WorldWideScience

Sample records for technology solar telescope

  1. Facility level thermal systems for the Advanced Technology Solar Telescope

    Science.gov (United States)

    Phelps, LeEllen; Murga, Gaizka; Fraser, Mark; Climent, Tània

    2012-09-01

    The management and control of the local aero-thermal environment is critical for success of the Advanced Technology Solar Telescope (ATST). In addition to minimizing disturbances to local seeing, the facility thermal systems must meet stringent energy efficiency requirements to minimize impact on the surrounding environment and meet federal requirements along with operational budgetary constraints. This paper describes the major facility thermal equipment and systems to be implemented along with associated energy management features. The systems presented include the central plant, the climate control systems for the computer room and coudé laboratory, the carousel cooling system which actively controls the surface temperature of the rotating telescope enclosure, and the systems used for active and passive ventilation of the telescope chamber.

  2. The Advanced Technology Solar Telescope: design and early construction

    Science.gov (United States)

    McMullin, Joseph P.; Rimmele, Thomas R.; Keil, Stephen L.; Warner, Mark; Barden, Samuel; Bulau, Scott; Craig, Simon; Goodrich, Bret; Hansen, Eric; Hegwer, Steve; Hubbard, Robert; McBride, William; Shimko, Steve; Wöger, Friedrich; Ditsler, Jennifer

    2012-09-01

    The National Solar Observatory’s (NSO) Advanced Technology Solar Telescope (ATST) is the first large U.S. solar telescope accessible to the worldwide solar physics community to be constructed in more than 30 years. The 4-meter diameter facility will operate over a broad wavelength range (0.35 to 28 μm ), employing adaptive optics systems to achieve diffraction limited imaging and resolve features approximately 20 km on the Sun; the key observational parameters (collecting area, spatial resolution, spectral coverage, polarization accuracy, low scattered light) enable resolution of the theoretically-predicted, fine-scale magnetic features and their dynamics which modulate the radiative output of the sun and drive the release of magnetic energy from the Sun’s atmosphere in the form of flares and coronal mass ejections. In 2010, the ATST received a significant fraction of its funding for construction. In the subsequent two years, the project has hired staff and opened an office on Maui. A number of large industrial contracts have been placed throughout the world to complete the detailed designs and begin constructing the major telescope subsystems. These contracts have included the site development, AandE designs, mirrors, polishing, optic support assemblies, telescope mount and coudé rotator structures, enclosure, thermal and mechanical systems, and high-level software and controls. In addition, design development work on the instrument suite has undergone significant progress; this has included the completion of preliminary design reviews (PDR) for all five facility instruments. Permitting required for physically starting construction on the mountaintop of Haleakalā, Maui has also progressed. This paper will review the ATST goals and specifications, describe each of the major subsystems under construction, and review the contracts and lessons learned during the contracting and early construction phases. Schedules for site construction, key factory testing of

  3. New Vacuum Solar Telescope

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With its pure aperture up to 985mm, the New Vacuum Solar Telescope of China (NVST) has become the world's biggest vacuum solar telescope. The main science task of NVST is the high-resolution observation of photosphere and chromosphere including their fine structure of magnetic field on the sun. The NVST was equipped with many new technologies and powerful instruments, such as an adaptive optical system, a polarization analyzer, two vertical spectrographs, a high-resolution image system and a very narrow Ha filter (0.125A).

  4. Pointing a solar telescope

    Science.gov (United States)

    Wallace, Patrick

    2016-07-01

    As far as pointing is concerned, a solar telescope is merely an ordinary astronomical telescope but with enhancements for observing solar and coronal features. The paper discusses the additional coordinate systems that need to be supported, shows how to generate the required solar ephemerides (both orbital and physical), and sets out a suitable application programming interface for the telescope control system to use when making solar observations.

  5. Preliminary design of the Visible Spectro-Polarimeter for the Advanced Technology Solar Telescope

    CERN Document Server

    de Wijn, Alfred G; Nelson, Peter G; Huang, Pei

    2012-01-01

    The Visible Spectro-Polarimeter (ViSP) is one of the first light instruments for the Advanced Technology Solar Telescope (ATST). It is an echelle spectrograph designed to measure three different regions of the solar spectrum in three separate focal planes simultaneously between 380 and 900 nm. It will use the polarimetric capabilities of the ATST to measure the full Stokes parameters across the line profiles. By measuring the polarization in magnetically sensitive spectral lines the magnetic field vector as a function of height in the solar atmosphere can be obtained, along with the associated variation of the thermodynamic properties. The ViSP will have a spatial resolution of 0.04 arcsec over a 2 arcmin field of view (at 600 nm). The minimum spectral resolving power for all the focal planes is 180,000. The spectrograph supports up to 4 diffraction gratings and is fully automated to allow for rapid reconfiguration.

  6. The Solar Telescope GREGOR

    Science.gov (United States)

    Volkmer, R.

    2008-09-01

    During the last years the new 1.5m solar telescope GREGOR was assembled at Izania on Tenerife, Spain. The telescope is designed for high-precision measurements of the magnetic field in the solar photosphere and chromosphere with a resolution of 70km on the Sun. The telescope concept offers also high resolution stellar spectroscopy. The telescope is build by a consortium of the Kiepenheuer-Institut für Sonnenphysik, the Astrophysikalische Institut Potsdam, the Institut für Astrophysik Göttingen, Max-Plank-Institut für Sonnensystemforschung and additional international Partners. The telescope is a complete open structure with active cooled main mirror. High performance post-focus instruments in the visible and near IR wavelength acquire high resolution spectra with 2 dimensional spatial resolution and polarimetric information. The commissioning of the telescope will start in 2008 to allow first science observations at the end of 2009.

  7. Software control of the Advanced Technology Solar Telescope enclosure PLC hardware using COTS software

    Science.gov (United States)

    Borrowman, Alastair J.; de Bilbao, Lander; Ariño, Javier; Murga, Gaizka; Goodrich, Bret; Hubbard, John R.; Greer, Alan; Mayer, Chris; Taylor, Philip

    2012-09-01

    As PLCs evolve from simple logic controllers into more capable Programmable Automation Controllers (PACs), observatories are increasingly using such devices to control complex mechanisms1, 2. This paper describes use of COTS software to control such hardware using the Advanced Technology Solar Telescope (ATST) Common Services Framework (CSF). We present the Enclosure Control System (ECS) under development in Spain and the UK. The paper details selection of the commercial PLC communication library PLCIO. Implemented in C and delivered with source code, the library separates the programmer from communication details through a simple API. Capable of communicating with many types of PLCs (including Allen-Bradley and Siemens) the API remains the same irrespective of PLC in use. The ECS is implemented in Java using the observatory's framework that provides common services for software components. We present a design following a connection-based approach where all components access the PLC through a single connection class. The link between Java and PLCIO C library is provided by a thin Java Native Interface (JNI) layer. Also presented is a software simulator of the PLC based upon the PLCIO Virtual PLC. This creates a simulator operating below the library's API and thus requires no change to ECS software. It also provides enhanced software testing capabilities prior to hardware becoming available. Results are presented in the form of communication timing test data, showing that the use of CSF, JNI and PLCIO provide a control system capable of controlling enclosure tracking mechanisms, that would be equally valid for telescope mount control.

  8. Progress in Space Solar Telescope

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper we will summarize the progress in the development of the Chinese Space Solar Telescope (SST) during the past few years. The main scientific objective of SST is to observe the fundamental structure of solar magnetic field with its 1-m optical telescope. The success of 1-m Swedish Solar Telescope and Hinode underscores the importance of this 1-m space telescope. In addition, some key technical problems have been solved.

  9. Production of the 4.26 m ZERODUR mirror blank for the Advanced Technology Solar telescope (ATST)

    Science.gov (United States)

    Jedamzik, Ralf; Werner, Thomas; Westerhoff, Thomas

    2014-07-01

    The Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST) will be the most powerful solar telescope in the world. It is currently being built by the Association of Universities for Research in Astronomy (AURA) in a height of 3000 m above sea level on the mountain Haleakala of Maui, Hawaii. The primary mirror blank of diameter 4.26 m is made of the extremely low thermal expansion glass ceramic ZERODUR® of SCHOTT AG Advanced Optics. The DKIST primary mirror design is extremely challenging. With a mirror thickness of only 78 to 85 mm it is the smallest thickness ever machined on a mirror of 4.26 m in diameter. Additionally the glassy ZERODUR® casting is one of the largest in size ever produced for a 4 m class ZERODUR® mirror blank. The off axis aspherical mirror surface required sophisticated grinding procedures to achieve the specified geometrical tolerance. The small thickness of about 80 mm required special measures during processing, lifting and transport. Additionally acid etch treatment was applied to the convex back-surface and the conical shaped outer diameter surface to improve the strength of the blank. This paper reports on the challenging tasks and the achievements on the material property and dimensional specification parameter during the production of the 4.26 m ZERODUR® primary mirror blank for AURA.

  10. European Solar Telescope: Progress status

    NARCIS (Netherlands)

    Collados, M.; Bettonvil, F.C.M.; Cavaller, L.; Ermolli, I.; Gelly, B.; Pérez, A.; Socas-Navarro, H.; Soltau, D.; Volkmer, R.

    2010-01-01

    In this paper, the present status of the development of the design of the European Solar Telescope is described. The telescope is devised to have the best possible angular resolution and polarimetric performance, maximizing the throughput of the whole system. To that aim, adaptive optics and multi-c

  11. Ke Alahaka Program of the Advanced Technology Solar Telescope (ATST) Mitigation Initiative Provides STEM Workshops for Native Hawaiian Students

    Science.gov (United States)

    Coopersmith, A.; Cie, D. K.; Naho`olewa, D.; Chirico, J.

    2012-12-01

    The Advanced Technology Solar Telescope (ATST) Mitigation Initiative and the Kahikina O Ka Lā Program are NSF-funded projects at the University of Hawai`i Maui College. These projects will provide instruction and activities intended to increase diversity in STEM or STEM-related careers. Ke Alahaka, the 2012 summer bridge program, was offered to Native Hawaiian high-school students who indicated an interest in STEM areas. Three STEM-content workshops were offered including Marine Science, Sustainable Energy Technology, and Computer Science and Engineering. Students attended hands-on classes three days a week for a month concentrating on only one of the three topics. On the other days, students participated in a Hawaiian Studies course designed to provide a cultural context for the STEM instruction. Focus groups and other program assessments indicate that 50% of the 60 students attending the workshops intend to pursue a STEM major during their undergraduate studies.

  12. Cern Axion Solar Telescope (CAST)

    CERN Multimedia

    2002-01-01

    The CERN Solar Axion Telescope, CAST, aims to shed light on a 30-year-old riddle of particle physics by detecting axions originating from the 15 million degree plasma in the Sun 's core. Axions were proposed as an extension to the Standard Model of particle physics to explain why CP violation is observed in weak but not strong interactions.

  13. Composite telescope technology

    Science.gov (United States)

    Chen, Peter C.; Rabin, Douglas

    2014-07-01

    We report the development of optical mirrors based on polymer matrix composite materials. Advantages of this technology are low cost and versatility. By using appropriate combinations of polymers and various metallic and nonmetallic particles and fibers, the properties of the materials can be tailored to suit a wide variety of applications. We report the fabrication and testing of flat and curved mirrors made with metal powders, multiple mirrors replicated with high degree of uniformity from the same mandrels, cryogenic testing, mirrors made of ferromagnetic materials that can be actively or adaptively controlled by non-contact actuation, optics with very smooth surfaces made by replication, and by spincasting. We discuss development of a new generation of ultra-compact, low power active optics and 3D printing of athermal telescopes.

  14. Ice Middleware in the New Solar Telescope's Telescope Control System

    Science.gov (United States)

    Shumko, S.

    2009-09-01

    The Big Bear Solar Observatory (BBSO) is now in the process of assembling and aligning its 1.6 m New Solar Telescope (NST). There are many challenges controlling NST and one of them is establishing reliable and robust communications between different parts of the Telescope Control System (TCS). For our TCS we selected Ice (Internet communication engine) from ZeroC, Inc. In this paper we discuss advantages of the Ice middleware, details of implementation and problems we face implementing it.

  15. Bringing Perfect Vision to the Daniel K. Inouye Solar Telescope

    Science.gov (United States)

    Matijevich, Russ; Johansson, Erik; Johnson, Luke; Cavaco, Jeff; National Solar Observatory

    2016-01-01

    The world's largest ground-based solar telescope is one step closer to operation with the acceptance of the deformable mirror engineered by AOA Xinetics, a Northrop Grumman Corporation company. The Daniel K. Inouye Solar Telescope (DKIST), currently under construction in Haleakala, Hawaii, will offer unprecedented high-resolution images of the sun using the latest adaptive optics technology to provide its distortion-free imaging.Led by the National Solar Observatory (NSO) and the Association of Universities for Research in Astronomy (AURA), the Inouye Solar Telescope will help scientists better understand how magnetic fields affect the physical properties of the Sun, what roles they play in our solar system and how they affect Earth.Ground-based telescopes, whether observing the sun or the night sky must contend with atmospheric turbulence that acts as a flexible lens, constantly reshaping observed images. This turbulence makes research on solar activity difficult and drives the need for the latest adaptive optics technology.To provide DKIST with the distortion-free imaging it requires, AOA Xinetics designed a deformable mirror with 1,600 actuators, four times the normal actuator density. This deformable mirror (DM) is instrumental in removing all of the atmospheric blurriness that would otherwise limit the telescope's performance. The mirror also has an internal thermal management system to handle the intense solar energy coming from DKIST's telescope. This poster provides the history behind this incredible success story.

  16. Proposed National Large Solar Telescope

    Indian Academy of Sciences (India)

    Jagdev Singh

    2008-03-01

    Sun’s atmosphere is an ideal place to study and test many magnetohydrodynamic (MHD) processes controlling turbulent plasma. We wish to resolve some of the finest solar features (which remain unresolved presently) and study their dynamics. Indian Institute of Astrophysics has proposed to design, fabricate and install a 2-meter class solar telescope at a suitable site in India to resolve features on the Sun of the size of about 0.1 arcsec. The focal plane instruments will include a high resolution polarimeteric package to measure polarization with an accuracy of 0.01 per cent; a high spectral resolution spectrograph to obtain spectra in 5 widely separated absorption lines simultaneously and high spatial resolution narrow band imagers in various lines. The Himalayan region appears to be a good choice keeping in view the prevailing dry and clear weather conditions. We have started detailed analysis of the weather conditions in the area and at some other locations in India. The site characterization will be done using the Sun-photometer, S-DIMM and SHABAR techniques to determine the seeing conditions.

  17. Introduction to the Solar Space Telescope

    Indian Academy of Sciences (India)

    G. Ai; S. Jin; S. Wang; B. Ye; S. Yang

    2000-09-01

    The design of the space solar telescope (SST) (phase B) has been completed. The manufacturing is under development. At the end of 2000, it will be assembled. The basic aspect will be introduced in this paper.

  18. Origins Space Telescope: Solar System Science

    Science.gov (United States)

    Wright, Edward L.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.In the Solar System, OST will provide km/sec resolution on lines from planet, moons and comets. OST will measure molecular abundances and isotope ratios in planets and comets. OST will be able to do continuum surveys for faint moving sources such as Kuiper Belt Objects, enabling a census of smaller objects in the Kuiper Belt. If the putative Planet IX is massive enough to be self-luminous, then OST will be able to detect it out to thousands of AU from the Sun.

  19. Solar Magnetometry with the dutch open telescope

    NARCIS (Netherlands)

    Rutten, R.J.; Hammerschlag, R.H.; Sütterlin, P.; Bettonvil, F.C.M.; Zalm, E.B.J. van der

    2001-01-01

    The Dutch Open Telescope (DOT) has become op- erational at the Roque de los Muchachos Observa- tory on La Palma. The rst image sequences taken with this innovative telescope demonstrate its capa- bility for tomographic high-resolution imaging of the magnetic topology of the solar atmosphere up to th

  20. Introduction to the Chinese Giant Solar Telescope

    Science.gov (United States)

    Liu, Z.; Deng, Y.; Ji, H.

    2012-12-01

    In order to detect the fine structures of solar magnetic field and dynamic field, an 8 meter solar telescope has been proposed by Chinese solar community. Due to the advantages of ring structure in polarization detection and thermal control, the current design of CGST (Chinese Giant Solar Telescope) is an 8 meter ring solar telescope. The spatial resolution of CGST is equivalent to an 8 meter diameter telescope, and the light-gathering power equivalent to a 5 meter full aperture telescope. The integrated simulation of optical system and imaging ability such as optical design, MCAO, active maintenance of primary mirror were carried out in this paper. Mechanical system was analyzed by finite element method too. The results of simulation and analysis showed that the current design could meet the demand of most science cases not only in infrared band but also in near infrared band and even in visible band. CGST was proposed by all solar observatories in Chinese Academy of Sciences and several overseas scientists. It is supported by CAS (Chinese Academy of Sciences) and NSFC (National Natural Science Foundation of China) as a long term astronomical project.

  1. Daniel K. Inouye Solar Telescope Science Operations

    Science.gov (United States)

    Tritschler, Alexandra; Rimmele, Thomas R.; Berukoff, Steven

    2016-05-01

    The Daniel K. Inouye Solar Telescope (DKIST) is a versatile high resolution ground-based solar telescope designed to explore the dynamic Sun and its magnetism throughout the solar atmosphere from the photosphere to the faint corona. The DKIST is currently under construction on Haleakala, Maui, Hawai'i, and expected to commence with science operations in 2019. In this contribution we provide an overview of the high-level science operations concepts from proposal preparation and submission to the flexible and dynamic planning and execution of observations.

  2. solar magnetic fiber and space solar telescope in engineering model

    Science.gov (United States)

    Ai, G.

    The solar magnetic fiber and the magnetic element are the most important factor in the solar activity and solar atmosphere. Because the space resolution of measurement of solar magnetic field is much lower than that of the size of the nature solar magnetic fiber and element from the earth atmospheric turbulence. The estimate of the magnetic element nature from various indirect researches shows great difference with several orders. The research results about magnetic elements have been reviewed in the paper.Because the size of the magnetic element has been estimated for 0.1T-0.2T, the space solar magnetic field telescope with big diameter is the most basic choice. For the exploration of solar magnetic fiber and element, a Space Solar Telescope is under development in the phase C and D, there are five payloads which are: 1) MOT, 1 diameter telescope with 8 channels real time 2-D spectrograph and 8 sets CCD with 2K`2K; 2) EUV, 4 tubes of soft X-ray Telescope with 0.252 space resolution; 3) WBS, the wide Band Spectrometer with 256 channel from soft X-ray to Gamma-ray. 4) HAT, Ha and white light telescope; 5) SIRA, Solar and interplanetary Radio Spectrometer, with 100 KHZ-60 MHZ. The assembly and test will be introduced.

  3. The cern axion solar telescope (CAST)

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, C. E.; Arik, E.; Autiero, D.; Avignone, F. T.; Barth, K.; Bowyer, S. M.; Brauninger, H.; Brodzinski, R. L.; Carmona, J. M.; Cebrian, S.; Celebi, G.; Cetin, S.; Collar, J. I.; Creswick, R.; Delbart, A.; Delattre, M.; DiLella, L.; De Oliveira, R.; Eleftheriadis, Ch.; Erdutan, N.; Fanourakis, G.; Farach, H. A.; Fiorini, C.; Geralis, Th.; Giomataris, I.; Girard, T. A.; Gninenko, S. N.; Golubev, N. A.; Hasinoff, M.; Hoffmann, D.; Irastorza, I. G.; Jacoby, J.; Jeanneau, F.; Knopf, M. A.; Kovzelev, A. V.; Kotthaus, R.; Krčmar, M.; Krečak, Z.; Lakić, B.; Liolios, A.; Ljubičić, A.; Lutz, G.; Longoni, A.; Luzon, G.; Mailov, A.; Matveev, V. A.; Miley, H. S.; Morales, A.; Morales, J.; Mutterer, M.; Nikolaidis, A.; Nussinov, S.; Ortiz, A.; Pitts, W. K.; Placci, A.; Postoev, V. E.; Raffelt, G. G.; Riege, H.; Sampieto, M.; Sarsa, M.; Savvidis, I.; Stipčević, M.; Thomas, C. W.; Thompson, R. C.; Valco, P.; Villar, J. A.; Villierme, B.; Walckiers, L.; Wilcox, W.; Zachariadou, K.; Zioutas, K.

    2002-07-01

    A decommissioned LHC test magnet is being prepared as the CERN Axion Solar Telescope (CAST) experiment. The magnet has a field of 9.6 Tesla and length of 10 meters. It is being mounted on a platform to track the sun over plus or minus 8 to the sixth power vertically and plus or minus 45 to the sixth power, horizontally.

  4. Analysis of wavefront reconstruction in 8 meter ring solar telescope

    Science.gov (United States)

    Dai, Yichun; Jin, Zhenyu

    2016-07-01

    Chinese Giant Solar Telescope (CGST) is the next generation infrared and optical solar telescope of China, which is proposed and pushed by the solar astronomy community of China and listed into the National Plans of Major Science and Technology Infrastructures. CGST is currently proposed to be an 8 meter Ring Solar Telescope (RST) with width of 1 meter, the hollow and symmetric structure of such an annular aperture facilitates the thermal control and high precision magnetic field measurement for a solar telescope. Adaptive optics (AO) is an indispensable tool of RST to obtain diffraction limited observations. How to realize AO involved wavefront sensing and correcting, and the degree of compensating in a narrow annular aperture is the primary problem of AO implementation of RST. Wavefront reconstruction involved problems of RST are first investigated and discussed in this paper using end to end simulation based on Shack-Hartmann wavefront sensing (SHWFS). The simulation results show that performance of zonal reconstruction with measurement noise no more than 0.05 arc sec can meets the requirement of RST for diffraction-limited imaging at wavelength of 1μm, which satisfies most science cases of RST in near infrared waveband.

  5. National Large Solar Telescope of Russia

    Science.gov (United States)

    Demidov, Mikhail

    One of the most important task of the modern solar physics is multi-wavelength observations of the small-scale structure of solar atmosphere on different heights, including chromosphere and corona. To do this the large-aperture telescopes are necessary. At present time there several challenging projects of the large (and even giant) solar telescopes in the world are in the process of construction or designing , the most known ones among them are 4-meter class telescopes ATST in USA and EST in Europe. Since 2013 the development of the new Large Solar Telescope (LST) with 3 meter diameter of the main mirror is started in Russia as a part (sub-project) of National Heliogeophysical Complex (NHGC) of the Russian Academy of Sciences. It should be located at the Sayan solar observatory on the altitude more then 2000 m. To avoid numerous problems of the off-axis optical telescopes (despite of the obvious some advantages of the off-axis configuration) and to meet to available financial budget, the classical on-axis Gregorian scheme on the alt-azimuth mount has been chosen. The scientific equipment of the LST-3 will include several narrow-band tunable filter devices and spectrographs for different wavelength bands, including infrared. The units are installed either at the Nasmyth focus or/and on the rotating coude platform. To minimize the instrumental polarization the polarization analyzer is located near diagonal mirror after M2 mirror. High order adaptive optics is used to achieve the diffraction limited performances. It is expected that after some modification of the optical configuration the LST-3 will operate as an approximately 1-m mirror coronograph in the near infrared spectral lines. Possibilities for stellar observations during night time are provided as well.

  6. Solar Magnetism and the Activity Telescope at HSOS

    Institute of Scientific and Technical Information of China (English)

    Hong-Qi Zhang; Ya-Nan Wang; Qi-Qian Hu; Jun-Sun Xue; Hai-Tian Lu; Hou-Kun Ni; Han-Liang Chen; Xiao-Jun Zhou; Qing-Sheng Zhu; Lü-Jun Yuan; Yong Zhu; Dong-Guang Wang; Yuan-Yong Deng; Ke-Liang Hu; Jiang-Tao Su; Jia-Ben Lin; Gang-Hua Lin; Shi-Mo Yang; Wei-Jun Mao

    2007-01-01

    A new solar telescope system is described, which has been operating at Huairou Solar Observing Station (HSOS), National Astronomical Observatories, Chinese Academy of Sciences (CAS), since the end of 2005. This instrument, the Solar Magnetism and Activity Telescope (SMAT), comprises two telescopes which respectively make measurements of full solar disk vector magnetic field and Hα observation. The core of the full solar disk video vector magnetograph is a birefringent filter with 0.1(A) bandpass, installed in the tele-centric optical system of the telescope. We present some preliminary observational results of the full solar disk vector magnetograms and Hα filtergrams obtained with this telescope system.

  7. GREGOR: the New German Solar Telescope

    CERN Document Server

    Balthasar, H; Kneer, F; Staude, J; Volkmer, R; Berkefeld, T; Caligari, P; Collados, M; Halbgewachs, C; Heidecke, F; Hofmann, A; Klvana, M; Nicklas, H; Popow, E; Puschmann, K; Schmidt, W; Sobotka, M; Soltau, D; Strassmeier, K; Wittmann, A

    2007-01-01

    GREGOR is a new open solar telescope with an aperture of 1.5m. It replaces the former 45-cm Gregory Coude telescope on the Canary island Tenerife. The optical concept is that of a double Gregory system. The main and the elliptical mirrors are made from a silicon-carbide material with high thermal conductivity. This is important to keep the mirrors on the ambient temperature avoiding local turbulence. GREGOR will be equipped with an adaptive optics system. The new telescope will be ready for operation in 2008. Post-focus instruments in the first stage will be a spectrograph for polarimetry in the near infrared and a 2-dimensional spectrometer based on Fabry-Perot interferometers for the visible.

  8. Solar Rejection Filter for Large Telescopes

    Science.gov (United States)

    Hemmati, Hamid; Lesh, James

    2009-01-01

    To reject solar radiation photons at the front aperture for large telescopes, a mosaic of large transmission mode filters is placed in front of the telescope or at the aperture of the dome. Filtering options for effective rejection of sunlight include a smaller filter down-path near the focus of the telescope, and a large-diameter filter located in the front of the main aperture. Two types of large filters are viable: reflectance mode and transmittance mode. In the case of reflectance mode, a dielectric coating on a suitable substrate (e.g. a low-thermal-expansion glass) is arranged to reflect only a single, narrow wavelength and to efficiently transmit all other wavelengths. These coatings are commonly referred to as notch filter. In this case, the large mirror located in front of the telescope aperture reflects the received (signal and background) light into the telescope. In the case of transmittance mode, a dielectric coating on a suitable substrate (glass, sapphire, clear plastic, membrane, and the like) is arranged to transmit only a single wavelength and to reject all other wavelengths (visible and near IR) of light. The substrate of the large filter will determine its mass. At first glance, a large optical filter with a diameter of up to 10 m, located in front of the main aperture, would require a significant thickness to avoid sagging. However, a segmented filter supported by a structurally rugged grid can support smaller filters. The obscuration introduced by the grid is minimal because the total area can be made insignificant. This configuration can be detrimental to a diffraction- limited telescope due to diffraction effects at the edges of each sub-panel. However, no discernable degradation would result for a 20 diffraction-limit telescope (a photon bucket). Even the small amount of sagging in each subpanel should have minimal effect in the performance of a non-diffraction limited telescope because the part has no appreciable optical power. If the

  9. RECENT PROGRESS IN THE PROJECT OF SPACE SOLAR TELESCOPE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper, we introduce some process of the project of Space Solar Telescope in recent two years. The astronomic requirements have been further identified,the mission and operation requirements have been assessed, and some critical technologies have been performed. According to the time schedule, it is esti mated that the engineering model of the spacecraft would be completed and put into test operation in the end of 2004 and the spacecraft would be launched in about 2007.

  10. Fast Imaging Solar Spectrograph System in New Solar Telescope

    Science.gov (United States)

    Park, Y.-D.; Kim, Y. H.; Chae, J.; Goode, P. R.; Cho, K. S.; Park, H. M.; Nah, J. K.; Jang, B. H.

    2010-12-01

    In 2004, Big Bear Solar Observatory in California, USA launched a project for construction of the world's largest aperture solar telescope (D = 1.6m) called New Solar Telescope(NST). University of Hawaii (UH) and Korea Astronomy and Space Science Institute(KASI) partly collaborate on the project. NST is a designed off-axis parabolic Gregorian reflector with very high spatial resolution(0.07 arcsec at 5000A) and is equipped with several scientific instruments such as Visible Imaging Magnetograph (VIM), InfraRed Imaging Magnetograph IRIM), and so on. Since these scientific instruments are focused on studies of the solar photosphere, we need a post-focus instrument for the NST to study the fine structures and dynamic patterns of the solar chromosphere and low Transition Region (TR) layer, including filaments/prominences, spicules, jets, micro flares, etc. For this reason, we developed and installed a fast imaging solar spectrograph(FISS) system on the NST withadvantages of achieving compact design with high spectral resolution and small aberration as well as recording many solar spectral lines in a single and/or dual band mode. FISS was installed in May, 2010 and now we carry out a test observation. In this talk, we introduce the FISS system and the results of the test observation after FISS installation.

  11. The Solar Electron And Proton Telescope (sept)

    Science.gov (United States)

    Falkner, P.; Johlander, B.; Mueller-Mellin, R.; Sanderson, T.; Habinc, S.

    The Solar Electron and Proton Telescope consists of two dual double-ended mag- net/foil particle telescopes which cleanly separate and measure electrons in the energy range from 20 - 400 keV and protons from 20 - 7000 keV. The instrument utilizes an ASIC-PDFE (Particle Detection Front End), which provides low noise charge sensi- tive pre-amplifier, filters, pulse shaper, 8-bit ADC and anti-coincidence electronics for a single solid-state detector. The counts are accumulated in 256 linear bins on a radia- tion hardened SRAM under control of an FPGA and read out once every minute by the supervising DPU. The FPGA provides the possibility of quasi-logarithmic binning be- fore transferring the data to the main DPU. A simple ramp pulser provides electronic in-flight instrument calibration and testing. The complete instrument with 4 complete channels has a mass of 500 g and consumes 500 mW of power. The maximum count rate is 250 ksamples per second per channel. The instrument is to be flown on the Solar Terrestrial Relations Observatory (STEREO) mission with intended launch in 2005. The talk describes the technical implementation of the instrument.

  12. Design review of the Brazilian Experimental Solar Telescope

    Science.gov (United States)

    Dal Lago, A.; Vieira, L. E. A.; Albuquerque, B.; Castilho, B.; Guarnieri, F. L.; Cardoso, F. R.; Guerrero, G.; Rodríguez, J. M.; Santos, J.; Costa, J. E. R.; Palacios, J.; da Silva, L.; Alves, L. R.; Costa, L. L.; Sampaio, M.; Dias Silveira, M. V.; Domingues, M. O.; Rockenbach, M.; Aquino, M. C. O.; Soares, M. C. R.; Barbosa, M. J.; Mendes, O., Jr.; Jauer, P. R.; Branco, R.; Dallaqua, R.; Stekel, T. R. C.; Pinto, T. S. N.; Menconi, V. E.; Souza, V. M. C. E. S.; Gonzalez, W.; Rigozo, N.

    2015-12-01

    The Brazilian's National Institute for Space Research (INPE), in collaboration with the Engineering School of Lorena/University of São Paulo (EEL/USP), the Federal University of Minas Gerais (UFMG), and the Brazilian's National Laboratory for Astrophysics (LNA), is developing a solar vector magnetograph and visible-light imager to study solar processes through observations of the solar surface magnetic field. The Brazilian Experimental Solar Telescope is designed to obtain full disk magnetic field and line-of-sight velocity observations in the photosphere. Here we discuss the system requirements and the first design review of the instrument. The instrument is composed by a Ritchey-Chrétien telescope with a 500 mm aperture and 4000 mm focal length. LCD polarization modulators will be employed for the polarization analysis and a tuning Fabry-Perot filter for the wavelength scanning near the Fe II 630.25 nm line. Two large field-of-view, high-resolution 5.5 megapixel sCMOS cameras will be employed as sensors. Additionally, we describe the project management and system engineering approaches employed in this project. As the magnetic field anchored at the solar surface produces most of the structures and energetic events in the upper solar atmosphere and significantly influences the heliosphere, the development of this instrument plays an important role in advancing scientific knowledge in this field. In particular, the Brazilian's Space Weather program will benefit most from the development of this technology. We expect that this project will be the starting point to establish a strong research program on Solar Physics in Brazil. Our main aim is to progressively acquire the know-how to build state-of-art solar vector magnetograph and visible-light imagers for space-based platforms.

  13. Automatic guiding of the primary image of solar Gregory telescopes

    NARCIS (Netherlands)

    Küveler, G.; Wiehr, E.; Thomas, D.; Harzer, M.; Bianda, M.; Epple, A.; Sütterlin, P.; Weisshaar, E.

    1998-01-01

    The primary image reflected from the field-stop of solar Gregory telescopes is used for automatic guiding. This new system avoids temporal varying influences from the bending of the telescope tube by the main mirror's gravity and from offsets between the telescope and a separate guiding refractor.

  14. Progress on Space Solar Telescope in 2004 - 2006

    Institute of Scientific and Technical Information of China (English)

    AI Guoxiang; YAN Yihua; YANG Shimo; JIN Shengzhen

    2006-01-01

    The progress on Chinese Space Solar Telescope (SST) in 2004-2006 is introduced. The scientific objectives are further clarified and the ground operation system has been planned. The 7 key technical problems of SST satellite platform and payloads have been tackled, which lay solid scientific and technological foundations for engineering prototype phase of the SST project. At present the SST project undergoes evaluation by CNSA and CAS so as to enter the engineering prototype phase of the SST project if it is finally approved.

  15. New life for the THEMIS solar telescope

    Science.gov (United States)

    Gelly, Bernard; Langlois, Maud; Moretto, Gil; Douet, Richard; Lopez Ariste, Arturo; Tallon, Michel; Thiébaut, Eric; Geyskens, Nicolas; Lorgeoux, Guillaume; Léger, Johnathan; Le Men, Claude

    2016-07-01

    The THEMIS solar telescope is building a classical adaptive optics (AO) system to be operating on the Sun in 2017. To make compatible its excellent dual beam spectropolarimetric features with the AO also requires a major refurbishment of the relay optics starting at the M2 and down to the spectrograph entrance. This paper presents the design parameters and expected performances of our AO system, and explains why and how we intend to control to a few percent the Mueller matrix of the whole optical path from the prime focus to the spectropolarimetric cameras. This project is co-funded by the European Union SOLARNET Project Ref.:312495, and the Centre National de la Recherche Scientifique.

  16. The CERN axion solar telescope (CAST)

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, C.E.; Arik, E.; Autiero, D.; Avignone, F.T.; Barth, K.; Bowyer, S.M.; Brauninger, H.; Brodzinski, R.L.; Carmona, J.M.; Cebrian, S.; Celebi, G.; Cetin, S.; Collar, J.I.; Creswick, R.; Delbart, A.; Delattre, M.; DiLella, L.; De Oliveira, R.; Eleftheriadis, Ch.; Erdutan, N.; Fanourakis, G.; Farach, H.A.; Fiorini, C.; Geralis, Th.; Giomataris, I.; Girard, T.A.; Gninenko, S.N.; Golubev, N.A.; Hasinoff, M.; Hoffmann, D.; Irastorza, I.G.; Jacoby, J.; Jeanneau, F.; Knopf, M.A.; Kovzelev, A.V.; Kotthaus, R.; Krcmar, M.; Krecak, Z.; Lakic, B.; Liolios, A.; Ljubicic, A.; Lutz, G.; Longoni, A.; Luzon, G.; Mailov, A.; Matveev, V.A.; Miley, H.S.; Morales, A.; Morales, J.; Mutterer, M.; Nikolaidis, A.; Nussinov, S.; Ortiz, A.; Pitts, W.K.; Placci, A.; Postoev, V.E.; Raffelt, G.G.; Riege, H.; Sampieto, M.; Sarsa, M.; Savvidis, I.; Stipcevic, M.; Thomas, C.W.; Thompson, R.C.; Valco, P.; Villar, J.A.; Villierme, B.; Walckiers, L.; Wilcox, W.; Zachariadou, K.; Zioutas, K

    2002-07-01

    A decommissioned LHC test magnet is being prepared as the CERN Axion Solar Telescope (CAST) experiment. The magnet has a field of 9.6 Tesla and length of 10 meters. It is being mounted on a platform to track the sun over {+-}8 deg. vertically and {+-}45 deg. , horizontally. A sensitivity in axion-photon coupling g{alpha}{gamma}{gamma} < 5 x 10{sup -11}GeV{sup -1} can be reached for m{sub {alpha}} {<=} 10{sup -2}eV, and with a gas filled tube-can reach g{alpha}{gamma}{gamma} {<=} 10{sup -10}GeV{sup -1} for axion masses m{sub {alpha}} < 2eV.

  17. Stability studies of Solar Optical Telescope dynamics

    Science.gov (United States)

    Gullapalli, Sarma N.; Pal, Parimal K.; Ruthven, Gregory P.

    1987-01-01

    The Solar Optical Telescope (SOT) is designed to operate as an attached payload mounted on the Instrument Pointing System (IPS) in the cargo bay of the Shuttle Orbiter. Pointing and control of SOT is accomplished by an active Articulated Primary Mirror (APM), an active Tertiary Mirror (TM), an elaborate set of optical sensors, electromechanical actuators and programmable controllers. The structural interactions of this complex control system are significant factors in the stability of the SOT. The preliminary stability study results of the SOT dynamical system are presented. Structural transfer functions obtained from the NASTRAN model of the structure were used. These studies apply to a single degree of freedom (elevation). Fully integrated model studies will be conducted in the future.

  18. Wavelet Analysis of Space Solar Telescope Images

    Institute of Scientific and Technical Information of China (English)

    Xi-An Zhu; Sheng-Zhen Jin; Jing-Yu Wang; Shu-Nian Ning

    2003-01-01

    The scientific satellite SST (Space Solar Telescope) is an important research project strongly supported by the Chinese Academy of Sciences. Every day,SST acquires 50 GB of data (after processing) but only 10GB can be transmitted to the ground because of limited time of satellite passage and limited channel volume.Therefore, the data must be compressed before transmission. Wavelets analysis is a new technique developed over the last 10 years, with great potential of application.We start with a brief introduction to the essential principles of wavelet analysis,and then describe the main idea of embedded zerotree wavelet coding, used for compressing the SST images. The results show that this coding is adequate for the job.

  19. Solar Cooker Technological Change

    DEFF Research Database (Denmark)

    Ahmad, Bashir

    1997-01-01

    The challenges which solar cooking technology is facing right now is discussed. Based on a field study in Madras and Gujarat, it is asserted that there is an important incompatibility between the technology and the every day real-life conditions of the "users" of solar cooker. An evaluation report...... on a solar cooker technology in Burkina Faso supports the findings of the study. It is concluded that the users and other important actors have to be incorporated in the technological development process of solar cookers in the future....

  20. Algorithm Design and Test of the Solar Guide Telescope

    Institute of Scientific and Technical Information of China (English)

    Wei-Bin Wen; Sheng-Zhen Jin

    2004-01-01

    The Solar Guide Telescope (SGT), an important solar attitude sensor of the SST (Space Solar Telescope, a space solar observing instrument being developed in China), can accurately produce pointing error signals of the SST for attitude control at high speed. We analyze in detail the error algorithm of the heliocentric coordinates and the edge judging of solar images. The measuring accuracy of ±0.5arcsec of the SGT is verified by experiments on the tracking of the Sun and by testing a sun simulator. Some factors causing the pointing errors are examined.

  1. Daniel K. Inouye Solar Telescope system safety

    Science.gov (United States)

    Hubbard, Robert P.; Bulau, Scott E.; Shimko, Steve; Williams, Timothy R.

    2014-08-01

    System safety for the Daniel K. Inouye Solar Telescope (DKIST) is the joint responsibility of a Maui-based safety team and the Tucson-based systems engineering group. The DKIST project is committed to the philosophy of "Safety by Design". To that end the project has implemented an aggressive hazard analysis, risk assessment, and mitigation system. It was initially based on MIL-STD-882D, but has since been augmented in a way that lends itself to direct application to the design of our Global Interlock System (GIS). This was accomplished by adopting the American National Standard for Industrial Robots and Robot Systems (ANSI/RIA R15.06) for all identified hazards that involve potential injury to personnel. In this paper we describe the details of our augmented hazard analysis system and its use by the project. Since most of the major hardware for the DKIST (e.g., the enclosure, and telescope mount assembly) has been designed and is being constructed by external contractors, the DKIST project has required our contractors to perform a uniform hazard analysis of their designs using our methods. This paper also describes the review and follow-up process implemented by the project that is applied to both internal and external subsystem designs. Our own weekly hazard analysis team meetings have now largely turned to system-level hazards and hazards related to specific tasks that will be encountered during integration, test, and commissioning and maintenance operations. Finally we discuss a few lessons learned, describing things we might do differently if we were starting over today.

  2. Characterization of Solar Telescope Polarization Properties Across the Visible and Near-Infrared Spectrum. Case Study: The Dunn Solar Telescope

    CERN Document Server

    Socas-Navarro, Hector; Ramos, Andres Asensio

    2010-01-01

    Accurate astrophysical polarimetry requires a proper characterization of the polarization properties of the telescope and instrumentation employed to obtain the observations. Determining the telescope and instrument Muller matrix is becoming increasingly difficult with the increase in aperture size of the new and upcoming solar telescopes. We have carried out a detailed multi-wavelength characterization of the Dunn Solar Telescope (DST) at the National Solar Observatory/Sacramento Peak as a case study and explore various possibilites for the determination of its polarimetric properties. We show that the telescope model proposed in this paper is more suitable than that in previous work in that it describes better the wavelength dependence of aluminum-coated mirrors. We explore the adequacy of the degrees of freedom allowed by the model using a novel mathematical formalism. Finally, we investigate the use of polarimeter calibration data taken at different times of the day to characterize the telescope and find ...

  3. Passive solar technology

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D

    1981-04-01

    The present status of passive solar technology is summarized, including passive solar heating, cooling and daylighting. The key roles of the passive solar system designer and of innovation in the building industry are described. After definitions of passive design and a summary of passive design principles are given, performance and costs of passive solar technology are discussed. Passive energy design concepts or methods are then considered in the context of the overall process by which building decisions are made to achieve the integration of new techniques into conventional design. (LEW).

  4. Japanese sounding rocket experiment with the solar XUV Doppler telescope

    Science.gov (United States)

    Sakao, Taro; Tsuneta, Saku; Hara, Hirohisa; Kano, Ryouhei; Yoshida, Tsuyoshi; Nagata, Shin'ichi; Shimizu, Toshifumi; Kosugi, Takeo; Murakami, Katsuhiko; Wasa, Wakuna; Inoue, Masao; Miura, Katsuhiro; Taguchi, Koji; Tanimoto, Kazuo

    1996-11-01

    We present an overview of an ongoing Japanese sounding rocket project with the Solar XUV Doppler telescope. The telescope employs a pair of normal incidence multilayer mirrors and a back-thinned CCD, and is designed to observe coronal velocity field of the whole sun by measuring line- of-sight Doppler shifts of the Fe XIV 211 angstroms line. The velocity detection limit is estimated to be better than 100 km/s. The telescope will be launched by the Institute of Space and Astronautical Science in 1998, when the solar activity is going to be increasing towards the cycle 23 activity maximum. Together with the overview of the telescope, the current status of the development of each telescope components including multilayer mirrors, telescope structure, image stabilization mechanism, and focal plane assembly, are reviewed. The observation sequence during the flight is also briefly described.

  5. A retrospective of the GREGOR solar telescope in scientific literature

    CERN Document Server

    Denker, C; Feller, A; Arlt, K; Balthasar, H; Bauer, S -M; González, N Bello; Berkefeld, T; Caligari, P; Collados, M; Fischer, A; Granzer, T; Hahn, T; Halbgewachs, C; Heidecke, F; Hofmann, A; Kentischer, T; Klvaňa, M; Kneer, F; Lagg, A; Nicklas, H; Popow, E; Puschmann, K G; Rendtel, J; Schmidt, D; Schmidt, W; Sobotka, M; Solanki, S K; Soltau, D; Staude, J; Strassmeier, K G; Volkmer, R; Waldmann, T; Wiehr, E; Wittmann, A D; Woche, M

    2012-01-01

    In this review, we look back upon the literature, which had the GREGOR solar telescope project as its subject including science cases, telescope subsystems, and post-focus instruments. The articles date back to the year 2000, when the initial concepts for a new solar telescope on Tenerife were first presented at scientific meetings. This comprehensive bibliography contains literature until the year 2012, i.e., the final stages of commissioning and science verification. Taking stock of the various publications in peer-reviewed journals and conference proceedings also provides the "historical" context for the reference articles in this special issue of Astronomische Nachrichten/Astronomical Notes.

  6. Telescoping Shield for Point-Focusing Solar Concentrators

    Science.gov (United States)

    Argoud, M.; Walker, W.; Butler, L. V.

    1985-01-01

    Telescoping shield normally stowed around solar receiver protects heat engine and supporting structure from overheating when concentrator aimed few degrees away from line to Sun. When extended, shield intercepts off center concentrated solar radiation. Heat spread out over thermally conductive shield and reradiated diffusely not to cause structural damage.

  7. The GREGOR solar telescope on Tenerife

    CERN Document Server

    Schmidt, Wolfgang; Volkmer, Reiner; Denker, Carsten; Solanki, Sami; Balthasar, Horst; Gonzalez, Nazaret Bello; Berkefeld, Thomas; Collados, Manuel; Hofmann, Axel; Kneer, Franz; Lagg, Andreas; Puschmann, Klaus; Schmidt, Dirk; Sobotka, Michal; Soltau, Dirk; Strassmeier, Klaus

    2012-01-01

    2011 was a successful year for the GREGOR project. The telescope was finally completed in May with the installation of the 1.5-meter primary mirror. The installation of the first-light focal plane instruments was completed by the end of the year. At the same time, the preparations for the installation of the high-order adaptive optics were finished, its integration to the telescope is scheduled for early 2012. This paper describes the telescope and its instrumentation in their present first light configuration, and provides a brief overview of the science goals of GREGOR.

  8. The Focal Plane Package of the Solar Optical telescope on Solar B

    Science.gov (United States)

    Tarbell, Theodore D.

    2006-06-01

    The Solar-B satellite will be launched into a full-sun low-earth orbit in the fall of 2006 from Japan's Uchinoura Space center. It includes the 50-cm diameter Solar Optical Telescope with its Focal Plane Package (FPP), for near-UV and visible observations of the photosphere and chromosphere at very high (diffraction limited) angular resolution. The FPP has a Spectro-Polarimeter (SP) for precision measurements of photospheric vector magnetic fields over a 160 x 320 arcsecond field of view; a Narrowband Filter Imager (NFI) with a tunable birefringent filter for magnetic, Doppler, and intensity maps over the same field of view; and a Broadband Filter Imager (BFI) for highest resolution images in six wavelengths (G band, Ca II H, continua, etc.) over two-thirds of that field of view. A polarization modulator in the telescope allows measurement of Stokes parameters at all wavelengths in the SP and NFI. The NFI wavelengths include both photospheric and chromospheric lines (Fe I, Mg b, Na D, H-alpha). All images are stabilized by a tip-tilt mirror and correlation tracker. This presentation will include pictures and description of the instrument, results from calibration and sun testing, portions of the draft science plan, and some preliminary JOP's. Solar-B is an international cooperative mission between JAXA/ISAS of Japan, NASA of the United States, and PPARC of the United Kingdom. The Solar Optical Telescope has been developed by the National Astronomical Observatory of Japan, Mitsubishi Electric Company, and JAXA/ISAS. The FPP has been developed by the Lockheed Martin Advanced Technology Center, High Altitude Observatory, and NASA.

  9. World coordinate information for the Daniel K. Inouye Solar Telescope

    Science.gov (United States)

    Mayer, Chris; Wampler, Steve; Goodrich, Bret

    2016-07-01

    It is a top level science requirement that data from the Daniel K Inouye Solar Telescope (DKIST) is archived and made available to the world wide astronomical community. Data from DKIST must contain sufficient meta-data to allow proper post processing. This paper describes how the Telescope Control System (TCS), Wavefront Correction Control System (WCCS) and individual instrument control systems work together with the camera systems to provide the world coordinate information (WCI) meta-data for 2-d imaging detectors.

  10. Predictive Thermal Control Technology for Stable Telescope

    Science.gov (United States)

    Stahl, H. Philip

    Predictive Thermal Control (PTC) project is a multiyear effort to develop, demonstrate, mature towards TRL6, and assess the utility of model based Predictive Thermal Control technology to enable a thermally stable telescope. PTC demonstrates technology maturation by model validation and characterization testing of traceable components in a relevant environment. PTC's efforts are conducted in consultation with the Cosmic Origins Office and NASA Program Analysis Groups. To mature Thermally Stable Telescope technology, PTC has three objectives: • Validate models that predict thermal optical performance of real mirrors and structure based on their designs and constituent material properties, i.e. coefficient of thermal expansion (CTE) distribution, thermal conductivity, thermal mass, etc. • Derive thermal system stability specifications from wavefront stability requirements. • Demonstrate utility of Predictive Thermal Control for achieving thermal stability. To achieve these objectives, PTC has five quantifiable milestones: 1. Develop a high-fidelity model of the AMTD-2 1.5 meter ULE® mirror, including 3D CTE distribution and reflective optical coating, that predicts its optical performance response to steady-state and dynamic thermal gradients under bang/bang and proportional thermal control. 2. Derive specifications for thermal control system as a function of wavefront stability. 3. Design and build a predictive Thermal Control System for a 1.5 meter ULE® mirror using new and existing commercial-off-the-shelf components that sense temperature changes at the 1mK level and actively controls the mirrors thermal environment at the 20mK level. 4. Validate the model by testing a 1.5-m class ULE® mirror in a relevant thermal vacuum environment in the MSFC X-ray and Cryogenic Facility (XRCF) test facility. 5. Use validated model to perform trade studies to optimize thermo-optical performance as a function of mirror design, material selection, mass, etc. PTC advances

  11. Parallel Image Reconstruction for New Vacuum Solar Telescope

    Science.gov (United States)

    Li, Xue-Bao; Wang, Feng; Xiang, Yong Yuan; Zheng, Yan Fang; Liu, Ying Bo; Deng, Hui; Ji, Kai Fan

    2014-04-01

    Many advanced ground-based solar telescopes improve the spatial resolution of observation images using an adaptive optics (AO) system. As any AO correction remains only partial, it is necessary to use post-processing image reconstruction techniques such as speckle masking or shift-and-add (SAA) to reconstruct a high-spatial-resolution image from atmospherically degraded solar images. In the New Vacuum Solar Telescope (NVST), the spatial resolution in solar images is improved by frame selection and SAA. In order to overcome the burden of massive speckle data processing, we investigate the possibility of using the speckle reconstruction program in a real-time application at the telescope site. The code has been written in the C programming language and optimized for parallel processing in a multi-processor environment. We analyze the scalability of the code to identify possible bottlenecks, and we conclude that the presented code is capable of being run in real-time reconstruction applications at NVST and future large aperture solar telescopes if care is taken that the multi-processor environment has low latencies between the computation nodes.

  12. Solar and Planetary Observations with a Lunar Radio Telescope

    Science.gov (United States)

    Kassim, N.; Weiler, K. W.; Lazio, J. W.; MacDowall, R. J.; Jones, D. L.; Bale, S. D.; Demaio, L.; Kasper, J. C.

    2006-05-01

    Ground-based radio telescopes cannot observe at frequencies below about 10 MHz (wavelengths longer than 30 m) because of ionospheric absorption. The Lunar Imaging Radio Array (LIRA) is a mission concept in which an array of radio telescopes is deployed on the Moon, as part of the Vision for Space Exploration, with the aim of extending radio observations to lower frequencies than are possible from the Earth. LIRA would provide the capability for dedicated monitoring of solar and planetary bursts as well as the search for magnetospheric emissions from extrasolar planets. The highest sensitivity observations can be accomplished by locating LIRA on the far side of the Moon. The array would be composed of 10-12 radial arms, each 1-2 km in length. Each arm would have several hundred dipole antennas and feedlines printed on a very thin sheet of kapton with a total mass of about 300 kg. This would provide a convenient way to deploy thousands of individual antennas and a centrally condensed distribution of array baselines. The lunar farside provides shielding from terrestrial natural and technological radio interference and freedom from the corrupting influence of Earth's ionosphere. This paper will describe the science case for LIRA as well as various options for array deployment and data transmission to Earth. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Basic research in radio astronomy at the NRL is supported by the Office of Naval Research.

  13. NST: Thermal Modeling for a Large Aperture Solar Telescope

    Science.gov (United States)

    Coulter, Roy

    2011-05-01

    Late in the 1990s the Dutch Open Telescope demonstrated that internal seeing in open, large aperture solar telescopes can be controlled by flushing air across the primary mirror and other telescope structures exposed to sunlight. In that system natural wind provides a uniform air temperature throughout the imaging volume, while efficiently sweeping heated air away from the optics and mechanical structure. Big Bear Solar Observatory's New Solar Telescope (NST) was designed to realize that same performance in an enclosed system by using both natural wind through the dome and forced air circulation around the primary mirror to provide the uniform air temperatures required within the telescope volume. The NST is housed in a conventional, ventilated dome with a circular opening, in place of the standard dome slit, that allows sunlight to fall only on an aperture stop and the primary mirror. The primary mirror is housed deep inside a cylindrical cell with only minimal openings in the side at the level of the mirror. To date, the forced air and cooling systems designed for the NST primary mirror have not been implemented, yet the telescope regularly produces solar images indicative of the absence of mirror seeing. Computational Fluid Dynamics (CFD) analysis of the NST primary mirror system along with measurements of air flows within the dome, around the telescope structure, and internal to the mirror cell are used to explain the origin of this seemingly incongruent result. The CFD analysis is also extended to hypothetical systems of various scales. We will discuss the results of these investigations.

  14. Telescopic Partial Dentures-Concealed Technology

    Science.gov (United States)

    Bhagat, Tushar Vitthalrao; Walke, Ashwini Nareshchandra

    2015-01-01

    The ideal goal of good dentist is to restore the missing part of oral structure, phonetics, his look and the most important is restored the normal health of the patient, which is hampered due to less or insufficient intake of food. Removable partial denture (RPD) treatment option is considered as a notion, which precludes the inevitability of “floating plastic” in edentulous mouth, that many times fail to fulfill the above essential of the patients. In modern dentistry, though the dental implants or fixed partial denture is the better options, but they have certain limitations. However, overdentures and particularly telescopic denture is the overlooked technology in dentistry that would be a boon for such needy patients. Telescopic denture is especially indicated in the distal edentulous area with minimum two teeth bilaterally present with a good amount of periodontal support. This treatment modality is sort of preventive prosthodontics remedy, which in a conservative manner preserve the remaining teeth and helps in conservation of alveolar bone ultimately. There are two tenets related to this option, one is constant conservation edentulous ridge around the retained tooth and the most important is the endless existence of periodontal sensory action that directs and monitor gnathodynamic task. In this option the primary coping or inner coping are cemented on the prepared tooth, and a similar removable outer or inner telescopic crown placed tightly by using a mechanism of tenso-friction, this is firmly attached to a removable RPD in place without moving or rocking of the prosthesis, which is the common compliant of almost all patients of RPD. Copings are also protecting the abutment from tooth decay and also offers stabilization and maintaining of the outer crown. The outer crown engages the inner coping and gives as an anchor for the remainder of the dentition. This work is the review of telescopic prosthesis which is well supported by the case discussion, and

  15. Implementing Solar Technologies at Airports

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, A.; Romero, R.

    2014-07-01

    Federal agencies, such as the Department of Defense and Department of Homeland Security, as well as numerous private entities are actively pursuing the installation of solar technologies to help reduce fossil fuel energy use and associated emissions, meet sustainability goals, and create more robust or reliable operations. One potential approach identified for siting solar technologies is the installation of solar energy technologies at airports and airfields, which present a significant opportunity for hosting solar technologies due to large amounts of open land. This report focuses largely on the Federal Aviation Administration's (FAA's) policies toward siting solar technologies at airports.

  16. A 16-m Telescope for the Advanced Technology Large Aperture Telescope (ATLAST) Mission

    Science.gov (United States)

    Lillie, Charles F.; Dailey, D. R.; Polidan, R. S.

    2010-01-01

    Future space observatories will require increasingly large telescopes to study the earliest stars and galaxies, as well as faint nearby objects. Technologies now under development will enable telescopes much larger than the 6.5-meter diameter James Webb Space Telescope (JWST) to be developed at comparable costs. Current segmented mirror and deployable optics technology enables the 6.5 meter JWST telescope to be folded for launch in the 5-meter diameter Ariane 5 payload fairing, and deployed autonomously after reaching orbit. Late in the next decade, when the Ares V Cargo Launch Vehicle payload fairing becomes operational, even larger telescope can be placed in orbit. In this paper we present our concept for a 16-meter JWST derivative, chord-fold telescope which could be stowed in the 10-m diameter Ares V fairing, plus a description of the new technologies that enable ATLAST to be developed at an affordable price.

  17. 2010 Solar Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-01

    The U.S. Department of Energy (DOE) 2010 Solar Technologies Market Report details the market conditions and trends for photovoltaic (PV) and concentrating solar power (CSP) technologies. Produced by the National Renewable Energy Laboratory (NREL), the report provides a comprehensive overview of the solar electricity market and identifies successes and trends within the market from both global and national perspectives.

  18. Solar System Science with the James Webb Space Telescope

    Science.gov (United States)

    Hammel, Heidi B.; Norwood, J.; Chanover, N.; Hines, D. C.; Stansberry, J.; Lunine, J. I.; Tiscareno, M. S.; Milam, S. N.; Sonneborn, G.; Brown, M.

    2013-10-01

    The James Webb Space Telescope (JWST) will succeed the Hubble Space Telescope as NASA’s premier space-based platform for observational astronomy. This 6.5-meter telescope, which is optimized for observations in the near and mid infrared, will be equipped with four state-of-the-art imaging, spectroscopic, and coronagraphic instruments. These instruments, along with the telescope’s moving target capabilities, will enable the infrared study of solar system objects with unprecedented detail (see companion presentation by Sonneborn et al.). This poster features highlights for planetary science applications, extracted from a white paper in preparation. We present a number of hypothetical solar system observations as a means of demonstrating potential planetary science observing scenarios; the list of applications discussed here is far from comprehensive. The goal of this poster and the subsequent white paper is to stimulate discussion and encourage participation in JWST planning among members of the planetary science community, and to encourage feedback to the JWST Project on any desired observing capabilities, data products, and analysis procedures that would enhance the use of JWST for solar system studies. The upcoming white paper updates and supersedes the solar system white paper published by the JWST Project in 2010 (Lunine et al., 2010), and is based in part on JWST events held at the 2012 DPS, the 2013 LPSC meeting, and this DPS (JWST Town Hall, Thursday, 10 October 2013, 12-1 pm).

  19. Solar Technology Center

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Bob

    2011-04-27

    The Department of Energy, Golden Field Office, awarded a grant to the UNLV Research Foundation (UNLVRF) on August 1, 2005 to develop a solar and renewable energy information center. The Solar Technology Center (STC) is to be developed in two phases, with Phase I consisting of all activities necessary to determine feasibility of the project, including design and engineering, identification of land access issues and permitting necessary to determine project viability without permanently disturbing the project site, and completion of a National Environmental Policy Act (NEPA) Environmental Assessment. Phase II is the installation of infrastructure and related structures, which leads to commencement of operations of the STC. The STC is located in the Boulder City designated 3,000-acre Eldorado Valley Energy Zone, approximately 15 miles southwest of downtown Boulder City and fronting on Eldorado Valley Drive. The 33-acre vacant parcel has been leased to the Nevada Test Site Development Corporation (NTSDC) by Boulder City to accommodate a planned facility that will be synergistic with present and planned energy projects in the Zone. The parcel will be developed by the UNLVRF. The NTSDC is the economic development arm of the UNLVRF. UNLVRF will be the entity responsible for overseeing the lease and the development project to assure compliance with the lease stipulations established by Boulder City. The STC will be operated and maintained by University of Nevada, Las Vegas (UNLV) and its Center for Energy Research (UNLV-CER). Land parcels in the Eldorado Valley Energy Zone near the 33-acre lease are committed to the construction and operation of an electrical grid connected solar energy production facility. Other projects supporting renewable and solar technologies have been developed within the energy zone, with several more developments in the horizon.

  20. Solar System Observations with the James Webb Space Telescope

    Science.gov (United States)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; hide

    2016-01-01

    The James Webb Space Telescope (JWST) will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010. It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV, in 2012.

  1. Thermal characteristics of a classical solar telescope primary mirror

    CERN Document Server

    Banyal, Ravinder K

    2011-01-01

    We present a detailed thermal and structural analysis of a 2m class solar telescope mirror which is subjected to a varying heat load at an observatory site. A 3-dimensional heat transfer model of the mirror takes into account the heating caused by a smooth and gradual increase of the solar flux during the day-time observations and cooling resulting from the exponentially decaying ambient temperature at night. The thermal and structural response of two competing materials for optical telescopes, namely Silicon Carbide -best known for excellent heat conductivity and Zerodur -preferred for its extremely low coefficient of thermal expansion, is investigated in detail. The insight gained from these simulations will provide a valuable input for devising an efficient and stable thermal control system for the primary mirror.

  2. Progress on Space Solar Telescope in 2002-2004

    Institute of Scientific and Technical Information of China (English)

    AI Guoxiang; YAN Yihua; JIN Shengzhen

    2004-01-01

    The progress on Chinese Space Solar Telescope (SST) in 2002-2004 is introduced. The documentations on plans and outlines based on the standards of Chinese aerospace industry for SST mission has been fulfilled. The key technical problems of SST satellite platform and payloads are tackled during pre-study stage of the mission. The laboratory assembly and calibration of the main optical telescope of 1.2 m spherical mirror and 1 m plain mirror have been carried out with the accuracy of λ/40 and λ/30, respectively. The prototype at 17.1 nm for extreme ultraviolet telescope is under development and manufacture with a diameter of 13 cm. Its primary and secondary mirrors have a manufacturing error of 5nm with a roughness degree of less than 0.5 nm and a multiplayer reflection factor of better than 20%. The on-board scientific data processing unit has been developed. Prototypes for other payloads such as H and white light telescope, wide band spectroscopy in high energy and solar and interplanetary radio spectrometer have been developed accordingly.

  3. The polarization optics for the European Solar Telescope (EST)

    Science.gov (United States)

    Bettonvil, F. C. M.; Collados, M.; Feller, A.; Gelly, B. F.; Keller, C. U.; Kentischer, T. J.; López Ariste, A.; Pleier, O.; Snik, F.; Socas-Navarro, H.

    2010-07-01

    EST (European Solar Telescope) is a 4-m class solar telescope, which is currently in the conceptual design phase. EST will be located at the Canary Islands and aims at observations with the best possible spectral, spatial and temporal resolution and best polarimetric performance, of the solar photosphere and chromosphere, using a suite of instruments that can efficiently produce two-dimensional spectropolarimetric information of the thermal, dynamic and magnetic properties of the plasma over many scale heights, and ranging from λ=350 until 2300 nm. In order to be able to fulfill the stringent requirements for polarimetric sensitivity and accuracy, from the very beginning the polarimetry has been included in the design work. The overall philosophy has been to use a combination of techniques, which includes a telescope with low (and stable) instrumental polarization, optimal full Stokes polarimeters, differential measurement schemes, fast modulation and demodulation, and accurate calibration. The current baseline optical layout consists of a 14-mirror layout, which is polarimetrically compensated and nonvarying in time. In the polarization free F2 focus ample space is reserved for calibration and modulators and a polarimetric switch. At instrument level the s-, and p-planes of individual components are aligned, resulting in a system in which eigenvectors can travel undisturbed through the system.

  4. On the co-alignment of solar telescopes. A new approach to solar pointing

    Science.gov (United States)

    Staiger, J.

    2013-06-01

    Helioseismological measurements require long observing times and thus may be adversely affected by lateral image drifts as caused by pointing instabilities. At the Vacuum Tower Telescope VTT, Tenerife we have recorded drift values of up to 5" per hour under unstable thermal conditions (dome opening, strong day-to-day thermal gradients). Typically drifts of 0.5" - 1.0" per hour may be encountered under more favorable conditions. Past experience has shown that most high-resolution solar telescopes may be affected by this problem to some degree. This inherent shortcoming of solar pointing is caused by the fact that the guiding loop can be closed only within the guiding beam but not within the telescope's main beam. We have developed a new approach to this problem. We correlate continuum brightness patterns observed from within the telescope main beam with patterns originating from a full disk telescope. We show that brightness patterns of sufficient size are unique with respect to solar location at any instant of time and may serve as a location identifier. We make use of the fact that averaged location information of solar structures is invariant with respect to telescope resolution. We have carried out tests at the VTT together with SDO. We have used SDO as a full disk reference. We were able to reduce lateral image drifts by an order of magnitude.

  5. Critical Infrared Science with the Daniel K. Inouye Solar Telescope

    Science.gov (United States)

    Schad, Thomas A.; Fehlmann, Andre; Jaeggli, Sarah A.; Kuhn, Jeffrey Richard; Lin, Haosheng; Penn, Matthew J.; Rimmele, Thomas R.; Woeger, Friedrich

    2017-08-01

    Critical science planning for early operations of the Daniel K. Inouye Solar Telescope is underway. With its large aperture, all-reflective telescope design, and advanced instrumentation, DKIST provides unprecedented access to the important infrared (IR) solar spectrum between 1 and 5 microns. Breakthrough IR capabilities in coronal polarimetry will sense the coronal magnetic field routinely for the first time. The increased Zeeman resolution near the photospheric opacity minimum will provide our deepest and most sensitive measurement of quiet sun and active region magnetic fields to date. High-sensitivity He I triplet polarimetry will dynamically probe the chromospheric magnetic field in fibrils, spicules, and filaments, while observations of molecular CO transitions will characterize the coolest regions of the solar atmosphere. When combined with the longer timescales of good atmospheric seeing compared with the visible, DKIST infrared diagnostics are expected to be mainstays of solar physics in the DKIST era. This paper will summarize the critical science areas addressed by DKIST infrared instrumentation and invite the community to further contribute to critical infrared science planning.

  6. Science cases in the integrated modeling of Chinese Giant Solar Telescope

    Science.gov (United States)

    Liu, Zhong; Ji, Haisheng; Jin, Zhenyu; Lin, Jun; Deng, Yuanyong

    2016-07-01

    Science goals of telescopes are the fundament data of integrated modeling of astronomical telescopes. The differences between science goals are sources of telescope's diversities. Solar telescopes are a very special type in astronomical telescopes. Chinese Giant Solar Telescope1 (CGST) is currently designed to be an 8-meter Ring Interferometric Telescope (RIT). Even compare with the other solar telescopes, CGST is also an unusual telescope due to its ring aperture and distinctive science goals. As the initial data of integrated modeling of CGST, the main science cases determine the basic structure of the telescope as well as its working mode. This paper will discuss the importance of the primary science case in integrated modeling of CGST.

  7. Construction status of the Daniel K. Inouye solar telescope

    Science.gov (United States)

    McMullin, Joseph P.; Rimmele, Thomas R.; Warner, Mark; Pillet, Valentin M.; Casini, Roberto; Berukoff, Steve; Craig, Simon C.; Elmore, David; Ferayorni, Andrew; Goodrich, Bret D.; Hubbard, Robert P.; Harrington, David; Hegwer, Steve; Jeffers, Paul; Johansson, Erik M.; Kuhn, Jeff; Lin, Haosheng; Marshall, Heather; Mathioudakis, Mihalis; McBride, William R.; McVeigh, William; Phelps, LeEllen; Schmidt, Wolfgang; Shimko, Steve; Sueoka, Stacey; Tritschler, Alexandra; Williams, Timothy R.; Wöger, Friedrich

    2016-08-01

    We provide an update on the construction status of the Daniel K. Inouye Solar Telescope. This 4-m diameter facility is designed to enable detection and spatial/temporal resolution of the predicted, fundamental astrophysical processes driving solar magnetism at their intrinsic scales throughout the solar atmosphere. These data will drive key research on solar magnetism and its influence on solar winds, flares, coronal mass ejections and solar irradiance variability. The facility is developed to support a broad wavelength range (0.35 to 28 microns) and will employ state-of-the-art adaptive optics systems to provide diffraction limited imaging, resolving features approximately 20 km on the Sun. At the start of operations, there will be five instruments initially deployed: Visible Broadband Imager (VBI; National Solar Observatory), Visible SpectroPolarimeter (ViSP; NCAR High Altitude Observatory), Visible Tunable Filter (VTF (a Fabry-Perot tunable spectropolarimeter); Kiepenheuer Institute for Solarphysics), Diffraction Limited NIR Spectropolarimeter (DL-NIRSP; University of Hawaii, Institute for Astronomy) and the Cryogenic NIR Spectropolarimeter (Cryo-NIRSP; University of Hawaii, Institute for Astronomy). As of mid-2016, the project construction is in its 4th year of site construction and 7th year overall. Major milestones in the off-site development include the conclusion of the polishing of the M1 mirror by University of Arizona, College of Optical Sciences, the delivery of the Top End Optical Assembly (L3), the acceptance of the Deformable Mirror System (Xinetics); all optical systems have been contracted and are either accepted or in fabrication. The Enclosure and Telescope Mount Assembly passed through their factory acceptance in 2014 and 2015, respectively. The enclosure site construction is currently concluding while the Telescope Mount Assembly site erection is underway. The facility buildings (Utility and Support and Operations) have been completed with

  8. Hubble Space Telescope solar cell module thermal cycle test

    Science.gov (United States)

    Douglas, Alexander; Edge, Ted; Willowby, Douglas; Gerlach, Lothar

    1992-01-01

    The Hubble Space Telescope (HST) solar array consists of two identical double roll-out wings designed after the Hughes flexible roll-up solar array (FRUSA) and was developed by the European Space Agency (ESA) to meet specified HST power output requirements at the end of 2 years, with a functional lifetime of 5 years. The requirement that the HST solar array remain functional both mechanically and electrically during its 5-year lifetime meant that the array must withstand 30,000 low Earth orbit (LEO) thermal cycles between approximately +100 and -100 C. In order to evaluate the ability of the array to meet this requirement, an accelerated thermal cycle test in vacuum was conducted at NASA's Marshall Space Flight Center (MSFC), using two 128-cell solar array modules which duplicated the flight HST solar array. Several other tests were performed on the modules. The thermal cycle test was interrupted after 2,577 cycles, and a 'cold-roll' test was performed on one of the modules in order to evaluate the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit. A posttest static shadow test was performed on one of the modules in order to analyze temperature gradients across the module. Finally, current in-flight electrical performance data from the actual HST flight solar array will be tested.

  9. The Polarization Optics for the European Solar Telescope

    Science.gov (United States)

    Bettonvil, F. C. M.; Collados, M.; Feller, A.; Gelly, B. F.; Keller, C. U.; Kentischer, T. J.; López Ariste, A.; Pleier, O.; Snik, F.; Socas-Navarro, H.

    2011-04-01

    EST, the European Solar Telescope, is a 4-m class solar telescope, which will be located at the Canary Islands. It is currently in the conceptual design phase as a European funded project. In order to fulfill the stringent requirements for polarimetric sensitivity and accuracy, the polarimetry has been included in the design work from the very beginning. The overall philosophy has been to use a combination of techniques, which includes a telescope with low (and stable) instrumental polarization, optimal full Stokes polarimeters, differential measurement schemes, fast modulation and demodulation, and accurate calibration, and at the same time not giving up flexibility. The current baseline optical layout consists of a 14-mirror layout, which is polarimetrically compensated and non-varying in time. In the polarization free F2 focus ample space is reserved for calibration and modulators and a polarimetric switch. At instrument level the s-, and p-planes of individual components are aligned, resulting in a system in which eigenvectors can travel undisturbed through the system.

  10. Technological Aspects of Creating Large-size Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    Full Text Available A concept of the telescope creation, first of all, depends both on a choice of the optical scheme to form optical radiation and images with minimum losses of energy and information and on a choice of design to meet requirements for strength, stiffness, and stabilization characteristics in real telescope operation conditions. Thus, the concept of creating large-size telescopes, certainly, involves the use of adaptive optics methods and means.The level of technological capabilities to realize scientific and engineering ideas define a successful development of large-size optical telescopes in many respects. All developers pursue the same aim that is to raise an amount of information by increasing a main mirror diameter of the telescope.The article analyses the adaptive telescope designs developed in our country. Using a domestic ACT-25 telescope as an example, it considers creation of large-size optical telescopes in terms of technological aspects. It also describes the telescope creation concept features, which allow reaching marginally possible characteristics to ensure maximum amount of information.The article compares a wide range of large-size telescopes projects. It shows that a domestic project to create the adaptive ACT-25 super-telescope surpasses its foreign counterparts, and there is no sense to implement Euro50 (50m and OWL (100m projects.The considered material gives clear understanding on a role of technological aspects in development of such complicated optic-electronic complexes as a large-size optical telescope. The technological criteria of an assessment offered in the article, namely specific informational content of the telescope, its specific mass, and specific cost allow us to reveal weaknesses in the project development and define a reserve regarding further improvement of the telescope.The analysis of results and their judgment have shown that improvement of optical largesize telescopes in terms of their maximum

  11. Solar Sail - Fresnel Zone Plate Lens for a Large Space Based Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Early, J T

    2002-02-13

    A Fresnel zone plate lens made with solar sail material could be used as the primary optic for a very large aperture telescope on deep space probes propelled by solar sails. The large aperture telescope capability could enable significant science on fly-by missions to the asteroids, Pluto, Kuiper belt or the tort cloud and could also enable meaningful interstellar fly-by missions for laser propelled sails. This type of lens may also have some potential for laser communications and as a solar concentrator. The techniques for fabrication of meter size and larger Fresnel phase plate optics are under development at LLNL, and we are extending this technology to amplitude zone plates made from sail materials. Corrector optics to greatly extend the bandwidth of these Fresnel optics will be demonstrated in the future. This novel telescope concept will require new understanding of the fabrication, deployment and control of gossamer space structures. It will also require new materials technology for fabricating these optics and understanding their long term stability in a space environment.

  12. First results from the CERN axion solar telescope.

    Science.gov (United States)

    Zioutas, K; Andriamonje, S; Arsov, V; Aune, S; Autiero, D; Avignone, F T; Barth, K; Belov, A; Beltrán, B; Bräuninger, H; Carmona, J M; Cebrián, S; Chesi, E; Collar, J I; Creswick, R; Dafni, T; Davenport, M; Di Lella, L; Eleftheriadis, C; Englhauser, J; Fanourakis, G; Farach, H; Ferrer, E; Fischer, H; Franz, J; Friedrich, P; Geralis, T; Giomataris, I; Gninenko, S; Goloubev, N; Hasinoff, M D; Heinsius, F H; Hoffmann, D H H; Irastorza, I G; Jacoby, J; Kang, D; Königsmann, K; Kotthaus, R; Krcmar, M; Kousouris, K; Kuster, M; Lakić, B; Lasseur, C; Liolios, A; Ljubicić, A; Lutz, G; Luzón, G; Miller, D W; Morales, A; Morales, J; Mutterer, M; Nikolaidis, A; Ortiz, A; Papaevangelou, T; Placci, A; Raffelt, G; Ruz, J; Riege, H; Sarsa, M L; Savvidis, I; Serber, W; Serpico, P; Semertzidis, Y; Stewart, L; Vieira, J D; Villar, J; Walckiers, L; Zachariadou, K

    2005-04-01

    Hypothetical axionlike particles with a two-photon interaction would be produced in the sun by the Primakoff process. In a laboratory magnetic field ("axion helioscope"), they would be transformed into x-rays with energies of a few keV. Using a decommissioned Large Hadron Collider test magnet, the CERN Axion Solar Telescope ran for about 6 months during 2003. The first results from the analysis of these data are presented here. No signal above background was observed, implying an upper limit to the axion-photon coupling g(agamma)axion masses.

  13. The cern axion solar telescope (CAST): an update

    Science.gov (United States)

    Andriamonje, S.; Arsov, V.; Aune, S.; Aune, T.; Avignone, F. T.; Barth, K.; Belov, A.; Beltran, B.; Bräuninger, H.; Carmona, J.; Cebrián, S.; Chesi, E.; Cipolla, G.; Collar, J.; Creswick, R.; Dafni, T.; Davenport, M.; Dedousis, S.; Delattre, M.; Delbart, A.; Deoliveira, R.; Dilella, L.; Eleftheriadis, C.; Engelhauser, J.; Fanourakis, G.; Farach, H.; Ferrer, E.; Fischer, H.; Formenti, F.; Franz, J.; Friedrich, P.; Geralis, T.; Giomataris, I.; Gninenko, S.; Golubev, N.; Hartmann, R.; Hasinoff, M.; Heinsius, F.-H.; Hoffmann, D. H. H.; Irastorza, I.; Jacoby, J.; Joux, J.-N.; Kang, D.; Königsmann, K.; Kotthaus, R.; Krcmar, M.; Kuster, M.; Lakic, B.; Lasseur, C.; Liolios, A.; Lippitsch, A.; Ljubicic, A.; Lutz, G.; Luzon, G.; Morales, A.; Morales, J.; Mutterer, M.; Nikolaidis, A.; de Solorzano, A. Ortiz; Papaevangelou, T.; Placci, A.; Raffelt, G.; Rammos, P.; Robert, J. P.; Ruz, J.; Sarsa, M.; Schill, C.; Serber, W.; Semertzidis, Y.; Vieira, J.; Villar, J.; Vullierme, B.; Walckiers, L.; Zioutas, K.

    2005-01-01

    The CERN Axion Solar Telescope (CAST), a 10 meter long LHC, 9 Tesla, test magnet is mounted on a moving platform that tracks the sun about 1.5 hours during sunrise, again during sunset. It moves ±80 vertically and ±400 horizontally. It has been taking data continuously since July 10, 2003. Data analyzed thus far yield an upper bound on the photon-axion coupling constant, gaγγ ⩽ 3 × 10-10 GeV-1 for axion masses less than 5 × 10-2 eV.

  14. Overview of key technologies for TMT telescope structure

    Science.gov (United States)

    Ezaki, Yutaka; Kato, Atsushi; Hattori, Tomoya; Saruta, Yusuke; Sofuku, Satoru; Nakaoji, Toshitaka; Kawaguchi, Noboru; Takaki, Junji; Horiuchi, Yasushi; Haruna, Masaki; Tabata, Masaki; Hosokawa, Yoshihiro; Kusumoto, Hiroshi; Usuda, Tomonori

    2016-07-01

    For the Thirty Meter Telescope (TMT) that aims high-resolution and high-sensitivity observations for optical-infrared astronomy, detailed design is underway for Telescope Structure System (STR) including the mount control system and the segment handling system. The technical requirements for the STR system are very challenging on its performance and interface condition with telescope-mounted optics and observation instruments. The major challenging technical requirements include low flexure of mirror support structure and low optical path length variation due to gravitational deformation, high seismic performance against large earthquake, very accurate mount drive control for high tracking and guiding performance, and fast, safe and labor-saving segment exchange. To meet these technical requirements, Mitsubishi Electric Corporation (MELCO) has made a detailed design and technology development. In this paper, overview of major key technologies is introduced that is adopted for the TMT telescope structure in the detailed design and technology development.

  15. Reliability models applicable to space telescope solar array assembly system

    Science.gov (United States)

    Patil, S. A.

    1986-01-01

    A complex system may consist of a number of subsystems with several components in series, parallel, or combination of both series and parallel. In order to predict how well the system will perform, it is necessary to know the reliabilities of the subsystems and the reliability of the whole system. The objective of the present study is to develop mathematical models of the reliability which are applicable to complex systems. The models are determined by assuming k failures out of n components in a subsystem. By taking k = 1 and k = n, these models reduce to parallel and series models; hence, the models can be specialized to parallel, series combination systems. The models are developed by assuming the failure rates of the components as functions of time and as such, can be applied to processes with or without aging effects. The reliability models are further specialized to Space Telescope Solar Arrray (STSA) System. The STSA consists of 20 identical solar panel assemblies (SPA's). The reliabilities of the SPA's are determined by the reliabilities of solar cell strings, interconnects, and diodes. The estimates of the reliability of the system for one to five years are calculated by using the reliability estimates of solar cells and interconnects given n ESA documents. Aging effects in relation to breaks in interconnects are discussed.

  16. The Solar Optical Telescope on Hinode: Performance and Capabilities

    Science.gov (United States)

    Tarbell, Theodore D.; Tsuneta, S.; SOT Team

    2007-05-01

    The Hinode (Solar B) satellite includes the Solar Optical Telescope (SOT) with its 50 cm diameter Optical Telescope Assembly (OTA) and Focal Plane Package (FPP), for near UV and visible observations of the photosphere and chromosphere at very high (diffraction limited) angular resolution. The FPP has a Spectropolarimeter (SP) for precision measurements of photospheric vector magnetic fields over a 160 x 320 arcsecond field of view; a Narrowband Filter Imager (NFI) with a tunable birefringent filter for magnetic, Doppler, and intensity maps over the same field of view; and a Broadband Filter Imager (BFI) for highest resolution images in six wavelengths (G band, Ca II H, continua, etc.) over two thirds of that field of view. A polarization modulator in the telescope allows measurement of Stokes parameters at all wavelengths in the SP and NFI. This poster gives examples of SOT observables from the performance verification and initial observing phases of the mission. The SP routinely collects Stokes profiles with spatial resolution 0.16 arc seconds (pixel) and rms noise less than 0.001. Initially the NFI only made magnetograms in Fe I 6302.5 with rms noise less than 0.002; more recently it has begun to observe the other photospheric and chromospheric lines available. The BFI movies have unprecedented uniformity and stability for such high spatial resolution; cadence can be 4 seconds or less. All images are stabilized to 0.01 arc seconds by a tip tilt mirror and correlation tracker. The process for requesting Hinode observations is described, along with guidelines for SOT observing programs. Starting in May, 2007, the Hinode data policy becomes completely open, with all data available to the community immediately after receipt and reformatting at ISAS. Hinode is an international cooperative mission between JAXA/ISAS of Japan, NASA of the United States, PPARC of the United Kingdom, and ESA.

  17. Daniel K. Inouye Solar Telescope: High-resolution observing of the dynamic Sun

    Science.gov (United States)

    Tritschler, A.; Rimmele, T. R.; Berukoff, S.; Casini, R.; Kuhn, J. R.; Lin, H.; Rast, M. P.; McMullin, J. P.; Schmidt, W.; Wöger, F.; DKIST Team

    2016-11-01

    The 4-m aperture Daniel K. Inouye Solar Telescope (DKIST) formerly known as the Advanced Technology Solar Telescope (ATST) is currently under construction on Haleakalā (Maui, Hawai'i) projected to start operations in 2019. At the time of completion, DKIST will be the largest ground-based solar telescope providing unprecedented resolution and photon collecting power. The DKIST will be equipped with a set of first-light facility-class instruments offering unique imaging, spectroscopic and spectropolarimetric observing opportunities covering the visible to infrared wavelength range. This first-light instrumentation suite will include: a Visible Broadband Imager (VBI) for high-spatial and -temporal resolution imaging of the solar atmosphere; a Visible Spectro-Polarimeter (ViSP) for sensitive and accurate multi-line spectropolarimetry; a Fabry-Pérot based Visible Tunable Filter (VTF) for high-spatial resolution spectropolarimetry; a fiber-fed Diffraction-Limited Near Infra-Red Spectro-Polarimeter (DL-NIRSP) for two-dimensional high-spatial resolution spectropolarimetry (simultaneous spatial and spectral information); and a Cryogenic Near Infra-Red Spectro-Polarimeter (Cryo-NIRSP) for coronal magnetic field measurements and on-disk observations of, e.g., the CO lines at 4.7 μm. We will provide an overview of the DKIST's unique capabilities with strong focus on the first-light instrumentation suite, highlight some of the additional properties supporting observations of transient and dynamic solar phenomena, and touch on some operational strategies and the DKIST critical science plan.

  18. Future technologies for optical and infrared telescopes and instruments

    Science.gov (United States)

    Cunningham, Colin

    2009-08-01

    The theme of this conference is the evolution of telescopes over the last 400 years. I present my view on what the major leaps of technology have been, and attempt to predict what new technologies could come along in the next 50 years to change the way we do astronomy and help us make new discoveries. Are we approaching a peak of innovation and discovery, and will this be followed by a slow decline? Or are there prospects for even further technology leaps and consequent new discoveries? Will global resource and financial crises bring an end to our great ambitions, or will we continue with bigger telescopes and more ambitious space observatories?

  19. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    Science.gov (United States)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  20. The Effect of Tropopause Seeing on Solar Telescope Site Testing

    Science.gov (United States)

    Beckers, Jacques M.

    2017-08-01

    The site testing for and seeing correction planning of the 4-m solar telescopes has failed to take into account the significant amount of seeing at tropopause levels (10-20 km altitude).The worst aspect of that seeing layer is its small isoplanatic patch size which at low solar elevations can be significantly less than 1 arcsec. The CLEAR/ATST/DKIST SDIMM seeing monitor is insensitive to this type of seeing. A correction for this missed seeing significantly decreases the measured seeing qualities for the sites tested especially in the early morning and late afternoon. It clearly shows the lake site to be superior with mid-day observations much to be preferred. The small tropopause isoplanatic patch size values also complicate the implementation of the solar MCAO systems aimed at large field-of-view sun imaging. Currently planned systems only correct for lower-layer seeing for which the isoplanatic patch size is about one arc minute. To fully achieve the diffraction limit of the 4-meter class (0.025 arcsec at 500 nm), over a large enough field-of-view to be of scientific interest, complicated Multi-Conjugate Adaptive Optics systems will be needed.

  1. Telescope technology for space-borne submillimeter astronomy

    Science.gov (United States)

    Lehman, David H.; Helou, George

    1990-01-01

    The Precision Segmented Reflector (PSR) project which is developing telescope technology needed for future spaceborne submillimeter astronomy missions is described. Four major technical areas are under development. Lighweight composite mirrors and associated materials, precision structures and segmented reflector figure sensing and control are discussed. The objectives of the PSR project, approaches, and project technology status, are reported.

  2. Calibration of the Multi-Spectral Solar Telescope Array multilayer mirrors and XUV filters

    Science.gov (United States)

    Allen, Maxwell J.; Willis, Thomas D.; Kankelborg, Charles C.; O'Neal, Ray H.; Martinez-Galarce, Dennis S.; Deforest, Craig E.; Jackson, Lisa; Lindblom, Joakim; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.

    1993-01-01

    The Multi-Spectral Solar Telescope Array (MSSTA), a rocket-borne solar observatory, was successfully flown in May, 1991, obtaining solar images in eight XUV and FUV bands with 12 compact multilayer telescopes. Extensive measurements have recently been carried out on the multilayer telescopes and thin film filters at the Stanford Synchrotron Radiation Laboratory. These measurements are the first high spectral resolution calibrations of the MSSTA instruments. Previous measurements and/or calculations of telescope throughputs have been confirmed with greater accuracy. Results are presented on Mo/Si multilayer bandpass changes with time and experimental potassium bromide and tellurium filters.

  3. An astro-comb calibrated solar telescope to study solar activity and search for the radial velocity signature of Venus

    Science.gov (United States)

    Phillips, David; HARPS-N Collaboration

    2017-01-01

    We recently demonstrated sub-m/s sensitivity in measuring the radial velocity (RV) between the Earth and Sun using a simple solar telescope feeding the HARPS-N spectrograph at the Italian National Telescope, which is calibrated with a laser frequency comb calibrator optimized for calibrating high resolution spectrographs and referred to as an astro-comb. We are using the solar telescope to characterize the effects of stellar (solar) RV jitter due to activity on the solar surface over the course of many hours every clear day. With the help of solar satellites such as the Solar Dynamics Observatory (SDO), we are characterizing the correlation between observed RV and detailed imaging of the solar photosphere. We plan to use these tools to mitigate the effects of stellar jitter with the goal of the detection of Venus from its solar RV signature, thus showing the potential of the RV technique to detect true Earth-twins.

  4. Surveying the Inner Solar System with an Infrared Space Telescope

    Science.gov (United States)

    Buie, Marc W.; Reitsema, Harold J.; Linfield, Roger P.

    2016-11-01

    We present an analysis of surveying the inner solar system for objects that may pose some threat to Earth. Most of the analysis is based on understanding the capability provided by Sentinel, a concept for an infrared space-based telescope placed in a heliocentric orbit near the distance of Venus. From this analysis, we show that (1) the size range being targeted can affect the survey design, (2) the orbit distribution of the target sample can affect the survey design, (3) minimum observational arc length during the survey is an important metric of survey performance, and (4) surveys must consider objects as small as D=15{--}30 m to meet the goal of identifying objects that have the potential to cause damage on Earth in the next 100 yr. Sentinel will be able to find 50% of all impactors larger than 40 m in a 6.5 yr survey. The Sentinel mission concept is shown to be as effective as any survey in finding objects bigger than D = 140 m but is more effective when applied to finding smaller objects on Earth-impacting orbits. Sentinel is also more effective at finding objects of interest for human exploration that benefit from lower propulsion requirements. To explore the interaction between space and ground search programs, we also study a case where Sentinel is combined with the Large Synoptic Survey Telescope (LSST) and show the benefit of placing a space-based observatory in an orbit that reduces the overlap in search regions with a ground-based telescope. In this case, Sentinel+LSST can find more than 70% of the impactors larger than 40 m assuming a 6.5 yr lifetime for Sentinel and 10 yr for LSST.

  5. High-performance parallel image reconstruction for the New Vacuum Solar Telescope

    Science.gov (United States)

    Li, Xue-Bao; Liu, Zhong; Wang, Feng; Jin, Zhen-Yu; Xiang, Yong-Yuan; Zheng, Yan-Fang

    2015-06-01

    Many technologies have been developed to help improve spatial resolution of observational images for ground-based solar telescopes, such as adaptive optics (AO) systems and post-processing reconstruction. As any AO system correction is only partial, it is indispensable to use post-processing reconstruction techniques. In the New Vacuum Solar Telescope (NVST), a speckle-masking method is used to achieve the diffraction-limited resolution of the telescope. Although the method is very promising, the computation is quite intensive, and the amount of data is tremendous, requiring several months to reconstruct observational data of one day on a high-end computer. To accelerate image reconstruction, we parallelize the program package on a high-performance cluster. We describe parallel implementation details for several reconstruction procedures. The code is written in the C language using the Message Passing Interface (MPI) and is optimized for parallel processing in a multiprocessor environment. We show the excellent performance of parallel implementation, and the whole data processing speed is about 71 times faster than before. Finally, we analyze the scalability of the code to find possible bottlenecks, and propose several ways to further improve the parallel performance. We conclude that the presented program is capable of executing reconstruction applications in real-time at NVST.

  6. Advanced manufacturing technologies for the BeCOAT telescope

    Science.gov (United States)

    Sweeney, Michael N.; Rajic, Slobodan; Seals, Roland D.

    1994-02-01

    The beryllium cryogenic off-axis telescope (BeCOAT) uses a two-mirror, non re-imaging, off- axis, Ritchey Chretian design with all-beryllium optics, structures and baffles. The purpose of this telescope is the system level demonstration of advanced manufacturing technologies for optics, optical benches, and baffle assemblies. The key issues that are addressed are single point diamond turning of beryllium optics, survivable fastening techniques, minimum beryllium utilization, and technologies leading to self-aligning, all-beryllium optical systems.

  7. The 2016 Transit of Mercury Observed from Major Solar Telescopes and Satellites

    Science.gov (United States)

    Pasachoff, Jay M.; Schneider, Glenn; Gary, Dale; Chen, Bin; Sterling, Alphonse C.; Reardon, Kevin P.; Dantowitz, Ronald; Kopp, Greg A.

    2016-10-01

    We report observations from the ground and space of the 9 May 2016 transit of Mercury. We build on our explanation of the black-drop effect in transits of Venus based on spacecraft observations of the 1999 transit of Mercury (Schneider, Pasachoff, and Golub, Icarus 168, 249, 2004). In 2016, we used the 1.6-m New Solar Telescope at the Big Bear Solar Observatory with active optics to observe Mercury's transit at high spatial resolution. We again saw a small black-drop effect as 3rd contact neared, confirming the data that led to our earlier explanation as a confluence of the point-spread function and the extreme solar limb darkening (Pasachoff, Schneider, and Golub, in IAU Colloq. 196, 2004). We again used IBIS on the Dunn Solar Telescope of the Sacramento Peak Observatory, as A. Potter continued his observations, previously made at the 2006 transit of Mercury, at both telescopes of the sodium exosphere of Mercury (Potter, Killen, Reardon, and Bida, Icarus 226, 172, 2013). We imaged the transit with IBIS as well as with two RED Epic IMAX-quality cameras alongside it, one with a narrow passband. We show animations of our high-resolution ground-based observations along with observations from XRT on JAXA's Hinode and from NASA's Solar Dynamics Observatory. Further, we report on the limit of the transit change in the Total Solar Irradiance, continuing our interest from the transit of Venus TSI (Schneider, Pasachoff, and Willson, ApJ 641, 565, 2006; Pasachoff, Schneider, and Willson, AAS 2005), using NASA's SORCE/TIM and the Air Force's TCTE/TIM. See http://transitofvenus.info and http://nicmosis.as.arizona.edu.Acknowledgments: We were glad for the collaboration at Big Bear of Claude Plymate and his colleagues of the staff of the Big Bear Solar Observatory. We also appreciate the collaboration on the transit studies of Robert Lucas (Sydney, Australia) and Evan Zucker (San Diego, California). JMP appreciates the sabbatical hospitality of the Division of Geosciences and

  8. Solar photovoltaics - An aerospace technology

    Science.gov (United States)

    Goldsmith, J. V.

    1977-01-01

    Specific problems affecting the development of low-cost silicon solar array power sources are discussed, taking into account the potential of realizing less than $0.50/per peak watt of silicon solar array technology. A utilization of less expensive processes for the manufacture of pure silicon and more economical procedures of silicon crystal and wafer production appear desirable. Attention is given to a sheet growth process example and a concept of pulsed processing for automated cell production.

  9. 2008 Solar Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-01-29

    The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry employment trends. Chapter 3 presents cost, price, and performance trends. Chapter 4 discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. Chapter 5 provides data on private investment trends and near-term market forecasts.

  10. Preparing the Public for the James Webb Space Telescope and its Exploration of the Solar System

    Science.gov (United States)

    Green, Joel D.; Smith, Denise A.; Meinke, Bonnie K.; Jirdeh, Hussein; Office of Public Outreach

    2016-10-01

    The James Webb Space Telescope (JWST) is the successor to the Hubble Space Telescope. STScI and the Office of Public Outreach are committed to bringing awareness of the technology, the excitement, and the future science potential of this great observatory to the public and to the scientific community, prior to its 2018 launch. The challenges in ensuring the high profile of JWST (understanding the infrared, the vast distance to the telescope's final position, and the unfamiliar science territory) requires us to lay the proper background. We currently engage the full range of the public and scientific communities using a variety of high impact, memorable initiatives, in combination with modern technologies to extend reach, linking the science goals of Webb to the ongoing discoveries being made by Hubble. We have injected Webb-specific content into ongoing outreach programs: for example, simulated, scientifically-inspired but aesthetic JWST scenes (illustrating the differences between JWST and previous missions); partnering with high impact science communicators such as MinutePhysics to produce timely and concise content; incorporating JWST science into activities at large scale events. JWST has unique observational capabilities that optimize its ability ot study the Solar System: monitoring weather, tracking and measuring dusty objects, collaborative parallax observations with other observatories, and more. We discuss some of the ways we engage the public on these concepts.

  11. Space solar telescope in soft X-ray and EUV band

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper we have reviewed our achievements in soft X-ray and extreme ultraviolet (EUV) optics. Up to now, the research system of soft X-ray and EUV optics has been established, including light sources, detectors, calibrations, optical testing and machining of super smooth mirrors, and fabrications of multilayer film mirrors. Based on our achievements, we have developed two types of solar space telescopes for the soft X-ray and EUV space solar observations. One is an EUV multilayer normal incident telescope array including 4 different operation wavelength telescopes. The operation wavelengths of the EUV telescope are 13.0, 17.1, 19.5 and 30.4 nm. The other is a complex space solar telescope, which is composed of an EUV multilayer normal incident telescope and a soft X-ray grazing incident telescope. The EUV multilayer normal incident telescope stands in the central part of the soft X-ray grazing incident telescope. The normal incident telescope and the grazing incident telescope have a common detector. The different operation wavelengths can be changed by rotating a filter wheel.

  12. Space solar telescope in soft X-ray and EUV band

    Institute of Scientific and Technical Information of China (English)

    CHEN Bo; LIU Zhen; YANG Lin; GAO Liang; HE Fei; WANG XiaoGuang; NI QiLiang

    2009-01-01

    In this paper we have reviewed our achievements in soft X-ray and extreme ultraviolet (EUV) optics. Up to now, the research system of soft X-ray and EUV optics has been established, including light sources, detectors, calibrations, optical testing and machining of super smooth mirrors, and fabrications of multilayer film mirrors. Based on our achievements, we have developed two types of solar space tele-scopes for the soft X-ray and EUV space solar observations. One is an EUV multilayer normal incident telescope array including 4 different operation wavelength telescopes. The operation wavelengths of the EUV telescope are 13.0, 17.1, 19.5 and 30.4 nm. The other is a complex space solar telescope, which is composed of an EUV multilayer normal incident telescope and a soft X-rey grazing incident telescope. The EUV multilayer normal incident telescope stands in the central part of the soft X-ray grazing inci-dent telescope. The normal incident telescope and the grazing incident telescope have a common de-tector. The different operation wavelengths can be changed by rotating a filter wheel.

  13. Solar System science with the Large Synoptic Survey Telescope

    Science.gov (United States)

    Jones, Lynne; Brown, Mike; Ivezić, Zeljko; Jurić, Mario; Malhotra, Renu; Trilling, David

    2015-11-01

    The Large Synoptic Survey Telescope (LSST; http://lsst.org) will be a large-aperture, wide-field, ground-based telescope that will survey half the sky every few nights in six optical bands from 320 to 1050 nm. It will explore a wide range of astrophysical questions, ranging from performing a census of the Solar System, to examining the nature of dark energy. It is currently in construction, slated for first light in 2019 and full operations by 2022.The LSST will survey over 20,000 square degrees with a rapid observational cadence, to typical limiting magnitudes of r~24.5 in each visit (9.6 square degree field of view). Automated software will link the individual detections into orbits; these orbits, as well as precisely calibrated astrometry (~50mas) and photometry (~0.01-0.02 mag) in multiple bandpasses will be available as LSST data products. The resulting data set will have tremendous potential for planetary astronomy; multi-color catalogs of hundreds of thousands of NEOs and Jupiter Trojans, millions of asteroids, tens of thousands of TNOs, as well as thousands of other objects such as comets and irregular satellites of the major planets.LSST catalogs will increase the sample size of objects with well-known orbits 10-100 times for small body populations throughout the Solar System, enabling a major increase in the completeness level of the inventory of most dynamical classes of small bodies and generating new insights into planetary formation and evolution. Precision multi-color photometry will allow determination of lightcurves and colors, as well as spin state and shape modeling through sparse lightcurve inversion. LSST is currently investigating survey strategies to optimize science return across a broad range of goals. To aid in this investigation, we are making a series of realistic simulated survey pointing histories available together with a Python software package to model and evaluate survey detections for a user-defined input population. Preliminary

  14. A scientific assessment of a new technology orbital telescope

    Science.gov (United States)

    1995-01-01

    As part of a program designed to test the Alpha chemical laser weapons system in space, the Ballistic Missile Defense Organization (BMDO) developed components of an agile, lightweight, 4-meter telescope, equipped with an advanced active-optics system. BMDO had proposed to make space available in the telescope's focal plane for instrumentation optimized for scientific applications in astrophysics and planetary astronomy for a potential flight mission. Such a flight mission could be undertaken if new or additional sponsorship can be found. Despite this uncertainty, BMDO requested assistance in defining the instrumentation and other design aspects necessary to enhance the scientific value of a pointing and tracking mission. In response to this request, the Space Studies Board established the Task Group on BMDO New Technology Orbital Observatory (TGBNTOO) and charged it to: (1) provide instrumentation, data management, and science-operations advice to BMDO to optimize the scientific value of a 4-meter mission; and (2) support a space studies board assessment of the relative scientific merit of the program. This report deals with the first of these tasks, assisting the Advanced Technology Demonstrator's (ATD's) program scientific potential. Given the potential scientific aspects of the 4-meter telescope, this project is referred to as the New Technology Orbital Telescope (NTOT), or as the ATD/NTOT, to emphasize its dual-use character. The task group's basic conclusion is that the ATD/NTOT mission does have the potential for contributing in a major way to astronomical goals.

  15. Telescopes for solar research; from Scheiner's Helioscopium to De la Rue's Photoheliograph.

    Science.gov (United States)

    Abrahams, P.

    2002-12-01

    Early telescopes used for solar observation were usually standard instruments, equipped with a filter or used in projection mode. The occasional exceptions were telescopes designed or modified for viewing, drawing, or photographing the sun. Christoph Scheiner observed sunspots regularly & systematically for 15 years, beginning early in 1611. A simple projection telescope was replaced with his Helioscopium, which was probably the first equatorially mounted telescope. Robert Hooke published a booklet in 1676 titled `Helioscopes', filled with an array of highly ingenious telescope designs, some of which were designed for solar observation and some of which were constructed and used. Warren De la Rue designed a photographic solar telescope, built by Andrew Ross in 1857 for the use of the Royal Society to establish a continuous record of solar activity. This photoheliograph was responsible for several important discoveries. Improvements in solar instruments led to advances in knowledge of the sun, and the contributions of some early solar telescopes and their makers will be recognized in this paper.

  16. Daniel K. Inouye Solar Telescope: integration, testing, and commissioning planning

    Science.gov (United States)

    Craig, Simon; Gonzales, Kerry; Hubbard, Robert P.; Liang, Chen; Kneale, Ruth A.; McBride, William R.; Sekulic, Predrag; Williams, Timothy R.

    2016-08-01

    The Daniel K. Inouye Solar Telescope (DKIST) has been in its construction phase since 2010, anticipating the onset of the integration, test, and commissioning (IT&C) phase in early 2017, and the commencement of science verification in 2019. The works on Haleakala are progressing at a phenomenal rate and many of the various subsystems are either through or about to enter their Factory (or Laboratory) acceptance. The delays in obtaining site planning permissions, while a serious issue for Project Management, has allowed the sub-systems to develop well ahead of their required delivery to site. We have benefited from the knowledge that many sub-systems will be on site and ready for integration well before affecting the critical path. Opportunities have been presented for additional laboratory/factory testing which, while not free, significantly reduce the risks of potential delays and rework on site. From the perspective of IT&C this has provided an opportunity to develop the IT&C plans and schedules free from the pressures of imminent deployment. In this paper we describe the ongoing planning of the Integration, Testing and Commissioning (IT&C) phase of the project in particular the detailed planning phase that we are currently developing.

  17. Surveying the Inner Solar System with an Infrared Space Telescope

    CERN Document Server

    Buie, Marc W; Linfield, Roger P

    2016-01-01

    We present an analysis of surveying the inner Solar System for objects that may pose some threat to the Earth. Most of the analysis is based on understanding the capability provided by Sentinel, a concept for an infrared space-based telescope placed in a heliocentric orbit near the distance of Venus. From this analysis, we show 1) the size range being targeted can affect the survey design, 2) the orbit distribution of the target sample can affect the survey design, 3) minimum observational arc length during the survey is an important metric of survey performance, and 4) surveys must consider objects as small as D=15-30 m to meet the goal of identifying objects that have the potential to cause damage on Earth in the next 100 years. Sentinel will be able to find 50% of all impactors larger than 40 meters in a 6.5 year survey. The Sentinel mission concept is shown to be as effective as any survey in finding objects bigger than D=140 m but is more effective when applied to finding smaller objects on Earth-impacti...

  18. Cooling a solar telescope enclosure: plate coil thermal analysis

    Science.gov (United States)

    Gorman, Michael; Galapon, Chriselle; Montijo, Guillermo; Phelps, LeEllen; Murga, Gaizka

    2016-08-01

    The climate of Haleakalā requires the observatories to actively adapt to changing conditions in order to produce the best possible images. Observatories need to be maintained at a temperature closely matching ambient or the images become blurred and unusable. The Daniel K. Inouye Solar Telescope is a unique telescope as it will be active during the day as opposed to the other night-time stellar observatories. This means that it will not only need to constantly match the ever-changing temperature during the day, but also during the night so as not to sub-cool and affect the view field of other telescopes while they are in use. To accomplish this task, plate coil heat exchanger panels will be installed on the DKIST enclosure that are designed to keep the temperature at ambient temperature +0°C/-4°C. To verify the feasibility of this and to validate the design models, a test rig has been installed at the summit of Haleakalā. The project's purpose is to confirm that the plate coil panels are capable of maintaining this temperature throughout all seasons and involved collecting data sets of various variables including pressures, temperatures, coolant flows, solar radiations and wind velocities during typical operating hours. Using MATLAB, a script was written to observe the plate coil's thermal performance. The plate coil did not perform as expected, achieving a surface temperature that was generally 2ºC above ambient temperature. This isn't to say that the plate coil does not work, but the small chiller used for the experiment was undersized resulting in coolant pumped through the plate coil that was not supplied at a low enough temperature. Calculated heat depositions were about 23% lower than that used as the basis of the design for the hillers to be used on the full system, a reasonable agreement given the fact that many simplifying assumptions were used in the models. These were not carried over into the testing. The test rig performance showing a 23% margin

  19. The IMaX polarimeter for the solar telescope SUNRISE of the NASA long duration balloon program

    Science.gov (United States)

    Alvarez-Herrero, A.; Martínez-Pillet, V.; Del Toro Iniesta, J. C.; Domingo, V.

    2010-06-01

    On June 8th 2009 the SUNRISE mission was successfully launched. This mission consisted of a 1m aperture solar telescope on board of a stratospheric balloon within the Long Duration Balloon NASA program. The flight followed the foreseen circumpolar trajectory over the Artic and the duration was 5 days and 17 hours. One of the two postfocal instruments onboard was IMaX, the Imaging Magnetograph eXperiment. This instrument is a solar magnetograph which is a diffraction limited imager capable to resolve 100 km on the solar surface, and simultaneously a high sensitivity polarimeter (Aeroespacial field and it is an important precedent for future space missions such as Solar Orbiter from ESA. Among these novel technologies the utilization of Liquid Crystal Variable Retarders (LCVRs) as polarization modulators and a LiNbO3 etalon as tunable spectral filter are remarkable. Currently the data obtained is being analyzed and the preliminary results show unprecedented information about the solar dynamics.

  20. Site survey instrumentation for the National New Technology Telescope (NNTT)

    Science.gov (United States)

    Forbes, F. F.; Morse, D. A.; Poczulp, G. A.

    1988-10-01

    The characterization of atmospheric turbulence at and above the two candidate sites for the 15 m National New Technology Telescope (NNTT) has required the development of specialized measurement techniques. The equipment used to measure astronomical seeing, microthermals, water vapor, and temperature is discussed, along with sample data and calibration results. By use of instruments with overlapping altitude coverage, it has been possible to 'bookkeep' qualitatively all of the sources of innate degradation, especially near the ground.

  1. Vibration measurements of the Daniel K. Inouye Solar Telescope mount, Coudé rotator, and enclosure assemblies

    Science.gov (United States)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K. Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, with a 4-meter off-axis primary mirror and 16 meter rotating Coudé laboratory within the telescope pier. The off-axis design requires a mount similar to an 8-meter on-axis telescope. Both the telescope mount and the Coudé laboratory utilize a roller bearing technology in place of the more commonly used hydrostatic bearings. The telescope enclosure utilizes a crawler mechanism for the altitude axis. As these mechanisms have not previously been used in a telescope, understanding the vibration characteristics and the potential impact on the telescope image is important. This paper presents the methodology used to perform jitter measurements of the enclosure and the mount bearings and servo system in a high-noise environment utilizing seismic accelerometers and high dynamic-range data acquisition equipment, along with digital signal processing (DSP) techniques. Data acquisition and signal processing were implemented in MATLAB. In the factory acceptance testing of the telescope mount, multiple accelerometers were strategically located to capture the six axes-of-motion of the primary and secondary mirror dummies. The optical sensitivity analysis was used to map these mirror mount displacements and rotations into units of image motion on the focal plane. Similarly, tests were done with the Coudé rotator, treating the entire rotating instrument lab as a rigid body. Testing was performed by recording accelerometer data while the telescope control system performed tracking operations typical of various observing scenarios. The analysis of the accelerometer data utilized noise-averaging fast Fourier transform (FFT) routines, spectrograms, and periodograms. To achieve adequate dynamic range at frequencies as low as 3Hz, the use of special filters and advanced windowing functions were necessary. Numerous identical automated tests were compared to identify and select the data sets

  2. Slipping reconnection in a solar flare observed in high resolution with the GREGOR solar telescope

    CERN Document Server

    Sobotka, M; Denker, C; Balthasar, H; Jurčák, J; Liu, W; Berkefeld, T; Vera, M Collados; Feller, A; Hofmann, A; Kneer, F; Kuckein, C; Lagg, A; Louis, R E; von der Lühe, O; Nicklas, H; Schlichenmaier, R; Schmidt, D; Schmidt, W; Sigwarth, M; Solanki, S K; Soltau, D; Staude, J; Strassmeier, K G; Volkmer, R; Waldmann, T

    2016-01-01

    A small flare ribbon above a sunspot umbra in active region 12205 was observed on November 7, 2014, at 12:00 UT in the blue imaging channel of the 1.5 m GREGOR telescope, using a 1 A Ca II H interference filter. Context observations from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO), the Solar Optical Telescope (SOT) onboard Hinode, and the Interface Region Imaging Spectrograph (IRIS) show that this ribbon is part of a larger one that extends through the neighboring positive polarities and also participates in several other flares within the active region. We reconstructed a time series of 140 seconds of Ca II H images by means of the multiframe blind deconvolution method, which resulted in spatial and temporal resolutions of 0.1 arcsec and 1 s. Light curves and horizontal velocities of small-scale bright knots in the observed flare ribbon were measured. Some knots are stationary, but three move along the ribbon with speeds of 7-11 km/s. Two of them move in the opposite d...

  3. Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    Science.gov (United States)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David

    2010-01-01

    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  4. Solar system radio emissions studies with the largest low-frequency radio telescopes

    Science.gov (United States)

    Zakharenko, V.; Konovalenko, A.; Litvinenko, G.; Kolyadin, V.; Zarka, P.; Mylostna, K.; Vasylieva, I.; Griessmeier, J.-M.; Sidorchuk, M.; Rucker, H.; Fischer, G.; Cecconi, B.; Coffre, A.; Denis, L.; Shevchenko, V.; Nikolaenko, V.

    2014-04-01

    We describe the trends and tasks in the field of lowfrequency studies of radio emission from the Solar system's objects. The world's largest decameter radio telescopes UTR-2 and URAN have a unique combination of sensitivity and time/frequency resolution parameters, providing the capability of the most detailed studies of various types of solar and planetary emissions.

  5. Solar Energy Technologies Program Newsletter - July 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-07-01

    This quarterly newsletter is intended for participants and stakeholders in the DOE Solar Program. The content includes features on technology development, market transformation, and policy analysis for solar. Highlights include solar industry updates, DOE funding opportunity announcements and awards, and national laboratory technology developments.

  6. Solar Energy Technologies Program Newsletter - September 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-10-01

    This quarterly newsletter is intended for participants and stakeholders in the DOE Solar Program. The content includes features on technology development, market transformation, and policy analysis for solar. Highlights include solar industry updates, DOE funding opportunity announcements and awards, and national laboratory technology developments.

  7. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  8. 2008 Solar Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Price, S.; Margolis, R.; Barbose, G.; Bartlett, J.; Cory, K.; Couture, T.; DeCesaro, J.; Denholm, P.; Drury, E.; Frickel, M.; Hemmeline, C.; Mendelsohn, T.; Ong, S.; Pak, A.; Poole, L.; Peterman, C.; Schwabe, P.; Soni, A.; Speer, B.; Wiser, R.; Zuboy, J.; James, T.

    2010-01-01

    The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry employment trends. Chapter 3 presents cost, price, and performance trends. Chapter 4 discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. Chapter 5 provides data on private investment trends and near-term market forecasts. Highlights of this report include: (1) The global PV industry has seen impressive growth rates in cell/module production during the past decade, with a 10-year compound annual growth rate (CAGR) of 46% and a 5-year CAGR of 56% through 2008. (2) Thin-film PV technologies have grown faster than crystalline silicon over the past 5 years, with a 10-year CAGR of 47% and a 5-year CAGR of 87% for thin-film shipments through 2008. (3) Global installed PV capacity increased by 6.0 GW in 2008, a 152% increase over 2.4 GW installed in 2007. (4) The United States installed 0.34 GW of PV capacity in 2008, a 63% increase over 0.21 GW in 2007. (5) Global average PV module prices dropped 23% from $4.75/W in 1998 to $3.65/W in 2008. (6) Federal legislation, including the Emergency Economic Stabilization Act of 2008 (EESA, October 2008) and the American Recovery and Reinvestment Act (ARRA, February 2009), is providing unprecedented levels of support for the U.S. solar industry. (7) In 2008, global private-sector investment in solar energy technology topped $16 billion, including almost $4 billion invested in the United States. (8) Solar PV market forecasts made in early 2009 anticipate global PV production and demand to increase fourfold between 2008 and 2012, reaching roughly 20 GW of production and demand by 2012. (9

  9. Advanced Technology Large-Aperture Space Telescope (ATLAST): A Technology Roadmap for the Next Decade

    CERN Document Server

    Postman, Marc

    2009-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation of UVOIR space observatory with a primary aperture diameter in the 8-m to 16-m range that will allow us to perform some of the most challenging observations to answer some of our most compelling questions, including "Is there life elsewhere in the Galaxy?" We have identified two different telescope architectures, but with similar optical designs, that span the range in viable technologies. The architectures are a telescope with a monolithic primary mirror and two variations of a telescope with a large segmented primary mirror. This approach provides us with several pathways to realizing the mission, which will be narrowed to one as our technology development progresses. The concepts invoke heritage from HST and JWST design, but also take significant departures from these designs to minimize complexity, mass, or both. Our report provides details on the mission concepts, shows the extraordinary s...

  10. The IMaX polarimeter for the solar telescope SUNRISE of the NASA long duration balloon program

    Directory of Open Access Journals (Sweden)

    Domingo V.

    2010-06-01

    Full Text Available On June 8th 2009 the SUNRISE mission was successfully launched. This mission consisted of a 1m aperture solar telescope on board of a stratospheric balloon within the Long Duration Balloon NASA program. The flight followed the foreseen circumpolar trajectory over the Artic and the duration was 5 days and 17 hours. One of the two postfocal instruments onboard was IMaX, the Imaging Magnetograph eXperiment. This instrument is a solar magnetograph which is a diffraction limited imager capable to resolve 100 km on the solar surface, and simultaneously a high sensitivity polarimeter (<10-3 and a high resolution spectrograph (bandwidth <70mÅ. The magnetic vectorial map can be extracted thanks to the well-know Zeeman effect, which takes place in the solar atoms, allowing to relate polarization and spectral measurements to magnetic fields. The technological challenge of the IMaX development has a special relevance due to the utilization of innovative technologies in the Aeroespacial field and it is an important precedent for future space missions such as Solar Orbiter from ESA. Among these novel technologies the utilization of Liquid Crystal Variable Retarders (LCVRs as polarization modulators and a LiNbO3 etalon as tunable spectral filter are remarkable. Currently the data obtained is being analyzed and the preliminary results show unprecedented information about the solar dynamics.

  11. Solar power generation technology, new concepts & policy

    CERN Document Server

    Reddy, P Jayarama

    2012-01-01

    This book provides an overview of the current state of affairs in the field of solar power engineering from a global perspective. In four parts, this well-researched volume informs about (1) established solar PV (photovoltaic) technologies; (2) third-generation PV technologies based on new materials with potential for low-cost large-scale production; (3) solar cell technology based on new (third-generation) concepts such as quantum dot solar cells and nano wire solar cells using silicon and compound semiconductors; and (4) economic implications and effects, as well as policies and incentives i

  12. Technology Roadmaps: Concentrating Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The emerging technology known as concentrating solar power, or CSP, holds much promise for countries with plenty of sunshine and clear skies. Its electrical output matches well the shifting daily demand for electricity in places where airconditioning systems are spreading. When backed up by thermal storage facilities and combustible fuel, it offers utilities electricity that can be dispatched when required, enabling it to be used for base, shoulder and peak loads. Within about one to two decades, it will be able to compete with coal plants that emit high levels of CO2. The sunniest regions, such as North Africa, may be able to export surplus solar electricity to neighbouring regions, such as Europe, where demand for electricity from renewable sources is strong. In the medium-to-longer term, concentrating solar facilities can also produce hydrogen, which can be blended with natural gas, and provide low-carbon liquid fuels for transport and other end-use sectors. For CSP to claim its share of the coming energy revolution, concerted action is required over the next ten years by scientists, industry, governments, financing institutions and the public. This roadmap is intended to help drive these indispensable developments.

  13. From Solar Cookers Towards Viable Solar Cooking Technology

    DEFF Research Database (Denmark)

    Ahmad, Bashir

    1997-01-01

    A broader concept of technology encompassing the technical and the societal aspects is introduced. Viability of technology and technological development process from a socio-technical view- point is discussed. Based on the above, the question of securing viability of solar cooking technology...... is taken up. It is discussed that actor- approach can operationally relate the abstract societal factors with those of technical aspects. Some concrete measures regarding application of solar cooker projects are drawn from the discussion: solar cooking projects should a) be based on user and producer...

  14. Characterization of optical turbulence at the GREGOR solar telescope: temporal and local behavior and its influence on the solar observations

    Science.gov (United States)

    Sprung, D.; Sucher, E.; Stein, K.; von der Lühe, O.; Berkefeld, Th.

    2016-10-01

    Local atmospheric turbulence at the telescope level is regarded as a major reason for affecting the performance of the adaptive optics systems using wavelengths in the visible and infrared for solar observations. During the day the air masses around the telescope dome are influenced by flow distortions. Additionally heating of the infrastructure close to telescope causes thermal turbulence. Thereby optical turbulence is produced and leads to quality changes in the local seeing throughout the day. Image degradation will be yielded affecting the performance of adaptive optical systems. The spatial resolution of the solar observations will be reduced. For this study measurements of the optical turbulence, represented by the structure function parameter of the refractive index Cn2 were performed on several locations at the GREGOR telescope at the Teide observatory at Tenerife at the Canary Islands / Spain. Since September 2012 measurements of Cn2 were carried out between the towers of the Vacuum Tower Telescope (VTT) and of GREGOR with a laser-scintillometer. The horizontal distance of the measurement path was about 75 m. Additional from May 2015 up to March 2016 the optical turbulence was determined at three additional locations close to the solar telescope GREGOR. The optical turbulence is derived from sonic anemometer measurements. Time series of the sonic temperature are analyzed and compared to the direct measurements of the laser scintillometer. Meteorological conditions are investigated, especially the influence of the wind direction. Turbulence of upper atmospheric layers is not regarded. The measured local turbulence is compared to the system performance of the GREGOR telescopes. It appears that the mountain ridge effects on turbulence are more relevant than any local causes of seeing close to the telescope. Results of these analyses and comparison of nearly one year of measurements are presented and discussed.

  15. Solar Site Survey for the Advanced Technology Solar Telecope. I. Analysis of the Seeing Data

    CERN Document Server

    Socas-Navarro, H; Brandt, P; Briggs, J; Brown, T; Brown, W; Collados, M; Denker, C; Fletcher, S; Hegwer, S; Hill, F; Horst, T; Komsa, M; Kühn, J; Lecinski, A; Lin, H; Oncley, S; Penn, M; Rimmele, T; Streander, K

    2005-01-01

    The site survey for the Advanced Technology Solar Telescope concluded recently after more than two years of data gathering and analysis. Six locations, including lake, island and continental sites, were thoroughly probed for image quality and sky brightness. The present paper describes the analysis methodology employed to determine the height stratification of the atmospheric turbulence. This information is crucial because day-time seeing is often very different between the actual telescope aperture (~30 m) and the ground. Two independent inversion codes have been developed to analyze simultaneously data from a scintillometer array and a solar differential image monitor. We show here the results of applying them to a sample subset of data from May 2003, which was used for testing. Both codes retrieve a similar seeing stratification through the height range of interest. A quantitative comparison between our analysis procedure and actual in situ measurements confirms the validity of the inversions. The sample d...

  16. STS-31 Hubble Space Telescope (HST) solar array (SA) mockup at MSFC, Alabama

    Science.gov (United States)

    1990-01-01

    A close-up shot shows an extravehicular mobility unit (EMU)-suited astronaut inspecting a solar array (SA) on the Hubble Space Telescope (HST) mockup in the Neutral Buoyancy Simulator (NBS) at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. MSFC managed the design and development of the telescope. The weightlessness simulator was used to practice SA contingency procedures that might be used in space. Astronauts also practiced SA servicing missions in the simulator which they will perform on the telescope in space. The solar arrays which supply electrical power to the space telescope were developed and contributed by the European Space Agency (ESA). ESA's two prime contractors were British Aerospace in England and AEG in West Germany. The two wing-like solar arrays contain 48,000 solar cells. They convert the sun's energy to electricity during that portion of an orbit when they are exposed to sunlight. The power is stored in six batteries to support the telescope during

  17. Environmental aspects of solar energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Strojan, C.L.

    1980-09-01

    Solar energy technologies have environmental effects, and these may be positive or negative compared with current ways of producing energy. In this respect, solar energy technologies are no different from other energy systems. Where solar energy technologies differ is that no unresolvable technological problems (e.g., CO/sub 2/ emissions) or sociopolitical barriers (e.g., waste disposal, catastrophic accidents) have been identified. This report reviews some of the environmental aspects of solar energy technologies and ongoing research designed to identify and resolve potential environmental concerns. It is important to continue research and assessment of environmental aspects of solar energy to ensure that unanticipated problems do not arise. It is also important that the knowledge gained through such environmental research be incorporated into technology development programs and policy initiatives.

  18. Concentrating Solar Power. Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    Concentrating solar power can contribute significantly to the world's energy supply. As shown in this roadmap, this decade is a critical window of opportunity during which CSP could become a competitive source of electrical power to meet peak and intermediate loads in the sunniest parts of the world. This roadmap identifies technology, economy and policy goals and milestones needed to support the development and deployment of CSP, as well as ongoing advanced research in CSF. It also sets out the need for governments to implement strong, balanced policies that favour rapid technological progress, cost reductions and expanded industrial manufacturing of CSP equipment to enable mass deployment. Importantly, this roadmap also establishes a foundation for greater international collaboration. The overall aim of this roadmap is to identify actions required - on the part of all stakeholders - to accelerate CSP deployment globally. Many countries, particularly in emerging regions, are only just beginning to develop CSP. Accordingly, milestone dates should be considered as indicative of urgency, rather than as absolutes. This roadmap is a work in progress. As global CSP efforts advance and an increasing number of CSP applications are developed, new data will provide the basis for updated analysis. The IEA will continue to track the evolution of CSP technology and its impacts on markets, the power sector and regulatory environments, and will update its analysis and set additional tasks and milestones as new learning comes to light.

  19. Off-disk straylight measurements for the Swedish 1-meter Solar Telescope

    CERN Document Server

    Löfdahl, Mats G

    2016-01-01

    Context. Accurate photometry with ground based solar telescopes requires characterization of straylight. Scattering in Earth's atmosphere and in the telescope optics are potentially significant sources of straylight, for which the point spread function (PSF) has wings that reach very far. This kind of straylight produces an aureola, extending several solar radii off the solar disk. Aims. Measure such straylight using the ordinary science instrumentation. Methods. We scanned the intensity on and far off the solar disk by use of the science cameras in several different wavelength bands on a day with low-dust conditions. We characterized the far wing straylight by fitting a model to the recorded intensities involving a multi-component straylight PSF and the limb darkening of the disk. Results. The measured scattered light adds an approximately constant fraction of the local granulation intensity to science images at any position on the disk. The fraction varied over the day but never exceeded a few percent. The ...

  20. Applications of solar reforming technology

    Energy Technology Data Exchange (ETDEWEB)

    Spiewak, I. [Weizmann Inst. of Science, Rehovoth (Israel); Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States); Langnickel, U. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany)

    1993-11-01

    Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

  1. Extracting information from the data flood of new solar telescopes. Brainstorming

    CERN Document Server

    Ramos, A Asensio

    2012-01-01

    Extracting magnetic and thermodynamic information from spectropolarimetric observations is a difficult and time consuming task. The amount of science-ready data that will be generated by the new family of large solar telescopes is so large that we will be forced to modify the present approach to inference. In this contribution, I propose several possible ways that might be useful for extracting the thermodynamic and magnetic properties of solar plasmas from such observations quickly.

  2. Extracting Information from the Data Flood of New Solar Telescopes: Brainstorming

    Science.gov (United States)

    Asensio Ramos, A.

    2012-12-01

    Extracting magnetic and thermodynamic information from spectropolarimetric observations is a difficult and time consuming task. The amount of science-ready data that will be generated by the new family of large solar telescopes is so large that we will be forced to modify the present approach to inference. In this contribution, I propose several possible ways that might be useful for extracting the thermodynamic and magnetic properties of solar plasmas from such observations quickly.

  3. Technology Roadmaps: Solar photovoltaic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Solar PV power is a commercially available and reliable technology with a significant potential for long-term growth in nearly all world regions. This roadmap estimates that by 2050, PV will provide around 11% of global electricity production and avoid 2.3 gigatonnes (Gt) of CO2 emissions per year. Achieving this roadmap's vision will require an effective, long-term and balanced policy effort in the next decade to allow for optimal technology progress, cost reduction and ramp-up of industrial manufacturing for mass deployment. Governments will need to provide long-term targets and supporting policies to build confidence for investments in manufacturing capacity and deployment of PV systems. PV will achieve grid parity -- i.e. competitiveness with electricity grid retail prices -- by 2020 in many regions. As grid parity is achieved, the policy framework should evolve towards fostering self-sustained markets, with the progressive phase-out of economic incentives, but maintaining grid access guarantees and sustained R&D support.

  4. Automatic detection and extraction of ultra-fine bright structure observed with new vacuum solar telescope

    Science.gov (United States)

    Deng, Linhua

    2017-02-01

    Solar magnetic structures exhibit a wealth of different spatial and temporal scales. Presently, solar magnetic element is believed to be the ultra-fine magnetic structure in the lower solar atmospheric layer, and the diffraction limit of the largest-aperture solar telescope (New Vacuum Solar Telescope; NVST) of China is close to the spatial scale of magnetic element. This implies that modern solar observations have entered the era of high resolution better than 0.2 arc-second. Since the year of 2011, the NVST have successfully established and obtained huge observational data. Moreover, the ultra-fine magnetic structure rooted in the dark inter-graunlar lanes can be easily resolved. Studies on the observational characteristics and physical mechanism of magnetic bright points is one of the most important aspects in the field of solar physics, so it is very important to determine the statistical and physical parameters of magnetic bright points with the feature extraction techniques and numerical analysis approaches. For identifying such ultra-fine magnetic structure, an automatically and effectively detection algorithm, employed the Laplacian transform and the morphological dilation technique, is proposed and examined. Then, the statistical parameters such as the typical diameter, the area distribution, the eccentricity, and the intensity contrast are obtained. And finally, the scientific meaning for investigating the physical parameters of magnetic bright points are discussed, especially for understanding the physical processes of solar magnetic energy transferred from the photosphere to the corona.

  5. Polarization modeling for the main optics of Chinese Giant Solar Telescope

    Science.gov (United States)

    Yuan, Shu; Fu, Yu; Jin, Zhenyu

    2016-07-01

    Chinese Giant Solar Telescope, which has a 8m diameter segmented primary mirror, is a plan for the next generation ground-based large solar telescope in China. A major scientific requirement for this telescope is the high accuracy polarimetry. In this paper, the instrumental polarization of the main optics is analyzed by polarization modeling, which is caused by off-axial field of view, spider asymmetry, nonuniform segment gap and segment coating. The result shows that the net polarization is sensitive to the asymmetrical spider leg widening and the uniformity of the segment optical property. For meeting the accuracy requirement, the extinction ratio and retardence error for each segment should be less than 0.3% and 0.8 degree, respectively. Generally, the ring segmented primary mirror have advantage in controlling the instrumental polarization for large main optics.

  6. On the Use of Cherenkov Telescopes for Outer Solar System Body Occultations

    CERN Document Server

    Lacki, Brian C

    2014-01-01

    Imaging Atmosphere Cherenkov Telescopes (IACT) are arrays of very large optical telescopes that are well-suited for rapid photometry of bright sources. I investigate their potential in observing stellar occultations by small objects in the outer Solar System, Transjovian Objects (TJOs). These occultations cast diffraction patterns on the Earth. Current IACT arrays are capable of detecting objects smaller than 100 meters in radius in the Kuiper Belt and 1 km radius out to 5000 AU. The future Cherenkov Telescope Array (CTA) will have even greater capabilities. Because the arrays include several telescopes, they can potentially measure the speeds of TJOs without degeneracies, and the sizes of the TJOs and background stars. I estimate the achievable precision using a Fisher matrix analysis. With CTA, the precisions of these parameter estimations will be as good as a few percent. I consider how often IACTs can observe occultations by members of different TJO populations, including Centaurs, Kuiper Belt Objects (KB...

  7. Information and Communications Technology (ICT) Infrastructure for the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Gianotti, F.; Tacchini, A.; Leto, G.; Martinetti, E.; Bruno, P.; Bellassai, G.; Conforti, V.; Gallozzi, S.; Mastropietro, M.; Tanci, C.; Malaguti, G.; Trifoglio, M.

    2016-08-01

    The Cherenkov Telescope Array (CTA) represents the next generation of ground-based observatories for very high energy gamma-ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The Italian National Institute for Astrophysics (INAF) is developing the Cherenkov Small Size Telescope ASTRI SST- 2M end-to-end prototype telescope within the framework of the International Cherenkov Telescope Array (CTA) project. The ASTRI prototype has been installed at the INAF observing station located in Serra La Nave on Mt. Etna, Italy. Furthermore a mini-array, composed of nine of ASTRI telescopes, has been proposed to be installed at the Southern CTA site. Among the several different infrastructures belonging the ASTRI project, the Information and Communication Technology (ICT) equipment is dedicated to operations of computing and data storage, as well as the control of the entire telescope, and it is designed to achieve the maximum efficiency for all performance requirements. Thus a complete and stand-alone computer centre has been designed and implemented. The goal is to obtain optimal ICT equipment, with an adequate level of redundancy, that might be scaled up for the ASTRI mini-array, taking into account the necessary control, monitor and alarm system requirements. In this contribution we present the ICT equipment currently installed at the Serra La Nave observing station where the ASTRI SST-2M prototype will be operated. The computer centre and the control room are described with particular emphasis on the Local Area Network scheme, the computing and data storage system, and the

  8. Summary of solar energy technology characterizations

    Energy Technology Data Exchange (ETDEWEB)

    D' Alessio, Dr., Gregory J.; Blaunstein, Dr., Robert R.

    1980-09-01

    This report summarizes the design, operating, energy, environmental, and economic characteristics of 38 model solar systems used in the Technology Assessment of Solar Energy Systems Project including solar heating and cooling of buildings, agricultural and industrial process heat, solar electric conversion, and industrial biomass systems. The generic systems designs utilized in this report were based on systems studies and mission analyses performed by the DOE National Laboratories and the MITRE Corporation. The purpose of those studies were to formulate materials and engineering cost data and performance data of solar equipment once mass produced.

  9. High Efficiency Polymer Solar Cells Technologies

    Institute of Scientific and Technical Information of China (English)

    Abdrhman M G; LI Hang-quan; ZHANG Li-ye; ZHOU Bing

    2006-01-01

    The conjugated polymer-based solar cell is one of the most promising devices in search of sustainable, renewable energy sources in last decade. It is the youngest field in organic solar cell research and also is certainly the fastest growing one at the moment. In addition, the key factor for polymer-based solar cells with high-efficiency is to invent new materials. Organic solar cell has attracted significant researches and commercial interest due to its low cost in fabrication and flexibility in applications. However, they suffer from relatively low conversion efficiency. The summarization of the significance and concept of high efficiency polymer solar cell technologies are presented.

  10. The 2012 status of the MCAO testbed for the GREGOR solar telescope

    Science.gov (United States)

    Schmidt, Dirk; Berkefeld, Thomas; Heidecke, Frank

    2012-07-01

    We look back on two years of experience with the laboratory MCAO testbed for the GREGOR solar telescope. GREGOR’s MCAO features four adaptive mirrors, i. e. one tip-tilt mirror, and three DMs to compensate for turbulence around 0 km, 5 km, and 15.5 km above ground. Two different Hartmann-Shack wavefront sensor units are used for wavefront tomography. A sensor with a narrow field of view and smaller subapertures is dedicated to high-order aberrations on the optical axis. This sensor directly follows the pupil plane DM and does not see the high-altitude DMs. The second sensor features larger subapertures and 19 guide regions spread over a wide field of view for off-axis wavefront sensing. We show that high-altitude DMs cause rapidly changing pupil distortions and thus misregistration, which renders the interaction of a pupil-plane DM and a subsequent wavefront sensor non-linear. We rewrote the control software for cleaner and more flexible code, and we switched to modal wavefront reconstruction from direct reconstruction. The original digital interfacing of the DMs high-voltage electronics didn’t prove to be reliable. Thus, we developed a new interface board that is based on CameraLink/ChannelLink technology to transmit the DM commands from the control computer. In this paper we present the innovations and some of the first experimental performance measurements with two DMs. One DM failed before scientific grade data was recorded with three DMs. This DM will be replaced soon. We conclude that GREGOR’s MCAO system is now ready for first on-sky tests at the telescope.

  11. The Thermal Environment of the Fiber Glass Dome for the New Solar Telescope at Big Bear Solar Observatory

    OpenAIRE

    Verdoni, A. P.; Denker, C.; Varsik, J. R.; Shumko, S; Nenow, J.; Coulter, R

    2007-01-01

    The New Solar Telescope (NST) is a 1.6-meter off-axis Gregory-type telescope with an equatorial mount and an open optical support structure. To mitigate the temperature fluctuations along the exposed optical path, the effects of local/dome-related seeing have to be minimized. To accomplish this, NST will be housed in a 5/8-sphere fiberglass dome that is outfitted with 14 active vents evenly spaced around its perimeter. The 14 vents house louvers that open and close independently of one anothe...

  12. EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope

    Science.gov (United States)

    Delaboudiniere, J. P.; Gabriel, A. H.; Artzner, G. E.; Michels, D. J.; Dere, K. P.; Howard, R. A.; Catura, R.; Stern, R.; Lemen, J.; Neupert, W.

    1988-01-01

    The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments.

  13. Active thermal control for the 1.8-m primary mirror of the solar telescope CLST

    Science.gov (United States)

    Liu, Yangyi; Gu, Naiting; Li, Cheng; Cheng, Yuntao; Yao, Benxi; Wang, Zhiyong; Rao, Changhui

    2016-07-01

    The 1.8-m primary mirror of solar telescope is heated by the solar radiation and introduce harmful mirror seeing degrading the imaging quality. For the Chinese Large Solar Telescope (CLST), the thermal requirement based on the quantitative evaluation on mirror seeing effect shows that the temperature rise on mirror surface should be within 1 kelvin. To meet the requirement, an active thermal control system design for the CLST primary mirror is proposed, and realized on the subscale prototype of the CLST. The experimental results show that the temperature on the mirror surface is well controlled. The average and maximum thermal controlled error are less than 0.3 and 0.7 kelvins respectively, which completely meets the requirements.

  14. Solar technology application to enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    de Leon, P.; Brown, K.C.; Margolis, J.W.; Nasr, L.H.

    1979-12-01

    One proposed near-term commercial application for solar energy technology is the use of solar energy systems to generate steam for thermal enhanced oil recovery (EOR). This report examines four aspects of solar energy employed for steam EOR. First, six solar technologies are evaluated and two - parabolic troughs and central receivers - are selected for closer study; typical systems that would meet current production requirements are proposed and costed. Second, the legal and environmental issues attending solar EOR are analyzed. Third, the petroleum producing companies' preferences and requirements are discussed. Finally, alternative means of financing solar EOR are addressed. The study concludes that within the next four to five years, conventional (fossil-fueled) thermal EOR means are much less expensive and more available than solar EOR systems, even given environmental requirements. Within 10 to 15 years, assuming specified advances in solar technologies, central receiver EOR systems will be significantly more cost-effective than parabolic trough EOR systems and will be price competitive with conventional thermal EOR systems. Important uncertainties remain (both in solar energy technologies and in how they affect the operating characteristics of petroleum reservoirs) that need resolution before definitive projections can be made.

  15. Solar energy – new photovoltaic technologies

    DEFF Research Database (Denmark)

    Sommer-Larsen, Peter

    2009-01-01

    of its major energy sources. Solar energy is a focus point in many strategies for a sustainable energy supply. The European Commission’s Strategic Energy Plan (SET-plan) envisages a Solar Europe Initiative, where photovoltaics and concentrated solar power (CSP) supply as much power as wind mills......Solar energy technologies directly convert sunlight into electricity and heat, or power chemical reactions that convert simple molecules into synthetic chemicals and fuels. The sun is by far the most abundant source of energy, and a sustainable society will need to rely on solar energy as one...... in the future. Much focus is directed towards photovoltaics presently. Installation of solar cell occurs at an unprecedented pace and the expectations of the photovoltaics industry are high: a total PV capacity of 40 GW by 2012 as reported by a recent study. The talk progresses from general solar energy topics...

  16. Solar energy – new photovoltaic technologies

    DEFF Research Database (Denmark)

    Sommer-Larsen, Peter

    2009-01-01

    Solar energy technologies directly convert sunlight into electricity and heat, or power chemical reactions that convert simple molecules into synthetic chemicals and fuels. The sun is by far the most abundant source of energy, and a sustainable society will need to rely on solar energy as one...... of its major energy sources. Solar energy is a focus point in many strategies for a sustainable energy supply. The European Commission’s Strategic Energy Plan (SET-plan) envisages a Solar Europe Initiative, where photovoltaics and concentrated solar power (CSP) supply as much power as wind mills...... in the future. Much focus is directed towards photovoltaics presently. Installation of solar cell occurs at an unprecedented pace and the expectations of the photovoltaics industry are high: a total PV capacity of 40 GW by 2012 as reported by a recent study. The talk progresses from general solar energy topics...

  17. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  18. Photovoltaics: A Solar Technology for Powering Tomorrow.

    Science.gov (United States)

    Flavin, Christopher

    1983-01-01

    Photovoltaics, the technology that converts sunlight directly into electricity, may soon be a reliable power source for the world's poor. The one major challenge is cost reduction. Many topics are discussed, including solar powering the Third World, designing the solar building, investing in the sun, and the future of photovoltaics. (NW)

  19. Solar Sail Propulsion Technology at NASA

    Science.gov (United States)

    Johnson, Charles Les

    2007-01-01

    NASA's In-Space Propulsion Technology Program developed the first generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an area density of less than 13 grams per square meter. A rigorous, multi-year technology development effort culminated in 2005 with the testing of two different 20-m solar sail systems under thermal vacuum conditions. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In addition, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. The presentation will describe the status of solar sail propulsion within NASA, near-term solar sail mission applications, and near-term plans for further development.

  20. Solar Energy: Its Technologies and Applications

    Science.gov (United States)

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  1. CrossRef The CERN Axion Solar Telescope

    CERN Document Server

    Hasinoff, M D; Arik, E; Autiero, D; Avignone, F; Barth, K; Bingol, E; Brauninger, H; Brodzinski, R; Carmona, J; Chesi, E; Cebrian, S; Cetin, S; Collar, J; Creswick, R; Dafni, T; De Oliveira, R; Dedoussis, S; Delbart, A; Di Lella, L; Eleftheriadis, C; Fanourakis, G; Farach, H; Fischer, H; Formenti, F; Geralis, T; Giomataris, I; Gninenko, S; Goloubev, N; Hartmann, R; Hoffmann, D; Irastorza, I G; Jacoby, J; Kang, D; Konigsmann, K; Kotthaus, R; Krcmar, M; Kuster, M; Lakic, B; Liolios, A; LJubicic, A; Lutz, G; Luzon, G; Miley, H; Morales, A; Morales, J; Mutterer, M; Nikolaidis, A; Ortiz, A; Papaevangelou, T; Placci, A; Raffelt, G; Riege, H; Sarsa, M; Savvidis, I; Schopper, R; Semertzidis, I; Spano, C; Villar, J; Vullierme, B; Walckiers, L; Zachariadou, K; Zioutas, K

    2003-01-01

    The CAST experiment at CERN is using a decommissioned LHC prototype magnet to search for solar axions through their Primakoff conversion into x-ray photons. The magnet (B = 9.0 Tesla, L = 10 m) can track the sun each day for a total exposure time of ~180 minutes (sunrise + sunset). We expect to reach a sensitivity in axion-photon coupling, gaγγ ≲ 5 × 10-11 GeV-1 for ma ≲ 10-2 eV after ˜1 year's running time. By filling the beam tube with 4He or 3He gas we should be able to extend the sensitive axion mass region into the eV mass range.

  2. From Solar Cookers Towards Viable Solar Cooking Technology

    DEFF Research Database (Denmark)

    Ahmad, Bashir

    1997-01-01

    A broader concept of technology encompassing the technical and the societal aspects is introduced. Viability of technology and technological development process from a socio-technical view- point is discussed. Based on the above, the question of securing viability of solar cooking technology is t...... studies to understand their priorities and opportunities related with the process of technological development; b) be multi-disciplinary, flexible and long-term; facilitate co-working of users, producers, political actors and other actors in the process....

  3. ATST telescope mount: telescope of machine tool

    Science.gov (United States)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  4. Fermi Large Area Telescope observations of high-energy gamma-ray emission from Solar flares

    Science.gov (United States)

    Pesce Rollins, Melissa

    2017-01-01

    The Fermi Large Area Telescope (LAT) observations of the active Sun provide the largest sample of detected solar flares with emission greater than 30 MeV to date. These include detections of impulsive and sustained emission, extending up to 20 hours in the case of the 2012 March 7 X-class flares. These high-energy flares are coincident with GOES X-ray flares of X, M and C classes as well as very fast Coronal Mass Ejections (CME). We will present results from the First Fermi-LAT solar flare catalog covering the majority of Solar Cycle 24 including correlation studies with the associated Solar Energetic Particles (SEP) and CMEs.

  5. NASA Solar Sail Propulsion Technology Development

    Science.gov (United States)

    Johnson, Les; Montgomery, Edward E.; Young, Roy; Adams, Charles

    2007-01-01

    NASA's In-Space Propulsion Technology Program has developed the first generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an areal density of less than 13 grams per square meter. A rigorous, multi-year technology development effort culminated in 2005 with the testing of two different 20-m solar sail systems under thermal vacuum conditions. The first system, developed by ATK Space Systems of Goleta, California, uses rigid booms to deploy and stabilize the sail. In the second approach, L'Garde, Inc. of Tustin, California uses inflatable booms that rigidize in the coldness of space to accomplish sail deployment. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In a separate effort, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. Preceding and in conjunction with these technology efforts, NASA sponsored several mission application studies for solar sails. Potential missions include those that would be flown in the near term to study the sun and be used in space weather prediction to one that would use an evolved sail capability to support humanity's first mission into nearby interstellar space. This paper will describe the status of solar sail propulsion within

  6. Off-disk straylight measurements for the Swedish 1-m Solar Telescope

    Science.gov (United States)

    Löfdahl, Mats G.

    2016-01-01

    Context. Accurate photometry with ground-based solar telescopes requires characterization of straylight. Scattering in Earth's atmosphere and in the telescope optics are potentially significant sources of straylight, for which the point spread function (PSF) has wings that reach very far. This kind of straylight produces an aureola, extending several solar radii off the solar disk. Aims: We want to measure such straylight using the ordinary science instrumentation. Methods: We scanned the intensity on and far off the solar disk by use of the science cameras in several different wavelength bands on a day with low-dust conditions. We characterized the far wing straylight by fitting a model to the recorded intensities involving a multicomponent straylight PSF and the limb darkening of the disk. Results: The measured scattered light adds an approximately constant fraction of the local granulation intensity to science images at any position on the disk. The fraction varied over the day but never exceeded a few percent. The PSFs have weak tails that extend to several solar radii, but most of the scattered light originates within ~1'. Conclusions: Far-wing scattered light contributes only a small amount of straylight in SST data. Other sources of straylight are primarily responsible for the reduced contrast in SST images.

  7. Prototype Tests for the CELESTE Solar Array $\\gamma$-Ray Telescope

    CERN Document Server

    Giebels, B; Bergeret, H; Cordier, A; Debiais, G; De Naurois, Mathieu; Dezalay, J P; Dumora, D; Eschstruth, P T; Espigat, P; Fabre, B; Fleury, P; Ghesquière, C; Herault, N; Malet, I; Merkel, B; Meynadier, C; Palatka, M; Paré, E; Procureur, J; Punch, M; Québert, J; Ragan, K; Rob, L; Schovanek, P; Smith, D A; Vrana, J

    1998-01-01

    The CELESTE experiment will be an Atmospheric Cherenkov detector designed to bridge the gap in energy sensitivity between current satellite and ground-based gamma-ray telescopes, 20 to 300 GeV. We present test results made at the former solar power plant, Themis, in the French Pyrenees. The tests confirm the viability of using a central tower heliostat array for Cherenkov wavefront sampling.

  8. Imaging Spectropolarimeter for the Multi-Application Solar Telescope at Udaipur Solar Observatory: Characterization of Polarimeter and Preliminary Observations

    Science.gov (United States)

    Tiwary, Alok Ranjan; Mathew, Shibu K.; Bayanna, A. Raja; Venkatakrishnan, P.; Yadav, Rahul

    2017-04-01

    The Multi-Application Solar Telescope (MAST) is a 50 cm off-axis Gregorian telescope that has recently become operational at the Udaipur Solar Observatory (USO). An imaging spectropolarimeter is being developed as one of the back-end instruments of MAST to gain a better understanding of the evolution and dynamics of solar magnetic and velocity fields. This system consists of a narrow-band filter and a polarimeter. The polarimeter includes a linear polarizer and two sets of liquid crystal variable retarders (LCVRs). The instrument is intended for simultaneous observations in the spectral lines 6173 Å and 8542 Å, which are formed in the photosphere and chromosphere, respectively. In this article, we present results from the characterization of the LCVRs for the spectral lines of interest and the response matrix of the polarimeter. We also present preliminary observations of an active region obtained using the spectropolarimeter. For verification purposes, we compare the Stokes observations of the active region obtained from the Helioseismic Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) with that of MAST observations in the spectral line 6173 Å. We find good agreement between the two observations, considering the fact that MAST observations are limited by seeing.

  9. MuSICa image slicer prototype at 1.5-m GREGOR solar telescope

    Science.gov (United States)

    Calcines, A.; López, R. L.; Collados, M.; Vega Reyes, N.

    2014-07-01

    Integral Field Spectroscopy is an innovative technique that is being implemented in the state-of-the-art instruments of the largest night-time telescopes, however, it is still a novelty for solar instrumentation. A new concept of image slicer, called MuSICa (Multi-Slit Image slicer based on collimator-Camera), has been designed for the integral field spectrograph of the 4-m European Solar Telescope. This communication presents an image slicer prototype of MuSICa for GRIS, the spectrograph of the 1.5-m GREGOR solar telescope located at the Observatory of El Teide. MuSICa at GRIS reorganizes a 2-D field of view of 24.5 arcsec into a slit of 0.367 arcsec width by 66.76 arcsec length distributed horizontally. It will operate together with the TIP-II polarimeter to offer high resolution integral field spectropolarimetry. It will also have a bidimensional field of view scanning system to cover a field of view up to 1 by 1 arcmin.

  10. Building Design Guidelines for Solar Energy Technologies

    Science.gov (United States)

    Givoni, B.

    1989-01-01

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of "solar architecture" and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings.

  11. Perovskite solar cells: an emerging photovoltaic technology

    Directory of Open Access Journals (Sweden)

    Nam-Gyu Park

    2015-03-01

    Full Text Available Perovskite solar cells based on organometal halides represent an emerging photovoltaic technology. Perovskite solar cells stem from dye-sensitized solar cells. In a liquid-based dye-sensitized solar cell structure, the adsorption of methylammonium lead halide perovskite on a nanocrystalline TiO2 surface produces a photocurrent with a power conversion efficiency (PCE of around 3–4%, as first discovered in 2009. The PCE was doubled after 2 years by optimizing the perovskite coating conditions. However, the liquid-based perovskite solar cell receives little attention because of its stability issues, including instant dissolution of the perovskite in a liquid electrolyte. A long-term, stable, and high efficiency (∼10% perovskite solar cell was developed in 2012 by substituting the solid hole conductor with a liquid electrolyte. Efficiencies have quickly risen to 18% in just 2 years. Since PCE values over 20% are realistically anticipated with the use of cheap organometal halide perovskite materials, perovskite solar cells are a promising photovoltaic technology. In this review, the opto-electronic properties of perovskite materials and recent progresses in perovskite solar cells are described. In addition, comments on the issues to current and future challenges are mentioned.

  12. Status of solar sail technology within NASA

    Science.gov (United States)

    Johnson, Les; Young, Roy; Montgomery, Edward; Alhorn, Dean

    2011-12-01

    In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced. NASA has successfully completed functional vacuum testing in their Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by Alliant Techsystems Space Systems and L'Garde, respectively. The sail systems consist of a central structure with four deployable booms that support each sail. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and are scalable to much larger solar sails - perhaps as large as 150 m on a side. Computation modeling and analytical simulations were performed in order to assess the scalability of the technology to the larger sizes that are required to implement the first generation of missions using solar sails. Furthermore, life and space environmental effects testing of sail and component materials was also conducted.NASA terminated funding for solar sails and other advanced space propulsion technologies shortly after these ground demonstrations were completed. In order to capitalize on the $30 M investment made in solar sail technology to that point, NASA Marshall Space Flight Center funded the NanoSail-D, a subscale solar sail system designed for possible small spacecraft applications. The NanoSail-D mission flew on board a Falcon-1 rocket, launched August 2, 2008. As a result of the failure of that rocket, the NanoSail-D was never successfully given the opportunity to achieve orbit. The NanoSail-D flight spare was flown in the Fall of 2010. This review paper summarizes NASA's investment in solar sail technology to date and discusses future opportunities.

  13. Solar technology - A whether report

    Science.gov (United States)

    Finneran, K.

    1983-03-01

    Progress in the use of solar energy for producing large quantities of electrical power is assessed. The practicality of different applications of solar energy has been demonstrated, and present activity focuses on reducing production costs, enhancing efficiency, and improving reliability. Solar cell production reached 6 MW in 1982, but cuts in government research funding will delay the arrival of cost-competitive photovoltaics for commercial applications in developed countries. Research is expanding on amorphous Si cells, which are cheaper to produce while having lower efficiencies than single crystal cells. An estimated 60,000-80,000 passive solar houses have been constructed since 1978, and work is proceeding on better thermal control in the houses and more elegant storage techniques, such as long-lasting phase change materials. Industrially, a 114-unit array of parabolic concentrators producing 3 MW is providing steam for electricity and processing in a clothing factory. Tests of the 10 MWe Solar One heliostat array power plant in Barstow, CA have encouraged plans for a 100 MWe plant.

  14. The Greenwich Photo-heliographic Results (1874 - 1885): Observing Telescopes, Photographic Processes, and Solar Images

    Science.gov (United States)

    Willis, D. M.; Wild, M. N.; Appleby, G. M.; Macdonald, L. T.

    2016-11-01

    Potential sources of inhomogeneity in the sunspot measurements published by the Royal Observatory, Greenwich, during the early interval 1874 - 1885 are examined critically. Particular attention is paid to inhomogeneities that might arise because the sunspot measurements were derived from solar photographs taken at various contributing solar observatories, which used different telescopes, experienced different seeing conditions, and employed different photographic processes. The procedures employed in the Solar Department at the Royal Greenwich Observatory (RGO), Herstmonceux, during the final phase of sunspot observations provide a modern benchmark for interpreting the early sunspot measurements. The different observing telescopes used at the contributing solar observatories during the interval 1874 - 1885 are discussed in detail, using information gleaned from the official RGO publications and other relevant historical documents. Likewise, the different photographic processes employed at the different solar observatories are reviewed carefully. The procedures used by RGO staff to measure the positions and areas of sunspot groups on photographs of the Sun having a nominal radius of either four or eight inches are described. It is argued that the learning curve for the use of the Kew photoheliograph at the Royal Observatory, Greenwich, actually commenced in 1858, not 1874. The RGO daily number of sunspot groups is plotted graphically and analysed statistically. Similarly, the changes of metadata at each solar observatory are shown on the graphical plots and analysed statistically. It is concluded that neither the interleaving of data from the different solar observatories nor the changes in metadata invalidates the RGO count of the number of sunspot groups, which behaves as a quasi-homogeneous time series. Furthermore, it is emphasised that the correct treatment of days without photographs is quite crucial to the correct calculation of Group Sunspot Numbers.

  15. Calibration development strategies for the Daniel K. Inouye Solar Telescope (DKIST) data center

    Science.gov (United States)

    Watson, Fraser T.; Berukoff, Steven J.; Hays, Tony; Reardon, Kevin; Speiss, Daniel J.; Wiant, Scott

    2016-07-01

    The Daniel K. Inouye Solar Telescope (DKIST), currently under construction on Haleakalā, in Maui, Hawai'i will be the largest solar telescope in the world and will use adaptive optics to provide the highest resolution view of the Sun to date. It is expected that DKIST data will enable significant and transformative discoveries that will dramatically increase our understanding of the Sun and its effects on the Sun-Earth environment. As a result of this, it is a priority of the DKIST Data Center team at the National Solar Observatory (NSO) to be able to deliver timely and accurately calibrated data to the astronomical community for further analysis. This will require a process which allows the Data Center to develop calibration pipelines for all of the facility instruments, taking advantage of similarities between them, as well as similarities to current generation instruments. There will also be a challenges which are addressed in this article, such as the large volume of data expected, and the importance of supporting both manual and automated calibrations. This paper will detail the current calibration development strategies being used by the Data Center team at the National Solar Observatory to manage this calibration effort, so as to ensure delivery of high quality scientific data routinely to users.

  16. OUT Success Stories: Solar Hot Water Technology

    Science.gov (United States)

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  17. Status of the technologies for the production of the Cherenkov Telescope Array (CTA) mirrors

    CERN Document Server

    Pareschi, G; Baba, H; Bähr, J; Bonardi, A; Bonnoli, G; Brun, P; Canestrari, R; Chadwick, P; Chikawa, M; Carton, P -H; de Souza, V; Dipold, J; Doro, M; Durand, D; Dyrda, M; Förster, A; Garczarczyk, M; Giro, E; Glicenstein, J -F; Hanabata, Y; Hayashida, M; Hrabovski, M; Jeanney, C; Kagaya, M; Katagiri, H; Lessio, L; Mandat, D; Mariotti, M; Medina, C; Michałowski, J; Micolon, P; Nakajima, D; Niemiec, J; Nozato, A; Palatka, M; Pech, M; Peyaud, B; Pühlhofer, G; Rataj, M; Rodeghiero, G; Rojas, G; Rousselle, J; Sakonaka, R; Schovanek, P; Seweryn, K; Schultz, C; Shu, S; Stinzing, F; Stodulski, M; Teshima, M; Travniczek, P; van Eldik, C; Vassiliev, V; Wiśniewski, Ł; Wörnlein, A; Yoshida, T

    2013-01-01

    The Cherenkov Telescope Array (CTA) is the next generation very high-energy gamma-ray observatory, with at least 10 times higher sensitivity than current instruments. CTA will comprise several tens of Imaging Atmospheric Cherenkov Telescopes (IACTs) operated in array-mode and divided into three size classes: large, medium and small telescopes. The total reflective surface could be up to 10,000 m2 requiring unprecedented technological efforts. The properties of the reflector directly influence the telescope performance and thus constitute a fundamental ingredient to improve and maintain the sensitivity. The R&D status of lightweight, reliable and cost-effective mirror facets for the CTA telescope reflectors for the different classes of telescopes is reviewed in this paper.

  18. 2008 Solar Technologies Market Report: January 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-01-01

    This report focuses on the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report provides an overview of global and U.S. installation trends. It also presents production and shipment data, material and supply chain issues, and solar industry employment trends. It also presents cost, price, and performance trends; and discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. The final chapter provides data on private investment trends and near-term market forecasts.

  19. Solar driven technologies for hydrogen production

    Directory of Open Access Journals (Sweden)

    Medojević Milovan M.

    2016-01-01

    Full Text Available Bearing in mind that the production of hydrogen based on renewable energy sources, without doubt, is an important aspect to be taken into account when considering the potential of this gas, where as particularly interesting technologies stand out the ones which are based on the use of solar energy to produce hydrogen. The goal of this paper provides basic technological trajectories, with the possibility of combining, for solar driven hydrogen production, such as: electrochemical, photochemical and thermochemical process. Furthermore, the paper presents an analysis of those technologies from a technical as well as economic point of view. In addition, the paper aims to draw attention to the fact that the generation of hydrogen using renewable energy should be imposed as a logical and proper way to store solar energy in the form of chemical energy.

  20. Cryogenics for the CERN Solar Axion Telescope (CAST) using a LHC Dipole Prototype Magnet

    CERN Document Server

    Barth, K; Pezzetti, M; Pirotte, O; Riege, H; Vullierme, B; Walckiers, L; Zioutas, Konstantin

    2002-01-01

    The axion, an as yet hypothetical particle predicted from the solution of the strong CP problem, constitutes a prime candidate for the galactic dark matter and also arises in supersymmetry and superstring theories. If existing, axions should be copiously produced in stellar interiors and there are theoretical expectations for a low-energy axion emission spectrum peaked around a mean energy of ~ 4.4 keV. To provide the experimental proof, a solar axion telescope is at present installed at CERN, which is expected to be in total 10-12 times more efficient than the present largest set-up in operation at the University of Tokyo. The telescope will use a decommissioned 10-m long LHC superconducting dipole prototype magnet, providing a magnetic field of 9 T in operation, to catalyse the solar axion to photon conversion, which then can be detected by low-background x-ray detectors. The paper describes the external and proximity cryogenic systems and their integration into the overall telescope assembly.

  1. Solar Photovoltaics Technology: The Revolution Begins . . .

    Science.gov (United States)

    Kazmerski, Lawrence

    2009-11-01

    The prospects of current and coming solar-photovoltaic (PV) technologies are envisioned, arguing this solar-electricity source is at a tipping point in the complex worldwide energy outlook. The emphasis of this presentation is on R&D advances (cell, materials, and module options), with indications of the limitations and strengths of crystalline (Si and GaAs) and thin-film (a-Si:H, Si, Cu(In,Ga)(Se,S)2, CdTe). The contributions and technological pathways for now and near-term technologies (silicon, III-Vs, and thin films) and status and forecasts for next- generation PV (organics, nanotechnologies, non-conventional junction approaches) are evaluated. Recent advances in concentrators with efficiencies headed toward 50%, new directions for thin films (20% and beyond), and materials/device technology issues are discussed in terms of technology progress. Insights into technical and other investments needed to tip photovoltaics to its next level of contribution as a significant clean-energy partner in the world energy portfolio. The need for R&D accelerating the now and imminent (evolutionary) technologies balanced with work in mid-term (disruptive) approaches is highlighted. Moreover, technology progress and ownership for next generation solar PV mandates a balanced investment in research on longer-term (the revolution needs revolutionary approaches to sustain itself) technologies (quantum dots, multi-multijunctions, intermediate-band concepts, nanotubes, bio-inspired, thermophotonics, solar hydrogen. . . ) having high-risk, but extremely high performance and cost returns for our next generations of energy consumers. Issues relating to manufacturing are explored-especially with the requirements for the next-generation technologies. This presentation provides insights into how this technology has developed-and where the R&D investments should be made and we can expect to be by this mid-21st century.

  2. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope.

    Science.gov (United States)

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-04-13

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  3. Observing the Sun with Coronado telescopes telescopes

    CERN Document Server

    Pugh, Philip

    2007-01-01

    The Sun provides amateur astronomers with one of the few opportunities for daytime astronomy. In order to see the major features of our nearest star, special telescopes that have a very narrow visible bandwidth are essential. The bandwidth has to be as narrow as 1 A- 10-10 m (1 Angstrom) and centred on the absorption line of neutral hydrogen. This makes many major features of the Suna (TM)s chromosphere visible to the observer. Such narrow-band "Fabry-Perot etalon filters" are high technology, and until the introduction of the Coronado range of solar telescopes, were too expensive for amateur use. The entry-level Coronado telescope, the PST (Personal Solar Telescope) costs under 500. Solar prominences (vast columns of plasma, best seen at the edge of the solar disk), filaments, flares, sunspots, plage and active regions are all visible and can be imaged to produce spectacular solar photographs. Philip Pugh has assembled a team of contributors who show just how much solar work can be done with Coronado telesco...

  4. Building design guidelines for solar energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Givoni, B.

    1989-01-01

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of solar architecture'' and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings. 15 refs., 19 figs., 3 tabs.

  5. Search for Solar Axions with the CCD Detector and X-ray Telescope at CAST Experiment

    CERN Document Server

    Rosu, Madalin Mihai; Zioutas, Konstantin

    2015-06-09

    The CERN Axion Solar Telescope (CAST) is an experiment that uses the world’s highest sensitivity Helioscope to date for solar Axions searches. Axions are weakly interacting pseudoscalar particles proposed to solve the so-called Strong Charge-Parity Problem of the Standard Model. The principle of detection is the inverse Primakoff Effect, which is a mechanism for converting the Axions into easily detectable X-ray photons in a strong transverse magnetic field. The solar Axions are produced due to the Primakoff effect in the hot and dense core of from the coupling of a real and a virtual photon. The solar models predict a peak Axion luminosity at an energy of 3 keV originating mostly from the inner 20% of the solar radius. Thus an intensity peak at an energy of 3 keV is also expected in the case of the X-ray radiation resulting from Axion conversion. CAST uses a high precision movement system for tracking the Sun twice a day with a LHC dipole twin aperture prototype magnet, 9.26 meters long and with a field of...

  6. An Overview of Electron-Proton and High Energy Telescopes of Solar Orbiter

    Science.gov (United States)

    Kulkarni, S. R.; Grunau, J.; Boden, S.; Steinhagen, J.; Martin, C.; Wimmer-Schweingruber, R. F.; Boettcher, S.; Seimetz, L.; Ravanbakhsh, A.; Elftmann, R.; Rodriguez-Pacheco, J.; Prieto, M.; Gomez-Herrero, R.

    2013-12-01

    The Energetic Particle Detector (EPD) suite for ESA's Solar Orbiter will provide key measurements to address particle acceleration at and near the Sun. The EPD suite consists of five sensors (STEP, SIS, EPT, and HET). The University of Kiel in Germany is also responsible for the design, development, and build of EPT and HET which are presented here. The Electron Proton Telescope (EPT) is designed to cleanly separate and measure electrons in the energy range from 20 - 400 keV and protons from 20 - 7000 keV. The Solar Orbiter EPT electron measurements from 20 - 400 keV will cover the gap with some overlap between suprathermal electrons measured by STEP and high energy electrons measured by HET. The proton measurements from 20 -7000 keV will partially cover the gap between STEP and HET. The Electron and Proton Telescope relies on the magnet/foil-technique. The High-Energy Telescope (HET) on ESA's Solar Orbiter mission, will measure electrons from 300 keV up to about 30 MeV, protons from 10 -100 MeV, and heavy ions from ~20 to 200 MeV/nuc. Thus, HET covers the energy range which is of specific interest for studies of the space environment and will perform the measurements needed to understand the origin of high-energy events at the Sun which occasionally accelerate particles to such high energies that they can penetrate the Earth's atmosphere and be measured at ground level. Here we present the current development status of EPT-HET units and calibration results of demonstration models and present plans for future activities.

  7. Test results, Industrial Solar Technology parabolic trough solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  8. Thermal Analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8 Meter Primary Mirror

    Science.gov (United States)

    Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.

    2010-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.

  9. The thermal environment of the fiber glass dome for the new solar telescope at Big Bear Solar Observatory

    Science.gov (United States)

    Verdoni, A. P.; Denker, C.; Varsik, J. R.; Shumko, S.; Nenow, J.; Coulter, R.

    2007-09-01

    The New Solar Telescope (NST) is a 1.6-meter off-axis Gregory-type telescope with an equatorial mount and an open optical support structure. To mitigate the temperature fluctuations along the exposed optical path, the effects of local/dome-related seeing have to be minimized. To accomplish this, NST will be housed in a 5/8-sphere fiberglass dome that is outfitted with 14 active vents evenly spaced around its perimeter. The 14 vents house louvers that open and close independently of one another to regulate and direct the passage of air through the dome. In January 2006, 16 thermal probes were installed throughout the dome and the temperature distribution was measured. The measurements confirmed the existence of a strong thermal gradient on the order of 5° Celsius inside the dome. In December 2006, a second set of temperature measurements were made using different louver configurations. In this study, we present the results of these measurements along with their integration into the thermal control system (ThCS) and the overall telescope control system (TCS).

  10. A Novel Lateral Deployment Mechanism for Segmented Mirror/Solar Panel of Space Telescope

    Science.gov (United States)

    Thesiya, Dignesh; Srinivas, A. R.; Shukla, Piyush

    2015-09-01

    Space telescopes require large aperture primary mirrors to capture High Definition (HD) ground image while orbiting around the Earth. Fairing Volume of launch vehicles is limited and thus the size of monolithic mirror is limited to fairing size and solar panels are arranged within a petal formation in order to provide a greater power to volume ratio. This generates need for deployable mirrors for space use. This brings out a method for designing new deployment mechanism for segmented mirror. Details of mechanism folding strategy, design of components, FE simulations, realization and Lab model validation results are discussed in order to demonstrate the design using prototype.

  11. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6~m New Solar Telescope

    CERN Document Server

    Jing, Ju; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-01-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6~m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most curr...

  12. Stokes imaging polarimetry using image restoration at the Swedish 1-m Solar Telescope

    CERN Document Server

    van Noort, M J

    2008-01-01

    Aims: We aim to achieve high spatial resolution as well as high polarimetric sensitivity, using an earth-based 1m-class solar telescope, for the study of magnetic fine structure on the Sun. Methods: We use a setup with 3 high-speed, low-noise cameras to construct datasets with interleaved polarimetric states, particularly suitable for Multi-Object Multi-Frame Blind Deconvolution image restorations. We discuss the polarimetric calibration routine as well as various potential sources of error in the results. Results: We obtained near diffraction limited images, with a noise level of approximately 10^(-3) I(cont). We confirm that dark-cores have a weaker magnetic field and at a lower inclination angle with respect to the solar surface than the edges of the penumbral filament. We show that the magnetic field strength in faculae-striations is significantly lower than in other nearby parts of the faculae.

  13. Project management and control of the Daniel K. Inouye Solar Telescope

    Science.gov (United States)

    McMullin, Joseph P.; McVeigh, William; Warner, Mark; Rimmele, Thomas R.; Craig, Simon C.; Ferayorni, Andrew; Goodrich, Bret D.; Hubbard, Robert P.; Hunter, Rex; Jeffers, Paul; Johansson, Erik; Marshall, Heather; McBride, William R.; Phelps, LeEllen; Shimko, Steve; Tritschler, Alexandra; Williams, Timothy R.; Wöger, Friedrich

    2016-08-01

    We provide a brief update on the construction status of the Daniel K. Inouye Solar Telescope, a $344M, 10-year construction project to design and build the world's largest solar physics observatory. We review the science drivers along with the challenges in meeting the evolving scientific needs over the course of the construction period without jeopardizing the systems engineering and management realization. We review the tools, processes and performance measures in use in guiding the development as well as the risks and challenges as the project transitions through various developmental phases. We elaborate on environmental and cultural compliance obligations in building in Hawai'i. We discuss the broad "lessons learned". Finally, we discuss the project in the context of the evolving management oversight within the US (in particular under the NSF).

  14. Mass properties survey of solar array technologies

    Science.gov (United States)

    Kraus, Robert

    1991-01-01

    An overview of the technologies, electrical performance, and mass characteristics of many of the presently available and the more advanced developmental space solar array technologies is presented. Qualitative trends and quantitative mass estimates as total array output power is increased from 1 kW to 5 kW at End of Life (EOL) from a single wing are shown. The array technologies are part of a database supporting an ongoing solar power subsystem model development for top level subsystem and technology analyses. The model is used to estimate the overall electrical and thermal performance of the complete subsystem, and then calculate the mass and volume of the array, batteries, power management, and thermal control elements as an initial sizing. The array types considered here include planar rigid panel designs, flexible and rigid fold-out planar arrays, and two concentrator designs, one with one critical axis and the other with two critical axes. Solar cell technologies of Si, GaAs, and InP were included in the analyses. Comparisons were made at the array level; hinges, booms, harnesses, support structures, power transfer, and launch retention mountings were included. It is important to note that the results presented are approximations, and in some cases revised or modified performance and mass estimates of specific designs.

  15. An in-orbit Thermal Design of Optical Window in Space Solar Telescope

    Science.gov (United States)

    Zhu, R.; Zhang, H. Y.

    2016-09-01

    The complex space environment will influence the space solar telescope during its in-orbit operation, and the imaging quality of optical system which behind the telescope will be affected directly by the temperature change of the optical window. The purpose of the thermal design is to ensure that all the parts of the optical window keep their temperature in a normal range, what is more, is able to keep the telescope in the working condition rapidly and complete the operation of the whole cycle after the earth shadow is ended. In order to obtain the temperature distribution and the variation tendency of the window under the space thermal load in the whole cycle, steady state simulation analysis and transient state simulation analysis of the window with and without heating during the earth shadow are needed. A good thermal control result is obtained via comparing the two kinds of transient state simulation analysis results of the temperature distribution, and the appropriate thermal control measures are applied to the window.

  16. Detection of Small-Scale Granular Structures in the Quiet Sun with the New Solar Telescope

    CERN Document Server

    Abramenko, Valentyna; Goode, Philip; Kitiashvili, Irina; Kosovichev, Alexander

    2012-01-01

    Results of a statistical analysis of solar granulation are presented. A data set of 36 images of a quiet Sun area on the solar disk center was used. The data were obtained with the 1.6 m clear aperture New Solar Telescope (NST) at Big Bear Solar Observatory (BBSO) and with a broad-band filter centered at the TiO (705.7 nm) spectral line. The very high spatial resolution of the data (diffraction limit of 77 km and pixel scale of 0.$"$0375) augmented by the very high image contrast (15.5$\\pm$0.6%) allowed us to detect for the first time a distinct subpopulation of mini-granular structures. These structures are dominant on spatial scales below 600 km. Their size is distributed as a power law with an index of -1.8 (which is close to the Kolmogorov's -5/3 law) and no predominant scale. The regular granules display a Gaussian (normal) size distribution with a mean diameter of 1050 km. Mini-granular structures contribute significantly to the total granular area. They are predominantly confined to the wide dark lanes...

  17. Photometry's bright future: Detecting Solar System analogues with future space telescopes

    CERN Document Server

    Hippke, Michael

    2015-01-01

    Time-series transit photometry from the Kepler space telescope has allowed for the discovery of thousands of exoplanets. We explore the potential of yet improved future missions such as PLATO 2.0 in detecting solar system analogues. We use real-world solar data and end-to-end simulations to explore the stellar and instrumental noise properties. By injecting and retrieving planets, rings and moons of our own solar system, we show that the discovery of Venus- and Earth-analogues transiting G-dwarfs like our Sun is feasible at high S/N after collecting 6yrs of data, but Mars and Mercury will be difficult to detect due to stellar noise. In the best cases, Saturn's rings and Jupiter's moons will be detectable even in single transit observations. Through the high number (>1bn) of observed stars by PLATO 2.0, it will become possible to detect thousands of single-transit events by cold gas giants, analogue to our Jupiter, Saturn, Uranus and Neptune. Our own solar system aside, we also show, through signal injection a...

  18. Investigation of intergranular bright points from the New Vacuum Solar Telescope

    CERN Document Server

    Ji, Kai-Fan; Xiang, Yong-yuan; Feng, Song; Deng, Hui; Wang, Feng; Yang, Yun-Fei

    2015-01-01

    Six high-resolution TiO-band image sequences from the New Vacuum Solar Telescope (NVST) are used to investigate the properties of intergranular bright points (igBPs). We detect the igBPs using a Laplacian and morphological dilation algorithm (LMD) and track them using a three-dimensional segmentation algorithm automatically, and then investigate the morphologic, photometric and dynamic properties of igBPs, in terms of equivalent diameter, the intensity contrast, lifetime, horizontal velocity, diffusion index, motion range and motion type. The statistical results confirm the previous studies based on G-band or TiO-band igBPs from the other telescopes. It illustrates that the TiO data from the NVST have a stable and reliable quality, which are suitable for studying the igBPs. In addition, our method is feasible to detect and track the igBPs in the TiO data from the NVST. With the aid of the vector magnetograms obtained from the Solar Dynamics Observatory /Helioseismic and Magnetic Imager, the properties of igBP...

  19. Calculating particle spectra from the solar electron and proton telescope onboard STEREO

    Energy Technology Data Exchange (ETDEWEB)

    Gieseler, Jan; Boettcher, Stephan; Heber, Bernd; Koehler, Jan [IEAP, CAU Kiel, Kiel (Germany)

    2013-07-01

    STEREO (Solar TErrestrial RElations Observatory) was launched on October 26, 2006. It consists of two spacecraft on heliocentric orbits, one preceding the Earth, the other following it. The Solar Electron and Proton Telescope (SEPT) onboard each of the two spacecraft is made up of two dual double-ended magnetic/foil particle telescopes which separate and measure electrons (from 30 to 400 keV) and ions, mainly protons and α-particles (from 70 keV to 2.2 MeV). Low energy ions are stopped by the thin foil which electrons can pass with an essentially unaltered spectrum. The magnet on the other side deflects electrons while ions still reach the detector. Up to now, SEPT energy spectra were obtained using defined energy channels from accelerator calibration measurements and geometric factors derived from Monte Carlo simulations. We try a different approach, applying inversion methods to calculate the energy spectra from the measurements, expecting higher accuracy and better separation of the different particle populations.

  20. Hubble Space Telescope - Scientific, Technological and Social Contributions to the Public Discourse on Science

    Science.gov (United States)

    Wiseman, Jennifer

    2012-01-01

    The Hubble Space Telescope has unified the world with a sense of awe and wonder for 2 I years and is currently more scientifically powerful than ever. I will present highlights of discoveries made with the Hubble Space Telescope, including details of planetary weather, star formation, extra-solar planets, colliding galaxies, and a universe expanding with the acceleration of dark energy. I will also present the unique technical challenges and triumphs of this phenomenal observatory, and discuss how our discoveries in the cosmos affect our sense of human unity, significance, and wonder.

  1. An Overview of the Electron-Proton and High Energy Telescopes for Solar Orbiter

    Science.gov (United States)

    Boden, Sebastian; Kulkarni, Shrinivasrao R.; Tammen, Jan; Steinhagen, Jan; Martin, César; Wimmer-Schweingruber, Robert F.; Böttcher, Stephan I.; Seimetz, Lars; Ravanbakhsh, Ali; Elftmann, Robert; Rodriguez-Pacheco, Javier; Prieto Mateo, Manuel; Gomez Herrero, Rául

    2014-05-01

    The Energetic Particle Detector (EPD) suite for ESA's Solar Orbiter will provide key measurements to address particle acceleration at and near the Sun. The EPD suite consists of four sensors (STEP, SIS, EPT, and HET). The University of Kiel in Germany is responsible for the design, development, and building of STEP, EPT and HET. This poster will focus on the last two. The Electron Proton Telescope (EPT) is designed to cleanly separate and measure electrons in the energy range from 20 - 400 keV and protons from 20 - 7000 keV. To separate electrons and protons EPT relies on the magnet/foil-technique. EPT is intended to close the gap between the supra-thermal particles measured by STEP and the high energy range covered by HET. The High-Energy Telescope (HET) will measure electrons from 300 keV up to about 30 MeV, protons from 10 to 100 MeV, and heavy ions from ~20 to 200 MeV/nuc. To achieve this performance HET consists of a series of silicon detectors in a telescope configuration with a scintillator calorimeter to stop high energy protons and ions. It uses the dE/dx vs. total E technique . In this way HET covers an energy range which is of interest for studies of the space radiation environment and will perform measurements needed to understand the origin of high-energy particle events at the Sun. EPT and HET share a common Electronics Box, there are two EPT-HET sensors on Solar Orbiter to allow rudimentary pitch-angle coverage. Here we present the current development status of EPT-HET units and calibration results of demonstration models as well as plans for future activities.

  2. Turbulent characteristics in the intensity fluctuations of a solar quiescent prominence observed by the \\textit{Hinode} Solar Optical Telescope

    CERN Document Server

    Leonardis, Ersilia; Foullon, Claire

    2011-01-01

    We focus on Hinode Solar Optical Telescope (SOT) calcium II H-line observations of a solar quiescent prominence (QP) that exhibits highly variable dynamics suggestive of turbulence. These images capture a sufficient range of scales spatially ($\\sim$0.1-100 arc seconds) and temporally ($\\sim$16.8 s - 4.5 hrs) to allow the application of statistical methods used to quantify finite range fluid turbulence. We present the first such application of these techniques to the spatial intensity field of a long lived solar prominence. Fully evolved inertial range turbulence in an infinite medium exhibits multifractal \\emph{scale invariance} in the statistics of its fluctuations, seen as power law power spectra and as scaling of the higher order moments (structure functions) of fluctuations which have non-Gaussian statistics; fluctuations $\\delta I(r,L)=I(r+L)-I(r)$ on length scale $L$ along a given direction in observed spatial field $I$ have moments that scale as $\\sim L^{\\zeta(p)}$. For turbulence in a system that is o...

  3. Search for sub-eV mass solar axions by the CERN Axion Solar Telescope with 3He buffer gas.

    Science.gov (United States)

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Ezer, C; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Gazis, E N; Geralis, T; Giomataris, I; Gninenko, S; Gómez, H; Gruber, E; Guthörl, T; Hartmann, R; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Laurent, J M; Liolios, A; Ljubičić, A; Lozza, V; Lutz, G; Luzón, G; Morales, J; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Rashba, T; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J A; Vogel, J K; Yildiz, S C; Zioutas, K

    2011-12-23

    The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using (3)He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with (4)He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV≲m(a)≲0.64 eV. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g(aγ)≲2.3×10(-10) GeV(-1) at 95% C.L., the exact value depending on the pressure setting. Kim-Shifman-Vainshtein-Zakharov axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In the future we will extend our search to m(a)≲1.15 eV, comfortably overlapping with cosmological hot dark matter bounds.

  4. Oxygenic photosynthesis: translation to solar fuel technologies

    Directory of Open Access Journals (Sweden)

    Julian David Janna Olmos

    2014-12-01

    Full Text Available Mitigation of man-made climate change, rapid depletion of readily available fossil fuel reserves and facing the growing energy demand that faces mankind in the near future drive the rapid development of economically viable, renewable energy production technologies. It is very likely that greenhouse gas emissions will lead to the significant climate change over the next fifty years. World energy consumption has doubled over the last twenty-five years, and is expected to double again in the next quarter of the 21st century. Our biosphere is at the verge of a severe energy crisis that can no longer be overlooked. Solar radiation represents the most abundant source of clean, renewable energy that is readily available for conversion to solar fuels. Developing clean technologies that utilize practically inexhaustible solar energy that reaches our planet and convert it into the high energy density solar fuels provides an attractive solution to resolving the global energy crisis that mankind faces in the not too distant future. Nature’s oxygenic photosynthesis is the most fundamental process that has sustained life on Earth for more than 3.5 billion years through conversion of solar energy into energy of chemical bonds captured in biomass, food and fossil fuels. It is this process that has led to evolution of various forms of life as we know them today. Recent advances in imitating the natural process of photosynthesis by developing biohybrid and synthetic “artificial leaves” capable of solar energy conversion into clean fuels and other high value products, as well as advances in the mechanistic and structural aspects of the natural solar energy converters, photosystem I and photosystem II, allow to address the main challenges: how to maximize solar-to-fuel conversion efficiency, and most importantly: how to store the energy efficiently and use it without significant losses. Last but not least, the question of how to make the process of solar

  5. Technical Assistance for Southwest Solar Technologies Inc. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Surety Engineering and Analysis; Brainard, James Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). National Security Applications; McIntyre, Annie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Surety Engineering and Analysis; Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geomechanics; Akin, Lili A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis; Nicol, Katherine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Surety Engineering and Analysis; Hayden, Herb [Southwest Solar Technologies, Inc., Phoenix, AZ (United States)

    2012-07-01

    Southwest Solar Technologies Inc. is constructing a Solar-Fuel Hybrid Turbine energy system. This innovative energy system combines solar thermal energy with compressed air energy storage and natural gas fuel backup capability to provide firm, non-intermittent power. In addition, the energy system will have very little impact on the environment since, unlike other Concentrated Solar Power (CSP) technologies, it requires minimal water. In 2008 Southwest Solar Technologies received a Solar America Showcase award from the Department of Energy for Technical Assistance from Sandia National Laboratories. This report details the work performed as part of the Solar America Showcase award for Southwest Solar Technologies. After many meetings and visits between Sandia National Labs and Southwest Solar Technologies, several tasks were identified as part of the Technical Assistance and the analysis and results for these are included here.

  6. Solar technology applications: a survey of solar powered irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, H.W.

    1978-04-17

    Published information on solar powered irrigation systems is presented. Thermal solar systems, thermoelectric solar systems, and photovoltaic solar systems are included. A bibliography and survey of on-going work is presented. (WHK)

  7. Current situation and development of solar heating technology in China

    Institute of Scientific and Technical Information of China (English)

    Zheng Ruicheng

    2009-01-01

    It is introduced the current situation and development for solar heating technology including passive solar heat-ing and solar heating combisystems in China in this paper. Combined with the engineering application projects, the au-thor gave the technical and economic analysis of the passive solar and solar heating combisystems in China and summa-rized the developing obstacle and the spreading tactics for raising marketing of the solar heating in China.

  8. The Space Telescope. A study of NASA, science, technology, and politics.

    Science.gov (United States)

    Smith, R. W.; Hanle, P. A.; Kargon, R. H.; Tatarewicz, J. N.

    Complete with a new Afterword detailing the project's problems since its 1990 launch, Robert Smith's "The Space Telescope" (for the first edition see 50.003.047) sets the fascinating and disturbing history of this massive venture within the context of "Big Science". Launched at a cost of more than $2 billion, the Space Telescope turned out to be seriously flawed by imperfections in the construction of its lenses and by solar panels that caused it to shudder when moving from daylight to darkness. Smith analyzes how the processes of Big Science, especially those involving the government's funding process for large-scale projects, contributed to those failures. He reveals the astonishingly complex interactions that took place among the scientific community, government, and industry and describes the great range of personalities and forces - scientific, technical, political, social, institutional, and economic - that played roles in the Space Telescope's history.

  9. The Thermal Environment of the Fiber Glass Dome for the New Solar Telescope at Big Bear Solar Observatory

    CERN Document Server

    Verdoni, A P; Varsik, J R; Shumko, S; Nenow, J; Coulter, R

    2007-01-01

    The New Solar Telescope (NST) is a 1.6-meter off-axis Gregory-type telescope with an equatorial mount and an open optical support structure. To mitigate the temperature fluctuations along the exposed optical path, the effects of local/dome-related seeing have to be minimized. To accomplish this, NST will be housed in a 5/8-sphere fiberglass dome that is outfitted with 14 active vents evenly spaced around its perimeter. The 14 vents house louvers that open and close independently of one another to regulate and direct the passage of air through the dome. In January 2006, 16 thermal probes were installed throughout the dome and the temperature distribution was measured. The measurements confirmed the existence of a strong thermal gradient on the order of 5 degree Celsius inside the dome. In December 2006, a second set of temperature measurements were made using different louver configurations. In this study, we present the results of these measurements along with their integration into the thermal control system...

  10. The space telescope: A study of NASA, science, technology, and politics

    Science.gov (United States)

    Smith, Robert William

    1989-01-01

    Scientific, technological, economic, and political aspects of NASA efforts to orbit a large astronomical telescope are examined in a critical historical review based on extensive interviews with participants and analysis of published and unpublished sources. The scientific advantages of large space telescopes are explained; early plans for space observatories are summarized; the history of NASA and its major programs is surveyed; the redesign of the original Large Space Telescope for Shuttle deployability is discussed; the impact of the yearly funding negotiations with Congress on the development of the final Hubble Space Telescope (HST) is described; and the implications of the HST story for the future of large space science projects are explored. Drawings, photographs, a description of the HST instruments and systems, and lists of the major contractors and institutions participating in the HST program are provided.

  11. The Cryogenic Near Infrared Spectropolarimeter for the Daniel K. Inouye Solar Telescope

    Science.gov (United States)

    Fehlmann, Andre; Giebink, Cindy; Kuhn, Jeffrey Richard; Mickey, D. L.; Scholl, Isabelle

    2017-08-01

    The Cryogenic Near Infrared Spectropolarimeter is one of the first light instruments for the Daniel K. Inouye Solar Telescope. This dual-beam instrument, which is currently characterized at the University of Hawaii’s Institute for Astronomy, is designed to sensitively measure the solar spectrum at wavelengths from 1 to 5 μm. The high dynamic range of the spectrograph and its context imager will provide sensitive data of the solar disk in the CO bands; unique observations of the low corona and unprecedented measurements of the coronal magnetic field. Observations near the limb and in the corona will greatly benefit from DKIST’s limb occulting system. The initial suite of filters includes selecting filters for the spectrograph at He I / Fe XIII 1080 nm, Si X 1430 nm, Si IX 3934 nm and CO 4651 nm as well as narrow band filters for the context imager at Fe XIII 1074.7 nm, He I 1083.0, Si X 1430.0 nm and J band 1250 nm. In this paper we will present an update on the ongoing instrument characterization and CryoNIRSP’s capabilities.

  12. Flexible implementation of rigid solar cell technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Hollowell, Andrew E.

    2010-08-01

    As a source of clean, remote energy, photovoltaic (PV) systems are an important area of research. The majority of solar cells are rigid materials with negligible flexibility. Flexible PV systems possess many advantages, such as being transportable and incorporable on diverse structures. Amorphous silicon and organic PV systems are flexible; however, they lack the efficiency and lifetime of rigid cells. There is also a need for PV systems that are light weight, especially in space and flight applications. We propose a solution to this problem by arranging rigid cells onto a flexible substrate creating efficient, light weight, and flexible devices. To date, we have created a working prototype of our design using the 1.1cm x 1cm Emcore cells. We have achieved a better power to weight ratio than commercially available PowerFilm{reg_sign}, which uses thin film silicon yielding .034W/gram. We have also tested our concept with other types of cells and verified that our methods are able to be adapted to any rigid solar cell technology. This allows us to use the highest efficiency devices despite their physical characteristics. Depending on the cell size we use, we can rival the curvature of most available flexible PV devices. We have shown how the benefits of rigid solar cells can be integrated into flexible applications, allowing performance that surpasses alternative technologies.

  13. Transverse Motions of Chromospheric Type II Spicules Observed by the New Solar Telescope

    CERN Document Server

    Yurchyshyn, V; Abramenko, V

    2012-01-01

    Using high resolution off-band \\ha\\ data from the New Solar Telescope and Morlet wavelet analysis technique, we analyzed transverse motions of type II spicules observed near the North Pole of the Sun. Our new findings are that i) some of the observed type II spicules display kink or an inverse "Y" features, suggesting that their origin may be due to magnetic reconnection, and ii) type II spicules tend to display coherent transverse motions/oscillations. Also, the wavelet analysis detected significant presence of high frequency oscillations in type II spicules, ranging from 30 to 180 s with the the average period of 90 s. We conclude that at least some of type II spicules and their coherent transverse motions may be caused by reconnection between large scale fields rooted in the intergranular lanes and and small-scale emerging dipoles, a process that is know to generate high frequency kink mode MHD waves propagating along the magnetic field lines.

  14. Heat-stop structure design with high cooling efficiency for large ground-based solar telescope.

    Science.gov (United States)

    Liu, Yangyi; Gu, Naiting; Rao, Changhui; Li, Cheng

    2015-07-20

    A heat-stop is one of the most important thermal control devices for a large ground-based solar telescope. For controlling the internal seeing effect, the temperature difference between the heat-stop and the ambient environment needs to be reduced, and a heat-stop with high cooling efficiency is required. In this paper, a novel design concept for the heat-stop, in which a multichannel loop cooling system is utilized to obtain higher cooling efficiency, is proposed. To validate the design, we analyze and compare the cooling efficiency for the multichannel and existing single-channel loop cooling system under the same conditions. Comparative results show that the new design obviously enhances the cooling efficiency of the heat-stop, and the novel design based on the multichannel loop cooling system is obviously better than the existing design by increasing the thermal transfer coefficient.

  15. Opto-thermal analysis of a lightweighted mirror for solar telescope

    CERN Document Server

    Banyal, Ravinder K; Chatterjee, S

    2013-01-01

    In this paper, an opto-thermal analysis of a moderately heated lightweighted solar telescope mirror is carried out using 3D finite element analysis (FEA). A physically realistic heat transfer model is developed to account for the radiative heating and energy exchange of the mirror with surroundings. The numerical simulations show the non-uniform temperature distribution and associated thermo-elastic distortions of the mirror blank clearly mimicking the underlying discrete geometry of the lightweighted substrate. The computed mechanical deformation data is analyzed with surface polynomials and the optical quality of the mirror is evaluated with the help of a ray-tracing software. The thermal print-through distortions are further shown to contribute to optical figure changes and mid-spatial frequency errors of the mirror surface. A comparative study presented for three commonly used substrate materials, namely, Zerodur, Pyrex and Silicon Carbide (SiC) is relevant to vast area of large optics requirements in gro...

  16. James Webb Space Telescope Observations of Stellar Occultations by Solar System Bodies and Rings

    Science.gov (United States)

    Santos-Sanz, P.; French, R. G.; Pinilla-Alonso, N.; Stansberry, J.; Lin, Z-Y.; Zhang, Z-W.; Vilenius, E.; Mueller, Th.; Ortiz, J. L.; Braga-Ribas, F.; hide

    2016-01-01

    In this paper, we investigate the opportunities provided by the James Webb Space Telescope (JWST) for significant scientific advances in the study of Solar System bodies and rings using stellar occultations. The strengths and weaknesses of the stellar occultation technique are evaluated in light of JWST's unique capabilities. We identify several possible JWST occultation events by minor bodies and rings and evaluate their potential scientific value. These predictions depend critically on accurate a priori knowledge of the orbit of JWST near the Sun–Earth Lagrange point 2 (L2). We also explore the possibility of serendipitous stellar occultations by very small minor bodies as a byproduct of other JWST observing programs. Finally, to optimize the potential scientific return of stellar occultation observations, we identify several characteristics of JWST's orbit and instrumentation that should be taken into account during JWST's development.

  17. A Tilt-correction Adaptive Optical System for the Solar Telescope of Nanjing University

    Institute of Scientific and Technical Information of China (English)

    Chang-Hui Rao; Xiu-Fa Gao; Tian Mi; Wen-Han Jiang; Cheng Fang; Ning Ling; Wei-Chao Zhou; Ming-De Ding; Xue-Jun Zhang; Dong-Hong Chen; Mei Li

    2003-01-01

    A tilt-correction adaptive optical system installed on the 430 mm Solar Telescope of Nanjing University has been put in operation. It consists of a tip-tilt mirror, a correlation tracker and an imaging CCD camera. An absolute difference algorithm is used for detecting image motion in the correlation tracker. The sampling frequency of the system is 419 Hz. We give a description of the system's configuration, an analysis of its performance and a report of our observational results. A residual jitter of 0.14 arcsec has been achieved. The error rejection bandwidth of the system can be adjusted in the range 5-28 Hz according to the beacon size and the strength of atmospheric turbulence.

  18. Required Technologies for A 10-16 m UV-Visible-IR Telescope on the Moon

    Science.gov (United States)

    Johnson, Stewart W.; Wetzel, John P.

    1989-01-01

    A successor to the Hubble Space Telescope, incorporating a 10 to 16 meter mirror, and operating in the UV-Visible-IR is being considered for emplacement on the Moon in the 21st Century. To take advantage of the characteristics of the lunar environment, such a telescope requires appropriate advances in technology. These technologies are in the areas of contamination/interference control, test and evaluation, manufacturing, construction, autonomous operations and maintenance, power and heating/cooling, stable precision structures, optics, parabolic antennas, and communications/control. This telescope for the lunar surface needs to be engineered to operate for long periods with minimal intervention by humans or robots. What is essential for lunar observatory operation is enforcement of a systems engineering approach that makes compatible all lunar operations associated with habitation, resource development, and science.

  19. Required Technologies for A 10-16 m UV-Visible-IR Telescope on the Moon

    Science.gov (United States)

    Johnson, Stewart W.; Wetzel, John P.

    1989-01-01

    A successor to the Hubble Space Telescope, incorporating a 10 to 16 meter mirror, and operating in the UV-Visible-IR is being considered for emplacement on the Moon in the 21st Century. To take advantage of the characteristics of the lunar environment, such a telescope requires appropriate advances in technology. These technologies are in the areas of contamination/interference control, test and evaluation, manufacturing, construction, autonomous operations and maintenance, power and heating/cooling, stable precision structures, optics, parabolic antennas, and communications/control. This telescope for the lunar surface needs to be engineered to operate for long periods with minimal intervention by humans or robots. What is essential for lunar observatory operation is enforcement of a systems engineering approach that makes compatible all lunar operations associated with habitation, resource development, and science.

  20. Solar Effects on Tensile and Optical Properties of Hubble Space Telescope Silver-Teflon(Registered Trademark) Insulation

    Science.gov (United States)

    deGroh, Kim, K.; Dever, Joyce A.; Snyder, Aaron; Kaminski, Sharon; McCarthy, Catherine E.; Rapoport, Alison L.; Rucker, Rochelle N.

    2006-01-01

    A section of the retrieved Hubble Space Telescope (HST) solar array drive arm (SADA) multilayer insulation (MLI), which experienced 8.25 years of space exposure, was analyzed for environmental durability of the top layer of silver-Teflon (DuPont) fluorinated ethylene propylene (Ag-FEP). Because the SADA MLI had solar and anti-solar facing surfaces and was exposed to the space environment for a long duration, it provided a unique opportunity to study solar effects on the environmental degradation of Ag-FEP, a commonly used spacecraft thermal control material. Data obtained included tensile properties, solar absorptance, surface morphology and chemistry. The solar facing surface was found to be extremely embrittled and contained numerous through-thickness cracks. Tensile testing indicated that the solar facing surface lost 60% of its mechanical strength and 90% of its elasticity while the anti-solar facing surface had ductility similar to pristine FEP. The solar absorptance of both the solar facing surface (0.155 plus or minus 0.032) and the anti-solar facing surface (0.208 plus or minus 0.012) were found to be greater than pristine Ag-FEP (0.074). Solar facing and anti-solar facing surfaces were microscopically textured, and locations of isolated contamination were present on the anti-solar surface resulting in increased localized texturing. Yet, the overall texture was significantly more pronounced on the solar facing surface indicating a synergistic effect of combined solar exposure and increased heating with atomic oxygen erosion. The results indicate a very strong dependence of degradation, particularly embrittlement, upon solar exposure with orbital thermal cycling having a significant effect.

  1. Geant4 simulation of the solar neutron telescope at Sierra Negra, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, L.X., E-mail: xavier@geofisica.unam.m [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, 04510 D.F. (Mexico); Sanchez, F. [Comision Nacional de Energia Atomica, 1429 Buenos Aires (Argentina); Valdes-Galicia, J.F. [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, 04510 D.F. (Mexico)

    2010-02-01

    The solar neutron telescope (SNT) at Sierra Negra (19.0 deg. N, 97.3 deg. W and 4580 m.a.s.l) is part of a worldwide network of similar detectors (Valdes-Galicia et al., (2004)). This SNT has an area of 4 m{sup 2}; it is composed by four 1 mx1 mx30 cm plastic scintillators (Sci). The Telescope is completely surrounded by anti-coincidence proportional counters (PRCs) to separate charged particles from the neutron flux. In order to discard photon background it is shielded on its sides by 10 mm thick iron plates and on its top by 5 mm lead plates. It is capable of registering four different channels corresponding to four energy deposition thresholds: E>30, >60, >90 and >120 MeV. The arrival direction of neutrons is determined by gondolas of PRCs in electronic coincidence, four layers of these gondolas orthogonally located underneath the SNT, two in the NS direction and two in the EW direction. We present here simulations of the detector response to neutrons, protons, electrons and gammas in range of energies from 100 to 1000 MeV. We report on the detector efficiency and on its angular resolution for particles impinging the device with different zenith angles. The simulation code was written using the Geant4 package (Agostinelli et al., (2003)), taking into account all relevant physical processes.

  2. Suppression of Astronomical Sources Using Starshades and the McMath-Pierce Solar Telescope

    Science.gov (United States)

    Novicki, Megan; Warwick, Steve; Smith, Daniel; Richards, Michael; Harness, Anthony

    2016-01-01

    The external starshade is a method for the direct detection and spectral characterization of terrestrial planets around other stars, a key goal identified in ASTRO2010. Tests of this approach have been and continue to be conducted in the lab and in the field (Samuele et al., 2010, Glassman et al., 2014) using non-collimated light sources with a spherical wavefront. We extend the current approach to performing night-time observations of astronomical objects using small-scale (approximately 1/300th) starshades and the McMath-Pierce Solar Telescope at Kitt Peak National Observatory. We placed a starshade directly in the path of the beam from an astronomical object in front of the main heliostat. Using only flat mirrors, we then directed the light through the observatory path and reflected it off the West heliostat to an external telescope located approximately 270m away, for an effective baseline of 420m.This configuration allowed us to make measurements of flat wavefront sources with a Fresnel number close to those expected in proposed full-scale space configurations. We present the results of our engineering runs conducted in 2015.

  3. Space solar cell technology development - A perspective

    Science.gov (United States)

    Scott-Monck, J.

    1982-01-01

    The developmental history of photovoltaics is examined as a basis for predicting further advances to the year 2000. Transistor technology was the precursor of solar cell development. Terrestrial cells were modified for space through changes in geometry and size, as well as the use of Ag-Ti contacts and manufacture of a p-type base. The violet cell was produced for Comsat, and involved shallow junctions, new contacts, and an enhanced antireflection coating for better radiation tolerance. The driving force was the desire by private companies to reduce cost and weight for commercial satellite power supplies. Liquid phase epitaxial (LPE) GaAs cells are the latest advancement, having a 4 sq cm area and increased efficiency. GaAs cells are expected to be flight ready in the 1980s. Testing is still necessary to verify production techniques and the resistance to electron and photon damage. Research will continue in CVD cell technology, new panel technology, and ultrathin Si cells.

  4. Investigation of intergranular bright points from the New Vacuum Solar Telescope

    Science.gov (United States)

    Ji, Kai-Fan; Xiong, Jian-Ping; Xiang, Yong-Yuan; Feng, Song; Deng, Hui; Wang, Feng; Yang, Yun-Fei

    2016-05-01

    Six high-resolution TiO-band image sequences from the New Vacuum Solar Telescope (NVST) are used to investigate the properties of intergranular bright points (igBPs). We detect the igBPs using a Laplacian and morphological dilation algorithm (LMD) and automatically track them using a three-dimensional segmentation algorithm, and then investigate the morphologic, photometric and dynamic properties of igBPs in terms of equivalent diameter, intensity contrast, lifetime, horizontal velocity, diffusion index, motion range and motion type. The statistical results confirm previous studies based on G-band or TiO-band igBPs from other telescopes. These results illustrate that TiO data from the NVST are stable and reliable, and are suitable for studying igBPs. In addition, our method is feasible for detecting and tracking igBPs with TiO data from the NVST. With the aid of vector magnetograms obtained from the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, the properties of igBPs are found to be strongly influenced by their embedded magnetic environments. The areal coverage, size and intensity contrast values of igBPs are generally larger in regions with higher magnetic flux. However, the dynamics of igBPs, including the horizontal velocity, diffusion index, ratio of motion range and index of motion type are generally larger in the regions with lower magnetic flux. This suggests that the absence of strong magnetic fields in the medium makes it possible for the igBPs to look smaller and weaker, diffuse faster, and move faster and further along a straighter path.

  5. Thermal analysis of the baffle structure of the Solar Space Telescope

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The SST(Space Solar Telescope) is an astronomical telescope with a primary mirror of 1 m in diameter.It observes the sun with a small view field to ensure that its high spatial resolution imaging has 0.1″-0.15″ and high SNR(signal to noise ratio).Surrounding the small view field is still the sun,which is an intense source of both heat and stray light.The baffles(the main baffle,the aperture,and the outer baffle),which are used to eliminate the stray light,will change the thermal flux in the SST and will weaken the effect of the thermal control design.In this study,the compatibility analysis of the thermal effect of baffle structures in SST is performed.The GCF(Geometry Composing Function) and BRDF(Bidirectional Reflectance Distribution Function),which are two inherent related parameters in the compatibility analysis,are derived.The objective and method of the compatibility analysis are determined.With the thermal analysis software,the temperature fields are calculated for different lengths of the main baffle,different radii of apertures,different lengths of the outer baffle with a 3’ tilt angle and 16’ tilt angle,and different tilt angles of the outer baffle with a 200 mm length.A series of configurations and sizes of the baffles are studied with the goals of both thermal control and elimination of stray light.The design of the baffle structure of SST is achieved:the main baffle of length 4100 mm,the internal shield of radius 494 mm,the outer baffle of length 200 mm,and the outer baffle of tilt angle 3’ are successfully designed.This paper presents the relationship between the thermal control design and stray light elimination plan in the SST.The aims of the optimal design of the baffle structure of SST are reached.The thoughts and methods of the optimal analysis are also useful for similar optical telescopes designed for solar observation.

  6. Hubble Space telescope thermal cycle test report for large solar array samples with BSFR cells (Sample numbers 703 and 704)

    Science.gov (United States)

    Alexander, D. W.

    1992-01-01

    The Hubble space telescope (HST) solar array was designed to meet specific output power requirements after 2 years in low-Earth orbit, and to remain operational for 5 years. The array, therefore, had to withstand 30,000 thermal cycles between approximately +100 and -100 C. The ability of the array to meet this requirement was evaluated by thermal cycle testing, in vacuum, two 128-cell solar cell modules that exactly duplicated the flight HST solar array design. Also, the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit was evaluated by performing a cold-roll test using one module.

  7. Solar sail technology-A state of the art review

    Science.gov (United States)

    Fu, Bo; Sperber, Evan; Eke, Fidelis

    2016-10-01

    In this paper, the current state of the art of solar sail technology is reviewed. Solar sail research is quite broad and multi-disciplinary; this paper focuses mainly on areas such as solar sail dynamics, attitude control, design and deployment, and mission and trajectory analysis. Special attention is given to solar radiation pressure force modeling and attitude dynamics. Some basics of solar sailing which would be very useful for a new investigator in the area are also presented. Technological difficulties and current challenges in solar sail system design are identified, and possible ideas for future research in the field are also discussed.

  8. Non-uniform Solar Temperature Field on Large Aperture, Fully-Steerable Telescope Structure

    Science.gov (United States)

    Liu, Yan

    2016-09-01

    In this study, a 110-m fully steerable radio telescope was used as an analysis platform and the integral parametric finite element model of the antenna structure was built in the ANSYS thermal analysis module. The boundary conditions of periodic air temperature, solar radiation, long-wave radiation shadows of the surrounding environment, etc. were computed at 30 min intervals under a cloudless sky on a summer day, i.e., worstcase climate conditions. The transient structural temperatures were then analyzed under a period of several days of sunshine with a rational initial structural temperature distribution until the whole set of structural temperatures converged to the results obtained the day before. The non-uniform temperature field distribution of the entire structure and the main reflector surface RMS were acquired according to changes in pitch and azimuth angle over the observation period. Variations in the solar cooker effect over time and spatial distributions in the secondary reflector were observed to elucidate the mechanism of the effect. The results presented here not only provide valuable realtime data for the design, construction, sensor arrangement and thermal deformation control of actuators but also provide a troubleshooting reference for existing actuators.

  9. PROPERTIES OF UMBRAL DOTS AS MEASURED FROM THE NEW SOLAR TELESCOPE DATA AND MHD SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.; Goode, P. R.; Cao, W. [Big Bear Solar Observatory, Big Bear City, CA 92314 (United States); Rempel, M. [High Altitude Observatory, NCAR, Boulder, CO 80307-3000 (United States); Kitai, R.; Watanabe, H. [Kwasan and Hida Observatories, Kyoto University, Kyoto 607-8417 (Japan)

    2012-02-01

    We studied bright umbral dots (UDs) detected in a moderate size sunspot and compared their statistical properties to recent MHD models. The study is based on high-resolution data recorded by the New Solar Telescope at the Big Bear Solar Observatory and three-dimensional (3D) MHD simulations of sunspots. Observed UDs, living longer than 150 s, were detected and tracked in a 46 minute long data set, using an automatic detection code. A total of 1553 (620) UDs were detected in the photospheric (low chromospheric) data. Our main findings are (1) none of the analyzed UDs is precisely circular, (2) the diameter-intensity relationship only holds in bright umbral areas, and (3) UD velocities are inversely related to their lifetime. While nearly all photospheric UDs can be identified in the low chromospheric images, some small closely spaced UDs appear in the low chromosphere as a single cluster. Slow-moving and long-living UDs seem to exist in both the low chromosphere and photosphere, while fast-moving and short-living UDs are mainly detected in the photospheric images. Comparison to the 3D MHD simulations showed that both types of UDs display, on average, very similar statistical characteristics. However, (1) the average number of observed UDs per unit area is smaller than that of the model UDs, and (2) on average, the diameter of model UDs is slightly larger than that of observed ones.

  10. Cryogenic near infrared spectropolarimeter for the Daniel K. Inouye Solar Telescope

    Science.gov (United States)

    Fehlmann, Andre; Giebink, Cynthia; Kuhn, Jeffrey R.; Messersmith, Ernesto J.; Mickey, Donald L.; Scholl, Isabelle F.; James, Don; Hnat, Kirby; Schickling, Greg; Schickling, Richard

    2016-08-01

    The Cryogenic Near Infrared Spectropolarimeter for the Daniel K Inouye Solar Telescope is designed to measure polarized light from 0.5 to 5 μm. It uses an almost all reflective design for high throughput and an R2 echelle grating to achieve the required resolution of up to R = 100,000. The optics cooled to cryogenic temperatures reduce the thermal background allowing for IR observations of the faint solar corona. Both the spectrograph and its context imager use H2RG detector arrays with a newly designed controller to allow synchronized exposures at frame rates up to 10 Hz. All hardware has been built and tested and the key components met their design goals. 1) The cryogenic system uses mechanical closed cycle coolers which introduce vibrations. Our design uses a two stage approach with a floating mounting disk and flexible cold links to reduce these. The vibration amplitudes on all critical stages were measured and are smaller than 1μm. 2) The grating stage of the spectrograph uses a double stack of harmonic drives and an optical encoder to provide sub-arcsecond resolution and a measured repeatability of better than 0.5 arcsec.

  11. Non-uniform Solar Temperature Field on Large Aperture, Fully-Steerable Telescope Structure

    Indian Academy of Sciences (India)

    Yan Liu

    2016-09-01

    In this study, a 110-m fully steerable radio telescope was used as an analysis platform and the integral parametric finite element model of the antenna structure was built in the ANSYS thermal analysis module. The boundary conditions of periodic air temperature, solar radiation, long-wave radiation shadows of the surrounding environment, etc. were computed at 30 min intervals under a cloudless sky on a summer day, i.e., worst case climate conditions. The transient structural temperatures were then analyzed under a period of several days of sunshine with a rational initial structural temperature distribution until the whole set of structural temperatures converged to the results obtained the day before. The nonuniform temperature field distribution of the entire structure and the main reflector surface RMS were acquired according to changes in pitch and azimuth angle over the observation period. Variations in the solar cooker effect over time and spatial distributions in the secondary reflector were observed to elucidate the mechanism of the effect. The results presented here not only provide valuable real time data for the design, construction, sensor arrangement and thermal deformation control of actuators but also provide a troubleshooting reference for existing actuators.

  12. 构建实时三维太阳光谱望远镜的建议%Proposal for a Real 3D Solar Spectrum Telescope

    Institute of Scientific and Technical Information of China (English)

    屈中权; 许骏; 毛伟军; 张宵宇; 胥成林; 孙明国; 金春兰; 王帅

    2006-01-01

    提出了一种新型太阳光谱望远镜的建议,这种望远镜能够同时记录太阳日面观测区域的两维空间的色散(三维光谱),即一系列同步狭窄带通的光谱图像.借助该望远镜我们可以得到高时间分辨率的光谱图(10ms),进而能够做细致的光谱分析.该望远镜由一组子望远镜组成,每个子镜负责记录观测区域的一个事先设计好的透过带,所有透过带覆盖了所研究谱线的整个光谱波段,可以用来诊断不透明的低层大气物质流的三维速度场、重构太阳活动区(即太阳耀斑区)的三维结构.此外,若每个子镜都加载上偏振仪时,则能够得到精确的矢量磁场,这种矢量磁场能够作为第二代视频磁场测量仪.此望远镜由一组紧密排列的子镜组成,文章分别给出了两种不同排列子镜的方式.描述了用来观测的每个子镜的透过带的样品光学表,并且提出了不同探测器的同时成像技术.最后,我们把该望远镜和ATST(Advanced Technology Solar Telescope)进行了比较.%The concept of a new type of the solar optical telescope is proposed that can record simultaneously the two dimensional dispersions (3D spectrum) of observed regions on the solar disk,i.e.a series of synchronous narrow-bandpass spectral images.It can allow us to do detailed spectral analysis while being able to own a super high temporal resolution,say,tens of milliseconds.Such a telescope can be formed with an array of sub-telescopes in each of which an image of the observed area is recorded at the different designed bandpass within one interested line,and the collection of these bandpasses spreads and covers the whole spectral band of an interesting spectral line.It can be suitable to diagnose the three-component velocity fields of mass flows,and obtain the ability to reconstruct three dimensional(3D) structure of solar active region (say,solar flaring region) in the opaque lower atmosphere. And further, with the

  13. Status of Technology Development to enable Large Stable UVOIR Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; MSFC AMTD Team

    2017-01-01

    NASA MSFC has two funded Strategic Astrophysics Technology projects to develop technology for potential future large missions: AMTD and PTC. The Advanced Mirror Technology Development (AMTD) project is developing technology to make mechanically stable mirrors for a 4-meter or larger UVOIR space telescope. AMTD is demonstrating this technology by making a 1.5 meter diameter x 200 mm thick ULE(C) mirror that is 1/3rd scale of a full size 4-m mirror. AMTD is characterizing the mechanical and thermal performance of this mirror and of a 1.2-meter Zerodur(R) mirror to validate integrate modeling tools. Additionally, AMTD has developed integrated modeling tools which are being used to evaluate primary mirror systems for a potential Habitable Exoplanet Mission and analyzed the interaction between optical telescope wavefront stability and coronagraph contrast leakage. Predictive Thermal Control (PTC) project is developing technology to enable high stability thermal wavefront performance by using integrated modeling tools to predict and actively control the thermal environment of a 4-m or larger UVOIR space telescope.

  14. The Lunar Ultraviolet Telescope Experiment (LUTE): Enabling technology for an early lunar surface payload

    Science.gov (United States)

    Nein, M. E.; Hilchey, J. D.

    1995-02-01

    The Lunar Ultraviolet Telescope Experiment (LUTE) is a 1-m aperture, fixed declination, optical telescope to be operated on the surface of the Moon. This autonomous science payload will provide an unprecedented ultraviolet stellar survey even before manned lunar missions are resumed. This paper very briefly summarizes the LUTE concept analyzed by the LUTE Task Team of NASA's Marshall Space Flight Center (MSFC). Scientific capabilities and the Reference Design Concept are identified, and the expected system characteristics are summarized. Technologies which will be required to enable the early development, deployment, and operation of the LUTE are identified, and the principle goals and approaches for their advancement are described.

  15. Progress on the 1.8m solar telescope: the CLST

    Science.gov (United States)

    Rao, Changhui; Gu, Naiting; Zhu, Lei; Li, Cheng; Huang, Jinglong; Cheng, Yuntao; Liu, Yangyi; Yao, Benxi; Wang, Zhiyong; Cao, Xuedong; Zhang, Ming; Zhang, Lanqiang; Liu, Hong; Wan, Yongjian; Xian, Hao; Ma, Wenli

    2016-07-01

    In order to study some special solar activities, such as the emergence, evolution and disappearance progress of the sunspot and magnetic flux, and the key role of magnetic field, a new 1.8-meter size high-resolution solar telescope —the CLST will be built in the Institute of Optics and Electronics(IOE), Chinese Academy of Science(CAS), which locates in Chengdu, China. The CLST has a classic Gregorian configuration, alt-azimuth mount, retractable dome. Besides that, a large mechanical de-rotator will be used to cancel the image rotation, and finally it will cooperate with another kind of mechanical de-rotator to cancel both of the pupil rotation and image rotation. Φ3 arc-minute field of view will help the CLST to observe the whole solar activity region, and if necessary the FOV can be enlarged to Φ 6 arc-minute. A 1.8m primary mirror with honeycomb sandwiches structure made by using ULE material will reduce about 70% of weight. Thermal controlling system will also be equipped for the CLST, which including Heat-Stop, primary mirror, tube truss, mount and the other optics elements. An experimental system for validating thermal controlling of primary mirror and Heat-Stop has been built, and the temperature tracking results will be illustrated in this paper. Currently, we have finished the detailed design of the CLST, and some important components also have been manufactured and finished. In this paper, we describe some important progresses and the latest status of the CLST project during these two years.

  16. Ultra-Narrow Negative Flare Front Observed in Helium-10830 Å Using the1.6m New Solar Telescope

    Science.gov (United States)

    Xu, Yan; Cao, Wenda; Ding, Mingde; Kleint, Lucia; Su, Jiangtao; Liu, Chang; Ji, Haisheng; Chae, Jongchul; Jing, Ju; Cho, Kyuhyoun; Cho, Kyung-Suk; Gary, Dale E.; Wang, Haimin

    2016-05-01

    Solar flares are sudden flashes of brightness on the Sun and are often associated with coronal mass ejections and solar energetic particles that have adverse effects on the near-Earth environment. By definition, flares are usually referred to as bright features resulting from excess emission. Using the newly commissioned 1.6-m New Solar Telescope at Big Bear Solar Observatory, we show a striking “negative” flare with a narrow but unambiguous “dark” moving front observed in He I 10830 Å, which is as narrow as 340 km and is associated with distinct spectral characteristics in Hα and Mg II lines. Theoretically, such negative contrast in He I 10830 Å can be produced under special circumstances by nonthermal electron collisions or photoionization followed by recombination. Our discovery, made possible due to unprecedented spatial resolution, confirms the presence of the required plasma conditions and provides unique information in understanding the energy release and radiative transfer in solar flares.

  17. Advanced Technology Large-Aperture Space Telescope (ATLAST): Characterizing Habitable Worlds

    CERN Document Server

    Postman, M; Krist, J; Stapelfeldt, K; Brown, R; Oegerle, W; Lo, A; Clampin, M; Soummer, R; Wiseman, J; Mountain, M

    2009-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation UV-Optical-Near Infrared space telescope with an aperture size of 8 to 16 meters. ATLAST, using an internal coronagraph or an external occulter, can characterize the atmosphere and surface of an Earth-sized exoplanet in the Habitable Zone of long-lived stars at distances up to ~45 pc, including its rotation rate, climate, and habitability. ATLAST will also allow us to glean information on the nature of the dominant surface features, changes in cloud cover and climate, and, potentially, seasonal variations in surface vegetation. ATLAST will be able to visit up to 200 stars in 5 years, at least three times each, depending on the technique used for starlight suppression and the telescope aperture. More frequent visits can be made for interesting systems.

  18. Solar and Wind Technologies for Hydrogen Production Report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-12-01

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills the requirement under section 812 of the Energy Policy Act of 2005.

  19. Plate coil thermal test bench for the Daniel K. Inouye Solar Telescope (DKIST) carousel cooling system

    Science.gov (United States)

    Phelps, LeEllen; Murga, Gaizka; Montijo, Guillermo; Hauth, David

    2014-08-01

    Analyses have shown that even a white-painted enclosure requires active exterior skin-cooling systems to mitigate dome seeing which is driven by thermal nonuniformities that change the refractive index of the air. For the Daniel K. Inouye Solar Telescope (DKIST) Enclosure, this active surface temperature control will take the form of a system of water cooled plate coils integrated into the enclosure cladding system. The main objective of this system is to maintain the surface temperature of the enclosure as close as possible to, but always below, local ambient temperature in order to mitigate this effect. The results of analyses using a multi-layer cladding temperature model were applied to predict the behavior of the plate coil cladding system and ultimately, with safety margins incorporated into the resulting design thermal loads, the detailed designs. Construction drawings and specifications have been produced. Based on these designs and prior to procurement of the system components, a test system was constructed in order to measure actual system behavior. The data collected during seasonal test runs at the DKIST construction site on Haleakalā are used to validate and/or refine the design models and construction documents as appropriate. The test fixture was also used to compare competing hardware, software, components, control strategies, and configurations. This paper outlines the design, construction, test protocols, and results obtained of the plate coil thermal test bench for the DKIST carousel cooling system.

  20. Dynamics in Sunspot Umbra as Seen in New Solar Telescope and Interface Region Imaging Spectrograph Data

    CERN Document Server

    Yurchyshyn, Vasyl; Kilcik, Ali

    2014-01-01

    We analyse sunspot oscillations using Interface Region Imaging Spectrograph (IRIS) slit-jaw and spectral data and narrow-band chromospheric images from the New Solar Telescope (NST) for the main sunspot in NOAA AR 11836. We report that the difference between the shock arrival times as measured the Mg II k 2796.35\\AA\\ and Si IV 1393.76\\AA\\ line formation levels changes during the observed period and peak-to-peak delays may range from 40~s to zero. The intensity of chromospheric shocks also displays a long term (about 20~min) variations. NST's high spatial resolution \\ha\\ data allowed us to conclude that in this sunspot umbral flashes (UFs) appeared in the form of narrow bright lanes stretched along the light bridges and around clusters of umbral bright points. Time series also suggested that UFs preferred to appear on the sunspot-center side of light bridges, which may indicate the existence of a compact sub-photospheric driver of sunspot oscillations. The sunspot's umbra as seen in the IRIS chromospheric and ...

  1. PRECURSOR OF SUNSPOT PENUMBRAL FORMATION DISCOVERED WITH HINODE SOLAR OPTICAL TELESCOPE OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Toshifumi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Ichimoto, Kiyoshi [Kwasan and Hida Observatories, Kyoto University, Kamitakara-cho, Takayama, Gifu 506-1314 (Japan); Suematsu, Yoshinori, E-mail: shimizu.toshifumi@isas.jaxa.jp [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)

    2012-03-10

    We present observations of a precursory signature that would be helpful for understanding the formation process of sunspot penumbrae. The Hinode Solar Optical Telescope successfully captured the entire evolution of a sunspot from the pore to a large well-developed sunspot with penumbra in an emerging flux region appearing in NOAA Active Region 11039. We found an annular zone (width 3''-5'') surrounding the umbra (pore) in Ca II H images before the penumbra formed around the umbra. The penumbra developed as if to fill the annular zone. The annular zone shows weak magnetogram signals, meaning less magnetic flux or highly inclined fields there. Pre-existing ambient magnetic field islands were distributed at the outer edge of the annular zone and did not come into the zone. There are no strong systematic flow patterns in the zone, but we occasionally observed small magnetic flux patches streaming out. The observations indicate that the annular zone is different from the sunspot moat flow region and that it represents the structure in the chromosphere. We conclude that the annular zone reflects the formation of a magnetic canopy overlying the region surrounding the umbra at the chromospheric level, long before the formation of the penumbra at the photospheric level. The magnetic field structure in the chromosphere needs to be considered in the formation process of the penumbrae.

  2. Ultra-narrow Negative Flare Front Observed in Helium-10830~\\AA\\ using the 1.6 m New Solar Telescope

    CERN Document Server

    Xu, Yan; Ding, Mingde; Kleint, Lucia; Su, Jiangtao; Liu, Chang; Ji, Haisheng; Chae, Jongchul; Jing, Ju; Cho, Kyuhyoun; Cho, Kyungsuk; Gary, Dale; Wang, Haimin

    2016-01-01

    Solar flares are sudden flashes of brightness on the Sun and are often associated with coronal mass ejections and solar energetic particles which have adverse effects in the near Earth environment. By definition, flares are usually referred to bright features resulting from excess emission. Using the newly commissioned 1.6~m New Solar Telescope at Big Bear Solar Observatory, here we show a striking "negative" flare with a narrow, but unambiguous "dark" moving front observed in He I 10830 \\AA, which is as narrow as 340 km and is associated with distinct spectral characteristics in H-alpha and Mg II lines. Theoretically, such negative contrast in He I 10830 \\AA\\ can be produced under special circumstances, by nonthermal-electron collisions, or photoionization followed by recombination. Our discovery, made possible due to unprecedented spatial resolution, confirms the presence of the required plasma conditions and provides unique information in understanding the energy release and radiative transfer in astronomi...

  3. Distributed Solar Photovoltaic Power Production - Technology and Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Al [PSE& G; Stuby, Rick [Petra Solar

    2011-11-02

    As part of its nationally recognized Solar 4 All program, PSE&G has partnered with Petra Solar to deploy the world’s first and largest pole attached solar project. The project, based on Petra Solar’s distributed Smart Solar solution, will create a 40 megawatt solar “virtual power plant.” In deployment as 200,000 individual grid-connected solar power producers on utility poles in PSE&G territory, Petra Solar SunWave® solutions leverage Smart Grid communications and high-tech panel-level inverters to implement a robust system with many technical benefits over traditional solar photovoltaic solutions. The program overview, deployment model, smart grid communications and enabling inverter technology and safety features will be presented, as well the future challenges of, and solutions for, solar power intermittency as photovoltaic penetration on the electric grid increases.

  4. SiC lightweight telescopes for advanced space applications. II - Structures technology

    Science.gov (United States)

    Anapol, Michael I.; Hadfield, Peter; Tucker, Theodore

    1992-01-01

    A critical technology area for lightweight SiC-based telescope systems is the structural integrity and thermal stability over spaceborne environmental launch and thermal operating conditions. Note, it is highly desirable to have an inherently athermal design of both SiC mirrors and structure. SSG has developed an 8 inch diameter SiC telescope system for brassboard level optical and thermal testing. The brassboard telescope has demonstrated less than 0.2 waves P-V in the visible wavefront change over +50 C to -200 C temperature range. SSG has also fabricated a SiC truss structural assembly and successfully qualified this hardware at environmental levels greater than 3 times higher than normal Delta, Titan, and ARIES launch loads. SSG is currently developing two SiC telescopes; an 20 cm diameter off-axis 3 mirror re-imaging and a 60 cm aperture on-axis 3 mirror re-imager. Both hardware developments will be tested to flight level environmental, optical, and thermal specifications.

  5. POlarization Emission of Millimeter Activity at the Sun (POEMAS): New Circular Polarization Solar Telescopes at Two Millimeter Wavelength Ranges

    Science.gov (United States)

    Valio, Adriana; Kaufmann, P.; Giménez de Castro, C. G.; Raulin, J.-P.; Fernandes, L. O. T.; Marun, A.

    2013-04-01

    We present a new system of two circular polarization solar radio telescopes, POEMAS, for observations of the Sun at 45 and 90 GHz. The novel characteristic of these instruments is the capability to measure circular right- and left-hand polarizations at these high frequencies. The two frequencies were chosen so as to bridge the gap at radio frequencies between 20 and 200 GHz of solar flare spectra. The telescopes, installed at CASLEO Observatory (Argentina), observe the full disk of the Sun with a half power beam width of 1.4∘, a time resolution of 10 ms at both frequencies, a sensitivity of 2 - 4 K that corresponds to 4 and 20 solar flux unit (=104 Jy), considering aperture efficiencies of 50±5 % and 75±8 % at 45 and 90 GHz, respectively. The telescope system saw first light in November 2011 and is satisfactorily operating daily since then. A few flares were observed and are presented here. The millimeter spectra of some flares are seen to rise toward higher frequencies, indicating the presence of a new spectral component distinct from the microwave one.

  6. Thin Mirror Shaping Technology for High-Throughput X-ray Telescopes

    Science.gov (United States)

    Schattenburg, Mark

    This proposal is submitted to the NASA Research Opportunities in Space and Earth Sciences program (ROSES-2012) in response to NASA Research Announcement NNH12ZDA001N- APRA. It is targeted to the Astronomy and Astrophysics Research and Analysis (APRA) program element under the Supporting Technology category. Powerful x-ray telescope mirrors are critical components of a raft of small-to-large mission concepts under consideration by NASA. The science questions addressed by these missions have certainly never been more compelling and the need to fulfill NASA s core missions of exploring the universe and strengthening our nation s technology base has never been greater. Unfortunately, budgetary constraints are driving NASA to consider the cost/benefit and risk factors of new missions more carefully than ever. New technology for producing x-ray telescopes with increased resolution and collecting area, while holding down cost, are key to meeting these goals and sustaining a thriving high-energy astrophysics enterprise in the US. We propose to develop advanced technology which will lead to thin-shell x-ray telescope mirrors rivaling the Chandra x-ray telescope in spatial resolution but with 10-100X larger area all at significantly reduced weight, risk and cost. The proposed effort builds on previous research at MIT and complements NASA-supported research at other institutions. We are currently pursuing two thin-mirror technology development tracks which we propose to extend and accelerate with NASA support. The first research track utilizes rapidly-maturing thermal glass slumping technology which uses porous ceramic air-bearing mandrels to shape glass mirrors without touching, thus avoiding surface-induced mid-range spatial frequency ripples. A second research track seeks to remove any remaining mid- to long-range errors in mirrors by using scanning ion-beam implant to impart small, highly deterministic and very stable amounts of stress into thin glass, utilizing local

  7. Effects of solar photovoltaic technology on the environment in China.

    Science.gov (United States)

    Qi, Liqiang; Zhang, Yajuan

    2017-08-31

    Among the various types of renewable energy, solar photovoltaic has elicited the most attention because of its low pollution, abundant reserve, and endless supply. Solar photovoltaic technology generates both positive and negative effects on the environment. The environmental loss of 0.00666 yuan/kWh from solar photovoltaic technology is lower than that from coal-fired power generation (0.05216 yuan/kWh). The negative effects of solar photovoltaic system production include wastewater and waste gas pollutions, the representatives of which contain fluorine, chromium with wastewater and hydrogen fluoride, and silicon tetrachloride gas. Solar panels are also a source of light pollution. Improper disposal of solar cells that have reached the end of their service life harms the environment through the stench they produce and the damage they cause to the soil. So, the positive and negative effects of green energy photovoltaic power generation technology on the environment should be considered.

  8. Assessing Rare Metal Availability Challenges for Solar Energy Technologies

    Directory of Open Access Journals (Sweden)

    Leena Grandell

    2015-08-01

    Full Text Available Solar energy is commonly seen as a future energy source with significant potential. Ruthenium, gallium, indium and several other rare elements are common and vital components of many solar energy technologies, including dye-sensitized solar cells, CIGS cells and various artificial photosynthesis approaches. This study surveys solar energy technologies and their reliance on rare metals such as indium, gallium, and ruthenium. Several of these rare materials do not occur as primary ores, and are found as byproducts associated with primary base metal ores. This will have an impact on future production trends and the availability for various applications. In addition, the geological reserves of many vital metals are scarce and severely limit the potential of certain solar energy technologies. It is the conclusion of this study that certain solar energy concepts are unrealistic in terms of achieving TW scales.

  9. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    Science.gov (United States)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  10. Daniel K. Inouye Solar Telescope: computational fluid dynamic analyses and evaluation of the air knife model

    Science.gov (United States)

    McQuillen, Isaac; Phelps, LeEllen; Warner, Mark; Hubbard, Robert

    2016-08-01

    Implementation of an air curtain at the thermal boundary between conditioned and ambient spaces allows for observation over wavelength ranges not practical when using optical glass as a window. The air knife model of the Daniel K. Inouye Solar Telescope (DKIST) project, a 4-meter solar observatory that will be built on Haleakalā, Hawai'i, deploys such an air curtain while also supplying ventilation through the ceiling of the coudé laboratory. The findings of computational fluid dynamics (CFD) analysis and subsequent changes to the air knife model are presented. Major design constraints include adherence to the Interface Control Document (ICD), separation of ambient and conditioned air, unidirectional outflow into the coudé laboratory, integration of a deployable glass window, and maintenance and accessibility requirements. Optimized design of the air knife successfully holds full 12 Pa backpressure under temperature gradients of up to 20°C while maintaining unidirectional outflow. This is a significant improvement upon the .25 Pa pressure differential that the initial configuration, tested by Linden and Phelps, indicated the curtain could hold. CFD post- processing, developed by Vogiatzis, is validated against interferometry results of initial air knife seeing evaluation, performed by Hubbard and Schoening. This is done by developing a CFD simulation of the initial experiment and using Vogiatzis' method to calculate error introduced along the optical path. Seeing error, for both temperature differentials tested in the initial experiment, match well with seeing results obtained from the CFD analysis and thus validate the post-processing model. Application of this model to the realizable air knife assembly yields seeing errors that are well within the error budget under which the air knife interface falls, even with a temperature differential of 20°C between laboratory and ambient spaces. With ambient temperature set to 0°C and conditioned temperature set to 20

  11. Integration of functional safety systems on the Daniel K. Inouye Solar Telescope

    Science.gov (United States)

    Williams, Timothy R.; Hubbard, Robert P.; Shimko, Steve

    2016-07-01

    The Daniel K. Inouye Solar Telescope (DKIST) was envisioned from an early stage to incorporate a functional safety system to ensure the safety of personnel and equipment within the facility. Early hazard analysis showed the need for a functional safety system. The design used a distributed approach in which each major subsystem contains a PLC-based safety controller. This PLC-based system complies with the latest international standards for functional safety. The use of a programmable controller also allows for flexibility to incorporate changes in the design of subsystems without adversely impacting safety. Various subsystems were built by different contractors and project partners but had to function as a piece of the overall control system. Using distributed controllers allows project contractors and partners to build components as standalone subsystems that then need to be integrated into the overall functional safety system. Recently factory testing was concluded on the major subsystems of the facility. Final integration of these subsystems is currently underway on the site. Building on lessons learned in early factory tests, changes to the interface between subsystems were made to improve the speed and ease of integration of the entire system. Because of the distributed design each subsystem can be brought online as it is delivered and assembled rather than waiting until the entire facility is finished. This enhances safety during the risky period of integration and testing. The DKIST has implemented a functional safety system that has allowed construction of subsystems in geographically diverse locations but that function cohesively once they are integrated into the facility currently under construction.

  12. Distinguishing 3He and 4He with the Electron Proton Telescope (EPT) on Solar Orbiter

    Science.gov (United States)

    Boden, S.; Kulkarni, S. R.; Steinhagen, J.; Tammen, J.; Martin-Garcia, C.; Wimmer-Schweingruber, R. F.; Boettcher, S. I.; Seimetz, L.; Ravanbakhsh, A.; Elftmann, R.; Schuster, B.; Kulemzin, A.; Kolbe, S.; Mahesh, Y.; Knieriem, V.; Yu, J.; Kohler, J.; Panitzsch, L.; Terasa, C.; Boehm, E.; Rodriguez-Pacheco, J.; Prieto, M.; Gomez-Herrero, R.

    2015-12-01

    The Electron Proton Telescope (EPT) is one of the sensors of the Energetic Particle Detector (EPD) for the Solar Orbiter mission, which will provide key measurements to address particle acceleration at and near the Sun. The EPD suite consists of four different sensors (STEP, SIS, EPT and HET) which together will resolve the energetic particle spectrum from 2 keV to 20 MeV for electrons, 3 keV to 100 MeV for protons and circa 100 keV/nuc to 100 MeV/nuc for heavier ions.EPT itself is primarily designed to cleanly separate and measure electrons in the energy range from 20 - 400 keV and protons from 20 - 7000 keV. To achieve this, EPT uses two back-to-back solid state detectors with a magnet system to deflect electrons on one side and a Polyimide foil to stop protons below ~400 keV on the other side. The two detectors then serve as each other's anti-coincidence. Additionally this setup also allows us to measure penetrating particles with deposited energies in the 1 MeV to 40 MeV range. Looking at the ratio of deposited energy in the two detectors versus total deposited energy allows us to differentiate between protons and alpha particles. Distinguishing 3He from 4He will be challenging, but possible provided good knowledge of the instrument, high-fidelity modeling and a precise calibration of EPT. Here, we will present feasibility studies leading to a determination of the 3He / 4He ratio with EPT.

  13. Flows in and around active region NOAA12118 observed with the GREGOR solar telescope and SDO/HMI

    CERN Document Server

    Verma, M; Balthasar, H; Kuckein, C; Manrique, S J González; Sobotka, M; González, N Bello; Hoch, S; Diercke, A; Kummerow, P; Berkefeld, T; Collados, M; Feller, A; Hofmann, A; Kneer, F; Lagg, A; Löhner-Böttcher, J; Nicklas, H; Yabar, A Pastor; Schlichenmaier, R; Schmidt, D; Schmidt, W; Schubert, M; Sigwarth, M; Solanki, S K; Soltau, D; Staude, J; Strassmeier, K G; Volkmer, R; von der Lühe, O; Waldmann, T

    2016-01-01

    Accurate measurements of magnetic and velocity fields in and around solar active regions are key to unlocking the mysteries of the formation and the decay of sunspots. High spatial resolution image and spectral sequences with a high cadence obtained with the GREGOR solar telescope give us an opportunity to scrutinize 3-D flow fields with local correlation tracking and imaging spectroscopy. We present GREGOR early science data acquired in 2014 July - August with the GREGOR Fabry-P\\'erot Interferometer and the Blue Imaging Channel. Time-series of blue continuum (? 450.6 nm) images of the small active region NOAA 12118 were restored with the speckle masking technique to derive horizontal proper motions and to track the evolution of morphological changes. In addition, high-resolution observations are discussed in the context of synoptic data from the Solar Dynamics Observatory.

  14. Compound parabolic concentrator technology development to commercial solar detoxification applications

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J.; Malato, S.; Fernandez, P. [CIEMAT, Plataforma Solar de Almeria (ES)] (and others)

    1999-07-01

    An EC-DGXII BRITE-EURAM-III-financed project called Solar detoxification technology in the treatment of persistent non-biodegradable chlorinated industrial water contaminants' is described. The objectives are to develop a simple, efficient and commercially competitive solar water treatment technology based on compound parabolic collectors (CPC) enabling design and erection of turnkey installations. A European industrial consortium, SOLARDETOX, representing industry and research in Spain, Portugal, Germany and Italy has been created through this project. Some of the most up-to-date scientific and technological results are given, including the design of the first industrial European solar detoxification treatment plant, the main project deliverable. (author)

  15. Status note on solar cell technology; Statusnotat om solcelleteknologi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This status note briefly describes development and perspectives for solar cell technology internationally and nationally. The note will form part of the background for a coming proposal for a national solar cell strategy. The strategy will be prepared by the Danish Energy Authority in collaboration with the Ministry of Science, Technology and Innovation, Elkraft System, Eltra, representatives from the industry and others. The proposal is expected to give an overall picture of Danish R and D niches and opportunities within solar cell technology. (BA)

  16. Probing Seismic Solar Analogues Through Observations With The NASA Kepler Space Telescope and Hermes High-Resolution Spectrograph

    Science.gov (United States)

    Beck, P. G.; Salabert, D.; Garcia, R. A.; do Nascimento, J., Jr.; Duarte, T. S. S.; Mathis, S.; Regulo, C.; Ballot, J.; Egeland, R.; Castro, M.; Pérez-Herńandez, F.,; Creevey, O.; Tkachenko, A.; van Reeth, T.; Bigot, L.; Corsaro, E.; Metcalfe, T.; Mathur, S.; Palle, P. L.; Allende Prieto, C.; Montes, D.; Johnston, C.; Andersen, M. F.; van Winckel, H.

    2016-11-01

    Stars similar to the Sun, known as solar analogues, provide an excellent opportunity to study the preceding and following evolutionary phases of our host star. The unprecedented quality of photometric data collected by the Kepler NASA mission allows us to characterise solar-like stars through asteroseismology and study diagnostics of stellar evolution, such as variation of magnetic activity, rotation and the surface lithium abundance. In this project, presented in a series of papers by Salabert et al (2016ab) and Beck et al. (2016ab), we investigate the link between stellar activity, rotation, lithium abundance and oscillations in a group of 18 solar-analogue stars through space photometry, obtained with the NASA Kepler space telescope and from currently 50+ hours of ground-based, high-resolution spectroscopy with the Hermes instrument. In these proceedings, we first discuss the selection of the stars in the sample, observations and calibrations and then summarise the main results of the project. By investigating the chromospheric and photospheric activity of the solar analogues in this sample, it was shown that for a large fraction of these stars the measured activity levels are compatible to levels of the 11-year solar activity cycle 23. A clear correlation between the lithium abundance and surface rotation was found for rotation periods shorter than the solar value. Comparing the lithium abundance measured in the solar analogues to evolutionary models with the Toulouse-Geneva Evolutionary Code (TGEC), we found that the solar models calibrated to the Sun also correctly describe the set of solar/stellar analogs showing that they share the same internal mixing physics. Finally, the star KIC3241581 and KIC10644353 are discussed in more detail.

  17. Flexible Assembly Solar Technology (FAST) Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Toister, Elad [BrightSource Energy Inc., Jerusalem (Israel)

    2014-11-06

    The Flexible Assembly Solar Technology (FAST) project was initiated by BrightSource in an attempt to provide potential solar field EPC contractors with an effective set of tools to perform specific construction tasks. These tasks are mostly associated with heliostat assembly and installation, and require customized non-standard tools. The FAST concept focuses on low equipment cost, reduced setup time and increased assembly throughput as compared to the Ivanpah solar field construction tools.

  18. Forecasting the Development of Different Solar Cell Technologies

    OpenAIRE

    Arturo Morales-Acevedo; Gaspar Casados-Cruz

    2013-01-01

    Solar cells are made of several materials and device structures with the main goal of having maximum efficiency at low cost. Some types of solar cells have shown a rapid efficiency progress whereas others seem to remain constant as a consequence of different factors such as the technological and economic ones. Using information published by the National Renewable Energy Laboratory (NREL) about the increase of solar cells record efficiency, we apply a simple mathematical model to estimate the ...

  19. Search for Solar Axions by the CERN Axion Solar Telescope with 3 He Buffer Gas: Closing the Hot Dark Matter Gap

    CERN Document Server

    Arik, M.; Barth, K.; Belov, A.; Borghi, S.; Bräuninger, H.; Cantatore, G.; Carmona, J.M.; Cetin, S.A.; Collar, J.I.; Da Riva, E.; Dafni, T.; Davenport, M.; Eleftheriadis, C.; Elias, N.; Fanourakis, G.; Ferrer-Ribas, E.; Friedrich, P.; Galán, J.; García, J.A.; Gardikiotis, A.; Garza, J.G.; Gazis, E.N.; Geralis, T.; Georgiopoulou, E.; Giomataris, I.; Gninenko, S.; Gómez, H.; Gómez Marzoa, M.; Gruber, E.; Guthörl, T.; Hartmann, R.; Hauf, S.; Haug, F.; Hasinoff, M.D.; Hoffmann, D.H.H.; Iguaz, F.J.; Irastorza, I.G.; Jacoby, J.; Jakovčić, K.; Karuza, M.; Königsmann, K.; Kotthaus, R.; Krčmar, M.; Kuster, M.; Lakić, B.; Lang, P.M.; Laurent, J.M.; Liolios, A.; Ljubičić, A.; Lozza, V.; Luzón, G.; Neff, S.; Niinikoski, T.; Nordt, A.; Papaevangelou, T.; Pivovaroff, M.J.; Raffelt, G.; Riege, H.; Rodríguez, A.; Rosu, M.; Ruz, J.; Savvidis, I.; Shilon, I.; Silva, P.S.; Solanki, S.K.; Stewart, L.; Tomás, A.; Tsagri, M.; van Bibber, K.; Vafeiadis, T.; Villar, J.; Vogel, J.K.; Yildiz, S.C.; Zioutas, K.

    2014-01-01

    The CERN Axion Solar Telescope (CAST) has finished its search for solar axions with 3^He buffer gas, covering the search range 0.64 eV < m_a <1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess X-rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g_ag < 3.3 x 10^{-10} GeV^{-1} at 95% CL, with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of g_a, for example by the currently discussed next generation helioscope IAXO.

  20. RE-EVALUATION OF THE NEUTRON EMISSION FROM THE SOLAR FLARE OF 2005 SEPTEMBER 7, DETECTED BY THE SOLAR NEUTRON TELESCOPE AT SIERRA NEGRA

    Energy Technology Data Exchange (ETDEWEB)

    González, L. X. [SCiESMEX, Instituto de Geofísica Unidad Michoacán, Universidad Nacional Autónoma de México, 58190, Morelia, Michoacán (Mexico); Valdés-Galicia, J. F.; Musalem, O.; Hurtado, A. [Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, D. F. Mexico (Mexico); Sánchez, F. [Instituto de Tecnologías en Detección de Astropartículas, Comisión Nacional de Energía Atómica, 1429, Buenos Aires (Argentina); Muraki, Y.; Sako, T.; Matsubara, Y.; Nagai, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Watanabe, K. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Yoshinodai, chuo-ku, Sagamihara 252-5210 (Japan); Shibata, S. [College of Engineering, Chubu University, Kasugai, Aichi 487-8501 (Japan); Sakai, T. [College of Industrial Technologies, Nihon University, Narashino 275-0005 (Japan)

    2015-12-01

    The X17.0 solar flare of 2005 September 7 released high-energy neutrons that were detected by the Solar Neutron Telescope (SNT) at Sierra Negra, Mexico. In three separate and independent studies of this solar neutron event, several of its unique characteristics were studied; in particular, a power-law energy spectra was estimated. In this paper, we present an alternative analysis, based on improved numerical simulations of the detector using GEANT4, and a different technique for processing the SNT data. The results indicate that the spectral index that best fits the neutron flux is around 3, in agreement with previous works. Based on the numerically calculated neutron energy deposition on the SNT, we confirm that the detected neutrons might have reached an energy of 1 GeV, which implies that 10 GeV protons were probably produced; these could not be observed at Earth, as their parent flare was an east limb event.

  1. Search for solar axions by the CERN axion solar telescope with 3He buffer gas: closing the hot dark matter gap.

    Science.gov (United States)

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Da Riva, E; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Garza, J G; Gazis, E N; Geralis, T; Georgiopoulou, E; Giomataris, I; Gninenko, S; Gómez, H; Gómez Marzoa, M; Gruber, E; Guthörl, T; Hartmann, R; Hauf, S; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Lang, P M; Laurent, J M; Liolios, A; Ljubičić, A; Luzón, G; Neff, S; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Shilon, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J; Vogel, J K; Yildiz, S C; Zioutas, K

    2014-03-07

    The CERN Axion Solar Telescope has finished its search for solar axions with (3)He buffer gas, covering the search range 0.64 eV ≲ ma ≲ 1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ ≲ 3.3 × 10(-10)  GeV(-1) at 95% C.L., with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of gaγ, for example by the currently discussed next generation helioscope International AXion Observatory.

  2. Developments of a new mirror technology for the Cherenkov Telescope Array

    CERN Document Server

    ,

    2015-01-01

    The Cherenkov Telescope Array (CTA) observatory for very high-energy gamma rays will consist of about a hundred of imaging atmospheric Cherenkov telescopes (IACTs) of different size with a total reflective area of about 10,000 m$^2$. Here we present a novel technology for the production of IACT mirrors that has been developed in the Institute of Nuclear Physics PAS in Krakow, Poland. The mirrors are made by cold-slumping of the front reflecting aluminium-coated panel and the rear panel interspaced with aluminium spacers. Each panel is built of two glass panels laminated with a layer of a fibreglass tissue in between for reinforcement of the structure against mechanical damage. The mirror structure is open and does not require a perfect sealing needed in closed-type designs. It prohibits water to be trapped inside and enables a proper ventilation of the mirror. Full-size hexagonal prototype mirrors produced for the medium-sized CTA telescopes will be presented together with the results of recent comprehensive ...

  3. Laboratory demonstration of a primary active mirror for space with the LATT: large aperture telescope technology

    Science.gov (United States)

    Briguglio, Runa; Biasi, Roberto; Gallieni, Daniele; Vettore, Christian; d'Amato, Francesco; Xompero, Marco; Arcidiacono, Carmelo; Lisi, Franco; Riccardi, Armando; Patauner, Christian; Lazzarini, Paolo; Tintori, Matteo; Duò, Fabrizio; Pucci, Mauro; Zuccaro Marchi, Alessandro; Maresi, Luca

    2016-07-01

    The LATT project is an ESA contract under TRP programme to demonstrate the scalability of the technology from ground-based adaptive mirrors to space active primary mirrors. A prototype spherical mirror based on a 40 cm diameter 1 mm thin glass shell with 19 contactless, voice-coil actuators and co-located position sensors have been manufactured and integrated into a final unit with an areal density lower than 20 kg/m2. Laboratory tests demonstrated the controllability with very low power budget and the survival of the fragile glass shell exposed to launch accelerations, thanks to an electrostatic locking mechanism; such achievements pushes the technology readiness level toward 5. With this prototype, the LATT project explored the feasibility of using an active and lightweight primary for space telescopes. The concept is attractive for large segmented telescopes, with surface active control to shape and co-phase them once in flight. In this paper we will describe the findings of the technological advances and the results of the environmental and optical tests.

  4. Long-term goals for solar thermal technology

    Energy Technology Data Exchange (ETDEWEB)

    Williams, T.A.; Dirks, J.A.; Brown, D.R.

    1985-05-01

    This document describes long-term performance and cost goals for three solar thermal technologies. Pacific Northwest Laboratory (PNL) developed these goals in support of the Draft Five Year Research and Development Plan for the National Solar Thermal Technology Program (DOE 1984b). These technology goals are intended to provide targets that, if met, will lead to the widespread use of solar thermal technologies in the marketplace. Goals were developed for three technologies and two applications: central receiver and dish technologies for utility-generated electricity applications, and central receiver, dish, and trough technologies for industrial process heat applications. These technologies and applications were chosen because they are the primary technologies and applications that have been researched by DOE in the past. System goals were developed through analysis of future price projections for energy sources competing with solar thermal in the middle-to-late 1990's time frame. The system goals selected were levelized energy costs of $0.05/kWh for electricity and $9/MBtu for industrial process heat (1984 $). Component goals established to meet system goals were developed based upon projections of solar thermal component performance and cost which could be achieved in the same time frame.

  5. Solar technologies and the soft path: an empirical examination

    Energy Technology Data Exchange (ETDEWEB)

    Lodwick, D.G.

    1987-01-01

    A US national probability sample of 2023 traditional energy users and a purposive sample of 3809 solar energy technology owners are compared to assess whether those who owned solar energy technologies in 1980 have more soft path preferences (SPP) (e.g., attitudes and behaviors compatible with soft energy path developments) than do those who did not own such technologies. It is suggested that SPP is a necessary but not sufficient condition for the social structural transformation of society to the soft energy path proposed by Amory Lovins. A soft-path preferences scale is developed. The scale values for solar and nonsolar homeowners, for active and passive solar technology owners, and for those owing the technologies for four different time periods are compared. The nonsolar homeowners, passive technology owners, and those who owned the technologies from one to five years have the highest SPP scores. The greatest differences were found in the dimension of natural resources conservation. Partial least squares structural equation modeling is used to examine an extension and specification of Lovins' theory of soft-energy-path development. A model is created which focuses on the process of SPP development. Energy vulnerability needs, contextual resources, type of solar technologies, technological problems, and evaluation are the independent variables of the model.

  6. Laser technology in solar absorber manufacturing; Laser punktet

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Joachim

    2009-12-07

    No other solar collector manufacturing stage is as fully automatic as absorber fabrication. Laser welding systems are well established in the market. In addition to welding machines, some manufacturers are also offering complete assembly lines for solar collector production. SONNE WIND and WAeRME presents technologies and manufacturers. (orig./AKB)

  7. Novel technology for the the Effelsberg 100-m Radio Telescope and MeerKAT

    Science.gov (United States)

    Kramer, Michael; Kraus, Alex; Wieching, Gundolf

    2015-08-01

    The 100-m radio telescope of the Max-Planck-Institut für Radioastronomie (MPIfR) is a unique European astronomical facility that combines superb sensitivity and wide frequency coverage (300 MHz - 95 GHz) with distinct versatility, making the telescope not only a cutting edge instrument for front-line research but also a testbed for emerging and future technology.Even more than 40 years old, the telescope has been continuously modernized and is heavily involved in various kinds of astronomical research as stand-alone instrument as well as in several VLBI networks. Currently, a large upgrade of the receiver suite at the telescope is ongoing. Several new, state-of-the-are broad-band receivers have been installed recently or are under constructions. Along with the new receivers, modern digital backends are being designed. We report on the current status of these upgrades by presenting some „highlights" and giving an outlook on the activities planned for the future.The technology developed and tested during these upgrades also finds application in the MeerKAT observatory in South Africa. MeerKAT is a fully funded radio observatory under construction in the Northern Cape of South Africa. When complete, MeerKAT’s 64 13.5-m dishes will form the - by far - most sensitive telescope in the Southern hemisphere, being equivalent to a 110 m dish. Due to the dish design with an offset Gregorian feed it will be 60%more sensitive than large center feed single dishes of comparable size.MPIfR is designing and constructing a 1.75- 3.44 GHz Receiver system for MeerKAT. The receiver will allow observations at a frequency range at currently unavailable sensitivity and spatial resolution in the Southern hemisphere. Combined with its powerful MPIfR Pulsar search backend it is expected to detect more than 1600 normal and 270 millisecond pulsars. In addition MeerKat will open up science that stays for its own but also prepares future observations with SKA and complements future SKA

  8. Instrument Description and Performance Evaluation of a High-Order Adaptive Optics System for the 1 m New Vacuum Solar Telescope at Fuxian Solar Observatory

    Science.gov (United States)

    Rao, Changhui; Zhu, Lei; Rao, Xuejun; Zhang, Lanqiang; Bao, Hua; Kong, Lin; Guo, Youming; Zhong, Libo; Ma, Xue'an; Li, Mei; Wang, Cheng; Zhang, Xiaojun; Fan, Xinlong; Chen, Donghong; Feng, Zhongyi; Gu, Naiting; Liu, Yangyi

    2016-12-01

    A high-order solar adaptive optics (AO) system including a fine tracking loop and a high-order wavefront correction loop has been installed at the 1 m New Vacuum Solar Telescope of the Fuxian Solar Observatory, in routine operation since 2016. The high-order wavefront correction loop consists of a deformable mirror with 151 actuators, a correlating Shack-Hartmann wavefront sensor with 102 subapertures of which the Absolute Difference Square Algorithm is used to extract the gradients, and a custom-built real-time controller based on a Field-Programmable Gate Array (FPGA) and multi-core Digital Signal Processor (DSP). The frame rate of the wavefront sensor is up to 3500 Hz and this is, to our knowledge, the fastest solar AO system. This AO system can work with a Fried parameter r 0, at the 500 nm wavelength, of larger than 3 cm. The first 65 modes of the Zernike aberrations can be efficiently corrected and the Strehl ratio of the corrected TiO image for the solar pore is superior to 0.75 with the Fried parameter r 0 larger than 10 cm. In this paper, the design of the system is described, and high-resolution solar observational images are presented. Furthermore, the performances of the AO system are evaluated according to the data recorded by the real-time controller.

  9. Solar Energy Technologies Program Newsletter - First Quarter 2010

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-04-22

    The first quarter 2010 edition of the Solar Energy Technologies Program newsletter summarizes the activities for the past three months, funding opportunities, highlights from the national labs, and upcoming events.

  10. A Systematic Evaluation Model for Solar Cell Technologies

    Directory of Open Access Journals (Sweden)

    Chang-Fu Hsu

    2014-01-01

    Full Text Available Fossil fuels, including coal, petroleum, natural gas, and nuclear energy, are the primary electricity sources currently. However, with depletion of fossil fuels, global warming, nuclear crisis, and increasing environmental consciousness, the demand for renewable energy resources has skyrocketed. Solar energy is one of the most popular renewable energy resources for meeting global energy demands. Even though there are abundant studies on various solar technology developments, there is a lack of studies on solar technology evaluation and selection. Therefore, this research develops a model using interpretive structural modeling (ISM, benefits, opportunities, costs, and risks concept (BOCR, and fuzzy analytic network process (FANP to aggregate experts' opinions in evaluating current available solar cell technology. A case study in a photovoltaics (PV firm is used to examine the practicality of the proposed model in selecting the most suitable technology for the firm in manufacturing new products.

  11. Solar Energy Technologies Program Newsletter - Fourth Quarter 2009

    Energy Technology Data Exchange (ETDEWEB)

    DOE Solar Energy Technologies Program

    2009-12-31

    The Fourth Quarter 2009 edition of the Solar Energy Technologies Program newsletter summarizes the activities for the past three months, funding opportunities, highlights from the national labs, and upcoming events.

  12. Detection of zero anisotropy at 5.2 AU during the November 1998 solar particle event: Ulysses Anisotropy Telescopes observations

    Directory of Open Access Journals (Sweden)

    S. Dalla

    Full Text Available For the first time during the mission, the Anisotropy Telescopes instrument on board the Ulysses spacecraft measured constant zero anisotropy of protons in the 1.3-2.2 MeV energy range, for a period lasting more than three days. This measurement was made during the energetic particle event taking place at Ulysses between 25 November and 15 December 1998, an event characterised by constant high proton fluxes within a region delimited by two interplanetary forward shocks, at a distance of 5.2 AU from the Sun and heliographic latitude of 17°S. We present the ATs results for this event and discuss their possible interpretation and their relevance to the issue of intercalibration of the two telescopes.

    Key words: Interplanetary physics (energetic particles - Solar physics, astrophysics and astronomy (energetic particles - Space plasma physics (instruments and techniques

  13. The James Webb Space Telescope's Plan for Operations and Instrument Capabilities for Observations in the Solar System

    Science.gov (United States)

    Milam, Stefanie N.; Stansberry, John A.; Sonneborn, George; Thomas, Cristina

    2016-01-01

    The James Webb Space Telescope (JWST) is optimized for observations in the near- and mid-infrared and will provide essential observations for targets that cannot be conducted from the ground or other missions during its lifetime. The state-of-the-art science instruments, along with the telescope's moving target tracking, will enable the infrared study, with unprecedented detail, for nearly every object (Mars and beyond) in the Solar System. The goals of this special issue are to stimulate discussion and encourage participation in JWST planning among members of the planetary science community. Key science goals for various targets, observing capabilities for JWST, and highlights for the complementary nature with other missions/observatories are described in this paper.

  14. DOE Solar Energy Technologies Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  15. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  16. DOE Solar Energy Technologies Program 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  17. Barriers to the Diffusion of Solar Thermal Technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Despite its considerable potential in household, domestic and industry sectors, the possible contribution of solar heat is often neglected in many academic and institutional energy projections and scenarios. This is best explained by the frequent failure to distinguish heat and work as two different forms of energy transfers. As a result, policy makers in many countries or States have tended to pay lesser attention to solar thermal technologies than to other renewable energy technologies.

  18. Proceedings of the solar thermal concentrating collector technology symposium

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, B.P.; Kreith, F. (eds.)

    1978-08-01

    The purpose of the symposium was to review the current status of the concentrating collector technology, to disseminate the information gained from experience in operating solar systems, and to highlight the significant areas of technology development that must be vigorously pursued to foster early commercialization of concentrating solar collectors. Separate abstracts were prepared for thirteen invited papers and working group summaries. Two papers were previously abstracted for EDB.

  19. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  20. Advanced technology optical telescopes IV; Proceedings of the Meeting, Tucson, AZ, Feb. 12-16, 1990. Parts 1 & 2

    Science.gov (United States)

    Barr, Lawrence D. (Editor)

    1990-01-01

    The present conference on the current status of large, advanced-technology optical telescope development and construction projects discusses topics on such factors as their novel optical system designs, the use of phased arrays, seeing and site performance factors, mirror fabrication and testing, pointing and tracking techniques, mirror thermal control, structural design strategies, mirror supports and coatings, and the control of segmented mirrors. Attention is given to the proposed implementation of the VLT Interferometer, the first diffraction-limited astronomical images with adaptive optics, a fiber-optic telescope using a large cross-section image-transmitting bundle, the design of wide-field arrays, Hartmann test data reductions, liquid mirrors, inertial drives for telescope pointing, temperature control of large honeycomb mirrors, evaporative coatings for very large telescope mirrors, and the W. M. Keck telescope's primary mirror active control system software.

  1. Technology Roadmaps: Solar Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The solar heating and cooling (SHC) roadmap outlines a pathway for solar energy to supply almost one sixth (18 EJ) of the world’s total energy use for both heating and cooling by 2050. This would save some 800 megatonnes of carbon dioxide (CO2) emissions per year; more than the total CO2 emissions in Germany in 2009. While solar heating and cooling today makes a modest contribution to world energy demand, the roadmap envisages that if concerted action is taken by governments and industry, solar energy could annually produce more than 16% of total final energy use for low temperature heat and nearly 17% for cooling. Given that global energy demand for heat represents almost half of the world’s final energy use – more than the combined global demand for electricity and transport – solar heat can make a significant contribution in both tackling climate change and strengthening energy security.

  2. Technology Roadmaps: Solar Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    The solar heating and cooling (SHC) roadmap outlines a pathway for solar energy to supply almost one sixth (18 EJ) of the world's total energy use for both heating and cooling by 2050. This would save some 800 megatonnes of carbon dioxide (CO2) emissions per year; more than the total CO2 emissions in Germany in 2009. While solar heating and cooling today makes a modest contribution to world energy demand, the roadmap envisages that if concerted action is taken by governments and industry, solar energy could annually produce more than 16% of total final energy use for low temperature heat and nearly 17% for cooling. Given that global energy demand for heat represents almost half of the world's final energy use -- more than the combined global demand for electricity and transport -- solar heat can make a significant contribution in both tackling climate change and strengthening energy security.

  3. A development roadmap for critical technologies needed for TALC: a deployable 20m annular space telescope

    Science.gov (United States)

    Sauvage, Marc; Amiaux, Jérome; Austin, James; Bello, Mara; Bianucci, Giovanni; Chesné, Simon; Citterio, Oberto; Collette, Christophe; Correia, Sébastien; Durand, Gilles A.; Molinari, Sergio; Pareschi, Giovanni; Penfornis, Yann; Sironi, Giorgia; Valsecchi, Giuseppe; Verpoort, Sven; Wittrock, Ulrich

    2016-07-01

    Astronomy is driven by the quest for higher sensitivity and improved angular resolution in order to detect fainter or smaller objects. The far-infrared to submillimeter domain is a unique probe of the cold and obscured Universe, harboring for instance the precious signatures of key elements such as water. Space observations are mandatory given the blocking effect of our atmosphere. However the methods we have relied on so far to develop increasingly larger telescopes are now reaching a hard limit, with the JWST illustrating this in more than one way (e.g. it will be launched by one of the most powerful rocket, it requires the largest existing facility on Earth to be qualified). With the Thinned Aperture Light Collector (TALC) project, a concept of a deployable 20 m annular telescope, we propose to break out of this deadlock by developing novel technologies for space telescopes, which are disruptive in three aspects: • An innovative deployable mirror whose topology, based on stacking rather than folding, leads to an optimum ratio of collecting area over volume, and creates a telescope with an eight times larger collecting area and three times higher angular resolution compared to JWST from the same pre-deployed volume; • An ultra-light weight segmented primary mirror, based on electrodeposited Nickel, Composite and Honeycomb stacks, built with a replica process to control costs and mitigate the industrial risks; • An active optics control layer based on piezo-electric layers incorporated into the mirror rear shell allowing control of the shape by internal stress rather than by reaction on a structure. We present in this paper the roadmap we have built to bring these three disruptive technologies to technology readiness level 3. We will achieve this goal through design and realization of representative elements: segments of mirrors for optical quality verification, active optics implemented on representative mirror stacks to characterize the shape correction

  4. Applications of Laser Precisely Processing Technology in Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    According to the design method of laser resonator cavity, we optimized the primary parameters of resonator and utilized LD arrays symmetrically pumping manner to implementing output of the high-brightness laser in our laser cutter, then which was applied to precisely cutting the conductive film of CuInSe2 solar cells, the buried contact silicon solar cells' electrode groove, and perforating in wafer which is used to the emitter wrap through silicon solar cells. Laser processing precision was less than 40μm, the results have met solar cell's fabrication technology, and made finally the buried cells' conversion efficiency be improved from 18% to 21% .

  5. US Participation in the Solar Orbiter Multi Element Telescope for Imaging and Spectroscopy (METIS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Multi Element Telescope for Imaging and Spectroscopy, METIS, investigation has been conceived to perform off-limb and near-Sun coronagraphy and is motivated by...

  6. PV technology and success of solar electricity in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Dung, T.Q. [Vietnam National Center for Science and Technology, Ho Chi Minh City (Viet Nam). Solarlab

    1997-12-31

    Since 1990 the PV Technology and the Solar electricity have been strongly developed in Vietnam. The PV experts of Solarlab have studied and set up an appropriate PV Technology responding to local Market needs. It has not only stood well but has been also transferred to Mali Republic and Lao P.D.R. The PV off grid systems of Solarlab demonstrate good efficiency and low prices. Over 60 solar stations and villages have been built to provide solar lighting for about 3000 families along the country in remote, mountainous areas and islands. 400 families are using stand-alone Solar Home Systems. The Solar electricity has been chosen for Rural Electrification and National Telecommunication Network in remote and mountainous regions. Many International projects in cooperation with FONDEM-France, SELF USA and Governmental PV projects have been realized by Solarlab. The experiences of maintenance, management and finance about PV development in Vietnam are also mentioned.

  7. Facing technological challenges of Solar Updraft Power Plants

    Science.gov (United States)

    Lupi, F.; Borri, C.; Harte, R.; Krätzig, W. B.; Niemann, H.-J.

    2015-01-01

    The Solar Updraft Power Plant technology addresses a very challenging idea of combining two kinds of renewable energy: wind and solar. The working principle is simple: a Solar Updraft Power Plant (SUPP) consists of a collector area to heat the air due to the wide-banded ultra-violet solar radiation, the high-rise solar tower to updraft the heated air to the atmosphere, and in between the power conversion unit, where a system of coupled turbines and generators transforms the stream of heated air into electric power. A good efficiency of the power plant can only be reached with extra-large dimensions of the tower and/or the collector area. The paper presents an up-to-date review of the SUPP technology, focusing on the multi-physics modeling of the power plant, on the structural behavior of the tower and, last but not least, on the modeling of the stochastic wind loading process.

  8. The Engineering Development Array: A Low Frequency Radio Telescope Utilising SKA Precursor Technology

    Science.gov (United States)

    Wayth, Randall; Sokolowski, Marcin; Booler, Tom; Crosse, Brian; Emrich, David; Grootjans, Robert; Hall, Peter J.; Horsley, Luke; Juswardy, Budi; Kenney, David; Steele, Kim; Sutinjo, Adrian; Tingay, Steven J.; Ung, Daniel; Walker, Mia; Williams, Andrew; Beardsley, A.; Franzen, T. M. O.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Pallot, D.; Trott, C. M.; Wu, C.

    2017-08-01

    We describe the design and performance of the Engineering Development Array, which is a low-frequency radio telescope comprising 256 dual-polarisation dipole antennas working as a phased array. The Engineering Development Array was conceived of, developed, and deployed in just 18 months via re-use of Square Kilometre Array precursor technology and expertise, specifically from the Murchison Widefield Array radio telescope. Using drift scans and a model for the sky brightness temperature at low frequencies, we have derived the Engineering Development Array's receiver temperature as a function of frequency. The Engineering Development Array is shown to be sky-noise limited over most of the frequency range measured between 60 and 240 MHz. By using the Engineering Development Array in interferometric mode with the Murchison Widefield Array, we used calibrated visibilities to measure the absolute sensitivity of the array. The measured array sensitivity matches very well with a model based on the array layout and measured receiver temperature. The results demonstrate the practicality and feasibility of using Murchison Widefield Array-style precursor technology for Square Kilometre Array-scale stations. The modular architecture of the Engineering Development Array allows upgrades to the array to be rolled out in a staged approach. Future improvements to the Engineering Development Array include replacing the second stage beamformer with a fully digital system, and to transition to using RF-over-fibre for the signal output from first stage beamformers.

  9. Search for interplanetary shock signals using the Tupi telescope at the ascending phase of the solar cycle 24

    Energy Technology Data Exchange (ETDEWEB)

    Augusto, C.R.A.; Kopenkin, V.; Navia, C.E.; Tsui, K.H.; Shigueoka, H. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Fauth, A.C.; Kemp, E.; Manganote, E.J.T. [Universidade Estadual de Campinas (IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin; Oliveira, M.A. Leigui de [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Miranda, P.; Ticona, R.; Velarde, A. [Universidad Mayor de San Andres (UMSA), La Paz (Bolivia, Plurinational State of). Inst. de Investigaciones Fisicas

    2012-07-01

    Full text: This paper presents the results of an on-going survey on the association between the muon flux variation at ground level registered by the Tupi telescopes (Niteroi-Brazil, 22.9 deg S; 43.2 deg W, 3 m above sea level) in the South Atlantic Anomaly (SAA) region and interplanetary shocks detected by space-borne detectors (SOHO, ACE, GOES). The SAA provides favorable conditions for observation of shock driven geomagnetic storms, including those of very small scale. Geomagnetic storms are usually originated by the transient events such as solar flares, coronal mass ejections (CMEs) and corotating interaction regions (CIRs). In most cases scientific research showed variation in the cosmic particle flux at ground level in correlation with large scale CMEs solar flares characterized by high absolute values of geomagnetic activity Kp index. In our analysis we found that the muon flux associated with the interplanetary shock signals changes also in response to low solar activity and to fast rise in Kp index. We report experimental data obtained by the Tupi telescopes in the period from June 2010 to December 2011. This time period corresponds to the rising phase of the solar cycle 24. These observations are compared with publicly available observations from the CELIAS/MTOF Proton Monitor on SOHO satellite in order to study the origin of the shocks. Among 28 interplanetary shocks reported in present analysis, there are 12 possibly associated with the CMEs and solar flares, 2 events - with the CIR related shocks (forward or reverse shocks), and the origin of the remaining 13 events has not been determined by the satellite detectors. By comparing the observed time (delayed or anticipated) of the shock related signal on Earth (the Tupi telescopes) with the trigger time of the shock registered by satellites located at the Lagrange point L1 (SOHO, ACE), we find that it is possible to estimate the type of the shock (forward or reverse). This method can be useful in

  10. Off-limb EUV observations of the solar corona and transients with the CORONAS-F/SPIRIT telescope-coronagraph

    Directory of Open Access Journals (Sweden)

    V. Slemzin

    2008-10-01

    Full Text Available The SPIRIT telescope aboard the CORONAS-F satellite (in orbit from 26 July 2001 to 5 December 2005, observed the off-limb solar corona in the 175 Å (Fe IX, X and XI lines and 304 Å (He II and Si XI lines bands. In the coronagraphic mode the mirror was tilted to image the corona at the distance of 1.1...5 Rsun from the solar center, the outer occulter blocked the disk radiation and the detector sensitivity was enhanced. This intermediate region between the fields of view of ordinary extreme-ultraviolet (EUV telescopes and most of the white-light (WL coronagraphs is responsible for forming the streamer belt, acceleration of ejected matter and emergence of slow and fast solar wind. We present here the results of continuous coronagraphic EUV observations of the solar corona carried out during two weeks in June and December 2002. The images showed a "diffuse" (unresolved component of the corona seen in both bands, and non-radial, ray-like structures seen only in the 175 Å band, which can be associated with a streamer base. The correlations between latitudinal distributions of the EUV brightness in the corona and at the limb were found to be high in 304 Å at all distances and in 175 Å only below 1.5 Rsun. The temporal correlation of the coronal brightness along the west radial line, with the brightness at the underlying limb region was significant in both bands, independent of the distance. On 2 February 2003 SPIRIT observed an expansion of a transient associated with a prominence eruption seen only in the 304 Å band. The SPIRIT data have been compared with the corresponding data of the SOHO LASCO, EIT and UVCS instruments.

  11. Research and Development Needs for Building-Integrated Solar Technologies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-01-01

    The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

  12. ULTRA-NARROW NEGATIVE FLARE FRONT OBSERVED IN HELIUM-10830 Å USING THE 1.6 m NEW SOLAR TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yan; Liu, Chang; Jing, Ju; Wang, Haimin [Space Weather Research Lab, Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Blvd, Newark, NJ 07102-1982 (United States); Cao, Wenda; Gary, Dale [Big Bear Solar Observatory, New Jersey Institute of Technology 323 Martin Luther King Blvd, Newark, NJ 07102-1982 (United States); Ding, Mingde [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Kleint, Lucia [Fachhochschule Nordwestschweiz (FHNW), Institute of 4D technologies Bahnhofstr. 6, CH-5210 Windisch (Switzerland); Su, Jiangtao [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Ji, Haisheng [Purple Mountain Observatory, 2 Beijing Xi Lu, Nanjing, 210008 (China); Chae, Jongchul; Cho, Kyuhyoun [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Cho, Kyungsuk [Korea Astronomy and Space Science Institute, Daedeokdae-ro 776, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2016-03-10

    Solar flares are sudden flashes of brightness on the Sun and are often associated with coronal mass ejections and solar energetic particles that have adverse effects on the near-Earth environment. By definition, flares are usually referred to as bright features resulting from excess emission. Using the newly commissioned 1.6 m New Solar Telescope at Big Bear Solar Observatory, we show a striking “negative” flare with a narrow but unambiguous “dark” moving front observed in He i 10830 Å, which is as narrow as 340 km and is associated with distinct spectral characteristics in Hα and Mg ii lines. Theoretically, such negative contrast in He i 10830 Å can be produced under special circumstances by nonthermal electron collisions or photoionization followed by recombination. Our discovery, made possible due to unprecedented spatial resolution, confirms the presence of the required plasma conditions and provides unique information in understanding the energy release and radiative transfer in astronomical objects.

  13. Solar to fuels conversion technologies: a perspective.

    Science.gov (United States)

    Tuller, Harry L

    2017-01-01

    To meet increasing energy needs, while limiting greenhouse gas emissions over the coming decades, power capacity on a large scale will need to be provided from renewable sources, with solar expected to play a central role. While the focus to date has been on electricity generation via photovoltaic (PV) cells, electricity production currently accounts for only about one-third of total primary energy consumption. As a consequence, solar-to-fuel conversion will need to play an increasingly important role and, thereby, satisfy the need to replace high energy density fossil fuels with cleaner alternatives that remain easy to transport and store. The solar refinery concept (Herron et al. in Energy Environ Sci 8:126-157, 2015), in which captured solar radiation provides energy in the form of heat, electricity or photons, used to convert the basic chemical feedstocks CO2 and H2O into fuels, is reviewed as are the key conversion processes based on (1) combined PV and electrolysis, (2) photoelectrochemically driven electrolysis and (3) thermochemical processes, all focused on initially converting H2O and CO2 to H2 and CO. Recent advances, as well as remaining challenges, associated with solar-to-fuel conversion are discussed, as is the need for an intensive research and development effort to bring such processes to scale.

  14. The process of data formation for the Spectrometer/Telescope for Imaging X-rays (STIX) in Solar Orbiter

    CERN Document Server

    Giordano, Sara; Piana, Michele; Massone, Anna Maria

    2014-01-01

    The Spectrometer/Telescope for Imaging X-rays (STIX) is a hard X-ray imaging spectroscopy device to be mounted in the Solar Orbiter cluster with the aim of providing images and spectra of solar flaring regions at different photon energies in the range from a few keV to around 150 keV. The imaging modality of this telescope is based on the Moire pattern concept and utilizes 30 sub-collimators, each one containing a pair of co-axial grids. This paper applies Fourier analysis to provide the first rigorous description of the data formation process in STIX. Specifically, we show that, under first harmonic approximation, the integrated counts measured by STIX sub-collimators can be interpreted as specific spatial Fourier components of the incoming photon flux, named visibilities. Fourier analysis also allows the quantitative assessment of the reliability of such interpretation. The description of STIX data in terms of visibilities has a notable impact on the image reconstruction process, since it fosters the applic...

  15. Development Trends and Economics of Concentrating Solar Power Generation Technologies: A Comparative Analysis

    OpenAIRE

    2009-01-01

    In this paper we compare development trends, economics and financial risks of alternative large-scale solar power generation technologies (parabolic trough, solar tower, and three different photovoltaic technologies). In particular, a number of European countries, Algeria and the US promote solar power generation. In oure study, we investigate the economic viability of the solar trough projects Andasol-I (Spain), Nevada Solar One (US), the solar tower projects PS-10 and Solar Tres (Spain), an...

  16. Forecasting the Development of Different Solar Cell Technologies

    Directory of Open Access Journals (Sweden)

    Arturo Morales-Acevedo

    2013-01-01

    Full Text Available Solar cells are made of several materials and device structures with the main goal of having maximum efficiency at low cost. Some types of solar cells have shown a rapid efficiency progress whereas others seem to remain constant as a consequence of different factors such as the technological and economic ones. Using information published by the National Renewable Energy Laboratory (NREL about the increase of solar cells record efficiency, we apply a simple mathematical model to estimate the evolution in the near future for the different cell technologies. Here, as an example, we use data for solar cells made with representative materials and structures of each of the three “PV generations.”

  17. High temperature solar thermal technology: The North Africa Market

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  18. High temperature solar thermal technology: The North Africa Market

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  19. Time to shine applications of solar energy technology

    CERN Document Server

    Grupp, Michael

    2012-01-01

    As solar energy becomes increasingly more important in all of our lives, it is more important to learn how it works and how it can be implemented. This book is the perfect primer for the engineer, scientist, and layperson alike, for learning about the practical applications of solar energy technology and how it is being used today to heat homes, light city streets, and provide power worldwide.

  20. Determination of the small Solar system bodies orbital elements from astrometric observations with OMT-800 telescope

    Science.gov (United States)

    Troianskyi, Volodymyr; Bazey, A. A.; Kashuba, V. I.; Zhukov, V. V.

    2014-11-01

    From the beginning of operation of the new OMT-800 telescope in late 2012 we were able to recieve the high-precision differential astrometrical observations of geostationary objects, asteroids and comets brighter than 21 mag. In this work, the technique of calculation of the orbital elements and prediction of the geostationary objects and asteroids trajectory are considered

  1. Solar Energy Technologies and the Utilization on Native American Tribal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Kathryn [Univ. of North Dakota, Grand Forks, ND (United States)

    2017-08-31

    As an undergraduate researcher, I worked on a new technology called nanofluid-based direct absorption solar collectors (DASC) which is a type of solar water heater that has the potential to be more efficient than traditional solar water heaters. Because of my experience with this type of technology, I decided to look into other types of solar energy technologies which could be used on Native American tribal lands. Some types of solar energy technologies that I wanted to focus on are photovoltaic solar energy systems, passive solar design, and solar water heaters.

  2. Standards, building codes, and certification programs for solar technology applicatons

    Energy Technology Data Exchange (ETDEWEB)

    Riley, J. D.; Odland, R.; Barker, H.

    1979-07-01

    This report is a primer on solar standards development. It explains the development of standards, building code provisions, and certification programs and their relationship to the emerging solar technologies. These areas are important in the commercialization of solar technology because they lead to the attainment of two goals: the development of an industry infrastructure and consumer confidence. Standards activities in the four phases of the commercialization process (applied research, development, introduction, and diffusion) are discussed in relation to institutional issues. Federal policies have been in operation for a number of years to accelerate the development process for solar technology. These policies are discussed in light of the Office of Management and Budget (OMB) Circular on federal interaction with the voluntary consensus system, and in light of current activities of DOE, HUD, and other interested federal agencies. The appendices cover areas of specific interest to different audiences: activities on the state and local level; and standards, building codes, and certification programs for specific technologies. In addition, a contract for the development of a model solar document let by DOE to a model consortium is excerpted in the Appendix.

  3. The High Energy X-ray Imager Technology (HEXITEC) for Solar Hard X-ray Observations

    Science.gov (United States)

    Christe, Steven; Shih, Albert Y.; Gaskin, Jessica; Wilson-Hodge, Colleen; Seller, Paul; Wilson, Matthew

    2015-04-01

    High angular resolution HXR optics require detectors with a large number of fine pixels in order to adequately sample the telescope point spread function (PSF) over the entire field of view. Excessively over-sampling the PSF will increase readout noise and require more processing with no appreciable increase in image quality. An appropriate level of over-sampling is to have 3 pixels within the HPD. For current high resolution X-ray mirrors, the HPD is about 25 arcsec. Over a 6-m focal length this converts to 750 µm, the optimum pixel size is around 250 µm. Annother requirement are that the detectors must also have high efficiency in the HXR region, good energy resolution, low background, low power requirements, and low sensitivity to radiation damage. For solar observations, the ability to handle high counting rates is also extremely desirable. The Rutherford Appleton Laboratory (RAL) in the UK has been developing the electronics for such a detector. Dubbed HEXITEC, for High Energy X-Ray Imaging Technology, this Application Specific Integrated Circuit (ASIC), can be bonded to 1- or 2- mm-thick Cadmium Telluride (CdTe) or Cadmium-Zinc-Telluride (CZT), to create a fine (250 µm pitch) HXR detector. The NASA Marshall Space Flight CenterMSFC and the Goddard Space Flight Center (GSFC) has been working with RAL over the past few years to develop these detectors to be used with HXR focusing telescopes. We present on recent results and capabilities as applied to solar observations.

  4. Proposed conversion of the McMath telescope to 4.0 meter aperture for solar observations in the IR

    Science.gov (United States)

    Livingston, William

    1991-09-01

    Located on a 2076 m summit in Arizona, the present all-reflective McMath optical system consists of a 2.0-m CERVIT flat mounted as a heliostat to follow the sun, a 1.6-m 86.4 m focal-length quartz concave positioned within an inclined underground tunnel, and a 1.5-m CERVIT flat which directs the image to different fixed instrument stations. The building is adequate to accommodate a 6.0-m tracking feed and a 4.0-m concave, resulting in an f/22 beam. A 4.0 m aperture is desirable for adequate flux and resolution at 12 microns where a number of Zeeman sensitive atomic lines are found, lines which are a diagnostic for solar magnetism. At 12 microns, the diffraction limit is 0.75 arcsec, and this resolution might be realized a significant fraction of time because of improved seeing at these IR wavelengths. Direct vector measurements of solar magnetic fields would become possible because effective Zeeman splitting is proportional to wavelength, both the linear and circular Stokes amplitudes are proportional to their vector field components, and instrumental polarization becomes negligible at 12 microns. The telescope would also be used at night by the solar/stellar community.

  5. Probing seismic solar analogues through observations with the NASA Kepler space telescope and HERMES high-resolution spectrograph

    CERN Document Server

    Beck, P G; García, R A; Nascimento,, J do; Duarte, T S S; Mathis, S; Regulo, C; Ballot, J; Egeland, R; Castro, M; Pérez-Herńandez, F; Creevey, O; Tkachenko, A; van Reeth, T; Bigot, L; Corsaro, E; Metcalfe, T; Mathur, S; Palle, P L; Prieto, C Allende; Montes, D; Johnston, C; Andersen, M F; van Winckel, H

    2016-01-01

    Stars similar to the Sun, known as solar analogues, provide an excellent opportunity to study the preceding and following evolutionary phases of our host star. The unprecedented quality of photometric data collected by the \\Kepler NASA mission allows us to characterise solar-like stars through asteroseismology and study diagnostics of stellar evolution, such as variation of magnetic activity, rotation and the surface lithium abundance. In this project, presented in a series of papers by Salabert et al. (2016a,b) and Beck et al (2016a,b), we investigate the link between stellar activity, rotation, lithium abundance and oscillations in a group of 18 solar-analogue stars through space photometry, obtained with the NASA Kepler space telescope and from currently 50+ hours of ground-based, high-resolution spectroscopy with the Hermes instrument. In these proceedings, we first discuss the selection of the stars in the sample, observations and calibrations and then summarise the main results of the project. By invest...

  6. The Advanced Technology Large-Aperture Space Telescope (ATLAST) Technology Roadmap

    Science.gov (United States)

    Stahle, Carl; Balasubramanian, K.; Bolcar, M.; Clampin, M.; Feinberg, L.; Hartman, K.; Mosier, C.; Quijada, M.; Rauscher, B.; Redding, D.; hide

    2014-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 40 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  7. A deployment mechanism for the double roll-out flexible solar array on the space telescope

    Science.gov (United States)

    Cawsey, T. R.

    1982-01-01

    A roll-out flexible array which provides more than 4 kW of power for the space telescope was developed. The Array is configured as two wings. The deployment mechanism for each wing is based on flight-proven FRUSA design. Modifications have been incorporated to accommodate an increase in size and mission requirements. The assembly and operation of the deployment mechanism are described together with environmental and functional tests results.

  8. WorldWide Telescope and Google Sky: New Technologies to Engage Students and the Public

    Science.gov (United States)

    Landsberg, R. H.; Subbarao, M. U.; Dettloff, L.

    2010-08-01

    New, visually rich, astronomical software environments coupled with large web-accessible data sets hold the promise of new and exciting ways to teach, collaborate, and explore the universe. These freeware tools provide contextual views of astronomical objects, real time access to multi-wavelength sky surveys, and, most importantly, the ability to incorporate new data and to produce user created content. This interactive panel examined the capabilities of Google Sky and WorldWide Telescope, and explored case studies of how these tools have been used to create compelling and participatory educational experiences in both formal (i.e., K-12 and undergraduate non-science majors classrooms), and informal (e.g., museum) settings. The overall goal of this session was to stimulate a discussion about future uses of these technologies. Substantial time was allotted for participants to create conceptual designs of learning experiences for use at their home institutions, with feedback provided by the panel members. Activities included technical discussions (e.g., mechanisms for incorporating new data and dissemination tools), exercises in narrative preparation, and a brainstorming session to identify potential future uses of these technologies.

  9. Effect of Solar Exposure on the Atomic Oxygen Erosion of Hubble Space Telescope Aluminized-Teflon Thermal Shields

    Science.gov (United States)

    Guo, Aobo; Ashmead, Claire C.; deGroh, Kim K.

    2012-01-01

    When exposed to low Earth orbital (LEO) environment, external spacecraft materials degrade due to radiation, thermal cycling, micrometeoroid and debris impacts, and atomic oxygen (AO) interaction. Collisions between AO and spacecraft can result in oxidation of external spacecraft surface materials, which can lead to erosion and severe structural and/or optical property deterioration. It is therefore essential to understand the AO erosion yield (Ey), the volume loss per incident oxygen atom (cu cm/atom), of polymers to assure durability of spacecraft materials. The objective of this study was to determine whether solar radiation exposure can increase the rate of AO erosion of polymers in LEO. The material studied was a section of aluminized-Teflon (DuPont) fluorinated ethylene propylene (Al-FEP) thermal shield exposed to space on the Hubble Space Telescope (HST) for 8.25 years. Retrieved samples were sectioned from the circular thermal shield and exposed to ground laboratory thermal energy AO. The results indicate that the average Ey of the solar facing HST Al-FEP was 1.9 10(exp -24)cu cm/atom, while the average Ey of the anti-solar HST Al-FEP was 1.5 10(exp -24)cu cm/atom. The Ey of the pristine samples was 1.6- 1.7 10(exp -24)cu cm/atom. These results indicate that solar exposure affects the post-flight erosion rate of FEP in a plasma asher. Therefore, it likely affects the erosion rate while in LEO.

  10. Federal technology alert. Parabolic-trough solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  11. The Galactic Exoplanet Survey Telescope A Proposed Space-Based Microlensing Survey for Terrestrial Extra-Solar Planets

    CERN Document Server

    Bennett, D P; Bennett, David P.; Rhie, Sun Hong

    2000-01-01

    We present a conceptual design for a space based Galactic Exoplanet SurveyTelescope (GEST) which will use the gravitational microlensing technique todetect extra solar planets with masses as low as that of Mars at allseparations >~ 1 AU. The microlensing data would be collected by a diffractionlimited, wide field imaging telescope of ~ 1.5m aperture equipped with a largearray of red-optimized CCD detectors. Such a system would be able to monitor$\\sim 2\\times 10^8$ stars in $\\sim 6$ square degrees of the Galactic bulge atintervals of 20-30 minutes, and it would observe $\\sim 12000$ microlensingevents in three bulge seasons. If planetary systems like our own are common,GEST should be able to detect $\\sim 5000$ planets over a 2.5 year lifetime. Ifgas giants like Jupiter and Saturn are rare, then GEST would detect $\\sim 1300$planets in a 2.5 year mission if we assume that most planetary systems aredominated by planets of about Neptune's' mass. Such a mission would alsodiscover $\\sim 100$ planets of an Earth mass ...

  12. Limitations Placed on the Time Coverage, Isoplanatic Patch Size and Exposure Time for Solar Observations Using Image Selection Procedures in the Presence of Telescope Aberrations

    Science.gov (United States)

    Beckers, J. M.; Rimmele, T. R.

    1996-12-01

    Image selection, adaptive optics and post-facto image restoration methods are all techniques being used for diffraction limited imaging with ground-based solar and stellar telescopes. Often these techniques are used in a hybrid form like e.g. the application of adaptive optics and/or post-facto image restoration in combination with already good images obtained by image selection in periods of good seeing. Fried (JOSA 56, 1372, 1966), Hecquet and Coupinot (J. Optics/Paris 16, 21, 1985) and Beckers ("Solar and Stellar Granulation", Kluwer, Rutten & Severino Eds, 55, 1988) already discussed the usefulness of image selection, or the "Lucky Observer" mode, for high resolution imaging. All assumed perfect telescope optics. In case of moderate telescope aberrations image selection can still lead to diffraction limited imaging but only when the atmospheric wavefront aberration happens to compensate that of the telescope. In this "Very Lucky Observer" mode the probability of obtaining a good image is reduced over the un-aberrated case, as are the size of the isoplanatic patch and the exposure time. We describe an analysis of these effects for varying telescope aberrations. These result in a strong case for the removal of telescope aberrations either by initial implementation or by the use of slow active optics.

  13. Research on Telescopic Wing Morphing Technology%伸缩机翼变形技术研究

    Institute of Scientific and Technical Information of China (English)

    李军府; 艾俊强; 李士途; 马泽孟

    2012-01-01

    Morphing aircraft can change its aerodynamic shape so as to gain optimal performance at different flight states and enhance its mission adaptability. Telescopic wing morphing technology has been explored for several decades overseas and become one of the main developing trends of morphing aircraft technology. In this paper the developing history and the research status both domestic and overseas with respect to telescopic wing technology are summerized, the morphing principle of telescopic wing and its relative merits are discussed, key technologies concerning the design of telescopic wing are extracted, and the applied prospect of telescopic wing technology on aircrafts, missiles, wing-in-ground effect vehicles, flying automobiles, etc is expected.%变体飞机可以根据需要改变气动外形,以便在不同的飞行状态都能获得最佳的气动性能,提高飞机的任务适应能力。伸缩机翼变形技术在国外已经过几十年的研究和探索,是变体飞机技术的主要发展方向之一。本文综述了伸缩机翼技术的发展历史及国内外研究情况,阐述了伸缩机翼变形原理及其优缺点,提炼了设计伸缩机翼所涉及的关键技术,展望了伸缩机翼技术在飞机、导弹、地效翼飞行器以及飞行汽车等方面的应用前景。

  14. Simultaneous observations of solar sporadic radio emission by the radio telescopes UTR-2, URAN-2 and NDA within the frequency range 8-42 MHz

    Science.gov (United States)

    Melnik, V.; Konovalenko, A.; Brazhenko, A.; Briand, C.; Dorovskyy, V.; Zarka, P.; Denis, L.; Bulatzen, V.; Frantzusenko, A.; Rucker, H.; Stanislavskyy, A.

    2012-09-01

    From 25 June till 12 August 2011 sporadic solar radio emission was observed simultaneously by three separate radio telescopes: UTR-2 (Kharkov, Ukraine), URAN-2 (Poltava, Ukraine) and NDA (Nancay, France). During these observations some interesting phenomena were observed. Some of them are discussed in this paper.

  15. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sutula, Raymond A. [DOE Solar Energy Technologies Program, Washington, D.C. (United States)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the program for fiscal year 2005. In particular, the report describes R&D performed by the Program’s national laboratories and university and industry partners.

  16. Origins Space Telescope

    Science.gov (United States)

    Cooray, Asantha R.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. I will summarize the OST STDT, mission design and instruments, key science drivers, and the study plan over the next two years.

  17. Economic and environmental benefits of technology fusion of solar photovoltaics with alternative technologies

    OpenAIRE

    De Schepper, Ellen

    2014-01-01

    Technology fusion refers to the blending of several previously separate fields of existing technology, creating novel markets and growth opportunities. In technology fusion, one plus one equals three. This is indeed the case when fusing solar PV with alternative technologies: besides greenhouse gas emission reductions, additional advantages such as the savings of scarce land area, grid independency, diminishment of the effect of power variability of intermittent clean energy sources, and incr...

  18. Search and study of electrostatic discharges in the Solar System with the radio telescope UTR-2

    Science.gov (United States)

    Zakharenko, V.; Mylostna, K.; Konovalenko, A.; Kolyadin, V.; Zarka, P.; Griessmeier, J.-M.; Litvinenko, G.; Sidorchuk, M.; Rucker, H.; Fischer, G.; Cecconi, B.; Coffre, A.; Denis, L.; Shevchenko, V.; Nikolaenko, V.

    2012-09-01

    Successful ground-based detection of Saturn's lightning despite terrestrial interferences is the necessary basis for further detailed study of their characteristics. Modern observational equipment provide high temporal and spectral resolution and allows to resolve the fine structure of lightning. Also it give us a hope to detect much weaker electrostatic discharges in the atmospheres of another planets of the Solar System.

  19. Hubble Space Telescope Survey of Interstellar ^12CO/^13CO in the Solar Neighborhood

    CERN Document Server

    Sheffer, Y; Federman, S R; Lambert, D L; Gredel, R

    2007-01-01

    We examine 20 diffuse and translucent Galactic sight lines and extract the column densities of the ^12CO and ^13CO isotopologues from their ultraviolet A--X absorption bands detected in archival Space Telescope Imaging Spectrograph data with lambda/Deltalambda geq 46,000. Five more targets with Goddard High-Resolution Spectrograph data are added to the sample that more than doubles the number of sight lines with published Hubble Space Telescope observations of ^13CO. Most sight lines have 12-to-13 isotopic ratios that are not significantly different from the local value of 70 for ^12C/^13C, which is based on mm-wave observations of rotational lines in emission from CO and H_2CO inside dense molecular clouds, as well as on results from optical measurements of CH^+. Five of the 25 sight lines are found to be fractionated toward lower 12-to-13 values, while three sight lines in the sample are fractionated toward higher ratios, signaling the predominance of either isotopic charge exchange or selective photodissoc...

  20. Power Challenges of Large Scale Research Infrastructures: the Square Kilometer Array and Solar Energy Integration; Towards a zero-carbon footprint next generation telescope

    CERN Document Server

    Barbosa, Domingos; Ruiz, Valeriano; Silva, Manuel; Verdes-Montenegro, Lourdes; Santander-Vela, Juande; Maia, Dalmiro; Antón, Sonia; van Ardenne, Arnold; Vetter, Matthias; Kramer, Michael; Keller, Reinhard; Pereira, Nuno; Silva, Vitor

    2012-01-01

    The Square Kilometer Array (SKA) will be the largest Global science project of the next two decades. It will encompass a sensor network dedicated to radioastronomy, covering two continents. It will be constructed in remote areas of South Africa and Australia, spreading over 3000Km, in high solar irradiance latitudes. Solar Power supply is therefore an option to power supply the SKA and contribute to a zero carbon footprint next generation telescope. Here we outline the major characteristics of the SKA and some innovation approaches on thermal solar energy Integration with SKA prototypes.

  1. Technology development for the Solar Probe Plus Faraday Cup

    Science.gov (United States)

    Freeman, Mark D.; Kasper, Justin; Case, Anthony W.; Daigneau, Peter; Gauron, Thomas; Bookbinder, Jay; Brodu, Étienne; Balat-Pichelin, Marianne; Wright, Kenneth

    2013-09-01

    The upcoming Solar Probe Plus (SPP) mission requires novel approaches for in-situ plasma instrument design. SPP's Solar Probe Cup (SPC) instrument will, as part of the Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, operate over an enormous range of temperatures, yet must still accurately measure currents below 1 pico-amp, and with modest power requirements. This paper discusses some of the key technology development aspects of the SPC, a Faraday Cup and one of the few instruments on SPP that is directly exposed to the solar disk, where at closest approach to the Sun (less than 10 solar radii (Rs) from the center of the Sun) the intensity is greater than 475 earth-suns. These challenges range from materials characterization at temperatures in excess of 1400°C to thermal modeling of the behavior of the materials and their interactions at these temperatures. We discuss the trades that have resulted in the material selection for the current design of the Faraday Cup. Specific challenges include the material selection and mechanical design of insulators, particularly for the high-voltage (up to 8 kV) grid and coaxial supply line, and thermo-optical techniques to minimize temperatures in the SPC, with the specific intent of demonstrating Technology Readiness Level 6 by the end of 2013.

  2. PEPSI-feed: linking PEPSI to the Vatican Advanced Technology Telescope using a 450m long fibre

    Science.gov (United States)

    Sablowski, D. P.; Weber, M.; Woche, M.; Ilyin, I.; Järvinen, A.; Strassmeier, K. G.; Gabor, P.

    2016-07-01

    Limited observing time at large telescopes equipped with the most powerful spectrographs makes it almost impossible to gain long and well-sampled time-series observations. Ditto, high-time-resolution observations of bright targets with high signal-to-noise are rare. By pulling an optical fibre of 450m length from the Vatican Advanced Technology Telescope (VATT) to the Large Binocular Telescope (LBT) to connect the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) to the VATT, allows for ultra-high resolution time-series measurements of bright targets. This article presents the fibre-link in detail from the technical point-of-view, demonstrates its performance from first observations, and sketches current applications.

  3. A compendium of solar dish/Stirling technology

    Energy Technology Data Exchange (ETDEWEB)

    Stine, W.B. [California State Polytechnic Univ., Pomona, CA (United States). Dept. of Mechanical Engineering; Diver, R.B. [Sandia National Labs., Albuquerque, NM (United States)

    1994-01-01

    This report surveys the emerging dish/Stirling technology. It documents -- using consistent terminology the design characteristics of dish concentrators, receivers, and Stirling engines applicable to solar electric power generation. Development status and operating experience for each system and an overview of dish/Stirling technology are also presented. This report enables comparisons of concentrator, receiver, and engine technologies. Specifications and performance data are presented on systems and on components that are in use or that could be used in dish/Stirling systems. This report is organized into two parts: The first part (Chapters 1 through 4) provides an overview of dish/Stirling technology -- the dish/ Stirling components (concentrator, receiver, and engine/alternator), current technology, basic theory, and technology development. The second part (Chapters 5 through 7) provides a detailed survey of the existing dish/Stirling concentrators, receivers, and engine/alternators.

  4. Practical application of amorphous solar cells. High quality production technology

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    The targets of the project are to develop production technology of amorphous solar cells for electric power generation which will possess good reproducibility and be highly sensitive to solar light, and to elucidate their technological and economical applicability. During the years of from 1980 to 1982, studies on research and development of amorphous solar cells with multi-layer structure were made, and the conversion efficiency of the amorphous sollar cell was improved to 82.5% (10 cm square cell). (1) Amorphous growth equipment for continuous formation of tandem structure was designed and constructed. Boron concentration when grown in independent separate reaction chambers was found to be less than 1/10 of that grown in the single chanber. Film formation rate of 7/sup 0/ A/sec was achieved using Si/sub 2/H/sub 6/ for the growth of a-Si:H(i). (2) In the technology for stainless steel substrate modules, modules of the sizes specified by NEDO were assembled with the super strail structure employing tempered glass, achieving 4.7% conversion rate. (3) For materials and formation technology of the transparent conductive film grid electrode, light transmittance and resistance of the film made by sputtering evaporation of ITO film were studied. (4) As regards reliability technology, it was found that the tandem structure will greatly decreace the deterioration rate as compared with the single layer structure. The modules with super strait structre proved to be weatherproof. (4 figs)

  5. Software and codes for analysis of concentrating solar power technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Clifford Kuofei

    2008-12-01

    This report presents a review and evaluation of software and codes that have been used to support Sandia National Laboratories concentrating solar power (CSP) program. Additional software packages developed by other institutions and companies that can potentially improve Sandia's analysis capabilities in the CSP program are also evaluated. The software and codes are grouped according to specific CSP technologies: power tower systems, linear concentrator systems, and dish/engine systems. A description of each code is presented with regard to each specific CSP technology, along with details regarding availability, maintenance, and references. A summary of all the codes is then presented with recommendations regarding the use and retention of the codes. A description of probabilistic methods for uncertainty and sensitivity analyses of concentrating solar power technologies is also provided.

  6. Back to the future: science and technology directions for radio telescopes of the twenty-first century

    Science.gov (United States)

    Cordes, James M.

    2009-08-01

    The early days of radio astronomy showed incredibly diverse experimentation in ways to sample the electromagnetic spectrum at radio wavelengths. In addition to obtaining adequate sensitivity by building large collection areas, a primary goal also was to achieve sufficient angular resolution to localize radio sources for multi-wavelength identification. This led to many creative designs and the invention of aperture synthesis and VLBI. Some of the basic telescope types remain to the present day, now implemented across the entire radio spectrum from wavelengths of tens of meters to submillimeter wavelengths. In recent years, as always, there is still the drive for greater sensitivity but a primary goal is now to achieve very large fields of view to complement high resolution and frequency coverage, leading to a new phase of experimentation. This is the “back to the future” aspect of current research and development for next-generation radio telescopes. In this paper I summarize the scientific motivations for development of new technology and telescopes since about 1990 and going forward for the next decade and longer. Relevant elements include highly optimized telescope optics and feed antenna designs, innovative fabrication methods for large reflectors and dipole arrays, digital implementations, and hardware vs. software processing. The emphasis will be on meter and centimeter wavelength telescopes but I include a brief discussion of millimeter wavelengths to put the longer wavelength enterprises into perspective. I do not discuss submillimeter wavelengths because they are covered in other papers.

  7. Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

    Science.gov (United States)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  8. New technology allows closer study of neutrinos; researchers credit specialized telescope

    CERN Multimedia

    Huang, N

    2002-01-01

    With the help of a newly designed telescope, University of California-Berkeley scientists and an international team of researchers have made a recent breakthrough in the study of neutrino emissions from the sun. The turning point is the Sudbury Neutrino Observatory in Canada. This telescope is the first of its kind to be sensitive enough to detect all types of neutrinos (1 page).

  9. High-Resolution Observations of Limb Spicules from the Transition Region and Coronal Explorer and the Swedish Solar Telescope

    Science.gov (United States)

    Westbrook, Owen; Pasachoff, J. M.; Kozarev, K. A.; Yee, J.

    2006-06-01

    We observed spicules at the solar limb with TRACE and the Swedish Solar Telescope on La Palma for four-day intervals in 2004 and 2005 as well as simultaneous SUMER/SOHO observations in 2004. We are evaluating the apparent motion of individual spicules to infer chromospheric heat flow and mass transfer and to improve the statistics of basic spicule parameters including height, velocity, and inclination. We use the highest available cadence to measure height vs. time curves, using parabolic and linear fits to extract average maximum heights and apparent velocities of rise and descent. Our semiautomatic measurements of several dozen individual Ca II H spicules find an average height of 7610 ± 20 km based on ballistic fits and 7990 ± 80 km based on linear fits, with average velocities 8.7 ± 0.2 km/s ascending and 5.6 ± 0.1 km/s descending. Our TRACE data include observations at 1600 Å, 171 Å, and Lyman-alpha; our SST observations using Lockheed Martin's SOUP include H-alpha (four wing wavelengths to measure velocities) and Ca II H. We are investigating the relationships between spicule height and intensity to search for evidence of sheathed vs. monolithic spicule models, and analyzing ionization fadeout vs. velocity reversals for limiting spicule heights. A third yearly session of simultaneous TRACE/SST observations is scheduled.We thank S. P. Souza, B. De Pontieu, L. Golub, and J. Cirtain; earlier collaboration by D. B. Seaton, J. P. Shoer, D. L. Butts, and J. W. Gangestad; as well as the Royal Swedish Academy of Sciences. Support was provided by a NASA/Solar-Terrestrial Guest Investigator Grant for TRACE (NNG04GK44G), from Sigma Xi, and from the NASA/Massachusetts Space Grant.

  10. Advances in Telescope and Detector Technologies - Impacts on the Study and Understanding of Binary Star and Exoplanet Systems

    Science.gov (United States)

    Guinan, Edward F.; Engle, Scott; Devinney, Edward J.

    2012-04-01

    Current and planned telescope systems (both on the ground and in space) as well as new technologies will be discussed with emphasis on their impact on the studies of binary star and exoplanet systems. Although no telescopes or space missions are primarily designed to study binary stars (what a pity!), several are available (or will be shortly) to study exoplanet systems. Nonetheless those telescopes and instruments can also be powerful tools for studying binary and variable stars. For example, early microlensing missions (mid-1990s) such as EROS, MACHO and OGLE were initially designed for probing dark matter in the halos of galaxies but, serendipitously, these programs turned out to be a bonanza for the studies of eclipsing binaries and variable stars in the Magellanic Clouds and in the Galactic Bulge. A more recent example of this kind of serendipity is the Kepler Mission. Although Kepler was designed to discover exoplanet transits (and so far has been very successful, returning many planetary candidates), Kepler is turning out to be a ``stealth'' stellar astrophysics mission returning fundamentally important and new information on eclipsing binaries, variable stars and, in particular, providing a treasure trove of data of all types of pulsating stars suitable for detailed Asteroseismology studies. With this in mind, current and planned telescopes and networks, new instruments and techniques (including interferometers) are discussed that can play important roles in our understanding of both binary star and exoplanet systems. Recent advances in detectors (e.g. laser frequency comb spectrographs), telescope networks (both small and large - e.g. Super-WASP, HAT-net, RoboNet, Las Combres Observatory Global Telescope (LCOGT) Network), wide field (panoramic) telescope systems (e.g. Large Synoptic Survey Telescope (LSST) and Pan-Starrs), huge telescopes (e.g. the Thirty Meter Telescope (TMT), the Overwhelming Large Telescope (OWL) and the Extremely Large Telescope (ELT

  11. The 26 December 2001 Solar Event Responsible for GLE63. I. Observations of a Major Long-Duration Flare with the Siberian Solar Radio Telescope

    CERN Document Server

    Grechnev, V V

    2016-01-01

    Ground Level Enhancements (GLEs) of cosmic-ray intensity occur, on average, once a year. Due to their rareness, studying the solar sources of GLEs is especially important to approach understanding their origin. The SOL2001-12-26 eruptive-flare event responsible for GLE63 seems to be challenging in some aspects. Deficient observations limited its understanding. Analysis of extra observations found for this event provided new results shading light on the flare. This article addresses the observations of this flare with the Siberian Solar Radio Telescope (SSRT). Taking advantage of its instrumental characteristics, we analyze the detailed SSRT observations of a major long-duration flare at 5.7 GHz without cleaning the images. The analysis confirms that the source of GLE63 was associated with an event in active region 9742 that comprised two flares. The first flare (04:30-05:03 UT) reached a GOES importance of about M1.6. Two microwave sources were observed, whose brightness temperatures at 5.7 GHz exceeded 10 MK...

  12. Imaging of the solar atmosphere by the Siberian Solar Radio Telescope at 5.7 GHz with an enhanced dynamic range

    CERN Document Server

    Kochanov, Alexey; Prosovetsky, Dmitry; Rudenko, George; Grechnev, Victor

    2013-01-01

    The Siberian Solar Radio Telescope (SSRT) is a solar-dedicated directly-imaging interferometer observing the Sun at 5.7 GHz. The SSRT operates in the two-dimensional mode since 1996. The imaging principle of the SSRT restricts its opportunities in observations of very bright flare sources, while it is possible to use `dirty' images in studies of low brightness features, which do not overlap with side lobes from bright sources. The interactive CLEAN technique routinely used for the SSRT data provides imaging of active regions but consumes much time and efforts and does not reveal low-brightness features below the CLEAN threshold. The newly developed technique combines the CLEAN routine with the directly imaging capability of the SSRT and provides clean images with an enhanced dynamic range automatically. These elaborations considerably extend the range of tasks, which can be solved with the SSRT. We show some examples of the present opportunities of the SSRT and compare its data with the images produced by the...

  13. Dynamically Excited Outer Solar System Objects in the Hubble Space Telescope Archive

    CERN Document Server

    Fuentes, Cesar I; Holman, Matthew J

    2011-01-01

    We present the faintest mid ecliptic latitude survey in the second part of HST archival search for outer Solar System bodies. We report the discovery of 28 new trans-Neptunian objects and 1 small centaur (R ~ 2km) in the band 5{\\circ} - 20{\\circ} off the ecliptic. The inclination distribution of these excited ob jects is consistent with the distribution derived from brighter ecliptic surveys. We suggest that the size and inclination distribution should be estimated consistently using suitable surveys with calibrated search algorithms and reliable orbital information.

  14. RESOLVING THE FAN-SPINE RECONNECTION GEOMETRY OF A SMALL-SCALE CHROMOSPHERIC JET EVENT WITH THE NEW SOLAR TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Zhicheng; Chen, Bin; Goode, Philip R.; Cao, Wenda [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102 (United States); Ji, Haisheng [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)

    2016-03-01

    Jets are ubiquitously present in both quiet and active regions on the Sun. They are widely believed to be driven by magnetic reconnection. A fan-spine structure has been frequently reported in some coronal jets and flares, and has been regarded as a signature of ongoing magnetic reconnection in a topology consisting of a magnetic null connected by a fan-like separatrix surface and a spine. However, for small-scale chromospheric jets, clear evidence of such structures is rather rare, although it has been implied in earlier works that showed an inverted-Y-shaped feature. Here we report high-resolution (0.″16) observations of a small-scale chromospheric jet obtained by the New Solar Telescope (NST) using 10830 Å filtergrams. Bi-directional flows were observed across the separatrix regions in the 10830 Å images, suggesting that the jet was produced due to magnetic reconnection. At the base of the jet, a fan-spine structure was clearly resolved by the NST, including the spine and the fan-like surface, as well as the loops before and after the reconnection. A major part of this fan-spine structure, with the exception of its bright footpoints and part of the base arc, was invisible in the extreme ultraviolet and soft X-ray images (observed by the Atmosphere Imaging Assembly and the X-Ray Telescope, respectively), indicating that the reconnection occurred in the upper chromosphere. Our observations suggest that the evolution of this chromospheric jet is consistent with a two-step reconnection scenario proposed by Török et al.

  15. Multijunction Solar Cell Technology for Mars Surface Applications

    Science.gov (United States)

    Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris

    2006-01-01

    Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.

  16. Solar sorptive cooling. Technologies, user requirements, practical experience, future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Treffinger, P. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Hardthausen (Germany); Hertlein, H.P. [eds.] [Forschungsverbund Sonnenenergie, Koeln (Germany)

    1998-09-01

    Sorptive cooling techniques permit the use of low-temperature solar heat, i.e. a renewable energy of low cost and world-wide availability. The Forschungsverbund Sonnenenergie intends to develop solar sorptive cooling technologies to the prototype stage and, in cooperation with the solar industry and its end users, to promote practical application in air conditioning of buildings and cold storage of food. The workshop presents an outline of the state of development of solar sorptive cooling from the view of users and developers. Exemplary solar cooling systems are described, and the potential of open and closed sorptive processes is assessed. Future central activities will be defined in an intensive discussion between planners, producers, users and developers. [German] Der Einsatz von Sorptionstechniken zur Kaelteerzeugung erlaubt es, als treibende Solarenergie Niedertemperatur-Solarwaerme einzusetzen, also eine regenerative Energie mit sehr geringen Kosten und weltweiter Verfuegbarkeit. Der Forschungsverbund Sonnenenergie hat sich als Aufgabe gestellt, die Techniken der solaren Sorptionskuehlung bis zum Prototyp zu entwickeln und mit Industrie und Nutzern die praktische Anwendung voranzubringen. Die Anwendungsfelder sind die Klimatisierung von Gebaeuden und die Kaltlagerung von Lebensmitteln. Der Workshop gibt einen Ueberblick zum Entwicklungsstand der solaren Sorptionskuehlung aus der Sicht der Anwender und Entwickler. Bereits ausgefuehrte Beispiele zur solaren Kuehlung werden vorgestellt und das Potential geschlossener und offener Sorptionsverfahren angegeben. In intensiver Diskussion zwischen Planern, Herstellern, Nutzern und Entwicklern sollen kuenftige Arbeitsschwerpunkte herausgearbeitet werden. (orig.)

  17. HILT - A heavy ion large area proportional counter telescope for solar and anomalous cosmic rays

    Science.gov (United States)

    Klecker, Berndt; Hovestadt, Dietrich; Scholer, M.; Arbinger, H.; Ertl, M.; Kaestle, H.; Kuenneth, E.; Laeverenz, P.; Seidenschwang, E.; Blake, J. B.

    1993-01-01

    The HILT sensor has been designed to measure heavy ion elemental abundances, energy spectra, and direction of incidence in the mass range from He to Fe and in the energy range 4 to 250 MeV/nucleon. With its large geometric factor of 60 sq cm sr the sensor is optimized to provide compositional and spectral measurements for low intensity cosmic rays (i.e. for small solar energetic particle events and for the anomalous component of cosmic rays). The instrument combines a large area ion drift chamber-proportional counter system with two arrays of 16 Li-drift solid state detectors and 16 CsI crystals. The multi dE/dx-E technique provides a low background mass and energy determination. The sensor also measures particle direction. Combining these measurements with the information on the spacecraft position and attitude in the low-altitude polar orbit, it will be possible to infer the ionic charge of the ions from the local cutoff of the Earth's magnetic field. The ionic charge in this energy range is of particular interest because it provides unique clues to the origin of these particles and has not been investigated systematically so far. Together with the other instruments on board SAMPEX (LEICA, MAST, and PET), a comprehensive measurement of the entire solar and anomalous particle population will be achieved.

  18. The Substructure of the Solar Corona Observed in the Hi-C Telescope

    Science.gov (United States)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore calculate how the intensity scales from a low-resolution (AIA) pixels to high-resolution (Hi-C) pixels for both the dynamic events and "background" emission (meaning, the steady emission over the 5 minutes of data acquisition time). We find there is no evidence of substructure in the background corona; the intensity scales smoothly from low-resolution to high-resolution Hi-C pixels. In transient events, however, the intensity observed with Hi-C is, on average, 2.6 times larger than observed with AIA. This increase in intensity suggests that AIA is not resolving these events. This result suggests a finely structured dynamic corona embedded in a smoothly varying background.

  19. Discovery of Finely Structured Dynamic Solar Corona Observed in the Hi-C Telescope

    Science.gov (United States)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e. have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70 percent of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  20. Dish concentrators for solar thermal energy: Status and technology development

    Science.gov (United States)

    Jaffe, L. D.

    1982-01-01

    Point-focusing concentrators under consideration for solar thermal energy use are reviewed. These concentrators differ in such characteristics as optical configuration, optical materials, structure for support of the optical elements and of the receiver, mount, foundation, drive, controls and enclosure. Concentrator performance and cost are considered. Technology development is outlined, including wind loads and aerodynamics; precipitation, sand, and seismic considerations; and maintenance and cleaning.

  1. Advanced UVOIR Mirror Technology Development for Very Large Space Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future UV/Optical telescopes will require increasingly large apertures to answer the questions raised by HST, JWST, Planck and Hershel, and to complement the = 30-m...

  2. DISCOVERY OF FINELY STRUCTURED DYNAMIC SOLAR CORONA OBSERVED IN THE Hi-C TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Winebarger, Amy R.; Cirtain, Jonathan; Savage, Sabrina; Alexander, Caroline [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Golub, Leon; DeLuca, Edward [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Schuler, Timothy, E-mail: amy.r.winebarger@nasa.gov [State University of New York College at Buffalo, 1300 Elmwood Avenue, Buffalo, NY 14222 (United States)

    2014-05-20

    In the Summer of 2012, the High-resolution Coronal Imager (Hi-C) flew on board a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e., have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70% of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  3. MASS AND ENERGY OF ERUPTING SOLAR PLASMA OBSERVED WITH THE X-RAY TELESCOPE ON HINODE

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-Yi; Moon, Yong-Jae; Kim, Kap-Sung [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of); Raymond, John C.; Reeves, Katharine K., E-mail: jlee@khu.ac.kr [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2015-01-10

    We investigate seven eruptive plasma observations by Hinode/XRT. Their corresponding EUV and/or white light coronal mass ejection features are visible in some events. Five events are observed in several passbands in X-rays, which allows for the determination of the eruptive plasma temperature using a filter ratio method. We find that the isothermal temperatures vary from 1.6 to 10 MK. These temperatures are an average weighted toward higher temperature plasma. We determine the mass constraints of eruptive plasmas by assuming simplified geometrical structures of the plasma with isothermal plasma temperatures. This method provides an upper limit to the masses of the observed eruptive plasmas in X-ray passbands since any clumping causes the overestimation of the mass. For the other two events, we assume the temperatures are at the maximum temperature of the X-ray Telescope (XRT) temperature response function, which gives a lower limit of the masses. We find that the masses in XRT, ∼3 × 10{sup 13}-5 × 10{sup 14} g, are smaller in their upper limit than the total masses obtained by LASCO, ∼1 × 10{sup 15} g. In addition, we estimate the radiative loss, thermal conduction, thermal, and kinetic energies of the eruptive plasma in X-rays. For four events, we find that the thermal conduction timescales are much shorter than the duration of eruption. This result implies that additional heating during the eruption may be required to explain the plasma observations in X-rays for the four events.

  4. Solar building construction - new technologies; Solares Bauen - Neue Technologien fuer Gebaeude

    Energy Technology Data Exchange (ETDEWEB)

    Luther, J.; Voss, K.; Wittwer, V. [Fraunhofer-Inst. fuer Solare Energiesysteme, Freiburg (Germany). Abt. ``Thermische und Optische Systeme``

    1998-02-01

    There is an increasing demand for integrated building concepts in order to reduce energy consumption. Building design, construction and heating, ventilation and air-conditioning (HVAC) technology are decisive in this respect. Thus, an essentially higher energy efficiency is achieved and solar energy becomes the main energy source. An `active building envelope` assumes the task of controlling the energy flows between inside and outside. This paper reports on new components, system concepts and planning tools for solar building. (orig.) [Deutsch] Fuer zukuenftige Bauten werden in hohem Masse Forderungen nach integrierten Konzepten zur Begrenzung des Energieverbrauchs gestellt. Gestalt, Konstruktion und Klimatechnik sind dabei massgebliche Einflussfaktoren. Hierdurch wird eine wesentlich hoehere Energieeffizienz erzielt und Solarenergie kann die uebrigen Energiequellen zurueckdraengen. Eine `aktive Gebaeudehuelle` uebernimmt die Aufgabe, den Energiefluss zwischen Innen und Aussen zu steuern. Der Beitrag berichtet ueber neue Komponenten, Systemkonzepte und Planungswerkzeuge fuer das Solare Bauen. (orig.)

  5. Technology assessment of solar energy: An evaluation of widespread deployment of solar and biomass technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, Y.; D' Alessio, G.J.

    1980-12-01

    The following summarizes significance of the results of the analyses performed: Air Quality - Both increases and decreases in emissions of certain energy related criteria pollutants: essentially no influence on long-range transport of energy-related pollutants; moderate regional decreases in SO /SUB x/ and NO /SUB x/ ; significant increases in biomass-related particulate emissions in certain regions and subregions; minor changes in nonenergy related criteria pollutants associated with manufacturing solar on a national basis. Water Quality - Relatively minor increases and decreases in water pollution nationally; some significant increases in erosion in agricultural states; some potential local benefits associated with reduced conventional waste disposal requirements; and some potential penalties associated with increased solar working fluid disposal. Water Resources - Nationally insignificant especially in the Eastern U.S., but with some potential local problems in the West associated with discretionary water use for cleaning solar systems; some local benefits in the East associated with reduction in mandatory water use by conventional power plant cooling systems. Land Resources - On-site solar energy demands in moderately sized communities can be exceeded in all but the most dense land use sectors, this would offset adverse local land use impacts, but is highly influenced by local land use planning decisions.

  6. End-to-end simulations of the Visible Tunable Filter for the Daniel K. Inouye Solar Telescope

    CERN Document Server

    Schmidt, Wolfgang; Ellwarth, Monika; Baumgartner, Jörg; Bell, Alexander; Fischer, Andreas; Halbgewachs, Clemens; Heidecke, Frank; Kentischer, Thomas; von der Lühe, Oskar; Scheiffelen, Thomas; Sigwarth, Michael

    2016-01-01

    The Visible Tunable Filter (VTF) is a narrowband tunable filter system for imaging spectroscopy and spectropolarimetry based. The instrument will be one of the first-light instruments of the Daniel K. Inouye Solar Telescope that is currently under construction on Maui (Hawaii). The VTF is being developed by the Kiepenheuer Institut fuer Sonnenphysik in Freiburg as a German contribution to the DKIST. We perform end-to-end simulations of spectropolarimetric observations with the VTF to verify the science requirements of the instrument. The instrument is simulated with two Etalons, and with a single Etalon. The clear aperture of the Etalons is 250 mm, corresponding to a field of view with a diameter of 60 arcsec in the sky (42,000 km on the Sun). To model the large-scale figure errors we employ low-order Zernike polynomials (power and spherical aberration) with amplitudes of 2.5 nm RMS. We use an ideal polarization modulator with equal modulation coefficients of 3-1/2 for the polarization modulation We synthesiz...

  7. Progress in modeling polarization optical components for the Daniel K. Inouye Solar Telescope

    Science.gov (United States)

    Sueoka, Stacey Ritsuyo; Harrington, David M.

    2016-07-01

    The DKIST will have a suite of first-light polarimetric instrumentation requiring precise calibration of a complex articulated optical path. The optics are subject to large thermal loads caused by the 300Watts of collected solar irradiance across the 5 arc minute field of view. The calibration process requires stable optics to generate known polarization states. We present modeling of several optical, thermal and mechanical effects of the calibration optics, the first transmissive optical elements in the light path, because they absorb substantial heat. Previous studies showed significant angle of incidence effects from the f/13 converging beam and the 5 arc minute field of view, but were only modeled at a single nominal temperature. New thermal and polarization modeling of these calibration retarders shows heating causes significant stability limitations both in time and with field caused by the bulk temperature rise along with depth and radial thermal gradients. Modeling efforts include varying coating and material absorption, Mueller matrix stability estimates and mitigation efforts.

  8. Value of storage technologies for wind and solar energy

    Science.gov (United States)

    Braff, William A.; Mueller, Joshua M.; Trancik, Jessika E.

    2016-10-01

    Wind and solar industries have grown rapidly in recent years but they still supply only a small fraction of global electricity. The continued growth of these industries to levels that significantly contribute to climate change mitigation will depend on whether they can compete against alternatives that provide high-value energy on demand. Energy storage can transform intermittent renewables for this purpose but cost improvement is needed. Evaluating diverse storage technologies on a common scale has proved a major challenge, however, owing to their widely varying performance along the two dimensions of energy and power costs. Here we devise a method to compare storage technologies, and set cost improvement targets. Some storage technologies today are shown to add value to solar and wind energy, but cost reduction is needed to reach widespread profitability. The optimal cost improvement trajectories, balancing energy and power costs to maximize value, are found to be relatively location invariant, and thus can inform broad industry and government technology development strategies.

  9. Progress and Outlook for Silicon Solar Cell Process Technology (Environmental Problem)

    OpenAIRE

    永吉, 浩

    2000-01-01

    An over view of recent solar cell development program and Si solar cell process technology are presented. In the past 5 years, the PV production has drastically increased. To cover the large amount of PV demand in future, novel Si material production technology and development of the thin film Si cell technology are needed. To improve the efficiency of thin film Si cells, surface passivation technology will be more important. To improve the stability of a-Si : H solar cells, microcrystalline ...

  10. Potential displacement of petroleum imports by solar energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    DeLeon, P.; Jackson, B.L.; McNown, R.F.; Mahrenholz, G.J.

    1980-05-01

    The United States currently imports close to half of its petroleum requirements. This report delineates the economic, social, and political costs of such a foreign oil dependency. These costs are often intangible, but combined they clearly constitute a greater price for imported petroleum than the strictly economic cost. If we can assume that imported oil imposes significant socioeconomic costs upon the American economy and society, one way to reduce these costs is to develop alternative, domestic energy sources - such as solar energy technologies - which can displace foreign petroleum. The second half of this report estimates that by the year 2000, solar energy technologies can displace 3.6 quads of petroleum. This figure includes solar energy applications in utilities, industrial and agricultural process heat, and transportation. The estimate can be treated as a lower bound; if the United States were to achieve the proposed goal of 20 quads by 2000, the amount of displaced oil probably would be greater. Although all the displaced oil would not be imported, the reduction in imported petroleum would relieve many of the conditions that increase the present cost of foreign oil to the American consumer.

  11. SYSTEMATIC MOTION OF FINE-SCALE JETS AND SUCCESSIVE RECONNECTION IN SOLAR CHROMOSPHERIC ANEMONE JET OBSERVED WITH THE SOLAR OPTICAL TELESCOPE/HINODE

    Energy Technology Data Exchange (ETDEWEB)

    Singh, K. A. P.; Nishida, K.; Shibata, K. [Kwasan and Hida Observatories, Graduate School of Science, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Isobe, H., E-mail: singh@kwasan.kyoto-u.ac.jp [Unit for Synergetic Study for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan)

    2012-11-20

    The Solar Optical Telescope (SOT) on board Hinode allows observations with high spatiotemporal resolution and stable image quality. A {lambda}-shaped chromospheric anemone jet was observed in high resolution with SOT/Hinode. We found that several fine-scale jets were launched from one end of the footpoint to the other. These fine-scale jets ({approx}1.5-2.5 Mm) gradually move from one end of the footpoint to the other and finally merge into a single jet. This process occurs recurrently, and as time progresses the jet activity becomes more and more violent. The time evolution of the region below the jet in Ca II H filtergram images taken with SOT shows that various parts (or knots) appear at different positions. These bright knots gradually merge into each other during the maximum phase. The systematic motion of the fine-scale jets is observed when different knots merge into each other. Such morphology would arise due to the emergence of a three-dimensional twisted flux rope in which the axial component (or the guide field) appears in the later stages of the flux rope emergence. The partial appearance of the knots could be due to the azimuthal magnetic field that appears during the early stage of the flux rope emergence. If the guide field is strong and reconnection occurs between the emerging flux rope and an ambient magnetic field, this could explain the typical feature of systematic motion in chromospheric anemone jets.

  12. Dish concentrators for solar thermal energy - Status and technology development

    Science.gov (United States)

    Jaffe, L. D.

    1981-01-01

    Comparisons are presented of point-focusing, or 'dish' solar concentrator system features, development status, and performance levels demonstrated to date. In addition to the requirements of good optical efficiency and high geometric concentration ratios, the most important future consideration in solar thermal energy dish concentrator design will be the reduction of installed and lifetime costs, as well as the materials and labor costs of production. It is determined that technology development initiatives are needed in such areas as optical materials, design wind speeds and wind loads, structural configuration and materials resistance to prolonged exposure, and the maintenance of optical surfaces. The testing of complete concentrator systems, with energy-converting receivers and controls, is also necessary. Both reflector and Fresnel lens concentrator systems are considered.

  13. Simulate a ‘Sun’ for Solar Research : A Literature Review of Solar Simulator Technology

    OpenAIRE

    Wang, Wujun; Laumert, Björn

    2014-01-01

    The solar simulator is the key facility for indoor research of solar PV cells, solar heat collectors, space craft and CSP systems. This paper classifies the four types of solar simulators based on their characteristics and their design objects: space solar simulator, standard PV cell testing solar simulator, collector testing solar simulator and high-flux solar simulator. The review of solar simulator developments is mainly based on the developments of light sources and optical concentrators....

  14. The SOFIA Telescope

    CERN Document Server

    Krabbe, A

    2000-01-01

    The SOFIA telescope as the heart of the observatory is a major technological challenge. I present an overview on the astro-nomical and scientific requirements for such a big airborne observatory and demonstrate the impact of these requirements on the layout of SOFIA, in particular on the telescope design as it is now. Selected components of the telescope will be de-scribed in their context and functionality. The current status of the telescope is presented.

  15. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Neti, Sudhakar [Lehigh Univ., Bethlehem, PA (United States). Mechanical Engineering and Mechanics; Oztekin, Alparslan [Lehigh Univ., Bethlehem, PA (United States); Chen, John [Lehigh Univ., Bethlehem, PA (United States); Tuzla, Kemal [Lehigh Univ., Bethlehem, PA (United States); Misiolek, Wojciech [Lehigh Univ., Bethlehem, PA (United States)

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300°C and 850°C using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  16. Solar/hydrogen systems technologies. Volume II (Part 1 of 2). Solar/hydrogen systems assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Escher, W. J.D.; Foster, R. W.; Tison, R. R.; Hanson, J. A.

    1980-06-02

    Volume II of the Solar/Hydrogen Systems Assessment contract report (2 volumes) is basically a technological source book. Relying heavily on expert contributions, it comprehensively reviews constituent technologies from which can be assembled a wide range of specific solar/hydrogen systems. Covered here are both direct and indirect solar energy conversion technologies; respectively, those that utilize solar radiant energy input directly and immediately, and those that absorb energy from a physical intermediary, previously energized by the sun. Solar-operated hydrogen energy production technologies are also covered in the report. The single most prominent of these is water electrolysis. Utilization of solar-produced hydrogen is outside the scope of the volume. However, the important hydrogen delivery step is treated under the delivery sub-steps of hydrogen transmission, distribution and storage. An exemplary use of the presented information is in the synthesis and analysis of those solar/hydrogen system candidates documented in the report's Volume I. Morever, it is intended that broad use be made of this technology information in the implementation of future solar/hydrogen systems. Such systems, configured on either a distributed or a central-plant basis, or both, may well be of major significance in effecting an ultimate transition to renewable energy systems.

  17. Solar/hydrogen systems technologies. Volume II (Part 2 of 2). Solar/hydrogen systems assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Escher, W. J.D.; Foster, R. W.; Tison, R. R.; Hanson, J. A.

    1980-06-02

    Volume II of the Solar/Hydrogen Systems Assessment contract report (2 volumes) is basically a technological source book. Relying heavily on expert contributions, it comprehensively reviews constituent technologies from which can be assembled a wide range of specific solar/hydrogen systems. Covered here are both direct and indirect solar energy conversion technologies; respectively, those that utilize solar radiant energy input directly and immediately, and those that absorb energy from a physical intermediary, previously energized by the sun. Solar-operated hydrogen energy production technologies are also covered in the report. The single most prominent of these is water electrolysis. Utilization of solar-produced hydrogen is outside the scope of the volume. However, the important hydrogen delivery step is treated under the delivery sub-steps of hydrogen transmission, distribution and storage. An exemplary use of the presented information is in the synthesis and analysis of those solar/hydrogen system candidates documented in the report's Volume I. Moreover, it is intended that broad use be made of this technology information in the implementation of future solar/hydrogen systems. Such systems, configured on either a distributed or a central-plant basis, or both, may well be a major significance in effecting an ultimate transition to renewable energy systems.

  18. Solar Energy Technologies Office FY 2017 Budget At-A-Glance

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-03-01

    The Solar Energy Technologies Office supports the SunShot Initiative goal to make solar energy technologies cost competitive with conventional energy sources by 2020. Reducing the total installed cost for utility-scale solar electricity by approximately 75% (2010 baseline) to roughly $0.06 per kWh without subsidies will enable rapid, large-scale adoption of solar electricity across the United States. This investment will help re-establish American technological and market leadership in solar energy, reduce environmental impacts of electricity generation, and strengthen U.S. economic competitiveness.

  19. Depth-dependent global properties of a sunspot observed by Hinode using the Solar Optical Telescope/Spectropolarimeter

    Science.gov (United States)

    Tiwari, Sanjiv K.; van Noort, Michiel; Solanki, Sami K.; Lagg, Andreas

    2015-11-01

    Context. For the past two decades, the three-dimensional structure of sunspots has been studied extensively. A recent improvement in the Stokes inversion technique prompts us to revisit the depth-dependent properties of sunspots. Aims: In the present work, we aim to investigate the global depth-dependent thermal, velocity, and magnetic properties of a sunspot, as well as the interconnection between various local properties. Methods: We analysed high-quality Stokes profiles of the disk-centred, regular, leading sunspot of NOAA AR 10933, acquired by the Solar Optical Telescope/Spectropolarimeter (SOT/SP) on board the Hinode spacecraft. To obtain depth-dependent stratification of the physical parameters, we used the recently developed, spatially coupled version of the SPINOR inversion code. Results: First, we study the azimuthally averaged physical parameters of the sunspot. We find that the vertical temperature gradient in the lower- to mid-photosphere is at its weakest in the umbra, while it is considerably stronger in the penumbra, and stronger still in the spot's surroundings. The azimuthally averaged field becomes more horizontal with radial distance from the centre of the spot, but more vertical with height. At continuum optical depth unity, the line-of-sight velocity shows an average upflow of ~300 ms-1 in the inner penumbra and an average downflow of ~1300 ms-1 in the outer penumbra. The downflow continues outside the visible penumbral boundary. The sunspot shows, at most, a moderate negative twist of qualitative similarity to that of a standard penumbral filament and its surrounding spines. Conclusions: The large-scale variation in the physical parameters of a sunspot at various optical depths is presented. Our results suggest that the spines in the penumbra are basically the outward extension of the umbra. The spines and the penumbral filaments, together, are the basic elements that form a sunspot penumbra.

  20. What’s Political about Solar Electric Technology? The User’s Perspective

    Directory of Open Access Journals (Sweden)

    Chelsea Schelly

    2015-11-01

    Full Text Available Scholars in science and technology studies have debated the various ways in which technologies are (or are not political. Here, I examine how users themselves understand and articulate the politics of a specific technology—residential solar electric technology—and how understandings of politics interact with motivations to adopt. Based on interviews with 48 individuals in 36 households across the state of Wisconsin who have adopted residential solar electric technology, I consider the user’s perspective on the question: “What’s political about residential solar electric technology use?” These users were asked about the politics of this technology and how their understanding of the technology’s politics shaped their own motivation for adoption. These solar electric technology adopters saw solar electric technology as both imbued with political character based on the current national political scene and as inherently, innately political. They described how solar electric technology interacts with the politics of environmentalism, challenges “politics-as-usual” and can bring about decentralization and redistribution of wealth. In short, to the users of solar electric technology, this technological artifact is, indeed, political; it both interacts with, and offers an alternative to, current American political structures. Further, their perspectives on the politics of solar technology shaped their understandings of motivations for and limitations to adoption of this alternative technology.

  1. Prediction of solar particle events and geomagnetic activity using interplanetary scintillation observations from the iowa cocoa-cross radio telescope. Final report April 1, 1976--March 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Roelof, E.C.; Gotwols, B.L.; Mitchell, D.G.; Cronyn, W.M.; Shawhan, S.D.

    1978-05-01

    Synoptic interplanetary scintillation (IPS) observations were taken during the summer of 1976 and autumn of 1977 on the University of Iowa COCOA-Cross radio telescope (34.3 MHz), with supplementary observations from the University of Maryland TPT array (38 MHz). A new high sampling rate (10 times per second) digital system made it possible to reconstruct the IPS power spectrum between 0.1-3.0 Hz. The observations, combined with earlier (1974) measurements of integrated IPS power (scintillation index), have led to the conclusion (based on theoretical modelling) that prediction of activity and associated variations in energetic solar particle events is feasible with a lead time of about 24 hours. The technique depends on the observed broadening of the IPS power spectrum as solar wind density enhancements approach the earth. This effect has been documented for both co-rotating and solar flare-associated plasma disturbances.

  2. Solar technology in the Federal Republic of Germany

    Science.gov (United States)

    1979-01-01

    A series of papers dealing with the status of solar research and development in the Federal Republic of Germany are presented at a conference in Greece with the object of promoting international cooperation in solar energy utilization. The reports focus on solar collector designs, solar systems, heat pumps, solar homes, solar cooling and refrigeration, desalination and electric power generation. Numerous examples of systems produced by German manufacturers are illustrated and described, and performance data are presented.

  3. The other aspect of solar energy utilization. Solar technologies export enhancement: A central European point of view

    Science.gov (United States)

    Winter, C. J.; Nitsch, J.; Klaiss, H.; Voigt, C.

    1985-11-01

    It is shown that solar energy utilization can, on a moderate scale, supplement the indigenous energy supply of the Federal Republic of Germany. It can contribute to the prevention of fatal ecological damage, open an attractive export market and, in the long run, prepare ground for North-South compensation, where energy-poor but technology rich countries cooperate with countries of the Third World, which are often rich in raw materials and are situated in the solar belt of the world, for the benefit of the implementation of a solar industry or the production of a marketable synthetic solar energy carrier.

  4. The impact of solar cell technology on planar solar array performance

    Science.gov (United States)

    Mills, Michael W.; Kurland, Richard M.

    1989-01-01

    The results of a study into the potential impact of advanced solar cell technologies on the characteristics (weight, cost, area) of typical planar solar arrays designed for low, medium and geosynchronous altitude earth orbits are discussed. The study considered planar solar array substrate designs of lightweight, rigid-panel graphite epoxy and ultra-lightweight Kapton. The study proposed to answer the following questions: Do improved cell characteristics translate into array-level weight, size and cost improvements; What is the relative importance of cell efficiency, weight and cost with respect to array-level performance; How does mission orbital environment affect array-level performance. Comparisons were made at the array level including all mechanisms, hinges, booms, and harnesses. Array designs were sized to provide 5kW of array power (not spacecraft bus power, which is system dependent but can be scaled from given values). The study used important grass roots issues such as use of the GaAs radiation damage coefficients as determined by Anspaugh. Detailed costing was prepared, including cell and cover costs, and manufacturing attrition rates for the various cell types.

  5. A Lithium Abundance Study of Solar-type Stars in Blanco 1 using the 2.1m McDonald Telescope: Developing Undergraduate Research Experiences.

    Science.gov (United States)

    Cargile, Phillip; James, D. J.; Villalon, K.; Girgenti, S.; Mermilliod, J.

    2007-12-01

    We present a new catalog of lithium equivalent widths for 20 solar-type stars in the young (60-100 Myr), nearby (250 pc) open cluster Blanco 1, measured from high-resolution spectra (R 30,000), taken during an observing run on the 2.1m telescope at McDonald Observatory. These new lithium data, coupled with the 20 or so extant measurements in the literature, are used in combination with the results of a recently completed standardized BVIc CCD survey, and corresponding 2MASS near-infrared colors, to derive precise lithium abundances for solar-type stars in Blanco 1. Comparing these new results with the existing lithium dataset for other open clusters, we investigate the mass- and age-dependent lithium depletion distribution among early-epoch (< 1Gyr) solar-type stars, and specifically, the lithium abundance scatter as a function of mass in Blanco 1. Our scientific project is highly synergystic with a pedagogical philosophy. We have instituted a program whereby undergraduate students - typically majoring in Liberal Arts and performing an independent study in Astronomy - receive hands-on research experience observing with the 2.1m telescope at the McDonald Observatory. After their observing run, these undergraduates take part in the reduction and analysis of the acquired spectra, and their research experience typically culminates in writing an undergraduate thesis and/or giving a professional seminar to the Astronomy group at Vanderbilt University.

  6. Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtar, Marwan; Ali, Muhammad Tauha; Sgouridis, Sgouris; Armstrong, Peter; Chiesa, Matteo [Masdar Institute of Science and Technology, Abu Dhabi (United Arab Emirates); Braeuniger, Simon; Afshari, Afshin [Masdar, Abu Dhabi Future Energy Company, Abu Dhabi (United Arab Emirates)

    2010-12-15

    A methodology for assessing solar cooling technologies is proposed. The method takes into account location specific boundary conditions such as the cooling demand time series, solar resource availability, climatic conditions, component cost and component performance characteristics. This methodology evaluates the techno-economic performance of the solar collector/chiller system. We demonstrate the method by systematic evaluation of 25 feasible combinations of solar energy collection and cooling technologies. The comparison includes solar thermal and solar electric cooling options and is extended to solar cooling through concentrated solar power plants. Solar cooling technologies are compared on an economic and overall system efficiency perspective. This analysis has implication for the importance of solar load fraction and storage size in the design of solar cooling systems. We also stress the importance of studying the relation between cooling demand and solar resource availability, it was found that overlooking this relation might lead to overestimations of the potential of a solar cooling system in the range of 22% to over 100% of the actual potential. (author)

  7. Technology development and application of solar energy in desalination: MEDRC contribution

    KAUST Repository

    Ghaffour, Noreddine

    2011-12-01

    Desalination has become one of the sources for water supply in several countries especially in the Middle East and North Africa region. There is a great potential to develop solar desalination technologies especially in this region where solar source is abundantly available. The success in implementing solar technologies in desalination at a commercial scale depends on the improvements to convert solar energy into electrical and/or thermal energies economically as desalination processes need these types of energies. Since desalination is energy intensive, the wider use of solar technologies in desalination will eventually increase the demand on these technologies, making it possible to go for mass production of photovoltaic (PV) cells, collectors and solar thermal power plants. This would ultimately lead to the reduction in the costs of these technologies. The energy consumed by desalination processes has been significantly reduced in the last decade meaning that, if solar technologies are to be used, less PV modules and area for collectors would be needed. The main aspects to be addressed to make solar desalination a viable option in remote location applications is to develop new materials or improve existing solar collectors and find the best combinations to couple the different desalination processes with appropriate solar collector. In the objective to promote solar desalination in MENA, the Middle East Desalination Research Center has concentrated on various aspects of solar desalination in the last twelve years by sponsoring 17 research projects on different technologies and Software packages development for coupling desalination and renewable energy systems to address the limitations of solar desalination and develop new desalination technologies and hybrid systems suitable for remote areas. A brief description of some of these projects is highlighted in this paper. The full details of all these projects are available the Centers website. © 2011 Elsevier

  8. Energizing Government Decision-Makers with the Facts on Solar Technology, Policy, and Integration

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The Solar Technical Assistance Team (STAT) is a network of solar technology and implementation experts who provide timely, unbiased expertise to assist policymakers and regulators in making informed decisions about solar programs and policies. Government officials can submit requests directly to the STAT for technical assistance. STAT then partners with experts in solar policy, regulation, finance, technology, and other areas to deliver accurate, up-to-date information to state and local decision makers. The STAT responds to requests on a wide range of issues -- including, but not limited to, feed-in tariffs, renewable portfolio standards, rate design, program design, workforce and economic impacts of solar on jurisdictions, and project financing.

  9. Space Solar Power Technology Demonstration for Lunar Polar Applications

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.

    2002-01-01

    A solar power generation station on a mountaintop near the moon's North or South pole can receive sunlight 708 hours per lunar day, for continuous power generation. Power can be beamed from this station over long distances using a laser-based wireless power transmission system and a photo-voltaic receiver. This beamed energy can provide warmth, electricity, and illumination for a robotic rover to perform scientific experiments in cold, dark craters where no other power source is practical. Radio-frequency power transmission may also be demonstrated in lunar polar applications to locate and recover sub-surface deposits of volatile material, such as water ice. High circular polarization ratios observered in data from Clementine spacecraft and Arecibo radar reflections from the moon's South pole suggest that water ice is indeed present in certain lunar polar craters. Data from the Lunar Prospector spacecraft's epi-thermal neutron spectrometer also indicate that hydrogen is present at the moon's poles. Space Solar Power technology enables investigation of these craters, which may contain a billion-year-old stratigraphic record of tremendous scientific value. Layers of ice, preserved at the moon's poles, could help us determine the sequence and composition of comet impacts on the moon. Such ice deposits may even include distinct strata deposited by secondary ejecta following significant Earth (ocean) impacts, linked to major extinctions of life on Earth. Ice resources at the moon's poles could provide water and air for human exploration and development of space as well as rocket propellant for future space transportation. Technologies demonstrated and matured via lunar polar applications can also be used in other NASA science missions (Valles Marineris, Phobos, Deimos, Mercury's poles, asteroids, etc.) and in future large-scale SSP systems to beam energy from space to Earth. Ground-based technology demonstrations are proceeding to mature the technology for such a near

  10. New technologies and new performances of the JCMT radio-telescope: a preliminary design study

    Science.gov (United States)

    Mian, S.; De Lorenzi, S.; Ghedin, L.; Rampini, F.; Marchiori, G.; Craig, S.

    2012-09-01

    With a diameter of 15m the James Clerk Maxwell Telescope (JCMT) is the largest astronomical telescope in the world designed specifically to operate in the submillimeter wavelength region of the spectrum. It is situated close to the summit of Mauna Kea, Hawaii, at an altitude of 4092m. Its primary reflector currently consists of a steel geodesic supporting structure and pressed aluminium panels on a passive mount. The major issues of the present reflector are its thermal stability and its panels deterioration. A preliminary design study for the replacement of the JCMT antenna dish is here presented. The requested shape error for the new reflector is antenna performance in terms of both stiffness and thermal stability, so that the required surface accuracy of the primary can be achieved even by adopting a passive panels system. Moreover thanks to CFRP, a considerable weight reduction of the elevation structure can be attained. The performance of the proposed solution for the JCMT antenna has been investigated through FE analyses and the assessed deformation of the structure under different loading cases has been taken into account for subsequent error budgeting. Results show that the proposed solution is in line with the requested performance. With this new backing structure, the JCMT would have the largest CFRP reflector ever built.

  11. Economic Feasibility and Market Readiness of Solar Technologies. Draft Final Report. Volume I.

    Energy Technology Data Exchange (ETDEWEB)

    Flaim, Silvio J.; Buchanan, Deborah L.; Christmas, Susan; Fellhauer, Cheryl; Glenn, Barbara; Ketels, Peter A.; Levary, Arnon; Mourning, Pete; Steggerda, Paul; Trivedi, Harit; Witholder, Robert E.

    1978-09-01

    Systems descriptions, costs, technical and market readiness assessments are reported for ten solar technologies: solar heating and cooling of buildings (SHACOB), passive, agricultural and industrial process heat (A/IPH), biomass, ocean thermal (OTEC), wind (WECS), solar thermal electric, photovoltaics, satellite power station (SPS), and solar total energy systems (STES). Study objectives, scope, and methods. are presented. of Joint Task The cost and market analyses portion 5213/6103 will be used to make commercialization assessments in the conclusions of. the final report.

  12. The JPL parabolic dish project. [solar collectors technology development

    Science.gov (United States)

    Truscello, V. C.; Williams, A. N.

    1980-01-01

    The parabolic dish solar collector is a highly versatile concentrating collector system that can produce heat for many thermal processes and electricity by coupling the collector to a suitable heat engine. This paper discusses a project for the development of these collector systems and summarizes contracts with industry for developing the dish subsystems which include concentrator, receiver, and heat engine. An early market for dishes is the dispersed small community market which depends heavily on oil to operate diesel or steam turbine plants in order to generate electricity. The present contracts with industry for conducting engineering experiments using the developed dish hardware to demonstrate the technology in these early opportunity markets is also discussed.

  13. Solar augmentation for process heat with central receiver technology

    Science.gov (United States)

    Kotzé, Johannes P.; du Toit, Philip; Bode, Sebastian J.; Larmuth, James N.; Landman, Willem A.; Gauché, Paul

    2016-05-01

    Coal fired boilers are currently one of the most widespread ways to deliver process heat to industry. John Thompson Boilers (JTB) offer industrial steam supply solutions for industry and utility scale applications in Southern Africa. Transport cost add significant cost to the coal price in locations far from the coal fields in Mpumalanga, Gauteng and Limpopo. The Helio100 project developed a low cost, self-learning, wireless heliostat technology that requires no ground preparation. This is attractive as an augmentation alternative, as it can easily be installed on any open land that a client may have available. This paper explores the techno economic feasibility of solar augmentation for JTB coal fired steam boilers by comparing the fuel savings of a generic 2MW heliostat field at various locations throughout South Africa.

  14. Technology development of fabrication techniques for advanced solar dynamic concentrators

    Science.gov (United States)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  15. Solar Technology Test, Evaluation, and Data Collection: Cooperative Research and Development Final Report, CRADA Number CRD-08-279

    Energy Technology Data Exchange (ETDEWEB)

    Albin, David S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-08

    Under this Agreement, NREL will work with Abengoa Solar Inc. on the testing, evaluation, and collection of data related to Abengoa Solar Inc. solar technologies and systems. This work includes, but is not limited to, testing and evaluation of solar component and system technologies, data collection and monitoring, performance evaluation, reliability testing, thermal energy storage integration, solar resource measurement and forecasting, grid impact testing, and analysis. This work will be conducted at NREL, SolarTAC (Aurora), and other field test locations.

  16. Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, P.; Eurek, K.; Margolis, R.

    2014-07-01

    Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

  17. 地基大口径望远镜系统结构技术综述%Overview of structure technologies of large aperture ground-based telescopes

    Institute of Scientific and Technical Information of China (English)

    张景旭

    2012-01-01

    The developing status of large aperture ground-based telescopes is reviewed in this paper.The significance of bigger apertures for telescopes and their main technological approaches are expatiated and the summary on appliance values of modern large aperture telescopes is given.Then,it introduces five kinds of modern typical large telescope systems,which represent the topmost technological level.The key structures and technologies of large telescopes about mount,telescope tubes,primary mirror supports and secondary mirror assemblies are disscussed.Finally,it summarizes the developing trends of the large aperture ground-based telescopes and points out that some of the optical systems in the telescopes have been changed from coaxial systems to off-axial systems,while they are better application prospects.%概述了地基大口径望远镜的发展状况,阐述了口径变大的意义及实现的关键技术途径。概括了当前大口径望远镜的应用价值。介绍了国外5种典型的大口径望远镜系统,它们代表了当前地基大口径望远镜发展的最高技术水平。从跟踪架、主望远镜筒、主镜支撑及次镜支撑调整几个方面论述了大口径望远镜的结构特点及关键技术。最后,总结了大口径望远镜系统的发展趋势,指出其光学系统已从同轴系统向离轴系统发展并极具应用前景。

  18. Developments in fiber-positioning technology for the WEAVE instrument at the William Herschel Telescope

    Science.gov (United States)

    Schallig, Ellen; Lewis, Ian J.; Gilbert, James; Dalton, Gavin; Brock, Matthew; Abrams, Don Carlos; Middleton, Kevin; Aguerri, J. Alfonso L.; Bonifacio, Piercarlo; Carrasco, Esperanza; Trager, Scott C.; Vallenari, Antonella

    2016-08-01

    WEAVE is the next-generation wide-field optical spectroscopy facility for the William Herschel Telescope (WHT) on La Palma in the Canary Islands, Spain. It is a multi-object "pick-and-place" fibre-fed spectrograph with a 1000 fibre multiplex behind a new dedicated 2° prime focus corrector. The WEAVE positioner concept uses two robots working in tandem in order to reconfigure a fully populated field within the expected 1 hour dwell-time for the instrument (a good match between the required exposure times and the limit of validity for a given configuration due to the effects of differential refraction). In this paper we describe some of the final design decisions arising from the prototyping phase of the instrument design and provide an update on the current manufacturing status of the fibre positioner system.

  19. Development of Solar Scintillometer

    Indian Academy of Sciences (India)

    Sudhir Kumar Gupta; Shibu K. Mathew; P. Venkatakrishnan

    2006-06-01

    The index of scintillation measurement is a good parameter to compare different sites for image quality or ‘seeing’.We have developed a scintillometer, which is deployed on the high resolution SPAR telescope in the island site of Udaipur Solar Observatory, for the site characterization to specify the proposed MAST (Multi Application Solar Telescope). The scintillometer consists of a miniature telescope, termed as micro telescope (4mm aperture, 15mm focal length) mounted on a drive which tracks the Sun continuously, associated amplifiers and a data acquisition system. A photodiode is used as the detector. The telescope along with detector was obtained from National Solar Observatory (NSO), and is similar to the one used for Advanced Technology Solar Telescope (ATST) site survey. At USO we developed the amplifier and data acquisition system for the scintillometer. A 24-bit analog to digital converter based system was designed, assembled, tested and used as the data acquisition system (DAS). In this paper, we discuss the instrumentation and present the initial results.

  20. Solar technology and building implementation in Malaysia: A national paradigm shift

    Directory of Open Access Journals (Sweden)

    Syahrul Nizam Kamaruzzaman

    2012-05-01

    Full Text Available Solar technology is becoming increasingly popular. For example, the production of solarcells quadrupled in the 1999-2004 period, with a capacity of four gigawatts worldwide. Renewableenergy including solar power produces few or no harmful emissions and it is becoming increasinglyimportant to exploit it in the future. This paper presents a literature review of the application ofnumerous types of solar technology in buildings in Malaysia and identifies the challenges faced.Although several newly constructed green buildings use solar technology, Malaysia has yet to acceptit wholesale. If solar technology is to be adopted widely, then both public and private sectors mustcooperate to provide large-scale financial incentives and produce specialists in solar technology. Asthe first step, the government has established the Low Energy Office and the Green Energy Office,which use passive solar design and photovoltaic systems in their own buildings. However, the privatesector has yet to follow suit. It is anticipated that the application of solar technology in buildings willencourage sustainable development when all non-renewable energy sources decrease significantly. Ifpeople do not recognise the potential of such technology in daily life, it will soon be too late.

  1. Development of Inorganic Solar Cells by Nano-technology

    Institute of Scientific and Technical Information of China (English)

    Yafei Zhang; HueyLiang Hwang; Huijuan Geng; Zhihua Zhou; Jiang Wu; Zhiming Wang; Yaozhong Zhang; Zhongli Li; Liying Zhang; Zhi Yang

    2012-01-01

    Inorganic solar cells, as durable photovoltaic devices for harvesting electric energy from sun light, have received tremendous attention due to the fear of exhausting the earth’s energy resources and damaging the living environment due to greenhouse gases. Some recent developments in nanotechnology have opened up new avenues for more relevant inorganic solar cells produced by new photovoltaic conversion concepts and effective solar energy harvesting nanostructures. In this review, the multiple exciton generation effect solar cells, hot carrier solar cells, one dimensional material constructed asymmetrical schottky barrier arrays, noble nanoparticle induced plasmonic enhancement, and light trapping nanostructured semiconductor solar cells are highlighted.

  2. Infrared Solar Physics

    Directory of Open Access Journals (Sweden)

    Matthew J. Penn

    2014-05-01

    Full Text Available The infrared solar spectrum contains a wealth of physical data about our Sun, and is explored using modern detectors and technology with new ground-based solar telescopes. The scientific motivation behind exploring these wavelengths is presented, along with a brief look at the rich history of observations here. Several avenues of solar physics research exploiting and benefiting from observations at infrared wavelengths from roughly 1000 nm to 12 400 nm are discussed, and the instrument and detector technology driving this research is briefly summarized. Finally, goals for future work at infrared wavelengths are presented in conjunction with ground and space-based observations.

  3. Mission to the Solar System: Exploration and Discovery. A Mission and Technology Roadmap

    Science.gov (United States)

    Gulkis, S. (Editor); Stetson, D. S. (Editor); Stofan, E. R. (Editor)

    1998-01-01

    Solar System exploration addresses some of humanity's most fundamental questions: How and when did life form on Earth? Does life exist elsewhere in the Solar System or in the Universe? - How did the Solar System form and evolve in time? - What can the other planets teach us about the Earth? This document describes a Mission and Technology Roadmap for addressing these and other fundamental Solar System Questions. A Roadmap Development Team of scientists, engineers, educators, and technologists worked to define the next evolutionary steps in in situ exploration, sample return, and completion of the overall Solar System survey. Guidelines were to "develop aa visionary, but affordable, mission and technology development Roadmap for the exploration of the Solar System in the 2000 to 2012 timeframe." The Roadmap provides a catalog of potential flight missions. (Supporting research and technology, ground-based observations, and laboratory research, which are no less important than flight missions, are not included in this Roadmap.)

  4. Science drivers and requirements for an Advanced Technology Large Aperture Space Telescope (ATLAST): Implications for technology development and synergies with other future facilities

    CERN Document Server

    Postman, Marc; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R Michael; Stahl, H Phillip; Tumlinson, Jason; Mountain, Matt; Soummer, Rémi; Hyde, Tupper; 10.1117/12.857044

    2010-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astronphysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers that define the main performance requirements for ATLAST (8 to 16 milliarcsec angular resolution, diffraction limited imaging at 0.5 {\\mu}m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 {\\mu}m to 2.4 {\\mu}m, high stability in wavefront sensing and control). We will also discuss the synergy between ATLAST and other anticipated future facilities (e.g., TMT, EELT, ALMA) and the priorities for technology development that will enable the construction for a cost that is comparable to current generation observatory-class space missions.

  5. Origins Space Telescope: Telescope Design and Instrument Specifications

    Science.gov (United States)

    Meixner, Margaret; Carter, Ruth; Leisawitz, David; Dipirro, Mike; Flores, Anel; Staguhn, Johannes; Kellog, James; Roellig, Thomas L.; Melnick, Gary J.; Bradford, Charles; Wright, Edward L.; Zmuidzinas, Jonas; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. The renaming of the mission reflects Origins science goals that will discover and characterize the most distant galaxies, nearby galaxies and the Milky Way, exoplanets, and the outer reaches of our Solar system. This poster will show the preliminary telescope design that will be a large aperture (>8 m in diameter), cryogenically cooled telescope. We will also present the specifications for the spectrographs and imagers over a potential wavelength range of ~10 microns to 1 millimeter. We look forward to community input into this mission definition over the coming year as we work on the concept design for the mission. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at firsurveyor_info@lists.ipac.caltech.edu.

  6. Technology assessment of solar-energy systems. Materials resource and hazardous materials impacts of solar deployment

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, Y.M.; Tahami, J.E.

    1982-04-01

    The materials-resource and hazardous-materials impacts were determined by examining the type and quantity of materials used in the manufacture, construction, installation, operation and maintenance of solar systems. The materials requirements were compared with US materials supply-and-demand data to determine if potential problems exist in terms of future availability of domestic supply and increased dependence on foreign sources of supply. Hazardous materials were evaluated in terms of public and occupational health hazards and explosive and fire hazards. It is concluded that: (1) although large amounts of materials would be required, the US had sufficient industrial capacity to produce those materials; (2) the postulated growth in solar technology deployment during the period 1995-2000 could cause some production shortfalls in the steel and copper industry; (3) the U.S. could increase its import reliance for certain materials such as silver, iron ore, and copper; (4) however, shifts to other materials such as aluminum and polyvinylchloride could alleviate some of these problems.

  7. Extremely Lightweight Segmented Membrane Optical Shell Fabrication Technology for Future IR to Optical Telescope Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose that the Membrane Optical Shell Technology (MOST) substrate fabrication approach be extended with a specific focus on advanced off-axis very light weight,...

  8. X-Ray Pore Optics Technologies and Their Application in Space Telescopes

    OpenAIRE

    Bavdaz, Marcos; Collon, Max; Beijersbergen, Marco; Wallace, Kotska; Wille, Eric

    2010-01-01

    Silicon Pore Optics (SPO) is a new X-ray optics technology under development in Europe, forming the ESA baseline technology for the International X-ray Observatory candidate mission studied jointly by ESA, NASA, and JAXA. With its matrix-like structure, made of monocrystalline-bonded Silicon mirrors, it can achieve the required angular resolution and low mass density required for future large X-ray observatories. Glass-based Micro Pore Optics (MPO) achieve modest angular resolution compared t...

  9. Solar Energy Technologies Program FY08 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-05-01

    These reports chronicle the research and development (R&D) results of the Solar Program for the fiscal year. In particular, the report describes R&D performed by the Program's national laboratories and its university and industry partners within PV R&D, Solar Thermal R&D, which encompasses solar water heating and concentrating solar power (CSP), and other subprograms.

  10. The great Melbourne telescope

    CERN Document Server

    Gillespie, Richard

    2011-01-01

    Erected at Melbourne Observatory in 1869, the telescope was the second largest in the world, designed to explore the nature of the nebulae in the southern skies. Richard Gillespie, head of the History and Technology department at the Melbourne museum has written an entertaining account of the telescope's extraordinary history and tells the story through an amazing cast of characters whose lives intersected with the telescope.

  11. Optical Space Telescope Assembly Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Space Telescope Assembly (OSTA) task is to demonstrate the technology readiness of assembling large space telescopes on orbit in 2015. This task is an...

  12. Recent trends in solar thermal sorption cooling system technology

    Directory of Open Access Journals (Sweden)

    Khaled M Bataineh

    2015-05-01

    Full Text Available Solar thermal cooling is the best alternative solution to overcome the problems associated with using nonrenewable resources. There are several thermal cooling methods developed differing from each other according to the thermodynamic cycle and type of refrigerant used. Recent developments in absorption and adsorption solar cooling systems are presented. Summarized thermodynamic modeling for both absorption and adsorption solar cooling systems is given. Brief thermal analysis among the types of solar collectors is presented. System efficiencies and optimization analysis are presented. The influences of geometrical, system configurations, and physical parameters on the performance of solar thermal sorption cooling system are investigated. The basis for the design of absorption and adsorption solar cooling systems is provided. Several case studies in different climatic conditions are presented. Economic feasibility for both systems is discussed. Comparison between the absorption and adsorption solar cooling system is summarized.

  13. Space Telescope.

    Science.gov (United States)

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)

  14. Technology for Bayton-cycle powerplants using solar and nuclear energy

    Science.gov (United States)

    English, R. E.

    1986-01-01

    Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.

  15. Technology Requirements for a Square Meter, Arcsecond Resolution Telescope for X-Rays: The SMART-X Mission

    Science.gov (United States)

    Schwartz, Daniel A.; Allured, Ryan; Bookbinder, Jay A.; Cotroneo, Vincenzo; Forman, William R.; Freeman, Mark D.; McMuldroch, Stuart; Reid, Paul B.; Tananbaum, Harvey; Vikhlinin, Alexey A.; Johnson-Wilke, Raegan L.; Trolier-McKinstry, Susan E.; Wilke, Rudeger H. T.; Jackson, Thomas N.; Ramirez, J. Israel; Gubarev, Mikhail V.; Kolodziejczak, Jeffery J.; ODell, Stephen L.; Ramsey, Brian D.

    2014-01-01

    Addressing the astrophysical problems of the 2020's requires sub-arcsecond x-ray imaging with square meter effective area. Such requirements can be derived, for example, by considering deep x-ray surveys to find the young black holes in the early universe (large redshifts) which will grow into the first super-massive black holes. We have envisioned a mission, the Square Meter Arcsecond Resolution Telescope for X-rays (SMART-X), based on adjustable x-ray optics technology, incorporating mirrors with the required small ratio of mass to collecting area. We are pursuing technology which achieves sub-arcsecond resolution by on-orbit adjustment via thin film piezoelectric "cells" deposited directly on the non-reflecting sides of thin, slumped glass. While SMART-X will also incorporate state-of-the-art x-ray cameras, the remaining spacecraft systems have no requirements more stringent than those which are well understood and proven on the current Chandra X-ray Observatory.

  16. Simultaneous observations of solar sporadic radio emission by the radio telescopes UTR-2, URAN-2 and NDA within the frequency range 8-41MHz

    Science.gov (United States)

    Melnik, V. N.; Konovalenko, A. A.; Rucker, H. O.; Brazhenko, A. I.; Briand, C.; Dorovskyy, V. V.; Zarka, P.; Denis, L.; Bulatzen, V. G.; Frantzusenko, A. V.; Stanislavskyy, A. A.

    2012-04-01

    From 25 June till 12 August 2011 sporadic solar radio emission was observed simultaneously by three separate radio telescopes: UTR-2 (Kharkov, Ukraine), URAN-2 (Poltava, Ukraine) and NDA (Nancay, France). During these observations several type II bursts with double and triple harmonics were registered, as well as type II bursts with complex herringbone structure. The events of particular interest were type II bursts registered on 9 and 11 August 2011. These bursts had opposite sign of circular polarization at different parts of their dynamic spectra. In our opinion we registered the emissions, which came from the different parts of the shock propagating through the solar corona. We have observed also groups of type III bursts merged into one burst, type III bursts with triple harmonics and type III bursts with "split" polarization. In addition some unusual solar bursts were registered: storms of strange narrow-band (up to 500kHz) bursts with high polarization degree (about 80%), decameter spikes of extremely short durations (200-300ms), "tadpole-like" bursts with durations of 1-2s and polarization degree up to 60%.

  17. Solarization/conservation technology development for existing housing. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Oberdick, W.

    1981-06-01

    The project objectives are: to develop a method for evaluationg existing residences for their energy solarization/conservation potential as well as carrying out the solarization/conservation work within context of the Community Development program; and to demonstrate appropriate methods of utilizing solar energy in existing Ann Arbor residences beyond that obtainable in a good conservation program. A general progress update is presented covering tasks related to community solarization/conservation characteristics and community system analysis and development. The process of selection and technical evaluation of houses for solarization/conservation project directed retrofit is described. A detailed report on the survey of utility data and a report on the solarization/conservation site audits are included. A detailed comparison of the audit data for both the audit and control group are appended. (LEW)

  18. Synthesis of Inorganic Semiconductor Materials for Solar-Based Technologies

    OpenAIRE

    2014-01-01

    There is an alarming increase of energy issues due to significant fossil fuel consumption. Some progress has been made to replace fossil fuels with renewable sources, among which, solar energy has always been considered as the ultimate solution to solve these problems. As a relatively new evolved type of solar cell, Dye-sensitized solar cells (DSSC), have been investigated intensively in recent years and they are very promising for their cost-effectiveness properties. Zinc oxide (ZnO) is one ...

  19. 78 FR 31997 - Greatmat Technology Corp., Kentucky USA Energy, Inc., Solar Energy Ltd., and Visiphor Corp...

    Science.gov (United States)

    2013-05-28

    ... COMMISSION Greatmat Technology Corp., Kentucky USA Energy, Inc., Solar Energy Ltd., and Visiphor Corp., Order... lack of current and accurate information concerning the securities of Solar Energy Ltd. because it has... concerning the securities of Kentucky USA Energy, Inc. because it has not filed any periodic reports...

  20. Advanced Space Robotics and Solar Electric Propulsion: Enabling Technologies for Future Planetary Exploration

    Science.gov (United States)

    Kaplan, M.; Tadros, A.

    2017-02-01

    Obtaining answers to questions posed by planetary scientists over the next several decades will require the ability to travel further while exploring and gathering data in more remote locations of our solar system. Timely investments need to be made in developing and demonstrating solar electric propulsion and advanced space robotics technologies.

  1. Thermal storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  2. Assessment of financial incentives in commercialization of solar technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, Y.

    1981-01-01

    The Department of Energy (DOE) is developing policies and programs to support the use of solar plants by utilities and industry. Widespread use of this renewable resource will reduce the nation's reliance on non-renewable energy resources. An added benefit of utilizing solar plants would be improvements in the air quality where facilities are sited.

  3. Silicon bulk growth for solar cells: Science and technology

    Science.gov (United States)

    Kakimoto, Koichi; Gao, Bing; Nakano, Satoshi; Harada, Hirofumi; Miyamura, Yoshiji

    2017-02-01

    The photovoltaic industry is in a phase of rapid expansion, growing by more than 30% per annum over the last few decades. Almost all commercial solar cells presently use single-crystalline or multicrystalline silicon wafers similar to those used in microelectronics; meanwhile, thin-film compounds and alloy solar cells are currently under development. The laboratory performance of these cells, at 26% solar energy conversion efficiency, is now approaching thermodynamic limits, with the challenge being to incorporate these improvements into low-cost commercial products. Improvements in the optical design of cells, particularly in their ability to trap weakly absorbed light, have also led to increasing interest in thin-film cells based on polycrystalline silicon; these cells have advantages over other thin-film photovoltaic candidates. This paper provides an overview of silicon-based solar cell research, especially the development of silicon wafers for solar cells, from the viewpoint of growing both single-crystalline and multicrystalline wafers.

  4. 太阳硬X射线成像望远镜模拟研究%A Simulation Research on the Solar Hard X-Ray Imaging Telescope

    Institute of Scientific and Technical Information of China (English)

    滕藤; 伍健; 常进

    2011-01-01

    High-energy phenomena always play an important role in solar research field. Observations of hard X-ray/gamma-ray can be divided into images and spectra, both of which give clues to reveal the secret of the energy release of solar flares. Instead of conventional imaging technique using mirrors or lens, which cannot work in energy above a few keV, direct imaging, coded aperture and Fourier transform are used for high-energy imaging. Fourier transform technique stands out because of its high sensitivity and high reliability. It can be implemented in various hardware configurations, among which spatial modulation collimator and rotating modulation collimator are widely used. Modulation collimator type hard X-ray imaging telescope is currently widely used in solar observation. For the possible Chinese solar mission in the near future, we make a design of hard X-ray imaging telescope using the common simulation software, GEANT4. The results are closer to the fact compared with the traditional geometric algorithm. An executable design is also proposed at last.%调制准直器型太阳硬X射线成像望远镜是目前较为通用的太阳观测设备.空间调制望远镜是基于中心轴不旋转的望远镜,适用于3轴稳定的卫星.针对我国可能的太阳观测计划,给出并比较了两组空间调制望远镜的配置方案,然后利用GEANT4高能物理通用软件模拟实际光子的计数情况,使用MATLAB实现图像重建.比较模拟光子计数得到的重建图与几何方法计算光子数得到的重建图,结果表明GEANT4仿真模拟得到的结果更接近实际.最后,还给出了初步可行的方案.

  5. Fermi Large Area Telescope Observations of High-Energy Gamma-ray Emission From Behind-the-limb Solar Flares

    Science.gov (United States)

    Omodei, Nicola; Pesce-Rollins, Melissa; Petrosian, Vahe; Liu, Wei; Rubio da Costa, Fatima; Golenetskii, Sergei; Kashapova, Larisa; Krucker, Sam; Palshin, Valentin; Fermi Large Area Telescope Collaboration

    2017-01-01

    Fermi LAT >30 MeV observations of the active Sun have increased the number of detected solar flares by almost a factor of 10 with respect to previous space observations. Of particular interest are the recent detections of three solar flares whose position behind the limb was confirmed by the STEREO-B spacecraft. These observations sample flares from active regions originating from behind both the eastern and western limbs and include an event associated with the second ground level enhancement event (GLE) of the 24th Solar Cycle. While gamma-ray emission up to tens of MeV resulting from proton interactions has been detected before from occulted solar flares, the significance of these particular events lies in the fact that these are the first detections of >100 MeV gamma-ray emission from footpoint-occulted flares. These detections present an unique opportunity to diagnose the mechanisms of high-energy emission and particle acceleration and transport in solar flares. We will present the Fermi-LAT, RHESSI and STEREO observations of these flares and discuss the various emission scenarios for these sources.

  6. High-energy Gamma-Ray Emission from Solar Flares: Summary of Fermi Large Area Telescope Detections and Analysis of Two M-class Flares

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; Bonamente, E.; Bottacini, E.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chen, Q.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Desiante, R.; Digel, S. W.; Di Venere, L.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Inoue, Y.; Jackson, M. S.; Jogler, T.; Jóhannesson, G.; Johnson, W. N.; Kamae, T.; Kawano, T.; Knödlseder, J.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Murphy, R.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Perkins, J. S.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Ritz, S.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Takahashi, H.; Takeuchi, Y.; Tanaka, Y.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Tosti, G.; Troja, E.; Tronconi, V.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Werner, M.; Winer, B. L.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.; Fermi LAT Collaboration

    2014-05-01

    We present the detections of 18 solar flares detected in high-energy γ-rays (above 100 MeV) with the Fermi Large Area Telescope (LAT) during its first 4 yr of operation. This work suggests that particle acceleration up to very high energies in solar flares is more common than previously thought, occurring even in modest flares, and for longer durations. Interestingly, all these flares are associated with fairly fast coronal mass ejections (CMEs). We then describe the detailed temporal, spatial, and spectral characteristics of the first two long-lasting events: the 2011 March 7 flare, a moderate (M3.7) impulsive flare followed by slowly varying γ-ray emission over 13 hr, and the 2011 June 7 M2.5 flare, which was followed by γ-ray emission lasting for 2 hr. We compare the Fermi LAT data with X-ray and proton data measurements from GOES and RHESSI. We argue that the γ-rays are more likely produced through pion decay than electron bremsstrahlung, and we find that the energy spectrum of the proton distribution softens during the extended emission of the 2011 March 7 flare. This would disfavor a trapping scenario for particles accelerated during the impulsive phase of the flare and point to a continuous acceleration process at play for the duration of the flares. CME shocks are known for accelerating the solar energetic particles (SEPs) observed in situ on similar timescales, but it might be challenging to explain the production of γ-rays at the surface of the Sun while the CME is halfway to the Earth. A stochastic turbulence acceleration process occurring in the solar corona is another likely scenario. Detailed comparison of characteristics of SEPs and γ-ray-emitting particles for several flares will be helpful to distinguish between these two possibilities.

  7. Enabling kinetic micro-penetrator technology for Solar System research

    Science.gov (United States)

    Gowen, R. A.

    2008-09-01

    Whilst the concept of high speed impacting penetrator probes is not new, recent highly successful ground test results have considerably improved the perception that these can be a viable and useful addition to the current toolbox of planetary probes. Previous developments only led to a single deployment (Deep Space-2 to Mars on the ill fated NASA Mars Polar Lander mission in 1999) where neither the soft lander nor penetrator was ever heard from, which is not a logical basis for dismissing penetrator technology. Other space penetrator programmes have included the Russian Mars'96 ~80m/s penetrators for which the whole mission was lost before the spacecraft left Earth orbit, and the Japanese Lunar-A program which was cancelled after a lengthy development program which however saw multiple successful ground trials. The Japanese penetrators were designed for ~300m/s impact. The current UK penetrator developments are actively working towards full space qualification for a Lunar penetrators (MoonLITE mission), which would also provide a significant technical demonstration towards the development of smaller, shorter lived penetrators for exploring other solar system objects. We are advocating delivered micro-penetrators in the mass range ~4-10Kg, (preceded by ~13Kg Lunar penetrator MoonLITE development program), impacting at around 100-500m/s and carrying a scientific payload of around 2Kg. Additional mass is required to deliver the probes from `orbit' to surface which is dependent upon the particular planetary body in question. The mass per descent module therefore involves and additional element which, for a descent through an atmosphere could be quite modest, while for a flyby deployment, can be substantial. For Europa we estimate a descent module mass of ~13 Kg, while for Enceladus the value is ~40Kg for Enceladus since a deceleration of ~3.8 kms-1 is needed from a Titan orbit. The delivery system could consist of a rocket deceleration motor and attitude control system

  8. Solar drying: An appropriate technology for the north Argentina; Secado solar: Una tecnologia apropiada para el norte argentino

    Energy Technology Data Exchange (ETDEWEB)

    Zurlo, Hugo D; Vergara, Liliana; Spotorno, Ruben; Benitez, Francisco; De Pedro, Jorge; Cervino, Veronica; Monzon, Sergio [Universidad Tecnologica Nacional, Chaco (Argentina)

    2000-07-01

    The results concerning to solar drying of nutritious products for rehearsed a low cost solar dryer, adapted to the area, composed by a plane solar collector of 2 m{sup 2} and a drying camera with capacity for, approximately, 5 kg of product. The objectives of the work were: a) to develop a low cost solar dry, capable to dehydrate products for human alimentary use; b) to transfer the developed technology to low resources rural communities through the INCUPO (Institute of Popular Culture) and to small producers through the INTA (National Institute of Agricultural Technology) and c) to diffuse the practice of the solar drying among small producers. The diffusion and transfer of the developed technology to small rural producers, contribute to improve their quality of life when facilitating them additional revenues for productive diversification, besides the contribution to the sustainable use of the forest like source of non conventional nutritious resources contributing to the task of cultural rescue faced by organizations like the INCUPO. [Spanish] Se exponen los resultados concernientes al secado solar de productos alimenticios para consumo humano. Se diseno, construyo y ensayo un secador solar de bajo costo, adaptado a la zona, compuesto por un colector solar plano de 2m{sup 2} y una camara de secado con capacidad para, aproximadamente, 5 kg de producto fresco. Los objetivos del trabajo fueron: a) desarrollar un secadero solar de bajo costo, apto para deshidratar productos para uso alimentario humano; b) transferir la tecnologia desarrollada a comunidades rurales de bajos recursos a traves del INCUPO (Instituto de Cultura Popular) y a pequenos productores a traves del INTA (Instituto Nacional de Tecnologia Agropecuaria) y c) difundir la practica del secado solar entre productores frutihorticolas. La difusion y transferencia de la tecnologia desarrollada a pequenos productores rurales, contribuye a mejorar su calidad de vida al posibilitarles ingresos adicionales

  9. Line-focus solar thermal energy technology development. FY 79 annual report for Department 4720

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, K D; Champion, R L; Hunke, R W [eds.

    1980-04-01

    The primary role of the Solar Energy Projects Department II (4720) is the development, evaluation, and testing of line-focus solar thermal technology. This report of FY 79 progress and accomplishments is divided into two parts: (1) Component and Subsystem Development including the design and analysis of collector modules, their components, and associated materials and processes, and (2) Systems and Applications Development, involving larger configurations of solar thermal line-focus systems. The emphasis is on parabolic troughs, but significant efforts on hemispherical bowls, compound parabolic collectors, and dishes for the Solar Total Energy Project are also described.

  10. Fermi Large Area Telescope observations of high-energy gamma-ray emission from behind-the-limb solar flares

    CERN Document Server

    Pesce-Rollins, Melissa; Petrosian, Vahe'; Liu, Wei; da Costa, Fatima Rubio; Allafort, Alice

    2015-01-01

    Fermi-LAT >30 MeV observations have increased the number of detected solar flares by almost a factor of 10 with respect to previous space observations. These sample both the impulsive and long duration phases of GOES M and X class flares. Of particular interest is the recent detections of three solar flares whose position behind the limb was confirmed by the STEREO-B spacecraft. While gamma-ray emission up to tens of MeV resulting from proton interactions has been detected before from occulted solar flares, the significance of these particular events lies in the fact that these are the first detections of >100 MeV gamma-ray emission from footpoint-occulted flares. We will present the Fermi-LAT, RHESSI and STEREO observations of these flares and discuss the various emission scenarios for these sources and implications for the particle acceleration mechanisms.

  11. Wide field of view adaptive optical system for lightweight deployable telescope technologies

    Science.gov (United States)

    McComas, Brian K.; Cermak, Michael A.; Friedman, Edward J.

    2003-02-01

    A NASA research contract (NAS1-00116) was awarded to Ball Aerospace & Technologies Corp. in January 2000 to study wide field-of-view adaptive optical systems. These systems will be required on future high resolution Earth remote sensing systems that employ large, flexible, lightweight, deployed primary mirrors. The deformations from these primary mirrors will introduce aberrations into the optical system, which must be removed by corrective optics. For economic reasons, these remote sensing systems must have a large field-of-view (a few degrees). Unlike ground-based adaptive optical systems, which have a negligible field-of-view, the adaptive optics on these space-based remote sensing systems will be required to correct for the deformations in the primary mirror over the entire field-of-view. A new error function, which is an enhancement to conventional adaptive optics, for wide field-of-view optical systems will be introduced. This paper will present the goals of the NASA research project and its progress. The initial phase of this research project is a demonstration of the wide field-of-view adaptive optics theory. A breadboard has been designed and built for this purpose. The design and assembly of the breadboard will be presented, along with the final results for this phase of the research project. Finally, this paper will show the applicability of wide field-of-view adaptive optics to space-based astronomical systems.

  12. Pico-solar electric systems the earthscan expert guide to the technology and emerging market

    CERN Document Server

    Keane, John

    2014-01-01

    This book provides a comprehensive overview of the technology behind the pico-solar revolution and offers guidance on how to test and choose quality products. The book also discusses how pioneering companies and initiatives are overcoming challenges to reach scale in the marketplace, from innovative distribution strategies to reach customers in rural India and Tanzania, to product development in Cambodia, product assembly in Mozambique and the introduction of 'pay as you go' technology in Kenya.Pico-solar is a new category of solar electric system which has the potential to transform the lives

  13. Influence of Solar Granulation Characteristics on Correlation Tracker of Space Solar Telescope%太阳米粒组织目标特性对望远镜相关跟踪系统的影响

    Institute of Scientific and Technical Information of China (English)

    李晓昕; 王森

    2011-01-01

    To research the influence of solar characteristics on space solar telescope (SST)'s correlation tracker, the observed data of the solar optical telescope (SOT) aboard the Hinode satellite was used, the correlation calculation for five images with sampling interval time of 2 minutes was implemented, and the evolution of solar granulation with time was found. For the correlation tracker image stabilization system of SST being developed in the National Astronomical Observatories, Chinese Academy of Sciences, the influences of granulation evolution on calculation accuracy of image movement of the correlation tracker system and telescope exposure time were analyzed. The results indicate that the time to replace the reference image should not longer than 2 minutes. By comparing the correlation coefficient of the images with different sizes, it is found that using larger reference images could improve the positioning accuracy of the correlation tracking system. This research could provide some advices for the development of the correlation tracker system of SST.%研究太阳目标特性对太阳望远镜相关跟踪图像稳定系统的影响,采用Hinode太阳光学望远镜的观测数据,对以2 min为时间间隔采样的5幅太阳米粒组织图像进行相关计算.针对国家天文台正在研制的空间太阳望远镜(SST)主光学望远镜(MOT)相关跟踪图像稳定系统,分析了太阳米粒组织随时间衍化对相关跟踪系统图像移动计算精度的影响以及米粒组织动态变化对望远镜曝光时间的影响.仿真结果表明,更换参考图像时间不能大于2 min,并且在保证算法实时性的情况下,选用参考图像的尺寸与相关跟踪系统定位精度成正比.

  14. Solar technology assessment project. Volume 3: Active space heating and hot water supply with solar energy

    Science.gov (United States)

    Karaki, S.; Loef, G. O. G.

    1981-04-01

    Several types of solar water heaters are described and assessed. These include thermosiphon water heaters and pump circulation water heaters. Auxiliary water heating is briefly discussed, and new and retrofit systems are compared. Liquid-based space heating systems and solar air heaters are described and assessed, auxiliary space heating are discussed, and new and retrofit solar space heating systems are compared. The status of flat plate collectors, evacuated tube collectors, and thermal storage systems is examined. Systems improvements, reliability, durability and maintenance are discussed. The economic assessment of space and water heating systems includes a comparison of new systems costs with conventional fuels, and sales history and projections. The variety of participants in the solar industry and users of solar heat is discussed, and various incentives and barriers to solar heating are examined. Several policy implications are discussed, and specific government actions are recommended.

  15. Positional observations of small solar system bodies with the SBG telescope at the Astronomical Observatory of the Ural Federal University

    Science.gov (United States)

    Kaiser, G. T.; Wiebe, Yu. Z.

    2017-05-01

    The telescope SBG ( D = 0.42 m, F = 0.76 m) at the Kourovka Astronomical Observatory of the Ural Federal University has undergone an upgrade in 2005-2006. A CCD camera (Apogee Alta U32) and a new drive system were installed, and a new system for telescope and observation control was implemented. This upgrade required verifying the astrometric quality of the telescope. The data processing approaches tested when searching for the optimum CCD image processing technique combined TYCHO2 and UCAC2 catalogues with various reduction models and methods for choosing reference stars. Lorentzian and Moffat profiles were used in the measurement of pixel coordinates. It was demonstrated that the accuracy of SBG observations of main-belt asteroids with precisely determined orbits depends on their brightness and varies from 0.06" (11.5 m ) to 0.4" (18.5 m ). Regular SBG observations of comets and asteroids (mostly near-Earth and potentially hazardous ones) have been performed since 2007. Coordinates of 8515 positions of 720 asteroids and more than 1000 positions of 40 comets were obtained. The RMS deviations of observed coordinates from their calculated values are typically smaller than 1": the average deviations for asteroids are 0.33" (in right ascension) and 0.34" (in declination); the corresponding values for comets are 0.37" (in α) and 0.38" (in δ). The results of observations are sent to the Minor Planet Center and are used to determine orbits more accurately and solve other fundamental and applied problems.

  16. The social control of energy: A case for the promise of decentralized solar technologies

    Science.gov (United States)

    Gilmer, R. W.

    1980-05-01

    Decentralized solar technology and centralized electric utilities were contrasted in the ways they assign property rights in capital and energy output; in the assignment of operational control; and in the means of monitoring, policing, and enforcing property rights. An analogy was drawn between the decision of an energy consumer to use decentralized solar and the decision of a firm to vertically integrate, that is, to extend the boundary of a the firm to vertically integrate, that is, to extend the boundary of the firm by making inputs or further processing output. Decentralized solar energy production offers the small energy consumer the chance to cut ties to outside suppliers--to vertically integrate energy production into the home or business. The development of this analogy provides insight into important noneconomic aspects of solar energy, and it points clearly to the lighter burdens of social management offered by decentralized solar technology.

  17. Super-smooth processing x-ray telescope application research based on the magnetorheological finishing (MRF) technology

    Science.gov (United States)

    Zhong, Xianyun; Hou, Xi; Yang, Jinshan

    2016-09-01

    Nickel is the unique material in the X-ray telescopes. And it has the typical soft material characteristics with low hardness high surface damage and low stability of thermal. The traditional fabrication techniques are exposed to lots of problems, including great surface scratches, high sub-surface damage and poor surface roughness and so on. The current fabrication technology for the nickel aspheric mainly adopt the single point diamond turning(SPDT), which has lots of advantages such as high efficiency, ultra-precision surface figure, low sub-surface damage and so on. But the residual surface texture of SPDT will cause great scattering losses and fall far short from the requirement in the X-ray applications. This paper mainly investigates the magnetorheological finishing (MRF) techniques for the super-smooth processing on the nickel optics. Through the study of the MRF polishing techniques, we obtained the ideal super-smooth polishing technique based on the self-controlled MRF-fluid NS-1, and finished the high-precision surface figure lower than RMS λ/80 (λ=632.8nm) and super-smooth roughness lower than Ra 0.3nm on the plane reflector and roughness lower than Ra 0.4nm on the convex cone. The studying of the MRF techniques makes a great effort to the state-of-the-art nickel material processing level for the X-ray optical systems applications.

  18. Characterizing the Radiation Survivability of Space Solar Cell Technologies for Heliospheric Missions

    Science.gov (United States)

    Lee, J. H.; Walker, D.; Mann, C. J.; Yue, Y.; Nocerino, J. C.; Smith, B. S.; Mulligan, T.

    2016-12-01

    Space solar cells are responsible for powering the majority of heliospheric space missions. This paper will discuss methods for characterizing space solar cell technologies for on-orbit operations that rely on a series of laboratory tests that include measuring the solar cells' beginning of life performance under simulated (e.g. AM0 or air mass zero) sunlight over different operating temperatures and observing their end of life performance following exposure to laboratory-generated charged particle radiation (protons and electrons). The Aerospace Corporation operates a proton implanter as well as electron gun facilities and collaborates with external radiation effects facilities to expose space solar cells or other space technologies to representative space radiation environments (i.e. heliosphere or magnetosphere of Earth or other planets), with goals of characterizing how the technologies perform over an anticipated space mission timeline and, through the application of precision diagnostic capabilities, understanding what part of the solar cell is impacted by varying space radiation environments. More recently, Aerospace has been hosting solar cell flight tests on its previously-flown CubeSat avionics bus, providing opportunities to compare the laboratory tests to on-orbit observations. We hope through discussion of the lessons learned and methods we use to characterize how solar cells perform after space radiation exposure that similar methodology could be adopted by others to improve the state of knowledge on the survivability of other space technologies required for future space missions.

  19. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  20. Solar Power and Solar Fuels Synthesis Report. Technology, market and research activities 2006-2011

    Energy Technology Data Exchange (ETDEWEB)

    Ridell, Bengt; Nilsson, Ronny; Rehnlund, Bjoern [Grontmij, Stockholm (Sweden); Kasemo, Bengt [Chalmers Univ. of Technology, Goeteborg (Sweden)

    2012-11-01

    The objectives of the synthesis is to survey the situation and give an accumulated and concentrated knowledge about status, needs and opportunities for Swedish research and Swedish industry within the area of solar power and solar fuels, to be used for prioritisation of further efforts. The synthesis shall identify strengths and weaknesses in areas fundamental for development of solar power and solar fuels, focused on the development in Sweden, but in an international context. The synthesis shall also cover proposals for future Swedish research efforts and organisation of future Swedish research programs.

  1. Capture, transformation and conversion of the solar energy by the technologies of concentration; Captation, transformation et conversion de l'energie solaire par les technologies a concentration

    Energy Technology Data Exchange (ETDEWEB)

    Ferriere, A.; Flamant, G

    2003-07-01

    The specificities of the solar technologies at concentration are: high energy efficiency with increasing possibilities and the possibility of storage the solar energy by heat for a local and short dated utilization or by chemical storage (hydrogen for instance) for a delayed utilization or far from the capture area. This document takes stock on the concentration solar techniques, the electric power production by concentrated solar energy and the performance of concentrated solar plants, the industrial american experience of the SEGS plants, the hydrogen production by concentrated solar energy and discusses the scientific and technological locks. (A.L.B.)

  2. Application of laser technology in high efficiency silicon solar cell manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Long, W.X.; Tu, J.L.; Wang, Z.G.; Cui, H.Y.; Deng, J.L.; Liu, Z.M.; Liao, H. [Yunnan Normal Univ., Yunnan (China). Solar Energy Research Inst., Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology

    2008-07-01

    This paper examined the use of laser processing applications in solar cell fabrication. Laser processing is used to improve the electrical performance of solar cells as well as to reduce their manufacturing cost. Laser processes included laser scribing and cutting; laser fired contacts; wrap through technology; laser chemical processing; and the application of thin film devices. The study also examined the use of laser-fired contact (LFC) process schemes for the production of silicon (Si) Results of the study indicated that the lasers resulted in decreased wafer thickness and increased wafer sizes. LFC schemes can be applied on almost all advanced solar cell structures, including metal or emitter wrap-through cells and interdigitated back contact cells. Laser doping and via hole drilling techniques are also feasible in industrial applications. The use of laser technologies is expected to reduce costs. It was concluded that laser technologies are an appropriate choice for solar cell manufacturing processes. 12 refs., 8 figs.

  3. National solar technology roadmap: Nano-architecture PV

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2007-06-01

    This roadmap addresses nano-architecture solar cells that use nanowires, nanotubes, and nanocrystals, including single-component, core-shell, embedded nanowires or nanocrystals either as absorbers or transporters.

  4. Design requirements for interfaces in solar energy conversion technologies

    Science.gov (United States)

    Butler, B. L.

    1982-04-01

    Candidate materials for improving the durability and economics of solar energy conversion systems (SECS) are reviewed. A 30-yr lifetime is regarded as necessary for solar collector and concentrator materials in order to offset the high initial costs of SECS in parabolic dish, heliostat, parabolic trough, flat plate collector, OTEC, solar cell, and wind turbine configurations. The materials are required to transfer a maximum amount of intercepted energy without degrading from exposure to UV radiation, wind, water, dust, and temperature cycling. Glass and mirrored surfaces for reflecting or refracting optical subsystems are currently made from soda-lime, boro- and aluminosilicate, and must resist chemicals, abrasion, and permeability, and have good strength, flexibility, coefficient of expansion, and Young's modulus. Additional concerns are present in photochemical, solar cell, and in substrata components and systems.

  5. Solar Sentinels: Report of the Science and Technology Definition Team

    Science.gov (United States)

    2006-01-01

    The goal of NASA s Living With a Star (LWS) program is to develop the scientific understanding necessary to effectively address those aspects of the connected Sun Earth system that directly affect life and society. Along with the other elements of LWS, Solar Sentinels aims to discover, understand, and model the heliospheric initiation, propagation, and solar connection of those energetic phenomena that adversely affect space exploration and life and society here on Earth. The Solar Sentinels mission will address the following questions: (1) How, where, and under what circumstances are solar energetic particles (SEPs) accelerated to high energies and how do they propagate through the heliosphere? And (2) How are solar wind structures associated with these SEPs, like CMEs, shocks, and high-speed streams, initiated, propagate, evolve, and interact in the inner heliosphere? The Sentinels STDT recommends implementing this mission in two portions, one optimized for inner heliospheric in-situ measurements and the other for solar remote observations. Sentinels will greatly enhance the overall LWS science return.

  6. Research and development of utilization technology of solar thermal system for industrial and other use. Research and development of solar system (research for solar/energy-conservation technology retrofitted to existing buildings); Sangyoyo nado solar system jitsuyoka gijutsu kaihatsu. Solar system no chosa kenkyu (solar toshi muke gijutsu ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    Takita, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for solar/energy-conversion technologies retrofitted to existing buildings. The estimated effects and economic viability of retrofitting technologies show that they bring very high energy-saving effects when applied to heating and hot water supply, which consume a large portion of energy, but relatively low energy-saving effects when applied to cooling, solar walls, glazed balconies and transparent insulators. The study on applicability of these technologies in Japan indicates that the technologies which can recover cost within an average life time are those applied to windows, solar collector systems for hot water supply and heating, and transparent insulators. Although these technologies are low in applicability to cooling viewed from the angle of cost recovery, retrofitted radiation type cooling systems improve not only cooling and energy-saving effects but also comfortableness.

  7. Neutrino telescopes

    CERN Document Server

    Carr, J

    2002-01-01

    This review presents the scientific objectives and status of Neutrino Telescope Projects. The science program of these projects covers: neutrino astronomy, dark matter searches and measurements of neutrino oscillations. The two neutrino telescopes in operation: AMANDA and BAIKAL will be described together with the ANTARES neutrino telescope being built in the Mediterranean. (18 refs).

  8. Decentralized Solar Energy Technology Assessment Program: review of activities (April 1978-December 1979)

    Energy Technology Data Exchange (ETDEWEB)

    Bronfman, B.H.; Carnes, S.A.; Schweitzer, M.; Peelle, E.; Enk, G.

    1980-05-01

    The Decentralized Solar Energy Technology Assessment Program (TAP), sponsored by the Office of Solar Energy, Department of Energy, is a technology assessment and planning activity directed at local communities. Specifically, the objectives of the TAP are: (1) to assess the socioeconomic and institutional impacts of the widespread use of renewable energy technologies; (2) to involve communities in planning for their energy futures; and (3) to plan for local energy development. This report discusses two major efforts of the TAP during the period April 1978 to December 1979: the community TA's and several support studies. Four communities have been contracted to undertake an assessment-planning exercise to examine the role of solar renewable energy technologies in their future. The communities selected are the Southern Tier Central Region of New York State, (STC); Richmond, Kentucky, Kent, Ohio; and Franklin County, Massachusetts. Descriptions and progress to date of the community TA's are presented in detail. Two major support study efforts are also presented. A review of existing literature on the legal and institutional issues relative to the adoption of decentralized solar technologies is summarized. A preliminary analysis of potential socioeconomic impacts and other social considerations relative to decentralized solar technologies is also described.

  9. Physics and technology of amorphous-crystalline heterostructure silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sark, Wilfried G.J.H.M. van [Utrecht Univ. (Netherlands). Copernicus Institute, Science Technology and Society; Roca, Francesco [Unita Tecnologie Portici, Napoli (Italy). ENEA - Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile; Korte, Lars [Helmholtz-Zentrum Berlin fuer Materialien und Energie (Germany). Inst. Silizium-Photovoltaik

    2012-07-01

    The challenge of developing photovoltaic (PV) technology to a cost-competitive alternative for established energy sources can be achieved using simple, high-throughput mass-production compatible processes. Issues to be addressed for large scale PV deployment in large power plants or in building integrated applications are enhancing the performance of solar energy systems by increasing solar cell efficiency, using low amounts of materials which are durable, stable, and abundant on earth, and reducing manufacturing and installation cost. Today's solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both ''emitter'' and ''base-contact/back surface field'' on both sides of a thin crystalline silicon wafer-base (c-Si) where the photogenerated electrons and holes are generated; at the same time, a Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells. In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. (orig.)

  10. Space Telescopes

    Science.gov (United States)

    2010-01-01

    Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 166 9. Space telescopes Figure 9.1: Paraboloid telescope. In the following sections, NI...planets nearby a brighter star. Normal-incidence telescopes One-mirror telescope The one-mirror telescope (mostly an off-axis paraboloid ; Figure 9.1) has...rotation of the whole instrument (see SUMER/SOHO, Wilhelm et al (1995) and EIS/Hinode, Culhane et al (2007)). The paraboloid field curvature (Petzval

  11. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    Science.gov (United States)

    Dinetta, L. C.; Hannon, M. H.

    1995-01-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual

  12. Hot slumping glass technology and integration process to manufacture a grazing incidence scaled prototype for the IXO telescope modules

    Science.gov (United States)

    Ghigo, M.; Basso, S.; Canestrari, R.; Conconi, P.; Citterio, O.; Civitani, M.; Dell'Orto, E.; Gallieni, D.; Pareschi, G.; Parodi, G.; Proserpio, L.; Spiga, D.

    2009-08-01

    As for all space missions, the limit imposed on the payload mass budget by the launcher is the main driver that forces the use of very lightweight optics. Considering the International X-ray Observatory (IXO) mission the present configuration has a mirror collecting area in the order of 3 m2 at 1.25 keV, 0.65 m2 at 6 keV, and 150 cm2 at 30 keV. These large collecting areas could be obtained with a mirror assembly composed of a large number of high quality glass segments each being able to deliver the required angular resolution better or equal to 5 arcsec. These segments will form a X-Ray Optical Unit (XOU), an optical subunit of the telescope, and the XOUs will be assembled to form the whole mirror system. Based on the INAF-OAB experience in the thermal slumping of thin glass optics, a possible approach for the realization of large size and lightweight X-ray mirrors is described in this paper. Moulds made in a suitable material (as for example Silicon Carbide or Fused Silica) and having the suitable (parabolic and hyperbolic) profile are used for the realization of thin glass Mirror Plates (MP), with dimensions in the range of 200- 400 mm. After a thermal cycle the slumped MPs are characterized for acceptation and handled by means of an active support using vacuum suction for the integration phase. In this phase an active optical feedback is used to ensure the correct alignment of the MPs within the XOU. The MPs are then glued in its proper position in the XOU using also suitable glass ribs for the stiffening of the whole module. An investigation in the problems and possible solutions to the slumping, measurement, integration and testing of the glass MPs into the XOU will be given, particularly with respect to a XOU scaled prototype that will be manufactured and used to assess the technology.

  13. Electromagnetic foundations of solar radiation collection a technology for sustainability

    CERN Document Server

    Sangster, Alan J

    2014-01-01

    This text seeks to illuminate, mainly for the electrical power engineers of the future, the topic of large scale solar flux gathering schemes, which arguably represent the major source of renewable power available. The aim of the content is to impart, from an electromagnetic perspective, a deep and sound understanding of the topic of solar flux collection, ranging from the characteristics of light to the properties of antennas. To do this five chapters are employed to provide a thorough grounding in relevant aspects of electromagnetism and electromagnetic waves including optics, electromagneti

  14. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Adam Schaut

    2011-12-30

    performance. The target criteria for the concept development was to achieve a solar field cost savings of 25%-50% thereby meeting or exceeding the DOE solar field cost savings target of $350/m2. After evaluating various structural design approaches, Alcoa down-selected to a monocoque, dubbed Wing Box, design that utilizes the reflective surface as a structural, load carrying member. The cost and performance potential of the Wing Box concept was developed via initial finite element analysis (FEA) and cost modeling. The structural members were sized through material utilization modeling when subjected to representative loading conditions including wind loading. Cost modeling was utilized to refine potential manufacturing techniques that could be employed to manufacture the structural members. Alcoa concluded that an aluminum intensive collector design can achieve significant cost savings without sacrificing performance. Based on the cost saving potential of this Concept Feasibility study, Alcoa recommended further validation of this CSP approach through the execution of Phase II: Design and Prototype Development. Alcoa Phase II objective was to provide the DOE with a validated CSP trough design that demonstrates significant overall system cost savings without sacrificing performance. Phase II consisted of three major tasks; Detail System Design, Prototype Build, and System Validation. Additionally, the reflector surface development that began in Phase I was continued in Phase II. After further development work, Alcoa was unable to develop a reflective technology that demonstrated significant performance or cost benefits compared to commercially available CSP reflective products. After considering other commercially available reflective surfaces, Alcoa selected Alano's MIRO-SUN product for use on the full scale prototype. Although MIRO-SUN has a lower specular reflectivity compared to other options, its durability in terms of handling, cleaning, and long-term reflectivity

  15. Liverpool Telescope and Liverpool Telescope 2

    Science.gov (United States)

    Copperwheat, C. M.; Steele, I. A.; Barnsley, R. M.; Bates, S. D.; Clay, N. R.; Jermak, H.; Marchant, J. M.; Mottram, C. J.; Piascik, A.; Smith, R. J.

    2016-12-01

    The Liverpool Telescope is a fully robotic optical/near-infrared telescope with a 2-metre clear aperture, located at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. The telescope is owned and operated by Liverpool John Moores University, with financial support from the UK's Science and Technology Facilities Council. The telescope began routine science operations in 2004 and is a common-user facility with time available through a variety of committees via an open, peer reviewed process. Seven simultaneously mounted instruments support a broad science programme, with a focus on transient follow-up and other time domain topics well suited to the characteristics of robotic observing. Development has also begun on a successor facility, with the working title `Liverpool Telescope 2', to capitalise on the new era of time domain astronomy which will be brought about by the next generation of survey facilities such as LSST. The fully robotic Liverpool Telescope 2 will have a 4-metre aperture and an improved response time. In this paper we provide an overview of the current status of both facilities.

  16. National implications of high solar and biomass energy growth. Final report of the TASE project. A technology assessment of solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, Y.M.; D' Alessio, G.

    1982-09-01

    The Technology Assessment of Solar Energy (TASE) Project is a comprehensive multi-year analysis of the environmental, resource and community impacts which could result in the year 2000 if major national incentives were adopted to accelerate solar and biomass energy use. The study uses a comparative approach to examine: (a) the potential impacts of large numbers of solar and biomass units, and (b) the potential reductions in the impacts of new conventional technologies which they would displace. In addition, TASE examines the indirect pollution impacts associated with the manufacturing of solar systems at greater and lesser rates. Overall, massive incentives for solar and biomass energy over the next 20 years can lead to major stress on national capital and finished materials resources as well as to significant air pollution and safety problems. Rapid growth rates for solar systems could markedly increase energy damand in the manufacturing sector. The capital resource and materials problems would derive from emphasis on high, near term growth of solar technologies. The potential environmental and safety problems would derive largely from emphasis on decentralized, uncontrolled biomass combustion. A range of less costly general approaches lies in greater near term emphasis on more mature, competitive technologies, and specifically on biomass rather than solar technologies.In particular this emphasis should be on larger scale biomass technologies with economical pollution controls rather than on small, uncontrolled units; on bio-harvesting safety measures; on larger scale solar technologies which are far less energy and materials intensive and hence less costly than smaller solar technologies per unit energy output; on more gradual growth rates for active solar energy systems, especially small systems.

  17. Grid Integration of Robotic Telescopes

    CERN Document Server

    Breitling, F; Enke, H

    2008-01-01

    Robotic telescopes and grid technology have made significant progress in recent years. Both innovations offer important advantages over conventional technologies, particularly in combination with one another. Here, we introduce robotic telescopes used by the Astrophysical Institute Potsdam as ideal instruments for building a robotic telescope network. We also discuss the grid architecture and protocols facilitating the network integration that is being developed by the German AstroGrid-D project. Finally, we present three user interfaces employed for this purpose.

  18. The Spectrometer/Telescope for Imaging X-rays on Solar Orbiter: Flight design, challenges and trade-offs

    Energy Technology Data Exchange (ETDEWEB)

    Krucker, S. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Sciences Laboratory, UC Berkeley (United States); Bednarzik, M. [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, Villigen (Switzerland); Grimm, O., E-mail: oliver.grimm@phys.ethz.ch [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); ETH Zürich (Switzerland); Hurford, G.J. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Sciences Laboratory, UC Berkeley (United States); Limousin, O.; Meuris, A. [CEA Saclay (France); Orleański, P. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Research Center of the Polish Academy of Sciences (CBK PAN), Warsaw (Poland); Seweryn, K.; Skup, K.R. [Space Research Center of the Polish Academy of Sciences (CBK PAN), Warsaw (Poland)

    2016-07-11

    STIX is the X-ray spectral imaging instrument on-board the Solar Orbiter space mission of the European Space Agency, and together with nine other instruments will address questions of the interaction between the Sun and the heliosphere. STIX will study the properties of thermal and accelerated electrons near the Sun through their Bremsstrahlung X-ray emission, addressing in particular the emission from flaring regions on the Sun. The design phase of STIX has been concluded. This paper reports the final flight design of the instrument, focusing on design challenges that were faced recently and how they were addressed.

  19. 中国巨型太阳望远镜热光栏光学分析%Heat stop optical analysis for Chinese giant solar telescope

    Institute of Scientific and Technical Information of China (English)

    徐小伟; 章海鹰

    2012-01-01

    中国巨型太阳望远镜(CGST)采用共轴格里高利光学系统,主镜直径8 m,焦比为1.热光栏是中国巨型太阳望远镜(CGST)的一个核心结构,安装在主焦点位置,热光栏反射掉大部分热量(约为29 kW),但是本身也会吸收一小部分热量.对热光栏结构进行设计,运用TracePro软件模拟分析太阳中心观测,太阳边缘观测,内冕观测和超出范围观测4种情况下太阳的辐照度分布,并计算得出了热光栏各部分的辐射分布,为设计后续的冷却系统提供了数据参考.%Chinese giant solar telescope(CGST) is an on-axis Gregorian telescope, equipped with a 8 m diameter primary mirror and focal ratio of 1. The heat stop is a key component for the 8 m CGST, positioned at the primary focus, able to remove a heat load of 29 kW, while it absorbs a small portion of the heat at the same time. The geometry of the heat stop was designed, and four cases of sun-centered observations, limb observations, extreme coronal observations, out of range observations were emphatically simulated and analyzed with TracePro, calculating the irradiance distribution on elements of the heat stop, which provided data for the design of follow-up cooling system.

  20. Solar cell array design handbook - The principles and technology of photovoltaic energy conversion

    Science.gov (United States)

    Rauschenbach, H. S.

    1980-01-01

    Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.

  1. Solar cell array design handbook - The principles and technology of photovoltaic energy conversion

    Science.gov (United States)

    Rauschenbach, H. S.

    1980-01-01

    Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.

  2. Modular assembled space telescope

    Science.gov (United States)

    Feinberg, Lee D.; Budinoff, Jason; MacEwen, Howard; Matthews, Gary; Postman, Marc

    2013-09-01

    We present a new approach to building a modular segmented space telescope that greatly leverages the heritage of the Hubble Space Telescope and the James Webb Space Telescope. The modular design in which mirror segments are assembled into identical panels allows for economies of scale and for efficient space assembly that make a 20-m aperture approach cost effective. This assembly approach can leverage NASA's future capabilities and has the power to excite the public's imagination. We discuss the science drivers, basic architecture, technology, and leveraged NASA infrastructure, concluding with a proposed plan for going forward.

  3. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  4. Solar Energy and Other Appropriate Technologies for Small ...

    Science.gov (United States)

    This Region 2 research demonstration project presentation studied the efficacy of sustainable solar-powered water delivery and monitoring systems to reduce the economic burden of operating and maintaining Non-PRASA drinking water systems and to reduce the impact of climate change resulting from the use of fossil fuels in Puerto Rico. In Puerto Rico, petroleum (65%), natural gas (18%) and coal (16%) are imported to generate electricity resulting in electrical rates that are more than twice the US average. In 2012, only 1% of electricity came from renewable energy (US Energy Information Administration). One major cost for electricity for small communities in Puerto Rico is the transfer, treatment and distribution of drinking water. These small communities (Non-PRASA communities) are not able to afford electrical costs and many have abandoned their groundwater sources and reverted to unfiltered surface water systems, creating serious public health risks and non-compliance. Many Non-PRASA groundwater systems (141 out of 247) could use solar-powered pumps to extract and deliver groundwater. Solar power would also extend the life of system electrical components by improving the quality of electrical power supply. Solar power as a renewable energy source for Non-PRASA water systems is a viable approach that also reduces the impact of climate change in the Caribbean.

  5. Solar Energy and Other Appropriate Technologies for Small ...

    Science.gov (United States)

    This Region 2 research demonstration project presentation studied the efficacy of sustainable solar-powered water delivery and monitoring systems to reduce the economic burden of operating and maintaining Non-PRASA drinking water systems and to reduce the impact of climate change resulting from the use of fossil fuels in Puerto Rico. In Puerto Rico, petroleum (65%), natural gas (18%) and coal (16%) are imported to generate electricity resulting in electrical rates that are more than twice the US average. In 2012, only 1% of electricity came from renewable energy (US Energy Information Administration). One major cost for electricity for small communities in Puerto Rico is the transfer, treatment and distribution of drinking water. These small communities (Non-PRASA communities) are not able to afford electrical costs and many have abandoned their groundwater sources and reverted to unfiltered surface water systems, creating serious public health risks and non-compliance. Many Non-PRASA groundwater systems (141 out of 247) could use solar-powered pumps to extract and deliver groundwater. Solar power would also extend the life of system electrical components by improving the quality of electrical power supply. Solar power as a renewable energy source for Non-PRASA water systems is a viable approach that also reduces the impact of climate change in the Caribbean.

  6. Solid state device technology for Solar Power Satellite

    Science.gov (United States)

    Weir, D. G.

    1980-01-01

    The feasibility of using solid state elements in the solar power satellite transmitter system is addressed. Recommendations are given concerning device types, the antenna modules, and the overall antenna system. The development of a solid state amplifier based on GaAs field effect transistor devices is also described.

  7. The Development Status and Key Technologies of Solar Powered Unmanned Air Vehicle

    Science.gov (United States)

    Sai, Li; Wei, Zhou; Xueren, Wang

    2017-03-01

    By analyzing the development status of several typical solar powered unmanned aerial vehicles (UAV) at home and abroad, the key technologies involved in the design and manufacture of solar powered UAV and the technical difficulties need to be solved at present are obtained. It is pointed out that with the improvement of energy system efficiency, advanced aerodynamic configuration design, realization of high applicability flight stability and control system, breakthrough of efficient propulsion system, the application prospect of solar powered UAV will be more extensive.

  8. Life Cycle Assessment of Titania Perovskite Solar Cell Technology for Sustainable Design and Manufacturing.

    Science.gov (United States)

    Zhang, Jingyi; Gao, Xianfeng; Deng, Yelin; Li, Bingbing; Yuan, Chris

    2015-11-01

    Perovskite solar cells have attracted enormous attention in recent years due to their low cost and superior technical performance. However, the use of toxic metals, such as lead, in the perovskite dye and toxic chemicals in perovskite solar cell manufacturing causes grave concerns for its environmental performance. To understand and facilitate the sustainable development of perovskite solar cell technology from its design to manufacturing, a comprehensive environmental impact assessment has been conducted on titanium dioxide nanotube based perovskite solar cells by using an attributional life cycle assessment approach, from cradle to gate, with manufacturing data from our laboratory-scale experiments and upstream data collected from professional databases and the literature. The results indicate that the perovskite dye is the primary source of environmental impact, associated with 64.77% total embodied energy and 31.38% embodied materials consumption, contributing to more than 50% of the life cycle impact in almost all impact categories, although lead used in the perovskite dye only contributes to about 1.14% of the human toxicity potential. A comparison of perovskite solar cells with commercial silicon and cadmium-tellurium solar cells reveals that perovskite solar cells could be a promising alternative technology for future large-scale industrial applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Utility rates and service policies as potential barriers to the market penetration of decentralized solar technologies

    Energy Technology Data Exchange (ETDEWEB)

    Feuerstein, R. J.

    1979-08-01

    At present, economic and institutional concerns dictate that decentralized solar technologies generally require an auxiliary energy source to assure continuous service through periods of adverse weather. Utility rates and service policies regarding auxiliary energy service have a significant impact upon solar system economics, and thus the commercialization of solar energy. The scope of this paper evaluates three basic issues: (1) whether a utility can refuse to provide auxiliary service to solar users, (2) whether a utility can charge higher or lower than traditional rates for auxiliary service, and (3) whether a utility can refuse to purchase excess power generated by small power producers utilizing electricity-producing solar technologies. It appears that a utility cannot refuse to provide auxiliary service to a solar user unless the company can demonstrate that to provide such service, substantial harm would result to its existing customers. Statutes or case decisions also provide that utilities cannot unreasonably discriminate in rates charged to customers for the same service under like conditions. The ability of a utility to provide solar users lower than traditional rates may depend upon the jurisdiction's view of promotional rates. 681 references.

  10. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  11. CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materialsfor low-cost high performance solar concentrators

    Science.gov (United States)

    Martin, P. M.; Affinito, J. D.; Gross, M. E.; Bennett, W. D.

    1995-03-01

    The objectives of this project were to develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

  12. Solar Lighting Technologies for Highway Green Rest Areas in China: Energy Saving Economic and Environmental Evaluation

    Directory of Open Access Journals (Sweden)

    Xiaochun Qin

    2015-01-01

    Full Text Available In this paper, taking Lushan West Sea highway green rest area in Jiangxi Province of China as the case study, the suitable types, applicability, advantages, and effective methods of solar lighting technologies for highway rest area were determined based on the analysis of characteristics of highway green rest area. It was proved that solar lighting technologies including the natural light guidance system, solar LED lighting, and maximizing natural light penetration were quite suitable for highway rest area in terms of lighting effects and energy and economic efficiency. The illuminance comparison of light guidance system with electrical lighting was made based on the on-site experiment. Also, the feasibility of natural light guidance system was well verified in terms of the lighting demand of the visitor centre in the rest area by the illuminance simulation analysis. The evaluation of the energy saving, economic benefits, and environmental effects of solar lighting technologies for highway rest area was, respectively, made in detail. It was proved that the application of solar technology for green lighting of highway rest facilities not only could have considerable energy saving capacity and achieve high economic benefits, but also make great contributions to the reduction of environment pollution.

  13. Soviet Robots in the Solar System Mission Technologies and Discoveries

    CERN Document Server

    Huntress, JR , Wesley T

    2011-01-01

    The Soviet robotic space exploration program began in a spirit of bold adventure and technical genius. It ended after the fall of the Soviet Union and the failure of its last mission to Mars in 1996. Soviet Robots in the Solar System chronicles the scientific and engineering accomplishments of this enterprise from its infancy to its demise. Each flight campaign is set into context of national politics and international competition with the United States. Together with its many detailed illustrations and images, Soviet Robots in the Solar System presents the most detailed technical description of Soviet robotic space flights provides a unique insight into programmatic, engineering, and scientific issues covers mission objectives, spacecraft engineering, flight details, scientific payload and results describes in technical depth Soviet lunar and planetary probes

  14. Simple solar technology saves money for alligator farms

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, A.

    1993-01-01

    In 1990, a high-volume solar thermal water-heating system in Florida was installed in Okeechobee County by Solar Development, Inc. (SDI). The system is designed to provide large quantities of hot water for commercial use and heat water to as high as 140[degrees]F. The design in Florida is known as a Shallow Solar Pond (SSP). It was completed with the help of the Florida Alligator Farmers Association, the Florida Energy Office, Foster Farms, and SDI. The SSP is a modular system built on site and modified to meet the specific needs of each application. The tank and the collector are the same unit, which keeps the system cost very low. The typical SSP module is 16 feet wide and up to 200 feet long. The module contains one or two reinforced-rubber flat water bags similar to a water bed. The bags rest on a layer of insulation or sand inside concrete or fiberglass curbs. In the Foster Farms SSP, the insulation was omitted and the water bags are placed on sand. The bag is protected against damage and heat loss by greenhouse-type glazing. At Foster Farms there are 3 SSPs, set in approximately 8,000 square feet, with two 5,000-gallon bags per unit. In addition, there is a pressurizing pump/tank system. Every morning, the heated water from the bags drains into a sump tank. While the bags are emptied into the backup system, well water is pumped in and the solar heating process starts all over again.

  15. Next Generation Solar Array Technologies for Small Satellites

    OpenAIRE

    Fosness, E.; Guerrero, J.; Mayberry, C.; Carpenter, B.; Goldstein, D.

    2002-01-01

    Recent advances in Shape Memory Alloy (SMA), Elastic Memory Composites (EMC), and ultra- light composites along with thin-film Copper-Indium- Diselinide (CIS) photovoltaics have offered the potential to provide solar array systems for small satellites that are significantly lighter than the current state of the practice. The Air Force Research Laboratory (AFRL), National Aeronautics and Space Administration (NASA) Langley, Defense Advanced Research Projects Agency (DARPA), and Lockheed Martin...

  16. Technology assessment of solar energy systems. Scenario development and methodology. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, Y.M.

    1981-07-01

    Included are a general overview of the Technology Assessment of Solar Energy systems (TASE) project and a description of the study approach, the development of the TASE scenarios, energy and environmental assumptions, and assumptions and forecasts of the FOSSIL2 National Energy Model upon which the TASE scenarios were based. The Strategic Environmental Assessment System (SEAS) model was used to generate the analytical data base for TASE. Improvements made to SEAS to allow it to model solar and biomass energy technologies are also described.

  17. Overview: Solar Electric Propulsion Concept Designs for SEP Technology Demonstration Mission

    Science.gov (United States)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David; Herman, Daniel

    2014-01-01

    JPC presentation of the Concept designs for NASA Solar Electric Propulsion Technology Demonstration mission paper. Multiple Solar Electric Propulsion Technology Demonstration Missions were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kg spacecraft capable of delivering 4000 kg of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kg spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload.

  18. Solar cooking - Practice of use and disuse of alternative technology. A case-based study of users and disusers of box solar cookers in urban Gujarat, India

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, B.

    2000-10-01

    Solar cooking technology is generally known for its multiple benefits, but also for its slow or lack of diffusion among user groups. It is this paradox that is the theme of this thesis. Use and disuse of alternative technologies is the central issue of the study. Arational aspects as well as rational issues significantly affects practice of use and disuse of alternative technologies. In this study the limits and details of these arationalities and rationalities are investigated. The empirical part of the study was carried out in Gujarat, India, where abouth 45,000 families have a functioning box solar cooker at their homes (about 1% of urban families). These families enjoy numerous favourable conditions for solar cooking: 1) About 270 sunny days per year; 2) Staple foods like rice and dal are possible to be cooked by solar cooker; 3) Solar cookers are robust and are technically functional after several years of use; 4) Maintenance and operation of solar cookers is easy and does not pose significant constraints to the users; 5) Economic saving of abouth 30% of cooking fuel (1999 prices) on year basis is achievable by users, if the solar cooker were used for one meal on sunny days; 6) Culturally, use of sun for cooking is not seen as negative; 7) The solar cookers are locally manufactured and sold at local sale outlets at 750 Indian Rupees. The price is after 50% subsidy and is affordable for the middle class urban families. 8) Solar cooker has more than two decades of history in Gujarat. During last 20 years Gujarat State has constantly striven to introduce solar cookers to families in Gujarat. In this regard at both national and international levels, Gujarat State is not only a pioneer, but also on development, introduction and implementation of solar cookers the State is often referred to as model. The question is not how to encourage other families to buy a solar cooker, but rather why most of those who have purchased a solar cooker do not use their solar cookers

  19. Mars Array Technology Experiment Developed to Test Solar Arrays on Mars

    Science.gov (United States)

    Landis, Geoffrey A.

    2001-01-01

    Solar arrays will be the power supply for future missions to the planet Mars, including landers, rovers, and eventually human missions to explore the Martian surface. Until Mars Pathfinder landed in July 1997, no solar array had been used on the surface. The MATE package is intended to measure the solar energy reaching the surface, characterize the Martian environment to gather the baseline information required for designing power systems for long-duration missions, and to quantify the performance and degradation of advanced solar cells on the Martian surface. To measure the properties of sunlight reaching the Martian surface, MATE incorporates two radiometers and a visible/NIR spectrometer. The radiometers consist of multiple thermocouple junctions using thin-film technology. These devices generate a voltage proportional to the solar intensity. One radiometer measures the global broadband solar intensity, including both the direct and scattered sunlight, with a field of view of approximately 130. The second radiometer incorporates a slit to measure the direct (unscattered) intensity radiation. The direct radiometer can only be read once per day, with the Sun passing over the slit. The spectrometer measures the global solar spectrum with two 256-element photodiode arrays, one Si sensitive in the visible range (300 to 1100 nm), and a second InGaAs sensitive to the near infrared (900 to 1700 nm). This range covers 86 percent of the total energy from the Sun, with approximately 5-nm resolution. Each photodiode array has its own fiber-optic feed and grating. Although the purpose of the MATE is to gather data useful in designing solar arrays for Mars surface power systems, the radiometer and spectrometer measurements are expected to also provide important scientific data for characterizing the properties of suspended atmospheric dust. In addition to measuring the solar environment of Mars, MATE will measure the performance of five different individual solar cell types

  20. The front-end electronics of the Spectrometer Telescope for Imaging X-Rays (STIX) on the ESA Solar Orbiter satellite

    Science.gov (United States)

    Grimm, O.; Bednarzik, M.; Commichau, V.; Graczyk, R.; Gröbelbauer, H. P.; Hurford, G.; Krucker, S.; Limousin, O.; Meuris, A.; Orleański, P.; Przepiórka, A.; Seweryn, K.; Skup, K.; Viertel, G.

    2012-12-01

    Solar Orbiter is an ESA mission to study the heliosphere in proximity to the Sun, scheduled for launch in January 2017. It carries a suite of ten instruments for comprehensive remote-sensing and in-situ measurements. The Spectrometer Telescope for Imaging X-Rays (STIX), one of the remote sensing instruments, images X-rays between 4 and 150keV using an Fourier technique. The angular resolution is 7 arcsec and the spectral resolution 1keV full-width-half-maximum at 6keV. X-ray detection uses pixelized Cadmium Telluride crystals provided by the Paul Scherrer Institute. The crystals are bonded to read-out hybrids developed by CEA Saclay, called Caliste-SO, incorporating a low-noise, low-power analog front-end ASIC IDeF-X HD. The crystals are cooled to -20°C to obtain very low leakage currents of less than 60pA per pixel, the prerequisite for obtaining the required spectral resolution. This article briefly describes the mission goals and then details the front-end electronics design and main challenges, resulting in part from the allocation limit in mass of 7kg and in power of 4W. Emphasis is placed on the design influence of the cooling requirement within the warm environment of a mission approaching the Sun to within the orbit of Mercury. The design for the long-term in-flight energy calibration is also explained.

  1. Dark signal correction for a lukecold frame transfer CCD. Application to the SODISM solar telescope on board the PICARD space mission

    CERN Document Server

    Hochedez, J -F; Hauchecorne, A; Meftah, M

    2013-01-01

    When Charge Coupled Devices are used for scientific observations, their dark signal is a hindrance. In their pristine state, most CCD pixels are `cool'; they exhibit low, quasi uniform dark current, which can be estimated and corrected for. In space, after having been hit by an energetic particle, pixels can turn `hot'. They start delivering excessive, less predictable, dark current. The hot pixels need therefore to be flagged so that subsequent analysis may ignore them. The image data of the PICARD SODISM solar telescope (Meftah et al. 2013) require dark signal correction and hot pixel identification. Its frame transfer E2V 42-80 CCD operates at -7{\\deg}C. Both image and memory zones thus accumulate dark current during, respectively, integration and readout time. These two components must be separated to estimate the dark signal for any observation. This is the purpose of the Dark Signal Model presented in this paper. The dark signal time series of every pixel is processed by the Unbalanced Haar Technique (F...

  2. Rural electrification with photovoltaic solar technology using solar home system; Eletrificacao rural com tecnologia solar fotovoltaica utilizando sistemas isolados autonomos

    Energy Technology Data Exchange (ETDEWEB)

    Salviano, Carlos Jose Caldas

    1999-02-01

    The utilization of solar energy, inexhaustible on the earthly scale of time, as heat and light source, today is one of the energetics alternatives more to confront the challenges of the new millennium. Remarkable is the impulse that power generation photovoltaic has received in Brazil. In Pernambuco, state of Brazil, the CELPE - Electric Power Company of Pernambuco, already implanted more than 750 photovoltaic solar home system (95 kW installed) for power supply to rural communities far from the grid connection that come across in commercial operation since 1994. Eight configurations were studied with modifications in their components (panel, battery and charge) with the objective to evaluate the performance and the adequacy of the size these configurations. The parameters utilized for this evaluation were: solar energy diary incident on the panel plat, diary efficiency generator, output voltage on the generator and state of charge the batteries bank. A system of data acquisition automated was fined to measure in real conditions the function of each components, the following parameters: solar radiation incident and temperature on the photovoltaic generator, voltage and generator current, batteries bank and charge and ambient temperature. About the configurations studied, it follows that analysis the operational of characteristics capacity and battery capacity of the SHS utilized, simulating the rural electrification conditions. It was possible to certify the adequate configurations for the load profile will be supply. (author)

  3. Review of thin film solar cell technology and applications for ultra-light spacecraft solar arrays

    Science.gov (United States)

    Landis, Geoffrey A.

    1991-01-01

    Developments in thin-film amorphous and polycrystalline photovoltaic cells are reviewed and discussed with a view to potential applications in space. Two important figures of merit are discussed: efficiency (i.e., what fraction of the incident solar energy is converted to electricity), and specific power (power to weight ratio).

  4. Search for solar axions with the X-ray telescope of the CAST experiment (phase II); Suche nach solaren Axionen mit dem Roentgenteleskop des CAST-Experiments (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    Nordt, Annika

    2009-10-14

    The CAST (CERN Solar Axion Telescope) experiment is searching for solar axions by their conversion into photons inside a transverse magnetic field. So far, no solar axionsignal has been detected, but a new upper limit could be given (CAST Phase I). Since 2005, CAST entered in its second phase where it operates with a buffer gas ({sup 4}He) in the conversion region to extend the sensitivity of the experiment to higher axionmasses. For the first time it is possible to enter the theoretically favored axion massrange and to give an upper limit for this solar axion mass-range (>0.02 eV). This thesis is about the analysis of the X-ray telescope data Phase II with {sup 4}He inside the magnet. The result for the coupling constant of axions to photons is: g{sub {alpha}}{sub {gamma}}{sub {gamma}}<1.6-6.0 x 10{sup -10} GeV{sup -1} (95%C.L.) for m{sub a}=0.02-0.4 eV. (2) This result is better than any result that has been given before in this mass range for solar axions. (orig.)

  5. Comet C2012 S1 (ISON): Observations of the Dust Grains From SOFIA and of the Atomic Gas From NSO Dunn and Mcmath-Pierce Solar Telescopes

    Science.gov (United States)

    Wooden, Diane H.; Woodward, Charles E.; Harker, David E.; Kelley, Michael S. P.; Sitko, Michael; Reach, William T.; De Pater, Imke; Gehrz, Robert D.; Kolokolova, Ludmilla; Cochran, Anita L.; hide

    2013-01-01

    Comet C/2012 S1 (ISON) is unique in that it is a dynamically new comet derived from the Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) and visible wavelength observing campaigns were planned on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) and on National Solar Observatory Dunn (DST) and McMath-Pierce Solar Telescopes, respectively. We highlight our SOFIA (+FORCAST) mid- to far-IR images and spectroscopy (approx. 5-35 microns) of the dust in the coma of ISON are to be obtained by the ISON-SOFIA Team during a flight window 2013 Oct 21-23 UT (r_h approx. = 1.18 AU). Dust characteristics, identified through the 10 micron silicate emission feature and its strength, as well as spectral features from cometary crystalline silicates (Forsterite) at 11.05-11.2 microns, and near 16, 19, 23.5, 27.5, and 33 microns are compared with other Oort cloud comets that span the range of small and/or highly porous grains (e.g., C/1995 O1 (Hale-Bopp) and C/2001 Q4 (NEAT) to large and/or compact grains (e.g., C/2007 N4 (Lulin) and C/2006 P1 (McNaught)). Measurement of the crystalline peaks in contrast to the broad 10 and 20 micron amorphous silicate features yields the cometary silicate crystalline mass fraction, which is a benchmark for radial transport in our protoplanetary disk. The central wavelength positions, relative intensities, and feature asymmetries for the crystalline peaks may constrain the shapes of the crystals. Only SOFIA can look for cometary organics in the 5-8 micron region. Spatially resolved measurements of atoms and simple molecules from when comet ISON is near the Sun (r_hPierce, the Solar-Stellar Spectrograph also will target ISON (320-900 nm, R approx. 21,000, r_h<0.3 AU). Assuming survival, the intent is to target ISON over r_h<0.4 AU, characteristic of prior Na detections.

  6. Evaluating the effectiveness of wildlife detection and observation technologies at a solar power tower facility

    Science.gov (United States)

    Diehl, Robert H.; Valdez, Ernest W.; Preston, Todd M.; Wellik, Mike J.; Cryan, Paul

    2016-01-01

    Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light (“solar flux”) in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world’s largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife.

  7. Evaluating the Effectiveness of Wildlife Detection and Observation Technologies at a Solar Power Tower Facility.

    Science.gov (United States)

    Diehl, Robert H; Valdez, Ernest W; Preston, Todd M; Wellik, Michael J; Cryan, Paul M

    2016-01-01

    Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light ("solar flux") in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world's largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife.

  8. Technology for Solar Array Production on the Moon

    Science.gov (United States)

    Landis, Geoffrey A.

    2002-01-01

    Silicon, aluminum, and glass are the primary raw materials that will be required for production of solar arrays on the moon. A process sequence is proposed for producing these materials from lunar regolith is proposed, consisting of separating the required materials from lunar rock with fluorine. Fluorosilane produced by this process is reduced to silicon; the fluorine salts are reduced to metals by reaction with metallic potassium. Fluorine is recovered from residual MgF and CaF2 by reaction with K2O. Aluminum, calcium oxide, and magnesium oxide are recovered to manufacture structural materials and glass.

  9. A Compendium of Solar Dish/Stirling Technology

    Science.gov (United States)

    1994-01-01

    systems and Plataforma Solar in Almeria, Spain, with the goal being plans to produce fourteen 7.5-kWe systems for testing to test the system’s long-term...the sun is not a point source, its rays 21 Chapter 3 (a) (b) - N Mounting Ring and CollaraI/ / I/\\ I / Virtual Exit I / Target S• Entrance I 0 L...tptical \\ I Real Exit / Virtual Target \\ Aperture\\ / Cooling \\ / I Coils N - Focal - - - - " Plane 4. Figure 3-2. A secondary concentrator with side view (a

  10. Applicability of solid state microwave technology to solar power satellites

    Science.gov (United States)

    Nalos, E. J.; Fitzsimmons, G. W.; Sperber, B. R.

    1979-01-01

    A potential SPS design using antenna mounted GaAs FET's as the basic dc-RF converter is described, together with the rationale of why such a design may represent a viable cost effective complement to current SPS designs using tube type dc-RF converters such as klystrons or crossed field amplifiers. An initial description of a microwave antenna array module is given, together with a concept of how such a module is to be integrated into the SPS overall design. A comparison is made of several such designs using either antenna mounted or solar cell mounted dc-RF converters.

  11. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    Science.gov (United States)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  12. Promising Results from Three NASA SBIR Solar Array Technology Development Programs

    Science.gov (United States)

    Eskenazi, Mike; White, Steve; Spence, Brian; Douglas, Mark; Glick, Mike; Pavlick, Ariel; Murphy, David; O'Neill, Mark; McDanal, A. J.; Piszczor, Michael

    2005-01-01

    Results from three NASA SBIR solar array technology programs are presented. The programs discussed are: 1) Thin Film Photovoltaic UltraFlex Solar Array; 2) Low Cost/Mass Electrostatically Clean Solar Array (ESCA); and 3) Stretched Lens Array SquareRigger (SLASR). The purpose of the Thin Film UltraFlex (TFUF) Program is to mature and validate the use of advanced flexible thin film photovoltaics blankets as the electrical subsystem element within an UltraFlex solar array structural system. In this program operational prototype flexible array segments, using United Solar amorphous silicon cells, are being manufactured and tested for the flight qualified UltraFlex structure. In addition, large size (e.g. 10 kW GEO) TFUF wing systems are being designed and analyzed. Thermal cycle and electrical test and analysis results from the TFUF program are presented. The purpose of the second program entitled, Low Cost/Mass Electrostatically Clean Solar Array (ESCA) System, is to develop an Electrostatically Clean Solar Array meeting NASA s design requirements and ready this technology for commercialization and use on the NASA MMS and GED missions. The ESCA designs developed use flight proven materials and processes to create a ESCA system that yields low cost, low mass, high reliability, high power density, and is adaptable to any cell type and coverglass thickness. All program objectives, which included developing specifications, creating ESCA concepts, concept analysis and trade studies, producing detailed designs of the most promising ESCA treatments, manufacturing ESCA demonstration panels, and LEO (2,000 cycles) and GEO (1,350 cycles) thermal cycling testing of the down-selected designs were successfully achieved. The purpose of the third program entitled, "High Power Platform for the Stretched Lens Array," is to develop an extremely lightweight, high efficiency, high power, high voltage, and low stowed volume solar array suitable for very high power (multi-kW to MW

  13. Chapter 1.03: Solar Photovoltaics Technology: No Longer an Outlier

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, L. L.

    2012-01-01

    The status and future technology, market, and industry opportunities for solar photovoltaics are examined and discussed. The co-importance of both policy and technology investments for the future markets and competitiveness of this solar approach is emphasized. This paper underscores the technology side, with a comprehensive overview and insights to technical, policy, market, industry and other investments needed to tip photovoltaics to its next level of contribution as a significant clean-energy partner in the world energy economy. The requirement to venture from near-term and evolutionary approaches into disruptive and revolutionary technology pathways is argued for our needs in the mid-term (the next 10-15 years) and the long-term (beyond the first quarter of this century).

  14. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Adam Schaut

    2011-12-30

    performance. The target criteria for the concept development was to achieve a solar field cost savings of 25%-50% thereby meeting or exceeding the DOE solar field cost savings target of $350/m2. After evaluating various structural design approaches, Alcoa down-selected to a monocoque, dubbed Wing Box, design that utilizes the reflective surface as a structural, load carrying member. The cost and performance potential of the Wing Box concept was developed via initial finite element analysis (FEA) and cost modeling. The structural members were sized through material utilization modeling when subjected to representative loading conditions including wind loading. Cost modeling was utilized to refine potential manufacturing techniques that could be employed to manufacture the structural members. Alcoa concluded that an aluminum intensive collector design can achieve significant cost savings without sacrificing performance. Based on the cost saving potential of this Concept Feasibility study, Alcoa recommended further validation of this CSP approach through the execution of Phase II: Design and Prototype Development. Alcoa Phase II objective was to provide the DOE with a validated CSP trough design that demonstrates significant overall system cost savings without sacrificing performance. Phase II consisted of three major tasks; Detail System Design, Prototype Build, and System Validation. Additionally, the reflector surface development that began in Phase I was continued in Phase II. After further development work, Alcoa was unable to develop a reflective technology that demonstrated significant performance or cost benefits compared to commercially available CSP reflective products. After considering other commercially available reflective surfaces, Alcoa selected Alano's MIRO-SUN product for use on the full scale prototype. Although MIRO-SUN has a lower specular reflectivity compared to other options, its durability in terms of handling, cleaning, and long-term reflectivity

  15. Overview of thick-film technology as applied to solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Firor, K.; Hogan, S.

    1980-01-01

    Thick-film technology was developed by the electronics industry as a means of fabricating components and miniature circuitry. Today, the solar cell industry is looking at screen printing as an alternate to more expensive, high-vacuum techniques in several of the production steps during the manufacture of silicon solar cells. Screen printing is already fairly well established as a means of providing electrical contact to a cell and for the formation of a back surface field. Now under investigation are the possibilities of non-noble metal contacts and protective and antireflective coatings applied to solar cells by the use of screen printing. Most exciting is the work being done in the non-silicon area on the fabrication of the active layers of a solar cell, using thick-film inks made up of II-VI semiconductors.

  16. Advanced Solar Cell and Array Technology for NASA Deep Space Missions

    Science.gov (United States)

    Piszczor, Michael; Benson, Scott; Scheiman, David; Finacannon, Homer; Oleson, Steve; Landis, Geoffrey

    2008-01-01

    A recent study by the NASA Glenn Research Center assessed the feasibility of using photovoltaics (PV) to power spacecraft for outer planetary, deep space missions. While the majority of spacecraft have relied on photovoltaics for primary power, the drastic reduction in solar intensity as the spacecraft moves farther from the sun has either limited the power available (severely curtailing scientific operations) or necessitated the use of nuclear systems. A desire by NASA and the scientific community to explore various bodies in the outer solar system and conduct "long-term" operations using using smaller, "lower-cost" spacecraft has renewed interest in exploring the feasibility of using photovoltaics for to Jupiter, Saturn and beyond. With recent advances in solar cell performance and continuing development in lightweight, high power solar array technology, the study determined that photovoltaics is indeed a viable option for many of these missions.

  17. Cu2ZnSnS4 solar cells: Physics and technology by alternative tracks

    DEFF Research Database (Denmark)

    Crovetto, Andrea

    In this thesis I shall present the most scientifically interesting and/or practically useful results achieved in my PhD project. Such results are related to fundamental properties and technological aspects of Cu2ZnSnS4 (CZTS) and related materials for solar cells. By "related materials" I mean two...... things: i) alternative solar absorbers (notably, Cu2SnS3) that are chemically related to CZTS and that have similar selling points; ii) other materials included in the device stack of CZTS solar cells. Here I list what I believe the main highlights of my work are. First, we achieve the highest reported...... power conversion eciency (5.2%) for a CZTS solar cell using pulsed laser deposition as a fabrication method for CZTS precursors. This is thanks to to joint work of PhD student Andrea Cazzaniga, PhD student Chang Yan (University of New South Wales, Australia) and myself. Perhaps more importantly, we...

  18. 77 FR 76109 - IAS Energy, Inc., IB3 Networks, Inc., IBroadband, Inc., ICP Solar Technologies, Inc., IdentiPHI...

    Science.gov (United States)

    2012-12-26

    ... COMMISSION IAS Energy, Inc., IB3 Networks, Inc., IBroadband, Inc., ICP Solar Technologies, Inc., IdentiPHI... accurate information concerning the securities of IAS Energy, Inc. because it has not filed any periodic... accurate information concerning the securities of ICP Solar Technologies, Inc. because it has not filed...

  19. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    Science.gov (United States)

    Montgomery, Edward E.; Young, Roy M.; Adams, Charles L.

    2007-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 separate, independent system design and development hardware demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L'Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter ground demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators. Descriptions of the system designs for both the ATK and L'Garde systems will be presented. Changes, additions and evolution of the system designs will be highlighted. A description of the modeling and analyses activities performed by both teams, as well as testing conducted to raise the TRL of solar sail technology will be presented. A summary of the results of model correlation activities will be presented. Finally, technology gaps identified during the assessment and gap closure plans will be presented, along with "lessons learned", subsequent planning activities and validation flight opportunities for solar sail propulsion technology.

  20. Origins Space Telescope: Community Participation

    Science.gov (United States)

    Carey, Sean J.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. This poster will outline the ways in which the astronomical community can participate in the STDT activities and a summary of tools that are currently available or are planned for the community during the study. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.

  1. Origins Space Telescope: Study Plan

    Science.gov (United States)

    Cooray, Asantha R.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, the OST Study Team based at NASA Goddard Space Flight Center, study partners, and the advisory panel to the study. This presentation will also summarize recent activities, including the process used to reach a decision on the mission architecture, the identification of key science drivers, and the key study milestones between 2017 and 2020.

  2. Considerations for Solar Energy Technologies to Make Progress Towards Grid Price Parity

    Energy Technology Data Exchange (ETDEWEB)

    Woodhouse, Michael; Fu, Ran; Chung, Donald; Horowitz, Kelsey; Remo, Timothy; Feldman, David; Margolis, Robert

    2015-11-07

    In this seminar the component costs for solar photovoltaics module and system prices will be highlighted. As a basis for comparison to other renewable and traditional energy options, the metric of focus will be total lifecycle cost-of-energy (LCOE). Several innovations to traditional photovoltaics technologies (including crystalline silicon, CdTe, and CIGS) and developing technologies (including organics and perovskites) that may close the gaps in LCOE will be discussed.

  3. Solar quiescent Active Region temperature distribution inferred from the Miniature Solar X-ray Solar Spectrometer (MinXSS) CubeSat soft X-ray spectra, Hinode X-ray Telescope (XRT) soft X-ray filter images and EUV measurements.

    Science.gov (United States)

    Moore, C. S.; Woods, T. N.; Caspi, A.; Mason, J. P.

    2016-12-01

    Soft X-rays serve as an important diagnostic tool for hot (T > 106 K) solar coronal plasma elemental composition, elemental ionization states, density of emitting plasma and dynamical events triggered by magnetic field structures. Spectrally resolved, solar disc averaged, soft X-ray spectra from the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat combined with spatially resolved soft X-ray filter images from the Hinode X-ray Telescope (XRT) and complimentary EUV data can yield unique inferences of the quiescent (non-flaring) active regions' emitting plasma temperature distribution and chemical composition. This talk will discuss how the MinXSS spectra and Hinode XRT images from the sparsely measured 0.7 - 10 keV ( 0.124 - 1.77 nm) region, can augment estimations of active region temperature distribution and elemental abundance variations that are currently being assessed primarily from typical EUV and hard X-ray observations.

  4. Adhesive market develops new technologies. The thin-film solar cells gain ground; El mercado de adhesivos desarrolla nuevas tecnologias. Las celulas solares de capa fina ganan terreno

    Energy Technology Data Exchange (ETDEWEB)

    Kluke, M.

    2010-07-01

    The solar industry is booming. thin-film technology is experiencing a high demand as promised cost advantages and currently is providing excellent results, while a range of efficiency reaches acceptable. (Author)

  5. Clean Technology Fund Investment Plan Approved for Concentrated Solar Power in the MENA Region

    OpenAIRE

    Coma-Cunill, Roger; Govindarajalu, Chandra; Pariente-David, Silvia; Walters, Jonathan

    2009-01-01

    The Middle East and North Africa (MENA) clean technology fund investment plan proposes co-financing of $750 million and mobilizes an additional $4.85 billion from other sources to accelerate deployment of Concentrated Solar Power (CSP) by investing in the CSP expansion programs of Algeria, Egypt, Jordan, Morocco and Tunisia. Specifically, the Investment Plan will support MENA countries to ...

  6. Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices

    Science.gov (United States)

    Munday, Jeremy

    2016-01-01

    Solar sails offer an opportunity for a CubeSatscale, propellant-free spacecraft technology that enables long-term and long-distance missions not possible with traditional methods. Solar sails operate using the transfer of linear momentum from photons of sunlight reflected from the surface of the sail. To propel the spacecraft, no mechanically moving parts, thrusters, or propellant are needed. However, attitude control, or orientation, is still performed using traditional methods involving reaction wheels and propellant ejection, which severely limit mission lifetime. For example, the current state of the art solutions employed by upcoming missions couple solar sails with a state of the art propellant ejection gas system. Here, the use of the gas thruster has limited the lifetime of the mission. To solve the limited mission lifetime problem, the Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices project team is working on propellantless attitude control using thin layers of material, an optical film, electrically switchable from transparent to reflective. The technology is based on a polymer-dispersed liquid crystal (PDLC), which allows this switch upon application of a voltage. This technology removes the need for propellant, which reduces weight and cost while improving performance and lifetime.

  7. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  8. Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies (Spanish Version)

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    This is the Spanish version of 'Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies'. Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid.

  9. Solar-insolation-induced changes in the coma morphology of comet 67P/Churyumov-Gerasimenko. Optical monitoring with the Nordic Optical Telescope

    Science.gov (United States)

    Zaprudin, B.; Lehto, H. J.; Nilsson, K.; Somero, A.; Pursimo, T.; Snodgrass, C.; Schulz, R.

    2017-07-01

    Context. 67P/Churyumov-Gerasimenko (67P/C-G) is a short-period Jupiter family comet with an orbital period of 6.55 yr. Being the target comet of ESA's Rosetta mission, 67P/C-G has become one of the most intensively studied minor bodies of the solar system. The Rosetta Orbiter and the Philae Lander have brought us unique information about the structure and activity of the comet nucleus, as well as its activity along the orbit, composition of gas, and dust particles emitted into the coma. However, as Rosetta stayed in very close proximity to the cometary nucleus (less than 500 km with a few short excursions reaching up to 1500 km), it could not see the global picture of a coma at the scales reachable by telescopic observations (103 - 105 km). Aims: In this work we aim to connect in-situ observations made by Rosetta with the morphological evolution of the coma structures monitored by the ground-based observations. In particular, we concentrate on causal relationships between the coma morphology and evolution observed with the Nordic Optical Telescope (NOT) in the Canary Islands, and the seasonal changes of the insolation and the activity of the comet observed by the Rosetta instruments. Methods: Comet 67P/C-G was monitored with the NOT in imaging mode in two colors. Imaging optical observations were performed roughly on a weekly basis, which provides good coverage of short- and long-term variability. With the three dimensional modeling of the coma produced by active regions on the southern hemisphere, we aim to qualify the observed morphology by connecting it to the activity observed by Rosetta. Results: During our monitoring program, we detected major changes in the coma morphology of comet 67P/C-G. These were long-term and long-lasting changes. They do not represent any sudden outburst or short transient event, but are connected to seasonal changes of the surface insolation and the emergence of new active regions on the irregular shaped comet nucleus. We have also

  10. Studies of key technologies for CdTe solar modules

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, CdS thin films, which act as the window layer and n-type partner to the p-type CdTe layer, were prepared by chemical bath deposition (CBD). CdTe thin films were deposited by the close-spaced sublimation (CSS) method. To obtain high-quality back contacts, a Te-rich layer was created with chemical etching and back contact materials were applied after CdTe annealing. The results indicate that the ZnTe/ZnTe:Cu complex layers show superior performance over other back contacts. Finally, by using laser scribing and mechanical scribing, the CdTe mini-modules were fabricated, in which a glass/SnO2:F/CdS/CdTe/ZnTe/ZnTe:Cu/Ni solar module with a PWQC-confirmed total-area efficiency of 7.03% (54 cm2) was achieved.

  11. Solar and Space Physics: A Science for a Technological Society

    Science.gov (United States)

    2013-01-01

    From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.

  12. Solar fashion: An embodied approach to wearable technology

    NARCIS (Netherlands)

    Smelik, A.M.; Toussaint, L.; Dongen, P. van

    2016-01-01

    Using Pauline van Dongen’s ‘Wearable Solar’ project as a case study, the authors argue that materiality and embodiment should be taken into account both in the design of and the theoretical reflection on wearable technology. Bringing together a fashion designer and scholars from cultural studies, th

  13. SNAP telescope

    Energy Technology Data Exchange (ETDEWEB)

    Lampton, Michael L.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro, R.; Ealet, A.; Ellis,R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar,A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland,S.E.; Huterer, D.; Karcher, A.; Kim, A.G.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder, E.V.; Loken,S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi,H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto,E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.

  14. Illuminating Solar Decathlon Homes: Exploring Next Generation Lighting Technology - Light Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Kelly L.; Gilbride, Theresa L.

    2008-05-22

    This report was prepared by PNNL for the US Department of Energy Building Technologies Program, Solid-State Lighting Program. The report will be provided to teams of university students who are building houses for the 2009 Solar Decathlon, a home design competition sponsored in part by DOE, to encourage teams to build totally solar powered homes. One aspect of the competition is lighting. This report provides the teams with information about LED lighting that can help them determine how they incorporate LED lighting into their homes. The report provides an overview of LED technology, a status of where LED technology is today, questions and answers about lighting quality, efficiency, lifetime etc.; numerous examples of LED products; and several weblinks for further research.

  15. An overview of crystalline silicon solar cell technology: Past, present, and future

    Science.gov (United States)

    Sopian, K.; Cheow, S. L.; Zaidi, S. H.

    2017-09-01

    Crystalline silicon (c-Si) solar cell, ever since its inception, has been identified as the only economically and environmentally sustainable renewable resource to replace fossil fuels. Performance c-Si based photovoltaic (PV) technology has been equal to the task. Its price has been reduced by a factor of 250 over last twenty years (from ˜ 76 USD to ˜ 0.3 USD); its market growth is expected to reach 100 GWP by 2020. Unfortunately, it is still 3-4 times higher than carbon-based fuels. With the matured PV manufacturing technology as it exists today, continuing price reduction poses stiff challenges. Alternate manufacturing approaches in combination with thin wafers, low (cost-based analysis of advanced solar cell manufacturing technologies aimed at higher (˜ 22 %) efficiency with existing equipment and processes.

  16. Solar detoxification technology to the treatment of non-biodegradable hazardous water contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J.; Malato, S.; Fernadez, P. [Plataforma Solar de Almeira, (Spain)] (and others)

    2001-07-01

    Design, construction and installation of a turn-key solar light radiation-based system (SOLARDETOX) for the treatment of hazardous and non-biodegradable water contaminants, is described. The basic concept underlying the system is derived from the solar catalytic mineralization of organic compounds dissolved in water. The technology is based on the simple, inexpensive, yet efficient, compound parabolic concentrator (CPC) solar technology. This paper describes the scientific, engineering and strategic objectives of the project (as initially proposed to the European Union for funding), the basic chemistry involved in the process, the titanium oxide powders used as catalysts, the new mirror to increase the reflective surface UV reflectivity in the appropriate UV range ( 300-400 nm), the fully automatic controls built into the system, and the construction of a demonstration plant with a solar collector field of about 100 square meters for evaluating the technology. Results of the demonstration have been fully satisfactory showing the technical feasibility of the system for the treatment of wastewater containing low to medium pollutant concentrations of hazardous contaminants which cannot be satisfactorily treated in biological waste treatment plants. These substances include phenols, chlorinated hydrocarbons, pharmaceutical compounds, wood preservative wastes, maritime tank terminal wastewater and agrochemical wastes. SOLARDETOX is also considered to be a good solution for in-situ treatment and decontamination of groundwater containing substances that do not biodegrade. Economic analysis showed that the SOLARDETOX system could be fully competitive against conventional wastewater treatment processes. 25 refs., 1 tab., 14 figs.

  17. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    Science.gov (United States)

    Young, Roy M.; Adams, Charles L.

    2010-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.

  18. Solar energy photovoltaic technology: proficiency and performance; L'energie solaire maitrise et performance photovoltaiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Total is committed to making the best possible of the planet's fossil fuel reserves while fostering the emergence of other solutions, notably by developing effective alternatives. Total involves in photovoltaics when it founded in 1983 Total Energies, renamed Tenesol in 2005, a world leader in the design and installation of photovoltaic solar power systems. This document presents Total's activities in the domain: the global challenge of energy sources and the environment, the energy collecting by photovoltaic electricity, the silicon technology for cell production, solar panels and systems to distribute energy, research and development to secure the future. (A.L.B.)

  19. Polymer and organic solar cells viewed as thin film technologies: What it will take for them to become a success outside academia

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Jørgensen, Mikkel

    2013-01-01

    The polymer and organic solar cell technology is critically presented in the context of other thin film technologies with a specific focus on what it will take to make them a commercial success. The academic success of polymer and organic solar cells far outweigh any other solar cell technology w...

  20. Human Outer Solar System Exploration via Q-Thruster Technology

    Science.gov (United States)

    Joosten, B. Kent; White, Harold G.

    2014-01-01

    Propulsion technology development efforts at the NASA Johnson Space Center continue to advance the understanding of the quantum vacuum plasma thruster (QThruster), a form of electric propulsion. Through the use of electric and magnetic fields, a Q-thruster pushes quantum particles (electrons/positrons) in one direction, while the Qthruster recoils to conserve momentum. This principle is similar to how a submarine uses its propeller to push water in one direction, while the submarine recoils to conserve momentum. Based on laboratory results, it appears that continuous specific thrust levels of 0.4 - 4.0 N/kWe are achievable with essentially no onboard propellant consumption. To evaluate the potential of this technology, a mission analysis tool was developed utilizing the Generalized Reduced Gradient non-linear parameter optimization engine contained in the Microsoft Excel® platform. This tool allowed very rapid assessments of "Q-Ship" minimum time transfers from earth to the outer planets and back utilizing parametric variations in thrust acceleration while enforcing constraints on planetary phase angles and minimum heliocentric distances. A conservative Q-Thruster specific thrust assumption (0.4 N/kWe) combined with "moderate" levels of space nuclear power (1 - 2 MWe) and vehicle specific mass (45 - 55 kg/kWe) results in continuous milli-g thrust acceleration, opening up realms of human spaceflight performance completely unattainable by any current systems or near-term proposed technologies. Minimum flight times to Mars are predicted to be as low as 75 days, but perhaps more importantly new "retro-phase" and "gravity-augmented" trajectory shaping techniques were revealed which overcome adverse planetary phasing and allow virtually unrestricted departure and return opportunities. Even more impressively, the Jovian and Saturnian systems would be opened up to human exploration with round-trip times of 21 and 32 months respectively including 6 to 12 months of

  1. Robotic and Survey Telescopes

    Science.gov (United States)

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  2. Solar system exploration - Some thoughts on techniques and technologies

    Science.gov (United States)

    Bekey, Ivan

    1990-01-01

    Some techniques and technologies for proposed interplanetary missions are described. Methods for reducing the effect of zero gravity on humans during missions to Mars and the moon, and the need for launch vehicles with increased lift capability are discussed. The use of nuclear power, liquid oxygen from the moon, and helium 3 as propellants for spacecraft is examined. The development and capabilities of the Shuttle Z vehicle are considered. Attention is given to the Space Station Freedom and Energia. A launch vehicle concept which utilizes the Shuttle Z for a mission to Mars is presented.

  3. Apollo Telescope Mount Spar Assembly

    Science.gov (United States)

    1969-01-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This image shows the ATM spar assembly. All solar telescopes, the fine Sun sensors, and some auxiliary systems are mounted on the spar, a cruciform lightweight perforated metal mounting panel that divides the 10-foot long canister lengthwise into four equal compartments. The spar assembly was nested inside a cylindrical canister that fit into the rack, a complex frame, and was protected by the solar shield.

  4. Solar photovoltaics R and D at the tipping point: A 2005 technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, Lawrence L. [National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO 80401 (United States)]. E-mail: larry_kazmerski@nreil.gov

    2006-02-15

    The status of current and coming solar photovoltaic technologies and their future development are presented. The emphasis is on R and D advances and cell and module performances, with indications of the limitations and strengths of crystalline (Si and GaAs) and thin film (a-Si:H, Si, Cu(In,Ga)(Se,S){sub 2}, CdTe). The contributions and technological pathways for now and near-term technologies (silicon, III-Vs, and thin films) and status and forecasts for next-next generation photovoltaics (organics, nanotechnologies, multi-multiple junctions) are evaluated. Recent advances in concentrators, new directions for thin films, and materials/device technology issues are discussed in terms of technology evolution and progress. Insights to technical and other investments needed to tip photovoltaics to its next level of contribution as a significant clean-energy partner in the world energy portfolio.

  5. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  6. Status of Solar Generator Related Technology Development Activities Supporting the Juice Mission

    Directory of Open Access Journals (Sweden)

    Baur Carsten

    2017-01-01

    Full Text Available The paper provides an overview of the current status of several technical development activities initiated by the European Space Agency (ESA to support the JUICE mission to the Jovian system. First of all, the qualification status of the solar cells to be used in the JUICE mission will be reported. Then, the conclusions from a dedicated activity aiming at assessing the potential degradation of triple-junction solar cells upon primary discharges will be discussed. Finally, the results on the coupon tests currently running at ESA will be presented. The coupons consist of representative solar cell assemblies including coverglasses with a conductive Indium Tin Oxide (ITO layer. Dedicated coverglass grounding technologies are tested on the coupons which connect the conductive coverglass surfaces to the panel ground. It will be shown how the resistivity of the materials used in the coupons evolves upon submission to extreme thermal cycles.

  7. Science and Technology of BOREXINO A Real Time Detector for Low Energy Solar Neutrinos

    CERN Document Server

    Alimonti, G; Back, H O; Balata, M; Beau, T; Bellini, G; Benziger, J B; Bonetti, S; Brigatti, A; Caccianiga, B; Cadonati, L; Calaprice, F P; Cecchet, G; Chen, M; De Bari, A; De Haas, E; De Kerret, H; Donghi, O; Deutsch, M; Elisei, F; Etenko, A; Von Feilitzsch, F; Fernholz, R C; Ford, R; Freudiger, B; Garagiola, A; Galbiati, C; Gatti, F; Gazzana, S; Giammarchi, M G; Giugni, D; Golubchikov, A; Goretti, A; Grieb, C; Hagner, C; Hagner, T; Hampel, W; Harding, E; Hartmann, F; Von Hentig, R; Hess, H; Heusser, G; Ianni, A; Inzani, P; Kidner, S H; Kiko, J; Kirsten, T; Korga, G; Korschinek, G; Kryn, Didier; Lagomarsino, V; La Marche, P; Laubenstein, M; Löser, F; Lombardi, P; Magni, S; Malvezzi, S; Maneira, J; Manno, I; Manuzio, G; Masetti, F; Mazzucato, U; Meroni, E; Musico, P; Neder, H; Neff, M; Nisi, S; Oberauer, L; Obolensky, M; Pallavicini, M; Papp, L; Perasso, L; Pocar, A; Raghavan, R; Ranucci, G; Rau, W; Razeto, A; Resconi, E; Riedel, T; Sabelnikov, A A; Saggese, P; Salvo, C; Scardaoni, R; Schönert, S; Schuhbeck, K; Seidel, H; Shutt, T A; Simgen, H; Sonnenschein, A H; Smirnov, O Yu; Sotnikov, A; Skorokhvatov, M; Sukhotin, S V; Tartaglia, R; Testera, G; Vitale, S; Vogelaar, R; Wójcik, M; Zaimidoroga, O A; Zakharov, Yu I

    2002-01-01

    BOREXINO, a real-time device for low energy neutrino spectroscopy is nearing completion of construction in the underground laboratories at Gran Sasso, Italy (LNGS). The experiment's goal is the direct measurement of the flux of 7Be solar neutrinos of all flavors via neutrino-electron scattering in an ultra-pure scintillation liquid. Seeded by a series of innovations which were brought to fruition by large scale operation of a 4-ton test detector at LNGS, a new technology has been developed for BOREXINO. It enables sub-MeV solar neutrino spectroscopy for the first time. This paper describes the design of BOREXINO, the various facilities essential to its operation, its spectroscopic and background suppression capabilities and a prognosis of the impact of its results towards resolving the solar neutrino problem. BOREXINO will also address several other frontier questions in particle physics astrophysics and geophysics.

  8. Estimating the economic and demographic impacts of solar technology commercialization on US regions

    Energy Technology Data Exchange (ETDEWEB)

    Kort, J.R.

    1980-12-01

    The purpose of this study is to develop a framework through which these regional economic and demographic impacts of solar technology commercialization can be analyzed. Two models comprise the basis of this framework - a national input/output model and an interregional econometric model, the National-Regional Impact Evaluation System (NRIES). These models are used to convert projected sales of solar energy systems to gross output concepts, and to evaluate the impacts associated with these sales. Analysis is provided for the nine census regions and 50 states and the District of Columbia for the years 1980 through 1990. Impacts on major economic aggregates such as output, employment, income, and population are described. The methodology used in this study is described. The economic and demographic impacts of solar technology commercialization on US regions and states are presented. The major conclusions of the study are summarized, and direction is provided for further research. Detailed tables of regional and state solar energy expenditures and their impacts appear in the Appendix.

  9. Solar Hydrogen Energy Systems Science and Technology for the Hydrogen Economy

    CERN Document Server

    Zini, Gabriele

    2012-01-01

    It is just a matter of time when fossil fuels will become unavailable or uneconomical to retrieve. On top of that, their environmental impact is already too severe. Renewable energy sources can be considered as the most important substitute to fossil energy, since they are inexhaustible and have a very low, if none, impact on the environment. Still, their unevenness and unpredictability are drawbacks that must be dealt with in order to guarantee a reliable and steady energy supply to the final user. Hydrogen can be the answer to these problems. This book presents the readers with the modeling, functioning and implementation of solar hydrogen energy systems, which efficiently combine different technologies to convert, store and use renewable energy. Sources like solar photovoltaic or wind, technologies like electrolysis, fuel cells, traditional and advanced hydrogen storage are discussed and evaluated together with system management and output performance. Examples are also given to show how these systems are ...

  10. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    Science.gov (United States)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2015-01-01

    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  11. Providing Appropriate Technology for Emerging Markets: Case Study on China’s Solar Thermal Industry

    Directory of Open Access Journals (Sweden)

    Jianghua Zhou

    2017-01-01

    Full Text Available Building on a case study of five Chinese solar thermal companies and one association, our study aims to understand how the innovator’s choices regarding the use of technology and organizational practices for new product development enable companies to design and diffuse appropriate technology in emerging markets. The study uncovers two critical factors that enhance the appropriateness of technology: redefining the identity of technology and building a local supply system. Our analysis shows that synergic innovation in both architecture and component leads to the appropriate functionalities desired by emerging markets. Moreover, modular design and the building of a local supply system enhance the process appropriateness of technology. Our study provides an empirical basis for advocating going beyond minor adaptations of existing products to creating appropriate technology for emerging markets, and extends our understandings of the upstream process of designing appropriate technology. Moreover, the emphasis on the local supply system reflects a holistic framework for shaping and delivering appropriate technology, expanding the existing research focus on the perspective of the technology itself. Our research also has managerial implications that may help firms tap into emerging markets.

  12. Polymer and organic solar cells viewed as thin film technologies: What it will take for them to become a success outside academia

    OpenAIRE

    Krebs, Frederik C.; Jørgensen, Mikkel

    2013-01-01

    The polymer and organic solar cell technology is critically presented in the context of other thin film technologies with a specific focus on what it will take to make them a commercial success. The academic success of polymer and organic solar cells far outweigh any other solar cell technology when judging by the number of scientific publications whereas the application of polymer and organic solar cells in real products is completely lacking. This aspect is viewed as a sign of the polymer a...

  13. Assessment of 25 kW free-piston Stirling technology alternatives for solar applications

    Science.gov (United States)

    Erbeznik, Raymond M.; White, Maurice A.; Penswick, L. B.; Neely, Ronald E.; Ritter, Darren C.; Wallace, David A.

    The final design, construction, and testing of a 25-kW free-piston advanced Stirling conversion system (ASCS) are examined. The final design of the free-piston hydraulic ASCS consists of five subsystems: heat transport subsystem (solar receiver and pool boiler), free-piston hydraulic Stirling engine, hydraulic subsystem, cooling subsystem, and electrical and control subsystem. Advantages and disadvantages are identified for each technology alternative. Technology alternatives considered are gas bearings vs flexure bearings, stationary magnet linear alternator vs moving magnetic linear alternator, and seven different control options. Component designs are generated using available in-house procedures to meet the requirements of the free-piston Stirling convertor configurations.

  14. Measures for the Diffusion of Solar PV are Aligned in Technology Action Plans for Six Countries in Africa

    DEFF Research Database (Denmark)

    Nygaard, Ivan; Hansen, Ulrich Elmer; Pedersen, Mathilde Brix

    2014-01-01

    in the region prioritized solar PV, and action plans for the diffusion of solar home systems were put forward in Cote d’Ivoire, Kenya, Mali and Senegal, while the implementation of grid-connected systems was proposed in Rwanda, Mali and Senegal. The project reports and technology action plans prepared...

  15. The Discovery Channel Telescope

    Science.gov (United States)

    Millis, R. L.; Dunham, E. W.; Sebring, T. A.; Smith, B. W.; de Kock, M.; Wiecha, O.

    2004-11-01

    The Discovery Channel Telescope (DCT) is a 4.2-m telescope to be built at a new site near Happy Jack, Arizona. The DCT features a large prime focus mosaic CCD camera with a 2-degree-diameter field of view especially designed for surveys of KBOs, Centaurs, NEAs and other moving or time-variable targets. The telescope can be switched quickly to a Ritchey-Chretien configuration for optical/IR spectroscopy or near-IR imaging. This flexibility allows timely follow-up physical studies of high priority objects discovered in survey mode. The ULE (ultra-low-expansion) meniscus primary and secondary mirror blanks for the telescope are currently in fabrication by Corning Glass. Goodrich Aerospace, Vertex RSI, M3 Engineering and Technology Corp., and e2v Technologies have recently completed in-depth conceptual design studies of the optics, mount, enclosure, and mosaic focal plane, respectively. The results of these studies were subjected to a formal design review in July, 2004. Site testing at the 7760-ft altitude Happy Jack site began in 2001. Differential image motion observations from 117 nights since January 1, 2003 gave median seeing of 0.84 arcsec FWHM, and the average of the first quartile was 0.62 arcsec. The National Environmental Policy Act (NEPA) process for securing long-term access to this site on the Coconino National Forest is nearing completion and ground breaking is expected in the spring of 2005. The Discovery Channel Telescope is a project of the Lowell Observatory with major financial support from Discovery Communications, Inc. (DCI). DCI plans ongoing television programming featuring the construction of the telescope and the research ultimately undertaken with the DCT. An additional partner can be accommodated in the project. Interested parties should contact the lead author.

  16. A long-term strategic plan for development of solar thermal electric technology

    Energy Technology Data Exchange (ETDEWEB)

    Williams, T.A. [National Renewable Energy Lab., Golden, CO (United States); Burch, G. [USDOE, Washington, DC (United States); Chavez, J.M.; Mancini, T.R.; Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States)

    1997-06-01

    Solar thermal electric (STE) technologies--parabolic troughs, power towers, and dish/engine systems--can convert sunlight into electricity efficiently and with minimum effect on the environment. These technologies currently range from developmental to early commercial stages of maturity. This paper summarizes the results of a recent strategic planning effort conducted by the US department of Energy (DOE) to develop a long-term strategy for the development of STE technologies. The planning team led by DOE included representatives from the solar thermal industry, domestic utilities, state energy offices, and Sun{center_dot}Lab (the cooperative Sandia National laboratories/National Renewable Energy Laboratory partnership that supports the STE Program) as well as project developers. The plan was aimed at identifying specific activities necessary to achieve the DOE vision of 20 gigawatts of installed STE capability by the year 2020. The planning team developed five strategies that both build on the strengths of, and opportunities for, STE technology and address weaknesses and threats. These strategies are to: support future commercial opportunities for STE technologies; demonstrate improved performance and reliability of STE components and systems; reduce STE energy costs; develop advanced STE systems and applications; and address nontechnical barriers and champion STE power. The details of each of these strategies are discussed.

  17. A long-term strategic plan for development of solar thermal electric technology

    Energy Technology Data Exchange (ETDEWEB)

    Williams, T.A. [National Renewable Energy Lab., Golden, CO (United States); Burch, G.D. [Dept. of Energy, Washington, DC (United States); Chavez, J.M.; Mancini, T.R.; Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States)

    1997-06-01

    Solar thermal electric (STE) technologies--parabolic troughs, power towers, and dish/engine systems--can convert sunlight into electricity efficiently and with minimum effect on the environment. These technologies currently range from developmental to early commercial stages of maturity. This paper summarizes the results of a recent strategic planning effort conducted by the US Department of Energy (DOE) to develop a long-term strategy for the development of STE technologies (DOE, 1996). The planning team led by DOE included representatives from the solar thermal industry, domestic utilities, state energy offices, and Sun-Lab (the cooperative Sandia National Laboratories/National Renewable Energy Laboratory partnership that supports the STE Program) as well as project developers. The plan was aimed at identifying specific activities necessary to achieve the DOE vision of 20 gigawatts of installed STE capacity by the year 2020. The planning team developed five strategies that both build on the strengths of, and opportunities for, STE technology and address weaknesses and threats. These strategies are to support future commercial opportunities for STE technologies; demonstrate improved performance and reliability of STE components and systems; reduce STE energy costs; develop advanced STE systems and applications; and address nontechnical barriers and champion STE power. The details of each of these strategies are discussed.

  18. The High-Resolution Lightweight Telescope for the EUV (HiLiTE)

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Galarce, D S; Boerner, P; Soufli, R; De Pontieu, B; Katz, N; Title, A; Gullikson, E M; Robinson, J C; Baker, S L

    2008-06-02

    The High-resolution Lightweight Telescope for the EUV (HiLiTE) is a Cassegrain telescope that will be made entirely of Silicon Carbide (SiC), optical substrates and metering structure alike. Using multilayer coatings, this instrument will be tuned to operate at the 465 {angstrom} Ne VII emission line, formed in solar transition region plasma at {approx}500,000 K. HiLiTE will have an aperture of 30 cm, angular resolution of {approx}0.2 arc seconds and operate at a cadence of {approx}5 seconds or less, having a mass that is about 1/4 that of one of the 20 cm aperture telescopes on the Atmospheric Imaging Assembly (AIA) instrument aboard NASA's Solar Dynamics Observatory (SDO). This new instrument technology thus serves as a path finder to a post-AIA, Explorer-class missions.

  19. NPT: a large-aperture telescope for high dynamic range astronomy

    Science.gov (United States)

    Joseph, Robert D.; Kuhn, Jeff R.; Tokunaga, Alan T.; Coulter, Roy; Ftaclas, Christo; Graves, J. Elon; Hull, Charles L.; Jewitt, D.; Mickey, Donald L.; Moretto, Gilberto; Neill, Doug; Northcott, Malcolm J.; Roddier, Claude A.; Roddier, Francois J.; Siegmund, Walter A.; Owen, Tobias C.

    2000-06-01

    All existing night-time astronomical telescopes, regardless of aperture, are blind to an important part of the universe - the region around bright objects. Technology now exist to build an unobscured 6.5 m aperture telescope which will attain coronagraphic sensitivity heretofore unachieved. A working group hosted by the University of Hawaii Institute for Astronomy has developed plans for a New Planetary Telescope which will permit astronomical observations which have never before ben possible. In its narrow-field mode the off-axis optical design, combined with adaptive optics, provides superb coronagraphic capabilities, and a very low thermal IR background. These make it ideal for studies of extra-solar planets and circumstellar discs, as well as for general IR astronomy. In its wide-field mode the NPT provides a 2 degree diameter field for surveys of Kuiper Belt Objects and Near-Earth Objects, surveys central to current intellectual interests in solar system astronomy.

  20. Selecting Your First Telescope.

    Science.gov (United States)

    Harrington, Sherwood

    1982-01-01

    Designed for first-time telescope purchasers, provides information on how a telescope works; major telescope types (refractors, reflectors, compound telescopes); tripod, pier, altazimuth, and equatorial mounts; selecting a telescope; visiting an astronomy club; applications/limitations of telescope use; and tips on buying a telescope. Includes a…