 (2010) >. Log in or Register to get access to full text downloads.

  13. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 8, No 3 (2016) >. Log in or Register to get access to full text downloads.

  14. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 3, No 3 (2011) >. Log in or Register to get access to full text downloads.

  15. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 2 (2010) >. Log in or Register to get access to full text downloads.

  16. Science and Technology Metrics and Other Thoughts

    National Research Council Canada - National Science Library

    Harman, Wayne; Staton, Robin

    2006-01-01

    This report explores the subject of science and technology metrics and other topics to begin to provide Navy managers, as well as scientists and engineers, additional tools and concepts with which to...

  17. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 4, No 4 (2012) >. Log in or Register to get access to full text downloads.

  18. Science, Technology and Arts Research Journal

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 1, No 1 (2012) >. Log in or Register to get access to full text downloads.

  19. Science, Technology and Arts Research Journal

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 1, No 3 (2012) >. Log in or Register to get access to full text downloads.

  20. Nuclear Science and Technology in Myanmar

    International Nuclear Information System (INIS)

    Tin-Hlaing

    2001-01-01

    This article is about the Establishment of the Department of Atomic Energy (DAE) and its historical background. The department is organized under the Ministry of Science and Technology. It is the only national nuclear institution in Myanmar

  1. Science & Technology Review July/August 2016

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Ramona L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meissner, Caryn N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chinn, Ken B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-07-18

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world. In this issue for the months of July and August 2016, there are two features: one on Science and Technology in Support of Nuclear Nonproliferation, and another on Seeking Out Hidden Radioactive Materials. Then there are highlights are three research projects--on optics, plasma science, and the nature of neutrinos--along with a news section and patents and awards.

  2. African Journal of Environmental Science and Technology

    African Journals Online (AJOL)

    African Journal of Environmental Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 7 (2008) >. Log in or Register to get access to full text downloads.

  3. African Journal of Environmental Science and Technology

    African Journals Online (AJOL)

    African Journal of Environmental Science and Technology. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Vol 5, No 1 (2011) >. Log in or Register to get access to full text downloads.

  4. Ethiopian Journal of Science and Technology

    African Journals Online (AJOL)

    EJST) publishes high quality original research articles, reviews, short communications, and feature articles on basic and applied aspects of science, technology, agriculture, health and other related fields. Other websites associated with this ...

  5. Science, Technology and Arts Research Journal

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 1, No 2 (2012) >. Log in or Register to get access to full text downloads.

  6. USSR Space Life Sciences Digest, issue 25

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-fifth issue of NASA's Space Life Sciences Digest. It contains abstracts of 42 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 26 areas of space biology and medicine. These areas include: adaptation, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, reproductive system, and space biology and medicine.

  7. USSR Space Life Sciences Digest, issue 16

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Siegel, Bette (Editor); Donaldson, P. Lynn (Editor); Leveton, Lauren B. (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the sixteenth issue of NASA's USSR Life Sciences Digest. It contains abstracts of 57 papers published in Russian language periodicals or presented at conferences and of 2 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is the review of a book concerned with metabolic response to the stress of space flight. The abstracts included in this issue are relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, bionics, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, gastrointestinal system, genetics, gravitational biology, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, and space biology.

  8. USSR Space Life Sciences Digest, Issue 18

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 18th issue of NASA's USSR Life Sciences Digest. It contains abstracts of 50 papers published in Russian language periodicals or presented at conferences and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a recent Aviation Medicine Handbook is also included. The abstracts in this issue have been identified as relevant to 37 areas of space biology and medicine. These areas are: adaptation, aviation medicine, biological rhythms, biospherics, body fluids, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, gravitational biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, space biology and medicine, and space industrialization.

  9. USSR Space Life Sciences Digest, Issue 10

    Science.gov (United States)

    Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Garshnek, Victoria; Rowe, Joseph E.

    1987-01-01

    The USSR Space Life Sciences Digest contains abstracts of 37 papers recently published in Russian language periodicals and bound collections and of five new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include the translation of a book chapter concerning use of biological rhythms as a basis for cosmonaut selection, excerpts from the diary of a participant in a long-term isolation experiment, and a picture and description of the Mir space station. The abstracts included in this issue were identified as relevant to 25 areas of aerospace medicine and space biology. These areas are adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculosketal system, neurophysiology, nutrition, personnel selection, psychology, and radiobiology.

  10. USSR Space Life Sciences Digest, issue 6

    Science.gov (United States)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)

    1986-01-01

    This is the sixth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include a table of Soviet EVAs and information about English translations of Soviet materials available to readers. The topics covered in this issue have been identified as relevant to 26 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, health and medical treatment, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism., microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, reproductive biology, and space medicine.

  11. Calling Taikong a strategy report and study of China's future space science missions

    CERN Document Server

    Wu, Ji

    2017-01-01

    This book describes the status quo of space science in China, details the scientific questions to be addressed by the Chinese space science community in 2016-2030, and proposes key strategic goals, space science programs and missions, the roadmap and implementation approaches. Further, it explores the supporting technologies needed and provides an outlook of space science beyond the year 2030. “Taikong” means “outer space” in Chinese, and space science is one of the most important areas China plans to develop in the near future. This book is authored by Ji Wu, a leader of China's space science program, together with National Space Science Center, Chinese Academy of Sciences, a leading institute responsible for planning and managing most of China’s space science missions. It also embodies the viewpoints shared by many space scientists and experts on future space science development. Through this book, general readers and researchers alike will gain essential insights into the current developments an...

  12. Communicating English for Science and Technology

    DEFF Research Database (Denmark)

    Mousten, Birthe

    The book introduces and discusses some of the ideas, stylistics, methods, aids and conventions used in English for Science and Technology. The book centres on a mix of theoretical considerations, examples, drills and texts.......The book introduces and discusses some of the ideas, stylistics, methods, aids and conventions used in English for Science and Technology. The book centres on a mix of theoretical considerations, examples, drills and texts....

  13. New Space at Airbus Defence & Space to facilitate science missions

    Science.gov (United States)

    Boithias, Helene; Benchetrit, Thierry

    2016-10-01

    In addition to Airbus legacy activities, where Airbus satellites usually enable challenging science missions such as Venus Express, Mars Express, Rosetta with an historic landing on a comet, Bepi Colombo mission to Mercury and JUICE to orbit around Jupiter moon Ganymede, Swarm studying the Earth magnetic field, Goce to measure the Earth gravitational field and Cryosat to monitor the Earth polar ice, Airbus is now developing a new approach to facilitate next generation missions.After more than 25 years of collaboration with the scientists on space missions, Airbus has demonstrated its capacity to implement highly demanding missions implying a deep understanding of the science mission requirements and their intrinsic constraints such as- a very fierce competition between the scientific communities,- the pursuit of high maturity for the science instrument in order to be selected,- the very strict institutional budget limiting the number of operational missions.As a matter of fact, the combination of these constraints may lead to the cancellation of valuable missions.Based on that and inspired by the New Space trend, Airbus is developing an highly accessible concept called HYPE.The objective of HYPE is to make access to Space much more simple, affordable and efficient.With a standardized approach, the scientist books only the capacities he needs among the resources available on-board, as the HYPE satellites can host a large range of payloads from 1kg up to 60kg.At prices significantly more affordable than those of comparable dedicated satellite, HYPE is by far a very cost-efficient way of bringing science missions to life.After the launch, the scientist enjoys a plug-and-play access to two-way communications with his instrument through a secure high-speed portal available online 24/7.Everything else is taken care of by Airbus: launch services and the associated risk, reliable power supply, setting up and operating the communication channels, respect of space law

  14. Journal of Applied Science and Technology: Contact

    African Journals Online (AJOL)

    Principal Contact. Nana (Prof) Ayensu Gyeabour I Editor-in-Chief. Journal of Applied Science and Technology (JAST), Graduate School of Nuclear & Allied Sciences, University of Ghana, Atomic Campus, P.O. Box AE 1, Atomic, Accra, Ghana. Phone: +233-244-772255. Email: jastpublication@gmail.com ...

  15. Journal of Science and Technology (Ghana): Submissions

    African Journals Online (AJOL)

    Author Guidelines. GUIDELINES TO AUTHORS. GENERAL The Journal of Science and Technology (JUST) aims principally to publish articles resulting from original research whether pure or applied in the various aspects of academic endeavour broadly classified as science (physical, biologi-cal), the humanities and ...

  16. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    Science.gov (United States)

    Doherty, Michael P.

    1993-01-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  17. 2004 Space Report: Environment and Strategy for Space Research at NATO's Research and Technology Organisation (RTO)

    Science.gov (United States)

    Woods-Vedeler, Jessica A.

    2007-01-01

    This report describes the motivation for and a strategy to enhance the NATO Research and Technology Organisation's (RTO) current space research effort to reflect NATO's growing military dependence on space systems. Such systems and services provided by these systems are critical elements of military operations. NATO uses space systems for operational planning and support, communication, radio navigation, multi-sensor and multi-domain demonstrations. Such systems are also used to promote regional stability. A quantitative analysis of work related to space in the NATO RTO showed that during the period of 1998 - 2004, 5% of the research pursued in the NATO RTO has been clearly focused on space applications. Challenging environmental and organizational barriers for increasing RTO space research were identified. In part, these include lack of sufficient space expertise representation on panels, the military sensitivity of space, current panel work loads and the need for specific technical recommendations from peers. A strategy for enhancing space research in the RTO is to create a limited-life Space Advisory Group (SAG) composed of Space Expert Consultants who are panel members with appropriate expertise and additional expertise from the nations. The SAG will recommend and find support in the nations for specific technical activities related to space in the areas of Space Science, Remote Sensing Data Analysis, Spacecraft Systems, Surveillance and Early Warning, Training and Simulation and Policy. An RTO Space Advisory Group will provide an organizational mechanism to gain recognition of RTO as a forum for trans-Atlantic defence space research and to enhance space research activities.

  18. Artistic Research on Freedom in Space and Science

    Science.gov (United States)

    Foing, Bernard H.; Schelfhout, Ronald; Gelfand, Dmitry; Van der Heide, Edwin; Preusterink, Jolanda; Domnitch, Evelina

    ArtScience ESTEC: Space science in the arts. Since the earliest scientific preparations for extra-terrestrial travel at the beginning of the 20th century, the exploration of outer space has become a quintessential framework of the human condition and its creative manifestations. Although the artistic pursuit of space science is still in its infancy, an accelerated evolution is currently underway. Perspective: With the current state of the planet and the development of technology, humankind has the ability to look from a greater distance to the damage that has been done. This offers potential in the form of early detection and prevention of disasters. Meanwhile our aim seems to be directed away from the earth into the universe. In the Space science in the arts project I tried to encapsulate these two viewpoints that tend to avoid each other. We are still earthbound and that is our basis. A tree cannot grow tall without strong roots. Space, a promise of freedom. Line of thought: Space sounds like freedom but to actually send people out there they have to be strapped tightly on top of a giant missile to reach a habitat of interconnecting tubes with very little space. It is impossible to escape protocol with- out risking your life and the lives of astronauts have been fixed years in advance. This is the human predicament which does not apply to the telescopes and other devices used to reach far into the universe. Providing information instantly the various forms of light allow us to travel without moving. Description of the installation: The research on freedom in space and science led to the development of an installation that reflects the dualistic aspect which clings to the exploration of the universe. The installation is a model on multiple scales. You can look at the material or the feeling it evokes as well as at the constantly changing projections. The image is light. Inside this glass circle there is a broken dome placed over a dark and reflective surface on

  19. Terahertz antenna technology for space applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book explores the terahertz antenna technology towards implementation of compact, consistent and cheap terahertz sources, as well as the high sensitivity terahertz detectors. The terahertz EM band provides a transition between the electronic and the photonic regions thus adopting important characteristics from these regimes. These characteristics, along with the progress in semiconductor technology, have enabled researchers to exploit hitherto unexplored domains including satellite communication, bio-medical imaging, and security systems. The advances in new materials and nanostructures such as graphene will be helpful in miniaturization of antenna technology while simultaneously maintaining the desired output levels. Terahertz antenna characterization of bandwidth, impedance, polarization, etc. has not yet been methodically structured and it continues to be a major research challenge. This book addresses these issues besides including the advances of terahertz technology in space applications worldwide,...

  20. JPRS Report, Science & Technology, USSR: Science & Technology Policy

    Science.gov (United States)

    1988-09-23

    lessons from this first epic stage in the development of the productive forces of Krasnoyarsk Kray. That is the first thing. The second is this...34Georgian Folk Poetry " in 12 volumes, which was published by the Metsniyereba Publishing House during 1972-1984. In Technology: 1. Revaz Antonovich

  1. Project LAUNCH: Bringing Space into Math and Science Classrooms

    Science.gov (United States)

    Fauerbach, M.; Henry, D. P.; Schmidt, D. L.

    2005-01-01

    Project LAUNCH is a K-12 teacher professional development program, which has been created in collaboration between the Whitaker Center for Science, Mathematics and Technology Education at Florida Gulf Coast University (FGCU), and the Florida Space Research Institute (FSRI). Utilizing Space as the overarching theme it is designed to improve mathematics and science teaching, using inquiry based, hands-on teaching practices, which are aligned with Florida s Sunshine State Standards. Many students are excited about space exploration and it provides a great venue to get them involved in science and mathematics. The scope of Project LAUNCH however goes beyond just providing competency in the subject area, as pedagogy is also an intricate part of the project. Participants were introduced to the Conceptual Change Model (CCM) [1] as a framework to model good teaching practices. As the CCM closely follows what scientists call the scientific process, this teaching method is also useful to actively engage institute participants ,as well as their students, in real science. Project LAUNCH specifically targets teachers in low performing, high socioeconomic schools, where the need for skilled teachers is most critical.

  2. Applications of Space-Age Technology in Anthropology

    Science.gov (United States)

    1991-01-01

    The papers in this volume were presented at a conference entitled, 'Applications of Space-Age Technology in Anthropology,' held November 28, 1990, at NASA's Science and Technology Laboratory. One reason for this conference was to facilitate information exchange among a diverse group of anthropologists. Much of the research in anthropology that has made use of satellite image processing, geographical information systems, and global positioning systems has been known to only a small group of practitioners. A second reason for this conference was to promote scientific dialogue between anthropologists and professionals outside of anthropology. It is certain that both the development and proper application of new technologies will only result from greater cooperation between technicians and 'end-users.' Anthropologists can provide many useful applications to justify the costs of new technological development.

  3. New Center Links Earth, Space, and Information Sciences

    Science.gov (United States)

    Aswathanarayana, U.

    2004-05-01

    Broad-based geoscience instruction melding the Earth, space, and information technology sciences has been identified as an effective way to take advantage of the new jobs created by technological innovations in natural resources management. Based on this paradigm, the University of Hyderabad in India is developing a Centre of Earth and Space Sciences that will be linked to the university's super-computing facility. The proposed center will provide the basic science underpinnings for the Earth, space, and information technology sciences; develop new methodologies for the utilization of natural resources such as water, soils, sediments, minerals, and biota; mitigate the adverse consequences of natural hazards; and design innovative ways of incorporating scientific information into the legislative and administrative processes. For these reasons, the ethos and the innovatively designed management structure of the center would be of particular relevance to the developing countries. India holds 17% of the world's human population, and 30% of its farm animals, but only about 2% of the planet's water resources. Water will hence constitute the core concern of the center, because ecologically sustainable, socially equitable, and economically viable management of water resources of the country holds the key to the quality of life (drinking water, sanitation, and health), food security, and industrial development of the country. The center will be focused on interdisciplinary basic and pure applied research that is relevant to the practical needs of India as a developing country. These include, for example, climate prediction, since India is heavily dependent on the monsoon system, and satellite remote sensing of soil moisture, since agriculture is still a principal source of livelihood in India. The center will perform research and development in areas such as data assimilation and validation, and identification of new sensors to be mounted on the Indian meteorological

  4. Advances in software science and technology

    CERN Document Server

    Ohno, Yoshio; Kamimura, Tsutomu

    1991-01-01

    Advances in Software Science and Technology, Volume 2 provides information pertinent to the advancement of the science and technology of computer software. This book discusses the various applications for computer systems.Organized into four parts encompassing 12 chapters, this volume begins with an overview of categorical frameworks that are widely used to represent data types in computer science. This text then provides an algorithm for generating vertices of a smoothed polygonal line from the vertices of a digital curve or polygonal curve whose position contains a certain amount of error. O

  5. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  6. Translational Environmental Science and Technology (TEST)

    African Journals Online (AJOL)

    TUOYO

    Hence “translational environmental science and technology (TEST)” could be a formal representation of the new emphasis captured as “laboratory bench –to– ecosystem –to– sustainability.” This is arguably a more robust conceptual framework than “technology transfer.” The articulation of TEST as an operative framework ...

  7. (Ict) Integration Into Science, Technology, Engineering And ...

    African Journals Online (AJOL)

    As Nigeria aspires for technological growth, positive changes need be made by placing proper educational values towards Science, Technology, Engineering and Mathematics (STEM) education. Some problems faced by STEM include lack of qualified teachers, curriculum, the misconception that STEM education is ...

  8. The new space and earth science information systems at NASA's archive

    Science.gov (United States)

    Green, James L.

    1990-01-01

    The on-line interactive systems of the National Space Science Data Center (NSSDC) are examined. The worldwide computer network connections that allow access to NSSDC users are outlined. The services offered by the NSSDC new technology on-line systems are presented, including the IUE request system, ozone TOMS data, and data sets on astrophysics, atmospheric science, land sciences, and space plasma physics. Plans for future increases in the NSSDC data holdings are considered.

  9. Mathematical Model of the Public Understanding of Space Science

    Science.gov (United States)

    Prisniakov, V.; Prisniakova, L.

    The success in deployment of the space programs now in many respects depends on comprehension by the citizens of necessity of programs, from "space" erudition of country. Purposefulness and efficiency of the "space" teaching and educational activity depend on knowledge of relationships between separate variables of such process. The empirical methods of ``space'' well-information of the taxpayers should be supplemented by theoretical models permitting to demonstrate a ways of control by these processes. Authors on the basis of their experience of educational activity during 50- years of among the students of space-rocket profession obtain an equation of ``space" state of the society determining a degree of its knowledge about Space, about achievements in its development, about indispensable lines of investigations, rates of informatization of the population. It is supposed, that the change of the space information consists of two parts: (1) - from going of the information about practical achievements, about development special knowledge requiring of independent financing, and (2) from intensity of dissemination of the ``free" information of a general educational line going to the population through mass-media, book, in family, in educational institutions, as a part of obligatory knowledge of any man, etc. In proposed model the level space well-information of the population depends on intensity of dissemination in the society of the space information, and also from a volume of financing of space-rocket technology, from a part of population of the employment in the space-rocket programs, from a factor of education of the population in adherence to space problems, from welfare and mentality of the people, from a rate of unemployment and material inequality. Obtained in the report on these principles the equation of a space state of the society corresponds to catastrophe such as cusp, the analysis has shown which one ways of control of the public understanding of space

  10. International Space Station-Based Electromagnetic Launcher for Space Science Payloads

    Science.gov (United States)

    Jones, Ross M.

    2013-01-01

    A method was developed of lowering the cost of planetary exploration missions by using an electromagnetic propulsion/launcher, rather than a chemical-fueled rocket for propulsion. An electromagnetic launcher (EML) based at the International Space Station (ISS) would be used to launch small science payloads to the Moon and near Earth asteroids (NEAs) for the science and exploration missions. An ISS-based electromagnetic launcher could also inject science payloads into orbits around the Earth and perhaps to Mars. The EML would replace rocket technology for certain missions. The EML is a high-energy system that uses electricity rather than propellant to accelerate payloads to high velocities. The most common type of EML is the rail gun. Other types are possible, e.g., a coil gun, also known as a Gauss gun or mass driver. The EML could also "drop" science payloads into the Earth's upper

  11. Europe Report, Science and Technology.

    Science.gov (United States)

    1986-11-17

    Hollow Cathode Discharges Used for Gas, Metal Vapor Lasers (Karoly Rozsa ; MAGYAR FIZIKAI FOLYOIRAT, No 1, 1986) 85 /9987 - c - JPRS-EST-86-035... Rozsa , Solid Body Physics Research Institute, Central Physics Research Institute, Hungarian Academy of Sciences: "Hollow Cathode Discharges Used for Gas

  12. JPRS Report, Science & Technology, China.

    Science.gov (United States)

    1992-12-08

    research in chaos, (7) fractal math- ematical theory, (8) the physical mechanism of fractals , and (9) infinite-dimension systems for formulaic...in modern geoscience, and is also a leading edge science in which geodesy, geophysics, geology , and astronomy overlap. The China mainland is an

  13. Sud Sciences et Technologies: Submissions

    African Journals Online (AJOL)

    informatique (au sens large : internet, etc.), construction, habitat, architecture, génie civil, sociologie, sciences économiques et humaines. Les articles doivent aborder ces domaines dans un but d'information scientifique et technique appliquée au développement. Préparation du Manuscrit les textes originaux devront être ...

  14. Materials Science and Technology Teachers Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  15. JPRS Report, Science & Technology, USSR: Science & Technology Policy

    Science.gov (United States)

    1988-11-14

    practical value. A technology was worked out of producing glucoamylase, clucooxydase, catalase , cellulase and other enzymes . The series of works on...ceases to exist as a scientist. He must go to meetings, assign people to pick potatoes , and do virtually anything whatsoever except scientific work...aids; to the Institute of Microbiology imeni Avgust Kirkhenshteyn—for the development of preparations of microbic nucleases and related enzymes

  16. Composites Materials and Manufacturing Technologies for Space Applications

    Science.gov (United States)

    Vickers, J. H.; Tate, L. C.; Gaddis, S. W.; Neal, R. E.

    2016-01-01

    Composite materials offer significant advantages in space applications. Weight reduction is imperative for deep space systems. However, the pathway to deployment of composites alternatives is problematic. Improvements in the materials and processes are needed, and extensive testing is required to validate the performance, qualify the materials and processes, and certify components. Addressing these challenges could lead to the confident adoption of composites in space applications and provide spin-off technical capabilities for the aerospace and other industries. To address the issues associated with composites applications in space systems, NASA sponsored a Technical Interchange Meeting (TIM) entitled, "Composites Materials and Manufacturing Technologies for Space Applications," the proceedings of which are summarized in this Conference Publication. The NASA Space Technology Mission Directorate and the Game Changing Program chartered the meeting. The meeting was hosted by the National Center for Advanced Manufacturing (NCAM)-a public/private partnership between NASA, the State of Louisiana, Louisiana State University, industry, and academia, in association with the American Composites Manufacturers Association. The Louisiana Center for Manufacturing Sciences served as the coordinator for the TIM.

  17. The Space Science Suitcase - Instruments for Exploring Space Weather From the Classroom

    Science.gov (United States)

    Olafsson, K.; Ostgaard, N.

    2008-12-01

    The aurora and other phenomena in near Earth space are becoming a considerable part of the science curriculum in upper secondary school (high school - age 16 to 19) in Norway. Introducing scientific methods to the young students is an important task of the education, but experimental science experience is to a great extent restricted to simple laboratory exercises under controlled conditions; observations of uncontrollable natural phenomena are generally left to academic scientists and researchers. The Space Physics Group and The Science Education and Outreach Group at The Department of Physics and Technology, University of Bergen, have constructed a "Space Science Suitcase" with a set of simple versions of instruments for monitoring solar and geophysical activity in near Earth space. The contents of the suitcase are: Two solar telescopes, commercial SLR digital camera with a fisheye lens for photographing the aurora, tri-axial magnetometer, Geiger counter, two spectroscopes, GPS-receiver, a laptop for collecting the pictures and measurements, and a manual with suggestions for some relevant experiments. The suitcase is lent to physics classes in upper secondary schools for 3-4 weeks at each school, allowing the students to do their own quantitative observations of sunspots, magnetic disturbances, optical aurora, background radiation etc. Comparison of these observations with online observations from ground based observatories and satellites is an integrated part of the project. The purpose of the experiment is to promote scientific literacy, bring excitement about space phenomena into the classroom, and, finally, to recruit enthusiastic students to university studies in physic and geophysics in general, and space science in particular.

  18. The handbook of science and technology studies

    CERN Document Server

    Fouché, Rayvon; Miller, Clark A; Smith-Doerr, Laurel

    2017-01-01

    Science and Technology Studies (STS) is a flourishing interdisciplinary field that examines the transformative power of science and technology to arrange and rearrange contemporary societies. The Handbook of Science and Technology Studies provides a comprehensive and authoritative overview of the field, reviewing current research and major theoretical and methodological approaches in a way that is accessible to both new and established scholars from a range of disciplines. This new edition, sponsored by the Society for Social Studies of Science, is the fourth in a series of volumes that have defined the field of STS. It features 36 chapters, each written for the fourth edition, that capture the state of the art in a rich and rapidly growing field. One especially notable development is the increasing integration of feminist, gender, and postcolonial studies into the body of STS knowledge. The book covers methods and participatory practices in STS research; mechanisms by which knowledge, people, and societies ...

  19. Science & Technology Review January/February 2017

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meissner, C. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kotta, P. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-12

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  20. Science & Technology Review October/November 2015

    Energy Technology Data Exchange (ETDEWEB)

    Orme, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meissner, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kotta, P. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-11-05

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  1. Science & Technology Review January/February 2016

    Energy Technology Data Exchange (ETDEWEB)

    Orme, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meissner, C. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kotta, P. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-18

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  2. JPRS Report, Science & Technology, Japan

    Science.gov (United States)

    1988-03-03

    in space and recovery of the rock - et’s nose portion from the ocean. The overall shape of the rocket is shown in Figure 6. It is a two-stage rocket...Industrial Machinery Nippon Sharyo Seizo Kobe Steel, Ltd. Riken Kagaku Tosh in Toyo Seiki Seisa- kusho Nakatani Machines Function Furnaces

  3. Politicizing science: conceptions of politics in science and technology studies.

    Science.gov (United States)

    Brown, Mark B

    2015-02-01

    This essay examines five ideal-typical conceptions of politics in science and technology studies. Rather than evaluating these conceptions with reference to a single standard, the essay shows how different conceptions of politics serve distinct purposes: normative critique, two approaches to empirical description, and two views of democracy. I discuss each conception of politics with respect to how well it fulfills its apparent primary purpose, as well as its implications for the purpose of studying a key issue in contemporary democratic societies: the politicization of science. In this respect, the essay goes beyond classifying different conceptions of politics and also recommends the fifth conception as especially conducive to understanding and shaping the processes whereby science becomes a site or object of political activity. The essay also employs several analytical distinctions to help clarify the differences among conceptions of politics: between science as 'political' (adjective) and science as a site of 'politics' (noun), between spatial-conceptions and activity-conceptions of politics, between latent conflicts and actual conflicts, and between politics and power. The essay also makes the methodological argument that the politics of science and technology is best studied with concepts and methods that facilitate dialogue between actors and analysts. The main goal, however, is not to defend a particular view of politics, but to promote conversation on the conceptions of politics that animate research in social studies of science and technology.

  4. Nuclear technology and materials science

    International Nuclear Information System (INIS)

    Olander, D.R.

    1992-01-01

    Current and expected problems in the materials of nuclear technology are reviewed. In the fuel elements of LWRs, cladding waterside corrosion, secondary hydriding and pellet-cladding interaction may be significant impediments to extended burnup. In the fuel, fission gas release remains a key issue. Materials issues in the structural alloys of the primary system include stress-corrosion cracking of steel, corrosion of steam generator tubing and pressurized thermal shock of the reactor vessel. Prediction of core behavior in severe accidents requires basic data and models for fuel liquefaction, aerosol formation, fission product transport and core-concrete interaction. Materials questions in nuclear waste management and fusion technology are briefly reviewed. (author)

  5. Social Perception of Science and Technology Governance. Experts vs. Public

    Directory of Open Access Journals (Sweden)

    Betty Estévez Cedeño

    2010-07-01

    Full Text Available Science and technology governance has been a recurrent topic for debate in the recent years, both in the academic and the government areas. The perception of the governance of science from an expert’s point of view is a result of the empirical work carried out among the different players who design the science and technology regional policies in Spain. This analysis is completed with the Spanish citizen's appreciation on this subject, gotten from the national survey of social perception of science and technology carried out by the Spanish Foundation for Science and Technology (FECYT. The study shows that experts and the public consider a dialog among them as appropriate to build the governance of science. The public’s interest in these issues may causes that its responsibility is transferred to the experts. Furthermore, there is an ambivalent vision regarding the role citizens must play in this sort of actions. The lack of spaces and put into practice the appropriate methods so that a dialog between experts and stakeholders is still an unresolved matter in order to build up some good governance.

  6. Climate Science and Technology Symposium

    Science.gov (United States)

    2010-01-06

    Services Richard Spinrad, Ass/storff Administrator, National Oceanic and Atmospheric Administration * Commentary by Dan Cayan, Research Meteorologist...Q. 2 > in 2 in O a. > 310 r T T T ’ I T I 1990 NOAA’s Vision for Climate Products and Services Richard Spinrad...educated during the greatest age of American science, and I got to meet many of its greatest figures; Oppenheimer, Dirac, Feynman , Cell-Mann, Hess, Oort

  7. JPRS Report, Science & Technology, Europe

    Science.gov (United States)

    1989-05-22

    Reinhold Boehmer; Duesseldorf WIRTSCHAFTSWOCHE, 24 Mar 89] .... 29 MICROELECTRONICS FRG Laender Compete for JESSI Projects [Roland Tichy ...sized by the SFB spokesman, political science professor Franz Lehner. To him, "thinned-out factories with only a few unskilled workers are out of the...by Roland Tichy : "Research Subsidies: Every- one Wants JESSI" first paragraph is introduction] [Text] No one really knows what it is, but everyone

  8. White paper on science and technology, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    Today, the discussions indicate that the framework for science and technology is changing qualitatively. The rapid globalization of Japanese economic, scientific and technological activities has revealed that the earth is truly limited. This limitation is becoming more apparent in many areas such as resources, energy and markets, and recognizing this limitation, it is required to find a way of life that enables to harmonize the activities with the environment for the future. The theme of the White Paper on Science and Technology in this year is 'Globalization of scientific and technological activities and issues Japan is encountering'. It recognizes that Japan will play significant roles internationally in science and technology from now on. The White Paper consists of three parts. Part 1 deals with the aforementioned concept. In Part 2, scientific and technological activities are compared internationally, and the status of the activities in Japan is examined. In Part 3, the measures which have been developed in accordance with the 'General guideline for science and technology policy', the fundamental policy statement of the Japanese Government, are described. (K.I.)

  9. White paper on science and technology, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Today, the discussions indicate that the framework for science and technology is changing qualitatively. The rapid globalization of Japanese economic, scientific and technological activities has revealed that the earth is truly limited. This limitation is becoming more apparent in many areas such as resources, energy and markets, and recognizing this limitation, it is required to find a way of life that enables to harmonize the activities with the environment for the future. The theme of the White Paper on Science and Technology in this year is 'Globalization of scientific and technological activities and issues Japan is encountering'. It recognizes that Japan will play significant roles internationally in science and technology from now on. The White Paper consists of three parts. Part 1 deals with the aforementioned concept. In Part 2, scientific and technological activities are compared internationally, and the status of the activities in Japan is examined. In Part 3, the measures which have been developed in accordance with the 'General guideline for science and technology policy', the fundamental policy statement of the Japanese Government, are described. (K.I.).

  10. Edible Earth and Space Science Activities

    Science.gov (United States)

    Lubowich, D.; Shupla, C.

    2014-07-01

    In this workshop we describe using Earth and Space Science demonstrations with edible ingredients to increase student interest. We show how to use chocolate, candy, cookies, popcorn, bagels, pastries, Pringles, marshmallows, whipped cream, and Starburst candy for activities such as: plate tectonics, the interior structure of the Earth and Mars, radioactivity/radioactive dating of rocks and stars, formation of the planets, lunar phases, convection, comets, black holes, curvature of space, dark energy, and the expansion of the Universe. In addition to creating an experience that will help students remember specific concepts, edible activities can be used as a formative assessment, providing students with the opportunity to create something that demonstrates their understanding of the model. The students often eat the demonstrations. These demonstrations are an effective teaching tool for all ages, and can be adapted for cultural, culinary, and ethnic differences among the students.

  11. USSR Space Life Sciences Digest, issue 21

    Science.gov (United States)

    Hooke, Lydia Razran; Donaldson, P. Lynn; Garshnek, Victoria; Rowe, Joseph

    1989-01-01

    This is the twenty-first issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 37 papers published in Russian language periodicals or books or presented at conferences and of a Soviet monograph on animal ontogeny in weightlessness. Selected abstracts are illustrated with figures and tables from the original. A book review of a work on adaptation to stress is also included. The abstracts in this issue have been identified as relevant to 25 areas of space biology and medicine. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, hematology, human performance, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, operational medicine, perception, psychology, and reproductive system.

  12. JPRS Report, Science & Technology: Europe.

    Science.gov (United States)

    1992-04-21

    the sodium-sulfur battery is favored by large- scale users like BMW or Volkswagen AG, which, in co- production with Swiss watch king Nicolas Hayek ...spokesman Friedrich -Karl Reichardt to the HAN- DELSBLATT. The programmers may be interested in high-definition television technology. However, up

  13. Innovative technologies in urban mapping built space and mental space

    CERN Document Server

    Paolini, Paolo; Salerno, Rossella

    2014-01-01

    The book presents a comprehensive vision of the impact of ICT on the contemporary city, heritage, public spaces and meta-cities on both urban and metropolitan scales, not only in producing innovative perspectives but also related to newly discovered scientific methods, which can be used to stimulate the emerging reciprocal relations between cities and information technologies. Using the principles established by multi-disciplinary interventions as examples and then expanding on them, this book demonstrates how by using ICT and new devices, metropolises can be organized for a future that preserves the historic nucleus of the city and the environment while preparing the necessary expansion of transportation, housing and industrial facilities.

  14. Space solar cell technology development - A perspective

    Science.gov (United States)

    Scott-Monck, J.

    1982-01-01

    The developmental history of photovoltaics is examined as a basis for predicting further advances to the year 2000. Transistor technology was the precursor of solar cell development. Terrestrial cells were modified for space through changes in geometry and size, as well as the use of Ag-Ti contacts and manufacture of a p-type base. The violet cell was produced for Comsat, and involved shallow junctions, new contacts, and an enhanced antireflection coating for better radiation tolerance. The driving force was the desire by private companies to reduce cost and weight for commercial satellite power supplies. Liquid phase epitaxial (LPE) GaAs cells are the latest advancement, having a 4 sq cm area and increased efficiency. GaAs cells are expected to be flight ready in the 1980s. Testing is still necessary to verify production techniques and the resistance to electron and photon damage. Research will continue in CVD cell technology, new panel technology, and ultrathin Si cells.

  15. Space Weather Research at the National Science Foundation

    Science.gov (United States)

    Moretto, T.

    2015-12-01

    There is growing recognition that the space environment can have substantial, deleterious, impacts on society. Consequently, research enabling specification and forecasting of hazardous space effects has become of great importance and urgency. This research requires studying the entire Sun-Earth system to understand the coupling of regions all the way from the source of disturbances in the solar atmosphere to the Earth's upper atmosphere. The traditional, region-based structure of research programs in Solar and Space physics is ill suited to fully support the change in research directions that the problem of space weather dictates. On the observational side, dense, distributed networks of observations are required to capture the full large-scale dynamics of the space environment. However, the cost of implementing these is typically prohibitive, especially for measurements in space. Thus, by necessity, the implementation of such new capabilities needs to build on creative and unconventional solutions. A particularly powerful idea is the utilization of new developments in data engineering and informatics research (big data). These new technologies make it possible to build systems that can collect and process huge amounts of noisy and inaccurate data and extract from them useful information. The shift in emphasis towards system level science for geospace also necessitates the development of large-scale and multi-scale models. The development of large-scale models capable of capturing the global dynamics of the Earth's space environment requires investment in research team efforts that go beyond what can typically be funded under the traditional grants programs. This calls for effective interdisciplinary collaboration and efficient leveraging of resources both nationally and internationally. This presentation will provide an overview of current and planned initiatives, programs, and activities at the National Science Foundation pertaining to space weathe research.

  16. Space Launch System Upper Stage Technology Assessment

    Science.gov (United States)

    Holladay, Jon; Hampton, Bryan; Monk, Timothy

    2014-01-01

    The Space Launch System (SLS) is envisioned as a heavy-lift vehicle that will provide the foundation for future beyond low-Earth orbit (LEO) exploration missions. Previous studies have been performed to determine the optimal configuration for the SLS and the applicability of commercial off-the-shelf in-space stages for Earth departure. Currently NASA is analyzing the concept of a Dual Use Upper Stage (DUUS) that will provide LEO insertion and Earth departure burns. This paper will explore candidate in-space stages based on the DUUS design for a wide range of beyond LEO missions. Mission payloads will range from small robotic systems up to human systems with deep space habitats and landers. Mission destinations will include cislunar space, Mars, Jupiter, and Saturn. Given these wide-ranging mission objectives, a vehicle-sizing tool has been developed to determine the size of an Earth departure stage based on the mission objectives. The tool calculates masses for all the major subsystems of the vehicle including propellant loads, avionics, power, engines, main propulsion system components, tanks, pressurization system and gases, primary structural elements, and secondary structural elements. The tool uses an iterative sizing algorithm to determine the resulting mass of the stage. Any input into one of the subsystem sizing routines or the mission parameters can be treated as a parametric sweep or as a distribution for use in Monte Carlo analysis. Taking these factors together allows for multi-variable, coupled analysis runs. To increase confidence in the tool, the results have been verified against two point-of-departure designs of the DUUS. The tool has also been verified against Apollo moon mission elements and other manned space systems. This paper will focus on trading key propulsion technologies including chemical, Nuclear Thermal Propulsion (NTP), and Solar Electric Propulsion (SEP). All of the key performance inputs and relationships will be presented and

  17. JPRS Report, Science & Technology, China

    Science.gov (United States)

    1991-12-23

    Petrochemical Corp. Completes First Integrated Network [JISUANJI SHIJIE, 18 Sep 91] ............ 27 Shanghai To Build FTTH CATV Network [Xiao Qiang; JISUANJI...long-wave fiber optic communi- cations. Shanghai To Build FTTH CATV Network 92P60054D Beijing JISUANJI SHIJIE [CHINA First 60-km Unrepeatered Bundle...technology is now moving into Cable Operational"] the home ( FTTH , or fiber-to-the-home), with the upcoming construction in the Shanghai area’s Jiading [Summary

  18. JPRS Report, Science & Technology Europe

    Science.gov (United States)

    1988-09-08

    research of the ൔ" on 11 April in Luxemburg . Italy was represented by Minister Antonio Ruberti. Karl-Heinz Narjes, vice president of the European...necessary to include a second phase of argon gas purification using lower gas flow rates in the technological process; during this phase, a light stirring...of the steel by the argon gas takes place (nitrogen can also be used) and this facilitates the floating out of nonme- tallic inclusions from the

  19. JPRS Report, Science & Technology: Europe

    Science.gov (United States)

    1989-07-17

    Construction of First Technological Park Begins [Barcelona REVISTA DE ROBOTICA , Mar 89] .... 8 European Firms Strive To Increase Competitiveness 8...Madrid University, Siemens Cooperation on AI Project Reported [Barcelona REVISTA DE ROBOTICA , Mar 89] .....: 21 ENERGY FRG’s Kohl Outlines...Park Begins 36980224b Barcelona REVISTA DE ROBOTICA in Spanish Mär 89 p 24 [Text] Telescincro, Inc., laid the cornerstone of its new factory and

  20. JPRS Report, Science & Technology: China.

    Science.gov (United States)

    1989-01-31

    colonies being selected. The transformed bacteria strain was inoculated into 5 ml of YPD medium (2 percent glucose, 1 percent yeast extract, and 2...developed into technological development centers for specific industries or localities, oriented toward medium and small-size enterprises or small-town...the large academies and institutes, advanced schools and large and medium -sized enterprises on the front line of the coastal economy and have them

  1. A Fast, Affordable, Science and Technology SATellite (FASTSAT) and the Small Satellite Market Development Environment

    Science.gov (United States)

    Boudreaux, Mark; Montgomery, Edward; Cacas, Joseph

    2008-01-01

    The National Aeronautics and Space Administr ation at Marshall Space Flight Center and the National Space Science and Technology Center in Huntsville Alabama USA, are jointly developing a new class of science and technology mission small satellites. The Fast, Affordable, Science and Technology SATell ite (FASTSAT) was designed and developed using a new collaborative and best practices approach. The FASTSAT development, along with the new class of low cost vehicles currently being developed, would allow performance of 30 kg payload mass missions for a cost of less than 10 million US dollars.

  2. Science, biomedical technology and biolaw.

    Science.gov (United States)

    Furnica, Cristina; Scripcaru, Calin

    2009-01-01

    Starting from legislative recognition of the grounding principles of human rights, the authors describe and comment upon the Council of Europe's Convention on human rights and human dignity confronted with scientific discoveries and also upon the Oviedo Convention of 1997 for the protection of Human Rights and dignity of the human being with regard to the application of biology and medicine. The authors specify that, given the promise made by Romania to observe international obligations, the Romanian law no. 2/1998 on organ and tissue transplantation abrogates the stipulations of the law 3-1978 and also includes 9 appendices which, being part of the law, guarantee in addition the observance of its provisions. All these regulations on the relationship between science and human rights have determined an evolution from the fatality of natural risks to current compensations, as an expression of human solidarity. They have determined the transition from social and vocational paternalism to personal autonomy and personal guarantees of independence and freedom. All these developments are faithfully reflected by comparative legislation on the use of life science outcomes on persons as they presently are. This is also reflected in Romanian legislation concerning tissue and organ transplantation and in mental health legislation.

  3. Magnetoresistive magnetometer for space science applications

    International Nuclear Information System (INIS)

    Brown, P; Beek, T; Carr, C; O’Brien, H; Cupido, E; Oddy, T; Horbury, T S

    2012-01-01

    Measurement of the in situ dc magnetic field on space science missions is most commonly achieved using instruments based on fluxgate sensors. Fluxgates are robust, reliable and have considerable space heritage; however, their mass and volume are not optimized for deployment on nano or picosats. We describe a new magnetometer design demonstrating science measurement capability featuring significantly lower mass, volume and to a lesser extent power than a typical fluxgate. The instrument employs a sensor based on anisotropic magnetoresistance (AMR) achieving a noise floor of less than 50 pT Hz −1/2 above 1 Hz on a 5 V bridge bias. The instrument range is scalable up to ±50 000 nT and the three-axis sensor mass and volume are less than 10 g and 10 cm 3 , respectively. The ability to switch the polarization of the sensor's easy axis and apply magnetic feedback is used to build a driven first harmonic closed loop system featuring improved linearity, gain stability and compensation of the sensor offset. A number of potential geospace applications based on the initial instrument results are discussed including attitude control systems and scientific measurement of waves and structures in the terrestrial magnetosphere. A flight version of the AMR magnetometer will fly on the TRIO-CINEMA mission due to be launched in 2012. (paper)

  4. Devices development and techniques research for space life sciences

    Science.gov (United States)

    Zhang, A.; Liu, B.; Zheng, C.

    The development process and the status quo of the devices and techniques for space life science in China and the main research results in this field achieved by Shanghai Institute of Technical Physics SITP CAS are reviewed concisely in this paper On the base of analyzing the requirements of devices and techniques for supporting space life science experiments and researches one designment idea of developing different intelligent modules with professional function standard interface and easy to be integrated into system is put forward and the realization method of the experiment system with intelligent distributed control based on the field bus are discussed in three hierarchies Typical sensing or control function cells with certain self-determination control data management and communication abilities are designed and developed which are called Intelligent Agents Digital hardware network system which are consisted of the distributed Agents as the intelligent node is constructed with the normative opening field bus technology The multitask and real-time control application softwares are developed in the embedded RTOS circumstance which is implanted into the system hardware and space life science experiment system platform with characteristic of multitasks multi-courses professional and instant integration will be constructed

  5. Hanford science and technology needs statements, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, G.T.

    1998-09-30

    In the aftermath of the Cold War, the US has begun addressing the environmental consequences of five decades of nuclear weapons production. In November 1989, DOE established the Office of Environmental Restoration and Waste Management (EM) as the central authority for cleaning up the DOE weapons complex legacy of pollution, for preventing further environmental contamination, and for instituting responsible environmental management. While performing its tasks, EM found that many aspects of its large and complex decisions could not be achieved using existing science and technology or without incurring unreasonable costs, risks, or schedule impacts. Consequently, a process was developed to solicit needs from around the DOE complex and focus the science and technology resources of EM-50, the National Laboratories, private industry, and collages and universities on those needs. This document describes those needs which the Hanford Site has identified as requiring additional science or technology to complete.

  6. Hanford science and technology needs statements, 2000

    Energy Technology Data Exchange (ETDEWEB)

    BERLIN, G.T.

    1999-07-16

    In the aftermath of the Cold War, the United States has begun addressing the environmental consequences of five decades of nuclear weapons production. In November 1989, DOE established the Office of Environmental Restoration and Waste Management (EM) as the central authority for cleaning up the DOE weapons complex legacy of pollution, for preventing further environmental contamination, and for instituting responsible environmental management. While performing its tasks, EM found that many aspects of its large and complex mission could not be achieved using existing science and technology or without incurring unreasonable costs, risks, or schedule impacts. Consequently, a process was developed to solicit needs from around the DOE complex and focus the science and technology resources of EM-50, the National Laboratories, private industry, and colleges and universities on those needs. This document describes those needs that the Hanford Site has identified as requiring additional science or technology to complete.

  7. Science & Technology Review March 2009

    Energy Technology Data Exchange (ETDEWEB)

    Bearinger, J P

    2009-01-22

    This month's issue has the following articles: (1) Seismic Science and Nonproliferation--Commentary by William H. Goldstein; (2) Sleuthing Seismic Signals--Supercomputer simulations improve the accuracy of models used to distinguish nuclear explosions from earthquakes and pinpoint their location; (3) Wind and the Grid--The Laboratory lends technical expertise to government and industry to more effectively integrate wind energy into the nation's electrical infrastructure; (4) Searching for Tiny Signals from Dark Matter--Powerful amplifiers may for the first time allow researchers to detect axions, hypothesized particles that may constitute 'dark matter', and (5) A Better Method for Self-Decontamination--A prototype decontamination system could one day allow military personnel and civilians to better treat themselves for exposure to toxic chemicals.

  8. Science & Technology Review June 2010

    Energy Technology Data Exchange (ETDEWEB)

    Blobaum, K J

    2010-04-28

    This month's issue has the following articles: (1) A Leader in High-Pressure Science--Commentary by William H. Goldstein; (2) Diamonds Put the Pressure on Materials--New experimental capabilities are helping Livermore scientists better understand how extreme pressure affects a material's structure; (3) Exploring the Unusual Behavior of Granular Materials--Livermore scientists are developing new techniques for predicting the response of granular materials under pressure; (4) A 1-Ton Device in a Briefcase--A new briefcase-sized tool for nuclear magnetic resonance is designed for onsite analysis of suspected chemical weapons; and (5) Targets Designed for Ignition--A series of experiments at the National Ignition Facility is helping scientists finalize the ignition target design.

  9. Science & Technology Review June 2009

    Energy Technology Data Exchange (ETDEWEB)

    Bearinger, J P

    2009-06-05

    This month's issue has the following articles: (1) A Safer and Even More Effective TATB - Commentary by Bruce T. Goodwin; (2) Dissolving Molecules to Improve Their Performance - Computer scientists and chemists have teamed to develop a green method for recycling a valuable high explosive that is no longer manufactured; (3) Exceptional People Producing Great Science - Postdoctoral researchers lend their expertise to projects that support the Laboratory's missions; (4) Revealing the Identities and Functions of Microbes - A new imaging technique illuminates bacterial metabolic pathways and complex relationships; and (5) A Laser Look inside Planets - Laser-driven ramp compression may one day reveal the interior structure of Earth-like planets in other solar systems.

  10. The international handbook of space technology

    CERN Document Server

    Badescu, Viorel

    2014-01-01

    This comprehensive handbook provides an overview of space technology and a holistic understanding of the system-of-systems that is a modern spacecraft. With a foreword by Elon Musk, CEO and CTO of SpaceX, and contributions from globally leading agency experts from NASA, ESA, JAXA, and CNES, as well as European and North American academics and industrialists, this handbook, as well as giving an interdisciplinary overview, offers, through individual self-contained chapters, more detailed understanding of specific fields, ranging through: ·         Launch systems, structures, power, thermal, communications, propulsion, and software, to ·         entry, descent and landing, ground segment, robotics, and data systems, to ·         technology management, legal and regulatory issues, and project management. This handbook is an equally invaluable asset to those on a career path towards the space industry as it is to those already within the industry.

  11. Developing Dual Polarization Applications For 45th Weather Squadron's (45 WS) New Weather Radar: A Cooperative Project With The National Space Science and Technology Center (NSSTC)

    Science.gov (United States)

    Roeder, W.P.; Peterson, W.A.; Carey, L.D.; Deierling, W.; McNamara, T.M.

    2009-01-01

    A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar includes dual polarization capability, which has not been available to 45 WS previously. The 45 WS has teamed with NSSTC with funding from NASA Marshall Spaceflight Flight Center to improve their use of this new dual polarization capability when it is implemented operationally. The project goals include developing a temperature profile adaptive scan strategy, developing training materials, and developing forecast techniques and tools using dual polarization products. The temperature profile adaptive scan strategy will provide the scan angles that provide the optimal compromise between volume scan rate, vertical resolution, phenomena detection, data quality, and reduced cone-of-silence for the 45 WS mission. The mission requirements include outstanding detection of low level boundaries for thunderstorm prediction, excellent vertical resolution in the atmosphere electrification layer between 0 C and -20 C for lightning forecasting and Lightning Launch Commit Criteria evaluation, good detection of anvil clouds for Lightning Launch Commit Criteria evaluation, reduced cone-of-silence, fast volume scans, and many samples per pulse for good data quality. The training materials will emphasize the appropriate applications most important to the 45 WS mission. These include forecasting the onset and cessation of lightning, forecasting convective winds, and hopefully the inference of electrical fields in clouds. The training materials will focus on annotated radar imagery based on products available to the 45 WS. Other examples will include time sequenced radar products without annotation to simulate radar operations. This will reinforce the forecast concepts and also allow testing of the forecasters. The new dual polarization techniques and tools will focus on

  12. Science and Technology of Future Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Dierker,S.; Bergmann, U.; Corlett, J.; Dierker, S.; Falcone, R.; Galayda, J.; Gibson, M.; Hastings, J.; Hettel, B.; Hill, J.; Hussain, Z.; Kao, C.-C.; Kirx, J.; Long, G.; McCurdy, B.; Raubenheimer, T.; Sannibale, F.; Seeman, J.; Shen, Z.-X.; Shenoy, g.; Schoenlein, B.; Shen, Q.; Stephenson, B.; Stohr, J.; Zholents, A.

    2008-12-01

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects. The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of

  13. Science and Technology of Future Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, Janos; Long, Danielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z. -X.; Schenoy, Gopal; Schoenlein, Bob; Shen, Qun; Stephenson, Brian; Stohr, Joachim; Zholents, Alexander

    2009-01-28

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of

  14. USSR Space Life Sciences Digest, issue 8

    Science.gov (United States)

    Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the eighth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 48 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables. Additional features include reviews of two Russian books on radiobiology and a description of the latest meeting of an international working group on remote sensing of the Earth. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 33 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, group dynamics, habitability and environment effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, personnel selection, psychology, reproductive biology, and space biology and medicine.

  15. The potential impact of microgravity science and technology on education

    Science.gov (United States)

    Wargo, M. J.

    1992-01-01

    The development of educational support materials by NASA's Microgravity Science and Applications Division is discussed in the light of two programs. Descriptions of the inception and application possibilities are given for the Microgravity-Science Teacher's Guide and the program of Undergraduate Research Opportunities in Microgravity Science and Technology. The guide is intended to introduce students to the principles and research efforts related to microgravity, and the undergraduate program is intended to reinforce interest in the space program. The use of computers and electronic communications is shown to be an important catalyst for the educational efforts. It is suggested that student and teacher access to these programs be enhanced so that they can have a broader impact on the educational development of space-related knowledge.

  16. Separation science and technology: an ORNL perspective

    International Nuclear Information System (INIS)

    Pruett, D.J.

    1986-05-01

    This report was prepared as a summary of a fourfold effort: (1) to examine schemes for defining and categorizing the field of separation science and technology; (2) to review several of the major categories of separation techniques in order to determine the most recent developments and future research needs; (3) to consider selected problems and programs that require advances in separation science and technology as a part of their solution; and (4) to propose suggestions for new directions in separation research at Oak Ridge National Laboratory (ORNL)

  17. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1976-01-01

    Advances in Nuclear Science and Technology, Volume 9 provides information pertinent to the fundamental aspects of nuclear science and technology. This book discusses the safe and beneficial development of land-based nuclear power plants.Organized into five chapters, this volume begins with an overview of the possible consequences of a large-scale release of radioactivity from a nuclear reactor in the event of a serious accident. This text then discusses the extension of conventional perturbation techniques to multidimensional systems and to high-order approximations of the Boltzmann equation.

  18. S5: Information Technology for Science Missions

    Science.gov (United States)

    Coughlan, Joe

    2017-01-01

    NASA Missions and Programs create a wealth of science data and information that are essential to understanding our earth, our solar system and the universe. Advancements in information technology will allow many people within and beyond the Agency to more effectively analyze and apply these data and information to create knowledge. The desired end result is to see that NASA data and science information are used to generate the maximum possible impact to the nation: to advance scientific knowledge and technological capabilities, to inspire and motivate the nation's students and teachers, and to engage and educate the public.

  19. Mathematics for engineering, technology and computing science

    CERN Document Server

    Martin, Hedley G

    1970-01-01

    Mathematics for Engineering, Technology and Computing Science is a text on mathematics for courses in engineering, technology, and computing science. It covers linear algebra, ordinary differential equations, and vector analysis, together with line and multiple integrals. This book consists of eight chapters and begins with a discussion on determinants and linear equations, with emphasis on how the value of a determinant is defined and how it may be obtained. Solution of linear equations and the dependence between linear equations are also considered. The next chapter introduces the reader to

  20. Advances in software science and technology

    CERN Document Server

    Hikita, Teruo; Kakuda, Hiroyasu

    1993-01-01

    Advances in Software Science and Technology, Volume 4 provides information pertinent to the advancement of the science and technology of computer software. This book discusses the various applications for computer systems.Organized into two parts encompassing 10 chapters, this volume begins with an overview of the historical survey of programming languages for vector/parallel computers in Japan and describes compiling methods for supercomputers in Japan. This text then explains the model of a Japanese software factory, which is presented by the logical configuration that has been satisfied by

  1. Advances in software science and technology

    CERN Document Server

    Kakuda, Hiroyasu; Ohno, Yoshio

    1992-01-01

    Advances in Software Science and Technology, Volume 3 provides information pertinent to the advancement of the science and technology of computer software. This book discusses the various applications for computer systems.Organized into two parts encompassing 11 chapters, this volume begins with an overview of the development of a system of writing tools called SUIKOU that analyzes a machine-readable Japanese document textually. This text then presents the conditioned attribute grammars (CAGs) and a system for evaluating them that can be applied to natural-language processing. Other chapters c

  2. Japan society for software science and technology

    CERN Document Server

    Nakajima, Reiji; Hagino, Tatsuya

    1990-01-01

    Advances in Software Science and Technology, Volume 1 provides information pertinent to the advancement of the science and technology of computer software. This book discusses the various applications for computer systems.Organized into three parts encompassing 13 chapters, this volume begins with an overview of the phase structure grammar for Japanese called JPSG, and a parser based on this grammar. This text then explores the logic-based knowledge representation called Uranus, which uses a multiple world mechanism. Other chapters consider the optimal file segmentation techniques for multi-at

  3. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1972-01-01

    Advances in Nuclear Science and Technology, Volume 6 provides information pertinent to the fundamental aspects of nuclear science and technology. This book covers a variety of topics, including nuclear steam generator, oscillations, fast reactor fuel, gas centrifuge, thermal transport system, and fuel cycle.Organized into six chapters, this volume begins with an overview of the high standards of technical safety for Europe's first nuclear-propelled merchant ship. This text then examines the state of knowledge concerning qualitative results on the behavior of the solutions of the nonlinear poin

  4. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1973-01-01

    Advances in Nuclear Science and Technology, Volume 7 provides information pertinent to the fundamental aspects of nuclear science and technology. This book discusses the safe and beneficial development of land-based nuclear power plants.Organized into five chapters, this volume begins with an overview of irradiation-induced void swelling in austenitic stainless steels. This text then examines the importance of various transport processes for fission product redistribution, which depends on the diffusion data, the vaporization properties, and the solubility in the fuel matrix. Other chapters co

  5. Advanced Exploration Technologies: Micro and Nano Technologies Enabling Space Missions in the 21st Century

    Science.gov (United States)

    Krabach, Timothy

    1998-01-01

    Some of the many new and advanced exploration technologies which will enable space missions in the 21st century and specifically the Manned Mars Mission are explored in this presentation. Some of these are the system on a chip, the Computed-Tomography imaging Spectrometer, the digital camera on a chip, and other Micro Electro Mechanical Systems (MEMS) technology for space. Some of these MEMS are the silicon micromachined microgyroscope, a subliming solid micro-thruster, a micro-ion thruster, a silicon seismometer, a dewpoint microhygrometer, a micro laser doppler anemometer, and tunable diode laser (TDL) sensors. The advanced technology insertion is critical for NASA to decrease mass, volume, power and mission costs, and increase functionality, science potential and robustness.

  6. Hanford science and technology needs statements document

    Energy Technology Data Exchange (ETDEWEB)

    Piper, L.L.

    1997-12-31

    This document is a compilation of the Hanford science and technology needs statements for FY 1998. The needs were developed by the Hanford Site Technology Coordination Group (STCG) with full participation and endorsement of site user organizations, stakeholders, and regulators. The purpose of this document is to: (a) provide a comprehensive listing of Hanford science and technology needs, and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community. The Hanford STCG reviews and updates the needs annually. Once completed, the needs are communicated to DOE for use in the development and prioritization of their science and technology programs, including the Focus Areas, Cross-Cutting Programs, and the Environmental Management Science Program. The needs are also transmitted to DOE through the Accelerating Cleanup: 2006 Plan. The public may access the need statements on the Internet on: the Hanford Home Page (www.hanford.gov), the Pacific Rim Enterprise Center`s web site (www2.pacific-rim.org/pacific rim), or the STCG web site at DOE headquarters (em-52.em.doegov/ifd/stcg/stcg.htm). This page includes links to science and technology needs for many DOE sites. Private industry is encouraged to review the need statements and contact the Hanford STCG if they can provide technologies that meet these needs. On-site points of contact are included at the ends of each need statement. The Pacific Rim Enterprise Center (206-224-9934) can also provide assistance to businesses interested in marketing technologies to the DOE.

  7. Science & Technology Review December 2007

    Energy Technology Data Exchange (ETDEWEB)

    Chinn, D J

    2007-10-24

    This month's issue has the following articles: (1) Homeland Security Begins Abroad--Commentary by John C. Doesburg; (2) Out of Harm's Way--New physical protection and accountability systems, together with a focus on security, safeguard nuclear materials in the Russian Federation; (3) A Calculated Journey to the Center of the Earth--Determining the permeability of partially melted metals in a mineral matrix unlocks secrets about the formation of Earth's core; (4) Wireless That Works--Communication technologies using ultrawideband radar are improving national security; and (5) Power to the People--Edward Teller envisioned safe and plentiful nuclear power for peaceful applications.

  8. Science & Technology Review March 2010

    Energy Technology Data Exchange (ETDEWEB)

    Bearinger, J P

    2010-01-29

    This month's issue has the following articles: (1) Countering the Growing Chem-Bio Threat -- Commentary by Penrose (Parney) C. Albright; (2) Responding to a Terrorist Attack Involving Chemical Warfare Agents -- Livermore scientists are helping the nation strengthen plans to swiftly respond to an incident involving chemical warfare agents; (3) Revealing the Secrets of a Deadly Disease -- A Livermore-developed system helps scientists better understand how plague bacteria infect healthy host cells; (4) A New Application for a Weapons Code -- Simulations reveal for the first time how blast waves cause traumatic brain injuries; (5) Testing Valuable National Assets for X-Ray Damage -- Experiments at the National Ignition Facility are measuring the effects of radiation on critical systems; and (6) An Efficient Way to Harness the Sun's Power -- New solar thermal technology is designed to supply residential electric power at nearly half of the current retail price.

  9. Incorporating digital technologies into science classes

    DEFF Research Database (Denmark)

    Hilton, Annette; Hilton, Geoff

    2013-01-01

    The development of and increased accessibility to digital technologies in classrooms has many potential benefits for students and teachers; at the same time challenges exist for teachers to develop and maintain skills with digital technologies and to effectively use these skills to promote student...... learning. There is a need for research that examines the ways in which digital technologies impact on teaching practices and learning outcomes. This paper describes case studies from two larger studies that examined ways in which digital technologies could be used to promote students’ understanding...... in science. The first case study involved primary school students (12 years old) using digital video production to record and represent their learning in science. This study extended writing-to-learn approaches to include video production to learn. The second case study involved Year 11 chemistry students...

  10. Dismantling boundaries in science and technology studies.

    Science.gov (United States)

    Dear, Peter; Jasanoff, Sheila

    2010-12-01

    The boundaries between the history of science and science and technology studies (STS) can be misleadingly drawn, to the detriment of both fields. This essay stresses their commonalities and potential for valuable synergy. The evolution of the two fields has been characterized by lively interchange and boundary crossing, with leading scholars functioning easily on both sides of the past/present divide. Disciplines, it is argued, are best regarded as training grounds for asking particular kinds of questions, using particular clusters of methods. Viewed in this way, history of science and STS are notable for their shared approaches to disciplining. The essay concludes with a concrete example--regulatory science--showing how a topic such as this can be productively studied with methods that contradict any alleged disciplinary divide between historical and contemporary studies of science.

  11. Nonvolatile Memory Technology for Space Applications

    Science.gov (United States)

    Oldham, Timothy R.; Irom, Farokh; Friendlich, Mark; Nguyen, Duc; Kim, Hak; Berg, Melanie; LaBel, Kenneth A.

    2010-01-01

    This slide presentation reviews several forms of nonvolatile memory for use in space applications. The intent is to: (1) Determine inherent radiation tolerance and sensitivities, (2) Identify challenges for future radiation hardening efforts, (3) Investigate new failure modes and effects, and technology modeling programs. Testing includes total dose, single event (proton, laser, heavy ion), and proton damage (where appropriate). Test vehicles are expected to be a variety of non-volatile memory devices as available including Flash (NAND and NOR), Charge Trap, Nanocrystal Flash, Magnetic Memory (MRAM), Phase Change--Chalcogenide, (CRAM), Ferroelectric (FRAM), CNT, and Resistive RAM.

  12. Space nuclear power, propulsion, and related technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government

  13. Career Opportunities in Science and Technology. LC Science Tracer Bullet.

    Science.gov (United States)

    Cadoree, Michelle, Comp.

    This guide is intended for those who wish to investigate career possibilities and opportunities in science and technology. Sources providing descriptions of jobs and careers in these areas, and training and courses of study required, the potential job markets, and the rewards that are possible in choosing such a career are given. This Tracer…

  14. Hanford science and technology needs statements, 2000

    International Nuclear Information System (INIS)

    BERLIN, G.T.

    1999-01-01

    This document: (a) provides a comprehensive listing of the Hanford sites science and technology needs for fiscal year (FY) 2000; and (b) identifies partnering and commercialization opportunities within industry, other federal and state agencies, and the academic community. These needs were prepared by the Hanford projects (within the Project Hanford Management Contract and the Environmental Restoration Contract) and subsequently reviewed and endorsed by the Hanford Site Technology Coordination Group (STCG). The STCG reviews included participation of DOE-RL Management, site stakeholders, state and federal regulators, and Tribal Nations. The Science and Technology Needs Document is organized by major problem areas and coincides with the STCG subgroups which are as follows: Deactivation and Decommissioning, Mixed Waste, Subsurface Contaminants, High Level Waste Tanks, and Spent Nuclear Fuel. Each problem area begins with a technology needs index table. This table is followed by detailed descriptions of each technology need, including a problem statement and current baseline information associated with that need. Following the technology need description for each problem area is a table listing the science needs, followed by detailed descriptions of the functional need and the problem to be solved as currently understood. Finally, a crosswalk table is provided at the end of each problem area which ties together last years needs and this years needs, provides brief justification for elimination of any needs, and identifies any other significant changes which took place during the revision process

  15. Second interim briefing (D3). Evolutionary Science and Applications Space Platform. Characterization of concepts, tasks A and B

    Science.gov (United States)

    1981-01-01

    The objectives were to define, evaluate, and select concepts for evolving a space station in conjunction with the Space Platform for NASA science, Applications, Technology and DOD; and a permanently manned presence in space early, with a maximum of existing technology.

  16. Science & Technology Review June 2012

    Energy Technology Data Exchange (ETDEWEB)

    Poyneer, L A

    2012-04-20

    This month's issue has the following articles: (1) A New Era in Climate System Analysis - Commentary by William H. Goldstein; (2) Seeking Clues to Climate Change - By comparing past climate records with results from computer simulations, Livermore scientists can better understand why Earth's climate has changed and how it might change in the future; (3) Finding and Fixing a Supercomputer's Faults - Livermore experts have developed innovative methods to detect hardware faults in supercomputers and help applications recover from errors that do occur; (4) Targeting Ignition - Enhancements to the cryogenic targets for National Ignition Facility experiments are furthering work to achieve fusion ignition with energy gain; (5) Neural Implants Come of Age - A new generation of fully implantable, biocompatible neural prosthetics offers hope to patients with neurological impairment; and (6) Incubator Busy Growing Energy Technologies - Six collaborations with industrial partners are using the Laboratory's high-performance computing resources to find solutions to urgent energy-related problems.

  17. Sustainable In-Space Manufacturing through Rapid Prototyping Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — In space manufacturing is crucial to humanity’s continued exploration and habitation of space. While new spacecraft and propulsion technologies promise higher...

  18. French language space science educational outreach

    Science.gov (United States)

    Schofield, I.; Masongsong, E. V.; Connors, M. G.

    2015-12-01

    Athabasca University's AUTUMNX ground-based magnetometer array to measure and report geomagnetic conditions in eastern Canada is located in the heart of French speaking Canada. Through the course of the project, we have had the privilege to partner with schools, universities, astronomy clubs and government agencies across Quebec, all of which operate primarily in French. To acknowledge and serve the needs of our research partners, we have endeavored to produce educational and outreach (EPO) material adapted for francophone audiences with the help of UCLA's department of Earth, Planetary and Space Sciences (EPSS). Not only will this provide greater understanding and appreciation of the geospace environment unique to Quebec and surrounding regions, it strengthens our ties with our francophone, first nations (native Americans) and Inuit partners, trailblazing new paths of research collaboration and inspiring future generations of researchers.

  19. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    Science.gov (United States)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  20. Legal and Regulatroy Obstacles to Nuclear Fission Technology in Space

    Science.gov (United States)

    Force, Melissa K.

    2013-09-01

    In forecasting the prospective use of small nuclear reactors for spacecraft and space-based power stations, the U.S. Air Force describes space as "the ultimate high ground," providing access to every part of the globe. But is it? A report titled "Energy Horizons: United States Air Force Energy Science &Technology Vision 2011-2026," focuses on core Air Force missions in space energy generation, operations and propulsion and recognizes that investments into small modular nuclear fission reactors can be leveraged for space-based systems. However, the report mentions, as an aside, that "potential catastrophic outcomes" are an element to be weighed and provides no insight into the monumental political and legal will required to overcome the mere stigma of nuclear energy, even when referring only to the most benign nuclear power generation systems - RTGs. On the heels of that report, a joint Department of Energy and NASA team published positive results from the demonstration of a uranium- powered fission reactor. The experiment was perhaps most notable for exemplifying just how effective the powerful anti-nuclear lobby has been in the United States: It was the first such demonstration of its kind in nearly fifty years. Space visionaries must anticipate a difficult war, consisting of multiple battles that must be waged in order to obtain a license to fly any but the feeblest of nuclear power sources in space. This paper aims to guide the reader through the obstacles to be overcome before nuclear fission technology can be put to use in space.

  1. U.S. science and technology under budget stress

    Science.gov (United States)

    Bell, Peter M.

    A set of hearings was held a few weeks ago by the House Science and Technology Committee, Don Fuqua, chairman, during which White House science advisor George A. Keyworth II ‘reiterated the Reagan Administration's wisdom of the marketplace philosophy’ (Chemical and Engineering News, Dec. 14, 1981). National Academy of Sciences President Frank Press responded to Keyworth's continuing statements on the ‘hard choices’ ahead with a proposed ‘compact’ among the public, private and academic research sectors. Representatives of the science R & D community are hanging on every word released from the White House, hoping to find some solace from the picture of disastrous budget cuts that appears to be emerging in all sectors. The budget cuts, cumulative for fiscal years 1982 and 1983, do not, in notable examples, leave room for hard choices; dismantling of entire programs appears to be expected. Two examples are the National Aeronautics and Space Administration (NASA) planetary scientific program and the programs of the Environmental Protection Agency (EPA). When NASA's program was recently described as ‘planetary science in extremis,’ the meaning intended was ‘near death,’ not ‘in the extreme’ (Science, Dec. 18, 1981). In the same light, Douglas M. Castle, former EPA director, defined ‘EPA under siege:’ ‘It's hard to find a rational explanation for [the 1983 fiscal year budget proposed by OMB] except that [the current EPA administrators] are, in fact, a wrecking crew’ (Environmental Science and Technology, December 1981). Meanwhile, the so-called ‘research universities’ in the United States are turning to more practical and applied avenues to secure funds for their R & D budgets. According to science policy analyst, Wil Lepkowski, ‘The practical goals of technology are fast swallowing academic science, and nothing seems likely to be the same again.’ (Chem. Eng. News, Nov. 23, 1981).

  2. Board on chemical sciences and technology

    International Nuclear Information System (INIS)

    1991-01-01

    The Board on Chemical Sciences and Technology organizes and provides direction for standing and ad-hoc committees charged with addressing specific issues relevant to the continued health of the chemical sciences and technology community. Studies currently under the oversight of the BCST include a major survey of the chemical sciences, a complementary survey of chemical engineering, an examination of the problems of biohazards in the laboratory, and an analysis of the roots and magnitude of the problem of obsolescent facilities for research and teaching in departments in the chemical sciences and engineering. The Board continues to respond to specific agency requests for program assessments and advice. BCST members are designated to serve as liaison with major federal agencies or departments that support research in order to help identify ways for the Board to assist these organizations. The BCST maintains close contact with professional societies and non-governmental organizations that share the Board's concern for the health of chemical sciences and technology. Individual Board members are assigned responsibility for liaison with the American Chemical Society, the American Institute of Chemical Engineers, the American Society of Biological Chemists, the Council for Chemical Research, the NAS Chemistry and Biochemistry Sections, and the National Academy of Engineering. In the past few years, the Board has served as a focus and a forum for a variety of issues that relate specifically to the health of chemistry

  3. NASA space station automation: AI-based technology review

    Science.gov (United States)

    Firschein, O.; Georgeff, M. P.; Park, W.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures.

  4. Science and Technology of Ceramics -16 ...

    Indian Academy of Sciences (India)

    elements to improve the properties of individual elements came into vogue, which opened up the whole field of alloy science and technology. Though the periodic table consists of more than 100 elements, very few of them are being used in their pure form. The elements can be broadly classified as metals, semiconductors.

  5. Science, Technology and Arts Research Journal

    African Journals Online (AJOL)

    ... review articles, Debates, Teaching Cases, Invited articles, conference reports, short communications, case report, Ethics Forum, Education contribute significantly to further the scientific knowledge related to the field of Science, Technology and Arts. STAR Journal hopes that researchers, research scholars, academicians, ...

  6. China nuclear science and technology reports

    International Nuclear Information System (INIS)

    1987-01-01

    114 abstracts of nuclear science and technology reports, which were published in 1986-1987 in China, are collected. The subjects inclucled are: nuclear physics, nuclear medicine, radiochemistry, isotopes and their applications, reactors and nuclear power plants, radioactive protection, nuclear instruments etc... They are arranged in accordance with the INIS subject categories, and a report number index is annexed

  7. History of Science and Technology - I.

    Science.gov (United States)

    Mauskopf, Seymour; Roland, Alex

    1987-01-01

    Describes a one-semester course designed to examine the relationship between science and technology in Western civilization during the period between the earliest organized social life and the inception of the Industrial Revolution. Includes a list of readings, schedule of topics and assignments, and student requirements. (TW)

  8. African Journal of Environmental Science and Technology ...

    African Journals Online (AJOL)

    African Journal of Environmental Science and Technology (ISSN 1996-0786) is an open access journal that provides rapid publication (monthly) of articles in all .... Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list ...

  9. science, technology and environment: interchange workshops ...

    African Journals Online (AJOL)

    education' and opened discussions on how the three developing concerns emerged as differing disciplines, environmental education, science education and technology education, amongst specialist curriculum development initiatives. After introductory remarks on the interchange theme by Rob O'Donoghue (Natal Parks ...

  10. Improving science, technology and mathematics education in ...

    African Journals Online (AJOL)

    PROF.MIREKU

    O. A. Sofowora1, & B. Adekomi. Abstract. The study assessed the impact of a World Bank Assisted Project “STEP-B” on teaching and learning of Science, Technology and Mathematics Education (STM) in. Nigeria. It also described the contribution of Obafemi Awolowo University, Ile-Ife to the improvement of STM through ...

  11. Supporting indigenous women in science, technology, engineering ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    These programs, partly funded by Mexico's Consejo Nacional de Ciencia y Tecnologia (CONACYT) (National council of science and technology), have considerably improved the participation of indigenous people in the country's education system. However, there continue to be important challenges in advancement ...

  12. Sustaining science, technology and mathematics teacher education ...

    African Journals Online (AJOL)

    Sustaining science, technology and mathematics teacher education through gender mainstreaming. C Ugwuanyi, O Bankole. Abstract. No Abstract. Global Journal of Educational Research Vol. 2(1&2) 2003: 17-22. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  13. Handbook of vacuum science and technology

    National Research Council Canada - National Science Library

    Hoffman, Dorothy M; Singh, Bawa; Thomas, John H

    1998-01-01

    ... or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier's Science and Technology Rights Department in Oxford, UK. Phone: (44) 1865 843830, Fax: (44) 1865 853333. e-mail: permissions@elsevier.co.uk. You may also com...

  14. Public's Knowledge of Science and Technology

    Science.gov (United States)

    Pew Research Center, 2013

    2013-01-01

    The public's knowledge of science and technology varies widely across a range of questions on current topics and basic scientific concepts, according to a new quiz by the Pew Research Center and "Smithsonian" magazine. About eight-in-ten Americans (83%) identify ultraviolet as the type of radiation that sunscreen protects against. Nearly…

  15. Classroom Implementation of Science, Technology, Engineering ...

    African Journals Online (AJOL)

    Understanding science, technology, engineering, and mathematics (STEM) education as a curriculum that endows learners with specialized life skills in general and scientific literacy, along with a productive disposition and sense of social responsibility in particular, this paper discusses some elements of this curricular ...

  16. Summary: Frontiers in Materials Science and Technology

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana; Volume 28; Issue 1-2. Summary: Frontiers in Materials Science and Technology. Baldev Raj K Bhanu Sankara Rao. Volume 28 Issue 1-2 February-April 2003 pp 5-15. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/sadh/028/01-02/0005-0015 ...

  17. Computer science research and technology volume 3

    CERN Document Server

    Bauer, Janice P

    2011-01-01

    This book presents leading-edge research from across the globe in the field of computer science research, technology and applications. Each contribution has been carefully selected for inclusion based on the significance of the research to this fast-moving and diverse field. Some topics included are: network topology; agile programming; virtualization; and reconfigurable computing.

  18. Frontiers in Materials Science and Technology

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Frontiers in Materials Science and Technology. FOREWORD. Over the last few decades of the twentieth century, great inroads were made in further development of established materials by improved and novel processing routes. It was also a period of discovery of a range of new materials such as high temperature ...

  19. Malawi Journal of Science and Technology

    African Journals Online (AJOL)

    ... availability of manuscripts and financial support. It includes contributions on empirical or theoretical investigations that cover the full range of science and technology, particularly those relevant to Malawi. Full length papers and short communications (500- 800 words) on original research, as well as succinct review articles ...

  20. science, technology and environment: interchange workshops ...

    African Journals Online (AJOL)

    The workshop interchange reported here were funded with a grant from the Foundation for Research. Development (FRD). Two workshops were convened by the Master of Education students of the interacting universities. The theme of science, technology and environment was introduced as a cluster of priorities that has ...

  1. Supporting women's leadership in science, technology, and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    A cutting-edge CA$15 million fellowships program, jointly funded by the Swedish International Development Cooperation Agency and IDRC, will support 140 doctoral and 60 early career women scientists in low and middle-income countries (LMICs) in the fields of science, technology, engineering, and mathematics.

  2. NEEMO 21: Tools, Techniques, Technologies and Training for Science Exploration

    Science.gov (United States)

    Graff, T.; Young, K.; Coan, D.; Merselis, D.; Bellantuono, A.; Dougan, K.; Rodriguez-Lanetty, M.; Nedimyer, K.; Chappell, S.; Beaton, K.; hide

    2017-01-01

    The 21st mission of the National Aeronautics and Space Administration (NASA) Extreme Environment Mission Operations (NEEMO) was a highly integrated operational field test and evaluation of tools, techniques, technologies, and training for science driven exploration during extravehicular activity (EVA). The mission was conducted in July 2016 from the Aquarius habitat, an underwater laboratory, off the coast of Key Largo in the Florida Keys National Marine Sanctuary. An international crew of eight (comprised of NASA and ESA astronauts, engineers, medical personnel, and habitat technicians) lived and worked in and around Aquarius and its surrounding reef environment for 16 days. The integrated testing (both interior and exterior objectives) conducted from this unique facility continues to support current and future human space exploration endeavors. Expanding on the scientific and operational evaluations conducted during NEEMO 20, the 21st NEEMO mission further incorporated a diverse Science Team comprised of planetary geoscientists from the Astromaterials Research and Exploration Science (ARES/XI) Division from the Johnson Space Center, marine scientists from the Department of Biological Sciences at Florida International University (FIU) Integrative Marine Genomics and Symbiosis (IMaGeS) Lab, and conservationists from the Coral Restoration Foundation. The Science Team worked in close coordination with the long-standing EVA operations, planning, engineering, and research components of NEEMO in all aspects of mission planning, development, and execution.

  3. Cognition and learning in space technology

    Directory of Open Access Journals (Sweden)

    Kelber Ruhena Abrão

    2016-12-01

    Full Text Available This work analyzes the impact of new technologies in everyday teaching situations. This is a qualitative research, one study of descriptive case, based on observations of the spaces of the classrooms, the same group of children between June 2013 and April 2015, the 1st, 2nd and 3rd years of Primary Education a Catholic private school, as well as interviews with the regents’ teachers of these classes. We seek to establish links between the acquisition of written language in conventional texts and those in hypertext, as well as understand how to structure the scientific and digital literacy in these areas. In that sense, it was found that these experiences are possible to happen in designed spaces antagonistically to traditional spaces as often, it is less rigid, more flexible, a fact that makes the pleasant atmosphere and at the same time, more accessible, providing an environment sometimes hybrid, in which the dimensions of notebook and tablet coexist and fusion of these opposed pairs of written language acquisition occurs.

  4. Visualization Techniques in Space and Atmospheric Sciences

    Science.gov (United States)

    Szuszczewicz, E. P. (Editor); Bredekamp, Joseph H. (Editor)

    1995-01-01

    Unprecedented volumes of data will be generated by research programs that investigate the Earth as a system and the origin of the universe, which will in turn require analysis and interpretation that will lead to meaningful scientific insight. Providing a widely distributed research community with the ability to access, manipulate, analyze, and visualize these complex, multidimensional data sets depends on a wide range of computer science and technology topics. Data storage and compression, data base management, computational methods and algorithms, artificial intelligence, telecommunications, and high-resolution display are just a few of the topics addressed. A unifying theme throughout the papers with regards to advanced data handling and visualization is the need for interactivity, speed, user-friendliness, and extensibility.

  5. Board on chemical sciences and technology

    International Nuclear Information System (INIS)

    1991-01-01

    The Board on Chemical Sciences and Technology organizes and provides direction for standing and ad hoc committees charged with addressing specific issues relevant to the continued health of the chemical sciences and technology community. Studies currently under the oversight of the BCST include a major survey of chemical engineering, an examination of the problems of biohazards in the laboratory, and an analysis of the roots and magnitude of the problem of obsolescent facilities for research and teaching in departments in the chemical sciences and engineering. The Board continues to respond to specific agency requests for program assessments and advice. BCST members are designated to serve as liaison with major federal agencies or departments that support research in order to help identify ways for the board to assist the these organizations. The BCST also maintains close contact with professional societies and nongovernmental organizations that share the Board's concern for the health of chemical sciences and technology. Individual Board members are assigned responsibility for liaison with the American Chemical Society, the American Institute of Chemical Engineers, the American Society of Biological Chemists, the Council for Chemical Research, the Chemistry and Biochemistry Sections of the National Academy of Sciences (NAS), and the National Academy of Engineering (NAE). In the past few years, the Board has served as a focus and a forum for a variety of issues that relate specifically to the health of chemistry. A sampling of these concerns include: industry-university cooperation; basic research funding in DOD, DOE, NIH, and NSF; basic research in the chemistry of life processes; basic research in biochemical engineering; basic research in the science and technology of new materials; and undergraduate education in chemistry and chemical engineering

  6. Technological Innovation Science as General Education

    Science.gov (United States)

    Mabuchi, Koichi

    The object of this paper is to provide some suggestions about the technological innovation science temporal lecture in Nagoya Institute of Technology in 2005. It was a unique lecture in terms of the following 3 points : 1) The lecture was not designed for graduated students of MOT course but for bachelor students in engineering. 2) The lecture was based on the case studies from history of Japanese industrial technology. 3) The lecture was focused on studying the vested or basic technology caused the technological innovation. It was shown that the lecture was useful for the students as an introduction of MOT and it also promoted a better understanding of manufacturing basic knowledge and engineers‧ ethics.

  7. Developing Basic Space Science World-Wide

    Science.gov (United States)

    Wamsteker, W.; Albrecht, Rudolf; Haubold, Hans J.

    2004-03-01

    When the first United Nations/European Space Agency Workshop for Basic Space Science was planned to be held in Bangalore, India (1991) on the invitation of ISRO, few of those involved could expect that a unique forum was going to be created for scientific dialogue between scientists from developing and industrialized nations. As the format of the first workshop was on purpose left free with time for presentations, working sessions, and plenary discussions, the workshop was left to find its own dynamics. After a decade of UN/ESA Workshops, this book brings together the historical activities, the plans which have been developed over the past decade in the different nations, and the results which have materialized during this time in different developing nations. It aims to achieve for development agencies to be assisted in ways to find more effective tools for the application of development aid. The last section of the book contains a guide for teachers to introduce astrophysics into university physics courses. This will be of use to teachers in many nations. Everything described in this book is the result of a truly collective effort from all involved in all UN/ESA workshops. The mutual support from the participants has helped significantly to implement some of the accomplishments described in the book. Rather than organizing this book in a subject driven way, it is essentially organized according to the common economic regions of the world, as defined by the United Nations (Africa, Asia and the Pacific, Europe, Latin America and the Caribbean, Western Asia). This allows better recognition of the importance of a regional (and at times) global approach to basic space science for the developing nation's world wide. It highlights very specific scientific investigations which have been completed successfully in the various developing nations. The book supplements the published ten volumes of workshop proceedings containing scientific papers presented in the workshops

  8. EDITORIAL: From reciprocal space to real space in surface science From reciprocal space to real space in surface science

    Science.gov (United States)

    Bartels, Ludwig; Ernst, Karl-Heinz

    2012-09-01

    This issue is dedicated to Karl-Heinz Rieder on the occasion of his 70th birthday. It contains contributions written by his former students and colleagues from all over the world. Experimental techniques based on free electrons, such as photoelectron spectroscopy, electron microscopy and low energy electron diffraction (LEED), were foundational to surface science. While the first revealed the band structures of materials, the second provided nanometer scale imagery and the latter elucidated the atomic scale periodicity of surfaces. All required an (ultra-)high vacuum, and LEED illustrated impressively that adsorbates, such as carbon monoxide, hydrogen or oxygen, can markedly and periodically restructure surfaces from their bulk termination, even at pressures ten orders of magnitude or more below atmospheric. Yet these techniques were not generally able to reveal atomic scale surface defects, nor could they faithfully show adsorption of light atoms such as hydrogen. Although a complete atom, helium can also be regarded as a wave with a de Broglie wavelength that allows the study of surface atomic periodicities at a delicateness and sensitivity exceeding that of electrons-based techniques. In combination, these and other techniques generated insight into the periodicity of surfaces and their vibrational properties, yet were limited to simple and periodic surface setups. All that changed with the advent of scanning tunneling microscopy (STM) roughly 30 years ago, allowing real space access to surface defects and individual adsorbates. Applied at low temperatures, not only can STM establish a height profile of surfaces, but can also perform spectroscopy and serve as an actuator capable of rearranging individual species at atomic scale resolution. The direct and intuitive manner in which STM provided access as a spectator and as an actor to the atomic scale was foundational to today's surface science and to the development of the concepts of nanoscience in general. The

  9. Developing a STEM Education Pipeline Using Astronomy and Space Science

    Science.gov (United States)

    Gibbs, Michael

    2011-01-01

    The Capitol College Center for Space Science Education and Public Outreach is in its second year of operation working to address the clearly articulated national need of providing an educated workforce in the science, technology, engineering and math (STEM) fields. Working with the K-12, community college and college students, the Center is actively engaged in providing learning opportunities for future leaders in STEM. This goal is accomplished through the following methods: 1. Increase student awareness of selected astronomy/space science career fields that require a college education, including necessary academic preparation related to STEM courses in high school. 2. Increase the number of community college students, specifically within the traditionally under-represented populations, advance to the bachelor's level degree within the STEM fields and then secure jobs within the field. 3. Increase STEM participation/majors in general (both in community colleges and four-year colleges), and especially NASA-related disciplines. This presentation provides an update regarding the Center's activities, reports on the year-one results working with middle schools and high schools in the state of Maryland and the Prince George's Community College, and highlights plans for the future.

  10. Technical and Economical study of New Technologies and Reusable Space Vehicles promoting Space Tourism.

    Science.gov (United States)

    Srivastav, Deepanshu; Malhotra, Sahil

    2012-07-01

    For many of us space tourism is an extremely fascinating and attractive idea. But in order for these to start we need vehicles that will take us to orbit and bring us back. Current space vehicles clearly cannot. Only the Space Shuttle survives past one use, and that's only if we ignore the various parts that fall off on the way up. So we need reusable launch vehicles. Launch of these vehicles to orbit requires accelerating to Mach 26, and therefore it uses a lot of propellant - about 10 tons per passenger. But there is no technical reason why reusable launch vehicles couldn't come to be operated routinely, just like aircraft. The main problem about space is how much it costs to get there, it's too expensive. And that's mainly because launch vehicles are expendable - either entirely, like satellite launchers, or partly, like the space shuttle. The trouble is that these will not only reduce the cost of launch - they'll also put the makers out of business, unless there's more to launch than just a few satellites a year, as there are today. Fortunately there's a market that will generate far more launch business than satellites ever well - passenger travel. This paper assesses this emerging market as well as technology that will make space tourism feasible. The main conclusion is that space vehicles can reduce the cost of human transport to orbit sufficiently for large new commercial markets to develop. Combining the reusability of space vehicles with the high traffic levels of space tourism offers the prospect of a thousandfold reduction in the cost per seat to orbit. The result will be airline operations to orbit involving dozens of space vehicles, each capable of more than one flight per day. These low costs will make possible a rapid expansion of space science and exploration. Luckily research aimed at developing low-cost reusable launch vehicles has increased recently. Already there are various projects like Spaceshipone, Spaceshiptwo, Spacebus, X-33 NASA etc. The

  11. Bringing Space Science to the Undergraduate Classroom: NASA's USIP Mission

    Science.gov (United States)

    Vassiliadis, D.; Christian, J. A.; Keesee, A. M.; Spencer, E. A.; Gross, J.; Lusk, G. D.

    2015-12-01

    As part of its participation in NASA's Undergraduate Student Instrument Project (USIP), a team of engineering and physics students at West Virginia University (WVU) built a series of sounding rocket and balloon missions. The first rocket and balloon missions were flown near-simultaneously in a campaign on June 26, 2014 (image). The second sounding rocket mission is scheduled for October 5, 2015. Students took a course on space science in spring 2014, and followup courses in physics and aerospace engineering departments have been developed since then. Guest payloads were flown from students affiliated with WV Wesleyan College, NASA's IV&V Facility, and the University of South Alabama. Students specialized in electrical and aerospace engineering, and space physics topics. They interacted regularly with NASA engineers, presented at telecons, and prepared reports. A number of students decided to pursue internships and/or jobs related to space science and technology. Outreach to the campus and broader community included demos and flight projects. The physics payload includes plasma density and temperature measurements using a Langmuir and a triple probe; plasma frequency measurements using a radio sounder (WVU) and an impedance probe (U.S.A); and a magnetometer (WVWC). The aerospace payload includes an IMU swarm, a GPS experiment (with TEC capability); a cubesat communications module (NASA IV&V), and basic flight dynamics. Acknowledgments: staff members at NASA Wallops Flight Facility, and at the Orbital-ATK Rocket Center, WV.

  12. Space Science Resource Centre for Colleges in Kerala (P17)

    Science.gov (United States)

    Girish, T. E.; Gopkumar, G.

    2006-11-01

    Several Space missions are now providing valuable data about the terrestrial and heliospheric environments .In order to encourage research and human resource development in basic space sciences we propose to establish a Space Science Resource Centre (SSRC) in the state of Kerala in India. This centre will maintain relevant data bases and software tools to promote space science activities in more than 220 science/engineering colleges in Kerala. The target student population is about 0.2 million. The detailed plan, programme and requirements of the proposed SSRC during the IHY-2007 will be presented.

  13. Developing Nontraditional Partnerships to Disseminate the Space Science Story (Invited)

    Science.gov (United States)

    Galindo, C.; Allen, J. S.; Garcia, J.; Martinez, D.

    2010-12-01

    NASA Space Science Days (NSSD) was established in 2004 to bring the story of the Mars Exploration Rovers (MER) to a community far removed from areas NASA traditionally served. The original NSSD invited 400 5th and 8th graders from the Texas Rio Grande Valley area to the University of Texas Brownsville (UTB) campus to participate in a one day Saturday event filled with information about MER with related hands on activities. Currently the yearly NSSD at UTB has grown to over 700 5th and 8th grade participants who are mentored by NASA trained university students. The NSSD program has expanded to other universities and community colleges and will soon include universities from throughout the U.S. A collaboration between three major institutions: 1) NASA Johnson Space Center (JSC) Astromaterials Research and Exploration Science Directorate (ARES); 2) The Society of Hispanic Professional Engineers/Advancing Hispanic Excellence in Technology Engineering, Math, and Science, (SHPE/AHETEMS); and 3) The University of Texas at Brownsville (UTB) has been established to enable the dissemination of NASA Space Science related education materials throughout the U.S. Already in its 8th year, UTB developed and tested a NSSD model that has successfully engaged students throughout South Texas Rio Grande Valley in space science activities. With this newly formed collaboration of NASA JSC, SHPE/AHETEMS, and UTB the expansion of the NSSD model will allow trained SHPE students and professionals to conduct events throughout SHPE’s established nation-wide delivery systems. Each year a new NSSD site will be established through an application process solicited from SHPE student and professional chapters. Once a chapter is awarded to conduct a NSSD, upper-level high school and university students will travel to NASA-JSC for a two day workshop where students learn about the current year’s science theme and are trained to present hands-on activities related to the theme. In each NSSD

  14. Re/Thinking the Nature of Technology in Science Classrooms

    Science.gov (United States)

    Kim, Mijung; Roth, Wolff-Michael

    2016-01-01

    With increasing technological changes and needs in society, technology and engineering education has received much attention in school science. Yet, technology traditionally has been subordinated to science or simply taken as the application of science. This position has resulted in a limited understanding of teaching technological and engineering…

  15. Achievements and Challenges in the Science of Space Weather

    Science.gov (United States)

    Koskinen, Hannu E. J.; Baker, Daniel N.; Balogh, André; Gombosi, Tamas; Veronig, Astrid; von Steiger, Rudolf

    2017-11-01

    In June 2016 a group of 40 space weather scientists attended the workshop on Scientific Foundations of Space Weather at the International Space Science Institute in Bern. In this lead article to the volume based on the talks and discussions during the workshop we review some of main past achievements in the field and outline some of the challenges that the science of space weather is facing today and in the future.

  16. JPRS Report, Science & Technology, USSR: Space.

    Science.gov (United States)

    1988-08-17

    Reconstruction of Inner Coma of Halley’s Comet Determined Using TV Information From ’Vega’ Spacecraft [A. Yu. Kogan , V. N. Kheyfets; KOSMICHESKIYE...Romanenko and Aleksandr Laveykin had unfolded during two strenuous egresses in June, had to be replaced. From the standpoint of rate of deteriora- tion...as compared with your own egress?," I asked Aleksandr Laveykin, who was watching his friends with interest as they repeated well-known operations

  17. Grid Information Technology as a New Technological Tool for e-Science, Healthcare and Life Science

    Directory of Open Access Journals (Sweden)

    Juan Manuel Maqueira Marín

    2007-06-01

    Full Text Available Nowadays, scientific projects require collaborative environments and powerful computing resources capable of handling huge quantities of data, which gives rise to e-Science. These requirements are evident in the need to optimise time and efforts in activities to do with health. When e-Science focuses on the collaborative handling of all the information generated in clinical medicine and health, e-Health is the result. Scientists are taking increasing interest in an emerging technology – Grid Information Technology – that may offer a solution to their current needs. The current work aims to survey how e-Science is using this technology all around the world. We also argue that the technology may provide an ideal solution for the new challenges facing e-Health and Life Science.

  18. Industrial benefits and future expectations in materials and processes resulting from space technology

    Science.gov (United States)

    Meyer, J. D.

    1977-01-01

    Space technology transfer is discussed as applied to the field of materials science. Advances made in processing include improved computer techniques, and structural analysis. Technology transfer is shown to have an important impact potential in the overall productivity of the United States.

  19. Thunderstorm Effects in Space: Technology Nanosatellite (TEST) Program

    National Research Council Canada - National Science Library

    Voss, Hank; Bennett, Adam

    2005-01-01

    Science Objections: Understand source/propagation of Acoustic Gravity Waves into space environment, investigate lightning-induced electron precipitation and coupling into the radiation belt, investigate thunderstorm...

  20. Critical materialism: science, technology, and environmental sustainability.

    Science.gov (United States)

    York, Richard; Clark, Brett

    2010-01-01

    There are widely divergent views on how science and technology are connected to environmental problems. A view commonly held among natural scientists and policy makers is that environmental problems are primarily technical problems that can be solved via the development and implementation of technological innovations. This technologically optimistic view tends to ignore power relationships in society and the political-economic order that drives environmental degradation. An opposed view, common among postmodernist and poststructuralist scholars, is that the emergence of the scientific worldview is one of the fundamental causes of human oppression. This postmodernist view rejects scientific epistemology and often is associated with an anti-realist stance, which ultimately serves to deny the reality of environmental problems, thus (unintentionally) abetting right-wing efforts to scuttle environmental protection. We argue that both the technologically optimistic and the postmodernist views are misguided, and both undermine our ability to address environmental crises. We advocate the adoption of a critical materialist stance, which recognizes the importance of natural science for helping us to understand the world while also recognizing the social embeddedness of the scientific establishment and the need to challenge the manipulation of science by the elite.

  1. International Nuclear Science and Technology Conference 2016

    International Nuclear Information System (INIS)

    2017-01-01

    Conference Nuclear technology has played an important role in many aspects of our lives, including agriculture, medicine and healthcare, materials, environment, forensics, energy, and frontier advancement. The International Nuclear Science and Technology Conference (INST) aims to bring together scientists, engineers, academics and students to share knowledge and experiences about all aspects of nuclear sciences. INST2016 was the second of the INST conference series organized by Thailand Institute of Nuclear Technology. INST has evolved from a national conference series on nuclear science and technology that was held every two years in Bangkok for over a twenty-year period. INST2016 was held from 4 - 6 August 2016 in Bangkok, Thailand, under the central theme “Nuclear for Better Life”. The conference working language was English. The oral and poster research presentations covered seven major topics: • Nuclear physics and engineering (PHY) • Nuclear and radiation safety (SAF) • Medical and nutritional applications (MED) • Environmental applications (ENV) • Radiation processing and industrial applications (IND) • Agriculture and food applications (AGR) • Instrumentation and other related topics (INS) The welcome addresses, committees, program of the conference and the list of presentations can be found in the PDF. (paper)

  2. Commercial space opportunities - Advanced concepts and technology overview

    Science.gov (United States)

    Reck, Gregory M.

    1993-01-01

    The paper discusses the status of current and future commercial space opportunities. The goal is to pioneer innovative, customer-focused space concepts and technologies, leveraged through industrial, academic, and government alliance, to ensure U.S. commercial competitiveness and preeminence in space. The strategy is to develop technologies which enable new products and processes, deploy existing technology into commercial and military products and processes, and integrate military and commercial research and production activities. Technology development areas include information infrastructure, electronics design and manufacture, health care technology, environment technology, and aeronautical technologies.

  3. Technology Area Roadmap for In-Space Propulsion Technologies

    Science.gov (United States)

    Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold

    2012-01-01

    The exponential increase of launch system size.and cost.with delta-V makes missions that require large total impulse cost prohibitive. Led by NASA fs Marshall Space Flight Center, a team from government, industry, and academia has developed a flight demonstration mission concept of an integrated electrodynamic (ED) tethered satellite system called PROPEL: \\Propulsion using Electrodynamics.. The PROPEL Mission is focused on demonstrating a versatile configuration of an ED tether to overcome the limitations of the rocket equation, enable new classes of missions currently unaffordable or infeasible, and significantly advance the Technology Readiness Level (TRL) to an operational level. We are also focused on establishing a far deeper understanding of critical processes and technologies to be able to scale and improve tether systems in the future. Here, we provide an overview of the proposed PROPEL mission. One of the critical processes for efficient ED tether operation is the ability to inject current to and collect current from the ionosphere. Because the PROPEL mission is planned to have both boost and deboost capability using a single tether, the tether current must be capable of flowing in both directions and at levels well over 1 A. Given the greater mobility of electrons over that of ions, this generally requires that both ends of the ED tether system can both collect and emit electrons. For example, hollow cathode plasma contactors (HCPCs) generally are viewed as state-of-the-art and high TRL devices; however, for ED tether applications important questions remain of how efficiently they can operate as both electron collectors and emitters. Other technologies will be highlighted that are being investigated as possible alternatives to the HCPC such as Solex that generates a plasma cloud from a solid material (Teflon) and electron emission (only) technologies such as cold-cathode electron field emission or photo-electron beam generation (PEBG) techniques

  4. White paper on science and technology, 1995. Fifty years of postwar science and technology in Japan

    International Nuclear Information System (INIS)

    1995-07-01

    This August marks 50 years since the end of World War II. Japan emerged from the ruins to overcome the post-war devastation to achieve a high level of economic growth and become the second largest economy in the world. Science and technology have played major roles as a driving force behind this quest for prosperity. However, it seems as though true prosperity is not necessarily being enjoyed by citizens of Japan today. Japan is becoming an aging society. To realize a truly rich and prosperous society in which people can live comfortably, it is important to further raise the level of science and technology. It is also necessary to ensure this development by revitalizing the economy, and to continue to utilize science and technology as an endless resource to create assets for society as a whole which will be inherited by future generations. With this viewpoint in mind, this White Paper looks back on Japan's scientific and technological development over the last 50 years, and considers the future of science and technology with a view toward realizing the true prosperity for its people. It is our hope that this White Paper will be helpful for considering the scientific and technological activities needed to bring about a Japan whose people are truly prosperous, and we will, as a government, continually increase our efforts toward the promotion of science and technology. (J.P.N.)

  5. Space Science Projects. LC Science Tracer Bullet No. TB-89-3.

    Science.gov (United States)

    Carter, Constance, Comp.

    This publication aims to assist elementary and secondary school students and teachers in planning, preparing and executing projects in the space sciences. Sources in other areas of science and on science fairs themselves are listed in "Science Fair Projects" (LC Science Tracer Bullet 88-4). This compilation is not intended to be a comprehensive…

  6. HANFORD SCIENCE & TECHNOLOGY NEEDS STATEMENTS 2002

    Energy Technology Data Exchange (ETDEWEB)

    WIBLE, R.A.

    2002-04-01

    This document: (a) provides a comprehensive listing of the Hanford sites science and technology needs for fiscal year (FY) 2002; and (b) identifies partnering and commercialization opportunities within industry, other federal and state agencies, and the academic community. These needs were prepared by the Hanford projects (within the Project Hanford Management Contract, the Environmental Restoration Contract and the River Protection Project) and subsequently reviewed and endorsed by the Hanford Site Technology Coordination Group (STCG). The STCG reviews included participation of DOE-RL and DOE-ORP Management, site stakeholders, state and federal regulators, and Tribal Nations. These needs are reviewed and updated on an annual basis and given a broad distribution.

  7. Advances in software science and technology

    CERN Document Server

    Kamimura, Tsutomu

    1994-01-01

    This serial is a translation of the original works within the Japan Society of Software Science and Technology. A key source of information for computer scientists in the U.S., the serial explores the major areas of research in software and technology in Japan. These volumes are intended to promote worldwide exchange of ideas among professionals.This volume includes original research contributions in such areas as Augmented Language Logic (ALL), distributed C language, Smalltalk 80, and TAMPOPO-an evolutionary learning machine based on the principles of Realtime Minimum Skyline Detection.

  8. Sandia technology engineering and science accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    Sandia is a DOE multiprogram engineering and science laboratory with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. We have major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. Our principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. Selected unclassified technical activities and accomplishments are reported here. Topics include advanced manufacturing technologies, intelligent machines, computational simulation, sensors and instrumentation, information management, energy and environment, and weapons technology.

  9. Information Technology and the Cognitive Sciences

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    -computer interaction' studies have been focused on analysis of interface communication. These approaches have, quite naturally, resulted in a rather technology driven, bottom-up research strategy. Application of advanced information technology in large scale installation, however, also calls for a more system oriented......Different approaches to the study of cognitive systems can be identified. The AI related'cognitive science' is based on the information processing metaphor of human cognition in an attempt to reach 'computational' models for behaviour in well-formed micro worlds. Within the field of 'human...

  10. Advances in nuclear science and technology

    CERN Document Server

    Greebler, Paul

    1968-01-01

    Advances in Nuclear Science and Technology Volume 4 provides information pertinent to the fundamental aspects of advanced reactor concepts. This book discusses the advances in various areas of general applicability, including modern perturbation theory, optimal control theory, and industrial application of ionizing radiations.Organized into seven chapters, this volume begins with an overview of the technology of sodium-cooled fast breeder power reactors and gas-cooled power reactors. This text then examines the key role of reactor safety in the development of fast breeder reactors. Other chapt

  11. National Congress of Food Science and Technology

    International Nuclear Information System (INIS)

    1995-01-01

    ATAM is the principal promoter of the diffusion of food science and technology in Mexico with the organization of the XXVI National Congress of Food Science and Technology. Pre-Congress activities were as follow: two first on 'Food legislation in the United States of America' and the second on 'Characterization of food quality', a magisterial desk on the theme 'The challenge of food industry in front of the present Mexico', two round tables: a) Quality assurance systems and risk analysis 'Iso 9000' and b) 'Biotechnological products' and c) 'H Program'. With the ambitious program, the Congress included 234 papers divided in oral presentations and posters on subjects as: nutrition, education, toxicology, additives, gums, fruits, cereals, new products, dairy products, rheology, oleaginous, risk analysis, critical points, statistics and analysis. The foreign participant countries were Venezuela, Spain, Cuba and United States of America. Short communication. (Author)

  12. Nordic science and technology entrepreneurship education

    DEFF Research Database (Denmark)

    Warhuus, Jan P.; Basaiawmoit, Rajiv Vaid

    As a university discipline, entrepreneurship education (EEd) has moved from whether it can be taught, to what and how it should be taught (Kuratko 2005) and beyond the walls of the business school (Hindle 2007), where a need for a tailored, disciplinary approach is becoming apparent. Within science......, technology, engineering, and mathematics (STEM) EEd, tacit knowledge of what works and why is growing, while reflections to activate this knowledge are often kept local or reported to the EEd community as single cases, which are difficult compare and contrast for the purpose of deriving cross-case patterns......, findings, and knowledge. The objective of this paper is to decode this tacit knowledge within Nordic science and technology institutions, and use it to provide guidance for future EEd program designs and improvements....

  13. The Application of Intelligent Building Technologies to Space Hotels

    Science.gov (United States)

    Fawkes, S.

    This paper reports that over the last few years Intelligent Building technologies have matured and standardised. It compares the functions of command and control systems in future large space facilities such as space hotels to those commonly found in Intelligent Buildings and looks at how Intelligent Building technologies may be applied to space hotels. Many of the functions required in space hotels are the same as those needed in terrestrial buildings. The adaptation of standardised, low cost, Intelligent Building technologies would reduce capital costs and ease development of future space hotels. Other aspects of Intelligent Buildings may also provide useful models for the development and operation of space hotels.

  14. Science and nuclear technology communication in Cordoba

    International Nuclear Information System (INIS)

    Martin, Hugo R.

    2012-01-01

    This paper describes the communication activities conducted nuclear science and technology in 2012 in the scientific, educational and tourist areas of Cordoba. The first is the Promotion of the realization of scientific research school works to present in science and technology fairs. The public exhibitions fairs consist of projects conducted by students from all levels of the education system. To do this, students have the guidance of Advisory Teachers, researchers and technologists of the local scientific community, which involves training them for a period of approximately six months. During this year the courses were conducted in 37 cities in the interior province, which are the sites of Regional Headquarters, which included the promotion of the realization of school scientific research on the peaceful applications of nuclear technology and / or national nuclear activities. During the meetings, made presentations basing pedagogical and didactic aspects to coordination between teaching of conceptual content and activities practical introduction to nuclear scientific methodology. As a result of this initiative, between the months of June and September was reached more than 3,000 teachers, using the infrastructure of the Ministry of Science and Technology and Internet. As a result, a dozen schools have begun to seek assistance to develop projects related to nuclear power. Other activities under the name of Scientific School Research Incursion through Experiences with Natural Radiation, consisted of the design and realization of simple laboratory experiences in laboratory's schools. The objective was to strengthen the curriculum and promote critical thinking about the risks and benefits of nuclear technologies in relation to exposure to ionizing radiation involving them. As a result it has been observed that these activities contribute to a progressive scientific and technological literacy of students, who build original knowledge for themselves and develop

  15. Fundraising Opportunities for Science and Technology Museums

    OpenAIRE

    Elena Borin

    2011-01-01

    The aim of this paper is to analyze the possibilities of private funding for a special kind of museums: science museums and technology centers. In the last years the economic crisis has impacted on the cultural sector, decreasing the public resources traditionally allocated to museums and arts and heritage in general. That has forced art professionals to develop alternative strategies to get the necessary financial support for museum’s activities. Although the crisis has affected also priva...

  16. JPRS Report, Science & Technology Europe & Latin America.

    Science.gov (United States)

    1988-02-22

    Activity [D.M.S.S. Vitti, et ai; ENERG1A NUCLEAR & AGRICULTURA , Vol VII No 1/2, 1986] 59 Gamma-Ray Sensitivity of Sorghum [Tuhnann Neto, et ai...ENERGIA NUCLEAR & AGRICULTURA , Vol VII No 1/2, 1986] .... 61 SCIENCE & TECHNOLOGY POLICY New Loans From Brazil’s BNDES to Aid Electronics Industry... familiarized themselves with their subject-matter, it is planned that in a second phase the structural questions will be detached from this committee and

  17. Science and technology review, October 1997

    Energy Technology Data Exchange (ETDEWEB)

    Upadhye, R.

    1997-10-01

    This month`s issue contains articles entitled Livermore Science and Technology Garner Seven 1997 R&D 100 Awards; New Interferometer Measures to Atomic Dimensions; Compact More Powerful Chips from Virtually Defect-free Thin Film Systems, A New Precision Cutting Tool; The Femtosecond Laser; MELD: A CAD Tool for Photonoics Systems, The Tiltmeter: Tilting at Great Depths to Find Oil; Smaller Insulators Handle Higher Voltage; and Compact Storage Management Software: The Next Generation.

  18. Nanoscale Science, Engineering and Technology Research Directions

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  19. Formulation of disperse systems science and technology

    CERN Document Server

    Tadros, Tharwat F

    2014-01-01

    This book presents comprehensively the science and technology behind the formulation of disperse systems like emulsions, suspensions, foams and others. Starting with a general introduction, the book covers a broad range of topics like the role of different classes of surfactants, stability of disperse systems, formulation of different dispersions, evaluation of formulations and many more. Many examples are included, too. Written by the experienced author and editor Tharwart Tadros, this book is indispensable for every scientist working in the field.

  20. Science, Technology and Innovation Policy Research Organization

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ce financement contribuera à renforcer le rôle de la Science, Technology and Innovation Policy Research Organization (STIPRO) en tant qu'organisme crédible de recherche sur les politiques publiques en Tanzanie, en améliorant sa capacité à fournir des recherches de qualité supérieure, influentes et utiles en matière de ...

  1. Climate Change Science,Technology & Policy

    Indian Academy of Sciences (India)

    Table of contents. Climate Change Science,Technology & Policy · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Millions at Risk from Parry et al., 2001 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Climate Change · Is the global warming in the 20th century due to the increase in radiation emitted by the sun? Frohlich C, Lean J. 1998; ...

  2. Mining Pribram in science and technology

    International Nuclear Information System (INIS)

    1984-01-01

    The Geomechanics session of the Symposium ''Mining Pribram in Science and Technology'' held from October 15 to 20, 1984 heard a total of 18 papers dealing with the effects of exploitation on the stability of the surrounding massif and surface, the protection of surface and deep mines, geophysical surveying, the measurement of deformations caUsed by undermining, the mathematical modelling of surface deformation and various measuring methods and methods of interpreting measured results. 4 papers are included into INIS. (B.S.)

  3. Introduction to cognition in science and technology.

    Science.gov (United States)

    Gorman, Michael E

    2009-10-01

    Cognitive studies of science and technology have had a long history of largely independent research projects that have appeared in multiple outlets, but rarely together. The emergence of a new International Society for Psychology of Science and Technology suggests that this is a good time to put some of the latest work in this area into topiCS in a way that will both acquaint readers with the cutting edge in this domain and also give them a hint of its history. One core theme includes how scientists, inventors, and engineers represent and solve problems; another, related theme is the extent to which they distribute and share cognition. Methodologies include fine-grained studies of historical records, protocols of working scientists, observations and comparisons of engineering science laboratories, and computational simulations designed both to serve as research tools and also to improve scientific problem-solving. The series of articles will conclude with the Associate Editor's suggestions for future research. Copyright © 2009 Cognitive Science Society, Inc.

  4. Science and Technology Diplomacy with Cuba

    Science.gov (United States)

    Colon, Frances

    President Obama's announcement of U. S. policy change toward Cuba and increased freedom of interaction with the Cuban people opens unprecedented and long-awaited opportunities for the scientific and engineering communities in the U. S. and in Cuba to establish and expand collaborative efforts that will greatly advance U.S. and Cuba science and technology agendas. New rules for export of donated-only items for scientific use will bring researchers closer to the level of their professional peers around the world. Increasing Cubans' access to information will result in greater interactions between scientific communities and enable the sharing of ideas and discoveries that can fuel entrepreneurship on the island. The scientific community has expressed an extraordinary level of interest in the wide range of scientific opportunities that the new policy presents, in collaborating with their Cuban counterparts, and in supporting the development of scientific capacity in Cuba. In response to numerous expressions of interest and inquiries from the scientific community, the Office of the Science and Technology Adviser to the Secretary of State (STAS) has engaged in public outreach to inform the U.S. science and technology community of the implications of the new policy for collaborative research, emerging scientific opportunities, and the standing limitations for engagement with the people of Cuba.

  5. Constitutional moments in governing science and technology.

    Science.gov (United States)

    Jasanoff, Sheila

    2011-12-01

    Scholars in science and technology studies (STS) have recently been called upon to advise governments on the design of procedures for public engagement. Any such instrumental function should be carried out consistently with STS's interpretive and normative obligations as a social science discipline. This article illustrates how such threefold integration can be achieved by reviewing current US participatory politics against a 70-year backdrop of tacit constitutional developments in governing science and technology. Two broad cycles of constitutional adjustment are discerned: the first enlarging the scope of state action as well as public participation, with liberalized rules of access and sympathetic judicial review; the second cutting back on the role of the state, fostering the rise of an academic-industrial complex for technology transfer, and privatizing value debates through increasing delegation to professional ethicists. New rules for public engagement in the United Sates should take account of these historical developments and seek to counteract some of the anti-democratic tendencies observable in recent decades.

  6. Space-based Networking Technology Developments in the Interplanetary Network Directorate Information Technology Program

    Science.gov (United States)

    Clare, Loren; Clement, B.; Gao, J.; Hutcherson, J.; Jennings, E.

    2006-01-01

    Described recent development of communications protocols, services, and associated tools targeted to reduce risk, reduce cost and increase efficiency of IND infrastructure and supported mission operations. Space-based networking technologies developed were: a) Provide differentiated quality of service (QoS) that will give precedence to traffic that users have selected as having the greatest importance and/or time-criticality; b) Improve the total value of information to users through the use of QoS prioritization techniques; c) Increase operational flexibility and improve command-response turnaround; d) Enable new class of networked and collaborative science missions; e) Simplify applications interfaces to communications services; and f) Reduce risk and cost from a common object model and automated scheduling and communications protocols. Technologies are described in three general areas: communications scheduling, middleware, and protocols. Additionally developed simulation environment, which provides comprehensive, quantitative understanding of the technologies performance within overall, evolving architecture, as well as ability to refine & optimize specific components.

  7. International Journal of Engineering, Science and Technology: Site ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: Site Map. Journal Home > About the Journal > International Journal of Engineering, Science and Technology: Site Map. Log in or Register to get access to full text downloads.

  8. Ethiopian Journal of Science and Technology: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. The Ethiopian Journal of Science and Technology (EJST) publishes high quality original research articles, reviews, short communications, and feature articles on basic and applied aspects of science, technology, agriculture, health and other related fields.

  9. The Danish Association for Science and Technology Studies

    DEFF Research Database (Denmark)

    A presentation of the Danish Association for Science and Technology Studies (DASTS). Organization, experiences, challenges and future developments.......A presentation of the Danish Association for Science and Technology Studies (DASTS). Organization, experiences, challenges and future developments....

  10. Southern Africa Journal of Education, Science and Technology ...

    African Journals Online (AJOL)

    Southern Africa Journal of Education, Science and Technology: About this journal. Journal Home > Southern Africa Journal of Education, Science and Technology: About this journal. Log in or Register to get access to full text downloads.

  11. African Journal of Environmental Science and Technology: About ...

    African Journals Online (AJOL)

    African Journal of Environmental Science and Technology: About this journal. Journal Home > African Journal of Environmental Science and Technology: About this journal. Log in or Register to get access to full text downloads.

  12. Science, Technology and Arts Research Journal: About this journal

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal: About this journal. Journal Home > Science, Technology and Arts Research Journal: About this journal. Log in or Register to get access to full text downloads.

  13. Southern Africa Journal of Education, Science and Technology: Site ...

    African Journals Online (AJOL)

    Southern Africa Journal of Education, Science and Technology: Site Map. Journal Home > About the Journal > Southern Africa Journal of Education, Science and Technology: Site Map. Log in or Register to get access to full text downloads.

  14. Southern Africa Journal of Education, Science and Technology ...

    African Journals Online (AJOL)

    Southern Africa Journal of Education, Science and Technology: Journal Sponsorship. Journal Home > About the Journal > Southern Africa Journal of Education, Science and Technology: Journal Sponsorship. Log in or Register to get access to full text downloads.

  15. Archives: African Journal of Environmental Science and Technology

    African Journals Online (AJOL)

    Items 1 - 50 of 117 ... Archives: African Journal of Environmental Science and Technology. Journal Home > Archives: African Journal of Environmental Science and Technology. Log in or Register to get access to full text downloads.

  16. Science, Technology and Arts Research Journal: Site Map

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal: Site Map. Journal Home > About the Journal > Science, Technology and Arts Research Journal: Site Map. Log in or Register to get access to full text downloads.

  17. Science, Technology and Arts Research Journal: Journal Sponsorship

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal: Journal Sponsorship. Journal Home > About the Journal > Science, Technology and Arts Research Journal: Journal Sponsorship. Log in or Register to get access to full text downloads.

  18. An Open and Holistic Approach for Geo and Space Sciences

    Science.gov (United States)

    Ritschel, Bernd; Seelus, Christoph; Neher, Günther; Toshihiko, Iyemori; Yatagai, Akiyo; Koyama, Yukinobu; Murayama, Yasuhiro; King, Todd; Hughes, Steve; Fung, Shing; Galkin, Ivan; Hapgood, Mike; Belehaki, Anna

    2016-04-01

    Geo and space sciences thus far have been very successful, even often an open, cross-domain and holistic approach did not play an essential role. But this situation is changing rapidly. The research focus is shifting into more complex, non-linear and multi-domain specified phenomena, such as e.g. climate change or space environment. This kind of phenomena only can be understood step by step using the holistic idea. So, what is necessary for a successful cross-domain and holistic approach in geo and space sciences? Research and science in general become more and more dependent from a rich fundus of multi-domain data sources, related context information and the use of highly advanced technologies in data processing. Such buzzword phrases as Big Data and Deep Learning are reflecting this development. Big Data also addresses the real exponential growing of data and information produced by measurements or simulations. Deep Learning technology may help to detect new patterns and relationships in data describing high sophisticated natural phenomena. And further on, we should not forget science and humanities are only two sides of the same medal in the continuing human process of knowledge discovery. The concept of Open Data or in particular the open access to scientific data is addressing the free and open availability of -at least publicly founded and generated- data. The open availability of data covers the free use, reuse and redistribution of data which have been established with the formation of World Data Centers already more than 50 years ago. So, we should not forget, the foundation for open data is the responsibility of the individual scientist up until the big science institutions and organizations for a sustainable management of data. Other challenges are discovering and collecting the appropriate data, and preferably all of them or at least the majority of the right data. Therefore a network of individual or even better institutional catalog-based and at least

  19. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    Science.gov (United States)

    Israel, David J.; Heckler, Gregory; Menrad, Robert; Hudiburg, John; Boroson, Don; Robinson, Bryan; Cornwell, Donald

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  20. Space Photovoltaic Research and Technology, 1988. High Efficiency, Space Environment, and Array Technology

    Science.gov (United States)

    1989-01-01

    The 9th Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from April 19 to 21, 1988. The papers and workshop summaries report remarkable progress on a wide variety of approaches in space photovoltaics, for both near and far term applications. Among the former is the recently developed high efficiency GaAs/Ge cell, which formed the focus of a workshop discussion on heteroepitaxial cells. Still aimed at the long term, but with a significant payoff in a new mission capability, are InP cells, with their potentially dramatic improvement in radiation resistance. Approaches to near term, array specific powers exceeding 130 W/kg are also reported, and advanced concentrator panel technology with the potential to achieve over 250 W/sq m is beginning to take shape.