WorldWideScience

Sample records for technology satellite operations

  1. Summary of the CTS Transient Event Counter data after one year of operation. [Communication Technology Satellite

    Science.gov (United States)

    Stevens, N. J.; Klinect, V. W.; Gore, J. V.

    1977-01-01

    The environmental charging of satellite surfaces during geomagnetic substorms is the apparent cause of a significant number of anomalous events occurring on geosynchronous satellites since the early 1970's. Electromagnetic pulses produced in connection with the differential charging of insulators can couple into the spacecraft harness and cause electronic switching anomalies. An investigation conducted to determine the response of the spacecraft surfaces to substorm particle fluxes makes use of a harness transient detector. The harness transient detector, called the Transient Event Counter (TEC) was built and integrated into the Canadian-American Communications Technology Satellite (CTS). A description of the TEC and its operational characteristics is given and the obtained data are discussed. The data show that the satellite surfaces appear to be charged to the point that discharges occur and that the discharge-induced transients couple into the wire harnesses.

  2. Cosmic rays and other space weather effects influenced on satellite operation, technologies, biosphere and people health

    Science.gov (United States)

    Lev, Dorman

    2016-07-01

    Satellite anomalies (or malfunctions), including total distortion of electronics and loose of some satellites cost for Insurance Companies billions dollars per year. During especially active periods the probability of big satellite anomalies and their loosing increased very much. Now, when a great number of civil and military satellites are continuously worked for our practice life, the problem of satellite anomalies became very important. Many years ago about half of satellite anomalies were caused by technical reasons (for example, for Russian satellites Kosmos), but with time with increasing of production quality, this part became smaller and smaller. The other part, which now is dominated, caused by different space weather effects (energetic particles of CR and generated/trapped in the magnetosphere, and so on). We consider only satellite anomalies not caused by technical reasons: the total number of such anomalies about 6000 events, and separately for high and low altitude orbit satellites (5000 and about 800 events, correspondingly for high and low altitude satellites). No relation was found between low and high altitude satellite anomalies. Daily numbers of satellite anomalies, averaged by a superposed epoch method around sudden storm commencements and solar proton event onsets for high (>1500 km) and low (relation of satellite anomalies to the environmental parameters was found to be different for various orbits that should be taken into account under developing of the anomaly frequency models and forecasting. We consider also influence of CR on frequency of gene mutations and evolution of biosphere (we show that if it will be no CR, the Earth's civilization will be start only after milliards years later, what will be too late), CR role in thunderstorm phenomena and discharges, space weather effects on space technologies and radiation effects from solar and galactic CR in dependence of cutoff rigidities and altitude, influence magnetic storms accompanied by

  3. Unattended network operations technology assessment study. Technical support for defining advanced satellite systems concepts

    Science.gov (United States)

    Price, Kent M.; Holdridge, Mark; Odubiyi, Jide; Jaworski, Allan; Morgan, Herbert K.

    1991-01-01

    The results are summarized of an unattended network operations technology assessment study for the Space Exploration Initiative (SEI). The scope of the work included: (1) identified possible enhancements due to the proposed Mars communications network; (2) identified network operations on Mars; (3) performed a technology assessment of possible supporting technologies based on current and future approaches to network operations; and (4) developed a plan for the testing and development of these technologies. The most important results obtained are as follows: (1) addition of a third Mars Relay Satellite (MRS) and MRS cross link capabilities will enhance the network's fault tolerance capabilities through improved connectivity; (2) network functions can be divided into the six basic ISO network functional groups; (3) distributed artificial intelligence technologies will augment more traditional network management technologies to form the technological infrastructure of a virtually unattended network; and (4) a great effort is required to bring the current network technology levels for manned space communications up to the level needed for an automated fault tolerance Mars communications network.

  4. 1ST International Conference on Small Satellites: New Technologies, Achievements, Problems and Prospects for International Co-Operation in the New Millenium

    National Research Council Canada - National Science Library

    1998-01-01

    The Final Proceedings for Small Satellites: New technologies, achievements, problems and prospects for international co-operation in the new millenium, 16 November 1998 - 20 November 1998 This is an interdisciplinary conference...

  5. Newspaper Uses of Satellite Technology.

    Science.gov (United States)

    Johns, David

    Replacing slower mail service, satellite transmission now gives the newspaper industry a practical and almost spontaneous method for sending all kinds of information to any newspaper across the country. Unlike other communication industries, newspapers did not begin to make widespread use of satellite technology until 1979, when government…

  6. The Future of Satellite Communications Technology.

    Science.gov (United States)

    Nowland, Wayne

    1985-01-01

    Discusses technical advances in satellite technology since the 1960s, and the International Telecommunications Satellite Organization's role in these developments; describes how AUSSAT, Australia's domestic satellite system, exemplifies the latest developments in satellite technology; and reviews satellite system features, possible future…

  7. Advanced Communications Technology Satellite (ACTS)

    Science.gov (United States)

    Olmstead, Dean A.; Schertler, Ronald J.

    The benefits that will be offered by the NASA-sponsored communication spacecraft ACTS which is scheduled for launch in 1992 are described together with examples of demonstrations on proposed data, video, and voice applications supported by the advanced ACTS technologies. Compared to existing satellite service, the ACTS will provide lower cost, better service, greater convenience, and improved service reliability of telecommunications to customers around the world. In addition, the pioneering ACTS technology will provide many capabilities qualitatively different from those of current satellite systems, such as on-demand assignment, frequency reuse, and the flexible targeting of spot beams directly to the very-small-aperture terminals at customer premises.

  8. Autonomous Satellite Operations Via Secure Virtual Mission Operations Center

    Science.gov (United States)

    Miller, Eric; Paulsen, Phillip E.; Pasciuto, Michael

    2011-01-01

    The science community is interested in improving their ability to respond to rapidly evolving, transient phenomena via autonomous rapid reconfiguration, which derives from the ability to assemble separate but collaborating sensors and data forecasting systems to meet a broad range of research and application needs. Current satellite systems typically require human intervention to respond to triggers from dissimilar sensor systems. Additionally, satellite ground services often need to be coordinated days or weeks in advance. Finally, the boundaries between the various sensor systems that make up such a Sensor Web are defined by such things as link delay and connectivity, data and error rate asymmetry, data reliability, quality of service provisions, and trust, complicating autonomous operations. Over the past ten years, researchers from the NASA Glenn Research Center (GRC), General Dynamics, Surrey Satellite Technology Limited (SSTL), Cisco, Universal Space Networks (USN), the U.S. Geological Survey (USGS), the Naval Research Laboratory, the DoD Operationally Responsive Space (ORS) Office, and others have worked collaboratively to develop a virtual mission operations capability. Called VMOC (Virtual Mission Operations Center), this new capability allows cross-system queuing of dissimilar mission unique systems through the use of a common security scheme and published application programming interfaces (APIs). Collaborative VMOC demonstrations over the last several years have supported the standardization of spacecraft to ground interfaces needed to reduce costs, maximize space effects to the user, and allow the generation of new tactics, techniques and procedures that lead to responsive space employment.

  9. Satellite-Based Technologies in Use for Extreme Nocturnal Mountain Rescue Operations: a Synergetic Approach Applying Geophysical Principles

    Science.gov (United States)

    Buchroithner, Manfred F.; Ehlert, Guido; Hetze, Bernd; Kohlschmidt, Horst; Prechtel, Nikolas

    2014-06-01

    Mountain-rescue operations require rapid response whilst also ensuring the security of the rescue teams. Rescuing people in a big rock-face is even more difficult if night or fog prevent sight. The paper presents a technical solution to optimally support, under these aggravated conditions, the location of the casualties and the navigation of the rescue team(s) in a rock-face from a coordination station. In doing so, standard components like a smartphones with GPS functionality, a data communication on a client-server basis and VR visualisation software have been adapted to the specific requirements. Remote support of the navigation in steep rocky terrain requires a highly accurate wall model which permits the local experts of the coordination station to dependably estimate geometry and structure of the rock along the rescue route and to convey necessary directives to the retrieval team. Based on terrestrial laser-scans from different locations, such a model has been generated for the mighty Dachstein South Face (Austria) and texturised with digital photographs. Over a twelve-month period, a transdisciplinary team of the Dresden University of Technology (Informatics, Electrical Engineering, Cartography) developed and integrated the various technical modules of the mountain-rescue support-system (digital rock-face model, optimised GPS data transmission between mobile device, server and client, data filtering, and dynamic visualisation component). In summer 2011 the proper functioning of the prototype was demonstrated in a rescue exercise under foggy dusk conditions.

  10. Artificial intelligence in a mission operations and satellite test environment

    Science.gov (United States)

    Busse, Carl

    1988-01-01

    A Generic Mission Operations System using Expert System technology to demonstrate the potential of Artificial Intelligence (AI) automated monitor and control functions in a Mission Operations and Satellite Test environment will be developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Expert system techniques in a real time operation environment are being studied and applied to science and engineering data processing. Advanced decommutation schemes and intelligent display technology will be examined to develop imaginative improvements in rapid interpretation and distribution of information. The Generic Payload Operations Control Center (GPOCC) will demonstrate improved data handling accuracy, flexibility, and responsiveness in a complex mission environment. The ultimate goal is to automate repetitious mission operations, instrument, and satellite test functions by the applications of expert system technology and artificial intelligence resources and to enhance the level of man-machine sophistication.

  11. Extrapolating Satellite Winds to Turbine Operating Heights

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.

    2016-01-01

    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical...... extrapolation of satellitebased wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long...... effects and also, to some extent, for the limited number of satellite samples. The satellite-based and NWP-simulated wind profiles are almost equally accurate with respect to those from the mast. However, the satellite-based maps have a higher spatial resolution, which is particularly important...

  12. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    Science.gov (United States)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  13. Satellite Demonstration: The Videodisc Technology.

    Science.gov (United States)

    Propp, George; And Others

    1979-01-01

    Originally part of a symposium on educational media for the deaf, the paper describes a satellite demonstration of video disc materials. It is explained that a panel of deaf individuals in Washington, D.C. and another in Nebraska came into direct two-way communication for the first time, and video disc materials were broadcast via the satellite.…

  14. Satellite education: The national technological university

    International Nuclear Information System (INIS)

    Waugh, J.D.

    1989-01-01

    National Technological University (NTU) was founded to address the wide-ranging educational needs of the employed technical professional. A state-of-the-art satellite delivery system allows nationwide coverage by participating engineering colleges. Established in 1984, NTU is now a nonprofit effort of 24 engineering colleges. The NTU network grew rapidly to its present configuration, and enrollment patterns clearly demonstrate the need and acceptance of the concept. Each member school teaches its own courses (with on-campus students enrolled) over the network and awards its own grades. Receiving sites at NTU are operated by a sponsoring organization (i.e., the employer) in accordance with NTU guidelines. Masters degrees are offered in electrical engineering, computer engineering, computer science, engineering management, and manufacturing engineering. Several certificate programs are also available. Typically, NTU telecasts 80 credit courses each term. Over 50,000 attend continuing education courses, tutorials, and research teleconferences each year. Newly acquired channels will enable further expansion

  15. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 2

    Science.gov (United States)

    Greenburg, J. S.; Kaplan, M.; Fishman, J.; Hopkins, C.

    1985-01-01

    The computational procedures used in the evaluation of spacecraft technology programs that impact upon commercial communication satellite operations are discussed. Computer programs and data bases are described.

  16. Implementing an operating room pharmacy satellite.

    Science.gov (United States)

    Powell, P J; Maland, L; Bair, J N; McCall, J D; Wong, K C

    1983-07-01

    Implementation of an operating room (OR) pharmacy satellite is described, and its impact on cost-effectiveness and efficiency of drug distribution is analyzed. The OR satellite provided pharmacy coverage for 30-35 patients per day in 10 centralized surgical suites, 2 obstetric suites, and 1 burn-unit suite in a 401-bed teaching hospital. Objectives of the satellite were to consolidate accountability for drug distribution and control, reduce controlled substance loss and waste, reduce inventory costs, and improve recording of patient charges. Stock on the OR supply cart was reduced, controlled substances were dispensed to anesthesiologists from the satellite, and a system of standardized anesthesiology exchange trays was developed. A new billing form served as both the charging document and replacement list. Reduction in the medication cart stock resulted in smaller discrepancies in patient charges. For the five most commonly used controlled substances, accounting discrepancies were reduced. Inventory turnover increased and inventory dollar value and cost per patient were reduced. The percent of nurses who believed that a pharmacist should work in the area increased from 31% before implementation of the satellite to 95% after. The pilot OR pharmacy satellite was a financial success. Efficiency and effectiveness in drug distribution and control were improved, and communication between pharmacists and other medical personnel working in the OR areas was enhanced.

  17. Soil moisture from operational meteorological satellites

    NARCIS (Netherlands)

    Wagner, W; Naeimi, V.; Scipal, K.; De Jeu, R.A.M.; Fernandez, M.

    2007-01-01

    In recent years, unforeseen advances in monitoring soil moisture from operational satellite platforms have been made, mainly due to improved geophysical retrieval methods. In this study, four recently published soil-moisture datasets are compared with in-situ observations from the REMEDHUS

  18. Soil moisture from Operational Meteorological Satellites

    NARCIS (Netherlands)

    Wagner, W.; Naeimi, V.; Scipal, K.; de Jeu, R.A.M.; Martinez-Fernandez, J.

    2007-01-01

    In recent years, unforeseen advances in monitoring soil moisture from operational satellite platforms have been made, mainly due to improved geophysical retrieval methods. In this study, four recently published soil-moisture datasets are compared with in-situ observations from the REMEDHUS

  19. Building Technological Capability within Satellite Programs in Developing Countries

    Science.gov (United States)

    Wood, Danielle Renee

    capability building assessment shows that most trainee engineers gradually progressed from no experience with satellites through theoretical training to supervised experience; a minority achieved independent experience. At the organizational level, the emerging space organizations achieved high levels of autonomy in project definition and satellite operation, but they were dependent on foreign firms for satellite design, manufacture, test and launch. The case studies can be summarized by three archetypal projects defined as "Politically Pushed," "Structured," and "Risk Taking." Countries in the case studies tended to start in a Politically Pushed mode, and then moved into either Structured or Risk Taking mode. Decision makers in emerging satellite programs can use the results of this dissertation to consider the broad set of architectural options for capability building. Future work will continue to probe how specific architectural decisions impact capability building outcomes in satellite projects and other technologies. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  20. Definition of technology development missions for early space station satellite servicing, volume 1

    Science.gov (United States)

    1983-01-01

    The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.

  1. Soviet satellite communications science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Birch, J.N.; Campanella, S.J.; Gordon, G.D.; McElroy, D.R.; Pritchard, W.L.; Stamminger, R.

    1991-08-01

    This is a report by six US scientists and engineers concerning the current state of the art and projections of future Soviet satellite communications technologies. The panel members are experts in satellite stabilization, spacecraft environments, space power generation, launch systems, spacecraft communications sciences and technologies, onboard processing, ground stations, and other technologies that impact communications. The panel assessed the Soviet ability to support high-data-rate space missions at 128 Mbps by evaluating current and projected Soviet satellite communications technologies. A variety of space missions were considered, including Earth-to-Earth communications via satellites in geostationary or highly elliptical orbits, those missions that require space-to-Earth communications via a direct path and those missions that require space-to-Earth communications via a relay satellite. Soviet satellite communications capability, in most cases, is 10 years behind that of the United States and other industrialized nations. However, based upon an analysis of communications links needed to support these missions using current Soviet capabilities, it is well within the current Soviet technology to support certain space missions outlined above at rates of 128 Mbps or higher, although published literature clearly shows that the Soviet Union has not exceeded 60 Mbps in its current space system. These analyses are necessary but not sufficient to determine mission data rates, and other technologies such as onboard processing and storage could limit the mission data rate well below that which could actually be supported via the communications links. Presently, the Soviet Union appears to be content with data rates in the low-Earth-orbit relay via geostationary mode of 12 Mbps. This limit is a direct result of power amplifier limits, spacecraft antenna size, and the utilization of K{sub u}-band frequencies. 91 refs., 16 figs., 15 tabs.

  2. Mission operations technology

    Science.gov (United States)

    Varsi, Giulio

    In the last decade, the operation of a spacecraft after launch has emerged as a major component of the total cost of the mission. This trend is sustained by the increasing complexity, flexibility, and data gathering capability of the space assets and by their greater reliability and consequent longevity. The trend can, however, be moderated by the progressive transfer of selected functions from the ground to the spacecraft and by application, on the ground, of new technology. Advances in ground operations derive from the introduction in the mission operations environment of advanced microprocessor-based workstations in the class of a few million instructions per second and from the selective application of artificial intelligence technology. In the last few years a number of these applications have been developed, tested in operational settings and successfully demonstrated to users. Some are now being integrated in mission operations facilities. An analysis of mission operations indicates that the key areas are: concurrent control of multiple missions; automated/interactive production of command sequences of high integrity at low cost; automated monitoring of spacecraft health and automated aides for fault diagnosis; automated allocation of resources; automated processing of science data; and high-fidelity, high-speed spacecraft simulation. Examples of major advances in selected areas are described.

  3. Concept for advanced satellite communications and required technologies

    Science.gov (United States)

    Ramler, J. R.; Salzman, J. A.

    1982-01-01

    The advanced communications technology satellite (ACTS) program of NASA is aimed at the development of high risk technologies that will enable exploiting higher frequency bands and techniques for improving frequency reuse. The technologies under development include multiple beam spacecraft antennas, on-board switching and processing, RF devices and components and advanced earth stations. The program focus is on the Ka-band (30/20 GHz) as the implementing frequency since it has five times the bandwidth of either the C- or Ku-bands. However, the technology being developed is applicable to other frequency bands as well and will support a wide range of future communications systems required by NASA, other Government agencies and the commercial sector. An overview is presented of an operational 30/20 GHz satellite system that may evolve. How the system addresses service requirements is discussed, and the technology required and being developed is considered. Previously announced in STAR as N83-11210

  4. Operational evapotranspiration based on Earth observation satellites

    Science.gov (United States)

    Gellens-Meulenberghs, Françoise; Ghilain, Nicolas; Arboleda, Alirio; Barrios, Jose-Miguel

    2016-04-01

    Geostationary satellites have the potential to follow fast evolving atmospheric and Earth surface phenomena such those related to cloud cover evolution and diurnal cycle. Since about 15 years, EUMETSAT has set up a network named 'Satellite Application Facility' (SAF, http://www.eumetsat.int/website/home/Satellites/GroundSegment/Safs/index.html) to complement its ground segment. The Land Surface Analysis (LSA) SAF (http://landsaf.meteo.pt/) is devoted to the development of operational products derived from the European meteorological satellites. In particular, an evapotranspiration (ET) product has been developed by the Royal Meteorological Institute of Belgium. Instantaneous and daily integrated results are produced in near real time and are freely available respectively since the end of 2009 and 2010. The products cover Europe, Africa and the Eastern part of South America with the spatial resolution of the SEVIRI sensor on-board Meteosat Second Generation (MSG) satellites. The ET product algorithm (Ghilain et al., 2011) is based on a simplified Soil-Vegetation-Atmosphere transfer (SVAT) scheme, forced with MSG derived radiative products (LSA SAF short and longwave surface fluxes, albedo). It has been extensively validated against in-situ validation data, mainly FLUXNET observations, demonstrating its good performances except in some arid or semi-arid areas. Research has then been pursued to develop an improved version for those areas. Solutions have been found in reviewing some of the model parameterizations and in assimilating additional satellite products (mainly vegetation indices and land surface temperature) into the model. The ET products will be complemented with related latent and sensible heat fluxes, to allow the monitoring of land surface energy partitioning. The new algorithm version should be tested in the LSA-SAF operational computer system in 2016 and results should become accessible to beta-users/regular users by the end of 2016/early 2017. In

  5. Innovative Networking Concepts Tested on the Advanced Communications Technology Satellite

    Science.gov (United States)

    Friedman, Daniel; Gupta, Sonjai; Zhang, Chuanguo; Ephremides, Anthony

    1996-01-01

    This paper describes a program of experiments conducted over the advanced communications technology satellite (ACTS) and the associated TI-VSAT (very small aperture terminal). The experiments were motivated by the commercial potential of low-cost receive only satellite terminals that can operate in a hybrid network environment, and by the desire to demonstrate frame relay technology over satellite networks. The first experiment tested highly adaptive methods of satellite bandwidth allocation in an integrated voice-data service environment. The second involved comparison of forward error correction (FEC) and automatic repeat request (ARQ) methods of error control for satellite communication with emphasis on the advantage that a hybrid architecture provides, especially in the case of multicasts. Finally, the third experiment demonstrated hybrid access to databases and compared the performance of internetworking protocols for interconnecting local area networks (LANs) via satellite. A custom unit termed frame relay access switch (FRACS) was developed by COMSAT Laboratories for these experiments; the preparation and conduct of these experiments involved a total of 20 people from the University of Maryland, the University of Colorado and COMSAT Laboratories, from late 1992 until 1995.

  6. Hard ACTS to follow. [NASA Advanced Communications Technology Satellite

    Science.gov (United States)

    Moy, L.

    1986-01-01

    The Advanced Communications Technology Satellite (ACTS), the third phase of NASA's 30/20 GHz satellite communications program, is praised for its frugal usage of both the geosynchronous orbital arch and the frequency spectrum resources necessary for communications satellites. Its objective is to verify Ka-band satellite communications concepts and to develop a flight and ground system for validation of the multibeam communications proof-of-concept technologies. The ACTS ground segment (comprised of four types of terminals) is designed to compliment the spacecraft for the SS launch in 1989. Precise coordination between the ground and spacecraft segments is performed by the baseband processor (BBP), which is an in-orbit switchboard, and the tracking error word, which enables the ground terminals to remain synchronized with onboard timing. Fixed spot beams and scan beams, comprising the two types of spot beams used, both operate at the same frequency and hence, conserve frequency resources. In addition, the time division multiple access serves to enhance system efficiency. It is concluded that Ka-band satellites are a practical approach to the better usage of those resources potentially threatened by communications satellites. Comprehensive graphs and block diagrams of the system are included.

  7. OWLS as platform technology in OPTOS satellite

    Science.gov (United States)

    Rivas Abalo, J.; Martínez Oter, J.; Arruego Rodríguez, I.; Martín-Ortega Rico, A.; de Mingo Martín, J. R.; Jiménez Martín, J. J.; Martín Vodopivec, B.; Rodríguez Bustabad, S.; Guerrero Padrón, H.

    2017-12-01

    The aim of this work is to show the Optical Wireless Link to intraSpacecraft Communications (OWLS) technology as a platform technology for space missions, and more specifically its use within the On-Board Communication system of OPTOS satellite. OWLS technology was proposed by Instituto Nacional de Técnica Aeroespacial (INTA) at the end of the 1990s and developed along 10 years through a number of ground demonstrations, technological developments and in-orbit experiments. Its main benefits are: mass reduction, flexibility, and simplification of the Assembly, Integration and Tests phases. The final step was to go from an experimental technology to a platform one. This step was carried out in the OPTOS satellite, which makes use of optical wireless links in a distributed network based on an OLWS implementation of the CAN bus. OPTOS is the first fully wireless satellite. It is based on the triple configuration (3U) of the popular Cubesat standard, and was completely built at INTA. It was conceived to procure a fast development, low cost, and yet reliable platform to the Spanish scientific community, acting as a test bed for space born science and technology. OPTOS presents a distributed OBDH architecture in which all satellite's subsystems and payloads incorporate a small Distributed On-Board Computer (OBC) Terminal (DOT). All DOTs (7 in total) communicate between them by means of the OWLS-CAN that enables full data sharing capabilities. This collaboration allows them to perform all tasks that would normally be carried out by a centralized On-Board Computer.

  8. Advanced Communications Technology Satellite (ACTS) and potential system applications

    Science.gov (United States)

    Wright, David L.; Balombin, Joseph R.; Sohn, Philip Y.

    1990-01-01

    A description of the advanced communications technology satellite (ACTS) system is given with special emphasis on the communication characteristics. Potential satellite communications scenarios, including future operational ACTS-like satellite systems, are discussed. The description of the ACTS system updates previously published ACTS system references. Detailed information on items such as experimental ground stations is presented. The potential services can be generically described as voice, video, and data services. The implementation of these services on future operational ACTS-like systems can lead to unique quality, flexibility, and capacity characteristics at lower service costs. The specific service applications that could be supported range from low to high data rates and include both domestic and international applications.

  9. Advanced Communication Technology Satellite (ACTS) multibeam antenna technology verification experiments

    Science.gov (United States)

    Acosta, Roberto J.; Larko, Jeffrey M.; Lagin, Alan R.

    1992-01-01

    The Advanced Communication Technology Satellite (ACTS) is a key to reaching NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams, and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna with rapidly reconfigurable hopping and fixed spot beam to serve users equipped with small-aperature terminals within the coverage areas. The proposed antenna technology experiments are designed to evaluate in-orbit ACTS multibeam antenna performance (radiation pattern, gain, cross pol levels, etc.).

  10. TECHSAT - A satellite technology analysis program

    Science.gov (United States)

    McCandless, Samuel W., III; McCandless, Samuel W., Jr.

    1992-08-01

    The paper presents a computer-modeling program, called TECHSAT, designed to analyze the effect of new technologies on remote sensing satellites and their subsystems. The user-interactive program resides on an IBM-compatible PC, making it possible to quickly assess mission options (such as orbital altitude and lifetime) and subsystem technologies (i.e., the type of such components as solar cells, batteries, fuel, and data handling hardware). TECHSAT allows the user to analyze several design paths and to quickly select specific designs for more in-depth study. TECHSAT also incorporates a stochastic mission life-cycle cost and sensor availability.

  11. Secure, Autonomous, Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations

    Science.gov (United States)

    Ivancic, William D.; Paulsen, Phillip E.; Miller, Eric M.; Sage, Steen P.

    2013-01-01

    This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe(Registered TradeMark) satellites to obtain space-based sensor data.

  12. Satellite dialysis nursing: technology, caring and power.

    Science.gov (United States)

    Bennett, Paul N

    2011-01-01

    This paper is a report of an exploration of nurses' perceptions of the quality of satellite dialysis care and how aspects of power that influenced quality nursing care. In Australia, the majority of people living with established kidney failure undertake haemodialysis in nurse-run satellite dialysis units. Haemodialysis nurses provide the majority of care, and their perceptions of what constitutes quality nursing care may influence their care of the person receiving haemodialysis. A critical ethnographic study was conducted where data were collected from one metropolitan satellite dialysis unit in Australia over a 12-month period throughout 2005. The methods included non-participant observation, interviews, document analysis, reflective field notes and participant feedback. Three theoretical constructs were identified: 'What is quality?', 'What is not quality?' and What influences quality?' Nurses considered technical knowledge, technical skills and personal respect as characteristics of quality. Long-term blood pressure management and arranging transport for people receiving dialysis treatment were not seen to be priorities for quality care. The person receiving dialysis treatment, management, nurse and environment were considered major factors determining quality dialysis nursing care. Aspects of power and oppression operated for nurses and people receiving dialysis treatment within the satellite dialysis context, and this environment was perceived by the nurses as very different from hospital dialysis units. © 2010 The Author. Journal of Advanced Nursing © 2010 Blackwell Publishing Ltd.

  13. A New Model Proposal for Integrated Satellite Constellation Scheduling within a Planning Horizon given Operational Constraints.

    NARCIS (Netherlands)

    Pinto, M.J.; Barros, A.I.; Noomen, R.; Gelder, P.H.A.J.M. van; Lamballais Tessensohn, T.

    2017-01-01

    The operational use of satellite systems has been increasing due to technological advances and the reduced costs of satellites and their launching. As such it has become more relevant to determine how to better use these new capabilities which is reflected in an increase in application studies in

  14. A Framework for Developing Artificial Intelligence for Autonomous Satellite Operations

    Science.gov (United States)

    Anderson, Jason L.; Kurfess, Franz J.; Puig-Suari, Jordi

    2009-09-01

    In the world of educational satellites, student teams manually conduct operations daily. Educational satellites typically travel in a Low Earth Orbit allowing communication for approximately thirty minutes each day. Manual operations during these times is manageable for student teams as the required manpower is minimal. The international Global Educational Network for Satellite Operations (GENSO), however, promises satellite contact upwards of sixteen hours per day by connecting earth stations globally through the Internet. This large increase in satellite communication time makes manual student operations unreasonable and alternatives must be explored. This paper introduces a framework to conduct autonomous satellite operations using different AI methodologies. This paper additionally demonstrates the framework's usability by introducing a sample rule-based implementation for Cal Poly's CubeSat, CP3.

  15. Unique operations for a highly inclined, elliptical, geosynchronous satellite

    Science.gov (United States)

    Anglin, Patrick T.; Briskman, Robert D.

    2004-08-01

    The first space segment devoted to a Digital Audio Radio Service (DARS) for the Continental United States (CONUS) was established when the last satellite of a three satellite constellation (Flight Models FM-1, FM-2 and FM-3) was launched in November 2000. Each satellite is in a highly inclined, elliptical, geosynchronous orbit that is separated by 120° in Right Angle of the Ascending Node (RAAN) from the other two satellites' orbits. This results in an 8 h phasing in ground track between each satellite. These distinct orbits provide superior look angles and signal availability to mobile receivers in the northern third of the United States when compared to geostationary satellites. However, this unique orbital constellation results in some particular performance and operational differences from geostationary orbit satellites. Some of these are: Earth Sensor noise, maneuver implementation and power management. Descriptions and performance improvements of these orbit specific operations are detailed herein.

  16. The Advanced Communication Technology Satellite and ISDN

    Science.gov (United States)

    Lowry, Peter A.

    1996-01-01

    This paper depicts the Advanced Communication Technology Satellite (ACTS) system as a global central office switch. The ground portion of the system is the collection of earth stations or T1-VSAT's (T1 very small aperture terminals). The control software for the T1-VSAT's resides in a single CPU. The software consists of two modules, the modem manager and the call manager. The modem manager (MM) controls the RF modem portion of the T1-VSAT. It processes the orderwires from the satellite or from signaling generated by the call manager (CM). The CM controls the Recom Laboratories MSPs by receiving signaling messages from the stacked MSP shelves ro units and sending appropriate setup commands to them. There are two methods used to setup and process calls in the CM; first by dialing up a circuit using a standard telephone handset or, secondly by using an external processor connected to the CPU's second COM port, by sending and receiving signaling orderwires. It is the use of the external processor which permits the ISDN (Integrated Services Digital Network) Signaling Processor to implement ISDN calls. In August 1993, the initial testing of the ISDN Signaling Processor was carried out at ACTS System Test at Lockheed Marietta, Princeton, NJ using the spacecraft in its test configuration on the ground.

  17. Integration of an ion engine on the Communications Technology Satellite.

    Science.gov (United States)

    Payne, W. F.; Finke, R. C.

    1972-01-01

    An ion engine subsystem intended for satellite stationkeeping tasks is described. Ion thrusters are chosen to perform the task because the specific impulse is at least an order of magnitude higher than the commonly used reaction control jets. The higher the value of specific impulse, the greater the total impulse that can be attained for a given weight of propellant, hence cost benefits result. The integration, subsystem testing, and the operating plans for the ion engine experiment to be flown in 1975 on the Canadian Communications Technology Satellite (CTS) are described. The subsystem is designed to demonstrate north-south stationkeeping, attitude control by means of thrust vectoring, long-term space storage and restart capability, and compatibility with a high powered communications transponder.

  18. Operations research investigations of satellite power stations

    Science.gov (United States)

    Cole, J. W.; Ballard, J. L.

    1976-01-01

    A systems model reflecting the design concepts of Satellite Power Stations (SPS) was developed. The model is of sufficient scope to include the interrelationships of the following major design parameters: the transportation to and between orbits; assembly of the SPS; and maintenance of the SPS. The systems model is composed of a set of equations that are nonlinear with respect to the system parameters and decision variables. The model determines a figure of merit from which alternative concepts concerning transportation, assembly, and maintenance of satellite power stations are studied. A hybrid optimization model was developed to optimize the system's decision variables. The optimization model consists of a random search procedure and the optimal-steepest descent method. A FORTRAN computer program was developed to enable the user to optimize nonlinear functions using the model. Specifically, the computer program was used to optimize Satellite Power Station system components.

  19. Satellite switched FDMA advanced communication technology satellite program

    Science.gov (United States)

    Atwood, S.; Higton, G. H.; Wood, K.; Kline, A.; Furiga, A.; Rausch, M.; Jan, Y.

    1982-01-01

    The satellite switched frequency division multiple access system provided a detailed system architecture that supports a point to point communication system for long haul voice, video and data traffic between small Earth terminals at Ka band frequencies at 30/20 GHz. A detailed system design is presented for the space segment, small terminal/trunking segment at network control segment for domestic traffic model A or B, each totaling 3.8 Gb/s of small terminal traffic and 6.2 Gb/s trunk traffic. The small terminal traffic (3.8 Gb/s) is emphasized, for the satellite router portion of the system design, which is a composite of thousands of Earth stations with digital traffic ranging from a single 32 Kb/s CVSD voice channel to thousands of channels containing voice, video and data with a data rate as high as 33 Mb/s. The system design concept presented, effectively optimizes a unique frequency and channelization plan for both traffic models A and B with minimum reorganization of the satellite payload transponder subsystem hardware design. The unique zoning concept allows multiple beam antennas while maximizing multiple carrier frequency reuse. Detailed hardware design estimates for an FDMA router (part of the satellite transponder subsystem) indicate a weight and dc power budget of 353 lbs, 195 watts for traffic model A and 498 lbs, 244 watts for traffic model B.

  20. Autonomous, agile micro-satellites and supporting technologies

    International Nuclear Information System (INIS)

    Breitfeller, E; Dittman, M D; Gaughan, R J; Jones, M S; Kordas, J F; Ledebuhr, A G; Ng, L C; Whitehead, J C; Wilson, B

    1999-01-01

    This paper updates the on-going effort at Lawrence Livermore National Laboratory to develop autonomous, agile micro-satellites (MicroSats). The objective of this development effort is to develop MicroSats weighing only a few tens of kilograms, that are able to autonomously perform precision maneuvers and can be used telerobotically in a variety of mission modes. The required capabilities include satellite rendezvous, inspection, proximity-operations, docking, and servicing. The MicroSat carries an integrated proximity-operations sensor-suite incorporating advanced avionics. A new self-pressurizing propulsion system utilizing a miniaturized pump and non-toxic mono-propellant hydrogen peroxide was successfully tested. This system can provide a nominal 25 kg MicroSat with 200-300 m/s delta-v including a warm-gas attitude control system. The avionics is based on the latest PowerPC processor using a CompactPCI bus architecture, which is modular, high-performance and processor-independent. This leverages commercial-off-the-shelf (COTS) technologies and minimizes the effects of future changes in processors. The MicroSat software development environment uses the Vx-Works real-time operating system (RTOS) that provides a rapid development environment for integration of new software modules, allowing early integration and test. We will summarize results of recent integrated ground flight testing of our latest non-toxic pumped propulsion MicroSat testbed vehicle operated on our unique dynamic air-rail

  1. Technology in School Foodservice Operations.

    Science.gov (United States)

    Callahan, Tom; Sharma, Vijay K.

    2002-01-01

    Describes the current state of technology to manage school food-service operations, including, for example, the use of automation to identify and feed needy students and the use of the Internet. Describes challenges of implementing an automated system. (PKP)

  2. NOAA Geostationary Operational Environmental Satellite (GOES) Imager Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Geostationary Operational Environmental Satellite (GOES) series provides continuous measurements of the atmosphere and surface over the Western Hemisphere....

  3. Enterprise Level Status and Control of Multi-Satellite Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — Single-satellite mission operation centers are used for nearly all Goddard Space Flight Center (GSFC) mission ground data systems, with a focus on localized data...

  4. NOAA Polar-orbiting Operational Environmental Satellites (POES) Radiometer Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Polar-orbiting Operational Environmental Satellite (POES) series offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day...

  5. Operational Leadership and Advancing Technology

    Science.gov (United States)

    2009-05-04

    leadership , most agree that leadership , especially military leadership , is not synonymous with “ management .” 9 Managers often focus solely on...FINAL 3. DATES COVERED (From - To) 9 Feb – 4 May 2009 4. TITLE AND SUBTITLE Operational Leadership and Advancing Technology 5a...operational leader must use his authority and leadership skills to get by in from all concerned to maximize technological advances. 15. SUBJECT TERMS

  6. Richland Operations Office technology summary

    International Nuclear Information System (INIS)

    1994-05-01

    This document has been prepared by the Department of Energy's Environmental Management Office of Technology Development to highlight its research, development, demonstration, testing, and evaluation activities funded through the Richland Operations Office. Technologies and processes described have the potential to enhance cleanup and waste management efforts

  7. Richland Operations Office technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This document has been prepared by the Department of Energy`s Environmental Management Office of Technology Development to highlight its research, development, demonstration, testing, and evaluation activities funded through the Richland Operations Office. Technologies and processes described have the potential to enhance cleanup and waste management efforts.

  8. Crisis Management- Operational Logistics & Asset Visibility Technologies

    Science.gov (United States)

    2006-06-01

    Communications, Logistics Operations, Relief Operations, Common Operational Picture 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified...satellite systems into space that will supply extensive broadband data capabilities. If everything works as predicted , users of satellite broadband will be...http://java.sun.com/developer/technicalArticles/ Ecommerce /rfid/ Microsoft. (2006). Hand-held RFID Reader. Retrieved May 11, 2006, from http

  9. Cultures in orbit: Satellite technologies, global media and local practice

    Science.gov (United States)

    Parks, Lisa Ann

    Since the launch of Sputnik in 1957, satellite technologies have had a profound impact upon cultures around the world. "Cultures in Orbit" examines these seemingly disembodied, distant relay machines in relation to situated social and cultural processes on earth. Drawing upon a range of materials including NASA and UNESCO documents, international satellite television broadcasts, satellite 'development' projects, documentary and science fiction films, remote sensing images, broadcast news footage, World Wide Web sites, and popular press articles I delineate and analyze a series of satellite mediascapes. "Cultures in Orbit" analyzes uses of satellites for live television relay, surveillance, archaeology and astronomy. The project examines such satellite media as the first live global satellite television program Our World, Elvis' Aloha from Hawaii concert, Aboriginal Australian satellite programs, and Star TV's Asian music videos. In addition, the project explores reconnaissance images of mass graves in Bosnia, archaeological satellite maps of Cleopatra's underwater palace in Egypt, and Hubble Space Telescope images. These case studies are linked by a theoretical discussion of the satellite's involvement in shifting definitions of time, space, vision, knowledge and history. The satellite fosters an aesthetic of global realism predicated on instantaneous transnational connections. It reorders linear chronologies by revealing traces of the ancient past on the earth's surface and by searching in deep space for the "edge of time." On earth, the satellite is used to modernize and develop "primitive" societies. Satellites have produced new electronic spaces of international exchange, but they also generate strategic maps that advance Western political and cultural hegemony. By technologizing human vision, the satellite also extends the epistemologies of the visible, the historical and the real. It allows us to see artifacts and activities on earth from new vantage points

  10. United States societal experiments via the Communications Technology Satellite

    Science.gov (United States)

    Donoughe, P. L.

    1976-01-01

    After a brief description of the Communication Technology Satellite and its U.S. coverage, the U.S. societal experiments via the CTS are discussed. These include education (college curriculum sharing, and project interchange), health care (biomedical communications, health communications, and communication support for decentralized education), and community and special experiments (satellite library information network, and transportable earth terminal).

  11. A Case Study of Three Satellite Technology Demonstration School Sites.

    Science.gov (United States)

    Law, Gordon

    The Satellite Technology Demonstration (STD) represented a cooperative and complex effort involving federal, regional, state and local interests and demonstrated the feasibility of media distribution by communication satellite of social services for rural audiences. As part of a comprehensive evaluation plan, the summative data base was augmented…

  12. Satellite Technologies and Services: Implications for International Distance Education.

    Science.gov (United States)

    Stahmer, Anna

    1987-01-01

    This examination of international distance education and open university applications of communication satellites at the postsecondary level notes activities in less developed countries (LDCs); presents potential models for cooperation; and describes technical systems for distance education, emphasizing satellite technology and possible problems…

  13. Enabling Technology for Small Satellite Launch Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Access to space for Small Satellites is enabled by the use of excess launch capacity on existing launch vehicles. A range of sizes, form factors and masses of small...

  14. Review of deployment technology for tethered satellite systems

    Science.gov (United States)

    Yu, B. S.; Wen, H.; Jin, D. P.

    2018-03-01

    Tethered satellite systems (TSSs) have attracted significant attention due to their potential and valuable applications for scientific research. With the development of various launched on-orbit missions, the deployment of tethers is considered a crucial technology for operation of a TSS. Both past orbiting experiments and numerical results have shown that oscillations of the deployed tether due to the Coriolis force and environmental perturbations are inevitable and that the impact between the space tether and end-body at the end of the deployment process leads to complicated nonlinear phenomena. Hence, a set of suitable control methods plays a fundamental role in tether deployment. This review article summarizes previous work on aspects of the dynamics, control, and ground-based experiments of tether deployment. The relevant basic principles, analytical expressions, simulation cases, and experimental results are presented as well.

  15. Chicago Operations Office: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation (RDDT and E) activities funded through the Chicago Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US Industry`s competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents which highlight technology development activities within each of the OTD program elements. OTD technologies addresses three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. These problems are not unique to DOE, but are associated with other Federal agency and industry sites as well. Thus, technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets.

  16. Chicago Operations Office: Technology summary

    International Nuclear Information System (INIS)

    1994-12-01

    This document has been prepared by the Department of Energy's (DOE) Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation (RDDT and E) activities funded through the Chicago Operations Office. Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US Industry's competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents which highlight technology development activities within each of the OTD program elements. OTD technologies addresses three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. These problems are not unique to DOE, but are associated with other Federal agency and industry sites as well. Thus, technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets

  17. Description of Simulated Small Satellite Operation Data Sets

    Science.gov (United States)

    Kulkarni, Chetan S.; Guarneros Luna, Ali

    2018-01-01

    A set of two BP930 batteries (Identified as PK31 and PK35) were operated continuously for a simulated satellite operation profile completion for single cycle. The battery packs were charged to an initial voltage of around 8.35 V for 100% SOC before the experiment was started. This document explains the structure of the battery data sets. Please cite this paper when using this dataset: Z. Cameron, C. Kulkarni, A. Guarneros, K. Goebel, S. Poll, "A Battery Certification Testbed for Small Satellite Missions", IEEE AUTOTESTCON 2015, Nov 2-5, 2015, National Harbor, MA

  18. Advanced Power Technology Development Activities for Small Satellite Applications

    Science.gov (United States)

    Piszczor, Michael F.; Landis, Geoffrey A.; Miller, Thomas B.; Taylor, Linda M.; Hernandez-Lugo, Dionne; Raffaelle, Ryne; Landi, Brian; Hubbard, Seth; Schauerman, Christopher; Ganter, Mathew; hide

    2017-01-01

    NASA Glenn Research Center (GRC) has a long history related to the development of advanced power technology for space applications. This expertise covers the breadth of energy generation (photovoltaics, thermal energy conversion, etc.), energy storage (batteries, fuel cell technology, etc.), power management and distribution, and power systems architecture and analysis. Such advanced technology is now being developed for small satellite and cubesat applications and could have a significant impact on the longevity and capabilities of these missions. A presentation during the Pre-Conference Workshop will focus on various advanced power technologies being developed and demonstrated by NASA, and their possible application within the small satellite community.

  19. How to Get Data from NOAA Environmental Satellites: An Overview of Operations, Products, Access and Archive

    Science.gov (United States)

    Donoho, N.; Graumann, A.; McNamara, D. P.

    2015-12-01

    In this presentation we will highlight access and availability of NOAA satellite data for near real time (NRT) and retrospective product users. The presentation includes an overview of the current fleet of NOAA satellites and methods of data distribution and access to hundreds of imagery and products offered by the Environmental Satellite Processing Center (ESPC) and the Comprehensive Large Array-data Stewardship System (CLASS). In particular, emphasis on the various levels of services for current and past observations will be presented. The National Environmental Satellite, Data, and Information Service (NESDIS) is dedicated to providing timely access to global environmental data from satellites and other sources. In special cases, users are authorized direct access to NESDIS data distribution systems for environmental satellite data and products. Other means of access include publicly available distribution services such as the Global Telecommunication System (GTS), NOAA satellite direct broadcast services and various NOAA websites and ftp servers, including CLASS. CLASS is NOAA's information technology system designed to support long-term, secure preservation and standards-based access to environmental data collections and information. The National Centers for Environmental Information (NCEI) is responsible for the ingest, quality control, stewardship, archival and access to data and science information. This work will also show the latest technology improvements, enterprise approach and future plans for distribution of exponentially increasing data volumes from future NOAA missions. A primer on access to NOAA operational satellite products and services is available at http://www.ospo.noaa.gov/Organization/About/access.html. Access to post-operational satellite data and assorted products is available at http://www.class.noaa.gov

  20. Definition of technology development missions for early space station satellite servicing, volume 2

    Science.gov (United States)

    1983-01-01

    The results of all aspects of the early space station satellite servicing study tasks are presented. These results include identification of servicing tasks (and locations), identification of servicing mission system and detailed objectives, functional/operational requirements analyses of multiple servicing scenarios, assessment of critical servicing technology capabilities and development of an evolutionary capability plan, design and validation of selected servicing technology development missions (TDMs), identification of space station satellite servicing accommodation needs, and the cost and schedule implications of acquiring both required technology capability development and conducting the selected TDMs.

  1. Design of Tokyo Tech nano-satellite Cute-1.7+APD II and its operation

    Science.gov (United States)

    Ashida, Hiroki; Fujihashi, Kota; Inagawa, Shinichi; Miura, Yoshiyuki; Omagari, Kuniyuki; Miyashita, Naoki; Matunaga, Saburo; Toizumi, Takahiro; Kataoka, Jun; Kawai, Nobuyuki

    2010-05-01

    Cute-1.7+APD II is the 3rd satellite developed by the Laboratory for Space Systems at the Tokyo Institute of Technology. Cute-1.7+APD II is the current successor to Cute-1.7+APD. This new satellite is based on its predecessor but has some modifications to increase its reliability and robustness against radiation effects, electrical power shortage and so on. The satellite was launched by an ISRO PSLV-C9 rocket on April 28, 2008 and has operated for more than 9 months. Throughout its operation, many missions such as attitude determination and control experiments, scientific observations, photographing and communication experiments have been conducted. In this paper an overview of the Cute-1.7 series and configurations, modifications and operation results of Cute-1.7+APD II are introduced.

  2. Anti-jamming Technology in Small Satellite Communication

    Science.gov (United States)

    Jia, Zixiang

    2018-01-01

    Small satellite communication has an increasingly important position among the wireless communications due to the advantages of low cost and high technology. However, in view of the case that its relay station stays outside the earth, its uplink may face interference from malicious signal frequently. Here this paper classified enumerates existing interferences, and proposes channel signals as main interference by comparison. Based on a basic digital communication process, then this paper discusses the possible anti - jamming techniques that commonly be realized at all stages in diverse processes, and comes to the conclusion that regarding the spread spectrum technology and antenna anti-jamming technology as fundamental direction of future development. This work provides possible thought for the design of new small satellite communication system with the coexistence of multi - technologies. This basic popular science can be consulted for people interested in small satellite communication.

  3. Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) Rendezvous Proximity Operations Design and Trade Studies

    Science.gov (United States)

    Griesbach, J.; Westphal, J. J.; Roscoe, C.; Hawes, D. R.; Carrico, J. P.

    2013-09-01

    The Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) program is to demonstrate rendezvous proximity operations (RPO), formation flying, and docking with a pair of 3U CubeSats. The program is sponsored by NASA Ames via the Office of the Chief Technologist (OCT) in support of its Small Spacecraft Technology Program (SSTP). The goal of the mission is to demonstrate complex RPO and docking operations with a pair of low-cost 3U CubeSat satellites using passive navigation sensors. The program encompasses the entire system evolution including system design, acquisition, satellite construction, launch, mission operations, and final disposal. The satellite is scheduled for launch in Fall 2015 with a 1-year mission lifetime. This paper provides a brief mission overview but will then focus on the current design and driving trade study results for the RPO mission specific processor and relevant ground software. The current design involves multiple on-board processors, each specifically tasked with providing mission critical capabilities. These capabilities range from attitude determination and control to image processing. The RPO system processor is responsible for absolute and relative navigation, maneuver planning, attitude commanding, and abort monitoring for mission safety. A low power processor running a Linux operating system has been selected for implementation. Navigation is one of the RPO processor's key tasks. This entails processing data obtained from the on-board GPS unit as well as the on-board imaging sensors. To do this, Kalman filters will be hosted on the processor to ingest and process measurements for maintenance of position and velocity estimates with associated uncertainties. While each satellite carries a GPS unit, it will be used sparsely to conserve power. As such, absolute navigation will mainly consist of propagating past known states, and relative navigation will be considered to be of greater importance. For relative observations

  4. Communication satellite technology: State of the art and development opportunities

    Science.gov (United States)

    Woodford, J. B. (Compiler)

    1978-01-01

    Opportunities in communication satellite technology are identified and defined. Factors that tend to limit the ready availability of satellite communication to an increasingly wide group of users are evaluated. Current primary limitations on this wide utilization are the availability of frequency and/or synchronous equatorial satellite positions and the cost of individual user Earth terminals. The former could be ameliorated through the reuse of frequencies, the use of higher frequency bands, and the reduction of antenna side lobes. The latter limitation requires innovative hardware, design, careful system design, and large scale production.

  5. Advanced Microelectronics Technologies for Future Small Satellite Systems

    Science.gov (United States)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  6. Use of Earth Observing Satellites for Operational Hazard Support

    Science.gov (United States)

    Wood, H. M.; Lauritson, L.

    The National Oceanic and Atmospheric Administration (NOAA) relies on Earth observing satellite data to carry out its operational mission to monitor, predict, and assess changes in the Earth's atmosphere, land, and oceans. NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) uses satellite data to help lessen the impacts of natural and man-made disasters due to tropical cyclones, flash floods, heavy snowstorms, volcanic ash clouds (for aviation safety), sea ice (for shipping safety), and harmful algal blooms. Communications systems on NOAA satellites are used to support search and rescue and to relay data from data collection platforms to a variety of users. NOAA's Geostationary (GOES) and Polar (POES) Operational Environmental Satellites are used in conjunction with other satellites to support NOAA's operational mission. While NOAA's National Hurricane Center is responsible for predicting tropical cyclones affecting the U.S. mainland, NESDIS continuously monitors the tropics world wide, relaying valuable satellite interpretations of tropical systems strength and position to users throughout the world. Text messages are sent every six hours for tropical cyclones in the Western Pacific, South Pacific, and Indian Oceans. To support the monitoring, prediction, and assessment of flash floods and winter storms, NESDIS sends out text messages alerting U.S. weather forecast offices whenever NOAA satellite imagery indicates the occurrence of heavy rain or snow. NESDIS also produces a 24-hour rainfall composite graphic image covering those areas affected by heavy precipitation. The International Civil Aviation Organization (ICAO) and other aviation concerns recognized the need to keep aviators informed of volcanic hazards. To that end, nine Volcanic Ash Advisory Centers (VAAC's) were created to monitor volcanic ash plumes within their assigned airspace. NESDIS hosts one of the VAAC's. Although the NESDIS VAAC's primary responsibility is the

  7. Satellite systems for personal applications concepts and technology

    CERN Document Server

    Richharia, Madhavendra

    2010-01-01

    Presents the concepts, technology, and role of satellite systems in support of personal applications, such as mobile and broadband communications, navigation, television, radio and multimedia broadcasting, safety of life services, etc. This book presents a novel perspective on satellite systems, reflecting the modern personal technology context, and hence a focus on the individual as end-user. The book begins by outlining key generic concepts before discussing techniques adopted in particular application areas; next, it exemplifies these techniques through discussion of state-of-art c

  8. An Evolutionary Approach to Small Satellite Technology Development: A Status Report on SSTL Platforms, Payload and Missions

    OpenAIRE

    Ward, Jeffrey

    1995-01-01

    Between 1989 and 1995, 10 micro satellites were constructed using SSTL' s 50 kg modular micro satellite design. Eight are presently in orbit, while two are scheduled for launches during summer 1995. Each satellite has incorporated design enhancements, which can be grouped roughly into six distinct design generations. This rapid design and test cycle, combined with in-orbit operational experience, has fostered rapid advancement of technology within the basic modular design. When measured betwe...

  9. Record charging events from Applied Technology Satellite 6

    Science.gov (United States)

    Olsen, R. C.

    1987-01-01

    Applied Technology Satellite 6 regularly charged to large negative potentials in sunlight and eclipse in the earth's midnight to dawn region. This geosynchronous satellite normally reached potentials of -100 to -1000 V in sunlight, and potentials of -100 to -10,000 V in eclipse. The largest potential recorded in eclipse for this satellite was -19 kV, in an environment characterized by an electron temperature of 18 keV. The most negative potential recorded in sunlight was -2 kV, at local dawn, while immersed in an 11-keV electron population. These are the most negative potentials reported from the geosynchronous orbit to date for eclipse and sunlight, respectively. The magnitudes of these potentials indicate the need for methods of potential control on satellites at these altitudes, particularly those with shadowed insulating surfaces.

  10. Progress in MMIC technology for satellite communications

    Science.gov (United States)

    Haugland, Edward J.; Leonard, Regis F.

    1987-01-01

    NASA's Lewis Research Center is actively involved in the development of monolithic microwave and millimeter-wave integrated circuits (MMICs). The approach of the program is to support basic research under grant or in-house, while MMIC development is done under contract, thereby facilitating the transfer of technology to users. Preliminary thrusts of the program have been the extension of technology to higher frequencies (60 GHz), degrees of complexity, and performance (power, efficiency, noise figure) by utilizing novel circuit designs, processes, and materials. A review of the progress made so far is presented.

  11. Joint Polar Satellite System's Operational and Research Applications from Suomi NPP

    Science.gov (United States)

    Goldberg, M.

    2014-12-01

    The Joint Polar Satellite System is NOAA's new operational satellite program and includes the Suomi National Polar-orbiting Partnership (S-NPP) as a bridge between NOAA's operational Polar Orbiting Environmental Satellite (POES) series, which began in 1978, and the first JPSS operational satellite scheduled for launch in 2017. JPSS provides critical data for key operational and research applications, and includes: 1) Weather forecasting - data from the JPSS Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are needed to forecast weather events out to 7 days. Nearly 85% of all data used in weather forecasting are from polar orbiting satellites. 2) Environmental monitoring - data from the JPSS Visible Infrared Imager Radiometer Suite (VIIRS) are used to monitor the environment including the health of coastal ecosystems, drought conditions, fire, smoke, dust, snow and ice, and the state of oceans, including sea surface temperature and ocean color. 3) Climate monitoring - data from JPSS instruments, including OMPS and CERES will provide continuity to climate data records established using NOAA POES and NASA Earth Observing System (EOS) satellite observations. These data records provide a unified and coherent long-term observation of the environment; the records and products are critical to climate modelers, scientists, and decision makers concerned with advancing climate change understanding, prediction, mitigation and adaptation strategies, and policies. To bridge the gap between products and applications, the JPSS Program has established a proving ground program to optimize the use of JPSS data with other data sources to improve key products and services. A number of operational and research applications will be discussed, including the use of CrIS and ATMS for improved weather forecasting, the use of VIIRS for environmental monitoring of sea ice, smoke, fire, floods, droughts, coastal water quality (e.g. harmful algal blooms

  12. Torque compensation technology for the geostationary meteorological satellite

    Science.gov (United States)

    Wang, Zhigang; Wang, Lusha; Chen, Shilu; Li, Qing

    2009-12-01

    To acquire high quality image, the new generation Geostationary Meteorological Satellite in China (GMSC) adopts three-axis stabilized attitude control mode, besides an advanced control system is required to be designed to get higher pointing precision and degree of stability of the satellite. However, the ability of the control system is limited. Torque compensation technology is studied in this paper aiming at rejecting the disturbance factors, which cannot be absorbed by the control system. In the research of torque compensation technology, the main factors that influence the degree of stability of satellite are analyzed; the objects compensated are confirmed through analysis of simulation; the system technical concept of torque compensation is designed; the mathematical models of the compensated objects and compensation devices are founded; the torque compensation arithmetic is designed; the valid arithmetic of torque compensation is proved through simulation. The research provides theoretical principles to develop the new generation GMSC.

  13. Science operations management. [with Infrared Astronomy Satellite project

    Science.gov (United States)

    Squibb, G. F.

    1984-01-01

    The operation teams engaged in the IR Astronomical Satellite (IRAS) project included scientists from the IRAS International Science Team. The detailed involvement of these scientists in the design, testing, validation, and operations phases of the IRAS mission contributed to the success of this project. The Project Management Group spent a substantial amount of time discussing science-related issues, because science team coleaders were members from the outset. A single scientific point-of-contact for the Management Group enhanced the depth and continuity of agreement reached in decision-making.

  14. Satellite Technology Contribution to Water and Food Security

    Science.gov (United States)

    Brown, Molly E.

    2010-01-01

    This slide presentation reviews the issue of supplies of food, the relationship to food security, the ability of all people to attain sufficient food for an active and healthy life, and the ability to use satellite technology and remote sensing to assist with planning and act as an early warning system.

  15. Global Navigation Satellite Systems – Perspectives on Development and Threats to System Operation

    Directory of Open Access Journals (Sweden)

    Krzysztof Czaplewski

    2016-07-01

    Full Text Available The rapid development of satellite navigation and timing technologies and the broad availability of user equipment and applications has dramatically changed the world over the last 20 years. It took 38 years from the launch of the world’s first artificial satellite, Sputnik 1, (October 4, 1957 to the day NAVSTAR GPS became fully operational (July 17, 1995. In the next 20 years user equipment became widely available at the consumer level, and 10 global and regional satellite systems were partially or fully deployed. These highly precise signals provided free to the user have been incorporated by clever engineers into virtually every technology. At the same time interference with these signals (spoofing and jamming have become a significant day to day problem in many societies and pose a significant threat to critical infrastructure. This paper provides information on the current status and development of navigation satellite systems based on data provided by the systems' administrators. It also provides information on Loran/eLoran, a system which many nations have selected as a complement and backup for satellite navigation systems.

  16. A new algorithm for agile satellite-based acquisition operations

    Science.gov (United States)

    Bunkheila, Federico; Ortore, Emiliano; Circi, Christian

    2016-06-01

    Taking advantage of the high manoeuvrability and the accurate pointing of the so-called agile satellites, an algorithm which allows efficient management of the operations concerning optical acquisitions is described. Fundamentally, this algorithm can be subdivided into two parts: in the first one the algorithm operates a geometric classification of the areas of interest and a partitioning of these areas into stripes which develop along the optimal scan directions; in the second one it computes the succession of the time windows in which the acquisition operations of the areas of interest are feasible, taking into consideration the potential restrictions associated with these operations and with the geometric and stereoscopic constraints. The results and the performances of the proposed algorithm have been determined and discussed considering the case of the Periodic Sun-Synchronous Orbits.

  17. A Fast, Affordable, Science and Technology SATellite (FASTSAT) and the Small Satellite Market Development Environment

    Science.gov (United States)

    Boudreaux, Mark; Montgomery, Edward; Cacas, Joseph

    2008-01-01

    The National Aeronautics and Space Administr ation at Marshall Space Flight Center and the National Space Science and Technology Center in Huntsville Alabama USA, are jointly developing a new class of science and technology mission small satellites. The Fast, Affordable, Science and Technology SATell ite (FASTSAT) was designed and developed using a new collaborative and best practices approach. The FASTSAT development, along with the new class of low cost vehicles currently being developed, would allow performance of 30 kg payload mass missions for a cost of less than 10 million US dollars.

  18. Assessment of a satellite power system and six alternative technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wolsko, T.; Whitfield, R.; Samsa, M.; Habegger, L.S.; Levine, E.; Tanzman, E.

    1981-04-01

    The satellite power system is assessed in comparison to six alternative technologies. The alternatives are: central-station terrestrial photovoltaic systems, conventional coal-fired power plants, coal-gasification/combined-cycle power plants, light water reactor power plants, liquid-metal fast-breeder reactors, and fusion. The comparison is made regarding issues of cost and performance, health and safety, environmental effects, resources, socio-economic factors, and insitutional issues. The criteria for selecting the issues and the alternative technologies are given, and the methodology of the comparison is discussed. Brief descriptions of each of the technologies considered are included. (LEW)

  19. A university-based distributed satellite mission control network for operating professional space missions

    Science.gov (United States)

    Kitts, Christopher; Rasay, Mike

    2016-03-01

    For more than a decade, Santa Clara University's Robotic Systems Laboratory has operated a unique, distributed, internet-based command and control network for providing professional satellite mission control services for a variety of government and industry space missions. The system has been developed and is operated by students who become critical members of the mission teams throughout the development, test, and on-orbit phases of these missions. The mission control system also supports research in satellite control technology and hands-on student aerospace education. This system serves as a benchmark for its comprehensive nature, its student-centric nature, its ability to support NASA and industry space missions, and its longevity in providing a consistent level of professional services. This paper highlights the unique features of this program, reviews the network's design and the supported spacecraft missions, and describes the critical programmatic features of the program that support the control of professional space missions.

  20. Advanced Multimission Operations Systems Tech (AMMOS) Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — AMMOS provides multi-mission operations, navigation, design, and training tools for Planetary Science flight missions, and undertakes technology investments for...

  1. Crisis Management- Operational Logistics & Asset Visibility Technologies

    National Research Council Canada - National Science Library

    Braunbeck, Richard A; Mastria, Michael F

    2006-01-01

    The purpose of this MBA Project was to identify and explore logistical frameworks that leverage technology to overcome problems associated with coordinated logistics operations during crisis management...

  2. Programming a real-time operating system for satellite control applications Satellite Control Applications

    International Nuclear Information System (INIS)

    Omer, M.; Anjum, O.; Suddle, M.R.

    2004-01-01

    With the realization of ideas like formation flights and multi-body space vehicles the demands on an attitude control system have become increasingly complex. Even in its most simplified form, the control system for a typical geostationary satellite has to run various supervisory functions along with determination and control algorithms side by side. Within each algorithm it has to employ multiple actuation and sensing mechanisms and service real time interrupts, for example, in the case of actuator saturation and sensor data fusion. This entails the idea of thread scheduling and program synchronization, tasks specifically meant for a real time OS. This paper explores the embedding of attitude determination and control loop within the framework of a real time operating system provided for TI's DSP C6xxx series. The paper details out the much functionality provided within the scaleable real time kernel and the analysis and configuration tools available, It goes on to describe a layered implementation stack associated with a typical control for Geo Stationary satellites. An application for control is then presented in which state of the art analysis tools are employed to view program threads, synchronization semaphores, hardware interrupts and data exchange pipes operating in real time. (author)

  3. Mobile communications satellites innovative services, advanced technology, new opportunities

    Science.gov (United States)

    Wiedeman, R. A.; Anglin, R. L.

    A new service is described that will be introduced in the next few years and will provide communications by satellite to mobile users equipped with inexpensive transceivers utilizing omnidirectional or low-gain antennas similar to cellular radio. The system operates in the UHF band and provides demand-access SCPC communications services over a wide area coverage. Examples considered include a bilateral domestic system (United States and Canada) and a multinational regional system (Pacific basin).

  4. An Unconventional Path Toward the Operational Leveraging of Research-Grade Environmental Satellites

    Science.gov (United States)

    Miller, S.; Hawkins, J.; Turk, J.

    2007-12-01

    The traditional and proper path followed in transitioning research applications to operational support entails a rigorous gamut of quality control, testing, validation, technical documentation, and software optimization. In times of dire need when observations are in high demand and resources are few, however, convention must sometimes give way to outside-of-the-box thinking. Here, considerations made for manageable compromises forge a pathway to accelerated transition of developing technologies. Such was the case in Coalition mobilizations immediately following the 9/11 attacks, when the United States Office of Naval Research issued a challenge to the environmental research and development community to expedite the delivery of any and all capabilities bearing support relevance to mission planners and executors involved in the increasingly likely military response. It was under this directive that the Naval Research Laboratory's (NRL) Satellite Meteorological Applications Section reconfigured its base research program and internal processing infrastructure to effectively transform itself into an agile operational production system for rapid transition of value-added satellite environmental characterization products centered around next-generation 'research grade' satellite observing systems. Integral to this transformation was the coincident establishment of the Near Real-Time Processing Effort (NRTPE) coordinated among members of the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), and Department of Defense (DoD; Air Force and Navy participants) working in a 'badgeless environment'. The NRTPE provided a portal for acquisition of NASA's MODerate resolution Imaging Spectroradiometer (MODIS) data at 2-4 hr latency worldwide. By virtue of NRTPE modifications to the Terra and Aqua satellite telemetry downlinks and transmission across the high-speed Defense Research/Engineering Network, data previously

  5. Research on Coal Exploration Technology Based on Satellite Remote Sensing

    Directory of Open Access Journals (Sweden)

    Dong Xiao

    2016-01-01

    Full Text Available Coal is the main source of energy. In China and Vietnam, coal resources are very rich, but the exploration level is relatively low. This is mainly caused by the complicated geological structure, the low efficiency, the related damage, and other bad situations. To this end, we need to make use of some advanced technologies to guarantee the resource exploration is implemented smoothly and orderly. Numerous studies show that remote sensing technology is an effective way in coal exploration and measurement. In this paper, we try to measure the distribution and reserves of open-air coal area through satellite imagery. The satellite picture of open-air coal mining region in Quang Ninh Province of Vietnam was collected as the experimental data. Firstly, the ENVI software is used to eliminate satellite imagery spectral interference. Then, the image classification model is established by the improved ELM algorithm. Finally, the effectiveness of the improved ELM algorithm is verified by using MATLAB simulations. The results show that the accuracies of the testing set reach 96.5%. And it reaches 83% of the image discernment precision compared with the same image from Google.

  6. Infusion of innovative technologies for mission operations

    Science.gov (United States)

    Donati, Alessandro

    2010-11-01

    The Advanced Mission Concepts and Technologies Office (Mission Technologies Office, MTO for short) at the European Space Operations Centre (ESOC) of ESA is entrusted with research and development of innovative mission operations concepts systems and provides operations support to special projects. Visions of future missions and requests for improvements from currently flying missions are the two major sources of inspiration to conceptualize innovative or improved mission operations processes. They include monitoring and diagnostics, planning and scheduling, resource management and optimization. The newly identified operations concepts are then proved by means of prototypes, built with embedded, enabling technology and deployed as shadow applications in mission operations for an extended validation phase. The technology so far exploited includes informatics, artificial intelligence and operational research branches. Recent outstanding results include artificial intelligence planning and scheduling applications for Mars Express, advanced integrated space weather monitoring system for the Integral space telescope and a suite of growing client applications for MUST (Mission Utilities Support Tools). The research, development and validation activities at the Mission technologies office are performed together with a network of research institutes across Europe. The objective is narrowing the gap between enabling and innovative technology and space mission operations. The paper first addresses samples of technology infusion cases with their lessons learnt. The second part is focused on the process and the methodology used at the Mission technologies office to fulfill its objectives.

  7. Evaluation of satellite technology for pipeline route surveillance and the prevention of third party interference damage

    Energy Technology Data Exchange (ETDEWEB)

    Palmer-Jones, Roland; Hopkins, Phil [Penspen Integrity, Newcastle upon Tyne (United Kingdom)]. E-mail: r.palmer-jones@penspen.com; p.hopkins@penspen.com; Fraser, Andy [Integrated Statistical Solutions (United States)]. E-mail: andy@issquared.co.uk; Dezobry, Jerome [Gas de France, Paris (France)]. E-mail: jerome.dezobry@gazdefrance.com; Merrienboer, Hugo Van [Gasunie, Groningen (Netherlands)]. E-mail: H.A.M.van.Merrienboer@gasunie.nl

    2003-07-01

    The damage caused by Third Party Interference (TPI) is one of the major causes of pipeline failures. Consequently, new technologies for identifying activities that may cause damage to our pipelines are constantly being developed. A recently completed project sponsored by a number of pipeline operators has investigated the use of high-resolution satellites for the integrity management of onshore transmission pipelines. The sponsors were BG Technology (on behalf of Transco), Dansk Olie NatureGas, Gasunie, BP, Gaz de France, Distrigas, and the Health and Safety Executive. The project started with a general review of the satellite technologies available and their potential. The study was then focussed on the identification of activities that might result in damage to the pipeline and the potential of high-resolution optical satellites in identifying hazardous activities. A key element of the study was a comparison with existing surveillance systems, which generally involve regular aerial patrols of the pipeline route. To achieve this a survey was carried out to try and evaluate the costs and benefits of existing systems. In addition a simple model for analysing the cost benefit of pipeline surveillance was constructed, and a functional specification for a surveillance system drafted. Finally the performance of the IKONOS 2 high-resolution satellite system was tested in a controlled experiment using targets placed along a pipeline route. The results of this test were compared with a similar test of helicopter-based surveillance carried out by one of the sponsors. (author)

  8. ACTS TDMA network control. [Advanced Communication Technology Satellite

    Science.gov (United States)

    Inukai, T.; Campanella, S. J.

    1984-01-01

    This paper presents basic network control concepts for the Advanced Communications Technology Satellite (ACTS) System. Two experimental systems, called the low-burst-rate and high-burst-rate systems, along with ACTS ground system features, are described. The network control issues addressed include frame structures, acquisition and synchronization procedures, coordinated station burst-time plan and satellite-time plan changes, on-board clock control based on ground drift measurements, rain fade control by means of adaptive forward-error-correction (FEC) coding and transmit power augmentation, and reassignment of channel capacities on demand. The NASA ground system, which includes a primary station, diversity station, and master control station, is also described.

  9. Network operating system focus technology

    Science.gov (United States)

    1985-01-01

    An activity structured to provide specific design requirements and specifications for the Space Station Data Management System (DMS) Network Operating System (NOS) is outlined. Examples are given of the types of supporting studies and implementation tasks presently underway to realize a DMS test bed capability to develop hands-on understanding of NOS requirements as driven by actual subsystem test beds participating in the overall Johnson Space Center test bed program. Classical operating system elements and principal NOS functions are listed.

  10. Remote sensing by satellite - Technical and operational implications for international cooperation

    Science.gov (United States)

    Doyle, S. E.

    1976-01-01

    International cooperation in the U.S. Space Program is discussed and related to the NASA program for remote sensing of the earth. Satellite remote sensing techniques are considered along with the selection of the best sensors and wavelength bands. The technology of remote sensing satellites is considered with emphasis on the Landsat system configuration. Future aspects of remote sensing satellites are considered.

  11. Umatilla hatchery satellite facilities operation and maintenance. Annual report 1996

    International Nuclear Information System (INIS)

    Rowan, G.D.

    1997-06-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer Pond, Minthorn Springs, Imeques C-mem-ini-kem and Thornhollow satellite facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O. kisutch). Minthorn is also used for holding and spawning adult summer steelhead and Three Mile Dam is used for holding and spawning adult fall chinook and coho salmon. Bonifer, Minthorn, Imeques and Thornhollow facilities are operated for acclimation and release of juvenile salmon and summer steelhead. The main goal of acclimation is to reduce stress from trucking prior to release and improve imprinting of juvenile salmonids in the Umatilla River Basin. Juveniles are transported to the acclimation facilities primarily from Umatilla and Bonneville Hatcheries. This report details activities associated with operation and maintenance of the Bonifer, Minthorn, Imeques, Thornhollow and Three Mile Dam facilities in 1996

  12. Choice of an ion engine for the Communications Technology Satellite.

    Science.gov (United States)

    Payne, W. F.; Bens, A. R.; Bassett, D. A.; Lovell, R. R.

    1972-01-01

    The purpose of the spacecraft is to space qualify a number of components for the next generation of communications satellites. The state of development of ion thrusters has reached a point where at least three types of engine may be considered for integration on spacecraft. The proposed methods of stationkeeping require that the thruster operate with a duty cycle of somewhat less than 12 hours in a 24 hour period. Several possible mounting positions for the thrusters were considered during the conceptual design phase. It is concluded that an experimental ion thruster subsystem may be incorporated in the communication satellite and used to demonstrate, at a minimum, north-south stationkeeping of the spacecraft in synchronous orbit.

  13. NASA Operational Simulator for Small Satellites: Tools for Software Based Validation and Verification of Small Satellites

    Science.gov (United States)

    Grubb, Matt

    2016-01-01

    The NASA Operational Simulator for Small Satellites (NOS3) is a suite of tools to aid in areas such as software development, integration test (IT), mission operations training, verification and validation (VV), and software systems check-out. NOS3 provides a software development environment, a multi-target build system, an operator interface-ground station, dynamics and environment simulations, and software-based hardware models. NOS3 enables the development of flight software (FSW) early in the project life cycle, when access to hardware is typically not available. For small satellites there are extensive lead times on many of the commercial-off-the-shelf (COTS) components as well as limited funding for engineering test units (ETU). Considering the difficulty of providing a hardware test-bed to each developer tester, hardware models are modeled based upon characteristic data or manufacturers data sheets for each individual component. The fidelity of each hardware models is such that FSW executes unaware that physical hardware is not present. This allows binaries to be compiled for both the simulation environment, and the flight computer, without changing the FSW source code. For hardware models that provide data dependent on the environment, such as a GPS receiver or magnetometer, an open-source tool from NASA GSFC (42 Spacecraft Simulation) is used to provide the necessary data. The underlying infrastructure used to transfer messages between FSW and the hardware models can also be used to monitor, intercept, and inject messages, which has proven to be beneficial for VV of larger missions such as James Webb Space Telescope (JWST). As hardware is procured, drivers can be added to the environment to enable hardware-in-the-loop (HWIL) testing. When strict time synchronization is not vital, any number of combinations of hardware components and software-based models can be tested. The open-source operator interface used in NOS3 is COSMOS from Ball Aerospace. For

  14. Measuring Information Technology Performance: Operational Efficiency and Operational Effectiveness

    Science.gov (United States)

    Moore, Annette G.

    2012-01-01

    This dissertation provides a practical approach for measuring operational efficiency and operational effectiveness for IT organizations introducing the ITIL process framework. The intent of the study was to assist Chief Information Officers (CIOs) in explaining the impact of introducing the Information Technology Infrastructure Library (ITIL)…

  15. Tethered Satellites as an Enabling Platform for Operational Space Weather Monitoring Systems

    Science.gov (United States)

    Gilchrist, Brian E.; Krause, Linda Habash; Gallagher, Dennis Lee; Bilen, Sven Gunnar; Fuhrhop, Keith; Hoegy, Walt R.; Inderesan, Rohini; Johnson, Charles; Owens, Jerry Keith; Powers, Joseph; hide

    2013-01-01

    Tethered satellites offer the potential to be an important enabling technology to support operational space weather monitoring systems. Space weather "nowcasting" and forecasting models rely on assimilation of near-real-time (NRT) space environment data to provide warnings for storm events and deleterious effects on the global societal infrastructure. Typically, these models are initialized by a climatological model to provide "most probable distributions" of environmental parameters as a function of time and space. The process of NRT data assimilation gently pulls the climate model closer toward the observed state (e.g., via Kalman smoothing) for nowcasting, and forecasting is achieved through a set of iterative semi-empirical physics-based forward-prediction calculations. Many challenges are associated with the development of an operational system, from the top-level architecture (e.g., the required space weather observatories to meet the spatial and temporal requirements of these models) down to the individual instruments capable of making the NRT measurements. This study focuses on the latter challenge: we present some examples of how tethered satellites (from 100s of m to 20 km) are uniquely suited to address certain shortfalls in our ability to measure critical environmental parameters necessary to drive these space weather models. Examples include long baseline electric field measurements, magnetized ionospheric conductivity measurements, and the ability to separate temporal from spatial irregularities in environmental parameters. Tethered satellite functional requirements are presented for two examples of space environment observables.

  16. Small-satellite technology and applications; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    Science.gov (United States)

    Horais, Brian J.

    Remote sensing applications and systems, small satellites for sensing missions, and supporting technologies are the broad topics discussed. Particular papers are presented on small satellites for water cycle experiments, low-cost spacecraft buses for remote sensing applications, Webersat (a low-cost imaging satellite), DARPA initiatives in small-satellite technologies, a solid-state magnetic azimuth sensor for small satellites, and thermal analysis of a small expendable tether satellite package. (For individual items see A93-24152 to A93-24175)

  17. Developing Tomorrows Space War Fighter: The Argument for Contracting Out Satellite Operations

    Science.gov (United States)

    2015-12-01

    task. As a 2008 Council on Foreign Relations special report states, “ Satellites ’ predictable orbits make them vulnerable to a variety of offensive...that a pilot flies a plane. The actual process of maintaining a satellite on orbit is much different. A satellite is repositioned, reconfigured...November–December 2015 | 83 Developing Tomorrow’s Space War Fighter The Argument for Contracting Out Satellite Operations Maj Sean C. Temple, USAF

  18. The Use of a Satellite Human Interaction System in Conjunction with a Satellite Media Distribution System. Satellite Technology Demonstration, Technical Report No. 0217.

    Science.gov (United States)

    Dale, Joyce B.

    Satellite Technology Demonstration (STD) was designed to provide data on the use of a satellite to deliver educational programs to 56 rural-isolated schools in eight Rocky Mountain States. Three series were broadcast: (1) a junior high school career development, (2) career development for public school administrators and teachers, and (3) topical…

  19. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  20. A systems approach to the commercialization of space communications technology - The NASA/JPL Mobile Satellite Program

    Science.gov (United States)

    Weber, William J., III; Gray, Valerie W.; Jackson, Byron; Steele, Laura C.

    1991-10-01

    This paper discusss the systems approach taken by NASA and the Jet Propulsion Laboratory in the commercialization of land-mobile satellite services (LMSS) in the United States. As the lead center for NASA's Mobile Satellite Program, JPL was involved in identifying and addressing many of the key barriers to commercialization of mobile satellite communications, including technical, economic, regulatory and institutional risks, or uncertainties. The systems engineering approach described here was used to mitigate these risks. The result was the development and implementation of the JPL Mobile Satellite Experiment Project. This Project included not only technology development, but also studies to support NASA in the definition of the regulatory, market, and investment environments within which LMSS would evolve and eventually operate, as well as initiatives to mitigate their associated commercialization risks. The end result of these government-led endeavors was the acceleration of the introduction of commercial mobile satellite services, both nationally and internationally.

  1. Analysis on the status of the application of satellite remote sensing technology to nuclear safeguards

    International Nuclear Information System (INIS)

    Tao Zhangsheng; Zhao Yingjun

    2008-01-01

    Based on the application status of satellite remote sensing technology to nuclear safeguards, advantage of satellite remote sensing technology is analyzed, main types of satellite image used in nuclear safeguards are elaborated and the main application of satellite images is regarded to detect, verify and monitor nuclear activities; verify additional protocol declaration and design information, support performing complementary access inspections; investigate alleged undeclared activities based on open source or the third party information. Application examples of satellite image in nuclear safeguards to analyze nuclear facilities by other countries, the ability of remote sensing technology in nuclear safeguards is discussed. (authors)

  2. GHRSST Level 2P Eastern Pacific Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-11 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  3. GHRSST Level 2P West Atlantic Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-12 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  4. Operational Testing of Satellite based Hydrological Model (SHM)

    Science.gov (United States)

    Gaur, Srishti; Paul, Pranesh Kumar; Singh, Rajendra; Mishra, Ashok; Gupta, Praveen Kumar; Singh, Raghavendra P.

    2017-04-01

    Incorporation of the concept of transposability in model testing is one of the prominent ways to check the credibility of a hydrological model. Successful testing ensures ability of hydrological models to deal with changing conditions, along with its extrapolation capacity. For a newly developed model, a number of contradictions arises regarding its applicability, therefore testing of credibility of model is essential to proficiently assess its strength and limitations. This concept emphasizes to perform 'Hierarchical Operational Testing' of Satellite based Hydrological Model (SHM), a newly developed surface water-groundwater coupled model, under PRACRITI-2 program initiated by Space Application Centre (SAC), Ahmedabad. SHM aims at sustainable water resources management using remote sensing data from Indian satellites. It consists of grid cells of 5km x 5km resolution and comprises of five modules namely: Surface Water (SW), Forest (F), Snow (S), Groundwater (GW) and Routing (ROU). SW module (functions in the grid cells with land cover other than forest and snow) deals with estimation of surface runoff, soil moisture and evapotranspiration by using NRCS-CN method, water balance and Hragreaves method, respectively. The hydrology of F module is dependent entirely on sub-surface processes and water balance is calculated based on it. GW module generates baseflow (depending on water table variation with the level of water in streams) using Boussinesq equation. ROU module is grounded on a cell-to-cell routing technique based on the principle of Time Variant Spatially Distributed Direct Runoff Hydrograph (SDDH) to route the generated runoff and baseflow by different modules up to the outlet. For this study Subarnarekha river basin, flood prone zone of eastern India, has been chosen for hierarchical operational testing scheme which includes tests under stationary as well as transitory conditions. For this the basin has been divided into three sub-basins using three flow

  5. Research on active imaging information transmission technology of satellite borne quantum remote sensing

    Science.gov (United States)

    Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang

    2017-08-01

    According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.

  6. Water Treatment Technology - General Plant Operation.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on general plant operations provides instructional materials for seven competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: water supply regulations, water plant…

  7. Latency features of SafetyNet ground systems architecture for the National Polar-orbiting Operational Environmental Satellite System (NPOESS)

    Science.gov (United States)

    Duda, James L.; Mulligan, Joseph; Valenti, James; Wenkel, Michael

    2005-01-01

    A key feature of the National Polar-orbiting Operational Environmental Satellite System (NPOESS) is the Northrop Grumman Space Technology patent-pending innovative data routing and retrieval architecture called SafetyNetTM. The SafetyNetTM ground system architecture for the National Polar-orbiting Operational Environmental Satellite System (NPOESS), combined with the Interface Data Processing Segment (IDPS), will together provide low data latency and high data availability to its customers. The NPOESS will cut the time between observation and delivery by a factor of four when compared with today's space-based weather systems, the Defense Meteorological Satellite Program (DMSP) and NOAA's Polar-orbiting Operational Environmental Satellites (POES). SafetyNetTM will be a key element of the NPOESS architecture, delivering near real-time data over commercial telecommunications networks. Scattered around the globe, the 15 unmanned ground receptors are linked by fiber-optic systems to four central data processing centers in the U. S. known as Weather Centrals. The National Environmental Satellite, Data and Information Service; Air Force Weather Agency; Fleet Numerical Meteorology and Oceanography Center, and the Naval Oceanographic Office operate the Centrals. In addition, this ground system architecture will have unused capacity attendant with an infrastructure that can accommodate additional users.

  8. The Integration of Small Satellites in Maritime Interdiction Operations (MIO)

    Science.gov (United States)

    2012-09-01

    disadvantages affect the flow of information among the nodes. 14. SUBJECT TERMS Small Satellites, Nanosatellites , Picosatellites, Maritime...49 Table 7. Nanosatellite /ground-station characterisitics ...................................... 49 Table 8. Satellite 1, 2...subclassified as microsatellites (10–100 kg), nanosatellites (1–10 kg), picosatellites (0.1–1 kg), and femtosatellites (< 0.1 kg) (Helvajian & Janson

  9. ERTS-B (Earth Resources Technology Satellite). [spacecraft design remote sensor description, and technology utilization

    Science.gov (United States)

    1975-01-01

    Mission plans and objectives of the ERTS 2 Satellite are presented. ERTS 2 follow-on investigations in various scientific disciplines including agriculture, meteorology, land-use, geology, water resources, oceanography, and environment are discussed. Spacecraft design and its sensors are described along with the Delta launch vehicle and launch operations. Applications identified from ERTS 1 investigations are summarized.

  10. Operators must become bigger stakeholders in technology

    International Nuclear Information System (INIS)

    Terry, J.

    1997-01-01

    The declining involvement of oil and gas operators in research and development (R and D) is reducing profits for both the operator and the service provider. Greater responsibility for technology development is now being shouldered by the service providers, and there is a growing concern that they are drilling themselves out of a job. This concern is compounded when the financial results of the operator are compared with those of the service provider. The paper discusses reduced profitability, misconceptions about new technologies, time-based incentives, risk and reward, the aligned-interest agreement, and agreement structuring

  11. CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations

    Directory of Open Access Journals (Sweden)

    A. Mugnai

    2013-04-01

    Full Text Available Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF is a EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites program, designed to deliver satellite products of hydrological interest (precipitation, soil moisture and snow parameters over the European and Mediterranean region to research and operations users worldwide. Six satellite precipitation algorithms and concomitant precipitation products are the responsibility of various agencies in Italy. Two of these algorithms have been designed for maximum accuracy by restricting their inputs to measurements from conical and cross-track scanning passive microwave (PMW radiometers mounted on various low Earth orbiting satellites. They have been developed at the Italian National Research Council/Institute of Atmospheric Sciences and Climate in Rome (CNR/ISAC-Rome, and are providing operational retrievals of surface rain rate and its phase properties. Each of these algorithms is physically based, however, the first of these, referred to as the Cloud Dynamics and Radiation Database (CDRD algorithm, uses a Bayesian-based solution solver, while the second, referred to as the PMW Neural-net Precipitation Retrieval (PNPR algorithm, uses a neural network-based solution solver. Herein we first provide an overview of the two initial EU research and applications programs that motivated their initial development, EuroTRMM and EURAINSAT (European Satellite Rainfall Analysis and Monitoring at the Geostationary Scale, and the current H-SAF program that provides the framework for their operational use and continued development. We stress the relevance of the CDRD and PNPR algorithms and their precipitation products in helping secure the goals of H-SAF's scientific and operations agenda, the former helpful as a secondary calibration reference to other algorithms in H-SAF's complete mix of algorithms. Descriptions of the algorithms' designs are

  12. CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations

    Science.gov (United States)

    Mugnai, A.; Smith, E. A.; Tripoli, G. J.; Bizzarri, B.; Casella, D.; Dietrich, S.; Di Paola, F.; Panegrossi, G.; Sanò, P.

    2013-04-01

    Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) is a EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) program, designed to deliver satellite products of hydrological interest (precipitation, soil moisture and snow parameters) over the European and Mediterranean region to research and operations users worldwide. Six satellite precipitation algorithms and concomitant precipitation products are the responsibility of various agencies in Italy. Two of these algorithms have been designed for maximum accuracy by restricting their inputs to measurements from conical and cross-track scanning passive microwave (PMW) radiometers mounted on various low Earth orbiting satellites. They have been developed at the Italian National Research Council/Institute of Atmospheric Sciences and Climate in Rome (CNR/ISAC-Rome), and are providing operational retrievals of surface rain rate and its phase properties. Each of these algorithms is physically based, however, the first of these, referred to as the Cloud Dynamics and Radiation Database (CDRD) algorithm, uses a Bayesian-based solution solver, while the second, referred to as the PMW Neural-net Precipitation Retrieval (PNPR) algorithm, uses a neural network-based solution solver. Herein we first provide an overview of the two initial EU research and applications programs that motivated their initial development, EuroTRMM and EURAINSAT (European Satellite Rainfall Analysis and Monitoring at the Geostationary Scale), and the current H-SAF program that provides the framework for their operational use and continued development. We stress the relevance of the CDRD and PNPR algorithms and their precipitation products in helping secure the goals of H-SAF's scientific and operations agenda, the former helpful as a secondary calibration reference to other algorithms in H-SAF's complete mix of algorithms. Descriptions of the algorithms' designs are provided

  13. Accuracy of surface heat fluxes from observations of operational satellites

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Sugimori, Y.

    Uncertainties in the flux estimates, resulting from the use of bulk method and remotely sensed data are worked out and are presented for individual and total fluxes. These uncertainties in satellite derived fluxes are further compared...

  14. Renewable Energy SCADA/Training Using NASA's Advanced Technology Communication Satellite

    Science.gov (United States)

    Kalu, A.; Emrich, C.; Ventre, G.; Wilson, W.; Acosta, Roberto (Technical Monitor)

    2000-01-01

    The lack of electrical energy in the rural communities of developing countries is well known, as is the economic unfeasibility of providing much needed energy to these regions via electric grids. Renewable energy (RE) can provide an economic advantage over conventional forms in meeting some of these energy needs. The use of a Supervisory Control and Data Acquisition (SCADA) arrangement via satellite could enable experts at remote locations to provide technical assistance to local trainees while they acquire a measure of proficiency with a newly installed RE system through hands-on training programs using the same communications link. Upon full mastery of the technologies, indigenous personnel could also employ similar SCADA arrangements to remotely monitor and control their constellation of RE systems. Two separate ACTS technology verification experiments (TVEs) have demonstrated that the portability of the Ultra Small Aperture Terminal (USAT) and the versatility of NASA's Advanced Communications Technology Satellite (ACTS), as well as the advantages of Ka band satellites, can be invaluable in providing energy training via distance education (DE), and for implementing renewable energy system SCADA. What has not been tested is the capabilities of these technologies for a simultaneous implementation of renewable energy DE and SCADA. Such concurrent implementations will be useful for preparing trainees in developing countries for their eventual SCADA operations. The project described in this correspondence is the first effort, to our knowledge, in this specific TVE. The setup for this experiment consists of a one-Watt USAT located at Florida Solar Energy Center (FSEC) connected to two satellite modems tuned to different frequencies to establish two duplex ACTS Ka-band communication channels. A short training program on operation and maintenance of the system will be delivered while simultaneously monitoring and controlling the hybrid using the same satellite

  15. National Security Technology Incubator Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-04-30

    This report documents the operations plan for developing the National Security Technology Incubator (NSTI) program for southern New Mexico. The NSTI program will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. The NSTI program is being developed as part of the National Security Preparedness Project (NSPP), funded by Department of Energy (DOE)/National Nuclear Security Administration (NNSA). The operation plan includes detailed descriptions of the structure and organization, policies and procedures, scope, tactics, and logistics involved in sustainable functioning of the NSTI program. Additionally, the operations plan will provide detailed descriptions of continuous quality assurance measures based on recommended best practices in incubator development by the National Business Incubation Association (NBIA). Forms that assist in operations of NSTI have been drafted and can be found as an attachment to the document.

  16. The ACTS Flight System - Cost-Effective Advanced Communications Technology. [Advanced Communication Technology Satellite

    Science.gov (United States)

    Holmes, W. M., Jr.; Beck, G. A.

    1984-01-01

    The multibeam communications package (MCP) for the Advanced Communications Technology Satellite (ACTS) to be STS-launched by NASA in 1988 for experimental demonstration of satellite-switched TDMA (at 220 Mbit/sec) and baseband-processor signal routing (at 110 or 27.5 Mbit/sec) is characterized. The developmental history of the ACTS, the program definition, and the spacecraft-bus and MCP parameters are reviewed and illustrated with drawings, block diagrams, and maps of the coverage plan. Advanced features of the MPC include 4.5-dB-noise-figure 30-GHz FET amplifiers and 20-GHz TWTA transmitters which provide either 40-W or 8-W RF output, depending on rain conditions. The technologies being tested in ACTS can give frequency-reuse factors as high as 20, thus greatly expanding the orbit/spectrum resources available for U.S. communications use.

  17. Common Elements in Operational Events across Technologies

    International Nuclear Information System (INIS)

    Bley, Dennis C.; Wreathall, John; Cooper, Susan E.

    1998-01-01

    The ATHEANA project, sponsored by the US NRC, began as a study of operational events during low power and shutdown conditions at US commercial nuclear power plants. The purpose was to develop an approach for human reliability analysis that is supported by the experience; i.e., with the history of operational events. As the analysis of operational events progressed, a multidisciplinary framework evolved that can structure the analysis, highlighting significant aspects of each event. The ATHEANA multidisciplinary framework has been used as the basis for retrospective analysis of human performance in operational events in the nuclear power, chemical process, aviation, and medical technologies. The results of these analyses are exemplified by three operational events from different industries. Attention is drawn to those common elements in serious operational events that have negative impacts on human performance. (authors)

  18. Preparing for Operational Use of High Priority Products from the Joint Polar Satellite System (JPSS) in Numerical Weather Prediction

    Science.gov (United States)

    Nandi, S.; Layns, A. L.; Goldberg, M.; Gambacorta, A.; Ling, Y.; Collard, A.; Grumbine, R. W.; Sapper, J.; Ignatov, A.; Yoe, J. G.

    2017-12-01

    This work describes end to end operational implementation of high priority products from National Oceanic and Atmospheric Administration's (NOAA) operational polar-orbiting satellite constellation, to include Suomi National Polar-orbiting Partnership (S-NPP) and the Joint Polar Satellite System series initial satellite (JPSS-1), into numerical weather prediction and earth systems models. Development and evaluation needed for the initial implementations of VIIRS Environmental Data Records (EDR) for Sea Surface Temperature ingestion in the Real-Time Global Sea Surface Temperature Analysis (RTG) and Polar Winds assimilated in the National Weather Service (NWS) Global Forecast System (GFS) is presented. These implementations ensure continuity of data in these models in the event of loss of legacy sensor data. Also discussed is accelerated operational implementation of Advanced Technology Microwave Sounder (ATMS) Temperature Data Records (TDR) and Cross-track Infrared Sounder (CrIS) Sensor Data Records, identified as Key Performance Parameters by the National Weather Service. Operational use of SNPP after 28 October, 2011 launch took more than one year due to the learning curve and development needed for full exploitation of new remote sensing capabilities. Today, ATMS and CrIS data positively impact weather forecast accuracy. For NOAA's JPSS initial satellite (JPSS-1), scheduled for launch in late 2017, we identify scope and timelines for pre-launch and post-launch activities needed to efficiently transition these capabilities into operations. As part of these alignment efforts, operational readiness for KPPs will be possible as soon as 90 days after launch. The schedule acceleration is possible because of the experience with S-NPP. NOAA operational polar-orbiting satellite constellation provides continuity and enhancement of earth systems observations out to 2036. Program best practices and lessons learned will inform future implementation for follow-on JPSS-3 and -4

  19. Evaluating Satellite and Supercomputing Technologies for Improved Coastal Ecosystem Assessments

    Science.gov (United States)

    McCarthy, Matthew James

    Water quality and wetlands represent two vital elements of a healthy coastal ecosystem. Both experienced substantial declines in the U.S. during the 20th century. Overall coastal wetland cover decreased over 50% in the 20th century due to coastal development and water pollution. Management and legislative efforts have successfully addressed some of the problems and threats, but recent research indicates that the diffuse impacts of climate change and non-point source pollution may be the primary drivers of current and future water-quality and wetland stress. In order to respond to these pervasive threats, traditional management approaches need to adopt modern technological tools for more synoptic, frequent and fine-scale monitoring and assessment. In this dissertation, I explored some of the applications possible with new, commercial satellite imagery to better assess the status of coastal ecosystems. Large-scale land-cover change influences the quality of adjacent coastal water. Satellite imagery has been used to derive land-cover maps since the 1960's. It provides multiple data points with which to evaluate the effects of land-cover change on water quality. The objective of the first chapter of this research was to determine how 40 years of land-cover change in the Tampa Bay watershed (6,500 km2) may have affected turbidity and chlorophyll concentration - two proxies for coastal water quality. Land cover classes were evaluated along with precipitation and wind stress as explanatory variables. Results varied between analyses for the entire estuary and those of segments within the bay. Changes in developed land percent cover best explained the turbidity and chlorophyll-concentration time series for the entire bay (R2 > 0.75, p metrics were evaluated against atmospheric, meteorological, and oceanographic variables including precipitation, wind speed, U and V wind vectors, river discharge, and water level over weekly, monthly, seasonal and annual time steps. Climate

  20. An Overview of Cube-Satellite Propulsion Technologies and Trends

    Directory of Open Access Journals (Sweden)

    Akshay Reddy Tummala

    2017-12-01

    Full Text Available CubeSats provide a cost effective means to perform scientific and technological studies in space. Due to their affordability, CubeSat technologies have been diversely studied and developed by educational institutions, companies and space organizations all over the world. The CubeSat technology that is surveyed in this paper is the propulsion system. A propulsion system is the primary mobility device of a spacecraft and helps with orbit modifications and attitude control. This paper provides an overview of micro-propulsion technologies that have been developed or are currently being developed for CubeSats. Some of the micro-propulsion technologies listed have also flown as secondary propulsion systems on larger spacecraft. Operating principles and key design considerations for each class of propulsion system are outlined. Finally, the performance factors of micro-propulsion systems have been summarized in terms of: first, a comparison of thrust and specific impulse for all propulsion systems; second, a comparison of power and specific impulse, as also thrust-to-power ratio and specific impulse for electric propulsion systems.

  1. Enabling technologies for autonomous MAV operations

    Science.gov (United States)

    Elbanhawi, M.; Mohamed, A.; Clothier, R.; Palmer, J. L.; Simic, M.; Watkins, S.

    2017-05-01

    The utility of micro air vehicles (MAVs) has expanded significantly in the last decade, and there are now numerous commercial systems available at relatively low cost. This expansion has arisen mainly due to the miniaturisation of flight control systems and advances in energy storage and propulsion technologies. Several emerging applications involve routine operation of MAVs in complex urban environments such as parcel delivery, communications relay and environmental monitoring. However, MAVs currently rely on one or more operators-in-the-loop and, whilst desirable, full autonomous operation has not yet been achieved. In this review paper, autonomous MAV operation in complex environments is explored with conceptualisation for future MAV operation in urban environments. Limitations of current technologies are systematically examined through consideration of the state-of-the-art and future trends. The main limitations challenging the realisation of fully autonomous MAVs are mainly attributed to: computational power, communication and energy storage. These limitations lead to poor sensing and planning capabilities, which are essential components of autonomous MAVs. Possible solutions are explored with goal of enabling MAVs to reliably operate autonomously in urban environments.

  2. Idaho Operations Office: Technology summary, June 1994

    International Nuclear Information System (INIS)

    1994-06-01

    This document has been prepared by the Department of Energy's (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT ampersand E) activities funded through the Idaho Operations Office. Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. OTD programs are designed to make new, innovative, and more cost-effective technologies available for transfer to DOE environmental restoration and waste management end-users. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD's technology development programs address three major problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. These problems are not unique to DOE, but are associated with other Federal agency and industry sites as well. Thus, technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets

  3. Idaho Operations Office: Technology summary, June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Idaho Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. OTD programs are designed to make new, innovative, and more cost-effective technologies available for transfer to DOE environmental restoration and waste management end-users. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD`s technology development programs address three major problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. These problems are not unique to DOE, but are associated with other Federal agency and industry sites as well. Thus, technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets.

  4. National Polar-orbiting Operational Environmental Satellite System (NPOESS) Design and Architecture

    Science.gov (United States)

    Hinnant, F.

    2008-12-01

    The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system - the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS will replace the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD and will provide continuity for the NASA Earth Observing System (EOS) with the launch of the NPOESS Preparatory Project (NPP). This poster will provide an overview of the NPOESS architecture, which includes four segments. The space segment includes satellites in two orbits that carry a suite of sensors to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the Earth, atmosphere, and near-Earth space environment. The NPOESS design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users through a Command, Control, and Communication Segment (C3S). The data processing for NPOESS is accomplished through an Interface Data Processing Segment (IDPS)/Field Terminal Segment (FTS) that processes NPOESS satellite data to provide environmental data products to NOAA and DoD processing centers operated by the United States government as well as to remote terminal users. The Launch Support Segment completes the four segments that make up NPOESS that will enhance the connectivity between research and operations and provide critical operational and scientific environmental measurements to military, civil, and scientific users until 2026.

  5. Development of Japanese Earth Resources Satellite-1 (JERS-1; FUYO-1) and it's operational results

    Science.gov (United States)

    1993-03-01

    Various aspects of development progress from the policy decision to the launch and early orbit phase operation of the JERS-l (Japanese Earth Resources Satellite-l) are presented. The items presented are as follows: the fundamental development policy, related organizations, and the system for the development; the master schedule and the progress of the development; the outline of JERS-l including its missions, the structure and characteristics of the system, and the operation plan; satellite mission and the system design analyses; the system development, including that of subsystems and components, production and test of the system development model, the integration and test of the system PFM (Proto-Flight Model), and the modification and post-modification test of the PFM; interfaces with other programs; program control; satellite operation in the launch and early orbit operation phase and the analysis and evaluation of the operation results; and the initial examination on on-orbit failures.

  6. Educational Experiments with the Communications Technology Satellite: A Memo from Evaluators to Planners.

    Science.gov (United States)

    Daniel, J. S.; And Others

    A series of educational experiments are being conducted in Canada on the Communications Technology Satellite. The description of these experiments reveals a diversity not previously encountered in educational applications of satellite systems. In evaluating these experiments, the authors adopted Stufflebeam's Context-Input-Process-Product model in…

  7. Dutch Micro Systems Technology for the Next Generation of Small Satellites

    NARCIS (Netherlands)

    Gill, E.; Monna, G.L.E.; Scherpen, J.M.A.; Verhoeven, C.J.M.

    2007-01-01

    Advanced microelectronics and Micro Systems Technology (MST) enable an increased functional performance of small satellites with decreased demands on mass, size and power. The research and development cluster MISAT stimulates the design and development of advanced small satellite platforms based on

  8. Enabling Technology for Small Satellite Launch, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Access to space for Small Satellites is enabled by the use of excess launch capacity on existing launch vehicles. A range of sizes, form factors and masses need to...

  9. Research and Development initiative of Satellite Technology Application for Environmental Issues in Asia Region

    Science.gov (United States)

    Hamamoto, K.; Kaneko, Y.; Sobue, S.; Oyoshi, K.

    2016-12-01

    Climate change and human activities are directly or indirectly influence the acceleration of environmental problems and natural hazards such as forest fires, drought and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these hazards and related phenomenon. However, there are still gaps between science and application of space technology in practical usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of space technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of space technology. The main activity of SAFE is SAFE prototyping. SAFE prototyping is a demonstration for end users and decision makers to apply space technology applications for solving environmental issues in Asia-Pacific region. By utilizing space technology and getting technical support by experts, prototype executers can develop the application system, which could support decision making activities. SAFE holds a workshop once a year. In the workshop, new prototypes are approved and the progress of on-going prototypes are confirmed. Every prototype is limited for two years period and all activities are operated by volunteer manner. As of 2016, 20 prototypes are completed and 6 prototypes are on-going. Some of the completed prototypes, for example drought monitoring in Indonesia were applied to operational use by a local official organization.

  10. Small Explorer project: Submillimeter Wave Astronomy Satellite (SWAS). Mission operations and data analysis plan

    Science.gov (United States)

    Melnick, Gary J.

    1990-01-01

    The Mission Operations and Data Analysis Plan is presented for the Submillimeter Wave Astronomy Satellite (SWAS) Project. It defines organizational responsibilities, discusses target selection and navigation, specifies instrument command and data requirements, defines data reduction and analysis hardware and software requirements, and discusses mission operations center staffing requirements.

  11. 77 FR 77001 - Comprehensive Review of Licensing and Operating Rules for Satellite Services

    Science.gov (United States)

    2012-12-31

    ...] Comprehensive Review of Licensing and Operating Rules for Satellite Services AGENCY: Federal Communications... summary of the Order in IB Docket No. 12-267, Comprehensive Review of Licensing and Operating Rules for... for public inspection and copying during regular business hours at the FCC Reference Information...

  12. Didactic satellite based on Android platform for space operation demonstration and development

    Science.gov (United States)

    Ben Bahri, Omar; Besbes, Kamel

    2018-03-01

    Space technology plays a pivotal role in society development. It offers new methods for telemetry, monitoring and control. However, this sector requires training, research and skills development but the lack of instruments, materials and budgets affects the ambiguity to understand satellite technology. The objective of this paper is to describe a demonstration prototype of a smart phone device for space operations study. Therefore, the first task was carried out to give a demonstration for spatial imagery and attitude determination missions through a wireless communication. The smart phone's Bluetooth was used to achieve this goal inclusive of a new method to enable real time transmission. In addition, an algorithm around a quaternion based Kalman filter was included in order to detect the reliability of the prototype's orientation. The second task was carried out to provide a demonstration for the attitude control mission using the smart phone's orientation sensor, including a new method for an autonomous guided mode. As a result, the acquisition platform showed real time measurement with good accuracy for orientation detection and image transmission. In addition, the prototype kept the balance during the demonstration based on the attitude control method.

  13. Forecast analysis on satellites that need de-orbit technologies: future scenarios for passive de-orbit devices

    Science.gov (United States)

    Palla, Chiara; Kingston, Jennifer

    2016-09-01

    Propulsion-based de-orbit is a space-proven technology; however, this strategy can strongly limit operational lifetime, as fuel mass is dedicated to the de-orbiting. In addition previous reliability studies have identified the propulsion subsystem as one of the major contributors driving satellite failures. This issue brings the need to develop affordable de-orbit technologies with a limited reliance on the system level performance of the host satellite, ideally largely passive methods. Passive disposal strategies which take advantage of aerodynamic drag as the de-orbit force are particularly attractive because they are independent of spacecraft propulsion capabilities. This paper investigates the future market for passive de-orbit devices in LEO to aid in defining top-level requirements for the design of such devices. This is performed by considering the compliances of projected future satellites with the Inter Agency Space Debris Coordination Committee de-orbit time, to quantify the number of spacecraft that are compliant or non-compliant with the guidelines and, in this way, determine their need for the previously discussed devices. The study is performed by using the SpaceTrak™ database which provides future launch schedules, and spacecraft information; the de-orbit analysis is carried out by means of simulations with STELA. A case study of a passive strategy is given by the de-orbit mechanism technological demonstrator, which is currently under development at Cranfield University and designed to deploy a drag sail at the end of the ESEO satellite mission.

  14. ECOSPACE : a pre-operational satellite system and services for ocean colour monitoring

    Science.gov (United States)

    Morel, André; Cerutti-Maori, Guy; Morel, Michel

    2017-11-01

    A permanent monitoring of the oceanic algal biomass (phytoplankton), of its photosynthetic activity, ecological and biogeochemical impact, or of its long-term response to changing physical and climatic conditions, is a crucial goal of scientific programmes (such as JGOFS, GLOBEC, LOICZ), as well as of international observing systems (such as GOOS, GCOS, IGOS). After a decade without ocean colour satellite-borne sensor, several instruments have been, or will be launched. They are increasingly sophisticated in their design and operation. Their complexity results from constraints for multipurpose mission (involving not only ocean, but also land and atmosphere), or from requirements for exploratory research projects and development of new methodologies for improved ocean colour interpretation and "advanced" products. In contrast, the proposed specific ECOSPACE mission is an ocean colour dedicated instrument, with a global monitoring vocation. It relies on known algorithms for accurate atmospheric corrections and aerosol load estimate over open ocean (about 96% of the whole ocean), and known algorithms for a meaningful quantification of the oceanic algal biomass (in terms of Chlorophyll concentration). The coastal zones are observed as well, and their particular features delineated : however, detailed studies that imply high ground resolution and more spectral channels are out of the scope of the present proposal. The ECOSPACE mission represents a feasibility demonstration ; more precisely it is a first step toward the setting up of an operational Satellite System and Services for a future continuous supply of stable, compatible, easy-to-merge ocean colour date products. In essence, such a Service would be similar to those already existing for meteorology and for some oceanic variables (e.g. sea level). Although new approaches to management and implementation over a short time scale are needed, the ECOSPACE project relies essentially on existing scientific and

  15. Design, construction and testing of the Communications Technology Satellite protection against spacecraft charging

    Science.gov (United States)

    Gore, J. V.

    1977-01-01

    Detailed discussions are presented of the measures taken on the Communications Technology Satellite (CTS or Hermes) which provide protection against the effects of spacecraft charging. These measures include: a comprehensive grounding philosophy and implementation; provision of command and data line transmitters and receivers for transient noise immunity; and a fairly restrictive EMI specification. Ground tests were made on materials and the impact of these tests on the CTS spacecraft is described. Hermes, launched on 17 January 1976 on a 2914 Delta vehicle, has successfully completed 10 months of operations. Anomalies observed are being assessed in relation to spacecraft charging, but no definite correlations have yet been established. A list of conclusions with regard to the CTS experience is given and recommendations for future spacecraft are also listed.

  16. ESA technology flies on Italian mini-satellite launched from Russia

    Science.gov (United States)

    2000-07-01

    Owned by the Italian space agency (ASI) and developed by Carlo Gavazzi with contributions from many other Italian companies, MITA has two tasks to perform: in a circular orbit at 450 km altitude, the mini satellite will carry a cosmic particle detector, while its platform will be tested for the first time as a vehicle for future scientific missions. MITA also carries the MTS-AOMS payload (MicroTechSensor for Attitude and Orbit Measurement System), developed by Astrium in the framework of ESA's Technology Flight Opportunity trial programme. With the Technology Flight Opportunity scheme, funded by its General Studies Programme, ESA intends to provide access to space for European industry's technology products needing in-orbit demonstration to enhance their competitiveness on the space market. This new form of support to the European space industry ties in with ESA's strategy for fostering the competitiveness of European-made technology for eventual commercialisation. In-orbit demonstration is essential if new technologies are to compete on level terms on non-European markets. It thus consolidates strategic investments made by the space industry. The MTS-AOMS is a highly integrated sensor for autonomous attitude and orbit control systems. It combines three functions in one unit: Earth sensing, star sensing and magnetic field sensing. The equipment incorporates an active pixel array sensor and a 2-D fluxgate magnetometer. The aims of the flight are to verify in situ the payload's inherent functions and performance, which cannot be done on the ground, and to assess the behaviour of this type of technology when exposed to the space environment. The Technology Flight Opportunity rule is that ESA funds the launch and integration costs, industry the development and operating costs. According to present planning, two further in-orbit demonstrations funded by this scheme will be carried out between now and January 2001.

  17. Sensing Hazards with Operational Unmanned Technology

    Science.gov (United States)

    Hood, R. E.

    2016-12-01

    The Unmanned Aircraft Systems (UAS) Program of the National Oceanic and Atmospheric Administration (NOAA) is working with the National Weather Service, the National Ocean Service, other Federal agencies, private industry, and academia to evaluate the feasibility of UAS observations to provide time critical information needed for situational awareness, prediction, warning, and damage assessment of hazards. This activity is managed within a portfolio of projects entitled "Sensing Hazards with Operational Unmanned Technology (SHOUT)." The diversity of this portfolio includes evaluations of high altitude UAS observations for high impact oceanic storms prediction to low altitude UAS observations of rivers, severe storms, and coastal areas for pre-hazard situational awareness and post-hazard damage assessments. Each SHOUT evaluation project begins with a proof-of-concept field demonstration of a UAS observing strategy for a given hazard and then matures to joint studies of both scientific data impact along with cost and operational feasibility of the observing strategy for routine applications. The technology readiness and preliminary evaulation results will be presented for several UAS observing strategies designed for improved observations of oceanic storms, floods, severe storms, and coastal ecosystem hazards.

  18. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  19. Operational support for Upper Atmosphere Research Satellite (UARS) attitude sensors

    Science.gov (United States)

    Lee, M.; Garber, A.; Lambertson, M.; Raina, P.; Underwood, S.; Woodruff, C.

    1994-05-01

    The Upper Atmosphere Research Satellite (UARS) has several sensors that can provide observations for attitude determination: star trackers, Sun sensors (gimbaled as well as fixed), magnetometers, Earth sensors, and gyroscopes. The accuracy of these observations is important for mission success. Analysts on the Flight Dynamics Facility (FDF) UARS Attitude task monitor these data to evaluate the performance of the sensors taking corrective action when appropriate. Monitoring activities range from examining the data during real-time passes to constructing long-term trend plots. Increasing residuals (differences) between the observed and expected quantities is a prime indicator of sensor problems. Residual increases may be due to alignment shifts and/or degradation in sensor output. Residuals from star tracker data revealed and anomalous behavior that contributes to attitude errors. Compensating for this behavior has significantly reduced the attitude errors. This paper discusses the methods used by the FDF UARS attitude task for maintenance of the attitude sensors, including short- and long-term monitoring, trend analysis, and calibration methods, and presents the results obtained through corrective action.

  20. College curriculum-sharing via CTS. [Communications Technology Satellite

    Science.gov (United States)

    Hudson, H. E.; Guild, P. D.; Coll, D. C.; Lumb, D. R.

    1975-01-01

    Domestic communication satellites and video compression techniques will increase communication channel capacity and reduce cost of video transmission. NASA Ames Research Center, Stanford University and Carleton University are participants in an experiment to develop, demonstrate, and evaluate college course sharing techniques via satellite using video compression. The universities will exchange televised seminar and lecture courses via CTS. The experiment features real-time video compression with channel coding and quadra-phase modulation for reducing transmission bandwidth and power requirements. Evaluation plans and preliminary results of Carleton surveys on student attitudes to televised teaching are presented. Policy implications for the U.S. and Canada are outlined.

  1. The long-term effects of space weather on satellite operations

    Directory of Open Access Journals (Sweden)

    D. T. Welling

    2010-06-01

    Full Text Available Integrated lifetime radiation damage may cause spacecraft to become more susceptible to operational anomalies by changing material characteristics of electronic components. This study demonstrates and quantifies the impact of these effects by examining the National Oceanic and Atmospheric Administration (NOAA National Geophysical Data Center (NGDC satellite anomaly database. Energetic particle data from the Geostationary Operational Environmental Satellites (GOES is used to construct the total lifetime particle exposure a satellite has received at the epoch of an anomaly. These values are compared to the satellite's chronological age and the average exposure per year (calculated over two solar cycles. The results show that many anomalies occur on satellites that have received a total lifetime high-energy particle exposure that is disproportionate to their age. In particular, 10.8% of all events occurred on satellites that received over two times more 20 to 40 MeV proton lifetime particle exposure than predicted using an average annual mean. This number inflates to 35.2% for 40 to 80 MeV protons and 33.7% for ≥2 MeV electrons. Overall, 73.5% of all anomalies occurred on a spacecraft that had experienced greater than two times the expected particle exposure for one of the eight particle populations used in this study. Simplistically, this means that the long term radiation background exposure matters, and that if the background radiation is elevated during the satellite's lifetime, the satellite is likely to experience more anomalies than satellites that have not been exposed to the elevated environment.

  2. Satellite Sensornet Gateway Technology Infusion Through Rapid Deployments for Environmental Sensing

    Science.gov (United States)

    Benzel, T.; Silva, F.; Deschon, A.; Ye, W.; Cho, Y.

    2008-12-01

    The Satellite Sensornet Gateway (SSG) is an ongoing ESTO Advanced Information Systems Technology project, at the University of Southern California. The major goal of SSG is to develop a turnkey solution for building environmental observation systems based on sensor networks. Our system has been developed through an iterative series of deployment-driven design, build, test, and revise which maximizes technology infusion to the earth scientist. We have designed a robust and flexible sensor network called Sensor Processing and Acquisition Network (SPAN). Our SPAN architecture emphasizes a modular and extensible design, such that core building blocks can be reused to develop different scientific observation systems. To support rapid deployment at remote locations, we employ satellite communications as the backhaul to relay in-situ sensor data to a central database. To easily support various science applications, we have developed a unified sensor integration framework that allows streamlined integration of different sensors to the system. Our system supports heterogeneous sets of sensors, from industry-grade products to research- specific prototypes. To ensure robust operation in harsh environments, we have developed mechanisms to monitor system status and recover from potential failures along with additional remote configuration and QA/QC functions. Here we briefly describe the deployments, the key science missions of the deployments and the role that the SSG technology played in each mission. We first deployed our SSG technology at the James Reserve in February 2007. In a joint deployment with the NEON project, SDSC, and UC Riverside, we set up a meteorological station, using a diverse set of sensors, with the objective of validating our basic technology components in the field. This system is still operational and streaming live sensor data. At Stunt Ranch, a UC Reserve near Malibu, CA, we partnered with UCLA biologist Phillip Rundel in order to study the drought

  3. Advanced Communication Technology Satellite (ACTS) Very Small Aperture Terminal (VSAT) Network Control Performance

    Science.gov (United States)

    Coney, T. A.

    1996-01-01

    This paper discusses the performance of the network control function for the Advanced Communications Technology Satellite (ACTS) very small aperture terminal (VSAT) full mesh network. This includes control of all operational activities such as acquisition, synchronization, timing and rain fade compensation as well as control of all communications activities such as on-demand integrated services (voice, video, and date) connects and disconnects Operations control is provided by an in-band orderwire carried in the baseboard processor (BBP) control burst, the orderwire burst, the reference burst, and the uplink traffic burst. Communication services are provided by demand assigned multiple access (DAMA) protocols. The ACTS implementation of DAMA protocols ensures both on-demand and integrated voice, video and data services. Communications services control is also provided by the in-band orderwire but uses only the reference burst and the uplink traffic burst. The performance of the ACTS network control functions have been successfully tested during on-orbit checkout and in various VSAT networks in day to day operations. This paper discusses the network operations and services control performance.

  4. Flight demonstration of new thruster and green propellant technology on the PRISMA satellite

    Science.gov (United States)

    Anflo, K.; Möllerberg, R.

    2009-11-01

    The concept of a storable liquid monopropellant blend for space applications based on ammonium dinitramide (ADN) was invented in 1997, within a co-operation between the Swedish Space Corporation (SSC) and the Swedish Defense Research Agency (FOI). The objective was to develop a propellant which has higher performance and is safer than hydrazine. The work has been performed under contract from the Swedish National Space Board and ESA. The progress of the development has been presented in several papers since 2000. ECAPS, a subsidiary of the Swedish Space Corporation was established in 2000 with the aim to develop and market the novel "high performance green propellant" (HPGP) technology for space applications. The new technology is based on several innovations and patents w.r.t. propellant formulation and thruster design, including a high temperature resistant catalyst and thrust chamber. The first flight demonstration of the HPGP propulsion system will be performed on PRISMA. PRISMA is an international technology demonstration program with Swedish Space Corporation as the Prime Contractor. This paper describes the performance, characteristics, design and verification of the HPGP propulsion system for PRISMA. Compatibility issues related to using a new propellant with COTS components is also discussed. The PRISMA mission includes two satellites in LEO orbit were the focus is on rendezvous and formation flying. One of the satellites will act as a "target" and the main spacecraft performs rendezvous and formation flying maneuvers, where the ECAPS HPGP propulsion system will provide delta-V capability. The PRISMA CDR was held in January 2007. Integration of the flight propulsion system is about to be finalized. The flight opportunity on PRISMA represents a unique opportunity to demonstrate the HPGP propulsion system in space, and thus take a significant step towards its use in future space applications. The launch of PRISMA scheduled to 2009.

  5. Integration and Testing Challenges of Small Satellite Missions: Experiences from the Space Technology 5 Project

    Science.gov (United States)

    Sauerwein, Timothy A.; Gostomski, Tom

    2007-01-01

    The Space Technology 5(ST5) payload was successfully carried into orbit on an OSC Pegasus XL launch vehicle, which was carried aloft and dropped from the OSC Lockheed L-1011 from Vandenberg Air Force Base March 22,2006, at 9:03 am Eastern time, 6:03 am Pacific time. In order to reach the completion of the development and successful launch of ST 5, the systems integration and test(I&T) team determined that a different approach was required to meet the project requirements rather than the standard I&T approach used for single, room-sized satellites. The ST5 payload, part of NASA's New Millennium Program headquartered at JPL, consisted of three micro satellites (approximately 30 kg each) and the Pegasus Support Structure (PSS), the system that connected the spacecrafts to the launch vehicle and deployed the spacecrafts into orbit from the Pegasus XL launch vehicle. ST5 was a technology demonstration payload, intended to test six (6) new technologies for potential use for future space flights along with demonstrating the ability of small satellites to perform quality science. The main technology was a science grade magnetometer designed to take measurements of the earth's magnetic field. The three spacecraft were designed, integrated, and tested at NASA Goddard Space Flight Center with integration and environmental testing occurring in the Bldg. 7-1 0-15-29. The three spacecraft were integrated and tested by the same I&T team. The I&T Manager determined that there was insufficient time in the schedule to perform the three I&T spacecraft activities in series used standard approaches. The solution was for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 simultaneously. This simultaneous integration was successful for several reasons. Each spacecraft had a Lead Test Conductor who planned and coordinated their spacecraft through its integration and test activities. One team of engineers and technicians executed the integration of all

  6. Satellite technology and the control of parasitic diseases in Africa ...

    African Journals Online (AJOL)

    The potential application of these techniques in the surveillance, control and prevention of parasitic diseases in Africa is explored in this write-up. Keywords: surveillance, parasitic diseases, satellite techniques, remote sensing, Geographical Information System (GIS), Global Positioning Sytem (GPS), human and robotic, ...

  7. Development of a Remotely Operated Autonomous Satellite Tracking System

    Science.gov (United States)

    2010-03-01

    What methods of data connectivity can be used to enable autonomy in a remotely operated tracking sytem ? Methodology Closed-Loop Control Optical...defined as follows: The centroid of a body is the center of mass when we assume constant density (Boas 2006, 251). In a two-dimensional example, a...the coordinate locations of the elements, and the integrals are over the whole body of mass M. In order to calculate the centroid position, MATLAB’s

  8. ARM Radiosondes for National Polar-Orbiting Operational Environmental Satellite System Preparatory Project Validation Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Borg, Lori [Univ. of Wisconsin, Madison, WI (United States); Tobin, David [Univ. of Wisconsin, Madison, WI (United States); Reale, Anthony [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Knuteson, Robert [Univ. of Wisconsin, Madison, WI (United States); Feltz, Michelle [Univ. of Wisconsin, Madison, WI (United States); Liu, Mark [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Holdridge, Donna J [Argonne National Lab. (ANL), Argonne, IL (United States); Mather, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-01

    This IOP has been a coordinated effort involving the U.S. Department of Energy (DOE) Atmospheric Radiation (ARM) Climate Research Facility, the University of Wisconsin (UW)-Madison, and the JPSS project to validate SNPP NOAA Unique Combined Atmospheric Processing System (NUCAPS) temperature and moisture sounding products from the Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS). In this arrangement, funding for radiosondes was provided by the JPSS project to ARM. These radiosondes were launched coincident with the SNPP satellite overpasses (OP) at four of the ARM field sites beginning in July 2012 and running through September 2017. Combined with other ARM data, an assessment of the radiosonde data quality was performed and post-processing corrections applied producing an ARM site Best Estimate (BE) product. The SNPP targeted radiosondes were integrated into the NOAA Products Validation System (NPROVS+) system, which collocated the radiosondes with satellite products (NOAA, National Aeronautics and Space Administration [NASA], European Organisation for the Exploitation of Meteorological Satellites [EUMETSAT], Geostationary Operational Environmental Satellite [GOES], Constellation Observing System for Meteorology, Ionosphere, and Climate [COSMIC]) and Numerical Weather Prediction (NWP forecasts for use in product assessment and algorithm development. This work was a fundamental, integral, and cost-effective part of the SNPP validation effort and provided critical accuracy assessments of the SNPP temperature and water vapor soundings.

  9. Effects of the solar-terrestrial environment on satellite operations

    International Nuclear Information System (INIS)

    Baker, D.N.

    1984-01-01

    Hot plasma and energetic particle populations in space are known to produce spacecraft operational anomalies. In the inner part of the earth's magnetosphere, these effects are primarily due to durably trapped radiation belt particles, and the integrated doses can be calculated quite accurately for any given orbit. In the outer magnetosphere many spacecraft operational problems appear to be due to intense, transient phenomena. It is shown that three types of naturally-occurring, and highly variable, hostile particle radiation environments are encountered at, or near, the geostationary orbit: (1) high-energy protons due to solar flares; (2) very high energy electrons (2-10 MeV) of unknown origin; and (3) energetic ions and electrons produced by magnetospheric substorms. Present particle sensor systems provide energetic particle detection and assessment capabilities during these kinds of high-energy radiation events. Numerous operational anomalies and subsystem problems have occurred during each type of event period and the association of such upsets is demonstrated in this paper. Methods of prediction of magnetospheric disturbances are discussed, and overall recommendations are made for dealing with this continuing problem

  10. Definition of technology development missions for early Space Station satellite servicing. Volume 1: Executive summary

    Science.gov (United States)

    1984-01-01

    The Executive Summary volume 1, includes an overview of both phases of the Definition of Technology Development Missions for Early Space Station Satellite Servicing. The primary purpose of Phase 1 of the Marshall Space Flight Center (MSFC) Satellite Servicing Phase 1 study was to establish requirements for demonstrating the capability of performing satellite servicing activities on a permanently manned Space Station in the early 1990s. The scope of Phase 1 included TDM definition, outlining of servicing objectives, derivation of initial Space Station servicing support requirements, and generation of the associated programmatic schedules and cost. The purpose of phase 2 of the satellite servicing study was to expand and refine the overall understanding of how best to use the manned space station as a test bed for demonstration of satellite servicing capabilities.

  11. Umatilla Hatchery Satellite Facilities Operation and Maintenance; 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowan, Gerald D.

    1996-05-01

    The Confederated Tribes of the Umatilla Indian Reservoir (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer Pond, Minthorn Springs, Imeques C-mem-ini-kem and Thornhollow facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O. kisutch). Minthorn is also used for holding and spawning adult summer steelhead, fall chinook and coho salmon. Personnel from the ODFW Eastern Oregon Fish Pathology Laboratory in La Grande took samples of tissues and reproductive fluids from Umatilla River summer steelhead and coho salmon broodstock for monitoring and evaluation purposes. Coded-wire tag recovery information was accessed to determine the contribution of Umatilla river releases to ocean, Columbia River and Umatilla River fisheries.

  12. Status of the fast mission : Micro-satellite formation flying for technology, science and education

    NARCIS (Netherlands)

    Guo, J.; Maessen, D.C.; Gill, E.K.A.; Moon, S.G.; Zheng, G.

    2009-01-01

    FAST (Formation for Atmospheric Science and Technology demonstration) is a cooperative Dutch Chinese formation flying mission led by Delft University of Technology (TU Delft) in the Netherlands and Tsinghua University in China. It is expected to be the first international micro-satellite formation

  13. The Application of the Technology of 3D Satellite Cloud Imaging in Virtual Reality Simulation

    Directory of Open Access Journals (Sweden)

    Xiao-fang Xie

    2007-05-01

    Full Text Available Using satellite cloud images to simulate clouds is one of the new visual simulation technologies in Virtual Reality (VR. Taking the original data of satellite cloud images as the source, this paper depicts specifically the technology of 3D satellite cloud imaging through the transforming of coordinates and projection, creating a DEM (Digital Elevation Model of cloud imaging and 3D simulation. A Mercator projection was introduced to create a cloud image DEM, while solutions for geodetic problems were introduced to calculate distances, and the outer-trajectory science of rockets was introduced to obtain the elevation of clouds. For demonstration, we report on a computer program to simulate the 3D satellite cloud images.

  14. A Challenging Trio in Space 'Routine' Operations of the Swarm Satellite Constellation

    Science.gov (United States)

    Diekmann, Frank-Jurgen; Clerigo, Ignacio; Albini, Giuseppe; Maleville, Laurent; Neto, Alessandro; Patterson, David; Nino, Ana Piris; Sieg, Detlef

    2016-08-01

    Swarm is the first ESA Earth Observation Mission with three satellites flying in a semi-controlled constellation. The trio is operated from ESA's satellite control centre ESOC in Darmstadt, Germany. The Swarm Flight Operations Segment consists of the typical elements of a satellite control system at ESOC, but had to be carefully tailored for this innovative mission. The main challenge was the multi-satellite system of Swarm, which necessitated the development of a Mission Control System with a multi-domain functionality, both in hardware and software and covering real-time and backup domains. This was driven by the need for extreme flexibility for constellation operations and parallel activities.The three months of commissioning in 2014 were characterized by a very tight and dynamically changing schedule of activities. All operational issues could be solved during that time, including the challenging orbit acquisition phase to achieve the final constellation.Although the formal spacecraft commissioning phase was concluded in spring 2014, the investigations for some payload instruments continue even today. The Electrical Field Instruments are for instance still being tested in order to characterize and improve science data quality. Various test phases also became necessary for the Accelerometers on the Swarm satellites. In order to improve the performance of the GPS Receivers for better scientific exploitation and to minimize the failures due to loss of synchronization, a number of parameter changes were commanded via on-board patches.Finally, to minimize the impact on operations, a new strategy had to be implemented to handle single/multi bit errors in the on-board mass Memories, defining when to ignore and when to restore the memory via a re-initialisation.The poster presentation summarizes the Swarm specific ground segment elements of the FOS and explains some of the extended payload commissioning operations, turning Swarm into a most demanding and challenging

  15. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 1

    Science.gov (United States)

    Greenburg, J. S.; Gaelick, C.; Kaplan, M.; Fishman, J.; Hopkins, C.

    1985-01-01

    Commercial organizations as well as government agencies invest in spacecraft (S/C) technology programs that are aimed at increasing the performance of communications satellites. The value of these programs must be measured in terms of their impacts on the financial performane of the business ventures that may ultimately utilize the communications satellites. An economic evaluation and planning capability was developed and used to assess the impact of NASA on-orbit propulsion and space power programs on typical fixed satellite service (FSS) and direct broadcast service (DBS) communications satellite business ventures. Typical FSS and DBS spin and three-axis stabilized spacecraft were configured in the absence of NASA technology programs. These spacecraft were reconfigured taking into account the anticipated results of NASA specified on-orbit propulsion and space power programs. In general, the NASA technology programs resulted in spacecraft with increased capability. The developed methodology for assessing the value of spacecraft technology programs in terms of their impact on the financial performance of communication satellite business ventures is described. Results of the assessment of NASA specified on-orbit propulsion and space power technology programs are presented for typical FSS and DBS business ventures.

  16. Technology programs and related policies - Impacts on communications satellite business ventures

    Science.gov (United States)

    Greenberg, J. S.

    1985-01-01

    The DOMSAT II stochastic communication satellite business venture financial planning simulation model is described. The specification of business scenarios and the results of several analyses are presented. In particular, the impacts of NASA on-orbit propulsion and power technology programs are described. The effects of insurance rates and self-insurance and of the use of the Space Shuttle and Ariane transportation systems on a typical fixed satellite service business venture are discussed.

  17. Communications satellite business ventures - Measuring the impact of technology programmes and related policies

    Science.gov (United States)

    Greenberg, J. S.

    1986-01-01

    An economic evaluation and planning procedure which assesses the effects of various policies on fixed satellite business ventures is described. The procedure is based on a stochastic financial simulation model, the Domsat II, which evaluates spacecraft reliability, market performance, and cost uncertainties. The application of the Domsat II model to the assessment of NASA's ion thrusters for on-orbit propulsion and GaAs solar cell technology is discussed. The effects of insurance rates and the self-insurance option on the financial performance of communication satellite business ventures are investigated. The selection of a transportation system for placing the satellites into GEO is analyzed.

  18. Design and Development of the WVU Advanced Technology Satellite for Optical Navigation

    Science.gov (United States)

    Straub, Miranda

    In order to meet the demands of future space missions, it is beneficial for spacecraft to have the capability to support autonomous navigation. This is true for both crewed and uncrewed vehicles. For crewed vehicles, autonomous navigation would allow the crew to safely navigate home in the event of a communication system failure. For uncrewed missions, autonomous navigation reduces the demand on ground-based infrastructure and could allow for more flexible operation. One promising technique for achieving these goals is through optical navigation. To this end, the present work considers how camera images of the Earth's surface could enable autonomous navigation of a satellite in low Earth orbit. Specifically, this study will investigate the use of coastlines and other natural land-water boundaries for navigation. Observed coastlines can be matched to a pre-existing coastline database in order to determine the location of the spacecraft. This paper examines how such measurements may be processed in an on-board extended Kalman filter (EKF) to provide completely autonomous estimates of the spacecraft state throughout the duration of the mission. In addition, future work includes implementing this work on a CubeSat mission within the WVU Applied Space Exploration Lab (ASEL). The mission titled WVU Advanced Technology Satellite for Optical Navigation (WATSON) will provide students with an opportunity to experience the life cycle of a spacecraft from design through operation while hopefully meeting the primary and secondary goals defined for mission success. The spacecraft design process, although simplified by CubeSat standards, will be discussed in this thesis as well as the current results of laboratory testing with the CubeSat model in the ASEL.

  19. NASA/DARPA advanced communications technology satellite project for evaluation of telemedicine outreach using next-generation communications satellite technology: Mayo Foundation participation.

    Science.gov (United States)

    Gilbert, B K; Mitchell, M P; Bengali, A R; Khandheria, B K

    1999-08-01

    To describe the development of telemedicine capabilities-application of remote consultation and diagnostic techniques-and to evaluate the feasibility and practicality of such clinical outreach to rural and underserved communities with limited telecommunications infrastructures. In 1992, Mayo Foundation (Rochester, Minn, Jacksonville, Fla, and Scottsdale, Ariz), the National Aeronautics and Space Administration, and the Defense Advanced Research Projects Agency collaborated to create a complex network of fiberoptic landlines, video recording systems, satellite terminals, and specially developed data translators linking Mayo sites with other locations in the continental United States on an on-demand basis. The purpose was to transmit data via the asynchronous transfer mode (ATM) digital communications protocol over the Advanced Communications Technology Satellite. The links were intended to provide a conduit for transmission of data for patient-specific consultations between physicians, evaluation of medical imagery, and medical education for clinical staffs at remote sites. Low-data-rate (LDR) experiments went live late in 1993. Mayo Clinic Rochester successfully provided medical consultation and services to 2 small regional medical facilities. High-data-rate (HDR) experiments included studies of remote digital echocardiography, store-and-forward telemedicine, cardiac catheterization, and teleconsultation for congenital heart disease. These studies combined landline data transmission with use of the satellite. The complexity of the routing paths and network components, immaturity of available software, and inexperience with existing telecommunications caused significant study delays. These experiments demonstrated that next-generation satellite technology can provide batch and real-time imagery for telemedicine. The first-generation of the ATM and satellite network technology used in these experiments created several technical problems and inconveniences that should

  20. SpaceWire model development technology for satellite architecture.

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, John M.; Leemaster, Jacob Edward; Van Leeuwen, Brian P.

    2011-09-01

    Packet switched data communications networks that use distributed processing architectures have the potential to simplify the design and development of new, increasingly more sophisticated satellite payloads. In addition, the use of reconfigurable logic may reduce the amount of redundant hardware required in space-based applications without sacrificing reliability. These concepts were studied using software modeling and simulation, and the results are presented in this report. Models of the commercially available, packet switched data interconnect SpaceWire protocol were developed and used to create network simulations of data networks containing reconfigurable logic with traffic flows for timing system distribution.

  1. Advancing Small Satellite Earth Observation: Operational Spacecraft, Planned Missions and Future Concepts

    OpenAIRE

    Wicks, A.; da Silva Curiel, A.; Ward, J.; Fouquet, M.

    2000-01-01

    The launch of Surrey’s UoSAT-12 in April 1999 heralded a new era in small-satellite Earth observation. The UoSAT-12 mission, Surrey’s first mini-satellite, supports a variety of payloads, including a 10-m panchromatic imager and a 32-m multispectral imager - both built at Surrey using COTS technology. In building these imagers, Surrey applied the lessons learned over sixteen microsatellite missions, and took advantage of the minisatellite class platform, which can support larger payloads and ...

  2. The National Polar-orbiting Operational Environmental Satellite System - Restructured Capabilities for Operational Ocean Remote Sensing

    Science.gov (United States)

    2008-09-01

    aerosols, cloud cover, surface albedo , and snow cover. Performance at the sensor level is expected to be comparable to MODIS [8], and as such represents...and research satellites with ocean observation capabilities such as the Moderate Resolution Imaging Spectroradiometer ( MODIS ) on the NASA Terra...temperature, soil moisture, sea ice characterization, precipitation, snow water equivalent, cloud liquid water, cloud base height, and atmospheric

  3. Advanced Communication Technology Satellite (ACTS) multibeam antenna analysis and experiment

    Science.gov (United States)

    Acosta, Roberto J.; Lagin, Alan R.; Larko, Jeffrey M.; Narvaez, Adabelle

    1992-01-01

    One of the most important aspects of a satellite communication system design is the accurate estimation of antenna performance degradation. Pointing error, end coverage gain, peak gain degradation, etc. are the main concerns. The thermal or dynamic distortions of a reflector antenna structural system can affect the far-field antenna power distribution in a least four ways. (1) The antenna gain is reduced; (2) the main lobe of the antenna can be mispointed thus shifting the destination of the delivered power away from the desired locations; (3) the main lobe of the antenna pattern can be broadened, thus spreading the RF power over a larger area than desired; and (4) the antenna pattern sidelobes can increase, thus increasing the chances of interference among adjacent beams of multiple beam antenna system or with antenna beams of other satellites. The in-house developed NASA Lewis Research Center thermal/structural/RF analysis program was designed to accurately simulate the ACTS in-orbit thermal environment and predict the RF antenna performance. The program combines well establish computer programs (TRASYS, SINDA and NASTAN) with a dual reflector-physical optics RF analysis program. The ACTS multibeam antenna configuration is analyzed and several thermal cases are presented and compared with measurements (pre-flight).

  4. New elements in production technology and operations

    International Nuclear Information System (INIS)

    Melberg, O.

    1995-01-01

    The title of this presentation embraces quite a wide scope, however, focus will be on Mobile Production Systems (MPSs) and in particular on Floating Production, Storage and Offloading Units (FPSOs), for which there is presently a remarkable boost in interest particularly in the North Sea area. Over the last 20 years, pioneered by the Argyll TW 58 in 1975, 11 mobile systems have been/are active in the North Sea, i.e. a growth of one for each second year. In 1994 alone a number of eight mobile production systems were contracted of which seven were FPSOs. This boost is following nine years of successful operation of the Petrojarl 1 and is also clearly linked to the success of the Kerr-McGee's Gryphon A project. The title of this presentation reflects new elements in this business; the upturn in interest for FPSOs introduces new ways of thinking and acting. In this paper, the new elements are divided into the general trends; new commercial elements and new technological elements

  5. Design and implementation of the flight dynamics system for COMS satellite mission operations

    Science.gov (United States)

    Lee, Byoung-Sun; Hwang, Yoola; Kim, Hae-Yeon; Kim, Jaehoon

    2011-04-01

    The first Korean multi-mission geostationary Earth orbit satellite, Communications, Ocean, and Meteorological Satellite (COMS) was launched by an Ariane 5 launch vehicle in June 26, 2010. The COMS satellite has three payloads including Ka-band communications, Geostationary Ocean Color Imager, and Meteorological Imager. Although the COMS spacecraft bus is based on the Astrium Eurostar 3000 series, it has only one solar array to the south panel because all of the imaging sensors are located on the north panel. In order to maintain the spacecraft attitude with 5 wheels and 7 thrusters, COMS should perform twice a day wheel off-loading thruster firing operations, which affect on the satellite orbit. COMS flight dynamics system provides the general on-station functions such as orbit determination, orbit prediction, event prediction, station-keeping maneuver planning, station-relocation maneuver planning, and fuel accounting. All orbit related functions in flight dynamics system consider the orbital perturbations due to wheel off-loading operations. There are some specific flight dynamics functions to operate the spacecraft bus such as wheel off-loading management, oscillator updating management, and on-station attitude reacquisition management. In this paper, the design and implementation of the COMS flight dynamics system is presented. An object oriented analysis and design methodology is applied to the flight dynamics system design. Programming language C# within Microsoft .NET framework is used for the implementation of COMS flight dynamics system on Windows based personal computer.

  6. The Development of a Materials Distribution Service for a Satellite-Based Educational Telecommunications Experiment. Satellite Technology Demonstration, Technical Report No. 0501.

    Science.gov (United States)

    Lonsdale, Helen C.

    Because 16mm film programs for classroom use are expensive and distribution is unpredictable, the Satellite Technology Demonstration (STD) established a Materials Distribution Service (MDS) to transmit material via satellite to rural sites in the Rocky Mountains. The STD leased 300 programs from Encyclopedia Britannica Educational Corporation and…

  7. Versatile Satellite Architecture and Technology: A New Architecture for Low Cost Satellite Missions for Solar-Terrestrial Studies

    Science.gov (United States)

    Cook, T. A.; Chakrabarti, S.; Polidan, R.; Jaeger, T.; Hill, L.

    2011-12-01

    Early in the 20th century, automobiles appeared as extraordinary vehicles - and now they are part of life everywhere. Late in the 20th century, internet and portable phones appeared as innovations - and now omni-present requirements. At mid-century, the first satellites were launched into space - and now 50 years later - "making a satellite" remains in the domain of highly infrequent events. Why do all universities and companies not have their own satellites? Why is the work force capable of doing so remarkably small? Why do highly focused science objectives that require just a glimpse from space never get a chance to fly? Historically, there have been two primary impediments to place an experiment in orbit - high launch costs and the high cost of spacecraft systems and related processes. The first problem appears to have been addressed through the availability of several low-cost (Architecture and Technology (VerSAT) will address the second. Today's space missions are often large, complex and require development times typically a decade from conception to execution. In present risk-averse scenario, the huge expense of these one-of-a-kind mission architecture can only be justified if the technology required to make orders of magnitude gains is flight-proven at the time mission conception. VerSAT will complement these expensive missions which are "too large to fail" and the CUBESATs. A number of Geospace science experiments that could immediately take advantage of VerSAT have been identified. They range from the study of fundamental questions of the "ignorosphere" from a single satellite lasting a few days - a region of space that was probed once about 40 years ago, to a constellation of satellites which will disentangle the space and time ambiguity of the variability of ionospheric structures and their link to the storms in the Sun to long-term studies of the Sun-Earth system. VerSAT is a true multiplexed system that is modular, scalable and reconfigurable; it is

  8. Calibration/Validation Technology for the CO2 Satellite Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We are proposing to develop high altitude CO2 analyzer technology that can be deployed on the research aircraft of NASA's Airborne Science Program (ASP). The...

  9. Oakland Operations Office, Oakland, California: Technology summary

    International Nuclear Information System (INIS)

    1994-11-01

    DOE's Office of Technology Development manages an aggressive national program for applied research, development, demonstration, testing, and evaluation. This program develops high, payoff technologies to clean up the inventory of DOE nuclear component manufacturing sites and to manage DOE-generated waste faster, safer, and cheaper than current environmental cleanup technologies. OTD programs are designed to make new, innovative, and more effective technologies available for transfer to users through progressive development. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD technologies address three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention

  10. Integration and Testing Challenges of Small, Multiple Satellite Missions: Experiences from the Space Technology 5 Project

    Science.gov (United States)

    Sauerwein, Timothy A.; Gostomski, Thomas

    2008-01-01

    The ST5 technology demonstration mission led by GSFC of NASA's New Millennium Program managed by JPL consisted of three micro satellites (approximately 30 kg each) deployed into orbit from the Pegasus XL launch vehicle. In order to meet the launch date schedule of ST5, a different approach was required rather than the standard I&T approach used for single, room-sized satellites. The three spacecraft were designed, integrated, and tested at NASA Goddard Space Flight Center. It was determined that there was insufficient time in the schedule to perform three spacecraft I&T activities in series using standard approaches. The solution was for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 simultaneously. This simultaneous integration was successful for several reasons. Each spacecraft had a Lead Test Conductor who planned and coordinated their spacecraft through its integration and test activities. One team of engineers and technicians executed the integration of all three spacecraft, learning and gaining knowledge and efficiency as spacecraft #1 integration and testing progressed. They became acutely familiar with the hardware, operation and processes for I&T, thus had the experience and knowledge to safely execute I&T for spacecraft #2 and #3. The integration team was extremely versatile; each member could perform many different activities or work any spacecraft, when needed. ST5 was successfully integrated, tested and shipped to the launch site per the I&T schedule that was planned three years previously. The I&T campaign was completed with ST5's successful launch on March 22, 2006.

  11. Short-Term Prediction Research and Transition (SPoRT) Center: Transitioning Satellite Data to Operations

    Science.gov (United States)

    Zavodsky, Bradley

    2012-01-01

    The Short-term Prediction Research and Transition (SPoRT) Center located at NASA Marshall Space Flight Center has been conducting testbed activities aimed at transitioning satellite products to National Weather Service operational end users for the last 10 years. SPoRT is a NASA/NOAA funded project that has set the bar for transition of products to operational end users through a paradigm of understanding forecast challenges and forecaster needs, displaying products in end users decision support systems, actively assessing the operational impact of these products, and improving products based on forecaster feedback. Aiming for quality partnerships rather than a large quantity of data users, SPoRT has become a community leader in training operational forecasters on the use of up-and-coming satellite data through the use of legacy instruments and proxy data. Traditionally, SPoRT has supplied satellite imagery and products from NASA instruments such as the Moderate-resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). However, recently, SPoRT has been funded by the GOES-R and Joint Polar Satellite System (JPSS) Proving Grounds to accelerate the transition of selected imagery and products to help improve forecaster awareness of upcoming operational data from the Visible Infrared Imager Radiometer Suite (VIIRS), Cross-track Infrared Sounder (CrIS), Advanced Baseline Imager (ABI), and Geostationary Lightning Mapper (GLM). This presentation provides background on the SPoRT Center, the SPoRT paradigm, and some example products that SPoRT is excited to work with forecasters to evaluate.

  12. Addressing the emerging technology of video image compression over commercially available terrestrial and satellite transmission circuits

    Science.gov (United States)

    Kozlowski, Jerry; Ragsdale, Baxter

    The authors address the use of video communications with commercial telephone and satellite services as a cost-effective means of long-distance problem solving and teletraining for US Government applications. A primary objective of this feasibility study and pilot demonstration is to evaluate various video-compression Codecs, interactive computer technology, and high-resolution graphics transmission equipment working with government encryption devices over multiple 56-kb telephone lines, or ISDN-compatible 64-kb satellite circuits. It is concluded that the use of compressed video imagery, toll quality audio, and high-resolution graphics over multiple 64-kb or 128-kb/s satellite circuits is a proven technology with significant cost advantages over T-1 or 1.5 Mb video circuits as provided on the Defense Commercial Telecommunications Network.

  13. Aviation safety and operation problems research and technology

    Science.gov (United States)

    Enders, J. H.; Strickle, J. W.

    1977-01-01

    Aircraft operating problems are described for aviation safety. It is shown that as aircraft technology improves, the knowledge and understanding of operating problems must also improve for economics, reliability and safety.

  14. Definition of technology development missions for early Space Station satellite servicing. Volume 2: Technical

    Science.gov (United States)

    Cable, D. A.; Diewald, C. A.; Hills, T. C.; Parmentier, T. J.; Spencer, R. A.; Stone, G. E.

    1984-01-01

    Volume 2 contains the Technical Report of the approach and results of the Phase 2 study. The phase 2 servicing study was initiated in June 1983, and is being reported in this document. The scope of the contract was to: (1) define in detail five selected technology development missions (TDM); (2) conduct a design requirement analysis to refine definitions of satellite servicing requirements at the space station; and (3) develop a technology plan that would identify and schedule prerequisite precursor technology development, associated. STS flight experiments and space station experiments needed to provide onorbit validation of the evolving technology.

  15. PowerSat: A technology demonstration of a solar power satellite

    Science.gov (United States)

    Sigler, Douglas L. (Editor); Riedman, John; Duracinski, Jon; Edwards, Joe; Brown, Garry; Webb, Ron; Platzke, Mike; Yuan, Xiaolin; Rogers, Pete; Khan, Afsar

    1994-01-01

    PowerSat is a preliminary design strategy for microwave wireless power transfer of solar energy. Solar power satellites convert solar power into microwave energy and use wireless power transmission to transfer the power to the Earth's surface. The PowerSat project will show how new developments in inflatable technology can be used to deploy solar panels and phased array antennas.

  16. MISAT : Designing a Series of Powerful Small Satellites Based upon Micro Systems Technology

    NARCIS (Netherlands)

    Gill, E.; Monna, G.L.E.; Scherpen, J.M.A.; Verhoeven, C.J.M.

    2007-01-01

    MISAT is a research and development cluster which will create a small satellite platform based on Micro Systems Technology (MST) aiming at innovative space as well as terrestrial applications. MISAT is part of the Dutch MicroNed program which has established a microsystems infrastructure to fully

  17. Communication Media and Educational Technology: An Overview and Assessment with Reference to Communication Satellites.

    Science.gov (United States)

    Ohlman, Herbert

    In this survey and analysis of the present state and future trends of communication media and educational technology, particular emphasis is placed on the potential uses of communication satellites and the substitution of electronic transmission for physical distribution of educational materials. The author analyzes in detail the characteristics…

  18. Advanced technology satellites in the commercial environment. Volume 1: Executive summary

    Science.gov (United States)

    1984-01-01

    A set of scenarios, based on a set of traffic demand forecasts is postulated. The scenarios use a demand-driven model to launch satellites, with other limits on the available (and economical) technology. The results using a low traffic forecast show a continuing oversupply of transponders. However, the scenarios using a high traffic forecast show that considerable advanced technology including the use of 30/20 GHz is needed to satisfy demand.

  19. Synchronization techniques for all digital 16-ary QAM receivers operating over land mobile satellite links

    Science.gov (United States)

    Fines, P.; Aghvami, A. H.

    1990-01-01

    The performance of a low bit rate (64 Kb/s) all digital 16-ary Differentially Encoded Quadrature Amplitude Modulation (16-DEQAM) demodulator operating over a mobile satellite channel, is considered. The synchronization and detection techniques employed to overcome the Rician channel impairments, are described. The acquisition and steady state performance of this modem, are evaluated by computer simulation over AWGN and RICIAN channels. The results verify the suitability of the 16-DEQAM transmission over slowly faded and/or mildly faded channels.

  20. System Critical Design Audit (CDA). Books 1, 2 and 3; [Small Satellite Technology Initiative (SSTI Lewis Spacecraft Program)

    Science.gov (United States)

    1995-01-01

    Small Satellite Technology Initiative (SSTI) Lewis Spacecraft Program is evaluated. Spacecraft integration, test, launch, and spacecraft bus are discussed. Payloads and technology demonstrations are presented. Mission data management system and ground segment are also addressed.

  1. Using Enabling Technologies to Facilitate the Comparison of Satellite Observations with the Model Forecasts for Hurricane Study

    Science.gov (United States)

    Li, P.; Knosp, B.; Hristova-Veleva, S. M.; Niamsuwan, N.; Johnson, M. P.; Shen, T. P. J.; Tanelli, S.; Turk, J.; Vu, Q. A.

    2014-12-01

    Due to their complexity and volume, the satellite data are underutilized in today's hurricane research and operations. To better utilize these data, we developed the JPL Tropical Cyclone Information System (TCIS) - an Interactive Data Portal providing fusion between Near-Real-Time satellite observations and model forecasts to facilitate model evaluation and improvement. We have collected satellite observations and model forecasts in the Atlantic Basin and the East Pacific for the hurricane seasons since 2010 and supported the NASA Airborne Campaigns for Hurricane Study such as the Genesis and Rapid Intensification Processes (GRIP) in 2010 and the Hurricane and Severe Storm Sentinel (HS3) from 2012 to 2014. To enable the direct inter-comparisons of the satellite observations and the model forecasts, the TCIS was integrated with the NASA Earth Observing System Simulator Suite (NEOS3) to produce synthetic observations (e.g. simulated passive microwave brightness temperatures) from a number of operational hurricane forecast models (HWRF and GFS). An automated process was developed to trigger NEOS3 simulations via web services given the location and time of satellite observations, monitor the progress of the NEOS3 simulations, display the synthetic observation and ingest them into the TCIS database when they are done. In addition, three analysis tools, the joint PDF analysis of the brightness temperatures, ARCHER for finding the storm-center and the storm organization and the Wave Number Analysis tool for storm asymmetry and morphology analysis were integrated into TCIS to provide statistical and structural analysis on both observed and synthetic data. Interactive tools were built in the TCIS visualization system to allow the spatial and temporal selections of the datasets, the invocation of the tools with user specified parameters, and the display and the delivery of the results. In this presentation, we will describe the key enabling technologies behind the design of

  2. Development of a Comprehensive Mission Operations System Designed to Operate Multiple Small Satellites

    OpenAIRE

    Sorensen, Trevor; Pilger, Eric; Wood, Mark; Nunes, Miguel; Yost, Bruce

    2011-01-01

    The Hawaii Space Flight Laboratory (HSFL) at the University of Hawaii at Manoa, in collaboration with NASA Ames Research Center (ARC), is developing COSMOS (Comprehensive Open-architecture Space Mission Operations System), a set of software tools and hardware that is designed to primarily support the development and operations of one or more small spacecraft. COSMOS will be particularly suited for organizations with limited development and operations budget, such as universities. COSMOS is a ...

  3. GHRSST Level 2P Western Atlantic Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-13 satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  4. GHRSST Level 2P Central Pacific Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-15 satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  5. Satellite power systems structures: A 1980 technology status review

    Science.gov (United States)

    Greenberg, H. S.

    1980-07-01

    The classes of major structural components and constructions utilized were considered. A review of the current (SPS) structure technology status was made. The major issues considered pertinent to SPS structures are: Cost effective construction, construction materials, structural design requirements, stress and dimensional integrity of as-built structures, and predictability of strength and dynamic behavior. The feasibility of passive figure control approach to MPTS flatness, of structure stiffness compatible with MPTS pointing, of passive control through damping, and the feasibility of space fabrication of ultra-large reflector surfaces are also considered. Qualification, model verification, inspection are considered of vital concern.

  6. A simple satellite system to locate gamma-ray bursters using scintillating fiber technology

    International Nuclear Information System (INIS)

    Colavita, A.; Fratnik, F.

    1993-07-01

    We present a study on the feasibility of using a system of small, light, long-lived and simple satellites in order to locate gamma-ray bursters. Each small satellite possesses only electronics to discriminate gamma-rays out of the large background of cosmic rays and to time the arrival of the front of a gamma-ray burst. The arrival of a γ-ray strikes a plane made out of scintillating fibers. A layered structure of thin lead foils and scintillating fibers is used to obtain a low trigger threshold of approximately 20 MeV. To locate the burster applying triangulation methods, we use the time of arrival of the front of the gamma-ray burst and the position of the satellites at that very moment. We review an elementary version of the triangulation method to study the angular error in the determination of the burster position. We show that for almost all non-pathological distances among satellites we can determine the angular location of the source to better than one arc min. This precision allows us to find the visible counterpart of the burster, if it exists. These simple satellites can be made modular in order to customize their sizes or weights in order to use spare space available during major launches. We also propose a block diagram for the satellite architecture as well as a simple and strong detector using scintillating fiber technology. (author). 13 refs, 5 figs

  7. Recent technology for BWR operator training simulators

    International Nuclear Information System (INIS)

    Sato, Takao; Hashimoto, Shigeo; Kato, Kanji; Mizuno, Toshiyuki; Asaoka, Koichi.

    1990-01-01

    As one of the important factors for maintaining the high capacity ratio in Japanese nuclear power stations, the contribution of excellent operators is pointed out. BWR Operation Training Center has trained many operators using two full scope simulators for operation training modeling BWRs. But in order to meet the demands of the recent increase of training needs and the upgrading of the contents, it was decided to install the third simulator, and Hitachi Ltd. received the order to construct the main part, and delivered it. This simulator obtained the good reputation as its range of simulation is wide, and the characteristics resemble very well those of the actual plants. Besides, various new designs were adopted in the control of the simulator, and its handling became very easy. Japanese nuclear power plants are operated at constant power output, and the unexpected stop is very rare, therefore the chance of operating the plants by operators is very few. Accordingly, the training using the simulators which can simulate the behavior of the plants with computers, and can freely generate abnormal phenomena has become increasingly important. The mode and positioning of the simulators for operation training, the full scope simulator BTC-3 and so on are reported. (K.I.)

  8. Performance characteristics of the 12 GHz, 200 watt Transmitter Experiment Package for CTS. [Communication Technology Satellite

    Science.gov (United States)

    Miller, E. F.; Fiala, J. L.; Hansen, I. G.

    1975-01-01

    Measured performance characteristics from ground test of the Transmitter Experiment Package (TEP) for the Communications Technology Satellite are presented. The experiment package consists of a 200 W Output Stage Tube (OST) powered by a Power Processing System (PPS). Descriptions of both the PPS and OST are given. The PPS provides the necessary voltages with a measured dc/dc conversion efficiency of 89 per cent. The OST, a traveling wave tube with multiple collectors, has a saturated rf output power of 224 W and operates at an overall efficiency exceeding 40 per cent over an 85 MHz bandwidth at 12 GHz. OST performance given includes frequency response, saturation characteristics, group delay, AM to PM conversion, intermodulation distortion, and two channel gain suppression. Single and dual channel FM video performance is presented. It was determined that for 12 MHz peak to peak frequency deviation on each channel, dual channel FM television signals can be transmitted through the TEP at 60 W, each channel, with 40 MHz channel spacing (center to center).

  9. An Object Model for Integrating Diverse Remote Sensing Satellite Sensors: A Case Study of Union Operation

    Directory of Open Access Journals (Sweden)

    Chuli Hu

    2014-01-01

    Full Text Available In the Earth Observation sensor web environment, the rapid, accurate, and unified discovery of diverse remote sensing satellite sensors, and their association to yield an integrated solution for a comprehensive response to specific emergency tasks pose considerable challenges. In this study, we propose a remote sensing satellite sensor object model, based on the object-oriented paradigm and the Open Geospatial Consortium Sensor Model Language. The proposed model comprises a set of sensor resource objects. Each object consists of identification, state of resource attribute, and resource method. We implement the proposed attribute state description by applying it to different remote sensors. A real application, involving the observation of floods at the Yangtze River in China, is undertaken. Results indicate that the sensor inquirer can accurately discover qualified satellite sensors in an accurate and unified manner. By implementing the proposed union operation among the retrieved sensors, the inquirer can further determine how the selected sensors can collaboratively complete a specific observation requirement. Therefore, the proposed model provides a reliable foundation for sharing and integrating multiple remote sensing satellite sensors and their observations.

  10. Spatial Mapping of NEO 2008 EV5 Using Small Satellite Formation Flying and Steresoscopic Technology

    Science.gov (United States)

    Gonzalez, Juan; Singh Derewa, Chrishma

    2016-10-01

    NASA is currently developing the first-ever robotic Asteroid Redirect Robotic Mission (ARRM) to the near-Earth asteroid 2008 EV5 with the objective to capture a multi-ton boulder from the asteroids surface and use its mass to redirect its parent into a CIS lunar orbit where astronauts will study its physical and chemical composition.A critical step towards achieving this mission is to effectively map the target asteroid, identify the candidate boulder for retrieval and characterize its critical parameters. Currently, ARRM utilizes a laser altimeter to characterize the height of the boulders and mapping for final autonomous control of the capture. The proposed Lava-Kusha mission provides the increased of stereoscopic imaging and mapping, not only the Earthward side of the asteroid which has been observed for possible landing sites, but mapping the whole asteroid. LKM will enhance the fidelity of the data collected by the laser altimeter and gather improved topographic data for future Orion missions to 2008 EV5 once in cis lunar space.LKM consists of two low cost small satellites (6U) as a part of the ARRM. They will launch with ARRM as an integrated part of the system. Once at the target, this formation of pathfinder satellites will image the mission critical boulder to ensure the system design can support its removal. LKM will conduct a series of flybys prior to ARRM's rendezvous. LKMs stereoscopic cameras will provide detailed surveys of the boulder's terrain and environment to ensure ARRM can operate safely, reach the location and interface with the boulder. The LKM attitude control and cold gas propulsion system will enable formation maintenance maneuvers for global mapping of asteroid 2008 EV5 at an altitude of 100 km to a high-spatial resolution imaging altitude of 5 km.LKM will demonstrate formation flying in deep space and the reliability of stereoscopic cameras to precisely identify a specific target and provide physical characterization of an asteroid. An

  11. Assessment for Operator Confidence in Automated Space Situational Awareness and Satellite Control Systems

    Science.gov (United States)

    Gorman, J.; Voshell, M.; Sliva, A.

    2016-09-01

    The United States is highly dependent on space resources to support military, government, commercial, and research activities. Satellites operate at great distances, observation capacity is limited, and operator actions and observations can be significantly delayed. Safe operations require support systems that provide situational understanding, enhance decision making, and facilitate collaboration between human operators and system automation both in-the-loop, and on-the-loop. Joint cognitive systems engineering (JCSE) provides a rich set of methods for analyzing and informing the design of complex systems that include both human decision-makers and autonomous elements as coordinating teammates. While, JCSE-based systems can enhance a system analysts' understanding of both existing and new system processes, JCSE activities typically occur outside of traditional systems engineering (SE) methods, providing sparse guidance about how systems should be implemented. In contrast, the Joint Director's Laboratory (JDL) information fusion model and extensions, such as the Dual Node Network (DNN) technical architecture, provide the means to divide and conquer such engineering and implementation complexity, but are loosely coupled to specialized organizational contexts and needs. We previously describe how Dual Node Decision Wheels (DNDW) extend the DNN to integrate JCSE analysis and design with the practicalities of system engineering and implementation using the DNN. Insights from Rasmussen's JCSE Decision Ladders align system implementation with organizational structures and processes. In the current work, we present a novel approach to assessing system performance based on patterns occurring in operational decisions that are documented by JCSE processes as traces in a decision ladder. In this way, system assessment is closely tied not just to system design, but the design of the joint cognitive system that includes human operators, decision-makers, information systems, and

  12. Crisis Management- Operational Logistics & Asset Visibility Technologies

    National Research Council Canada - National Science Library

    Braunbeck, Richard A; Mastria, Michael F

    2006-01-01

    .... Recent crisis response operations that would have benefited from improved asset visibility include the Indian Ocean tsunami, the Pakistani earthquake, Hurricane Katrina and those related to the Global War on Terror...

  13. Networks systems and operations. [wideband communication techniques for data links with satellites

    Science.gov (United States)

    1975-01-01

    The application of wideband communication techniques for data links with satellites is discussed. A diagram of the demand assigned voice communications system is provided. The development of prototype integrated spacecraft paramps at S- and C-bands is described and the performance of space-qualified paramps is tabulated. The characteristics of a dual parabolic cylinder monopulse zoom antenna for use with the tracking and data relay satellite system (TDRSS) are analyzed. The development of a universally applicable transponder at S-band is reported. A block diagram of the major subassemblies of the S-band transponder is included. The technology aspects of network timing and synchronization of communication systems are to show the use of the Omega navigation system. The telemetry data compression system used during the Skylab program is evaluated.

  14. Machine Learning Technologies Translates Vigilant Surveillance Satellite Big Data into Predictive Alerts for Environmental Stressors

    Science.gov (United States)

    Johnson, S. P.; Rohrer, M. E.

    2017-12-01

    The application of scientific research pertaining to satellite imaging and data processing has facilitated the development of dynamic methodologies and tools that utilize nanosatellites and analytical platforms to address the increasing scope, scale, and intensity of emerging environmental threats to national security. While the use of remotely sensed data to monitor the environment at local and global scales is not a novel proposition, the application of advances in nanosatellites and analytical platforms are capable of overcoming the data availability and accessibility barriers that have historically impeded the timely detection, identification, and monitoring of these stressors. Commercial and university-based applications of these technologies were used to identify and evaluate their capacity as security-motivated environmental monitoring tools. Presently, nanosatellites can provide consumers with 1-meter resolution imaging, frequent revisits, and customizable tasking, allowing users to define an appropriate temporal scale for high resolution data collection that meets their operational needs. Analytical platforms are capable of ingesting increasingly large and diverse volumes of data, delivering complex analyses in the form of interpretation-ready data products and solutions. The synchronous advancement of these technologies creates the capability of analytical platforms to deliver interpretable products from persistently collected high-resolution data that meet varying temporal and geographic scale requirements. In terms of emerging environmental threats, these advances translate into customizable and flexible tools that can respond to and accommodate the evolving nature of environmental stressors. This presentation will demonstrate the capability of nanosatellites and analytical platforms to provide timely, relevant, and actionable information that enables environmental analysts and stakeholders to make informed decisions regarding the prevention

  15. Advanced Communication Technology Satellite (ACTS) Multibeam Antenna On-Orbit Performance

    Science.gov (United States)

    1995-01-01

    The NASA Lewis Research Center's Advanced Communication Technology Satellite (ACTS) was launched in September 1993. ACTS introduced several new technologies, including a multibeam antenna (MBA) operating at extremely short wavelengths never before used in communications. This antenna, which has both fixed and rapidly reconfigurable high-energy spot beams (150 miles in diameter), serves users equipped with small antenna terminals. Extensive structural and thermal analyses have been performed for simulating the ACTS MBA on-orbit performance. The results show that the reflector surfaces (mainly the front subreflector), antenna support assembly, and metallic surfaces on the spacecraft body will be distorted because of the thermal effects of varying solar heating, which degrade the ACTS MBA performance. Since ACTS was launched, a number of evaluations have been performed to assess MBA performance in the space environment. For example, the on-orbit performance measurements found systematic environmental disturbances to the MBA beam pointing. These disturbances were found to be imposed by the attitude control system, antenna and spacecraft mechanical alignments, and on-orbit thermal effects. As a result, the MBA may not always exactly cover the intended service area. In addition, the on-orbit measurements showed that antenna pointing accuracy is the performance parameter most sensitive to thermal distortions on the front subreflector surface and antenna support assemblies. Several compensation approaches were tested and evaluated to restore on-orbit pointing stability. A combination of autotrack (75 percent of the time) and Earth sensor control (25 percent of the time) was found to be the best way to compensate for antenna pointing error during orbit. This approach greatly minimizes the effects of thermal distortions on antenna beam pointing.

  16. Technology Reference Model (TRM) Reports: Technology/Operating System Report

    Data.gov (United States)

    Department of Veterans Affairs — The One VA Enterprise Architecture (OneVA EA) is a comprehensive picture of the Department of Veterans Affairs' (VA) operations, capabilities and services and the...

  17. 2007 Pacific Operational Science and Technology Conference

    Science.gov (United States)

    2007-04-04

    Magnetic Resonance Technology ● Detect Liquid & Solid Explosives ● Detect Explosive Components ● Simple “Green” / ”Yellow” / ”Red” alerts ● Non-contact...Afghanistan • Part of New Zealand Reconstruction Team • Set up of dental clinic & training of locals in dentistry and basic healthcare • Bridge

  18. Incorporating biopulping technology into wood yard operations

    Science.gov (United States)

    Gary M. Scott; Eric. Horn; Masood. Akhtar; Ross E. Swaney; Michael J. Lentz; David F. Shipley

    1998-01-01

    Biopulping is the treatment of wood chips and other lignocellulosic materials with lignin-degrading fungi prior to pulping. Ten years of industry-sponsored research has demonstrated the technical feasibility of the technology for mechanical pulping at a laboratory scale. Two 50-ton outdoor chip pile trials recently conducted at the USDA Forest Service, Forest Products...

  19. Accelerated life tests of specimen heat pipe from Communication Technology Satellite (CTS) project

    Science.gov (United States)

    Tower, L. K.; Kaufman, W. B.

    1977-01-01

    A gas-loaded variable conductance heat pipe of stainless steel with methanol working fluid identical to one now on the CTS satellite was life tested in the laboratory at accelerated conditions for 14 200 hours, equivalent to about 70 000 hours at flight conditions. The noncondensible gas inventory increased about 20 percent over the original charge. The observed gas increase is estimated to increase operating temperature by about 2.2 C, insufficient to harm the electronic gear cooled by the heat pipes in the satellite. Tests of maximum heat input against evaporator elevation agree well with the manufacturer's predictions.

  20. Operational use of open satellite data for marine water quality monitoring

    Science.gov (United States)

    Symeonidis, Panagiotis; Vakkas, Theodoros

    2017-09-01

    The purpose of this study was to develop an operational platform for marine water quality monitoring using near real time satellite data. The developed platform utilizes free and open satellite data available from different data sources like COPERNICUS, the European Earth Observation Initiative, or NASA, from different satellites and instruments. The quality of the marine environment is operationally evaluated using parameters like chlorophyll-a concentration, water color and Sea Surface Temperature (SST). For each parameter, there are more than one dataset available, from different data sources or satellites, to allow users to select the most appropriate dataset for their area or time of interest. The above datasets are automatically downloaded from the data provider's services and ingested to the central, spatial engine. The spatial data platform uses the Postgresql database with the PostGIS extension for spatial data storage and Geoserver for the provision of the spatial data services. The system provides daily, 10 days and monthly maps and time series of the above parameters. The information is provided using a web client which is based on the GET SDI PORTAL, an easy to use and feature rich geospatial visualization and analysis platform. The users can examine the temporal variation of the parameters using a simple time animation tool. In addition, with just one click on the map, the system provides an interactive time series chart for any of the parameters of the available datasets. The platform can be offered as Software as a Service (SaaS) to any area in the Mediterranean region.

  1. Operant Conditioning and Learning: Examples, Sources, Technology.

    Science.gov (United States)

    Pedrini, Bonnie C.; Pedrini, D. T.

    The purpose of this paper is to relate psychology to teaching generally, and to relate behavior shaping to curriculum, specifically. Focusing on operant conditioning and learning, many studies are cited which illustrate some of the work being done toward effectively shaping or modifying student behavior whether in terms of subject matter or…

  2. Operational technology for greater confinement disposal

    International Nuclear Information System (INIS)

    Dickman, P.T.; Vollmer, A.T.; Hunter, P.H.

    1984-12-01

    Procedures and methods for the design and operation of a greater confinement disposal facility using large-diameter boreholes are discussed. It is assumed that the facility would be located at an operating low-level waste disposal site and that only a small portion of the wastes received at the site would require greater confinement disposal. The document is organized into sections addressing: facility planning process; facility construction; waste loading and handling; radiological safety planning; operations procedures; and engineering cost studies. While primarily written for low-level waste management site operators and managers, a detailed economic assessment section is included that should assist planners in performing cost analyses. Economic assessments for both commercial and US government greater confinement disposal facilities are included. The estimated disposal costs range from $27 to $104 per cubic foot for a commercial facility and from $17 to $60 per cubic foot for a government facility. These costs are based on average site preparation, construction, and waste loading costs for both contact- and remote-handled wastes. 14 figures, 22 tables

  3. Essential Technology and Application of Jitter Detection and Compensation for High Resolution Satellites

    Directory of Open Access Journals (Sweden)

    TONG Xiaohua

    2017-10-01

    Full Text Available Satellite jitter is a common and complex phenomenon for the on-orbit high resolution satellites, which may affect the mapping accuracy and quality of imagery. A framework of jitter detection and compensation integrating data processing of multiple sensors is proposed in this paper. Jitter detection is performed based on multispectral imagery, three-line-array imagery, dense ground control and attitude measurement data, and jitter compensation is conducted both on image and on attitude with the sensor model. The platform jitter of ZY-3 satellite is processed and analyzed using the proposed technology, and the results demonstrate the feasibility and reliability of jitter detection and compensation. The variation law analysis of jitter indicates that the frequencies of jitter of ZY-3 satellite hold in the range between 0.6 and 0.7 Hz, while the amplitudes of jitter of ZY-3 satellite drop from 1 pixel in the early stage to below 0.4 pixels and tend to remain stable in the following stage.

  4. Application of satellite pictures to census operations. Bolivian experience in census-taking of population and residences

    Science.gov (United States)

    1978-01-01

    The use of photographs from satellites to assist in census operations is discussed. Principles of selecting the sources of cartographic information are outlined, and the use of LANDSAT pictures in census cartography is examined.

  5. Advanced technology for BWR operator training simulator

    International Nuclear Information System (INIS)

    Shibuya, Akira; Fujita, Eimitsu; Nakao, Toshihiko; Nakabaru, Mitsugu; Asaoka, Kouchi.

    1991-01-01

    This paper describes an operator training simulator for BWR nuclear power plants which went into service recently. The simulator is a full scope replica type simulator which faithfully replicates the control room environment of the reference plant with six main control panels and twelve auxiliary ones. In comparison with earlier simulators, the scope of the simulation is significantly extended in both width and depth. The simulation model is also refined in order to include operator training according to sympton-based emergency procedure guidelines to mitigate the results in accident cases. In particular, the core model and the calculational model of the radiation intensity distribution, if radioactive materials were released, are improved. As for simulator control capabilities by which efficient and effective training can be achieved, various advanced designs are adopted allowing easy use of the simulators. (author)

  6. Political and legal implications of developing and operating a satellite power system

    Science.gov (United States)

    Hazelrigg, G. A., Jr.

    1977-01-01

    A number of political and legal implications of developing and operating a satellite power system (SPS) are identified and studied in this report. These include the vulnerability of SPS to actions of adversaries, communications impacts, the legality of an SPS in orbit including on-orbit military protection, alleviation of political concerns about deployment and operation of SPS, programmatic planning for SPS and the interaction of SPS with federal regulatory agencies and major departments. In comparing SPS to terrestrial power stations, it is seen that the political problems are neither clearly larger nor clearly smaller--they are clearly different and they are international in nature. If SPS is to become a reality these problems must be dealt with. Five major issues are identified. These must be resolved in order to obtain international acceptance of SPS. However, this study has found no insurmountable obstacles that would clearly prohibit the deployment, operation and protection of an SPS fleet.

  7. Methodology for the comparative assessment of the Satellite Power System (SPS) and alternative technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wolsko, T.; Buehring, W.; Cirillo, R.; Gasper, J.; Habegger, L.; Hub, K.; Newsom, D.; Samsa, M.; Stenehjem, E.; Whitfield, R.

    1980-01-01

    A description of the initial methodology for the Comparative Assessment of the Satellite Power System Concept Development and Evaluation Program of NASA and DOE is presented. Included are study objectives, issue identification, units of measurement, methods, and data bases. The energy systems concerned are the satellite power system, several coal technologies, geothermal energy, fission, fusion, terrestrial solar systems, and ocean thermal energy conversion. Guidelines are suggested for the characterization of these systems, side-by-side analysis, alternative futures analysis, and integration and aggregation of data. The bulk of this report is a description of the methods for assessing the technical, economic, environmental, societal, and institutional issues surrounding the development of the selected energy technologies.

  8. Satellite Anomalies: Benefits of a Centralized Anomaly Database and Methods for Securely Sharing Information Among Satellite Operators

    Science.gov (United States)

    2014-01-01

    is more or less prone to anomalies. The Atrium Space Insurance Corporation (ASIC) at Lloyd’s of London Insurance Market insures approximately 190...potentially useful encryption strategies , we arrive at the following observations and recommendations. • A centralized and standardized satellite anomaly...Oceanic and Atmospheric Administration, National Geophysical Data Center, 1993. As of December 6, 2012: http://www.ngdc.noaa.gov/ stp /satellite

  9. Evaluation of Land Surface Temperature Operationally Retrieved from Korean Geostationary Satellite (COMS Data

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2013-08-01

    Full Text Available We evaluated the precision of land surface temperature (LST operationally retrieved from the Korean multipurpose geostationary satellite, Communication, Ocean and Meteorological Satellite (COMS. The split-window (SW-type retrieval algorithm was developed through radiative transfer model simulations under various atmospheric profiles, satellite zenith angles, surface emissivity values and surface lapse rate conditions using Moderate Resolution Atmospheric Transmission version 4 (MODTRAN4. The estimation capabilities of the COMS SW (CSW LST algorithm were evaluated for various impacting factors, and the retrieval accuracy of COMS LST data was evaluated with collocated Moderate Resolution Imaging Spectroradiometer (MODIS LST data. The surface emissivity values for two SW channels were generated using a vegetation cover method. The CSW algorithm estimated the LST distribution reasonably well (averaged bias = 0.00 K, Root Mean Square Error (RMSE = 1.41 K, correlation coefficient = 0.99; however, the estimation capabilities of the CSW algorithm were significantly impacted by large brightness temperature differences and surface lapse rates. The CSW algorithm reproduced spatiotemporal variations of LST comparing well to MODIS LST data, irrespective of what month or time of day the data were collected from. The one-year evaluation results with MODIS LST data showed that the annual mean bias, RMSE and correlation coefficient for the CSW algorithm were −1.009 K, 2.613 K and 0.988, respectively.

  10. Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

    Directory of Open Access Journals (Sweden)

    Sangwook Park

    2009-12-01

    Full Text Available This paper describes the Flight Dynamics Automation (FDA system for COMS Flight Dynamics System (FDS and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator’s tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system’s quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

  11. Sentinel-1A - Launching the first satellite and launching the operational Copernicus programme

    Science.gov (United States)

    Aschbacher, Josef; Milagro Perez, Maria Pilar

    2014-05-01

    The first Copernicus satellite, Sentinel-1A, is prepared for launch in April 2014. It will provide continuous, systematic and highly reliable radar images of the Earth. Sentinel-1B will follow around 18 months later to increase observation frequency and establish an operational system. Sentinel-1 is designed to work in a pre-programmed conflict-free operation mode ensuring the reliability required by operational services and creating a consistent long-term data archive for applications based on long time series. This mission will ensure the continuation and improvement of SAR operational services and applications addressing primarily medium- to high-resolution applications through a main mode of operation that features both a wide swath (250 km) and high geometric (5 × 20 m) and radiometric resolution, allowing imaging of global landmasses, coastal zones, sea ice, polar areas, and shipping routes at high resolution. The Sentinel-1 main operational mode (Interferometric Wide Swath) will allow to have a complete coverage of the Earth in 6 days in the operational configuration when the two Sentinel-1 spacecraft will be in orbit simultaneously. High priority areas like Europe, Canada and some shipping routes will be covered almost daily. This high global observation frequency is unprecedented and cannot be reached with any other current radar mission. Envisat, for example, which was the 'workhorse' in this domain up to April 2012, reached global coverage every 35 days. Sentinel-1 data products will be made available systematically and free of charge to all users including institutional users, the general public, scientific and commercial users. The transition of the Copernicus programme from the development to operational phase will take place at about the same time when the first Sentinel-1 satellite will be launched. During the operational phase, funding of the programme will come from the European Union Multiannual Financial Framework (MFF) for the years 2014

  12. Operational Concept of the NEXTSat-1 for Science Mission and Space Core Technology Verification

    Directory of Open Access Journals (Sweden)

    Goo-Hwan Shin

    2014-03-01

    Full Text Available The next generation small satellite-1 (NEXTSat-1 program has been kicked off in 2012, and it will be launched in 2016 for the science missions and the verification of space core technologies. The payloads for these science missions are the Instrument for the Study of Space Storms (ISSS and NIR Imaging Spectrometer for Star formation history (NISS. The ISSS and the NISS have been developed by Korea Advanced Institute of Science and Technology (KAIST and Korea Astronomy and Space science Institute (KASI respectively. The ISSS detects plasma densities and particle fluxes of 10 MeV energy range near the Earth and the NISS uses spectrometer. In order to verify the spacecraft core technologies in the space, the total of 7 space core technologies (SCT will be applied to the NEXTSat-1 for space verification and those are under development. Thus, the operation modes for the ISSS and the NISS for space science missions and 7 SCTs for technology missions are analyzed for the required operation time during the NEXTSat-1’s mission life time of 2 years. In this paper, the operational concept of the NEXTSat-1’s science missions as well as the verification of space core technologies are presented considering constraints of volume, mass, and power after launch.

  13. TELE-X and its role in a future operational Nordic satellite system

    Science.gov (United States)

    Anderson, Lars

    In the middle of 1987 it is planned to launch TELE-X, the first Nordic telecommunications satellite. The Swedish-Norwegian company NOTELSAT (Nordic Telecommunications Satellite Corporation) will be responsible for the operation of the TELE-X system. Via the experimental TELE-X satellite the Nordic countries will get access to direct broadcasting of two TV-programs and at least four digital sound programs in stereo by use of two transponders in the 12.2 to 12.5 GHz band. The programs are planned to be composed of nationally produced programs in Norway. Sweden and Finland. By means of distributing these programs via satellite they will reach up to 4 times as many viewers and listernes as presently in the terrestrial national systems. The basic motivations for exchanging programs are to strengthen the cultural ties between the Nordic countries and to give the individuals more freedom in the choice of programs. Another goal is to give the public a better sound and picture quality than can be achieved today. These quality improvements shall be met by using small receiver parabolas of less than 1 m in diameter. Contributing to the improved quality is the choice of the C-MAC (Multiplexed Analoque Components) modulation system. TELE-X is a multipurpose satellite which besides the two TV-transponders will have two transponders for data/video communication in the frequency band 12.5 to 12.75 GHz. The choice of system for data and video is based on the philosophy of thin-route traffic between small and low cost earth stations (1.8 to 2.5 m) placed directly at the subscribers premises. The system includes an advanced Data/Video Control Station which automatically connects the traffic stations with standarized transmission speeds up to 2 Mbps. The system which is based on the SCPC/DAMA method can be expanded up to 5000 traffic stations. Numerous data/video applications will be investigated in the initial experimental phase of the project which also will be used for market

  14. Evaluation of the feasibility of security technologies in teleradiology as biometric fingerprint scanners for data exchange over a satellite WAN

    Science.gov (United States)

    Soegner, Peter I.; Helweg, Gernot; Holzer, Heimo; zur Nedden, Dieter

    2000-05-01

    We evaluated the feasibility of fingerprint-scanners in combination with smart cards for personal identification and transmission of encrypted TCP/IP-data-packages via satellite between the university-hospital of Innsbruck and the rural hospital of Reutte. The aim of our study was the proof of the userfriendliness of the SkymedTM technology for security purpose in teleradiology. We examined the time of the personal identification process, the time for the necessary training and the personal satisfaction. The images were sent from the local PACS in Reutte via a Data-Encryption-and-Transmission- Box via satellite from Reutte to Innsbruck. We used an asymmetric bandwidth of 512 kbit/s from Reutte to Innsbruck and 128 kbit/s in the opposite direction. Window NT 4.0- operating PCs were used for the electronical patient record, the medical inquiry of the referring physician and the final report of the radiologist. The images were reported on an UNIX-PACS viewing station. After identification through fingerprint-scanners in combination with the smart card the radiologist was able to open the electronic patient record (EPR) from Reutte and sign with his digital signature his confirmed final report before it was send back to Reutte. The used security technology enables encrypted communication over a WAN, which fulfill data-protection.

  15. Space Technology 5 – Enabling Future Constellation Missions Using Micro-Satellites for Space Weather

    OpenAIRE

    Le, Guan; Moore, Thomas; Slavin, James

    2007-01-01

    Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn – dusk, sun synchronous polar orbit on March 22, 2006. The spacecraft were maintained in a “pearls on a string” constellation with controlled spacing ranging from just over 5000 km down to under 50 km. Each spacecraft carried a miniature tri-axial fluxgate magnetometer (MAG). Although the short 90-day mission was designed to flight validate new technologies, the constellation mission returned...

  16. Derivation and evaluation of land surface temperature from the geostationary operational environmental satellite series

    Science.gov (United States)

    Fang, Li

    The Geostationary Operational Environmental Satellites (GOES) have been continuously monitoring the earth surface since 1970, providing valuable and intensive data from a very broad range of wavelengths, day and night. The National Oceanic and Atmospheric Administration's (NOAA's) National Environmental Satellite, Data, and Information Service (NESDIS) is currently operating GOES-15 and GOES-13. The design of the GOES series is now heading to the 4 th generation. GOES-R, as a representative of the new generation of the GOES series, is scheduled to be launched in 2015 with higher spatial and temporal resolution images and full-time soundings. These frequent observations provided by GOES Image make them attractive for deriving information on the diurnal land surface temperature (LST) cycle and diurnal temperature range (DTR). These parameters are of great value for research on the Earth's diurnal variability and climate change. Accurate derivation of satellite-based LSTs from thermal infrared data has long been an interesting and challenging research area. To better support the research on climate change, the generation of consistent GOES LST products for both GOES-East and GOES-West from operational dataset as well as historical archive is in great demand. The derivation of GOES LST products and the evaluation of proposed retrieval methods are two major objectives of this study. Literature relevant to satellite-based LST retrieval techniques was reviewed. Specifically, the evolution of two LST algorithm families and LST retrieval methods for geostationary satellites were summarized in this dissertation. Literature relevant to the evaluation of satellite-based LSTs was also reviewed. All the existing methods are a valuable reference to develop the GOES LST product. The primary objective of this dissertation is the development of models for deriving consistent GOES LSTs with high spatial and high temporal coverage. Proper LST retrieval algorithms were studied

  17. Design and Operation of an IR-CAGE For Thermal Vacuum Testing of a Communication Satellite

    Science.gov (United States)

    Wuersching, C.

    2004-08-01

    A specific infrared radiation device was designed and manufactured for infrared simulation on a communication satellite. For the thermal vacuum test of this satellite, radiation fields with different sizes, shapes and radiation intensities were required to deliver additional heating power onto the space- craft panels. Five of the six sides of the cube- shaped satellite had to be equipped with flat IR- frames so that a cage surrounding the S/C had to be designed. The following features of the IR-cage were re- quired: A lightweight, but still rigid construction of the frame with space-proofed materials; using of standard components for cost reasons; radiation intensities of 400 to 1100 W/m2; a computer-based system for individual control of the heating circuits; a user friendly and safe handling of the operation panel and the recording of all operational parame- ter. The mechanical construction was realised by using aluminium profiles. The standard components al- lowed completing the mechanical set-up within a short time. After some investigation concerning the heating devices it was decided to use heating strips for the radiation fields of low intensity and com- mercial IR-quartz radiators for fields with higher intensity. A special suspension for the heating strips was designed to keep them under defined tension. The power supplies for the heating circuits were computer-controlled. The software allowed the individual power setting of each heater. Addition- ally an automatic mode for controlling the heaters by a reference thermocouple was foreseen. Beside design features of the cage, this paper will also describe the heater concept and the control system, and it will have a look at QA relevant mat- ters.

  18. The technological evolution of psychological operations throughout history

    CSIR Research Space (South Africa)

    Mouton, Francois

    2016-07-01

    Full Text Available Psychological operations or PsyOps is a multi-disciplinary capability that requires technology in the social sciences, as well as in areas of design, Information and Communication Technology (ICT), electronics, broadcasting and printing. It has been...

  19. Current and Future Impact Risks from Small Debris to Operational Satellites

    Science.gov (United States)

    Liou, Jer-Chyi; Kessler, Don

    2011-01-01

    The collision between Iridium 33 and Cosmos 2251 in 2009 signaled the potential onset of the collision cascade effect, commonly known as the "Kessler Syndrome", in the low Earth orbit (LEO) region. Recent numerical simulations have shown that the 10 cm and larger debris population in LEO will continue to increase even with a good implementation of the commonly-adopted mitigation measures. This increase is driven by collisions involving large and massive intacts, i.e., rocket bodies and spacecraft. Therefore, active debris removal (ADR) of large and massive intacts with high collision probabilities has been argued as a direct and effective means to remediate the environment in LEO. The major risk for operational satellites in the environment, however, comes from impacts with debris just above the threshold of the protection shields. In general, these are debris in the millimeter to centimeter size regime. Although impacts by these objects are insufficient to lead to catastrophic breakup of the entire vehicle, the damage is certainly severe enough to cause critical failure of the key instruments or the entire payload. The focus of this paper is to estimate the impact risks from 5 mm and 1 cm debris to active payloads in LEO (1) in the current environment and (2) in the future environment based on different projection scenarios, including ADR. The goal of the study is to quantify the benefits of ADR in reducing debris impact risks to operational satellites.

  20. Clinical operations generation next… The age of technology and outsourcing.

    Science.gov (United States)

    Temkar, Priya

    2015-01-01

    Huge cost pressures and the need to drive faster approvals has driven a technology transformation in the clinical trial (CT) industry. The CT industry is thus leveraging mobile data, cloud computing, social media, robotic automation, and electronic source to drive efficiencies in a big way. Outsourcing of clinical operations support services to technology companies with a clinical edge is gaining tremendous importance. This paper provides an overview of current technology trends, applicable Food and Drug Administration (FDA) guidelines, basic challenges that the pharma industry is facing in trying to implement such changes and its shift towards outsourcing these services to enable it to focus on site operations.

  1. Clinical operations generation next… The age of technology and outsourcing

    Directory of Open Access Journals (Sweden)

    Priya Temkar

    2015-01-01

    Full Text Available Huge cost pressures and the need to drive faster approvals has driven a technology transformation in the clinical trial (CT industry. The CT industry is thus leveraging mobile data, cloud computing, social media, robotic automation, and electronic source to drive efficiencies in a big way. Outsourcing of clinical operations support services to technology companies with a clinical edge is gaining tremendous importance. This paper provides an overview of current technology trends, applicable Food and Drug Administration (FDA guidelines, basic challenges that the pharma industry is facing in trying to implement such changes and its shift towards outsourcing these services to enable it to focus on site operations.

  2. Clinical operations generation next… The age of technology and outsourcing

    Science.gov (United States)

    Temkar, Priya

    2015-01-01

    Huge cost pressures and the need to drive faster approvals has driven a technology transformation in the clinical trial (CT) industry. The CT industry is thus leveraging mobile data, cloud computing, social media, robotic automation, and electronic source to drive efficiencies in a big way. Outsourcing of clinical operations support services to technology companies with a clinical edge is gaining tremendous importance. This paper provides an overview of current technology trends, applicable Food and Drug Administration (FDA) guidelines, basic challenges that the pharma industry is facing in trying to implement such changes and its shift towards outsourcing these services to enable it to focus on site operations. PMID:26623386

  3. Satellite navigation—Amazing technology but insidious risk: Why everyone needs to understand space weather

    Science.gov (United States)

    Hapgood, Mike

    2017-04-01

    Global navigation satellite systems (GNSS) are one of the technological wonders of the modern world. Popularly known as satellite navigation, these systems have provided global access to precision location and timing services and have thereby stimulated advances in industry and consumer services, including all forms of transport, telecommunications, financial trading, and even the synchronization of power grids. But this wonderful technology is at risk from natural phenomena in the form of space weather. GNSS signals experience a slight delay as they pass through the ionosphere. This delay varies with space weather conditions and is the most significant source of error for GNSS. Scientific efforts to correct these errors have stimulated billions of dollars of investment in systems that provide accurate correction data for suitably equipped GNSS receivers in a growing number of regions around the world. This accuracy is essential for GNSS use by aircraft and ships. Space weather also provides a further occasional but severe risk to GNSS: an extreme space weather event may deny access to GNSS as ionospheric scintillation scrambles the radio signals from satellites, and rapid ionospheric changes outstrip the ability of error correction systems to supply accurate corrections. It is vital that GNSS users have a backup for such occasions, even if it is only to hunker down and weather the storm.

  4. Use of CCSDS and OSI Protocols on the Advanced Communications Technology Satellite

    Science.gov (United States)

    Chirieleison, Don

    1996-01-01

    Although ACTS (Advanced Communications Technology Satellite) provides an almost error-free channel during much of the day and under most conditions, there are times when it is not suitable for reliably error-free data communications when operating in the uncoded mode. Because coded operation is not always available to every earth station, measures must be taken in the end system to maintain adequate throughput when transferring data under adverse conditions. The most effective approach that we tested to improve performance was the addition of an 'outer' Reed-Solomon code through use of CCSDS (Consultative Committee for Space Data Systems) GOS 2 (a forward error correcting code). This addition can benefit all users of an ACTS channel including those applications that do not require totally reliable transport, but it is somewhat expensive because additional hardware is needed. Although we could not characterize the link noise statistically (it appeared to resemble uncorrelated white noise, the type that block codes are least effective in correcting), we did find that CCSDS GOS 2 gave an essentially error-free link at BER's (bit error rate) as high as 6x10(exp -4). For users that demand reliable transport, an ARQ (Automatic Repeat Queuing) protocol such as TCP (Transmission Control Protocol) or TP4 (Transport Protocol, Class 4) will probably be used. In this category, it comes as no surprise that the best choice of the protocol suites tested over ACTS was TP4 using CCSDS GOS 2. TP4 behaves very well over an error-free link which GOS 2 provides up to a point. Without forward error correction, however, TP4 service begins to degrade in the 10(exp -7)-10(exp -6) range and by 4x10(exp -6), it barely gives any throughput at all. If Congestion Avoidance is used in TP4, the degradation is even more pronounced. Fortunately, as demonstrated here, this effect can be more than compensated for by choosing the Selective Acknowledgment option. In fact, this option can enable TP4 to

  5. United States societal experiments via the Communications Technology Satellite. [antenna coverage

    Science.gov (United States)

    Donoughe, P. L.

    1976-01-01

    The Communications Technology Satellite (CTS) is a cooperative experimental program of the United States and Canadian governments. The CTS uses a high-power transponder at the frequencies of 14/12 GHz for two-way television and voice communication. The United States and Canada have agreed to share equally in the use of CTS. The U.S. program includes a variety of societal experiments. The ground stations for these experiments are located from the Atlantic to the Pacific. The satellite communications capabilities and the antenna coverage for the U.S. are summarized. Emphasis is placed on the U.S. societal experiments in the areas of education, health care, and community and special services; nine separate experiments are discussed.

  6. TRANSFER OF TECHNOLOGY FOR CADASTRAL MAPPING IN TAJIKISTAN USING HIGH RESOLUTION SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    R. Kaczynski

    2012-07-01

    Full Text Available European Commission funded project entitled: "Support to the mapping and certification capacity of the Agency of Land Management, Geodesy and Cartography" in Tajikistan was run by FINNMAP FM-International and Human Dynamics from Nov. 2006 to June 2011. The Agency of Land Management, Geodesy and Cartography is the state agency responsible for development, implementation, monitoring and evaluation of state policies on land tenure and land management, including the on-going land reform and registration of land use rights. The specific objective was to support and strengthen the professional capacity of the "Fazo" Institute in the field of satellite geodesy, digital photogrammetry, advanced digital satellite image processing of high resolution satellite data and digital cartography. Lectures and on-the-job trainings for the personnel of "Fazo" and Agency in satellite geodesy, digital photogrammetry, cartography and the use of high resolution satellite data for cadastral mapping have been organized. Standards and Quality control system for all data and products have been elaborated and implemented in the production line. Technical expertise and trainings in geodesy, photogrammetry and satellite image processing to the World Bank project "Land Registration and Cadastre System for Sustainable Agriculture" has also been completed in Tajikistan. The new map projection was chosen and the new unclassified geodetic network has been established for all of the country in which all agricultural parcel boundaries are being mapped. IKONOS, QuickBird and WorldView1 panchromatic data have been used for orthophoto generation. Average accuracy of space triangulation of non-standard (long up to 90km satellite images of QuickBird Pan and IKONOS Pan on ICPs: RMSEx = 0.5m and RMSEy = 0.5m have been achieved. Accuracy of digital orthophoto map is RMSExy = 1.0m. More then two and half thousands of digital orthophoto map sheets in the scale of 1:5000 with pixel size 0.5m

  7. In-Space Assembly and Construction Technology Project Summary: Infrastructure Operations Area of the Operations Technology Program

    Science.gov (United States)

    Bush, Harold

    1991-01-01

    Viewgraphs describing the in-space assembly and construction technology project of the infrastructure operations area of the operation technology program are presented. Th objective of the project is to develop and demonstrate an in-space assembly and construction capability for large and/or massive spacecraft. The in-space assembly and construction technology program will support the need to build, in orbit, the full range of spacecraft required for the missions to and from planet Earth, including: earth-orbiting platforms, lunar transfer vehicles, and Mars transfer vehicles.

  8. NASA's ATM Technology Demonstration-1: Integrated Concept of Arrival Operations

    Science.gov (United States)

    Baxley, Brian T.; Swenson, Harry N.; Prevot, Thomas; Callantine, Todd J.

    2012-01-01

    This paper describes operations and procedures envisioned for NASA s Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1). The ATD-1 Concept of Operations (ConOps) demonstration will integrate three NASA technologies to achieve high throughput, fuel-efficient arrival operations into busy terminal airspace. They are Traffic Management Advisor with Terminal Metering (TMA-TM) for precise time-based schedules to the runway and points within the terminal area, Controller-Managed Spacing (CMS) decision support tools for terminal controllers to better manage aircraft delay using speed control, and Flight deck Interval Management (FIM) avionics and flight crew procedures to conduct airborne spacing operations. The ATD-1 concept provides de-conflicted and efficient operations of multiple arrival streams of aircraft, passing through multiple merge points, from top-of-descent (TOD) to touchdown. It also enables aircraft to conduct Optimized Profile Descents (OPDs) from en route altitude to the runway, using primarily speed control to maintain separation and schedule. The ATD-1 project is currently addressing the challenges of integrating the three technologies, and implantation into an operational environment. Goals of the ATD-1 demonstration include increasing the throughput of high-density airports, reducing controller workload, increasing efficiency of arrival operations and the frequency of trajectory-based operations, and promoting aircraft ADS-B equipage.

  9. Technology assessment of high pulse energy CO(2) lasers for remote sensing from satellites

    Science.gov (United States)

    Hess, R. V.; Brockman, P.; Schryer, D. R.; Miller, I. M.; Bair, C. H.; Sidney, B. D.; Wood, G. M.; Upchurch, B. T.; Brown, K. G.

    1985-01-01

    Developments and needs for research to extend the lifetime and optimize the configuration of CO2 laser systems for satellite based on remote sensing of atmospheric wind velocities and trace gases are reviewed. The CO2 laser systems for operational satellite application will require lifetimes which exceed 1 year. Progress in the development of efficient low temperature catalysts and gas mixture modifications for extending the lifetime of high pulse energy closed cycle common and rare isotope CO2 lasers and of sealed CW CO2 lasers is reviewed. Several CO2 laser configurations are under development to meet the requirements including: unstable resonators, master oscillator power amplifiers and telescopic stable resonators, using UV or E-beam preionization. Progress in the systems is reviewed and tradeoffs in the system parameters are discussed.

  10. Tethered Satellites as Enabling Platforms for an Operational Space Weather Monitoring System

    Science.gov (United States)

    Krause, L. Habash; Gilchrist, B. E.; Bilen, S.; Owens, J.; Voronka, N.; Furhop, K.

    2013-01-01

    Space weather nowcasting and forecasting models require assimilation of near-real time (NRT) space environment data to improve the precision and accuracy of operational products. Typically, these models begin with a climatological model to provide "most probable distributions" of environmental parameters as a function of time and space. The process of NRT data assimilation gently pulls the climate model closer toward the observed state (e.g. via Kalman smoothing) for nowcasting, and forecasting is achieved through a set of iterative physics-based forward-prediction calculations. The issue of required space weather observatories to meet the spatial and temporal requirements of these models is a complex one, and we do not address that with this poster. Instead, we present some examples of how tethered satellites can be used to address the shortfalls in our ability to measure critical environmental parameters necessary to drive these space weather models. Examples include very long baseline electric field measurements, magnetized ionospheric conductivity measurements, and the ability to separate temporal from spatial irregularities in environmental parameters. Tethered satellite functional requirements will be presented for each space weather parameter considered in this study.

  11. Small satellite technologies and applications II; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992

    Science.gov (United States)

    Horais, Brian J.

    The present conference on small satellite (SS) systems and their supporting technologies discusses the Medsat SS for malaria early warning and control, results of the Uosat earth-imaging system, commercial applications for MSSs, an SS family for LEO communications, videosignal signature-synthesis for fast narrow-bandwidth transmission, and NiH battery applications in SSs. Also discussed are the 'PegaStar' spacecraft concept for remote sensing, dual-cone scanning earth sensor processing algorithms, SS radiation-budget instrumentation, SDI's relevance to SSs, spacecraft fabrication and test integration, and cryocooler producibility. (For individual items see A93-28077 to A93-28100)

  12. Improving Operational Risk Management Using Business Performance Management Technologies

    Directory of Open Access Journals (Sweden)

    Bram Pieket Weeserik

    2018-02-01

    Full Text Available Operational Risk Management (ORM comprises the continuous management of risks resulting from: human actions, internal processes, systems, and external events. With increasing requirements, complexity and a growing volume of risks, information systems provide benefits for integrating risk management activities and optimizing performance. Business Performance Management (BPM technologies are believed to provide a solution for effective Operational Risk Management by offering several combined technologies including: work flow, data warehousing, (advanced analytics, reporting and dashboards. BPM technologies can be integrated with an organization’s Planning & Control cycle and related to strategic objectives. This manuscript aims to show how ORM can benefit from BPM technologies via the development and practical validation of a new maturity model. The B4ORM maturity model was developed following the Design Science Research approach. The maturity model relates specific maturity levels of ORM processes with BPM technologies applicable for a specific maturity stage. There appears to be a strong relationship (0.78 with ORM process maturity and supporting BPM technologies. The B4ORM maturity model as described in this manuscript provides an ideal path of BPM technologies related to six distinctive stages of ORM, leading towards technologies suitable for continuous improvement of ORM processes and organization-wide integration.

  13. Automatic, Rapid Replanning of Satellite Operations for Space Situational Awareness (SSA)

    Science.gov (United States)

    Stottler, D.; Mahan, K.

    An important component of Space Situational Awareness (SSA) is knowledge of the status and tasking of blue forces (e.g. satellites and ground stations) and the rapid determination of the impacts of real or hypothetical changes and the ability to quickly replan based on those changes. For example, if an antenna goes down (either for benign reasons or from purposeful interference) determining which missions will be impacted is important. It is not simply the set of missions that were scheduled to utilize that antenna, because highly expert human schedulers will respond to the outage by intelligently replanning the real-time schedule. We have developed an automatic scheduling and deconfliction engine, called MIDAS (for Managed Intelligent Deconfliction And Scheduling) that interfaces to the current legacy system (ESD 2.7) which can perform this replanning function automatically. In addition to determining the impact of failed resources, MIDAS can also replan in response to a satellite under attack. In this situation, additional supports must be quickly scheduled and executed (while minimizing impacts to other missions). Because MIDAS is a fully automatic system, replacing a current human labor-intensive process, and provides very rapid turnaround (seconds) it can also be used by commanders to consider what-if questions and focus limited protection resources on the most critical resources. For example, the commander can determine the impact of a successful attack on one of two ground stations and place heavier emphasis on protecting the station whose loss would create the most severe impacts. The system is currently transitioning to operational use. The MIDAS system and its interface to the legacy ESD 2.7 system will be described along with the ConOps for different types of detailed operational scenarios.

  14. Spectralon BRDF and DHR Measurements in Support of Satellite Instruments Operating Through Shortwave Infrared

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and onorbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the ShortWave InfraRed (SWIR) with those made by the NIST Spectral Trifunction Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0 deg and viewing angle of 45 deg. Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k=1). This study is in support of the calibration of the Joint Polar Satellite System (JPSS) Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suite (VIIRS) of and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  15. Optimizing operational water management with soil moisture data from Sentinel-1 satellites

    Science.gov (United States)

    Pezij, Michiel; Augustijn, Denie; Hendriks, Dimmie; Hulscher, Suzanne

    2016-04-01

    In the Netherlands, regional water authorities are responsible for management and maintenance of regional water bodies. Due to socio-economic developments (e.g. agricultural intensification and on-going urbanisation) and an increase in climate variability, the pressure on these water bodies is growing. Optimization of water availability by taking into account the needs of different users, both in wet and dry periods, is crucial for sustainable developments. To support timely and well-directed operational water management, accurate information on the current state of the system as well as reliable models to evaluate water management optimization measures are essential. Previous studies showed that the use of remote sensing data (for example soil moisture data) in water management offers many opportunities (e.g. Wanders et al. (2014)). However, these data are not yet used in operational applications at a large scale. The Sentinel-1 satellites programme offers high spatiotemporal resolution soil moisture data (1 image per 6 days with a spatial resolution of 10 by 10 m) that are freely available. In this study, these data will be used to improve the Netherlands Hydrological Instrument (NHI). The NHI consists of coupled models for the unsaturated zone (MetaSWAP), groundwater (iMODFLOW) and surface water (Mozart and DM). The NHI is used for scenario analyses and operational water management in the Netherlands (De Lange et al., 2014). Due to the lack of soil moisture data, the unsaturated zone model is not yet thoroughly validated and its output is not used by regional water authorities for decision-making. Therefore, the newly acquired remotely sensed soil moisture data will be used to improve the skill of the MetaSWAP-model and the NHI as whole. The research will focus among other things on the calibration of soil parameters by comparing model output (MetaSWAP) with the remotely sensed soil moisture data. Eventually, we want to apply data-assimilation to improve

  16. Application of AI technology to nuclear plant operations

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1988-01-01

    In this paper, applications of Artificial Intelligence (AI) Technology to nuclear-power plant operation are reviewed. AI Technology is advancing rapidly and in the next five years is expected to enjoy widespread application to operation, maintenance, management and safety. Near term emphasis on a sensor validation, scheduling, alarm handling, and expert systems for procedural assistance. Ultimate applications are envisioned to culminate in autonomous control such as would be necessary for a power system in space, where automatic control actions are taken based upon reasoned conclusions regarding plant conditions, capability and control objectives

  17. Virtual reality technology in nuclear power plant operation and maintenance

    International Nuclear Information System (INIS)

    Chen Sen

    2005-01-01

    In this paper a generic virtual reality comprehensive system focusing on the operation and maintenance in Nuclear Power Plant (NPP) is proposed. Under this layout, some key topics and means of the system are discussed. As example 'Virtual Nuclear Island' comprehensive system and its typical applications in NPP are set up. In the end, it prospects the applications of virtual reality technology in NPP operation, training and maintenance. (author)

  18. 77 FR 67171 - Comprehensive Review of Licensing and Operating Rules for Satellite Services

    Science.gov (United States)

    2012-11-08

    ... definition of ``frequency assignment'' in Sec. 25.214(a)(2) since the meaning of the term is self-evident. We... same satellite, and whether there are specialized satellite services, such as remote sensing satellites... concrete plans for TT&C sites at the time when they file their applications. Requiring a space station...

  19. Healthcare technology co-operatives: Innovative about innovation.

    Science.gov (United States)

    Heron, Nicola M; Tindale, Wendy B

    2014-01-01

    The paper provides an introduction to the National Institute for Health Research Devices for Dignity Healthcare Technology Co-operative. Embedded within the NHS, Devices for Dignity identifies areas of unmet clinical need and translates these into research and development projects to develop new medical technologies. It addresses the needs of people living with long-term conditions, helping them to live more dignified and independent lives. Through partnerships with patients, universities, the NHS and industry, Devices for Dignity has developed an innovation methodology for successful medical technology innovation.

  20. Albuquerque Operations Office, Albuquerque, New Mexico: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Albuquerque Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents that highlight technology development activities within each of the OTD program elements. These integrated program summaries include: Volatile Organic Compounds in Non-Arid Soils, Volatile Organic Compounds in Arid Soils, Mixed Waste Landfill Integrated Demonstration, Uranium in Soils Integrated Demonstration, Characterization, Monitoring, and Sensor Technology, In Situ Remediation, Buried Waste Integrated Demonstration, Underground Storage Tank, Efficient Separations and Processing, Mixed Waste Integrated Program, Rocky Flats Compliance Program, Pollution Prevention Program, Innovation Investment Area, and Robotics Technology.

  1. Albuquerque Operations Office, Albuquerque, New Mexico: Technology summary

    International Nuclear Information System (INIS)

    1994-08-01

    This document has been prepared by the Department of Energy's (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT ampersand E) activities funded through the Albuquerque Operations Office. Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents that highlight technology development activities within each of the OTD program elements. These integrated program summaries include: Volatile Organic Compounds in Non-Arid Soils, Volatile Organic Compounds in Arid Soils, Mixed Waste Landfill Integrated Demonstration, Uranium in Soils Integrated Demonstration, Characterization, Monitoring, and Sensor Technology, In Situ Remediation, Buried Waste Integrated Demonstration, Underground Storage Tank, Efficient Separations and Processing, Mixed Waste Integrated Program, Rocky Flats Compliance Program, Pollution Prevention Program, Innovation Investment Area, and Robotics Technology

  2. A model technology transfer program for independent operators

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1996-08-01

    In August 1992, the Energy Research Center (ERC) at the University of Kansas was awarded a contract by the US Department of Energy (DOE) to develop a technology transfer regional model. This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program.

  3. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Frank, E-mail: frank.jansen@dlr.de [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Behrens, Joerg [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Pospisil, Stanislav [Czech Technical University, IEAP, 12800 Prague 2, Horska 3a/22 (Czech Republic); Kudela, Karel [Slovak Academy of Sciences, IEP, 04001 Kosice, Watsonova 47 (Slovakia)

    2011-05-15

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  4. Space Solar Power Satellite Technology Development at the Glenn Research Center: An Overview

    Science.gov (United States)

    Dudenhoefer, James E.; George, Patrick J.

    2000-01-01

    NASA Glenn Research Center (GRC). is participating in the Space Solar Power Exploratory Research and Technology program (SERT) for the development of a solar power satellite concept. The aim of the program is to provide electrical power to Earth by converting the Sun's energy and beaming it to the surface. This paper will give an overall view of the technologies being pursued at GRC including thin film photovoltaics, solar dynamic power systems, space environmental effects, power management and distribution, and electric propulsion. The developmental path not only provides solutions to gigawatt sized space power systems for the future, but provides synergistic opportunities for contemporary space power architectures. More details of Space Solar Power can be found by reading the references sited in this paper and by connecting to the web site http://moonbase.msfc.nasa.gov/ and accessing the "Space Solar Power" section "Public Access" area.

  5. Technological utilization of space with special regard to navigation satellite systems

    Science.gov (United States)

    Stiller, A. H.

    With financial support from the German Minister of Research and Technology (BMFT) two German companies have developed two GPS-C/A-Code-receivers for different applications with low weight and small volume. The measured results of positions in connection with the ABS of a car (Anti lock braking system) and in Diff.-GPS-mode are very satisfying and in the range of 15 and/or 3 meters. Both receivers worked quite well and both companies have demonstrated their capability to meet our high exspectations. Unfortunately the GPS-satellite to be launched are behind schedule, therefore the two German companies cannot sell their products and if the GPS-system will be completed in the year 1991 other technologies with smaller and cheaper receivers will be on the market.

  6. The Use of Satellite Technologies for Maritime Surveillance: An Overview of EU Initiatives

    Directory of Open Access Journals (Sweden)

    Ruxandra-Laura BOSILCA

    2016-03-01

    Full Text Available The sea lies at the heart of the EU prosperity and security: the Union and its member states depend on open and secure seas and oceans for their trade, transportation, energy, food, mineral resources, tourism, and a healthy marine environment. Maritime surveillance constitutes a key enabler for safeguarding the EU strategic interests at sea, by providing vital information on developments over, on and under the sea surface and coastal areas. A fundamental role in the process of collecting and communicating relevant information is held by satellite technologies which open paths to cost-effective and innovative alternatives to traditional surveillance techniques. The article proceeds as follows. The first section briefly outlines the key importance of the sea for the economic, military, energy, food, environmental, health, and cultural dimensions of EU security. Then, the concept of “maritime surveillance” is explained within the broader context of maritime security in the following section. In order to explore the use of satellite technologies in the EU maritime surveillance mechanisms, the third section of the paper examines three cases related to: the vessel monitoring system (VMS and the vessel detection system (VDS; FRONTEX, the EU agency for external borders management, and the related framework of EUROSUR; and finally, the CleanSeaNet oil spill monitoring system developed by the European Maritime Safety Agency (EMSA. Lastly, the concluding section summarizes the main findings of the article.

  7. China: Possible Missile Technology Transfers from U.S. Satellite Export Policy - Actions and Chronology

    National Research Council Canada - National Science Library

    Kan, Shirley A

    2001-01-01

    .... Some critics opposed satellite exports to China, while others were concerned that the Clinton Administration relaxed export controls and monitoring of commercial satellites in moving the licensing...

  8. In-operation inspection technology development-4 ''development of degradation prediction technology for motor-operated valves''

    International Nuclear Information System (INIS)

    Kikuo, Takeshima; Yuichi, Higashikawa; Masahiro, Koike; Kenji, Matsumoto; Eiji, O'shima

    2001-01-01

    A method for degradation predicting technology has been proposed for motor operated valves in nuclear power plants which is based on the concept of condition monitoring for maintenance. This method (degradation prediction technology) eliminates the unnecessary overhaul of valves and realizes high reliability and economy. The degradation mechanism was clarified by long time heating experiments of gasket and gland packing and the wear test for them and stem nut to research valve parts degradation by stress (pressure, temperature, etc) during plant operation. Effective electric power measurements for motor operated valves were confirmed to be useful discovering valve part failures. The motor operated valve degradation prediction system was developed on the basis of the experiment results and mechanism. The system is able to predict the degradation of valve parts (gasket/gland packing, stem, stem nut, etc) utilizing plant data (pressure, temperature, etc) and effective power of the motor. The life of valve parts can be estimated from the experimental results. (authors)

  9. Space Station Freedom technology payload user operations facility concept

    Science.gov (United States)

    Henning, Gary N.; Avery, Don E.

    1992-01-01

    This report presents a concept for a User Operations Facility (UOF) for payloads sponsored by the NASA Office of Aeronautics and Space Technology (OAST). The UOF can be located at any OAST sponsored center; however, for planning purposes, it is assumed that the center will be located at Langley Research Center (LaRC).

  10. International co-operation and the transfer of nuclear technology

    International Nuclear Information System (INIS)

    di Primio, J.C.

    1977-01-01

    The transfer of technology from developed countries is usually done through industrial enterprises. The local industrialization of imported technology does not necessarily imply that full benefit is extracted from its application. A pre-established scientific and technical infrastructure is needed to understand and incorporate it, and to develop methods for improvement and use at the industrial level, in the frame of national conditions. The transference of nuclear technology has recently shown new concepts for implementation. It is becoming a rule that massive industrial nuclear technology transfer to developing nations is tied to a requirement for simultaneous assistance in creating or promoting the infrastructure. An example of international co-operation to meet this requirement is the Argentine-German Agreement for the Peaceful Applications of Nuclear Energy. Since 1971 this has been used to strengthen the scientific and technical programmes of the Argentine Atomic Energy Commission in the relevant fields of industrial applications. The objectives and implementation of the agreement are described: co-operative actions were initially directed to the infrastructure needed to support the nuclear fuel cycle industry. The results achieved during the period 1971-1976 are critically analysed. This analysis has influenced the selection of future co-operative projects as well as the extension of the co-operation to other nuclear fields of common interest. (author)

  11. Artificial intelligence technologies for power system operations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, S.N.; Cardozo, E.

    1986-01-01

    Researchers in this study examined the potential of artificial intelligence (AI) technologies for improving problem-solving strategies in 16 power system operations. To demonstrate the use of AI in the area they considered most promising, contingency selection-security assessment, they also developed two programs - one to simulate network protection schemes, the other to diagnose faults.

  12. Technological Advances, Human Performance, and the Operation of Nuclear Facilities

    Science.gov (United States)

    Corrado, Jonathan K.

    Many unfortunate and unintended adverse industrial incidents occur across the United States each year, and the nuclear industry is no exception. Depending on their severity, these incidents can be problematic for people, the facilities, and surrounding environments. Human error is a contributing factor in many such incidents. This dissertation first explored the hypothesis that technological changes that affect how operators interact within the systems of the nuclear facilities exacerbate the cost of incidents caused by human error. I conducted a review of nuclear incidents in the United States from 1955 through 2010 that reached Level 3 (serious incident) or higher on the International Nuclear Events Scale (INES). The cost of each incident at facilities that had recently undergone technological changes affecting plant operators' jobs was compared to the cost of events at facilities that had not undergone changes. A t-test determined a statistically significant difference between the two groups, confirming the hypothesis. Next, I conducted a follow-on study to determine the impact of the incorporation of new technologies into nuclear facilities. The data indicated that spending more money on upgrades increased the facility's capacity as well as the number of incidents reported, but the incident severity was minor. Finally, I discuss the impact of human error on plant operations and the impact of evolving technology on the 21st-century operator, proposing a methodology to overcome these challenges by applying the systems engineering process.

  13. The impact of information technology on the operations of Nigerian ...

    African Journals Online (AJOL)

    This paper examines the impact of information technology on the operations of Nigerian banks five banks were randomly selected for the study, while three hundred and fifty (350) questionnaires were distributed to respondents, but only two hundred and sixty (260) were retrieved.The study revealed that information ...

  14. From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography

    Science.gov (United States)

    Le Traon, P. Y.

    2013-10-01

    The launch of the French/US mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large-scale sea level and ocean circulation observations was flying. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. Together with my CLS colleagues, we demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. Near-real-time high-resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 yr. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. Altimetry needs to be complemented with global in situ observations. At the end of the 90s, a major international initiative was launched to develop Argo, the global array of profiling floats. This has been an outstanding success. Argo floats now provide the most important in situ observations to monitor and understand the role of the ocean on the earth climate and for operational oceanography. This is a second revolution in oceanography. The unique capability of satellite altimetry to observe the global ocean in near-real-time at high resolution and the development of Argo were essential for the development of global operational oceanography, the third revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) was instrumental in the development of the required capabilities. This paper provides an historical perspective on the development of these three revolutions in oceanography which are very much interlinked. This is not an exhaustive review and I will mainly focus on the contributions we made together with many colleagues and

  15. Observation operator for the assimilation of aerosol type resolving satellite measurements into a chemical transport model

    Directory of Open Access Journals (Sweden)

    M. Schroedter-Homscheidt

    2010-11-01

    Full Text Available Modelling of aerosol particles with chemical transport models is still based mainly on static emission databases while episodic emissions cannot be treated sufficiently. To overcome this situation, a coupling of chemical mass concentration modelling with satellite-based measurements relying on physical and optical principles has been developed. This study deals with the observation operator for a component-wise assimilation of satellite measurements. It treats aerosol particles classified into water soluble, water insoluble, soot, sea salt and mineral dust containing aerosol particles in the atmospheric boundary layer as separately assimilated aerosol components. It builds on a mapping of aerosol classes used both in observation and model space taking their optical and chemical properties into account. Refractive indices for primary organic carbon particles, anthropogenic particles, and secondary organic species have been defined based on a literature review. Together with a treatment of different size distributions in observations and model state, this allows transforming the background from mass concentrations into aerosol optical depths. A two-dimensional, variational assimilation is applied for component-wise aerosol optical depths. Error covariance matrices are defined based on a validation against AERONET sun photometer measurements. Analysis fields are assessed threefold: (1 through validation against AERONET especially in Saharan dust outbreak situations, (2 through comparison with the British Black Smoke and Sulphur Dioxide Network for soot-containing particles, and (3 through comparison with measurements of the water soluble components SO4, NH4, and NO3 conducted by the EMEP (European Monitoring and Evaluation Programme network. Separately, for the water soluble, the soot and the mineral dust aerosol components a bias reduction and subsequent a root mean square error reduction is observed in the

  16. Simulator platform for fast reactor operation and safety technology demonstration

    International Nuclear Information System (INIS)

    Vilim, R.B.; Park, Y.S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J.

    2012-01-01

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  17. Simulator platform for fast reactor operation and safety technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J. (Nuclear Engineering Division)

    2012-07-30

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  18. Energy Technology Initiatives - Implementation Through Multilateral Co-operation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    New technologies will be critical in addressing current global energy challenges such as energy security. More must be done, however, to push forward the development and deployment of the technologies we need today and will need in the future. Government leaders have repeatedly underlined the crucial role of industry and businesses in advancing energy technologies and the importance of strong collaboration among all stakeholders to accelerate technology advances. To attain these goals, increased co-operation between industries, businesses and government energy technology research is indispensable. The public and private sectors must work together, share burdens and resources, while at the same time multiplying results and outcomes. The 42 multilateral technology initiatives (Implementing Agreements) supported by the IEA are a flexible and effective framework for IEA member and non-member countries, businesses, industries, international organisations and non-government organisations to research breakthrough technologies, to fill existing research gaps, to build pilot plants, to carry out deployment or demonstration programmes -- in short to encourage technology-related activities that support energy security, economic growth and environmental protection. This publication highlights the significant accomplishments of the IEA Implementing Agreements.

  19. Land Mobile Satellite Service (LMSS): A conceptual system design and identification of the critical technologies. Part 1: Executive summary

    Science.gov (United States)

    Naderi, F. (Editor)

    1982-01-01

    A system design for a satellite aided land mobile service is described. The advanced system is based on a geostationary satellite which employs a large UHF reflector to communicate with small user antennas on mobile vehicles. It is shown that the system through multiple beam antennas and frequency reuse provides for radiotelephone and dispatch channels. It is concluded that the system is technologically feasible to provide service to rural and remote regions.

  20. 75 FR 71464 - Metlife Technology, Operations, and Information Technology Groups Including On-Site Leased...

    Science.gov (United States)

    2010-11-23

    ... Employment and Training Administration Metlife Technology, Operations, and Information Technology Groups Including On-Site Leased Workers From Adecco, Cognizant, IBM, Infosys, Kana, Patni, Siemens, Tapfin, Veritas... Workers From At&T Solutions, Chimes, Cognizant, Patni, Siemens, Xerox Clarks Summit, PA; Notice of Revised...

  1. Operational Estimation of Accumulated Precipitation using Satellite Observation, by Eumetsat Satellite Application facility in Support to Hydrology (H-SAF Consortium).

    Science.gov (United States)

    di Diodato, A.; de Leonibus, L.; Zauli, F.; Biron, D.; Melfi, D.

    2009-04-01

    Operational Estimation of Accumulated Precipitation using Satellite Observation, by Eumetsat Satellite Application facility in Support to Hydrology (H-SAF Consortium). Cap. Attilio DI DIODATO(*), T.Col. Luigi DE LEONIBUS(*), T.Col Francesco ZAULI(*), Cap. Daniele BIRON(*), Ten. Davide Melfi(*) Satellite Application Facilities (SAFs) are specialised development and processing centres of the EUMETSAT Distributed Ground Segment. SAFs process level 1b data from meteorological satellites (geostationary and polar ones) in conjunction with all other relevant sources of data and appropriate models to generate services and level 2 products. Each SAF is a consortium of EUMETSAT European partners lead by a host institute responsible for the management of the complete SAF project. The Meteorological Service of Italian Air Force is the host Institute for the Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF). HSAF has the commitment to develop and to provide, operationally after 2010, products regarding precipitation, soil moisture and snow. HSAF is going to provide information on error structure of its products and validation of the products via their impacts into Hydrological models. To that purpose it has been structured a specific subgroups. Accumulated precipitation is computed by temporal integration of the instantaneous rain rate achieved by the blended LEO/MW and GEO/IR precipitation rate products generated by Rapid Update method available every 15 minutes. The algorithm provides four outputs, consisting in accumulated precipitation in 3, 6, 12 and 24 hours, delivered every 3 hours at the synoptic hours. These outputs are our precipitation background fields. Satellite estimates can cover most of the globe, however, they suffer from errors due to lack of a direct relationship between observation parameters and precipitation, the poor sampling and algorithm imperfections. For this reason the 3 hours accumulated precipitation is

  2. Economic Operation of Supercritical CO2 Refrigeration Energy Storage Technology

    Science.gov (United States)

    Hay, Ryan

    With increasing penetration of intermittent renewable energy resources, improved methods of energy storage are becoming a crucial stepping stone in the path toward a smarter, greener grid. SuperCritical Technologies is a company based in Bremerton, WA that is developing a storage technology that can operate entirely on waste heat, a resource that is otherwise dispelled into the environment. The following research models this storage technology in several electricity spot markets around the US to determine if it is economically viable. A modification to the storage dispatch scheme is then presented which allows the storage unit to increase its profit in real-time markets by taking advantage of extreme price fluctuations. Next, the technology is modeled in combination with an industrial load profile on two different utility rate schedules to determine potential cost savings. The forecast of facility load has a significant impact on savings from the storage dispatch, so an exploration into this relationship is then presented.

  3. Survey and documentation of emerging technologies for the satellite power system (SPS)

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, P.; Chapman, P.

    1981-04-01

    The purpose of this study is to survey emerging technologies and new concepts which may offer advantages over those selected for the SPS Reference System. A brief historical overview of the genesis of the Solar Power Satellite (SPS) concept is presented leading to a discussion of the assumptions and guidelines which were originally established and which led to development of the SPS Reference System design concept. Some of these guidelines are applicable to almost any SPS design, but others could be changed, leading to new and perhaps preferable systems. Moreover, while some of the guidelines are based on solid data, some are little more than arbitrary assumptions which were adopted only to proceed with a concrete point design which then could be assessed in the DOE/NASA Concept Development and Evaluation Program. In order to stimulate new SPS concepts and to facilitate comparative assessment of emerging SPS technologies, one useful approach is to break the overall system into functional parts. The system functions which must be performed by any SPS concept and the interrelations between them are discussed and a systematic framework is presented for assessment of the wide variety of system concepts and subsystem technologies which have been proposed. About 80 alternative SPS technologies are reviewed.

  4. Mobile satellite services: International co-ordination, co-operation and competition

    Science.gov (United States)

    Lundberg, Olof

    1988-01-01

    In the context of a discussion of international cooperation, coordination and competition regarding mobile satellite services, it is asserted that: there will be more than one civil mobile satellite service in the 1990's; competition between these separate mobile satellite systems is inevitable; no system should enjoy monopoly protection or subsidies; and coordination and cooperation are desirable and necessary, since the available L-band spectrum is in short supply.

  5. Using High-Altitude Pseudo Satellites as an innovative technology platform for climate measurements

    Science.gov (United States)

    Coulon, A.; Johnson, S.

    2017-12-01

    Climate scientists have been using for decades either remotely observed data, mainly from (un)manned aircraft and satellites, or ground-based measurements. High-Altitude Pseudo Satellites (HAPS) are emerging as a disruptive technology that will be used for various "Near Space" applications at altitudes between 15 and 23 km (i.e. above commercial airlines). This new generation of electric solar-powered unmanned aerial vehicles flying in the stratosphere aim to persistently monitor regional areas (with high temporal, spatial and spectral resolution) as well as perform in-situ Near Space observations. The two case studies presented will highlight the advantages of using such an innovative platform. First, calculations were performed to compare the use of a constellation of Low Earth Orbit satellites and a fleet of HAPS for surface monitoring. Using stratospheric drones has a clear advantage for revisiting a large zone (10'000km2 per day) with higher predictability and accuracy. User is free to set time over a location, avoid cloud coverage and obtain Ground Sampling Distance of 30cm using commercially of the shelf sensors. The other impact study focuses on in-situ measurements. Using HAPS will indeed help to closely observe stratospheric compounds, such as aerosols or volcano plumes. Simulations were performed to show how such a drone could collect samples and provide high-accuracy evaluations of compounds that, so far, are only remotely observed. The performed impact studies emphasize the substantial advantages of using HAPS for future stratospheric campaigns. Deploying month-long unmanned missions for monitoring stratospheric aerosols will be beneficial for future research projects such as climate engineering.

  6. Small Satellite Proximity Operations Hardware-in-the-Loop Test Bed Development

    Data.gov (United States)

    National Aeronautics and Space Administration — With the proliferation of small satellites resulting from CubeSat standardization of flight hardware elements, new mission architectures involving automated small...

  7. Bantam System Technology Project Ground System Operations Concept and Plan

    Science.gov (United States)

    Moon, Jesse M.; Beveridge, James R.

    1997-01-01

    The Low Cost Booster Technology Program, also known as the Bantam Booster program, is a NASA sponsored initiative to establish a viable commercial technology to support the market for placing small payloads in low earth orbit. This market is currently served by large boosters which orbit a number of small payloads on a single launch vehicle, or by these payloads taking up available space on major commercial launches. Even by sharing launch costs, the minimum cost to launch one of these small satellites is in the 6 to 8 million dollar range. Additionally, there is a shortage of available launch opportunities which can be shared in this manner. The goal of the Bantam program is to develop two competing launch vehicles, with launch costs in the neighborhood of 1.5 million dollars to launch a 150 kg payload into low earth orbit (200 nautical mile sun synchronous). Not only could the cost of the launch be significantly less than the current situation, but the payload sponsor could expect better service for his expenditure, the ability to specify his own orbit, and a dedicated vehicle. By developing two distinct launch vehicles, market forces are expected to aid in keeping customer costs low.

  8. Modelling and prediction of crop losses from NOAA polar-orbiting operational satellites

    Directory of Open Access Journals (Sweden)

    Felix Kogan

    2016-05-01

    Full Text Available Weather-related crop losses have always been a concern for farmers, governments, traders, and policy-makers for the purpose of balanced food supply/demands, trade, and distribution of aid to the nations in need. Among weather disasters, drought plays a major role in large-scale crop losses. This paper discusses utility of operational satellite-based vegetation health (VH indices for modelling cereal yield and for early warning of drought-related crop losses. The indices were tested in Saratov oblast (SO, one of the principal grain growing regions of Russia. Correlation and regression analysis were applied to model cereal yield from VH indices during 1982–2001. A strong correlation between mean SO's cereal yield and VH indices were found during the critical period of cereals, which starts two–three weeks before and ends two–three weeks after the heading stage. Several models were constructed where VH indices served as independent variables (predictors. The models were validated independently based on SO cereal yield during 1982–2012. Drought-related cereal yield losses can be predicted three months in advance of harvest and six–eight months in advance of official grain production statistic is released. The error of production losses prediction is 7%–10%. The error of prediction drops to 3%–5% in the years of intensive droughts.

  9. From satellite altimetry to operational oceanography and Argo: three revolutions in oceanography (Fridtjof Nansen Medal Lecture)

    Science.gov (United States)

    Le Traon, P. Y.

    2012-04-01

    The launch of the US/French mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large scale sea level and ocean circulation observations was flying. Topex/Poseidon revolutionized our vision and understanding of the ocean. It provided new views of the large scale seasonal and interannual sea level and ocean circulation variations. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. The ERS-1/2 orbit was well adapted for mesoscale circulation sampling but the orbit determination and altimeter performance were much less precise than for T/P. We demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. This was an essential first step for the merging of T/P and ERS-1/2. The second step required the development of a global optimal interpolation method. Near real time high resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 years. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. The unique capability of satellite altimetry to observe the global ocean in near real time at high resolution was essential to the development of global ocean forecasting, a second revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) (1998-2008) was phased with the T/P and ERS-1/2 successors (Jason-1 and ENVISAT) and was instrumental in the development of global operational oceanography capabilities. Europe played a leading role in GODAE. In 1998, the global in-situ observing system was inadequate for the global scope of GODAE. This led to the development of Argo, an

  10. Preliminary assessment of the Satellite Power System (SPS) and six other energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wolsko, T.; Brown, C.; Cirillo, R.

    1980-04-01

    The comparative assessment portion of the Satellite Power System (SPS) Concept Development and Evaluation program established by the Department of Energy and the National Aeronautics and Space Administration to generate information from which a rational decision could be made regarding the viability of the SPS is presented. The objective of the comparative assessment is to develop an initial understanding of the SPS with respect to a limited set of energy alternatives. Six alternative technologies (conventional coal combustion; light water reactor; coal gasification/combined cycle; liquid-metal, fast-breeder reactor; terrestrial photovoltaic; and fusion) were compared to the SPS on the basis of available data on cost and performance, health and safety, environmental welfare, resource requirements, and economics. These comparisons are descriptive and do not culminate in any bottom line regarding the overall viability of the SPS.

  11. Application of the advanced communications technology satellite for teleradiology and telemedicine

    Science.gov (United States)

    Stewart, Brent K.; Carter, Stephen J.; Rowberg, Alan H.

    1995-05-01

    The authors have an in-kind grant from NASA to investigate the application of the Advanced Communications Technology Satellite (ACTS) to teleradiology and telemedicine using the JPL developed ACTS Mobile Terminal (AMT) uplink. This experiment involves the transmission of medical imagery (CT, MR, CR, US and digitized radiographs including mammograms), between the ACTS/AMT and the University of Washington. This is accomplished by locating the AMT experiment van in various locations throughout Washington state, Idaho, Montana, Oregon and Hawaii. The medical images are transmitted from the ACTS to the downlink at the NASA Lewis Research Center (LeRC) in Cleveland, Ohio, consisting of AMT equipment and the high burst rate-link evaluation terminal (HBR-LET). These images are then routed from LeRC to the University of Washington School of Medicine (UWSoM) through the Internet and public switched Integrated Serviced Digital Network (ISDN). Once images arrive in the UW Radiology Department, they are reviewed using both video monitor softcopy and laser-printed hardcopy. Compressed video teleconferencing and transmission of real-time ultrasound video between the AMT van and the UWSoM are also tested. Image quality comparisons are made using both subjective diagnostic criteria and quantitative engineering analysis. Evaluation is performed during various weather conditions (including rain to assess rain fade compensation algorithms). Compression techniques also are tested to evaluate their effects on image quality, allowing further evaluation of portable teleradiology/telemedicine at lower data rates and providing useful information for additional applications (e.g., smaller remote units, shipboard, emergency disaster, etc.). The medical images received at the UWSoM over the ACTS are directly evaluated against the original digital images. The project demonstrates that a portable satellite-land connection can provide subspecialty consultation and education for rural and remote

  12. Operational Forecast of Runoff from Large Scale Basins using Satellite-Gravimetry and Remote Sensing

    Science.gov (United States)

    Riegger, Johannes; Tourian, Mohammad

    2015-04-01

    runoff for the subsequent month based on the values of present recharge, snow coverage and liquid mass. The forecast results are compared to measured runoff during the prediction period. Our investigations on large scale catchments emphasize the considerable potential for the use of operational GRACE and remote sensing data in runoff predictions. Future improvements in spatial and temporal resolution will tremendously increase the number of catchments for which this method can be applied. References: Riegger, J., and M. J. Tourian (2014), Characterization of runoff-storage relationships by satellite gravimetry and remote sensing. Water Resour. Res., 50, doi:10.1002/2013WR013847.

  13. Concept definition study for recovery of tumbling satellites. Volume 2: Supporting research and technology report

    Science.gov (United States)

    Cable, D. A.; Derocher, W. L., Jr.; Cathcart, J. A.; Keeley, M. G.; Madayev, L.; Nguyen, T. K.; Preese, J. R.

    1986-01-01

    A number of areas of research and laboratory experiments were identified which could lead to development of a cost efficient remote, disable satellite recovery system. Estimates were planned of disabled satellite motion. A concept is defined as a Tumbling Satellite Recovery kit which includes a modular system, composed of a number of subsystem mechanisms that can be readily integrated into varying combinations. This would enable the user to quickly configure a tailored remote, disabled satellite recovery kit to meet a broad spectrum of potential scenarios. The capability was determined of U.S. Earth based satellite tracking facilities to adequately determine the orientation and motion rates of disabled satellites.

  14. Fuzzy Logic Controller for Small Satellites Navigation

    National Research Council Canada - National Science Library

    Della Pietra, G; Falzini, S; Colzi, E; Crisconio, M

    2005-01-01

    .... The navigator aims at operating satellites in orbit with a minimum ground support and very good performances, by the adoption of innovative technologies, such as attitude observation GPS, attitude...

  15. Force Modeling and State Propagation for Navigation and Maneuver Planning for the Proximity Operations Nano-Satellite Flight Demonstration Mission

    Science.gov (United States)

    Roscoe, C.; Griesbach, J.; Westphal, J.; Hawes, D.; Carrico, J.

    2013-09-01

    The state propagation accuracy resulting from different choices of gravitational force models and orbital perturbations is investigated for a pair of CubeSats flying in formation in low Earth orbit (LEO). Accurate on-board state propagation is necessary to autonomously plan maneuvers and perform proximity operations and docking safely. The ability to perform high-precision navigation is made especially challenging by the limited computer processing power available on-board the spacecraft. Propagation accuracy is investigated both in terms of the absolute (chief) state and the relative (deputy relative to chief) state. Different perturbing effects are quantified and related directly to important mission factors such as maneuver accuracy, fuel use (mission lifetime), and collision prediction/avoidance (mission safety). The Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) program is to demonstrate rendezvous proximity operations (RPO), formation flying, and docking with a pair of 3U CubeSats. The program is sponsored by NASA Ames via the Office of the Chief Technologist (OCT) in support of its Small Spacecraft Technology Program (SSTP). The goal of the mission is to demonstrate complex RPO and docking operations with a pair of low-cost 3U CubeSat satellites using passive navigation sensors. The primary orbital perturbation affecting spacecraft in low Earth orbit (LEO) is the Earth oblateness, or J2, perturbation. Provided that a spacecraft does not have an extremely high area-to-mass ratio or is not flying at a very low altitude, the effect of J2 will usually be greater than that of atmospheric drag, which will typically be the next largest perturbing force in LEO. After these perturbations, factors such as higher-order Earth gravitational parameters, third-body perturbations, and solar radiation pressure will follow in magnitude but will have much less noticeable effects than J2 and drag. For spacecraft formations, where relative dynamics and not

  16. Preparing Students for the Satellite Industry. Resources in Technology and Engineering

    Science.gov (United States)

    Ensley, Keith

    2017-01-01

    While the satellite industry is characterized by dynamic innovation, it has steadily matured into a healthy, market-driven model of customers, value generators, and supporting suppliers. Even while the satellite market remains strong, satellite employers are caught squarely in the aerospace talent management paradigm. When a product line is…

  17. TYCHO: Demonstrator and operational satellite mission to Earth-Moon-Libration point EML-4 for communication relay provision as a service

    Science.gov (United States)

    Hornig, Andreas; Homeister, Maren

    2015-03-01

    In the current wake of mission plans to the Moon and to Earth-Moon Libration points (EML) by several agencies and organizations, TYCHO identifies the key role of telecommunication provision for the future path of lunar exploration. It demonstrates an interesting extension to existing communication methods to the Moon and beyond by combining innovative technology with a next frontier location and the commercial space communication sector. It is evident that all communication systems will rely on direct communication to Earth ground stations. In case of EML-2 missions around HALO orbits or bases on the far side of the Moon, it has to be extended by communication links via relay stations. The innovative approach is that TYCHO provides this relay communication to those out-of-sight lunar missions as a service. TYCHO will establish a new infrastructure for future missions and even create a new market for add-on relay services. The TMA-0 satellite is TYCHO's first phase and a proposed demonstrator mission to the Earth-Moon Libration point EML-4. It demonstrates relay services needed for automated exploratory and manned missions (Moon bases) on the rim (>90°E and >90°W) and far side surface, to lunar orbits and even to EML-2 halo orbits (satellites and space stations). Its main advantage is the permanent availability of communication coverage. This will provide full access to scientific and telemetry data and furthermore to crucial medical monitoring and safety. The communication subsystem is a platform for conventional communication but also a test-bed for optical communication with high data-rate LASER links to serve the future needs of manned bases and periodic burst data-transfer from lunar poles. The operational TMA-1 satellite is a stand-alone mission integrated into existing space communication networks to provide open communication service to external lunar missions. Therefore the long-time stable libration points EML-4 and -5 are selected to guarantee an

  18. Technological research of differential phase shift keying receiver in the satellite-to-ground laser communication

    Science.gov (United States)

    Ma, Xiaoping; Sun, Jianfeng; Zhi, Yanan; Liu, Liren

    2012-10-01

    Laser communication links between satellite and ground remains a bottleneck problem that has not been solved in free space communication network now. Atmospheric disturbances have badly influenced the wave-front of signal light and destroyed the integrality of optical phase, so the bit error rate (BER) is increased at the receiving terminal in the space-to-ground laser communication. With conventional coherent reception, the contrast of coherent light increased dramatically, and transmission efficiency of Space to ground laser communication decreased. Receiving technology based on differential phase shift keying (DPSK) is proposed here to overcome the effects of atmosphere here. Differential phase shift keying without the integrality and compensation of the optical phases, is suited for high rate space to ground communication links due to its immunity of the wavefront of a beam passing atmosphere. A Mach-Zehnder delay interferometer is used for differential delay which is equal to the one bit period. The differential data information can be obtained from the optical phase changes. Differential phase modulation technique can be a promising optical receiving technology.

  19. EFFECTS OF RICIAN FADING ON THE OPERATION OF AERONAUTICAL SATELLITE OFDM CHANNEL

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2016-06-01

    Full Text Available The aim of this study is to investigate the influence of Rician fading on messages transmission via the aeronautical satellite OFDM channel with adaptive modulation and the development of a method for estimating the parameters of such a channel. Methods: To study the effect of Rician fading on messages transmission via aeronautical satellite OFDM channel with adaptive modulation the original model of the communication channel “Aircraft-Satellite-Ground Station” was built using software package MATLAB Sіmulіnk. The model includes “Aircraft Transmitter”, “Uplink/Downlink Path”, “Satellite Transponder”, and “Ground Station Receiver”. Each modulator block in the modulation bank performs convolutional coding and puncturing using code rates of ½, ²/3, and ¾, data interleaving, BPSK, QPSK, 16-QAM, and 64-QAM modulation. Results: Dependences of Estimated channel SNR on the ratio between the power of the LOS component and the diffuse component, on the downlink gain and delay in the diffuse component for different Doppler spectrum types and Doppler frequency offsets were obtained. A method for estimating the parameters of the satellite channels with fading was proposed. Discussion: The realistic model of aeronautical satellite OFDM link with Rician fading is developed for the first time on a basis of IEEE 802.11a standard and used for channel parameters evaluation. Proposed in this article approach can be considered as a method for estimating parameters of the channel with fading.

  20. Satellite Power Systems (SPS) concept definition study. Volume 6: SPS technology requirements and verification

    Science.gov (United States)

    Hanley, G.

    1978-01-01

    Volume 6 of the SPS Concept Definition Study is presented and also incorporates results of NASA/MSFC in-house effort. This volume includes a supporting research and technology summary. Other volumes of the final report that provide additional detail are as follows: (1) Executive Summary; (2) SPS System Requirements; (3) SPS Concept Evolution; (4) SPS Point Design Definition; (5) Transportation and Operations Analysis; and Volume 7, SPS Program Plan and Economic Analysis.

  1. Using Vision System Technologies to Enable Operational Improvements for Low Visibility Approach and Landing Operations

    Science.gov (United States)

    Kramer, Lynda J.; Ellis, Kyle K. E.; Bailey, Randall E.; Williams, Steven P.; Severance, Kurt; Le Vie, Lisa R.; Comstock, James R.

    2014-01-01

    Flight deck-based vision systems, such as Synthetic and Enhanced Vision System (SEVS) technologies, have the potential to provide additional margins of safety for aircrew performance and enable the implementation of operational improvements for low visibility surface, arrival, and departure operations in the terminal environment with equivalent efficiency to visual operations. To achieve this potential, research is required for effective technology development and implementation based upon human factors design and regulatory guidance. This research supports the introduction and use of Synthetic Vision Systems and Enhanced Flight Vision Systems (SVS/EFVS) as advanced cockpit vision technologies in Next Generation Air Transportation System (NextGen) operations. Twelve air transport-rated crews participated in a motion-base simulation experiment to evaluate the use of SVS/EFVS in NextGen low visibility approach and landing operations. Three monochromatic, collimated head-up display (HUD) concepts (conventional HUD, SVS HUD, and EFVS HUD) and two color head-down primary flight display (PFD) concepts (conventional PFD, SVS PFD) were evaluated in a simulated NextGen Chicago O'Hare terminal environment. Additionally, the instrument approach type (no offset, 3 degree offset, 15 degree offset) was experimentally varied to test the efficacy of the HUD concepts for offset approach operations. The data showed that touchdown landing performance were excellent regardless of SEVS concept or type of offset instrument approach being flown. Subjective assessments of mental workload and situation awareness indicated that making offset approaches in low visibility conditions with an EFVS HUD or SVS HUD may be feasible.

  2. Assessment of pollution prevention and control technology for plating operations

    Science.gov (United States)

    Chalmer, Paul D.; Sonntag, William A.; Cushnie, George C., Jr.

    1995-01-01

    The National Center for Manufacturing Sciences (NCMS) is sponsoring an on-going project to assess pollution prevention and control technology available to the plating industry and to make this information available to those who can benefit from it. Completed project activities include extensive surveys of the plating industry and vendors of technologies and an indepth literature review. The plating industry survey was performed in cooperation with the National Association of Metal Finishers. The contractor that conducted the surveys and prepared the project products was CAI Engineering. The initial products of the project were made available in April, 1994. These products include an extensive report that presents the results of the surveys and literature review and an electronic database. The project results are useful for all those associated with pollution prevention and control in the plating industry. The results show which treatment, recovery and bath maintenance technologies have been most successful for different plating processes and the costs for purchasing and operating these technologies. The project results also cover trends in chemical substitution, the identification of compliance-problem pollutants, sludge generation rates, off-site sludge recovery and disposal options, and many other pertinent topics.

  3. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    Science.gov (United States)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  4. TECHNOLOGY OF REPAIRING OPERATIONAL SUITABILITY BITUMEN-RUBEROID CARPET

    Directory of Open Access Journals (Sweden)

    MISHUK K. M.

    2017-01-01

    Full Text Available Raising of problem. In the article is presented the analysis of the existing technologies for the restoration of the operational usability of bitumen-polymeric carpet, which allowed to identify their disadvantages, suggested ways to solve problems and highlighted the results of the studies. Firstly, existing bitumen-ruberoid carpet has a residual hydro insulating capacity that can be effectively used. Secondly, the physical condition of the repaired carpet has different types of defects and damage without the proper removal of which is difficult to ensure the desired outcome. The applying of additional layers in conditions of moistening of the lower layers and other defects contributes to their conservation and accelerated loss of operational integrity.Removal of these impacts can be up to 40-50% of all work, can not provide the required effectiveness outcomes in terms of durability, reliability and cost. Therefore the problem is to find ways to achieve a longer after repairing operation with simultaneous reduction of consumables indicators. Purpose of the study is to develop technological solutions serviceability restoration of roofing using unrolling technologies on the principles to minimize the impact of negative factors and the maximum possible use and strengthen the remaining hydro potential of the insulating coating through the use of special impregnating - saturating compositions. Features such compositions are based on the ability to deeply penetrate the thick bitumen-ruberoid carpet and restore his lost components and provide increased water resistance. Conclusion. The article can be introduced in practice of repair-refurbishable works of soft roofing covering of buildings and constructions.

  5. Principles for Integrating Mars Analog Science, Operations, and Technology Research

    Science.gov (United States)

    Clancey, William J.

    2003-01-01

    During the Apollo program, the scientific community and NASA used terrestrial analog sites for understanding planetary features and for training astronauts to be scientists. Human factors studies (Harrison, Clearwater, & McKay 1991; Stuster 1996) have focused on the effects of isolation in extreme environments. More recently, with the advent of wireless computing, we have prototyped advanced EVA technologies for navigation, scheduling, and science data logging (Clancey 2002b; Clancey et al., in press). Combining these interests in a single expedition enables tremendous synergy and authenticity, as pioneered by Pascal Lee's Haughton-Mars Project (Lee 2001; Clancey 2000a) and the Mars Society s research stations on a crater rim on Devon Island in the High Canadian Arctic (Clancey 2000b; 2001b) and the Morrison Formation of southeast Utah (Clancey 2002a). Based on this experience, the following principles are proposed for conducting an integrated science, operations, and technology research program at analog sites: 1) Authentic work; 2) PI-based projects; 3) Unencumbered baseline studies; 4) Closed simulations; and 5) Observation and documentation. Following these principles, we have been integrating field science, operations research, and technology development at analog sites on Devon Island and in Utah over the past five years. Analytic methods include work practice simulation (Clancey 2002c; Sierhuis et a]., 2000a;b), by which the interaction of human behavior, facilities, geography, tools, and procedures are formalized in computer models. These models are then converted into the runtime EVA system we call mobile agents (Clancey 2002b; Clancey et al., in press). Furthermore, we have found that the Apollo Lunar Surface Journal (Jones, 1999) provides a vast repository or understanding astronaut and CapCom interactions, serving as a baseline for Mars operations and quickly highlighting opportunities for computer automation (Clancey, in press).

  6. Izviđanje satelitskih komunikacija u funkciji savremenih operacija / Reconnaissance of satellite communications in contemporary operations

    Directory of Open Access Journals (Sweden)

    Slaviša Đukanović

    2004-05-01

    broadband satellites, due to be operational this year, vill provide global rooming for these services to the INMARSAT satellite system which experiences a growing military use. Tendencies are that the services of satellite systems (communication, navigation, reconnaissance, meteorological ones,.. are to be put at disposal to lower tactical units, aircraft and even to each particular soldier. Knowing satellite systems of potential agressors enables the determination of satellite system weak points from the point of view of reconnaissance and jamming.

  7. Minimally Processed Functional Foods: Technological and Operational Pathways.

    Science.gov (United States)

    Rodgers, Svetlana

    2016-10-01

    This paper offers a concise review of technical and operational concepts underpinning commercialization of minimally processed functional foods (FFs), foods with fresh-like qualities commanding premium prices. The growing number of permitted nutritional content/health claims, many of which relate to well-being, coupled with emerging extraction and food processing technologies offers new exciting opportunities for small and medium size enterprises (SMEs) specializing in fresh produce to play an active role in the health market. Supporting SMEs, governments could benefit from savings in healthcare costs and value creation in the economy. Consumers could benefit from novel FF formats such as refrigerated RTE (ready-to-eat) meals, a variety of fresh-like meat-, fish-, and egg-based products, fresh-cut fruits and vegetables, cereal-based fermented foods and beverages. To preserve these valuable commodities, mild biological (enzymatic treatment, fermentation and, bio-preservation) and engineering solutions are needed. The latter include nonthermal techniques such as high-pressure treatment, cook-chill, sous-vide, mirco-encapsulation, vacuum impregnation and others. "De-constructive" culinary techniques such as 3D food printing and molecular gastronomy as well as developments in nutrigenomics and digital technologies facilitate novel product formats, personalization and access to niche markets. In the operational sense, moving from nourishment to health improvement demands a shift from defensive market-oriented to offensive market-developing strategies including collaborative networks with research organizations. © 2016 Institute of Food Technologists®.

  8. A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1993-09-01

    This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

  9. Actual application of hot repairing technology to operating coke oven

    Energy Technology Data Exchange (ETDEWEB)

    Ohtani, Susumu; Ito, Hidekuni; Numazawa, Makoto; Yamazaki, Takao; Narita, Yuji; Kondo, Toshio

    1993-01-01

    In Wakayama Steel Works, the coke ovens have been operating for 23 [approximately] 25 years, and many over-aged parts can be seen. However the investment for the construction of a new coke oven is so huge that the maximum prolongation of the existing coke ovens life becomes very important. In the Wakayama Steel Works, it is thought that the coking chamber repairing technology can be the key to that prolongation. While, repairing the coking chamber, the area near the wall head can be observed by the naked eye and repaired using conventional methods, such a welding repairment by metal oxidation heat, partial chamber wall brick re-laying in the hot stage. However, these repairing methods are limited to the area near the wall head, and successful repair methods for the central portion of chamber wall have not, heretofore, been found. In the Wakayama Steel Works, the development of a new welding repairing machine for the central portion of the chamber wall was started and the actual repairing machine has been completed with practical use tests on operating coke ovens. This repairing machine has the following characteristic; (1) Repair of the central portion of ovens under high temperature (over 1,000 C); (2) Capability to seal narrow cracks or open brick joints and to smooth out brick roughness into a flat surface; (3) High working efficiency (max. welding capacity [equals] 30K g/h); (4) Compact and fully automatic operation with a high level of man/machine control interface; and (5) No disturbance of coke oven operation and no cooling of the chamber wall. In this paper, the outline of the actual hot repairing machine and its application results in the Wakayama operating coke ovens are reported.

  10. Dynamic rain fade compensation techniques for the advanced communications technology satellite

    Science.gov (United States)

    Manning, Robert M.

    1992-01-01

    The dynamic and composite nature of propagation impairments that are incurred on earth-space communications links at frequencies in and above the 30/20 GHz Ka band necessitate the use of dynamic statistical identification and prediction processing of the fading signal in order to optimally estimate and predict the levels of each of the deleterious attenuation components. Such requirements are being met in NASA's Advanced Communications Technology Satellite (ACTS) project by the implementation of optimal processing schemes derived through the use of the ACTS Rain Attenuation Prediction Model and nonlinear Markov filtering theory. The ACTS Rain Attenuation Prediction Model discerns climatological variations on the order of 0.5 deg in latitude and longitude in the continental U.S. The time-dependent portion of the model gives precise availability predictions for the 'spot beam' links of ACTS. However, the structure of the dynamic portion of the model, which yields performance parameters such as fade duration probabilities, is isomorphic to the state-variable approach of stochastic control theory and is amenable to the design of such statistical fade processing schemes which can be made specific to the particular climatological location at which they are employed.

  11. Evaluation technology of radiation resistant materials in nuclear power plant and satellite

    International Nuclear Information System (INIS)

    Kang, P. H.; Kim, K. Y.; Lee, C.; Jeong, S. H.; Kim, J. A.

    2007-06-01

    The developed evaluation method using dielectric relaxation characteristic is measuring the increment of dipoles and mobile ions inside PEEK with deterioration, and calculate the dielectric relaxation intensity. Dielectric relaxation intensity were evaluated using Cole-Cole's circular arcs from the multi-frequencies measurements around glass transition temperature. The other proposed method using mechanical relaxation characteristic is measuring the brittleness of the deteriorated PEEK, non-destructively. The values of dielectric relaxation intensity showed the deterioration levels of each aged PEEK. Similarly, mechanical relaxation intensity showed decreasing tendency as increasing ageing time, but it did not show a certain tendency for the multi-aged PEEK. The novel developed evaluation method using dielectric relaxation characteristic will be applicable to classification of EQ, and contribute to the reliability of the lifetime extension in the NPP. These results establish a test method for both TID (Total Ionizing Dose) and SEEs through the evaluation, test, design technology. The results turned out to be quite successful, and these can be applied for parts localization for the nuclear power plant and the satellite

  12. Integration of environmental simulation models with satellite remote sensing and geographic information systems technologies: case studies

    Science.gov (United States)

    Steyaert, Louis T.; Loveland, Thomas R.; Brown, Jesslyn F.; Reed, Bradley C.

    1993-01-01

    Environmental modelers are testing and evaluating a prototype land cover characteristics database for the conterminous United States developed by the EROS Data Center of the U.S. Geological Survey and the University of Nebraska Center for Advanced Land Management Information Technologies. This database was developed from multi temporal, 1-kilometer advanced very high resolution radiometer (AVHRR) data for 1990 and various ancillary data sets such as elevation, ecological regions, and selected climatic normals. Several case studies using this database were analyzed to illustrate the integration of satellite remote sensing and geographic information systems technologies with land-atmosphere interactions models at a variety of spatial and temporal scales. The case studies are representative of contemporary environmental simulation modeling at local to regional levels in global change research, land and water resource management, and environmental simulation modeling at local to regional levels in global change research, land and water resource management and environmental risk assessment. The case studies feature land surface parameterizations for atmospheric mesoscale and global climate models; biogenic-hydrocarbons emissions models; distributed parameter watershed and other hydrological models; and various ecological models such as ecosystem, dynamics, biogeochemical cycles, ecotone variability, and equilibrium vegetation models. The case studies demonstrate the important of multi temporal AVHRR data to develop to develop and maintain a flexible, near-realtime land cover characteristics database. Moreover, such a flexible database is needed to derive various vegetation classification schemes, to aggregate data for nested models, to develop remote sensing algorithms, and to provide data on dynamic landscape characteristics. The case studies illustrate how such a database supports research on spatial heterogeneity, land use, sensitivity analysis, and scaling issues

  13. GEO Satellites as Space Weather Sensors

    Science.gov (United States)

    2016-04-26

    AFRL-AFOSR-VA-TR-2016-0161 GEO Satellites as Space Weather Sensors Kerri Cahoy MASSACHUSETTS INSTITUTE OF TECHNOLOGY 77 MASSACHUSETTS AVE CAMBRIDGE...REPORT TYPE Final Report 3. DATES COVERED (From - To) 02/15/2013-02/14/2016 4. TITLE AND SUBTITLE GEO SATELLITES AS SPACE WEATHER SENSORS 5a...and analyzed >1 million hours of geostationary communications satellite housekeeping telemetry from commercial operators and have correlated the data

  14. Ergonomic design in the operating room: information technologies

    Science.gov (United States)

    Morita, Mark M.; Ratib, Osman

    2005-04-01

    The ergonomic design in the Surgical OR of information technology systems has been and continues to be a large problem. Numerous disparate information systems with unique hardware and display configurations create an environment similar to the chaotic environments of air traffic control. Patient information systems tend to show all available statistics making it difficult to isolate the key, relevant vitals for the patient. Interactions in this sterile environment are still being done with the traditional keyboard and mouse designed for cubicle office workflows. This presentation will address the shortcomings of the current design paradigm in the Surgical OR that relate to Information Technology systems. It will offer a perspective that addresses the ergonomic deficiencies and predicts how future technological innovations will integrate into this vision. Part of this vision includes a Surgical OR PACS prototype, developed by GE Healthcare Technologies, that addresses ergonomic challenges of PACS in the OR that include lack of portability, sterile field integrity, and UI targeted for diagnostic radiologists. GWindows (gesture control) developed by Microsoft Research and Voice command will allow for the surgeons to navigate and review diagnostic imagery without using the conventional keyboard and mouse that disrupt the integrity of the sterile field. This prototype also demonstrates how a wireless, battery powered, self contained mobile PACS workstation can be optimally positioned for a surgeon to reference images during an intervention as opposed to the current pre-operative review. Lessons learned from the creation of the Surgical OR PACS Prototype have demonstrated that PACS alone is not the end all solution in the OR. Integration of other disparate information systems and presentation of this information in simple, easy to navigate information packets will enable smoother interactions for the surgeons and other healthcare professionals in the OR. More intuitive

  15. Spacecraft charging technology in the satellite X-ray test facility

    Science.gov (United States)

    Sponaugle, T. J.

    1980-01-01

    A satellite X-ray test facility (SXTF) is planned for studying system generated electromagnetic pulse effects on full scale, operational spacecraft. The environment created by a distant, high altitude nuclear burst can be simulated using pulsed X-ray sources. The facility is to be installed in a thermal vacuum chamber with dimensions greater then 10 m diameter and 20 m height and equipped with solar simulators and equipment for simulating the charging environment of space. The spacecraft charging system consists of several low energy electron and hydrogen ion sources (5-25 keV), one or two medium energy electron accelerators (150-300 keV), an array of vacuum ultraviolet lamps, and geomagnetic field suppression coils. Military, scientific, and commercial spacecraft can be tested before launching into the radiation environment of space. construction of SXTF is scheduled to begin in 1982 and the facility should be available for general use in 1984. Potential users are encouraged to express their needs for specific testing environments in SXTF.

  16. Water chemistry technology. One of the key technologies for safe and reliable nuclear power plant operation

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Katsumura, Yosuke

    2013-01-01

    Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. Continuous and collaborative efforts of plant manufacturers and plant operator utilities have been focused on optimal water chemistry control, for which, a trio of requirements for water chemistry should be simultaneously satisfied: (1) better reliability of reactor structures and fuel rods; (2) lower occupational exposure and (3) fewer radwaste sources. Various groups in academia have carried out basic research to support the technical bases of water chemistry in plants. The Research Committee on Water Chemistry of the Atomic Energy Society of Japan (AESJ), which has now been reorganized as the Division of Water Chemistry (DWC) of AESJ, has played important roles to promote improvements in water chemistry control, to share knowledge about and experiences with water chemistry control among plant operators and manufacturers and to establish common technological bases for plant water chemistry and then to transfer them to the next generation of plant workers engaged in water chemistry. Furthermore, the DWC has tried and succeeded arranging R and D proposals for further improvement in water chemistry control through roadmap planning. In the paper, major achievements in plant technologies and in basic research studies of water chemistry in Japan are reviewed. The contributions of the DWC to the long-term safe management of the damaged reactors at the Fukushima Daiichi Nuclear Power Plant until their decommissioning are introduced. (author)

  17. Combined Quarterly Technical Report Number 27. SATNET Development and Operation, Pluribus Satellite IMP Development, Remote Site Maintenance, Internet Operations and Maintenance, Mobile Access Terminal Network, TCP for the HP3000, TCP for VAX-UNIX

    Science.gov (United States)

    1982-11-01

    ARPANET was created at DCEC, and the circuit between the DCEC gateway and the Etam Satellite IMP was made operational. As part of the upgrading of all...Packet Satellite Project (PSP) terminals in SATNET, we supported COMSAT in replacing the PSP terminals at Etam , Goonhilly, and Tanum with 2nd...include a 50 Kb/s terrestrial circuit between the Etam Satellite IMP and the SDAC ARPANET IMP, a 9.6 Kb/s terrestrial circuit between the Goonhilly

  18. Technology strategy for integrated operations and real time reservoir management; Technology Target Areas; TTA5 - Integrated operations and RTRM

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    In Norway Integrated Operations (IO) is a concept which in the first phase (G1) has been used to describe how to integrate processes and people onshore and offshore using ICT solutions and facilities that improve onshore's ability to support offshore operationally. The second generation (G2) Integrated Operations aims to help operators utilize vendors' core competencies and services more efficiently. Utilizing digital services and vendor products, operators will be able to update reservoir models, drilling targets and well trajectories as wells are drilled, manage well completions remotely, optimize production from reservoir to export lines, and implement condition-based maintenance concepts. The total impact on production, recovery rates, costs and safety will be profound. When the international petroleum business moves to the Arctic region the setting is very different from what is the case on the Norwegian Continental Shelf (NCS) and new challenges will arise. The Norwegian Ministry of Environment has recently issued an Integrated Management Plan for the Barents Sea where one focus is on 'Monitoring of the Marine Environment in the North'. The Government aims to establish a new and more coordinated system for monitoring the marine ecosystems in the north. A representative group consisting of the major Operators, the Service Industry, Academia and the Authorities have developed the enclosed strategy for the OG21 Integrated Operations and Real Time Reservoir Management (IO and RTRM) Technology Target Area (TTA). Major technology and work process research and development gaps have been identified in several areas: Bandwidth down-hole to surface; Sensor development including Nano-technology; Cross discipline use of Visualisation, Simulation and model development particularly in Drilling and Reservoir management areas; Software development in terms of data handling, model updating and calculation speed; Enabling reliable and robust communications

  19. Preliminary comparative assessment of land use for the Satellite Power System (SPS) and alternative electric energy technologies

    Science.gov (United States)

    Newsom, D. E.; Wolsko, T.

    1980-01-01

    A preliminary comparative assessment of land use for the satellite power system (SPS), other solar technologies, and alternative electric energy technologies was conducted. The alternative technologies are coal gasification/combined-cycle, coal fluidized-bed combustion (FBC), light water reactor (LWR), liquid metal fast breeder reactor (LMFBR), terrestrial photovoltaics (TPV), solar thermal electric (STE), and ocean thermal energy conversion (OTEC). The major issues of a land use assessment are the quantity, purpose, duration, location, and costs of the required land use. The phased methodology described treats the first four issues, but not the costs. Several past efforts are comparative or single technology assessment are reviewed briefly. The current state of knowledge about land use is described for each technology. Conclusions are drawn regarding deficiencies in the data on comparative land use and needs for further research.

  20. Intelligent engineering and technology for nuclear power plant operation

    International Nuclear Information System (INIS)

    Wang, P.P.; Gu, X.

    1996-01-01

    The Three-Mile-Island accident has drawn considerable attention by the engineering, scientific, management, financial, and political communities as well as society at large. This paper surveys possible causes of the accident studied by various groups. Research continues in this area with many projects aimed at specifically improving the performance and operation of a nuclear power plant using the contemporary technologies available. In addition to the known cause of the accident and suggest a strategy for coping with these problems in the future. With the increased use of intelligent methodologies called computational intelligence or soft-computing, a substantially larger collection of powerful tools are now available for our designers to use in order to tackle these sensitive and difficult issues. These intelligent methodologies consists of fuzzy logic, genetic algorithms, neural networks, artificial intelligence and expert systems, pattern recognition, machine intelligence, and fuzzy constraint networks. Using the Three-Mile-Island experience, this paper offers a set of specific recommendations for future designers to take advantage of the powerful tools of intelligent technologies that we are now able to master and encourages the adoption of a novel methodology called fuzzy constraint network

  1. NOAA's Joint Polar Satellite System's Proving Ground and Risk Reduction Program - Bringing New Capabilities to Operations!

    Science.gov (United States)

    Sjoberg, B.

    2015-12-01

    This presentation will focus on the NOAA Joint Polar Satellite System (JPSS) Program's Proving Ground and Risk Reduction (PGRR) initiative and how it has prepared NOAA users to effectively utilize new polar-orbiting capabilities. The PGRR Program was established in 2012, following the launch of the Suomi National Polar Partnership (SNPP) satellite. Two sets of PGRR Projects have been established grouped together in thirteen different initiatives. Details about how these projects have been continually tailored through the years to meet user requirements, will be highlighted. The presenter will focus on how the success of the first set of PGRR projects have been used to evaluate a follow-on set of projects and focus on exactly what the JPSS user community needs to meet their mission requirements. Details on the Dec 2014 PGRR Call-for-Proposals and the projects selected for funding will be discussed.

  2. Development of NPP Monitoring and Operation Support Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Park, Jae Chang; Lee, Yong Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)] (and others)

    2008-04-15

    During the first stage (2001.7.1-2004.6.30), we developed general human factors design guidelines VDU-based workstations, PMAS alarm display design guidelines, PMAS SPADES display design guidelines, and the revision of KHNP HFE guidelines (HF-010), which have been applied to domestic NPP designs. We also supported other KNICS projects by performing RPS COM design reviews, development of RPS COM Style Guide, and a review of CEDMCS cabinet operator module display design. We developed the ADIOS prototype, NPP performance analysis systems for YGN No.1, 2 plants and Kori No. 2 plant, alarm cause tracking systems for Kori No. 2 plant and OPR1000, and signal fault detection and diagnosis methods for deaerators and steam generators. During the second stage(2004.7.1-2008.4.30), we supported other KNICS projects by reviewing RPS COM display designs three times, developing ESF-CCS COM style guides and reviewing ESF-CCS COM display design, reviewing CRCS LOM and PCS MTP display designs, and developing requirements for DCS GUI components. We also developed integrated style guide for I and C cabinet operator module display designs. In cooperative research with KOPEC-AE, we developed basic technologies for advanced HSI design including task analysis methods, an information and control requirements database, display design criteria, a HSI prototype with its evaluation, and methods for human factors engineering verification and validation.

  3. Development of NPP Monitoring and Operation Support Technology

    International Nuclear Information System (INIS)

    Lee, Jung Woon; Park, Jae Chang; Lee, Yong Hee

    2008-04-01

    During the first stage (2001.7.1-2004.6.30), we developed general human factors design guidelines VDU-based workstations, PMAS alarm display design guidelines, PMAS SPADES display design guidelines, and the revision of KHNP HFE guidelines (HF-010), which have been applied to domestic NPP designs. We also supported other KNICS projects by performing RPS COM design reviews, development of RPS COM Style Guide, and a review of CEDMCS cabinet operator module display design. We developed the ADIOS prototype, NPP performance analysis systems for YGN No.1, 2 plants and Kori No. 2 plant, alarm cause tracking systems for Kori No. 2 plant and OPR1000, and signal fault detection and diagnosis methods for deaerators and steam generators. During the second stage(2004.7.1-2008.4.30), we supported other KNICS projects by reviewing RPS COM display designs three times, developing ESF-CCS COM style guides and reviewing ESF-CCS COM display design, reviewing CRCS LOM and PCS MTP display designs, and developing requirements for DCS GUI components. We also developed integrated style guide for I and C cabinet operator module display designs. In cooperative research with KOPEC-AE, we developed basic technologies for advanced HSI design including task analysis methods, an information and control requirements database, display design criteria, a HSI prototype with its evaluation, and methods for human factors engineering verification and validation

  4. Performance Evaluation of Satellite Communication Systems Operating in the Q/V/W Bands

    Science.gov (United States)

    2013-06-30

    Altitude, Elevation k, α R(P) γrain, Arain / China Altitude, Latitude, Elevation Frequency k, α R0.01 γrain, Arain To be tested Gibbins and...Attenuation Prediction Models Based on the Rainfall Structures (Stratified and Convective) for advanced TLC or Broadcasting Systems”, XXVIIth...Atmospheric Radiowave Propagation - A Challenge for Satellite TLC Systems”, ASMS-SPSC 2012, pp. 1-8, 5-7 September, Baiona, Spain. [Capsoni and Luini

  5. Operational flash flood forecasting platform based on grid technology

    Science.gov (United States)

    Thierion, V.; Ayral, P.-A.; Angelini, V.; Sauvagnargues-Lesage, S.; Nativi, S.; Payrastre, O.

    2009-04-01

    effort in term of grid technology development. This paper presents an operational flash flood forecasting platform which have been developed in the framework of CYCLOPS European project providing one of virtual organizations of EGEE project. This platform has been designed to enable multi-simulations processes to ease forecasting operations of several supervised watersheds on Grand Delta (SPC-GD) territory. Grid technology infrastructure, in providing multiple remote computing elements enables the processing of multiple rainfall scenarios, derived to the original meteorological forecasting transmitted by Meteo-France, and their respective hydrological simulations. First results show that from one forecasting scenario, this new presented approach can permit simulations of more than 200 different scenarios to support forecasters in their aforesaid mission and appears as an efficient hydrological decision-making tool. Although, this system seems operational, model validity has to be confirmed. So, further researches are necessary to improve models core to be more efficient in term of hydrological aspects. Finally, this platform could be an efficient tool for developing others modelling aspects as calibration or data assimilation in real time processing.

  6. The need for speed: Latest communications technologies instantaneously send information from oilfield to operator's head office

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2005-03-01

    The role played by satellite phones, cellular phones, telefax machines, electronic mail, desktop and laptop computers, remote computer networks, high-speed satellite links for Voice-over IP, SCADA (supervisory control and data acquisition) systems, and the Internet in the oil and natural gas industry are discussed. Examples of each technology, and the best technology to use in given situations, are reviewed. photos.

  7. MITRA Virtual laboratory for operative application of satellite time series for land degradation risk estimation

    Science.gov (United States)

    Nole, Gabriele; Scorza, Francesco; Lanorte, Antonio; Manzi, Teresa; Lasaponara, Rosa

    2015-04-01

    This paper aims to present the development of a tool to integrate time series from active and passive satellite sensors (such as of MODIS, Vegetation, Landsat, ASTER, COSMO, Sentinel) into a virtual laboratory to support studies on landscape and archaeological landscape, investigation on environmental changes, estimation and monitoring of natural and anthropogenic risks. The virtual laboratory is composed by both data and open source tools specifically developed for the above mentioned applications. Results obtained for investigations carried out using the implemented tools for monitoring land degradation issues and subtle changes ongoing on forestry and natural areas are herein presented. In detail MODIS, SPOT Vegetation and Landsat time series were analyzed comparing results of different statistical analyses and the results integrated with ancillary data and evaluated with field survey. The comparison of the outputs we obtained for the Basilicata Region from satellite data analyses and independent data sets clearly pointed out the reliability for the diverse change analyses we performed, at the pixel level, using MODIS, SPOT Vegetation and Landsat TM data. Next steps are going to be implemented to further advance the current Virtual Laboratory tools, by extending current facilities adding new computational algorithms and applying to other geographic regions. Acknowledgement This research was performed within the framework of the project PO FESR Basilicata 2007/2013 - Progetto di cooperazione internazionale MITRA "Remote Sensing tecnologies for Natural and Cultural heritage Degradation Monitoring for Preservation and valorization" funded by Basilicata Region Reference 1. A. Lanorte, R Lasaponara, M Lovallo, L Telesca 2014 Fisher-Shannon information plane analysis of SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series to characterize vegetation recovery after fire disturbance International Journal of Applied Earth Observation and

  8. Nowcast of thunderstorm and typhoon activity based on lightning detection and flexible operation of micro-satellites

    Science.gov (United States)

    Takahashi, Y.

    2016-12-01

    It has become known that lightning activity represents the thunderstorm activity, namely, the intensity and area of precipitation and/or updraft. Thunderstorm is also important as a proxy of the energy input from ocean to atmosphere in typhoon, meaning that if we could monitor the thunderstorm with lightning we could predict the maximum wind velocity near the typhoon center by one or two days before. Constructing ELF and VLF radio wave observation network in Southeast Asia (AVON) and a regional dense network of automated weather station in a big city, we plan to establish the monitoring system for thunderstorm development in western pacific warm pool (WPWP) where typhoon is formed and in detail in big city area. On the other hand, some developing countries in SE-Asia are going to own micro-satellites dedicated to meteorological remote sensing. Making use of the lightning activity data measured by the ground-based networks, and information on 3-D structures of thunderclouds observed by the flexible on-demand operation of the remote-sensing micro-satellites, we would establish a new methodology to obtain very detail semi-real time information that cannot be achieved only with existing observation facilities, such as meteorological radar or large meteorological satellite. Using this new system we try to issue nowcast for the local thunderstorm and for typhoons. The first attempt will be carried out in Metro Manila in Philippines and WPWP as one of the SATREPS projects.

  9. Definition of satellite servicing technology development missions for early space stations. Volume 2: Technical

    Science.gov (United States)

    1983-01-01

    Early space station accommodation, build-up of space station manipulator capability, on-orbit spacecraft assembly test and launch, large antenna structure deployment, service/refurbish satellite, and servicing of free-flying materials processing platform are discussed.

  10. Regeneratively-Cooled, Pump-Fed Propulsion Technology for Nano / Micro Satellite Launch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ventions proposes the development of a pump-fed, 2-stage nano launch vehicle for low-cost on demand placement of cube and nano-satellites into LEO. The proposed...

  11. Advance Technology Satellites in the Commercial Environment. Volume 2: Final Report

    Science.gov (United States)

    1984-01-01

    A forecast of transponder requirements was obtained. Certain assumptions about system configurations are implicit in this process. The factors included are interpolation of baseline year values to produce yearly figures, estimation of satellite capture, effects of peak-hours and the time-zone staggering of peak hours, circuit requirements for acceptable grade of service capacity of satellite transponders, including various compression methods where applicable, and requirements for spare transponders in orbit. The graphical distribution of traffic requirements was estimated.

  12. Life Science Research in Outer Space: New Platform Technologies for Low-Cost, Autonomous Small Satellite Missions

    Science.gov (United States)

    Ricco, Antonio J.; Parra, Macarena P.; Niesel, David; McGinnis, Michael; Ehrenfreund, Pascale; Nicholson, Wayne; Mancinelli, Rocco; Piccini, Matthew E.; Beasley, Christopher C.; Timucin, Linda R.; hide

    2009-01-01

    We develop integrated instruments and platforms suitable for economical, frequent space access for autonomous life science experiments and processes in outer space. The technologies represented by three of our recent free-flyer small-satellite missions are the basis of a rapidly growing toolbox of miniaturized biologically/biochemically-oriented instrumentation now enabling a new generation of in-situ space experiments. Autonomous small satellites ( 1 50 kg) are less expensive to develop and build than fullsize spacecraft and not subject to the comparatively high costs and scheduling challenges of human-tended experimentation on the International Space Station, Space Shuttle, and comparable platforms. A growing number of commercial, government, military, and civilian space launches now carry small secondary science payloads at far lower cost than dedicated missions; the number of opportunities is particularly large for so-called cube-sat and multicube satellites in the 1 10 kg range. The recent explosion in nano-, micro-, and miniature technologies, spanning fields from telecommunications to materials to bio/chemical analysis, enables development of remarkably capable autonomous miniaturized instruments to accomplish remote biological experimentation. High-throughput drug discovery, point-of-care medical diagnostics, and genetic analysis are applications driving rapid progress in autonomous bioanalytical technology. Three of our recent missions exemplify the development of miniaturized analytical payload instrumentation: GeneSat-1 (launched: December 2006), PharmaSat (launched: May 2009), and O/OREOS (organism/organics exposure to orbital stresses; scheduled launch: May 2010). We will highlight the overall architecture and integration of fluidic, optical, sensor, thermal, and electronic technologies and subsystems to support and monitor the growth of microorganisms in culture in these small autonomous space satellites, including real-time tracking of their culture

  13. Technology development for evaluation of operational quantities in radiation protection

    International Nuclear Information System (INIS)

    Jang, Si Young; Lee, T. Y.; Kim, B. H.

    2003-03-01

    Korean government recently published a national regulation on the internal exposure monitoring and dose evaluation (internal dosimetry) based on the most recent ICRP recommendation 60 and subsequent publications, which supercede the former ICRP recommendation 26 and publication 30, on which the internal dosimetry practice in Korea had been based so far. Consequently, this project, according to the demand from both government and nuclear industry, had been launched to develop a user-friendly computer code on internal dosimetry adopting the most up to date ICRP biokinetic and dosimetric model to resolve the difficulties and problems faced to nuclear industry and to develop related technology. The reliability of this code, named as BiDAS, as a result of several benchmark calculations for self assurance appeared to be excellent comparing with the foreign computer code. This computer code is expected to be successfully utilized in nuclear industry and related fields in complying with the national regulation on internal dosimetry program started from late 2003. Reference low level gamma(γ) radiation field for calibration of environmental radiation(γ) monitor and reference neutron field for calibration of n monitoring equipment have been established and characterized. International cross comparison of these reference radiation fields have been performed and radiation response of various radiation monitoring instrument has been tested by using these reference radiation fields. A technology which can directly measure the radiation quality factor and tissue absorbed dose has been established to evaluate the neutron dose in terms of operational quantity in the unknown mixed n-γ radiation field. Spherical and cylindrical TEPC systems have been designed and manufactured and a portable TEPC system to measure the neutron quality and dose in the real work field has been developed and tested in accelerator laboratory

  14. Application of modern technology for fieldwork support in network operations

    International Nuclear Information System (INIS)

    Eggen, Arnt Ove; Langdal, Bjoern Inge

    2006-04-01

    Demands for rational and efficient operation and management in several business sectors such as power-, oil- and gas industry, telecommunication, water and multi-utility has lead to big changes for personnel in charge of managing the infrastructure and for the field-workers. Contractors providing services for the large power network companies do not have the local knowledge about construction projects, and there are increased demands on efficiency related to completion, documentation and reporting. This implies a need for transmission of knowledge and experiences between office and the field, and support for fieldwork in the form of applications using various technological possibilities. Field solutions that have well-developed technical and organisational properties will make administration of the infrastructure more efficient, and raise the quality of the work. The choice of mobile service will always be a compromise between several different wishes and needs. The properties of hardware, software and communication options will often influence possible choices in the respective fields. As an important step in testing of hardware, software and communication, some prototypes have been developed for Pocket Pc. The prototypes 'Befaring' and 'HelikopterBefaring' have been chosen because they contain many of the elements that are important in a mobile solution. In addition a prototype for internet applications has been developed ('HelikopterBefaringMottak') and a Windows application ('HelikopterBefaringPresentasjon') in order to visualise the received and managed information sent from the mobile units. The technological development both in software, hardware, GPS and mobile telephones is extremely rapid, and the first mobile solutions with Pocket Pc, mobile telephone and GPS in one integrated unit is already on the market (ml)

  15. Precision Positioning and Inertial Guidance Sensors. Technology and Operational Aspects

    Science.gov (United States)

    1981-03-01

    DRET, SFENA 6tudie et d~veloppe le gyrom~tre laser en liaison avec la Socidtd QUAXNTEL pour l’aspect Recherche. Tr~s t~t: des marques d’lintdrdt des...pseudorange and delta-pseudorange measurements on the L2 frequency for the same satellite being tracked on the primary channel. The measurements sade on the

  16. Reaping the space investment. [Shuttle era geosynchronous satellite based technological trends

    Science.gov (United States)

    Calio, A. J.

    1979-01-01

    By 1999 operational space systems will be implemented routinely on a worldwide scale in many areas vital to human survival and life quality. Geosynchronous-based monitoring and observation will be extensively used. The Shuttle era will bring in the capability to allow monitoring and identifying pollution sources which fail to stay within required limits. Remotely sensed data over land masses will provide needed facts on renewable and nonrenewable earth resources. New instruments and techniques will have been developed to provide geologists with clues to the declining number of deposits of fuels and minerals. Also, practical methods for predicting earthquakes will have been elaborated by 1999. Communications will see implementation of many of the technological goals of 1978.

  17. Establishing an operational waterhole monitoring system using satellite data and hydrologic modelling: Application in the pastoral regions of East Africa

    Science.gov (United States)

    Senay, Gabriel B.; Velpuri, Naga Manohar; Alemu, Henok; Pervez, Shahriar Md; Asante, Kwabena O; Karuki, Gatarwa; Taa, Asefa; Angerer, Jay

    2013-01-01

    Timely information on the availability of water and forage is important for the sustainable development of pastoral regions. The lack of such information increases the dependence of pastoral communities on perennial sources, which often leads to competition and conflicts. The provision of timely information is a challenging task, especially due to the scarcity or non-existence of conventional station-based hydrometeorological networks in the remote pastoral regions. A multi-source water balance modelling approach driven by satellite data was used to operationally monitor daily water level fluctuations across the pastoral regions of northern Kenya and southern Ethiopia. Advanced Spaceborne Thermal Emission and Reflection Radiometer data were used for mapping and estimating the surface area of the waterholes. Satellite-based rainfall, modelled run-off and evapotranspiration data were used to model daily water level fluctuations. Mapping of waterholes was achieved with 97% accuracy. Validation of modelled water levels with field-installed gauge data demonstrated the ability of the model to capture the seasonal patterns and variations. Validation results indicate that the model explained 60% of the observed variability in water levels, with an average root-mean-squared error of 22%. Up-to-date information on rainfall, evaporation, scaled water depth and condition of the waterholes is made available daily in near-real time via the Internet (http://watermon.tamu.edu). Such information can be used by non-governmental organizations, governmental organizations and other stakeholders for early warning and decision making. This study demonstrated an integrated approach for establishing an operational waterhole monitoring system using multi-source satellite data and hydrologic modelling.

  18. Spanish Earth Observation Satellite System

    Science.gov (United States)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  19. Utilizing the EUVE Innovative Technology Testbed to Reduce Operations Cost for Present and Future Orbiting Mission

    Science.gov (United States)

    1997-01-01

    This report summarizes work done under Cooperative Agreement (CA) on the following testbed projects: TERRIERS - The development of the ground systems to support the TERRIERS satellite mission at Boston University (BU). HSTS - The application of ARC's Heuristic Scheduling Testbed System (HSTS) to the EUVE satellite mission. SELMON - The application of NASA's Jet Propulsion Laboratory's (JPL) Selective Monitoring (SELMON) system to the EUVE satellite mission. EVE - The development of the EUVE Virtual Environment (EVE), a prototype three-dimensional (3-D) visualization environment for the EUVE satellite and its sensors, instruments, and communications antennae. FIDO - The development of the Fault-Induced Document Officer (FIDO) system, a prototype application to respond to anomalous conditions by automatically searching for, retrieving, and displaying relevant documentation for an operators use.

  20. A technique for measurement of earth station antenna G/T by radio stars and Applications Technology Satellites.

    Science.gov (United States)

    Kochevar, H. J.

    1972-01-01

    A new technique has been developed to accurately measure the G/T of a small aperture antenna using geostationary satellites and the well established radio star method. A large aperture antenna having the capability of accurately measuring its G/T by using a radio star of known power density is used to obtain an accurate G/T to use as a reference. The CNR of both the large and small aperture antennas are then measured using an Applications Technology Satellite (ATS). After normalizing the two C/N ratios to the large antenna system noise temperature the G/T or the gain G of the small aperture antenna can then be determined.

  1. Oak Ridge Operations Office, Oak Ridge, Tennessee, technology summary

    International Nuclear Information System (INIS)

    1994-11-01

    DOE's Office of Technology Development manages an aggressive national program for applied research, development, demonstration, testing, and evaluation. This program develops high-payoff technologies to clean up the inventory of DOE nuclear component manufacturing sites and to manage DOE-generated waste faster, safer, and cheaper than current environmental cleanup technologies. OTD programs are designed to make new, innovative, and more effective technologies available for transfer to users through progressive development. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD technologies address three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. Programs of each are discussed in this document. Technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets. OTD's approach to technology development is an integrated process that seeks to identify technologies and development partners, and facilitates the movement of a technology from applied research to implementation

  2. Enterprise Level Status and Control of Multi-Satellite Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to take information from multiple operational environments and securely deliver it in a graphically useful manner to the end user....

  3. Interaction Patterns in the Extended Classroom via Satellite Technology in the Australian Outback.

    Science.gov (United States)

    Wallace, Andrew R.; Boylan, Colin R.

    This paper reports on research with a group of students in grades 3 and 4 who live on isolated grazing homesteads in the Australian desert in western New South Wales. The paper examines an alternative mode of delivery involving the application of satellite-based systems to provide a teaching-learning environment for these students. The trial of a…

  4. Photovoltaic solar array technology required for three wide scale generating systems for terrestrial applications: rooftop, solar farm, and satellite

    Science.gov (United States)

    Berman, P. A.

    1972-01-01

    Three major options for wide-scale generation of photovoltaic energy for terrestrial use are considered: (1) rooftop array, (2) solar farm, and (3) satellite station. The rooftop array would use solar cell arrays on the roofs of residential or commercial buildings; the solar farm would consist of large ground-based arrays, probably in arid areas with high insolation; and the satellite station would consist of an orbiting solar array, many square kilometers in area. The technology advancement requirements necessary for each option are discussed, including cost reduction of solar cells and arrays, weight reduction, resistance to environmental factors, reliability, and fabrication capability, including the availability of raw materials. The majority of the technology advancement requirements are applicable to all three options, making possible a flexible basic approach regardless of the options that may eventually be chosen. No conclusions are drawn as to which option is most advantageous, since the feasibility of each option depends on the success achieved in the technology advancement requirements specified.

  5. Spacecraft charging investigation for the CTS project. [electric insulator surface tests by electron bombardment for Communications Technology Satellite

    Science.gov (United States)

    Stevens, N. J.; Lovell, R. R.; Gore, V.

    1975-01-01

    Results to date are presented for a program of analytical and experimental investigations to assess the impact of discharge pulses from spacecraft surfaces in the joint Canadian-American Communications Technology Satellite (CTS). All insulator surfaces tested experienced visible discharges when subjected to an electron beam with energy greater than 10 keV. Discharge rate was found to be a function of current flux. The deployable solar array sample experienced discharges under bombardment from the cell or kapton side. There was no measurable cell performance degradation due to the discharges.

  6. Technology transfer to Africa: constraints for CDM operations

    International Nuclear Information System (INIS)

    Karani, Patrick

    2002-01-01

    It is practically difficult to design, implement and manage Clean Development Mechanism (CDM) projects in Africa without a provision for capacity building that will enable the application of modern technologies and techniques. Existing institutions need strengthening, human capacity needs to be developed and new markets need to be promoted. The author outlines institutional and market constraints in relation to technology transfer (e.g renewable energy technologies) and development in Africa. (Author)

  7. Operational surface currents derived from satellite altimeters and scatterometers; Pilot Study for the Tropical Pacific

    Science.gov (United States)

    Lagerloef, G.

    1 and diagnose model errors. Another immediate application of these data relates to fisheries management and ma- rine wildlife research in the region. Movements of several species of sea turtle in the tropical region are being tracked by satellite with System Argos. Results show that some turtle tracks follow meandering portions of the North Equatorial Current and North Equatorial Counter Current. The surface current data allow researchers to exam- ine the oceanography of the habitat these turtles are using, for example, and evaluate to what extent they are using the equatorial currents and regions of surface convergence. Findings indicate that different species/stocks use different habitats. Some forage at or near the surface at convergences and others forage sub-surface away from currents (Polovina et al., 2002). References: Bonjean, F. and G.S.E. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the Tropical Pacific Ocean, J. Phys. Oceanogr., In press. Lagerloef,G.S.E., G.Mitchum, R.Lukas and P.Niiler, 1999: Tropical Pacific near sur- face currents estimated from altimeter, wind and drifter data, J. Geophys. Res., 104, 23,313-23,326. Polovina, J. J., G. H. Balazs, E. A Howell, D. M. Parker, M. P. Seki, and P. H. Dutton, 2002. Forage and migration habitat of loggerhead (Caretta caretta) and olive ridley (Lepidochelys olivacea) sea turtles in the central North Pacific Ocean. Fish. Oceanogr., In Review.

  8. A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa.

    Science.gov (United States)

    Maidment, Ross I; Grimes, David; Black, Emily; Tarnavsky, Elena; Young, Matthew; Greatrex, Helen; Allan, Richard P; Stein, Thorwald; Nkonde, Edson; Senkunda, Samuel; Alcántara, Edgar Misael Uribe

    2017-05-23

    Rainfall information is essential for many applications in developing countries, and yet, continually updated information at fine temporal and spatial scales is lacking. In Africa, rainfall monitoring is particularly important given the close relationship between climate and livelihoods. To address this information gap, this paper describes two versions (v2.0 and v3.0) of the TAMSAT daily rainfall dataset based on high-resolution thermal-infrared observations, available from 1983 to the present. The datasets are based on the disaggregation of 10-day (v2.0) and 5-day (v3.0) total TAMSAT rainfall estimates to a daily time-step using daily cold cloud duration. This approach provides temporally consistent historic and near-real time daily rainfall information for all of Africa. The estimates have been evaluated using ground-based observations from five countries with contrasting rainfall climates (Mozambique, Niger, Nigeria, Uganda, and Zambia) and compared to other satellite-based rainfall estimates. The results indicate that both versions of the TAMSAT daily estimates reliably detects rainy days, but have less skill in capturing rainfall amount-results that are comparable to the other datasets.

  9. Advanced Multimission Operations Systems Tech (AMMOS) Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — AMMOS Technology tasks include: - Enhance mission planning and sequence generation tools with constraint based automated planning and scheduling techniques to enable...

  10. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX XX) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nassar (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting and associated Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop convene yearly to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom)industry, academia, and government with an interest in space-ground radio wave propagation have peer discussion of work in progress, disseminate propagation results, and interact with the satcom industry. NAPEX XX, in Fairbanks, Alaska, June 4-5, 1996, had three sessions: (1) "ACTS Propagation Study: Background, Objectives, and Outcomes," covered results from thirteen station-years of Ka-band experiments; (2) "Propagation Studies for Mobile and Personal Satellite Applications," provided the latest developments in measurement, modeling, and dissemination of propagation phenomena of interest to the mobile, personal, and aeronautical satcom industry; and (3)"Propagation Research Topics," covered a range of topics including space/ground optical propagation experiments, propagation databases, the NASA Propagation Web Site, and revision plans for the NASA propagation effects handbooks. The ACTS Miniworkshop, June 6, 1996, covered ACTS status, engineering support for ACTS propagation terminals, and the ACTS Propagation Data Center. A plenary session made specific recommendations for the future direction of the program.

  11. Wi-Fi and satellite-based location techniques for intelligent agricultural machinery controlled by a human operator.

    Science.gov (United States)

    Drenjanac, Domagoj; Tomic, Slobodanka; Agüera, Juan; Perez-Ruiz, Manuel

    2014-10-22

    In the new agricultural scenarios, the interaction between autonomous tractors and a human operator is important when they jointly perform a task. Obtaining and exchanging accurate localization information between autonomous tractors and the human operator, working as a team, is a critical to maintaining safety, synchronization, and efficiency during the execution of a mission. An advanced localization system for both entities involved in the joint work, i.e., the autonomous tractors and the human operator, provides a basis for meeting the task requirements. In this paper, different localization techniques for a human operator and an autonomous tractor in a field environment were tested. First, we compared the localization performances of two global navigation satellite systems' (GNSS) receivers carried by the human operator: (1) an internal GNSS receiver built into a handheld device; and (2) an external DGNSS receiver with centimeter-level accuracy. To investigate autonomous tractor localization, a real-time kinematic (RTK)-based localization system installed on autonomous tractor developed for agricultural applications was evaluated. Finally, a hybrid localization approach, which combines distance estimates obtained using a wireless scheme with the position of an autonomous tractor obtained using an RTK-GNSS system, is proposed. The hybrid solution is intended for user localization in unstructured environments in which the GNSS signal is obstructed. The hybrid localization approach has two components: (1) a localization algorithm based on the received signal strength indication (RSSI) from the wireless environment; and (2) the acquisition of the tractor RTK coordinates when the human operator is near the tractor. In five RSSI tests, the best result achieved was an average localization error of 4 m. In tests of real-time position correction between rows, RMS error of 2.4 cm demonstrated that the passes were straight, as was desired for the autonomous tractor. From

  12. Professionalising the asphalt construction process: aligning information technologies, operators' knowledge and laboratory practices

    NARCIS (Netherlands)

    Bijleveld, Frank

    2015-01-01

    This research addresses the need to professionalise the asphalt construction process. A distinctive action research strategy is designed and carried out to progressively improve operational strategies of asphalt teams from technological, human (operator) and laboratory perspectives. Using

  13. Using virtual reality technology to include field operators in simulation and training

    International Nuclear Information System (INIS)

    Nystad, E.; Strand, S.

    2006-01-01

    By using virtual reality technology, field operators can be included in simulator training. A study has been performed where field operators could perform their activities in a virtual plant and communicate with a control room operator who was placed in a physical control room simulator. This paper describes the use of VR technology in the study and how the operators experienced interacting with the virtual plant. (author)

  14. Information Technology: Opportunities for Improving Acquisitions and Operations

    Science.gov (United States)

    2017-04-01

    acquisitions using agile development processes.26 One participant noted that, in her experience, the government may not explore all procurement...United States Government Accountability Office Highlights of GAO-17-251SP, a GAO forum April 2017 INFORMATION TECHNOLOGY Opportunities... government leadership. They identified key actions related to the following topics: strengthening the Federal Information Technology Acquisition Reform Act

  15. The Next Step: Managing Your District's Technology Operations.

    Science.gov (United States)

    Pereus, Stephen C.

    2001-01-01

    Discusses benefits and especially risks involved with educational technology: unexpected costs; possible negative effects on student achievement; legal, ethical, and security issues; and resistance to change. Success ensues from providing leadership and vision, updating technology planning, evaluating alternatives, setting standards, involving…

  16. Definition of multipath/RFI experiments for orbital testing with a small applications technology satellite

    Science.gov (United States)

    Birch, J. N.; French, R. H.

    1972-01-01

    An investigation was made to define experiments for collection of RFI and multipath data for application to a synchronous relay satellite/low orbiting satellite configuration. A survey of analytical models of the multipath signal was conducted. Data has been gathered concerning the existing RFI and other noise sources in various bands at VHF and UHF. Additionally, designs are presented for equipment to combat the effects of RFI and multipath: an adaptive delta mod voice system, a forward error control coder/decoder, a PN transmission system, and a wideband FM system. The performance of these systems was then evaluated. Techniques are discussed for measuring multipath and RFI. Finally, recommended data collection experiments are presented. An extensive tabulation is included of theoretical predictions of the amount of signal reflected from a rough, spherical earth.

  17. New progress of ranging technology at Wuhan Satellite Laser Ranging Station

    Science.gov (United States)

    Xia, Zhiz-Hong; Ye, Wen-Wei; Cai, Qing-Fu

    1993-01-01

    A satellite laser ranging system with an accuracy of the level of centimeter has been successfully developed at the Institute of Seismology, State Seismological Bureau with the cooperation of the Institute of Geodesy and Geophysics, Chinese Academy of Science. With significant improvements on the base of the second generation SLR system developed in 1985, ranging accuracy of the new system has been upgraded from 15 cm to 3-4 cm. Measuring range has also been expanded, so that the ETALON satellite with an orbit height of 20,000 km launched by the former U.S.S.R. can now be tracked. Compared with the 2nd generation SLR system, the newly developed system has the following improvements. A Q modulated laser is replaced by a mode-locked YAG laser. The new device has a pulse width of 150 ps and a repetition rate of 1-4 pps. A quick response photomultiplier has been adopted as the receiver for echo; for example, the adoption of the MCP tube has obviously reduced the jitter error of the transit time and has improved the ranging accuracy. The whole system is controlled by an IBM PC/XT Computer to guide automatic tracking and measurement. It can carry out these functions for satellite orbit calculation, real-time tracking and adjusting, data acquisition and the preprocessed of observing data, etc. The automatization level and reliability of the observation have obviously improved.

  18. Weekly Glacier Flow Estimation from Dense Satellite Time Series Using Adapted Optical Flow Technology

    Directory of Open Access Journals (Sweden)

    Bas Altena

    2017-06-01

    Full Text Available Contemporary optical remote sensing satellites or constellations of satellites can acquire imagery at sub-weekly or even daily timescales. These systems have the potential to facilitate intra-seasonal, short-term surface velocity variations across a range of ice masses. Current techniques for displacement estimation are based on matching image pairs with sufficient displacement and/or preservation of the surface over time and consequently, do not benefit from an increase in satellite revisit times. Here, we explore an approach that is fundamentally different from image correlation or similar approaches and engages the concept of optical flow. Our goal is to assess whether this technique could overcome the limitations of image matching and yield new insights in glacier flow dynamics. We implement two different methods of optical flow, and test these implementations utilizing the SPOT5 Take5 dataset at two glaciers: Kronebreen, Svalbard and Kaskawulsh Glacier, Yukon. At Kaskawulsh Glacier, we extract intra-seasonal velocity variations that are synchronous with episodes of increased air temperature. Moreover, even for the cloudy dataset of Kronebreen, we can extract spatio-temporal trajectories that correlate well with measured GPS flow paths. Since the underlying concept is simple and computationally efficient due to data-reduction, our optical flow methodology can be rapidly adapted for a range of studies from the investigation of large scale ice sheet dynamics down to the estimation of displacements over small and slow flowing glaciers.

  19. Small satellite product assurance

    Science.gov (United States)

    Demontlivault, J.; Cadelec, Jacques

    1993-01-01

    In order to increase the interest in small satellites, their cost must be reduced; reducing product assurance costs induced by quality requirements is a major objective. For a logical approach, small satellites are classified in three main categories: satellites for experimental operations with a short lifetime, operational satellites manufactured in small mass with long lifetime requirements, operational satellites (long lifetime required), of which only a few models are produced. The various requirements as regards the product assurance are examined for each satellite category: general requirements for space approach, reliability, electronic components, materials and processes, quality assurance, documentation, tests, and management. Ideal product assurance system integrates quality teams and engineering teams.

  20. Aircrew Performance Cutting-Edge Technology: Emerging Human Performance Enhancement Technology Vision in Support of Operational Military Aviation Strategy

    National Research Council Canada - National Science Library

    Belland, Kris M

    2003-01-01

    Using cutting-edge technology to create a human factors advantage in military operations will contribute to success on the battlefield of the future whether below the surface, on the surface, in the air, or in space...

  1. Accumulation of operational history through emulation test to meet proven technology requirement for newly developed I and C technology

    International Nuclear Information System (INIS)

    Yeong Cheol, Shin; Sung Kon, Kang; Han Seong, Son

    2006-01-01

    As new advanced digital I and C technology with potential benefits of higher functionality and better cost effectiveness is available in the market, NPP (Nuclear Power Plant) operators are inclined to use the new technology for the construction of new plant and the upgrade of existing plants. However, this new technology poses risks to the NPP operators at the same time. These risks are mainly due to the poor reliability of newly developed technology. KHNP's past experiences with the new equipment shows many cases of reliability problems. And their consequences include unintended plant trips, lowered acceptance of the new digital technology by the plant I and C maintenance crew, and increased licensing burden in answering for questions from the nuclear regulatory body. Considering the fact that the risk of these failures in the nuclear plant operation is far greater than those in other industry, nuclear power plant operators want proven technology for I and C systems. This paper presents an approach for the emulation of operational history through which a newly developed technology becomes a proven technology. One of the essential elements of this approach is the feedback scheme of running the new equipment in emulated environment, gathering equipment failure, and correcting the design(and test bed). The emulation of environment includes normal and abnormal events of the new equipment such as reconfiguration of control system due to power failure, plant operation including full spectrum of credible scenarios in an NPP. Emulation of I and C equipment execution mode includes normal operation, initialization and termination, abnormal operation, hardware maintenance and maintenance of algorithm/software. Plant specific simulator is used to create complete profile of plant operational conditions that I and C equipment is to experience in the real plant. Virtual operating crew technology is developed to run the simulator scenarios without involvement of actual operators

  2. MODERN TECHNOLOGIES IN THE AIRCRAFT MAINTENANCE ORGANIZATIONS OPERATION

    Directory of Open Access Journals (Sweden)

    L. O. Marasanov

    2014-01-01

    Full Text Available Work is devoted to the development of information management system for maintenance and repair, using telecommunication technologies to ensure the completeness, accuracy, continuity and timeliness required in the maintenance and repair information.

  3. Energy Technology Initiatives 2013. Implementation through Multilateral Co-operation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    Ensuring energy security and addressing climate change cost-effectively are key global challenges. Tackling these issues will require efforts from stakeholders worldwide. To find solutions, the public and private sectors must work together, sharing burdens and resources, while at the same time multiplying results and outcomes. Through its broad range of multilateral technology initiatives (Implementing Agreements), the IEA enables member and non-member countries, businesses, industries, international organisations and non-governmental organisations to share research on breakthrough technologies, to fill existing research gaps, to build pilot plants and to carry out deployment or demonstration programmes across the energy sector. This publication highlights the most significant recent achievements of the IEA Implementing Agreements. At the core of the IEA energy technology network, these initiatives are a fundamental building block for facilitating the entry of new and improved energy technologies into the marketplace.

  4. Semiconductor terahertz technology devices and systems at room temperature operation

    CERN Document Server

    Carpintero, G; Hartnagel, H; Preu, S; Raisanen, A

    2015-01-01

    Key advances in Semiconductor Terahertz (THz) Technology now promises important new applications enabling scientists and engineers to overcome the challenges of accessing the so-called "terahertz gap".  This pioneering reference explains the fundamental methods and surveys innovative techniques in the generation, detection and processing of THz waves with solid-state devices, as well as illustrating their potential applications in security and telecommunications, among other fields. With contributions from leading experts, Semiconductor Terahertz Technology: Devices and Systems at Room Tempe

  5. 78 FR 8587 - Thomson Reuters, Finance Operations & Technology Division, Including On-Site Leased Workers From...

    Science.gov (United States)

    2013-02-06

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-81,755] Thomson Reuters, Finance... of Thomson Reuters, Finance Operations & Technology Division, including on-site leased workers from... administrative services. New findings show that workers of Thomson Reuters, Finance Operations & Technology...

  6. Effects of supervisory train control technology on operator attention.

    Science.gov (United States)

    2005-07-31

    This report describes an experiment evaluating the effects of supervisory control automation on attention allocation while operating : a train. The study compared two levels of supervisory control (partial and full) to manual control, in terms of how...

  7. Operation technology of air treatment system in nuclear facilities

    CERN Document Server

    Chun, Y B; Hwong, Y H; Lee, H K; Min, D K; Park, K J; Uom, S H; Yang, S Y

    2001-01-01

    Effective operation techniques were reviewed on the air treatment system to protect the personnel in nuclear facilities from the contamination of radio-active particles and to keep the environment clear. Nuclear air treatment system consisted of the ventilation and filtering system was characterized by some test. Measurement of air velocity of blowing/exhaust fan in the ventilation system, leak tests of HEPA filters in the filtering, and measurement of pressure difference between the areas defined by radiation level were conducted. The results acquired form the measurements were reflected directly for the operation of air treatment. In the abnormal state of virus parts of devices composted of the system, the repairing method, maintenance and performance test were also employed in operating effectively the air treatment system. These measuring results and techniques can be available to the operation of air treatment system of PIEF as well as the other nuclear facilities in KAERI.

  8. Safety Enhancement Technologies for Airport Ramp Area Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has been involved in developing advanced automation systems for improving the efficiency of air-traffic operations, reducing controller workload and enhancing...

  9. Annual meeting on nuclear technology 1980. Technical meeting: Operating experiences

    International Nuclear Information System (INIS)

    1980-01-01

    In addition to general experiences, experiences in reactor operation with relation to the Phenix reactor, KNK-2 reactor, the AVR reactor, the BWR-type KKI-reactor, the Philippsburg-1 reactor and the Obrigheim reactor are described. (DG) [de

  10. Improving operational flood ensemble prediction by the assimilation of satellite soil moisture: comparison between lumped and semi-distributed schemes

    Science.gov (United States)

    Alvarez-Garreton, C.; Ryu, D.; Western, A. W.; Su, C.-H.; Crow, W. T.; Robertson, D. E.; Leahy, C.

    2015-04-01

    Assimilation of remotely sensed soil moisture data (SM-DA) to correct soil water stores of rainfall-runoff models has shown skill in improving streamflow prediction. In the case of large and sparsely monitored catchments, SM-DA is a particularly attractive tool. Within this context, we assimilate satellite soil moisture (SM) retrievals from the Advanced Microwave Scanning Radiometer (AMSR-E), the Advanced Scatterometer (ASCAT) and the Soil Moisture and Ocean Salinity (SMOS) instrument, using an Ensemble Kalman filter to improve operational flood prediction within a large (> 40 000 km2) semi-arid catchment in Australia. We assess the importance of accounting for channel routing and the spatial distribution of forcing data by applying SM-DA to a lumped and a semi-distributed scheme of the probability distributed model (PDM). Our scheme also accounts for model error representation by explicitly correcting bias in soil moisture and streamflow in the ensemble generation process, and for seasonal biases and errors in the satellite data. Before assimilation, the semi-distributed model provided a more accurate streamflow prediction (Nash-Sutcliffe efficiency, NSE = 0.77) than the lumped model (NSE = 0.67) at the catchment outlet. However, this did not ensure good performance at the "ungauged" inner catchments (two of them with NSE below 0.3). After SM-DA, the streamflow ensemble prediction at the outlet was improved in both the lumped and the semi-distributed schemes: the root mean square error of the ensemble was reduced by 22 and 24%, respectively; the false alarm ratio was reduced by 9% in both cases; the peak volume error was reduced by 58 and 1%, respectively; the ensemble skill was improved (evidenced by 12 and 13% reductions in the continuous ranked probability scores, respectively); and the ensemble reliability was increased in both cases (expressed by flatter rank histograms). SM-DA did not improve NSE. Our findings imply that even when rainfall is the main driver

  11. Communication Technologies Support to Railway Infrastructure and Operations

    DEFF Research Database (Denmark)

    Sniady, Aleksander

    technology. In the research work presented in this thesis, GSM-R technology is analysed and its main shortcomings are identified, namely: lack of capacity, limited data transmission capabilities, and inefficiency in radio resource usage. Due to these significant disadvantages, alternative mobile technologies...... important railway applications: European Train Control System (ETCS) signalling and railway-specific voice communication. Therefore, LTE is technically capable of replacing GSM-R as the communication network for the European Rail Traffic Management System (ERTMS). Moreover, the simulation results show...... availability and reduction of inter-cell handover rate for running trains. It also enables railways to use new high-frequency radio bands, which is not a feasible option in the classical railway radio deployments. Simulation results indicate that the macro/micro architecture offers huge capacity increase...

  12. Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES).

    Science.gov (United States)

    Chudnovsky, Alexandra A; Lee, Hyung Joo; Kostinski, Alex; Kotlov, Tanya; Koutrakis, Petros

    2012-09-01

    Although ground-level PM2.5 (particulate matter with aerodynamic diameter < 2.5 microm) monitoring sites provide accurate measurements, their spatial coverage within a given region is limited and thus often insufficient for exposure and epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate location- and/or subject-specific exposures to PM2.5. In this study, the authors apply a mixed-effects model approach to aerosol optical depth (AOD) retrievals from the Geostationary Operational Environmental Satellite (GOES) to predict PM2.5 concentrations within the New England area of the United States. With this approach, it is possible to control for the inherent day-to-day variability in the AOD-PM2.5 relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles, and ground surface reflectance. The model-predicted PM2.5 mass concentration are highly correlated with the actual observations, R2 = 0.92. Therefore, adjustment for the daily variability in AOD-PM2.5 relationship allows obtaining spatially resolved PM2.5 concentration data that can be of great value to future exposure assessment and epidemiological studies. The authors demonstrated how AOD can be used reliably to predict daily PM2.5 mass concentrations, providing determination of their spatial and temporal variability. Promising results are found by adjusting for daily variability in the AOD-PM2.5 relationship, without the need to account for a wide variety of individual additional parameters. This approach is of a great potential to investigate the associations between subject-specific exposures to PM2.5 and their health effects. Higher 4 x 4-km resolution GOES AOD retrievals comparing with the conventional MODerate resolution Imaging Spectroradiometer (MODIS) 10-km product has the potential to capture PM2.5 variability within the urban domain.

  13. 75 FR 47631 - Swets Information Services, Operations Department, Information Technology Group, Marketing Group...

    Science.gov (United States)

    2010-08-06

    ... Services, Operations Department, Information Technology Group, Marketing Group, Finance Group, Runnemede..., Information Technology (IT) Group, Marketing Group and the Finance Group into one entity instead of... Technology Group, Marketing Group, and Finance Group, Runnemede, New Jersey, who became totally or partially...

  14. Test results and in-orbit operation of the Infrared Astronomical Satellite circumvention circuit

    Science.gov (United States)

    Long, E. C.; Langford, D.

    1984-01-01

    The IRAS circumvention circuit (CC) eliminates the unwanted charged-particle pulses from the IR signal. The operation of the CC along with preflight and in-orbit testing is described. Ground testing of the brassboard circuit using a simulated preamplifier output showed that the CC would perform the circumvention function as designed. When all flight detectors and preamplifiers became available, the CC was tested using a gamma source to simulate charged-particle sources; with the low energy deposited in the detectors (20 keV average) the noise was reduced by up to 5 times with the CC turned on. In-orbit results show that the CC decreases the unwanted charged-particle background noise by up to two orders of magnitude. The difference in the results with the CC on and off is so great that the science team has recommended that no data be taken with the CC off.

  15. TECHNOLOGICAL PROCESS MODELING AIMING TO IMPROVE ITS OPERATIONS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Ivan Mihajlović

    2011-11-01

    Full Text Available This paper presents the modeling procedure of one real technological system. In this study, thecopper extraction from the copper flotation waste generated at the Bor Copper Mine (Serbia, werethe object of modeling. Sufficient data base for statistical modeling was constructed using theorthogonal factorial design of the experiments. Mathematical model of investigated system wasdeveloped using the combination of linear and multiple linear statistical analysis approach. Thepurpose of such a model is obtaining optimal states of the system that enable efficient operationsmanagement. Besides technological and economical, ecological parameters of the process wereconsidered as crucial input variables.

  16. New satellite systems for obtaining data for Geographic information systems

    Directory of Open Access Journals (Sweden)

    Miroslav Šimčák

    2006-09-01

    Full Text Available Galileo will be the European global navigation satellite system, providing a highly accurate and a guaranteed global positioning service under the civilian control. It will be inter-operable with GPS and GLONASS, two other global satellite navigation systems. The satellite navigation users in Europe today have take their positions from the US GPS or from the Russian GLONASS satellites. Yet, the military operators of both systems give no guarantee to maintain an uninterrupted service. The main object of this paper is to introduce a new technology of obtaining data for the GIS.

  17. Development of thunderstorm monitoring technologies and algorithms by integration of radar, sensors, and satellite images

    Science.gov (United States)

    Adzhieva, Aida A.; Shapovalov, Vitaliy A.; Boldyreff, Anton S.

    2017-10-01

    In the context of rising the frequency of natural disasters and catastrophes humanity has to develop methods and tools to ensure safe living conditions. Effectiveness of preventive measures greatly depends on quality and lead time of the forecast of disastrous natural phenomena, which is based on the amount of knowledge about natural hazards, their causes, manifestations, and impact. To prevent them it is necessary to get complete and comprehensive information about the extent of spread and severity of natural processes that can act within a defined territory. For these purposes the High Mountain Geophysical Institute developed the automated workplace for mining, analysis and archiving of radar, satellite, lightning sensors information and terrestrial (automatic weather station) weather data. The combination and aggregation of data from different sources of meteorological data provides a more informativity of the system. Satellite data shows the global cloud region in visible and infrared ranges, but have an uncertainty in terms of weather events and large time interval between the two periods of measurements, which complicates the use of this information for very short range forecasts of weather phenomena. Radar and lightning sensors data provide the detection of weather phenomena and their localization on the background of the global pattern of cloudiness in the region and have a low period measurement of atmospheric phenomena (hail, thunderstorms, showers, squalls, tornadoes). The authors have developed the improved algorithms for recognition of dangerous weather phenomena, based on the complex analysis of incoming information using the mathematical apparatus of pattern recognition.

  18. Financial evaluation of the integration of satellite technology for snow cover measurements at a hydroelectric plant. (Utilization of Radarsat I in the La Grande river basin, Quebec)

    International Nuclear Information System (INIS)

    Martin, D.; Bernier, M.; Sasseville, J.L.; Charbonneau, R.

    1999-01-01

    The emergence, on the markets, of new technologies evokes, for the potential users, a lot of questions concerning the implementation and operation costs associated with these technologies. Nevertheless, for a lot of users, costs should be considered with the benefits these technologies are able to generate. The benefit-cost analysis is a useful tool for a financial evaluation of the transferability of the technology. This method has been selected to evaluate the eventual implementation of remote sensing technologies for snow cover measurements in the La Grande river basin (Quebec, Canada). Indeed, a better assessment of the snow water equivalent leads to a better forecasting of the water inputs due to the snowmelt. Thus, the improvement of the snow cover monitoring has direct impact on hydroelectric reservoir management. The benefit-cost analysis was used to compare three acquisition modes of the satellite Radarsat 1 (ScanSAR, Wide and Standard). The costs considered for this project are: R and D costs and operations costs (the purchase of images and costs of ground truth measurements). We evaluated the raw benefits on the basis of reducing the standard deviation of predicted inflows. The results show that the ScanSAR mode is the primary remote sensing tool for the monitoring of the snow cover, on an operational basis. With this acquisition mode, the benefit-cost ratios range between 2.3:1 and 3.9:1, using a conservative 4% reduction of the standard deviation. Even if the reduction is only 3%, ScanSAR remains profitable. Due to the large number of images needed to cover all the territory, the Standard and Wide modes are penalized by the purchase and the processing costs of the data and with delays associated to the processing. Nevertheless, with these two modes, it could be possible to work with a partial coverage of the watershed, 75% being covered in 4 days in Wide mod. The estimated B/C ratios (1.5:1 and 2:1) confirm the advantages of this alternative

  19. Utilization of Virtual Server Technology in Mission Operations

    Science.gov (United States)

    Felton, Larry; Lankford, Kimberly; Pitts, R. Lee; Pruitt, Robert W.

    2010-01-01

    Virtualization provides the opportunity to continue to do "more with less"---more computing power with fewer physical boxes, thus reducing the overall hardware footprint, power and cooling requirements, software licenses, and their associated costs. This paper explores the tremendous advantages and any disadvantages of virtualization in all of the environments associated with software and systems development to operations flow. It includes the use and benefits of the Intelligent Platform Management Interface (IPMI) specification, and identifies lessons learned concerning hardware and network configurations. Using the Huntsville Operations Support Center (HOSC) at NASA Marshall Space Flight Center as an example, we demonstrate that deploying virtualized servers as a means of managing computing resources is applicable and beneficial to many areas of application, up to and including flight operations.

  20. VAS operational procedures and results at the Kansas City Satellite Field Services Station

    Science.gov (United States)

    Heckman, B.; Carle, W.; Anthony, R.

    1983-01-01

    An operational assessment of VAS data by using a Man-computer Interactive Data Access System (McIDAS) terminal linked by a 9600 band telephone line is discussed. Seven hours of VAS data were processed and edited daily. Data was scheduled 16 hours a day, 7 days a week; however, during this time period there were very few days with 16 hours of data to evalute. The McIDAS terminal, which has 10 display frames and 5 graphics, provide access to the sounding data processed. These data are processed using two procedures. The dwell sounding data are generated by using all 12 spectral channels with a spin budget of 39. To provide coverage for most of the United States, soundings are made starting at 18 minutes after the hour from approximately 49 deg N to 36 deg N and at 48 minutes after the hour from 36 deg N to 26 deg N. The dwell imaging mode uses 11 channels but the spin budge is 17. With the reduced spin budget, retrievals can be made at 18 or 48 minutes after the hour for approximately 44 deg N to 27 deg N. With these constraints a schedule, of data sets was proposed to use the schedule and how the data set could be used are shown.

  1. Technological Innovation: Roles and Implications in Army Aviations Special Operations

    Science.gov (United States)

    2008-12-01

    Operation Gothic Serpent in Somalia is probably one of the more well known operations conducted by the 160th. Conducted in October 1993, the 160th was...comes in the form of the Direct Action Penetrator (DAP). The DAP is a modified MH-60 Black Hawk that has been outfitted with various different types...of weapons including 2.75 folding- fin aerial rockets, a 30mm chain gun, and a .50 caliber Gatlin gun.45 The idea for arming the Black Hawk is

  2. The operation technology of realtime image processing system (Datacube)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Lee, Yong Bum; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Park, Jin Seok

    1997-02-01

    In this project, a Sparc VME-based MaxSparc system, running the solaris operating environment, is selected as the dedicated image processing hardware for robot vision applications. In this report, the operation of Datacube maxSparc system, which is high performance realtime image processing hardware, is systematized. And image flow example programs for running MaxSparc system are studied and analyzed. The state-of-the-arts of Datacube system utilizations are studied and analyzed. For the next phase, advanced realtime image processing platform for robot vision application is going to be developed. (author). 19 refs., 71 figs., 11 tabs.

  3. Cibola flight experiment satellite

    Science.gov (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart

    2004-11-01

    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  4. Satellite-based drought monitoring in Kenya in an operational setting

    Science.gov (United States)

    Klisch, A.; Atzberger, C.; Luminari, L.

    2015-04-01

    The University of Natural Resources and Life Sciences (BOKU) in Vienna (Austria) in cooperation with the National Drought Management Authority (NDMA) in Nairobi (Kenya) has setup an operational processing chain for mapping drought occurrence and strength for the territory of Kenya using the Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI at 250 m ground resolution from 2000 onwards. The processing chain employs a modified Whittaker smoother providing consistent NDVI "Mondayimages" in near real-time (NRT) at a 7-daily updating interval. The approach constrains temporally extrapolated NDVI values based on reasonable temporal NDVI paths. Contrary to other competing approaches, the processing chain provides a modelled uncertainty range for each pixel and time step. The uncertainties are calculated by a hindcast analysis of the NRT products against an "optimum" filtering. To detect droughts, the vegetation condition index (VCI) is calculated at pixel level and is spatially aggregated to administrative units. Starting from weekly temporal resolution, the indicator is also aggregated for 1- and 3-monthly intervals considering available uncertainty information. Analysts at NDMA use the spatially/temporally aggregated VCI and basic image products for their monthly bulletins. Based on the provided bio-physical indicators as well as a number of socio-economic indicators, contingency funds are released by NDMA to sustain counties in drought conditions. The paper shows the successful application of the products within NDMA by providing a retrospective analysis applied to droughts in 2006, 2009 and 2011. Some comparisons with alternative products (e.g. FEWS NET, the Famine Early Warning Systems Network) highlight main differences.

  5. Information Technology In Supply Chain Operations: A Road Map ...

    African Journals Online (AJOL)

    A five phase model and seven-step practical plan are proposed after careful evaluation of critical success factors, the role of IT in SCM and the overall benefits which can result in successful application of IT to SC operations. The paper concludes by stressing that connecting numerous information systems and integrating ...

  6. Use of Information Communication Technology (ICT) and Library Operation: An Overview

    OpenAIRE

    Bhoi, Narendra Kumar

    2017-01-01

    This paper discusses the different dimension of the ICTs. It gives an awareness of technology in library and why there is a need to understand the use of ICT in the library for rendering enhanced library services and information to users. The current study highlights the areas where ICT can be applied. Basically, the paper explains different technologies and their use in the library operation. How library services are prompted with the use of technology like RemoteXs, RFID Technology, QR Code...

  7. To implement new technologies for efficient reactor operations: the other challenge for a 60 year long operational period

    International Nuclear Information System (INIS)

    Scherrer, B.

    2010-01-01

    EDF,as an operator of nuclear power plants, is upgrading its practices and methods by integrating the latest progress in information technologies through a series of innovative projects. For instance a new technology is developed and it will soon allows information to be passed from one system to another system while keeping a level of no-intrusion security almost as high as a physical isolation of the 2 systems. This new technology will open the way for virtual reality, interactive graphs, wireless sensors, wireless communication to be broadly used without jeopardizing safety and security. (A.C.)

  8. Meteorological satellite accomplishments

    Science.gov (United States)

    Allison, L. J.; Arking, A.; Bandeen, W. R.; Shenk, W. E.; Wexler, R.

    1975-01-01

    Meteorological satellites include experimental satellites operated by NASA and operational satellites operated by the National Oceanic and Atmospheric Administration (NOAA). The operational system currently provides pictures of the entire globe, temperature measurements throughout the world, and wind measurements in selected parts of the Atlantic and Pacific oceans. Aspects of vertical sounding are discussed along with questions of parameter extraction technique development, macroscale phenomena, the heat budget of the earth-atmosphere system and the climate, and studies of ocean surface and hydrology.

  9. In-operation inspection technology development-4 ''development of degradation prediction technology for motor-operated valves''

    Energy Technology Data Exchange (ETDEWEB)

    Kikuo, Takeshima; Yuichi, Higashikawa [Hitachi Engineering and Production Div., Nuclear Systems Div., Hitachi, Ltd., Ibaraki (Japan); Masahiro, Koike [Power and Industrial Systems R and D Lab., Hitachi, Ltd., (Japan); Kenji, Matsumoto [Tokyo Research and Development Center, Japan Power Engineering and Inspection Corp. (Japan); Eiji, O' shima [Tokyo Institute of Technology (Japan)

    2001-07-01

    A method for degradation predicting technology has been proposed for motor operated valves in nuclear power plants which is based on the concept of condition monitoring for maintenance. This method (degradation prediction technology) eliminates the unnecessary overhaul of valves and realizes high reliability and economy. The degradation mechanism was clarified by long time heating experiments of gasket and gland packing and the wear test for them and stem nut to research valve parts degradation by stress (pressure, temperature, etc) during plant operation. Effective electric power measurements for motor operated valves were confirmed to be useful discovering valve part failures. The motor operated valve degradation prediction system was developed on the basis of the experiment results and mechanism. The system is able to predict the degradation of valve parts (gasket/gland packing, stem, stem nut, etc) utilizing plant data (pressure, temperature, etc) and effective power of the motor. The life of valve parts can be estimated from the experimental results. (authors)

  10. Small satellites and their regulation

    CERN Document Server

    Jakhu, Ram S

    2014-01-01

    Since the launch of UoSat-1 of the University of Surrey (United Kingdom) in 1981, small satellites proved regularly to be useful, beneficial, and cost-effective tools. Typical tasks cover education and workforce development, technology demonstration, verification and validation, scientific and engineering research as well as commercial applications. Today the launch masses range over almost three orders of magnitude starting at less than a kilogram up to a few hundred kilograms, with budgets of less than US$ 100.00 and up to millions within very short timeframes of sometimes less than two years. Therefore each category of small satellites provides specific challenges in design, development and operations. Small satellites offer great potentials to gain responsive, low-cost access to space within a short timeframe for institutions, companies, regions and countries beyond the traditional big players in the space arena. For these reasons (particularly the low cost of construction, launch and operation), small (m...

  11. Nursing in a technological environment: nursing care in the operating room.

    Science.gov (United States)

    Bull, Rosalind; FitzGerald, Mary

    2006-02-01

    Operating room nurses continue to draw criticism regarding the appropriateness of a nursing presence in the operating room. The technological focus of the theatre and the ways in which nurses in the theatre have shaped and reshaped their practice in response to technological change have caused people within and outside the nursing profession to question whether operating room nursing is a technological rather than nursing undertaking. This paper reports findings from an ethnographic study that was conducted in an Australian operating department. The study examined the contribution of nurses to the work of the operating room through intensive observation and ethnographic interviews. This paper uses selected findings from the study to explore the ways in which nurses in theatre interpret their role in terms of caring in a technological environment.

  12. Nano-Satellite Avionics

    Science.gov (United States)

    Culver, Harry

    1999-01-01

    Abstract NASA's Goddard Space Flight Center (GSFC) is currently developing a new class of satellites called the nano-satellite (nano-sat). A major objective of this development effort is to provide the technology required to enable a constellation of tens to hundreds of nano-satellites to make both remote and in-situ measurements from space. The Nano-sat will be a spacecraft weighing a maximum of 10 kg, including the propellant mass, and producing at least 5 Watts of power to operate the spacecraft. The electronics are required to survive a total radiation dose rate of 100 krads for a mission lifetime of two years. There are many unique challenges that must be met in order to develop the avionics for such a spacecraft. The first challenge is to develop an architecture that will operate on the allotted 5 Watts and meet the diverging requirements of multiple missions. This architecture will need to incorporate a multitude of new advanced microelectronic technologies. The microelectronics developed must be a modular and scalable packaging of technology to solve the problem of developing a solution to both reduce cost and meet the requirements of various missions. This development will utilize the most cost effective approach, whether infusing commercially driven semiconductor devices into spacecraft applications or partnering with industry to design and develop low cost, low power, low mass, and high capacity data processing devices. This paper will discuss the nano-sat architecture and the major technologies that will be developed. The major technologies that will be covered include: (1) Light weight Low Power Electronics Packaging, (2) Radiation Hard/Tolerant, Low Power Processing Platforms, (3) High capacity Low Power Memory Systems (4) Radiation Hard reconfiguragble field programmable gate array (rFPGA)

  13. Iodine Satellite

    Science.gov (United States)

    Kamhawi, Hani; Dankanich, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Iodine Satellite (iSat) spacecraft will be the first CubeSat to demonstrate high change in velocity from a primary propulsion system by using Hall thruster technology and iodine as a propellant. The mission will demonstrate CubeSat maneuverability, including plane change, altitude change and change in its closest approach to Earth to ensure atmospheric reentry in less than 90 days. The mission is planned for launch in fall 2017. Hall thruster technology is a type of electric propulsion. Electric propulsion uses electricity, typically from solar panels, to accelerate the propellant. Electric propulsion can accelerate propellant to 10 times higher velocities than traditional chemical propulsion systems, which significantly increases fuel efficiency. To enable the success of the propulsion subsystem, iSat will also demonstrate power management and thermal control capabilities well beyond the current state-of-the-art for spacecraft of its size. This technology is a viable primary propulsion system that can be used on small satellites ranging from about 22 pounds (10 kilograms) to more than 1,000 pounds (450 kilograms). iSat's fuel efficiency is ten times greater and its propulsion per volume is 100 times greater than current cold-gas systems and three times better than the same system operating on xenon. iSat's iodine propulsion system consists of a 200 watt (W) Hall thruster, a cathode, a tank to store solid iodine, a power processing unit (PPU) and the feed system to supply the iodine. This propulsion system is based on a 200 W Hall thruster developed by Busek Co. Inc., which was previously flown using xenon as the propellant. Several improvements have been made to the original system to include a compact PPU, targeting greater than 80 percent reduction in mass and volume of conventional PPU designs. The cathode technology is planned to enable heaterless cathode conditioning, significantly increasing total system efficiency. The feed system has been designed to

  14. Operator overloading as an enabling technology for automatic differentiation

    International Nuclear Information System (INIS)

    Corliss, G.F.; Griewank, A.

    1993-01-01

    We present an example of the science that is enabled by object-oriented programming techniques. Scientific computation often needs derivatives for solving nonlinear systems such as those arising in many PDE algorithms, optimization, parameter identification, stiff ordinary differential equations, or sensitivity analysis. Automatic differentiation computes derivatives accurately and efficiently by applying the chain rule to each arithmetic operation or elementary function. Operator overloading enables the techniques of either the forward or the reverse mode of automatic differentiation to be applied to real-world scientific problems. We illustrate automatic differentiation with an example drawn from a model of unsaturated flow in a porous medium. The problem arises from planning for the long-term storage of radioactive waste

  15. Advanced Technologies in Safe and Efficient Operating Rooms

    Science.gov (United States)

    2009-02-01

    keratoconus and pellucid marginal degeneration in mean curvature maps. American Journal of Ophthalmology 140(6), 993-1001, 2005. Xiao Y, Seagull JF...every gene is confined to wordlength values that are predefined and feasible for a given design variable. The genetic operators for cross-over and...systems using a genetic algorithm,” IEEE Transactions on Evolutionary Computation, vol. 5, no. 1, pp. 27–40, 2001. [19] C. L. Valenzuela and P. Y

  16. Leveraging information technology to enable network centric engineer reconnaissance operations

    OpenAIRE

    Barton, Keith W.

    2003-01-01

    The Naval Construction Force has traditionally depended on outside sources to obtain and analyze engineering data in contingency situations. The Navy has embarked on an initiative to develop Seabee Engineer Reconnaissance Teams to perform this function, both as a basis for projects slated for in-house construction and as a product to deliver to other organizations. Exercises and operations have thus far shown that the concept is viable, but Seabee Engineer Reconnaissance Teams have encountere...

  17. Support system for loop device operator. Analysis of technological processes

    International Nuclear Information System (INIS)

    Yakovlev, V.V.; Mozhaev, A.A.; Lyadin, A.V.

    1988-01-01

    The paper presents the results obtained from the analysis of controlling the loops of a research reactor. A method of optimized interaction of the operator and hardware of the control system by computeraided identification of the cause of regime violation is considered. The equipment diagnostics based on use of the expert system methods and tuzzy algorithms enables to propose a support system for application in new generation of loops

  18. Mobile System for the Measurement of Dose Rates with locations determined by means of satellite positioning technology

    International Nuclear Information System (INIS)

    Baeza, A.; Rio, L.M. del; Macias, J.A.; Vasco, J.

    1998-01-01

    Our laboratory has been developing and implementing a Real Time Radiological Warning Network around the Almaraz Nuclear Power Plant since 1990. It consists of six gamma dosimetry stations, two devices for the detection of radio-iodines and alpha, beta, and gamma emissions in air, a monitor for the continuous measurement of gamma radiation in water, and two basic meteorological stations. In this context, we have developed a mobile station endowed with a device for the measurement of dose rates which uses satellite positioning technology (GPS) so that it can be located remotely. The information gathered is sent back to our central laboratory in real/or deferred time through the digital mobile telephone network. A twofold utility is foreseen for this station: (a) action in the case of a radiological alert situation detected by our network, and (b) the performance of radiological-dosimetric studies of distant geographical zones. (Author)

  19. Robust adjustment of a geodetic network measured by satellite technology in the Dargovských Hrdinov suburb

    Directory of Open Access Journals (Sweden)

    Slavomír Labant

    2011-12-01

    Full Text Available This article addresses the adjustment of a 3D geodetic network in the Dargovských Hrdinov suburbs using Global Navigation SatelliteSystems (GNSS for the purposes of deformation analysis. The advantage of using the GNSS compared to other terrestrial technology is thatit is not influenced by unpredictability in the ground level atmosphere and individual visibilities between points in the observed network arenot necessary. This article also includes the planning of GNSS observations using Planning Open Source software from Trimble as well assubsequent observations at individual network points. The geodetic network is processing on the basis of the Gauss-Markov model usingthe least square method and robust adjustment. From robust methods, Huber’s Robust M-estimation and Hampel’s Robust M-estimationwere used. Individual adjustments were tested and subsequently the results of analysis were graphically visualised using absolute confidenceellipsoids.

  20. Solar cells: Operating principles, technology, and system applications

    Science.gov (United States)

    Green, M. A.

    Solar cell theory, materials, fabrication, design, modules, and systems are discussed. The solar source of light energy is described and quantified, along with a review of semiconductor properties and the generation, recombination, and the basic equations of photovoltaic device physics. Particular attention is given to p-n junction diodes, including efficiency limits, losses, and measurements. Si solar cell technology is described for the production of solar-quality crystals and wafers, and design, improvements, and device structures are examined. Consideration is given to alternate semiconductor materials and applications in concentrating systems, storage, and the design and construction of stand-alone systems and systems for residential and centralized power generation.

  1. Using tablet technology in operational radiation safety applications.

    Science.gov (United States)

    Phillips, Andrew; Linsley, Mark; Houser, Mike

    2013-11-01

    Tablet computers have become a mainstream product in today's personal, educational, and business worlds. These tablets offer computing power, storage, and a wide range of available products to meet nearly every user need. To take advantage of this new computing technology, a system was developed for the Apple iPad (Apple Inc. 1 Infinite Loop Cupertino, CA 95014) to perform health and safety inspections in the field using editable PDFs and saving them to a database while keeping the process easy and paperless.

  2. An advanced OBP-based payload operating in an asynchronous network for future data relay satellites utilising CCSDS-standard data structures

    Science.gov (United States)

    Grant, M.; Vernucci, A.

    1991-01-01

    A possible Data Relay Satellite System (DRSS) topology and network architecture is introduced. An asynchronous network concept, whereby each link (Inter-orbit, Inter-satellite, Feeder) is allowed to operate on its own clock, without causing loss of information, in conjunction with packet data structures, such as those specified by the CCSDS for advanced orbiting systems is discussed. A matching OBP payload architecture is described, highlighting the advantages provided by the OBP-based concept and then giving some indications on the OBP mass/power requirements.

  3. Overview on technological and operational aspects of PLIM

    International Nuclear Information System (INIS)

    Nevander, Olli; Hytoenen, Yrjoe; Raitanen, Raimo

    2002-01-01

    Full text: Loviisa NPP with two VVER 440 units is owned and operated by Fortum. In year 1997 after the power uprating and relicensing project a comprehensive life management strategy with a target lifetime of 50 years was selected as a key issue for the remaining lifetime. Two licensed fuel suppliers as well as the successful power uprating assist with long-term economy of production. The plant has recently established a life management programme (LMP), which should improve and unify the present programmes and separate ageing projects. The scope of the new LMP of the Loviisa NPP comprises the scientific and analytic research of the ageing phenomena as well as routine repairs and preventive maintenance at the site. On one hand, the work emphasises practical repair and replacement of active components, and, on the other hand, the structural and safety review of the passive nonreplaceable main components as well. The goal of the development is that all maintenance and inspection activities should support plant life management. In general, an effective approach of ageing management of systems, structures and components (SSC) is a mixture of four elements: careful operation and maintenance, replacement strategy, technical modifications of SSCs and mitigation of analysed ageing effects. Therefore, at Loviisa the organisation and functions of LMP are included as far as possible in the normal operating organisation. Thus the practical LMP program includes effective links from operating experiences to the ageing database and also to the long-term decision making. The difficulty in the implementation of the LMP is to apply an adequate and balanced approach through all areas and important components in long-term. Therefore, such assessment tools as cost-benefit analysis and classification of components according to their impact on safety and operation is needed. During the past few years, the most important ageing attributes of main passive components and safety systems of

  4. Industrial hygiene and control technology assessment of ion implantation operations

    International Nuclear Information System (INIS)

    Ungers, L.J.; Jones, J.H.

    1986-01-01

    Ion implantation is a process used to create the functional units (pn junctions) of integrated circuits, photovoltaic (solar) cells and other semiconductor devices. During the process, ions of an impurity or a dopant material are created, accelerated and imbedded in wafers of silicon. Workers responsible for implantation equipment are believed to be at risk from exposure to both chemical (dopant compounds) and physical (ionizing radiation) agents. In an effort to characterize the chemical exposures, monitoring for chemical hazards was conducted near eleven ion implanters at three integrated circuit facilities, while ionizing radiation was monitored near four of these units at two of the facilities. The workplace monitoring suggests that ion implantation operators routinely are exposed to low-level concentrations of dopants. Although the exact nature of dopant compounds released to the work environment was not determined, area and personal samples taken during normal operating activities found concentrations of arsenic, boron and phosphorous below OSHA Permissible Exposure Limits (PELs) for related compounds; area samples collected during implanter maintenance activities suggest that a potential exists for more serious exposures. The results of badge dosimetry monitoring for ionizing radiation indicate that serious exposures are unlikely to occur while engineering controls remain intact. All emissions were detected at levels unlikely to result in exposures above the OSHA standard for the whole body (1.25 rems per calendar quarter). The success of existing controls in preventing worker exposures is discussed. Particular emphasis is given to the differential exposures likely to be experienced by operators and maintenance personnel.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Establishment of computer aided technology for operation, maintenance, and core management

    International Nuclear Information System (INIS)

    Iguchi, Masaki; Isomura, Kazutoshi; Okawa, Tsuyoshi; Sakurai, Naoto

    2003-01-01

    In Fugen, the accumulated know-how of skilled operators, maintenance engineers, and core management engineers have been systematized by using the latest computer technology. These computerized systems have enhanced the technology of operating, maintenance and core management. This report describes the development of a reactor feed water control system with fuzzy logic, a refueling support system, and an automatic refueling planning system. Since operation of reactor feedwater control at low power requires a delicate operational technique and the knowledge and experience of operators, the application of a fuzzy algorithm was deemed effective in Fugen. Its good performance comparable to that of experienced operators can be realized. The fuel-handling operation takes proposed plans, fuel management and efficient operation by skilled operators. AI technology was applied to fuel-handling support system using past operation results and experience of skilled operators. This system is as capable of fuel-handling as skilled operators. Planning an adequate fuel loading pattern is time-consuming even for expert core management engineers. The Automatic Refueling Planning System (ARPS) was developed using Genetic Algorithms (GA) and a Simulated Annealing (SA). It has been verified that long-term fuel loading patterns of the Fugen NPS evaluated by ARPS are equivalent to that of an expert core management engineer. (author)

  6. Reactor technology: power conversion systems and reactor operation and maintenance

    International Nuclear Information System (INIS)

    Powell, J.R.

    1977-01-01

    The use of advanced fuels permits the use of coolants (organic, high pressure helium) that result in power conversion systems with good thermal efficiency and relatively low cost. Water coolant would significantly reduce thermal efficiency, while lithium and salt coolants, which have been proposed for DT reactors, will have comparable power conversion efficiencies, but will probably be significantly more expensive. Helium cooled blankets with direct gas turbine power conversion cycles can also be used with DT reactors, but activation problems will be more severe, and the portion of blanket power in the metallic structure will probably not be available for the direct cycle, because of temperature limitations. A very important potential advantage of advanced fuel reactors over DT fusion reactors is the possibility of easier blanket maintenance and reduced down time for replacement. If unexpected leaks occur, in most cases the leaking circuit can be shut off and a redundant cooling curcuit will take over the thermal load. With the D-He 3 reactor, it appears practical to do this while the reactor is operating, as long as the leak is small enough not to shut down the reactor. Redundancy for Cat-D reactors has not been explored in detail, but appears feasible in principle. The idea of mobile units operating in the reactor chamber for service and maintenance of radioactive elements is explored

  7. [Construction and operation of the wound care technology platform].

    Science.gov (United States)

    Hu, Da-hai; Zhou, Qin; Han, Jun-tao

    2011-08-01

    Chronic wounds are a major healthcare problem costing billions of dollars a year over the world. However, it is regrettable that a large number of chronic wounds are still treated simply by conventional dressing change in local clinics, lacking of definite diagnosis and personalized care. This situation results in a low wound healing rate, unsatisfied life quality of the patients, and higher medical cost for the prolonged promiscuous care. We should not only emphasize the importance of wound care in clinical practice, but also emphasize the importance of establishing wound care centers. With the experience of our practice in wound care center, the construction of wound care technology platform is strongly suggested. This platform could act as an education base to train more professional wound care doctors, nurses, and care workers, as well as resolve many technical difficulties involved in the treatment of many complicated chronic wounds.

  8. Relativistic Gravitational Experiment in the Earth Orbit: Concept, Technology, and Configuration of Satellite Constellation

    Science.gov (United States)

    Barabanov, A. A.; Milyukov, V. K.; Moskatiniev, I. V.; Nesterin, I. M.; Sysoev, V. K.; Yudin, A. D.

    2017-12-01

    An arrangement of the orbital experiment on the measurement of the light propagation delay in the gravitational field of the Earth (Shapiro effect) using laser interferometry based on a cluster of small spacecraft (SC) is proposed. SC layouts, launch technology, and high-precision measurements of their orbital parameters are considered.

  9. Applying technology to operator requirements in medical equipment design.

    Science.gov (United States)

    Woodring, P L

    1986-01-01

    The methodology used by the author consists of the following elements: Expose the design team to the user environment, followed by question and answer periods with users while still in the use environment. Place biomedical engineers in the leading teaching institutions where they will have day-to-day exposure to the use of products similar to the one being designed. Bring biomedical engineers back into the company as part of the design team. Expose concepts to focus groups while the product is in the definition stage. Bring a select group of users into the design review process. Evaluate the ease of use of the device as part of clinical trials. Establish a means of monitoring product performance after the product has been released. How well such a methodology will work in any particular environment is a function of management's recognition of the concept that ease of operator use is a vital element to the overall success of the product.

  10. Technology Solutions Case Study: Hydronic Systems: Designing for Setback Operation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-05-01

    For years, conventional wisdom surrounding space heating has specified two points: size the mechanical systems to the heating loads, and setting the thermostat back at night will result in energy savings. The problem is these two recommendations oppose each other. A system that is properly sized to the heating load will not have the extra capacity necessary to recover from a thermostat setback, especially at design conditions. Properly designing a hydronic system for setback operation can be accomplished but depends on several factors. Determining the appropriateness of setback for a particular project is the first step. This is followed by proper sizing of the boiler and baseboard to ensure the needed capacity can be met. Finally, control settings must be chosen that result in the most efficient and responsive performance. This guide provides step-by-step instructions for heating contractors and hydronic designers for selecting the proper control settings to maximize system performance and improve response time when using a thermostat setback.

  11. NASA Operational Environment Team (NOET): NASA's key to environmental technology

    Science.gov (United States)

    Cook, Beth

    1993-01-01

    NASA has stepped forward to face the environmental challenge to eliminate the use of Ozone-Layer Depleting Substances (OLDS) and to reduce our Hazardous Air Pollutants (HAP) by 50 percent in 1995. These requirements have been issued by the Clean Air Act, the Montreal Protocol, and various other legislative acts. A proactive group, the NASA Operational Environment Team or NOET, received its charter in April 1992 and was tasked with providing a network through which replacement activities and development experiences can be shared. This is a NASA-wide team which supports the research and development community by sharing information both in person and via a computerized network, assisting in specification and standard revisions, developing cleaner propulsion systems, and exploring environmentally-compliant alternatives to current processes.

  12. Information Technology: Architecture Needed to Guide Modernization of DoD's Financial Operations

    National Research Council Canada - National Science Library

    2001-01-01

    .... Effectively managing such a large and complex endeavor requires, among other things, a well-defined and enforced blueprint for operational and technological change, commonly referred to as an enterprise architecture...

  13. Forecasting and observability: critical technologies for system operations with high PV penetration

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Efthymiou, Venizelos; Graditi, Giorgio

    2016-01-01

    Forecasting and monitoring technologies for photovoltaics are required on different spatial and temporal scales by multiple actors, from the owners of PV systems to transmission system operators. In this paper the Grid integration working group of the European Technology and Innovation Platform –...... for a cost/benefit analysis since the forecasting error can be linked to the prices charged for energy imbalance......Forecasting and monitoring technologies for photovoltaics are required on different spatial and temporal scales by multiple actors, from the owners of PV systems to transmission system operators. In this paper the Grid integration working group of the European Technology and Innovation Platform...... – Photovoltaics (ETIP PV) reviews the different use cases for these technologies, their current status, and the need for future developments. Power system operations require a real-time view of PV production for managing power reserves and for feeding shortterm forecasts. They also require forecasts on all...

  14. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2017-01-01

    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  15. METHOD OF CHOOSING THE TECHNOLOGY OF VEHICLE OPERATION ON DELIVERY ROUTES

    Directory of Open Access Journals (Sweden)

    Ye. Nagornyi

    2014-10-01

    Full Text Available A method for determining the technology of vehicles operation on delivery (team routes, which allows to determine the optimal sequence of cargo delivery to customers by vehicles of certain capacity in order to meet the requirements of cargo owners regarding the conditions of service is offered. Recommendations for creation of an automated system of forming the technology of vehicles operation on delivery routes are developed.

  16. A high resolution climatology of precipitation and deep convection over the Mediterranean region from operational satellite microwave data: development and application to the evaluation of model uncertainties

    Directory of Open Access Journals (Sweden)

    C. Claud

    2012-03-01

    Full Text Available A new precipitation and convection dataset for the Mediterranean Basin, derived from operational satellite microwave data is documented. The dataset is derived from diagnostics that rely on brightness temperatures measured since 1999 in the water vapour absorption line (183–191 GHz. The dataset consists of twice-daily (a.m. and p.m. and monthly maps of precipitation and convection occurrences on a 0.2° lat × 0.2° long grid for the area 25°–60° N, 10° W–50° E. The instruments used so far are the AMSU-B sensor on the NOAA-15 to -17 satellites, and the MHS sensor on the NOAA-18 and -19 and METOP-2 satellites, with precipitation and convection available separately for the different sensors. The slightly different radiometric characteristics of MHS compared to AMSU-B do not affect significantly the continuity of the dataset. Precipitation and convection data from different sensors on different satellites are remarkably consistent, with generally small biases between the instruments. When larger biases appear, they can be explained either by the drifts in the satellite orbit, scan asymmetry, or temporal aliasing from insufficiently resolving the diurnal cycle of precipitation and convection. After a description of climatological aspects of rain and deep convection occurrence, the interest of this dataset to evaluate model uncertainties for simulating a high-impact weather event and for climatic regional runs over this area is illustrated.

  17. Satellite and Aerial Remote Sensing in Support of Disaster Response Operations Conducted by the Texas Division of Emergency Management

    Science.gov (United States)

    Wells, G. L.; Tapley, B. D.; Bettadpur, S. V.; Howard, T.; Porter, B.; Smith, S.; Teng, L.; Tapley, C.

    2014-12-01

    The effective use of remote sensing products as guidance to emergency managers and first responders during field operations requires close coordination and communication with state-level decision makers, incident commanders and the leaders of individual strike teams. Information must be tailored to meet the needs of different emergency support functions and must contain current (ideally near real-time) data delivered in standard formats in time to influence decisions made under rapidly changing conditions. Since 2003, a representative of the University of Texas Center for Space Research (CSR) has served as a member of the Governor's Emergency Management Council and has directed the flow of information from remote sensing observations and high performance computing modeling and simulations to the Texas Division of Emergency Management in the State Operations Center. The CSR team has supported response and recovery missions resulting from hurricanes, tornadoes, flash floods, wildfires, oil spills and other natural and man-made disasters in Texas and surrounding states. Through web mapping services, state emergency managers and field teams have received threat model forecasts, real-time vehicle tracking displays and imagery to support search-and-clear operations before hurricane landfall, search-and-rescue missions following floods, tactical wildfire suppression, pollution monitoring and hazardous materials detection. Data servers provide near real-time satellite imagery collected by CSR's direct broadcast receiving system and post data products delivered during activations of the United Nations International Charter on Space and Major Disasters. In the aftermath of large-scale events, CSR is charged with tasking state aviation resources, including the Air National Guard and Texas Civil Air Patrol, to acquire geolocated aerial photography of the affected region for wide area damage assessment. A data archive for each disaster is available online for years following

  18. Technology development for evaluation of operational quantities in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jang Lyul; Chang, S. Y.; Lee, L. T.; Kim, B. H.; Chung, K. K.; Lee, J. I.; Lim, G. S.; Kim, J. S.; Nam, Y. M.; Chang, J. K.; Kim, D. Y.; Yang, J. S

    2000-03-01

    A study on the fabrication of a new personal thermo-luminescence dosimeter, which can evaluate the personal dose equivalent H{sub p}(d), has been performed. Optimum conditions for fabrication of a LiF:Mg,Cu,Na,Si TL phosphor powder has been determined and a disc type TL pellet has been fabricated from this TL powder. Another type of CaSO{sub 4}:Dy,Mo TL material has been also fabricated. These two TL materials have shown greater TL sensitivity than the foreign-made commercial TL materials. Mono-energetic fluorescence X-ray from 8.6 keV to 75 keV for use in performance testing of the developed TLDs energy response have been constructed and evaluated for the performance of the purity, air kerma, beam uniformity and distribution, and scattered fraction of X-rays. Reference neutron field of a D{sub 2}O moderated {sup 252}Cf source was characterized and the irradiation system using {sup 226}Ra and {sup 137}Cs sources was installed to construct the environmental gamma reference radiation and the low-level gamma radiation. A capability of calibration and measurement of KAERI In Vivo counting system for transuranic elements in the lung has been evaluated through the participation in the overseas intercomparison study on the In Vivo radioactivity measurement. An improvement and advancement of KAERI lung counting technology have been made by the analysis off uncertainties from the assumption of uniform radioactivity distribution in the lung, experimental determination and comparing of detection efficiency with different lung sets, and mathematical efficiency calibration of In Vivo counting system. (author)

  19. Science, technology and institutional co-operation in Africa: from pre ...

    African Journals Online (AJOL)

    This paper covers two phases of the history of science, technology and institutional co-operation in Africa - pre-colonial and colonial. It is structured into three sections. Section one looks at pre-colonial science and technology (S&T) and points out that most discussions on the socioeconomic analysis of S&T in Africa often ...

  20. Development of Innovative Technology to Expand Precipitation Observations in Satellite Precipitation Validation in Under-developed Data-sparse Regions

    Science.gov (United States)

    Kucera, P. A.; Steinson, M.

    2016-12-01

    Accurate and reliable real-time monitoring and dissemination of observations of precipitation and surface weather conditions in general is critical for a variety of research studies and applications. Surface precipitation observations provide important reference information for evaluating satellite (e.g., GPM) precipitation estimates. High quality surface observations of precipitation, temperature, moisture, and winds are important for applications such as agriculture, water resource monitoring, health, and hazardous weather early warning systems. In many regions of the World, surface weather station and precipitation gauge networks are sparsely located and/or of poor quality. Existing stations have often been sited incorrectly, not well-maintained, and have limited communications established at the site for real-time monitoring. The University Corporation for Atmospheric Research (UCAR)/National Center for Atmospheric Research (NCAR), with support from USAID, has started an initiative to develop and deploy low-cost weather instrumentation including tipping bucket and weighing-type precipitation gauges in sparsely observed regions of the world. The goal is to improve the number of observations (temporally and spatially) for the evaluation of satellite precipitation estimates in data-sparse regions and to improve the quality of applications for environmental monitoring and early warning alert systems on a regional to global scale. One important aspect of this initiative is to make the data open to the community. The weather station instrumentation have been developed using innovative new technologies such as 3D printers, Raspberry Pi computing systems, and wireless communications. An initial pilot project have been implemented in the country of Zambia. This effort could be expanded to other data sparse regions around the globe. The presentation will provide an overview and demonstration of 3D printed weather station development and initial evaluation of observed

  1. Satellite-aided mobile radio concepts study: Concept definition of a satellite-aided mobile and personal radio communication system

    Science.gov (United States)

    Anderson, R. E.

    1979-01-01

    The satellite system requires the use of a large satellite antenna and spacecraft array power of about 12 kW or more depending on the operating frequency. Technology developments needed include large offset reflector multibeam antennas, satellite electrical power sybsystems providing greater than 12 kW of power, signal switching hardware, and linearized efficient solid state amplifiers for the satellite-aided mobile band. Presently there is no frequency assignment for this service, and it is recommended that an allocation be pursued. The satellite system appears to be within reasonable extrapolation of the state of the art. It is further recommended that the satellite-aided system spacecraft definition studies and supporting technology development be initiated.

  2. Satellite Power Systems (SPS) concept definition study (Exhibit D). Volume 5: Systems engineering/integration research and technology

    Science.gov (United States)

    Hanley, G. M.

    1981-01-01

    Guidelines and ground rules followed in the development of requirements for the SPS are presented. Development planning objectives are specified in each of these areas, and evolutionary SPS program scenarios are described for the various concepts studied during the past one year contract. Program descriptions are presented as planning packages of technical tasks, and schedule phasing. Each package identifies the ground based technology effort that will facilitate SPS definitions, designs, development, and operations.

  3. Review of the Human Resources, Finance, and Information Technology Operations of the Seattle Public Schools

    Science.gov (United States)

    Council of the Great City Schools, 2008

    2008-01-01

    In late 2007, the Council of the Great City Schools conducted a high-level management review of the school district's human resources, financial, and technology operations to: (1) Review and evaluate the leadership, management, organization, and operations of the respective departments; and (2) Develop recommendations and proposals that would…

  4. Description of and operating instructions for the Lucas Heights Gamma Technology Research Irradiator (GATRI)

    International Nuclear Information System (INIS)

    Izard, M.E.

    1985-12-01

    This manual describes the gamma technology research irradiator (GATRI) located at Lucas Heights and the procedures necessary for its operation and maintenance. It supersedes a previous operating manual (AAEC/M88) as a result of the introduction of AAEC type 560 safety and control equipment into GATRI

  5. Installation and evaluation of a nuclear power plant operator advisor based on artificial intelligence technology

    International Nuclear Information System (INIS)

    Hajek, B.K.; Miller, D.W.

    1989-01-01

    This report discusses the following topics on a Nuclear Power Plant operator advisor based on artificial Intelligence Technology; Workstation conversion; Software Conversion; V ampersand V Program Development Development; Simulator Interface Development; Knowledge Base Expansion; Dynamic Testing; Database Conversion; Installation at the Perry Simulator; Evaluation of Operator Interaction; Design of Man-Machine Interface; and Design of Maintenance Facility

  6. Steady-state operation of tokamaks: Key physics and technology developments on Tore Supra

    International Nuclear Information System (INIS)

    Jacquinot, J.

    2005-01-01

    Important technological and physics issues related to long pulse operation required for a reactor are now being addressed in Tore Supra. experimental results in conditions where all the plasma facing components are actively cooled during pulses exceeding six minutes. Important physics issues related to continuous operation are observed in non inductively driven plasmas. (author)

  7. An integrated model for part-operation allocation and investments in CNC technology

    NARCIS (Netherlands)

    Bokhorst, J.A.C.; Slomp, J.; Suresh, N.

    2002-01-01

    This study addresses the issue of investment appraisal of new technology, specifically computer numerical control (CNC) machine tools in conjunction with optimal allocation of parts and operations on CNC machines as the investments take place. Part-operation allocation is the allocation of parts and

  8. Teamwork Reasoning and Multi-Satellite Missions

    Science.gov (United States)

    Marsella, Stacy C.; Plaunt, Christian (Technical Monitor)

    2002-01-01

    NASA is rapidly moving towards the use of spatially distributed multiple satellites operating in near Earth orbit and Deep Space. Effective operation of such multi-satellite constellations raises many key research issues. In particular, the satellites will be required to cooperate with each other as a team that must achieve common objectives with a high degree of autonomy from ground based operations. The multi-agent research community has made considerable progress in investigating the challenges of realizing such teamwork. In this report, we discuss some of the teamwork issues that will be faced by multi-satellite operations. The basis of the discussion is a particular proposed mission, the Magnetospheric MultiScale mission to explore Earth's magnetosphere. We describe this mission and then consider how multi-agent technologies might be applied in the design and operation of these missions. We consider the potential benefits of these technologies as well as the research challenges that will be raised in applying them to NASA multi-satellite missions. We conclude with some recommendations for future work.

  9. Systematic Assessment of Neutron and Gamma Backgrounds Relevant to Operational Modeling and Detection Technology Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Archer, Daniel E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hornback, Donald Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Jeffrey O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nicholson, Andrew D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peplow, Douglas E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Thomas Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ayaz-Maierhafer, Birsen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This report summarizes the findings of a two year effort to systematically assess neutron and gamma backgrounds relevant to operational modeling and detection technology implementation. The first year effort focused on reviewing the origins of background sources and their impact on measured rates in operational scenarios of interest. The second year has focused on the assessment of detector and algorithm performance as they pertain to operational requirements against the various background sources and background levels.

  10. Analysis of Pending Problems for a Technology Demand of Domestic Operational Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae Seo; Park, Won Seok; Wi, Myung Hwan; Ha, Jae Joo

    2008-01-15

    Eleven technology fields were chosen, which have a relation with the solution of the pending problems of domestic operational nuclear power plants to manage an efficient operation and safe regulation for domestic nuclear power plants. The progressive background, requirements, and performance on the pending problems, 34, of an operation and regulation for domestic nuclear power plants were analyzed with regard to a risk information application, severe accident, PSR of structural materials, underwater monitoring, operation inspection and a fire protection, an instrument aging, metal integrity and steam generator, human technology and a digital I and C, quality assurance, secondary system and a user reliance and mass communications. KAERI's role is to provide a solution to these pending problems of domestic nuclear power plants. KAERI's technology is to be applicable to the pending problems for domestic nuclear power plants to raise an operational efficiency and an application frequency of nuclear power plants. In the future, a technology treaty between KAERI and KHNP is to be established to solve the pending problems for domestic nuclear power plants. Operation rate of nuclear power plants will also be raised and contribute to the supply of national energy due to this technology treaty.

  11. The application of digital medical 3D printing technology on tumor operation

    Science.gov (United States)

    Chen, Jimin; Jiang, Yijian; Li, Yangsheng

    2016-04-01

    Digital medical 3D printing technology is a new hi-tech which combines traditional medical and digital design, computer science, bio technology and 3D print technology. At the present time there are four levels application: The printed 3D model is the first and simple application. The surgery makes use of the model to plan the processing before operation. The second is customized operation tools such as implant guide. It helps doctor to operate with special tools rather than the normal medical tools. The third level application of 3D printing in medical area is to print artificial bones or teeth to implant into human body. The big challenge is the fourth level which is to print organs with 3D printing technology. In this paper we introduced an application of 3D printing technology in tumor operation. We use 3D printing to print guide for invasion operation. Puncture needles were guided by printed guide in face tumors operation. It is concluded that this new type guide is dominantly advantageous.

  12. Communication satellites to enter a new age of flexibility

    Science.gov (United States)

    Balty, Cédric; Gayrard, Jean-Didier; Agnieray, Patrick

    2009-07-01

    To cope with the economical and technical evolutions of the communication market and to better compete with or complement terrestrial networks, satellite operators are requiring more flexible satellites. It allows a better fleet planning potential and back-up policy, a more standardized and efficient procurement process, mission adaptation to market evolution and the possibility of early entry in new markets. New technologies that are developed either for terrestrial networks or for space defense applications would become soon available to satellite and equipment manufacturers. A skilful mix of these new technologies with the older and more mature ones should boost satellite performances and bring flexibility to the new generation of communication satellites. This paper reviews the economical and technical environment of the space communication business for the next decade. It identifies the needs and levels of flexibility that are required by the market but also allowed by technologies, in both a top-down and bottom-up approach.

  13. SATNET Development and Operation. Pluribus Satellite IMP Development, Remote Site Maintenance. Internet Development. Mobile Access Terminal Network, TCP for the HP3000, TCP-TAC.

    Science.gov (United States)

    1980-08-01

    Bolt Beranek and Newman Inc. Early this summer, an extremely severe thunderstorm at Etam disrupted SATNET operations for several hours, during which time...power could not be maintained within acceptable levels by the Etam site personnel. Several outages of the ARPANET direct connection via SATNET...power supply for the VDH interface of the BBN gateway between the SATNET Etam Satellite IMP and the ARPANET BBN40 IMP. Subsequently, the VDH interface

  14. Barriers and benefits to using mobile health technology after operation: A qualitative study.

    Science.gov (United States)

    Abelson, Jonathan S; Kaufman, Elinore; Symer, Matthew; Peters, Alexander; Charlson, Mary; Yeo, Heather

    2017-09-01

    Recently, mobile health technology has emerged as a promising avenue for improving physician-patient communication and patient outcomes. The objective of our study was to determine the public's perception of barriers and benefits to using mobile health technology technologies to enhance recovery after operation. We used the Empire State Poll to ask 2 open-ended questions to 800 participants assessing their perceptions of benefits and barriers to use mobile health technology after operation. All responses were coded independently, and any discrepancies were resolved by consensus. We used grounded theory to allow themes to arise from the codes. Interrater reliability was calculated using Cohen's Kappa. Participants identified a range of possible barriers to using mobile health technology apps after operation including: protecting personal health information, technology effectiveness and failure, preference for face-to-face interaction with their surgeon, level of effort required, and ability of the older adults to navigate mobile health technology. Participants identified multiple possible benefits including: better monitoring, improved communication with their surgeon, minimizing follow-up visits, improved convenience, and increased patient knowledge. In the study, 15% of all respondents stated there were no barriers whereas 6% stated there were no benefits. Participants were receptive to the many potential benefits of this technology to enhance not only their relationships with providers and the convenience of access, but also their health outcomes. We must address participants concerns about data security and their fears of losing a personal relationship with their doctor. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. COMPARATIVE ANALYSIS OF SOFTWARE TECHNOLOGIES OPERATING SYSTEM WINDOWS 8 FOR LEARNING THE PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Oleg M. Spirin

    2014-04-01

    Full Text Available Many innovations such as interface and software development were realized in Windows 8 of Microsoft Corporation that certainly must be taken into account in computer science teaching. The latest software platform of Windows 8 — WinRT is completely new implementation of ideas which has been implemented in technologies Win32 API and NET. The article describes the software development technology used in the environment of the operating system, Windows 8. There is presented the information about the development of these technologies. It is substantiated expediency of some approaches to consideration the latest technologies of software development in learning programming.

  16. Energy analysis of the solar power satellite.

    Science.gov (United States)

    Herendeen, R A; Kary, T; Rebitzer, J

    1979-08-03

    The energy requirements to build and operate the proposed Solar Power Satellite are evaluated and compared with the energy it produces. Because the technology is so speculative, uncertainty is explicitly accounted for. For a proposed 10-gigawatt satellite system, the energy ratio, defined as the electrical energy produced divided by the primary nonrenewable energy required over the lifetime of the system, is of order 2, where a ratio of 1 indicates the energy breakeven point. This is significantly below the energy ratio of today's electricity technologies such as light-water nuclear or coal-fired electric plants.

  17. Advanced communications technology satellite high burst rate link evaluation terminal power control and rain fade software test plan, version 1.0

    Science.gov (United States)

    Reinhart, Richard C.

    1993-01-01

    The Power Control and Rain Fade Software was developed at the NASA Lewis Research Center to support the Advanced Communications Technology Satellite High Burst Rate Link Evaluation Terminal (ACTS HBR-LET). The HBR-LET is an experimenters terminal to communicate with the ACTS for various experiments by government, university, and industry agencies. The Power Control and Rain Fade Software is one segment of the Control and Performance Monitor (C&PM) Software system of the HBR-LET. The Power Control and Rain Fade Software automatically controls the LET uplink power to compensate for signal fades. Besides power augmentation, the C&PM Software system is also responsible for instrument control during HBR-LET experiments, control of the Intermediate Frequency Switch Matrix on board the ACTS to yield a desired path through the spacecraft payload, and data display. The Power Control and Rain Fade Software User's Guide, Version 1.0 outlines the commands and procedures to install and operate the Power Control and Rain Fade Software. The Power Control and Rain Fade Software Maintenance Manual, Version 1.0 is a programmer's guide to the Power Control and Rain Fade Software. This manual details the current implementation of the software from a technical perspective. Included is an overview of the Power Control and Rain Fade Software, computer algorithms, format representations, and computer hardware configuration. The Power Control and Rain Fade Test Plan provides a step-by-step procedure to verify the operation of the software using a predetermined signal fade event. The Test Plan also provides a means to demonstrate the capability of the software.

  18. Land Mobile Satellite Service (LMSS): A conceptual system design and identification of the critical technologies: Part 2: Technical report

    Science.gov (United States)

    Naderi, F. (Editor)

    1982-01-01

    A conceptual system design for a satellite-aided land mobile service is described. A geostationary satellite which employs a large (55-m) UHF reflector to communicate with small inexpensive user antennas on mobile vehicles is discussed. It is shown that such a satellite system through multiple beam antennas and frequency reuse can provide thousands of radiotelephone and dispatch channels serving hundreds of thousands of users throughout the U.S.

  19. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  20. A comparision between satellite based and drone based remote sensing technology to achieve sustainable development: a review

    Directory of Open Access Journals (Sweden)

    Babankumar Bansod

    2017-12-01

    Full Text Available Precision agriculture is a way to manage the crop yield resources like water, fertilizers, soil, seeds in order to increase production, quality, gain and reduce squander products so that the existing system become eco-friendly. The main target of precision agriculture is to match resources and execution according to the crop and climate to ameliorate the effects of Praxis. Global Positioning System, Geographic Information System, Remote sensing technologies and various sensors are used in Precision farming for identifying the variability in field and using different methods to deal with them. Satellite based remote sensing is used to study the variability in crop and ground but suffer from various disadvantageous such as prohibited use, high price, less revisiting them, poor resolution due to great height, Unmanned Aerial Vehicle (UAV is other alternative option for application in precision farming. UAV overcomes the drawback of the ground based system, i.e. inaccessibility to muddy and very dense regions. Hovering at a peak of 500 meter - 1000 meter is good enough to offer various advantageous in image acquisition such as high spatial and temporal resolution, full flexibility, low cost. Recent studies of application of UAV in precision farming indicate advanced designing of UAV, enhancement in georeferencing and the mosaicking of image, analysis and extraction of information required for supplying a true end product to farmers. This paper also discusses the various platforms of UAV used in farming applications, its technical constraints, seclusion rites, reliability and safety.

  1. Analysing the advantages of high temporal resolution geostationary MSG SEVIRI data compared to Polar Operational Environmental Satellite data for land surface monitoring in Africa

    Science.gov (United States)

    Fensholt, R.; Anyamba, A.; Huber, S.; Proud, S. R.; Tucker, C. J.; Small, J.; Pak, E.; Rasmussen, M. O.; Sandholt, I.; Shisanya, C.

    2011-10-01

    Since 1972, satellite remote sensing of the environment has been dominated by polar-orbiting sensors providing useful data for monitoring the earth's natural resources. However their observation and monitoring capacity are inhibited by daily to monthly looks for any given ground surface which often is obscured by frequent and persistent cloud cover creating large gaps in time series measurements. The launch of the Meteosat Second Generation (MSG) satellite into geostationary orbit has opened new opportunities for land surface monitoring. The Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument on-board MSG with an imaging capability every 15 min which is substantially greater than any temporal resolution that can be obtained from existing Polar Operational Environmental Satellite (POES) systems currently in use for environmental monitoring. Different areas of the African continent were affected by droughts and floods in 2008 caused by periods of abnormally low and high rainfall, respectively. Based on the effectiveness of monitoring these events from Earth Observation (EO) data the current analyses show that the new generation of geostationary remote sensing data can provide higher temporal resolution cloud-free (systems. SEVIRI MSG 5-day continental scale composites will enable rapid assessment of environmental conditions and improved early warning of disasters for the African continent such as flooding or droughts. The high temporal resolution geostationary data will complement existing higher spatial resolution polar-orbiting satellite data for various dynamic environmental and natural resource applications of terrestrial ecosystems.

  2. Operational Research for Developing Countries - a case of transfer of technology

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui; Ravn, Hans V.

    1986-01-01

    This paper is concerned with some fundamental aspects of the process of transfer of operational research from the industrialized countries to the Third World. Two complementary conceptions of operational research are identified: technical and social operational research. The main contribution of ...... of this paper is to regard the discussion of operational research for developing countries as a case of transfer of technology. Finally, some proposals for action and further research will be briefly outlined.......This paper is concerned with some fundamental aspects of the process of transfer of operational research from the industrialized countries to the Third World. Two complementary conceptions of operational research are identified: technical and social operational research. The main contribution...

  3. Internal Impedance of the Lithium-Ion Secondary Cells Used for Reimei Satellite after the Eleven Years Operation in Space

    OpenAIRE

    Sone Yoshitsugu; Watanabe Hiromi; Tanaka Kohei; Mendoza-Hernandez Omar Samuel; Fukuda Seisuke; Itagaki Masayuki; Ogawa Keita; Asamura Kazushi; Yamazaki Atsushi; Nagamatsu Hiroyuki; Fukushima Yosuke; Saito Hirofumi

    2017-01-01

    The lithium-ion secondary batteries have been widely used for the space programs, today. Among them, REIMEI was one of the first satellites using lithium-ion secondary battery. In 2005, the satellite was launched, and injected into the low earth polar orbit. Eleven years has passed since the launch and over 60,000 cycles of charge and discharge was experienced in space. The lithium-ion secondary cell of the REIMEI battery was designed using spinel manganese oxide type material for the posi...

  4. Dual-task motor performance with a tongue-operated assistive technology compared with hand operations

    Science.gov (United States)

    2012-01-01

    Background To provide an alternative motor modality for control, navigation, and communication in individuals suffering from impairment or disability in hand functions, a Tongue Drive System (TDS) has been developed that allows for real time tracking of tongue motion in an unobtrusive, wireless, and wearable device that utilizes the magnetic field generated by a miniature disk shaped magnetic tracer attached to the tip of the tongue. The purpose of the study was to compare the influence of a concurrent motor or cognitive task on various aspects of simple movement control between hand and tongue using the TDS technology. Methods Thirteen young able-bodied adults performed rapid and slow goal-directed movements of hand and tongue (with TDS) with and without a concurrent motor (hand or tongue) or cognitive (arithmetic and memory) task. Changes in reaction time, completion time, speed, correctness, accuracy, variability of displacement, and variability of time due to the addition of a concurrent task were compared between hand and tongue. Results The influence of an additional concurrent task on motor performance was similar between the hand and tongue for slow movement in controlling their displacement. In rapid movement with a concurrent motor task, most aspects of motor performance were degraded in hand, while tongue speed during rapid continuous task was maintained. With a concurrent cognitive task, most aspects of motor performance were degraded in tongue, while hand accuracy during the rapid discrete task and hand speed during the rapid continuous task were maintained. Conclusion Rapid goal-directed hand and tongue movements were more consistently susceptible to interference from concurrent motor and cognitive tasks, respectively, compared with the other movement. PMID:22244362

  5. How to evaluate whether a new technology in the operating room is cost-effective from society's viewpoint.

    Science.gov (United States)

    Tan, Jonathan M; Macario, Alex

    2008-12-01

    The hospital operating room is one of the most important and costly environments in health care. Given the current reductions in reimbursement and limited resources, hospital administrators and operating room managers have to be careful about adopting new technologies into the operating room. Operating rooms must balance the improved care a new technology can provide with its additional costs. Economic analysis provides systematic methods to guide decisions by quantitatively assessing the value of a new technology.

  6. Care Management In The Family Health Support Core: Technologies Operated In The Professional Dimension

    OpenAIRE

    José Maria Ximenes Guimarães; Gerlane Holanda de Freitas; Aretha Feitosa de Araújo; Maria Claudia de Freitas Lima; Élcio Basílio Pereira Machado; Cleide Carneiro; Maria Elidiana de Araújo Gomes; Fernando Luiz Affonso Fonseca; Maria do Socorro Sousa; Myrla Alves de Oliveira; Tatyane Oliveira Rebouças; Eduardo Carvalho de Souza; Ana Maria Araújo Salomão

    2017-01-01

    Introduction: The Centre for Health Support Family - NASF has a innovative character with potential to concretize change in the organization of services and in care practices, supporting and expanding the solvability of the actions of the teams of the Family Health Strategy - FHS. To this end, it must operationalize technologies, arrangements and care management devices. Objective: To describe the care management technologies, particularly in the professional dimension, operated by the t...

  7. The role of information technology (IT) in reducing offshore operating costs

    International Nuclear Information System (INIS)

    Stern, M.J.

    1993-01-01

    The rapid changes in information technology (IT) and its application have helped to improve efficiency and reduce operating costs offshore. Developments in IT itself, in terms of technology, organization and standards together with cultural change have created new opportunities. In the application of IT, the most significant impact on operations costs and effectiveness has come from the use of information throughout the life cycle, and improved telecommunications. This paper describes recent developments in IT and its application, and cites examples where oil companies have derived major benefits

  8. Implementing Operational Analytics using Big Data Technologies to Detect and Predict Sensor Anomalies

    Science.gov (United States)

    Coughlin, J.; Mital, R.; Nittur, S.; SanNicolas, B.; Wolf, C.; Jusufi, R.

    2016-09-01

    Operational analytics when combined with Big Data technologies and predictive techniques have been shown to be valuable in detecting mission critical sensor anomalies that might be missed by conventional analytical techniques. Our approach helps analysts and leaders make informed and rapid decisions by analyzing large volumes of complex data in near real-time and presenting it in a manner that facilitates decision making. It provides cost savings by being able to alert and predict when sensor degradations pass a critical threshold and impact mission operations. Operational analytics, which uses Big Data tools and technologies, can process very large data sets containing a variety of data types to uncover hidden patterns, unknown correlations, and other relevant information. When combined with predictive techniques, it provides a mechanism to monitor and visualize these data sets and provide insight into degradations encountered in large sensor systems such as the space surveillance network. In this study, data from a notional sensor is simulated and we use big data technologies, predictive algorithms and operational analytics to process the data and predict sensor degradations. This study uses data products that would commonly be analyzed at a site. This study builds on a big data architecture that has previously been proven valuable in detecting anomalies. This paper outlines our methodology of implementing an operational analytic solution through data discovery, learning and training of data modeling and predictive techniques, and deployment. Through this methodology, we implement a functional architecture focused on exploring available big data sets and determine practical analytic, visualization, and predictive technologies.

  9. Risk reduction methodologies and technologies for the Earth Observing System (EOS) Operations Center (EOC)

    Science.gov (United States)

    Hudson, Richard K.; Pingitore, Nelson V.

    1994-01-01

    This paper will discuss proposed Flight Operations methodologies and technologies for the Earth Observing System (EOS) Operations Center (EOC), to reduce risks associated with the operation of complex multi-instrument spacecraft in a multi-spacecraft environment. The EOC goals are to obtain 100 percent science data capture and maintain 100 percent spacecraft health, for each EOS spacecraft. Operations risks to the spacecraft and data loss due to operator command error, mission degradation due to mis-identification of an anomalous trend in component performance or mis-management of resources, and total mission loss due to improper subsystem configuration or mis-identification of an anomalous condition. This paper discusses automation of routine Flight Operations Team (FOT) responsibilities, Expert systems for real-time non-nominal condition decision support, and Telemetry analysis systems for in-depth playback data analysis and trending.

  10. The role of computer technologies in increasing of tactical operations efficacy

    OpenAIRE

    Шевчук, В. М.

    2016-01-01

    The issues connected with computer technologies and their usage in order to increase efficacy of tactical operations while investigating crimes have been analyzed in the article. The role of “AWP of an investigator” during the process of optimization has also been explored of using tactical operations. A separate term “Tactical operations” as an additional element to the term “AWP of an investigator” has been proposed in the article.

  11. Advanced technologies applied to reduce the operating costs of small commuter transport aircraft

    Science.gov (United States)

    Masefield, O.; Turi, A.; Reinicke, M.

    1982-01-01

    The application of new aerodynamic, structural, and propulsion technologies to a specified baseline commuter aircraft is studied. The assessment models can be used on a desktop calculator and include a sizing program, operating cost program, and passenger ride qualities model. Evaluation is done with a step-by-step approach and is applied to range, number and type of engines, structure, wing selection, and configuration. A 40 percent direct operating cost saving is anticipated compared to current well established commuter aircraft.

  12. Method of Choosing the Information Technology System Supporting Management of the Military Aircraft Operation

    Directory of Open Access Journals (Sweden)

    Barszcz Piotr

    2014-12-01

    Full Text Available The paper presents a method of choosing the information technology system, the task of which is to support the management process of the military aircraft operation. The proposed method is based on surveys conducted among direct users of IT systems used in aviation of the Polish Armed Forces. The analysis of results of the surveys was conducted using statistical methods. The paper was completed with practical conclusions related to further usefulness of the individual information technology systems. In the future, they can be extremely useful in the process of selecting the best solutions and integration of the information technology systems

  13. Some aspects of sodium technology issued from the operating experience of RAPSODIE and PHENIX

    International Nuclear Information System (INIS)

    Kremser, J.; Lacroix, A.

    1976-01-01

    This paper deals with the experience on sodium technology gained from RAPSODIE and PHENIX operation. Problems encountered with sodium circuits, main components, handling equipment and instrumentation are discussed. Some information related to the contamination by radioactive products of sodium and sodium circuits is given

  14. New technologies in the paving process need to be based on 'common practice' and 'operator's heuristics'

    NARCIS (Netherlands)

    ter Huerne, Henderikus L.; Miller, Seirgei Rosario; Doree, Andries G.; Lee, H-D.; Bhatti, M.A.

    2007-01-01

    This paper describes an initiative that aims to integrate process mod-eling with the tacit knowledge of site personnel in order to accelerate profes-sionalism and widen the application of technology in the asphalt paving proc-ess. A preparatory study was conducted to gain insight into operational

  15. Performance of the X-ray CCDs aboard the ASCA satellite after 5-year operation in space

    CERN Document Server

    Yamashita, A; Ezuka, H; Kawasaki, M; Takahashi, K

    1999-01-01

    The performance of the charge coupled devices on-board the ASCA satellite has been traced for five years after the launch. We found the gradual increase of the dark current and the decrease of the charge transfer efficiency. These changes may be explained by charge traps due to the radiation damage. The nature of the radiation damage is investigated in detail using various methods.

  16. Operational Exploitation of Satellite-Based Sounding Data and Numerical Weather Prediction Models for Directed Energy Applications

    Science.gov (United States)

    2015-12-01

    Environmental Satellites HEL High Energy Laser HRRR High Resolution Rapid Refresh H-V 5/7 Hufnagel-Valley 5/7 HSB Humidity Sounder for Brazil ...FOR DIRECTED ENERGY APPLICATIONS DISSERTATION David C. Meier, Lieutenant Colonel, USAF AFIT-ENP-DS-15-D-009 DEPARTMENT OF THE AIR FORCE...DATA AND NUMERICAL WEATHER PREDICTION MODELS FOR DIRECTED ENERGY APPLICATIONS DISSERTATION Presented to the Faculty Department of

  17. Intelligent Operation and Maintenance of Micro-grid Technology and System Development

    Science.gov (United States)

    Fu, Ming; Song, Jinyan; Zhao, Jingtao; Du, Jian

    2018-01-01

    In order to achieve the micro-grid operation and management, Studying the micro-grid operation and maintenance knowledge base. Based on the advanced Petri net theory, the fault diagnosis model of micro-grid is established, and the intelligent diagnosis and analysis method of micro-grid fault is put forward. Based on the technology, the functional system and architecture of the intelligent operation and maintenance system of micro-grid are studied, and the microcomputer fault diagnosis function is introduced in detail. Finally, the system is deployed based on the micro-grid of a park, and the micro-grid fault diagnosis and analysis is carried out based on the micro-grid operation. The system operation and maintenance function interface is displayed, which verifies the correctness and reliability of the system.

  18. Forecasting and observability: critical technologies for system operations with high PV penetration

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Efthymiou, Venizelos; Graditi, Giorgio

    2016-01-01

    Forecasting and monitoring technologies for photovoltaics are required on different spatial and temporal scales by multiple actors, from the owners of PV systems to transmission system operators. In this paper the Grid integration working group of the European Technology and Innovation Platform...... – Photovoltaics (ETIP PV) reviews the different use cases for these technologies, their current status, and the need for future developments. Power system operations require a real-time view of PV production for managing power reserves and for feeding shortterm forecasts. They also require forecasts on all...... timescales from the short (for dispatching purposes), where statistical models work best, to the very long (for infrastructure planning), where physics-based models are more accurate. Power system regulations are driving the development of these techniques. This application also provides a good basis...

  19. Sustainable Agrifood Production and Distribution through Innovative Technologies and Operational Research Applications

    DEFF Research Database (Denmark)

    Bochtis, Dionysis

    , agrifood production will have a crucial effect on the future land use, water resources, climate, biodiversity, etc. To this end, bioproduction and the related distribution systems have to tackle a number of environmental, technological, organisational, financial, and political challenges over the coming...... decades. The goals that have to be met towards this direction include the increased productivity, reduced waste in the chain, optimized water management, optimised energy efficiency, and reduced GHG emissions. Innovative technologies such as GIS, Telematics, sensors networks, automation control systems...... of sustainability is a renewed focus on the usage of these advanced technologies. Such a development increases the demand for advanced management tools based on operational research techniques and methodologies that are able to cope with the inherent biological and dynamic nature of agricultural operations...

  20. Development concepts of a Smart Cyber Operating Theater (SCOT) using ORiN technology.

    Science.gov (United States)

    Okamoto, Jun; Masamune, Ken; Iseki, Hiroshi; Muragaki, Yoshihiro

    2018-02-23

    Currently, networking has not progressed in the treatment room. Almost every medical device in the treatment room operates as a stand-alone device. In this project, we aim to develop a networked operating room called "Smart Cyber Operating Theater (SCOT)". Medical devices are connected using Open Resource interface for the Network (ORiN) technology. In this paper, we describe the concept of the SCOT project. SCOT is integrated using the communication interface ORiN, which was originally developed for industry. One feature of ORiN is that the system can be constructed flexibly. ORiN creates abstracts of the same type of devices and increases the robustness of the system for device exchange. By using ORiN technology, we are developing new applications, such as decision-making navigation or a precision guided treatment system.

  1. Water chemistry - one of the key technologies for safe and reliable nuclear power plant operation

    International Nuclear Information System (INIS)

    Uchida, S.; Otoha, K.; Ishigure, K.

    2006-01-01

    Full text: Full text: Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. Continuous and collaborative efforts of plant manufacturers and plant operator utilities have been focused on optimal water chemistry control, for which, a trio of requirements for water chemistry, a) better reliability of reactor structures and fuels, b) lower occupational exposure, and c) fewer radwaste sources, should be simultaneously satisfied. The research committee related to water chemistry of the Atomic Energy Society of Japan has played important roles to enhance improvement in water chemistry control, to share knowledge and experience with water chemistry among plant operators and manufacturers, to establish common technological bases for plant water chemistry and then to transfer them to the next generation related to water chemistry. Furthermore, the committee has tried to contribute to arranging R and D proposals for further improvement in water chemistry control through road map planning

  2. Water recovery from brines and salt-saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies

    Science.gov (United States)

    This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. When water is recovered from a saline source, a brine conc...

  3. Co-operation for weapon technology transfers and technological/economic development

    International Nuclear Information System (INIS)

    Ebata, K.

    1995-01-01

    This report proposes the basic philosophy of security export controls and future directions thereof, taking into account global changes in the security environment. We hope that appropriate policies based on the proposals will be implemented expeditiously. When the government implements security export control policy, it is most essential to obtain the understanding and co-operation of the general public, as well as exporters. It is also important to closely co-ordinate efforts within the government, including information sharing among the ministries and agencies concerned. Moreover, the government should make efforts to raise the effectiveness of policy measures by fully explaining Japanese security export control policy to other countries, and taking a leading role in international efforts for co-ordination. The proposals in this report provide an overview of future security export controls. Needless to say, there is the need for further and more detailed consideration of individual policy measures. Especially in introducing new controls to prevent the proliferation of weapons of mass destruction and missiles, it is necessary to conduct deliberations taking into full consideration the actual situation surrounding transactions, and to provide a sufficient lead-time. Moreover, it is expected that there will be further, major changes in the international security environment, including the countries of concern. It will be necessary to reexamine security export control policy, recognizing that those changes will alter the premises of such policy. Finally, we wish to state the hope that this report, the first attempt, by the Industrial Structure Council, to focus Japanese thinking on security export controls will act as a catalyst in deepening public understanding of security export controls, and enhancing Japanese security export controls

  4. Planning low-carbon electricity systems under uncertainty considering operational flexibility and smart grid technologies.

    Science.gov (United States)

    Moreno, Rodrigo; Street, Alexandre; Arroyo, José M; Mancarella, Pierluigi

    2017-08-13

    Electricity grid operators and planners need to deal with both the rapidly increasing integration of renewables and an unprecedented level of uncertainty that originates from unknown generation outputs, changing commercial and regulatory frameworks aimed to foster low-carbon technologies, the evolving availability of market information on feasibility and costs of various technologies, etc. In this context, there is a significant risk of locking-in to inefficient investment planning solutions determined by current deterministic engineering practices that neither capture uncertainty nor represent the actual operation of the planned infrastructure under high penetration of renewables. We therefore present an alternative optimization framework to plan electricity grids that deals with uncertain scenarios and represents increased operational details. The presented framework is able to model the effects of an array of flexible, smart grid technologies that can efficiently displace the need for conventional solutions. We then argue, and demonstrate via the proposed framework and an illustrative example, that proper modelling of uncertainty and operational constraints in planning is key to valuing operationally flexible solutions leading to optimal investment in a smart grid context. Finally, we review the most used practices in power system planning under uncertainty, highlight the challenges of incorporating operational aspects and advocate the need for new and computationally effective optimization tools to properly value the benefits of flexible, smart grid solutions in planning. Such tools are essential to accelerate the development of a low-carbon energy system and investment in the most appropriate portfolio of renewable energy sources and complementary enabling smart technologies.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  5. Recent Korean R&D in Satellite Communications

    Science.gov (United States)

    Lee, Ho-Jin; Kim, Jae Moung; Lee, Byung-Seub; Lee, Han; Ryoo, Jang-Soo

    The R&D in satellite communications in Korea has been driven mainly by KCC (Korea Communications Commission) but in a small scale compared to Korea space development program organized by MEST (Ministry of Education, Science and Technology). Public and civilian satcom sector R&D has been led mainly by ETRI with small/medium companies contrary to rare investment in private sector while military sector R&D has been orchestrated by ADD with defense industry. By the COMS (Communication, Ocean and Meteorological Satellite) experimental Ka-band payload, Korea pursues a space qualification of own technology for national infrastructure evolution as well as industrialization of space R&D results. Once COMS launched and space qualified in 2009, subsequent application experiments and new technology R&D like UHDTV will entail service and industry promotion. The payload technology is expected for the next Korean commercial satellites or for new OBP satellites. The COMS ground control system and GNSS ground station technologies are under development for COMS operation and enhanced GNSS services along with advent of Galileo respectively. Satellite broadband mobile VSAT based on DVB-S2/RCS (+M) and low profile tracking antennas have been developed for trains, ships, and planes. While APSI is developing GMR-1 based Thuraya handset functions, ETRI is designing IMT-Advanced satellite radio interface for satellite and terrestrial dual-mode handheld communication system like Japanese STICS, with universities' satellite OFDM researches. A 21GHz Ka-band higher-availability scalable HD broadcasting technology and SkyLife's hybrid satellite IPTV technology are being developed. In near term Korea will extend R&D programs to upgrade the space communication infrastructure for universal access to digital opportunity and safer daily life from disaster, and to promote space green IT industrialization, national security, and space resources sovereign. Japanese stakeholders are invited to establish

  6. Satellite Ocean Heat Content Suite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and Information...

  7. Multidisciplinary studies of the social, economic and political impact resulting from recent advances in satellite meteorology. Volume 6: Executive summary. [technological forecasting spacecraft control/attitude (inclination) -classical mechanics

    Science.gov (United States)

    1975-01-01

    An assessment of the technological impact of modern satellite weather forecasting for the United States is presented. Topics discussed are: (1) television broadcasting of weather; (2) agriculture (crop production); (3) water resources; (4) urban development; (5) recreation; and (6) transportation.

  8. Accessing and operating agricultural machinery: advancements in assistive technology for users with impaired mobility.

    Science.gov (United States)

    Ehlers, Shawn G; Field, William E

    2018-02-14

    This research focused on the advancements made in enabling agricultural workers with impaired mobility to access and operate off-road agricultural machinery. Though not a new concept, technological advancements in remote-controlled lifts, electronic actuators, electric over hydraulic controllers, and various modes of hand controls have advanced significantly allowing operators with limited mobility to resume a high level of productivity in agricultural-related enterprises. In the U.S., approximately 1.7% of the population is living with some form of paralysis or significant mobility impairment. When paired with the 2012 USDA Agriculture Census of 3.2 million farmers, it can be extrapolated that these technologies could impact 54,000 agricultural workers who have encountered disabling injuries or disease which inhibit their ability to access and operate tractors, combines and other self-propelled agricultural machines. Advancements in agricultural specific technologies can allow for many of these individuals to regain the ability to effectively operate machinery once more.

  9. Health effects of technologies for power generation: Contributions from normal operation, severe accidents and terrorist threat

    International Nuclear Information System (INIS)

    Hirschberg, Stefan; Bauer, Christian; Burgherr, Peter; Cazzoli, Eric; Heck, Thomas; Spada, Matteo; Treyer, Karin

    2016-01-01

    As a part of comprehensive analysis of current and future energy systems we carried out numerous analyses of health effects of a wide spectrum of electricity supply technologies including advanced ones, operating in various countries under different conditions. The scope of the analysis covers full energy chains, i.e. fossil, nuclear and renewable power plants and the various stages of fuel cycles. State-of-the-art methods are used for the estimation of health effects. This paper addresses health effects in terms of reduced life expectancy in the context of normal operation as well as fatalities resulting from severe accidents and potential terrorist attacks. Based on the numerical results and identified patterns a comparative perspective on health effects associated with various electricity generation technologies and fuel cycles is provided. In particular the estimates of health risks from normal operation can be compared with those resulting from severe accidents and hypothetical terrorist attacks. A novel approach to the analysis of terrorist threat against energy infrastructure was developed, implemented and applied to selected energy facilities in various locations. Finally, major limitations of the current approach are identified and recommendations for further work are given. - Highlights: • We provide state-of-the-art comparative assessment of energy health risks. • The scope of the analysis should to the extent possible cover full energy chains. • Health impacts from normal operation dominate the risks. • We present novel approach to analysis of terrorist threat. • Limitations include technology choices, geographical coverage and terrorist issues.

  10. Improving the Reliability of Technological Subsystems Equipment for Steam Turbine Unit in Operation

    Science.gov (United States)

    Brodov, Yu. M.; Murmansky, B. E.; Aronson, R. T.

    2017-11-01

    The authors’ conception is presented of an integrated approach to reliability improving of the steam turbine unit (STU) state along with its implementation examples for the various STU technological subsystems. Basing on the statistical analysis of damage to turbine individual parts and components, on the development and application of modern methods and technologies of repair and on operational monitoring techniques, the critical components and elements of equipment are identified and priorities are proposed for improving the reliability of STU equipment in operation. The research results are presented of the analysis of malfunctions for various STU technological subsystems equipment operating as part of power units and at cross-linked thermal power plants and resulting in turbine unit shutdown (failure). Proposals are formulated and justified for adjustment of maintenance and repair for turbine components and parts, for condenser unit equipment, for regeneration subsystem and oil supply system that permit to increase the operational reliability, to reduce the cost of STU maintenance and repair and to optimize the timing and amount of repairs.

  11. A Satellite Mortality Study to Support Space Systems Lifetime Prediction

    Science.gov (United States)

    Fox, George; Salazar, Ronald; Habib-Agahi, Hamid; Dubos, Gregory

    2013-01-01

    Estimating the operational lifetime of satellites and spacecraft is a complex process. Operational lifetime can differ from mission design lifetime for a variety of reasons. Unexpected mortality can occur due to human errors in design and fabrication, to human errors in launch and operations, to random anomalies of hardware and software or even satellite function degradation or technology change, leading to unrealized economic or mission return. This study focuses on data collection of public information using, for the first time, a large, publically available dataset, and preliminary analysis of satellite lifetimes, both operational lifetime and design lifetime. The objective of this study is the illustration of the relationship of design life to actual lifetime for some representative classes of satellites and spacecraft. First, a Weibull and Exponential lifetime analysis comparison is performed on the ratio of mission operating lifetime to design life, accounting for terminated and ongoing missions. Next a Kaplan-Meier survivor function, standard practice for clinical trials analysis, is estimated from operating lifetime. Bootstrap resampling is used to provide uncertainty estimates of selected survival probabilities. This study highlights the need for more detailed databases and engineering reliability models of satellite lifetime that include satellite systems and subsystems, operations procedures and environmental characteristics to support the design of complex, multi-generation, long-lived space systems in Earth orbit.

  12. Experiences from operation of Pomorzany EBFGT plant and directions of technology development

    International Nuclear Information System (INIS)

    Paweleca, A.; Chmielewskia, A.G.; Tyminskia, B.; Zimek, Z.; Licki, J.; Mazurekc, L.; Sobolewskic, R.; Kostrzewskic, J.

    2011-01-01

    Electron beam flue gas treatment technology is one of the most advanced technologies among new generation air pollution control processes. It is the only one process for simultaneous removal of SO 2 and NO x , applied in the industrial scale. Moreover other pollutants as acidic compounds, VOC and dioxins can be removed in one step. Among the other advantages a fully usable by-product – a fertilizer is created in the process. The industrial demonstrational plant was constructed in EPS Pomorzany in Szczecin (Poland). The facility treats the flue gases of maximum flow of 270.000 Nm 3 /h, which are irradiated by four accelerators of 700 keV electron energy and 260 kW beam power each. The removal efficiency of SO 2 in this installation may reach 95%, while removal efficiency of NO x – 70%. Apart of technical analysis also economical calculations of investment and operational costs of EBFGT installations, based on the data obtained on the Polish installation, was performed. The results show that in the case of multi-pollutant control the electron beam technology is strongly competitive to conventional technologies. Description of the experiences obtained during the operation of the plant and further possibilities of the technology development are presented in this paper. (author)

  13. History of Satellite TV Broadcasting and Satellite Broadcasting Market in Turkey

    Directory of Open Access Journals (Sweden)

    Mihalis KUYUCU

    2015-09-01

    Full Text Available The present study analyses the satellite broadcasting that is the first important development that emerged as a result of digitalization in communication technologies and its reflections in Turkey. As the first milestone in the globalization of television broadcasting, satellite broadcasting provided substantial contribution towards the development of the media. Satellite bro adcasting both increased the broadcasting quality and geographical coverage of the television media. A conceptual study was carried out in the first part of the study in connection with the history of satellite broadcasting in Turkey and across the world. In the research part of the study, an analysis was performed on 160 television channels that broadcast in Turkey via Turksat Satellite. Economic structure of the television channels broadcasting in Turkey via satellite was studied and an analysis was perfo rmed on the operational structure of the channels. As a result of the study, it was emphasized that the television channels broadcasting via satellite platform also use other platforms for the purpose of spreading their broadcasts and television channel ow ners make investments in different branches of the media, too. Capital owners invest in different business areas other than the media although television channels broadcasting via Turksat mostly focus on thematic broadcasting and make effort to generate ec onomic income from advertisements. Delays are encountered in the course of the convergence between the new media and television channels that broadcast only from the satellite platform and such television channels experience more economic problems than the other channels. New media and many TV broadcasting platforms emerged as a result of the developments in the communication technologies. In television broadcasting, satellite platform is not an effective platform on its own. Channels make effort to reach t o more people by using other platforms in addition to

  14. Operational tools and applications of EO satellite data to retrieve surface fluxes in semi-arid countries

    Science.gov (United States)

    Tanguy, Maliko

    The objective of the thesis is to develop and evaluate useful tools and applications of Earth Observation (EO) satellite data to estimate surface fluxes in semi-arid countries. In a first part (Chapter 4), we assess the performance of a new parameterisation scheme of ground heat flux (G) to be used in remote sensing (RS) evapotranspiration (ET) estimation methods. The G-parameterisation optimized with AMMA flux data performs well and improves the sensible heat flux (H) and ET retrieved by means of the triangle method (Jiang & Islam, 2001). In a second part (Chapter 5), the triangle method is compared with ET estimated by means of a land surface model (JULES). An attempt is made to calibrate JULES using the triangle method through Monte Carlo simulations, but the two methods supply rather different results, indicating that further intercomparison tasks should be carried out to assess the performance of RS-based algorithms and land surface models in estimating the components of the land surface energy balance. Chapter 6 presents a set of operational examples for retrieving surface fluxes using RS data. The first example is the study of temporal evolution of ET-maps in Western Africa under monsoonal influence. In a second example, we apply the new scheme proposed in Chapter 4 to retrieve and analyse the long term evolution (2000-2009) of the surface energy balance components, G, H and ET at several sites of the Segura Basin (S-E Spain) using MODIS-Terra data (land surface temperature and NDVI). Temporal and spatial distribution of evapotranspiration reveals different controls on ET. (Chapter 6). In the last example, MODIS-Aqua Sea Surface Temperature (SST) is used to validate a mathematical model to retrieve surface fluxes in a Mediterranean coastal lagoon (Mar Menor, S-E Spain). El objetivo de esta tesis es de desarrollar y evaluar herramientas y aplicaciones de la teledetección para estimar flujos de superficie en zonas semiáridas. En una primera parte (Cap

  15. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-03-01

    This report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes a number of potential enhancements to the existing natural gas compression infrastructure that have been identified and qualitatively demonstrated in tests on three different integral engine/compressors in natural gas transmission service.

  16. Use of Modern Information Technologies to Improve Energy Efficiency of Thermal Power Plant Operation

    Science.gov (United States)

    Arakelyan, E. K.; Andryushin, A. V.; Sabanin, V. R.; Mezin, S. V.; Pashchenko, F. F.

    2017-11-01

    The report shows the need for the development and implementation of new approaches to operational management of the modes and the efficiency of the equipment of thermal power plants on the basis of modern information technologies to significantly improve the economy of operation of thermal power plants by complex solution of the tasks of block and station levels. The proposed approach is the adjustment of measured parameters, ensuring the accuracy of all the main parameters required for material, heat and energy balances for each unit and the station in general.

  17. Concept of Operations for Integrated Intelligent Flight Deck Displays and Decision Support Technologies

    Science.gov (United States)

    Bailey, Randall E.; Prinzel, Lawrence J.; Kramer, Lynda J.; Young, Steve D.

    2011-01-01

    The document describes a Concept of Operations for Flight Deck Display and Decision Support technologies which may help enable emerging Next Generation Air Transportation System capabilities while also maintaining, or improving upon, flight safety. This concept of operations is used as the driving function within a spiral program of research, development, test, and evaluation for the Integrated Intelligent Flight Deck (IIFD) project. As such, the concept will be updated at each cycle within the spiral to reflect the latest research results and emerging developments

  18. Safe Operations of Unmanned Systems for Reconnaissance in Complex Environments Army Technology Objective (SOURCE ATO)

    Science.gov (United States)

    Kott, Norbert J., III; Wellfare, Mike; van Lierop, Tracy K.; Mottern, Edward

    2011-05-01

    This paper examines the systems, hardware, and software engineering efforts required to overcome the challenges of operating autonomously around dynamic objects in complex environments. To detect these dynamic objects, the SOURCE ATO will utilize ARL/GDRS developed moving obstacle detection algorithms that will run on the Autonomous Navigation System (ANS) hardware.1 These algorithms use data from multiple sensors including laser detection and ranging (LADAR), Electro-optic, and Millimeter-Wave Radar (MMWR) to produce detections. This limits erroneous identifications that occur when using only one sensor. This paper describes co-development of Safe Operation Technologies between the SOURCE ATO and the ANS development program. This approach allows a more rapid development cycle, which will enable both current and future ground combat vehicle systems the flexibility to readily adopt emerging software, process hardware, and sensor technologies.

  19. ALTERNATIVE REMEDIATION TECHNOLOGY STUDY FOR GROUNDWATER TREATMENT AT 200-PO-1 OPERABLE UNIT AT HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    DADO MA

    2008-07-31

    This study focuses on the remediation methods and technologies applicable for use at 200-PO-I Groundwater Operable Unit (OU) at the Hanford Site. The 200-PO-I Groundwater au requires groundwater remediation because of the existence of contaminants of potential concern (COPC). A screening was conducted on alternative technologies and methods of remediation to determine which show the most potential for remediation of groundwater contaminants. The possible technologies were screened to determine which would be suggested for further study and which were not applicable for groundwater remediation. COPCs determined by the Hanford Site groundwater monitoring were grouped into categories based on properties linking them by remediation methods applicable to each COPC group. The screening considered the following criteria. (1) Determine if the suggested method or technology can be used for the specific contaminants found in groundwater and if the technology can be applied at the 200-PO-I Groundwater au, based on physical characteristics such as geology and depth to groundwater. (2) Evaluate screened technologies based on testing and development stages, effectiveness, implementability, cost, and time. This report documents the results of an intern research project conducted by Mathew Dado for Central Plateau Remediation in the Soil and Groundwater Remediation Project. The study was conducted under the technical supervision of Gloria Cummins and management supervision of Theresa Bergman and Becky Austin.

  20. Improving CANDU plant operation and maintenance through retrofit information technology systems

    International Nuclear Information System (INIS)

    Lupton, L.R.; Judd, R.A.; MacBeth, M.J.

    1998-01-01

    CANDU plant owners are facing an increasingly competitive environment for the generation of electricity. To meet this challenge, all owners have identified that information technology offers opportunities for significant improvements in CANDU operation, maintenance and administration (OM and A) costs. Targeted information technology application areas include instrumentation and control, engineering, construction, operations and plant information management. These opportunities also pose challenges and issues that must be addressed if the full benefits of the advances in information technology are to be achieved. Key among these are system hardware and software maintenance, and obsolescence protection; AECL has been supporting CANDU stations with the initial development and evaluation of systems to improve plant performance and cost. Key initiatives that have been implemented or are in the process of being implemented in some CANDU plants to achieve operational benefits include: critical safety parameter monitor system; advanced computerized annunciation system; plant historical data system; and plant display system. Each system will be described in terms of its role in enhancing current CANDU plant performance and how they will contribute to future CANDU plant performance

  1. "Measuring Operational Effectiveness of Information Technology Infrastructure Library (IIL) and the Impact of Critical Facilities Inclusion in the Process."

    Science.gov (United States)

    Woodell, Eric A.

    2013-01-01

    Information Technology (IT) professionals use the Information Technology Infrastructure Library (ITIL) process to better manage their business operations, measure performance, improve reliability and lower costs. This study examined the operational results of those data centers using ITIL against those that do not, and whether the results change…

  2. Use of Satellite SAR Data for Seismic Risk Management: Results from the Pre-Operational ASI-SIGRIS Project

    Science.gov (United States)

    Salvi, Stefano; Vignoli, Stefano; Zoffoli, Simona; Bosi, Vittorio

    2010-12-01

    The scope of the SIGRIS pilot project is the development of an infrastructure to provide value-added information services for the seismic risk management, assuring a close integration between ground-based and satellite Earth Observation data. The project is presently in the demonstration phase, and various information products are constantly generated and disseminated to the main user, the Italian Civil Protection Department. We show some examples of the products generated during the Crisis management of the 2009 L'Aquila earthquake in Central Italy. We also show an example of products generated for the Knowledge and Prevention service in support of the seismic hazard assessment in the area of the Straits of Messina.

  3. Iodine Satellite

    Science.gov (United States)

    Dankanich, John; Kamhawi, Hani; Szabo, James

    2015-01-01

    This project is a collaborative effort to mature an iodine propulsion system while reducing risk and increasing fidelity of a technology demonstration mission concept. 1 The FY 2014 tasks include investments leveraged throughout NASA, from multiple mission directorates, as a partnership with NASA Glenn Research Center (GRC), a NASA Marshall Space Flight Center (MSFC) Technology Investment Project, and an Air Force partnership. Propulsion technology is often a critical enabling technology for space missions. NASA is investing in technologies to enable high value missions with very small and low-cost spacecraft, even CubeSats. However, these small spacecraft currently lack any appreciable propulsion capability. CubeSats are typically deployed and drift without any ability to transfer to higher value orbits, perform orbit maintenance, or deorbit. However, the iodine Hall system can allow the spacecraft to transfer into a higher value science orbit. The iodine satellite (iSAT) will be able to achieve a (Delta)V of >500 m/s with 1,300 s. The iSAT spacecraft, illustrated in figure 1, is currently a 12U CubeSat. The spacecraft chassis will be constructed from aluminum with a finish to prevent iodine-driven corrosion. The iSAT spacecraft includes full three-axis control using wheels, magnetic torque rods, inertial management unit, and a suite of sensors and optics. The spacecraft will leverage heat generated by spacecraft components and radiators for a passive thermal control system.

  4. Direction of reprocessing technology development based on 30 years operation of Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Nomura, S; Tanaka, T.; Ohshima, H.

    2006-01-01

    Full text: Full text: Recent global interest focuses the possibility of recycling of spent fuel with advanced fast reactor fuel cycle system. Goal of closed fuel cycle is to achieve the maximum use of uranium resources and minimum disposal of waste by multi recycle of TRU as a competitive nuclear energy system. The future reprocessing and fuel fabrication system should be synchronized completely with the advanced reactor system and waste treatment and disposal back-end system to complete closed fuel cycle. To realize such system, current reprocessing system should be changed to handle Pu-U-Minor Actinide with more reductions in the cost and less waste volume, as well as an inherent proliferation resistance. For the successful industrialization of advanced reprocessing technology, it is necessary to combine three key elements of R and D efforts, engineering base demonstration and experiences of plant operation. Tokai Reprocessing Facilities licensed a maximum capacity of 0.7tHM/day began a hot operation in 1977 and reprocessed l,100tHM U02 spent fuel and 20tHM ATR-MOX with a continuous technological improvements under IAEA full scope safeguards. With 30 years experience, candidate of key technologies proposed for realizing the next advanced reprocessing are as follows: 1) Simplified co-extraction process of Pu-Np-U by using multistage centrifugal extractors in stead of pulsed columns; 2) Corrosion free components in acid condition by using corrosion resistant refractory alloys and ceramics; 3) Co-conversion technology to MA containing MOX powder by micro-wave heating method for a short process for MA containing MOX pellets fabrication; 4) Advanced verification of high level radioactive liquid waste combining separation technology of TRU and LLFP elements; 5) Advanced chemical analysis and monitoring system for TRU elements in a plant. These advanced reprocessing technologies will be applied mainly to reprocess the LWR spent fuel accumulated past and future

  5. Operation of the Tevatron satellite refrigerators for .75- and 2.0-kilometer-long magnet strings

    International Nuclear Information System (INIS)

    Rode, C.H.; Andrews, R.A.; Ferry, R.; Gannon, J.; Makara, J.; Martin, M.; Misek, J.; Peterson, T.; Theilacker, J.

    1983-01-01

    The Tevatron magnets at Fermilab are cooled by a hybrid system which consists of a 5000 liters/hr central helium liquefier coupled with a small-diameter liquid transfer line connecting twenty-four satellite refrigerators. The transfer line supplies liquid helium for both the refrigerators and the magnet lead flow as well as liquid nitrogen for the magnet shields. The satellites act as amplifiers with a gain of twelve by using the enthalpy of the helium supplied by the central liquefier as liquid and converting it to 4.5-K refrigeration and then returning it as 300-K gas. This arrangement combines the advantages of a single central facility with those of individual stand-alone units stationed around the ring. The central liquefier has the high efficiency associated with large components but its requirements for distribution of both cryogenic liquids and electric power to the service buildings is reduced. The six compressor buildings supply 20 atm helium to the twenty-four refrigerators through a discharge header located on the berm and a suction header located in the tunnel. The compressor buildings each have four-two stage 58 g/sec screw compressors; each of these has its own oil removal system. The inventory in the ring is controlled at the first compressor building through a cross-connect line to the central liquefier. The suction header is also used as the cooldown line as well as for quench relief. A third header located in the tunnel is the nitrogen collection and relief header

  6. Using Satellite Technology to Increase Professional Communications Among Teachers: a Report of Experiments Conducted by the National Education Association.

    Science.gov (United States)

    National Education Association, Washington, DC. Div. of Instruction and Professional Development.

    The National Education Association (NEA) in conjunction with the National Aeronautics and Space Administration, the National Library of Medicine, The Alaska Broadcasting Commission, and the Pacific PEACESAT Network, conducted four satellite experiments designed to improve professional communication among teachers. These programs were the Satellite…

  7. A plug-and-play brain-computer interface to operate commercial assistive technology.

    Science.gov (United States)

    Thompson, David E; Gruis, Kirsten L; Huggins, Jane E

    2014-03-01

    To determine if a brain-computer interface (BCI) could be used as a plug-and-play input device to operate commercial assistive technology (AT), and to quantify the performance impact of such operation. Using a hardware device designed in our lab, participants (11 with amyotrophic lateral sclerosis, 22 controls) were asked to operate two devices using a BCI. Results were compared to traditional BCI operation by the same users. Performance was assessed using both accuracy and BCI utility, a throughput metric. 95% confidence bounds on performance differences were developed using a linear mixed model. The observed differences in accuracy and throughput were small and not statistically significant. The confidence bounds indicate that if there is a performance impact of using a BCI to control an AT device, the impact could easily be overcome by the benefits of the AT device itself. BCI control of AT devices is possible, and the performance difference appears to be very small. BCI designers are encouraged to incorporate standard outputs into their design to enable future users to interface with familiar AT devices. Brain-computer interface (BCI) control of assistive technology (AT) devices is possible. The performance impact of such control is low when BCIs are commercially available, AT providers can use a BCI as an input device to existing AT devices already in use by their clients.

  8. Remote Sensing of In-Flight Icing Conditions: Operational, Meteorological, and Technological Considerations

    Science.gov (United States)

    Ryerson, Charles C.

    2000-01-01

    Remote-sensing systems that map aircraft icing conditions in the flight path from airports or aircraft would allow icing to be avoided and exited. Icing remote-sensing system development requires consideration of the operational environment, the meteorological environment, and the technology available. Operationally, pilots need unambiguous cockpit icing displays for risk management decision-making. Human factors, aircraft integration, integration of remotely sensed icing information into the weather system infrastructures, and avoid-and-exit issues need resolution. Cost, maintenance, power, weight, and space concern manufacturers, operators, and regulators. An icing remote-sensing system detects cloud and precipitation liquid water, drop size, and temperature. An algorithm is needed to convert these conditions into icing potential estimates for cockpit display. Specification development requires that magnitudes of cloud microphysical conditions and their spatial and temporal variability be understood at multiple scales. The core of an icing remote-sensing system is the technology that senses icing microphysical conditions. Radar and microwave radiometers penetrate clouds and can estimate liquid water and drop size. Retrieval development is needed; differential attenuation and neural network assessment of multiple-band radar returns are most promising to date. Airport-based radar or radiometers are the most viable near-term technologies. A radiometer that profiles cloud liquid water, and experimental techniques to use radiometers horizontally, are promising. The most critical operational research needs are to assess cockpit and aircraft system integration, develop avoid-and-exit protocols, assess human factors, and integrate remote-sensing information into weather and air traffic control infrastructures. Improved spatial characterization of cloud and precipitation liquid-water content, drop-size spectra, and temperature are needed, as well as an algorithm to

  9. Advances in technologies for railway traffic planning and operation; Weiterentwicklung von Technologien fuer Planung und Betrieb des Bahnverkehrs

    Energy Technology Data Exchange (ETDEWEB)

    Kefer, V.; Oetting, A. [DB Netz AG (Germany)

    2008-07-15

    For Railway infrastructure operating companies like DB Netz AG technology plays an important role to achieve their corporate objectives. The paper describes ongoing projects for technical innovation in several kinds of technology. These examples show that technology may not only help to cut costs but it may also increase capacity and punctuality. (orig.)

  10. A survey on the technologies and cases for the cognitive models of nuclear power plant operators

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Chun, Se Woo; Seo, Sang Moon; Lee, Hyun Chul

    1993-04-01

    To enhance the safety and availability of nuclear power plants, it is necessary to develop the methodologies which can systematically analyze the interrelationships between plant operators and main process systems. Operator congnitive models enable to provide an explicit method to analyze how operator's congitive behavior reacts to the behavior of system changes. However, because no adequate model has been developed up to now, it is difficult to take an effective approach for the review, assessment and improvement of human factors. In this study, we have surveyed the techniques and the cases of operator model development, aiming to develop an operator's model as one of human engineering application methodologies. We have analyzed the cognitive characteristics of decision-making, which is one of the principal factors for modeling, and reviewed the methodologies and implementation thechniques used in the cases of the model development. We investigated the tendencies of the model developments by reviewing ten cases and especially CES, INTEROPS and COSIMO models which have been developed or are under development in nuclear fields. Also, we summarized the cognitive characteristics to be considered in the modeling for the purpose of modeling operator's decision-making. For modeling methodologies, we found a trend of the modeling that is software simulations based on the artificial intelligence technologies, especially focused in knowledge representation methods. Based on the results of our survey, we proposed a development approach and several urgent research subjects. We suggested the development simulation tools which can be applicable to the review, assessment and improvement of human factors, by implementing them as softwares using expert system development tools. The results of this study have been applied to our long-term project named 'The Development of Human Engineering Technologies.' (Author)

  11. Identification of Promising Remediation Technologies for Iodine in the UP-1 Operable Unit

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vermeul, Vincent R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-01

    Iodine-129 (129I) generated at the U.S. Department of Energy (DOE) Hanford Site during plutonium production was released to the subsurface, resulting in several large, though dilute, plumes in the groundwater, including the plume in the 200-UP-1 operable unit (OU). Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited, though work is under way to better understand the fate and transport of 129I in the environment and the effectiveness of potential remediation technologies. The recent UP-1 Evaluation Plan for Iodine and report on the Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site provide information on the history of contamination in the 200-UP-1 OU, relevant controlling processes (biological and geochemical), risk, the conceptual site model, and potential remedial options, which provided a foundation for this study. In this study, available information was compiled and used to categorize potential remediation technologies, culminating in a recommendation of promising technologies for further evaluation. Approaches to improve the technical information about promising technologies are also recommended in this study so that a subsequent evaluation of potential remediation alternatives can assess these technologies.

  12. Development, Application, and Transition of Aerosol and Trace Gas Products Derived from Next-Generation Satellite Observations to Operations

    Science.gov (United States)

    Berndt, Emily; Naeger, Aaron; Zavodsky, Bradley; McGrath, Kevin; LaFontaine, Frank

    2016-01-01

    NASA Short-term Prediction Research and Transition (SPoRT) Center has a history of successfully transitioning unique observations and research capabilities to the operational weather community to improve short-term forecasts. SPoRTstrives to bridge the gap between research and operations by maintaining interactive partnerships with end users to develop products that match specific forecast challenges, provide training, and assess the products in the operational environment. This presentation focuses on recent product development, application, and transition of aerosol and trace gas products to operations for specific forecasting applications. Recent activities relating to the SPoRT ozone products, aerosol optical depth composite product, sulfur dioxide, and aerosol index products are discussed.

  13. The technology and science of steady-state operation in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Becoulet, A; Hoang, G T

    2008-01-01

    The steady-state operation of magnetically confined fusion plasmas is considered as one of the 'grand challenges' of future decades, if not the ultimate goal of the research and development activities towards a new source of energy. Reaching such a goal requires the high-level integration of both science and technology aspects of magnetic fusion into self-consistent plasma regimes in fusion-grade devices. On the physics side, the first constraint addresses the magnetic confinement itself which must be made persistent. This means to either rely on intrinsically steady-state configurations, like the stellarator one, or turn the inductively driven tokamak configuration into a fully non-inductive one, through a mix of additional current sources. The low efficiency of the external current drive methods and the necessity to minimize the re-circulating power claim for a current mix strongly weighted by the internal 'pressure driven' bootstrap current, itself strongly sensitive to the heat and particle transport properties of the plasma. A virtuous circle may form as the heat and particle transport properties are themselves sensitive to the current profile conditions. Note that several other factors, e.g. plasma rotation profile, magneto-hydro-dynamics activity, also influence the equilibrium state. In the present tokamak devices, several examples of such 'advanced tokamak' physics research demonstrate the feasibility of steady-state regimes, though with a number of open questions still under investigation. The modelling activity also progresses quite fast in this domain and supports understanding and extrapolation. This high level of physics sophistication of the plasma scenario however needs to be combined with steady-state technological constraints. The technology constraints for steady-state operation are basically twofold: the specific technologies required to reach the steady-state plasma conditions and the generic technologies linked to the long pulse operation of a

  14. Integrated Satellite-HAP Systems

    DEFF Research Database (Denmark)

    Cianca, Ernestina; De Sanctis, Mauro; De Luise, Aldo

    2005-01-01

    Thus far, high-altitude platform (HAP)-based systems have been mainly conceived as an alternative to satellites for complementing the terrestrial network. This article aims to show that HAP should no longer be seen as a competitor technology by investors of satellites, but as a key element...... for an efficient hybrid terrestrial-satellite communication system. Two integrated HAP-satellite scenarios are presented, in which the HAP is used to overcome some of the shortcomings of satellite- based communications. Moreover, it is shown that the integration of HAPs with satellite systems can be used...

  15. GOES-R: Satellite Insight

    Science.gov (United States)

    Fitzpatrick, Austin J.; Leon, Nancy J.; Novati, Alexander; Lincoln, Laura K.; Fisher, Diane K.

    2012-01-01

    GOES-R: Satellite Insight seeks to bring awareness of the GOES-R (Geostationary Operational Environmental Satellite -- R Series) satellite currently in development to an audience of all ages on the emerging medium of mobile games. The iPhone app (Satellite Insight) was created for the GOES-R Program. The app describes in simple terms the types of data products that can be produced from GOES-R measurements. The game is easy to learn, yet challenging for all audiences. It includes educational content and a path to further information about GOESR, its technology, and the benefits of the data it collects. The game features action-puzzle game play in which the player must prevent an overflow of data by matching falling blocks that represent different types of GOES-R data. The game adds more different types of data blocks over time, as long as the player can prevent a data overflow condition. Points are awarded for matches, and players can compete with themselves to beat their highest score.

  16. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. 3: A stochastic rain fade control algorithm for satellite link power via non linear Markow filtering theory

    Science.gov (United States)

    Manning, Robert M.

    1991-01-01

    The dynamic and composite nature of propagation impairments that are incurred on Earth-space communications links at frequencies in and above 30/20 GHz Ka band, i.e., rain attenuation, cloud and/or clear air scintillation, etc., combined with the need to counter such degradations after the small link margins have been exceeded, necessitate the use of dynamic statistical identification and prediction processing of the fading signal in order to optimally estimate and predict the levels of each of the deleterious attenuation components. Such requirements are being met in NASA's Advanced Communications Technology Satellite (ACTS) Project by the implementation of optimal processing schemes derived through the use of the Rain Attenuation Prediction Model and nonlinear Markov filtering theory.

  17. Teaching sodium fast reactor technology and operation for the present and future generations of SFR users

    International Nuclear Information System (INIS)

    Latge, Christian; Rodriguez, Gilles; Baque, Francois; Leclerc, Arnaud; Martin, Laurent; Vray, Bernard; Romanetti, Pascale

    2011-01-01

    This paper provides a description of the education and training activities related to sodium fast reactors, carried out respectively in the French Sodium and Liquid Metal School (ESML) created in 1975 and located in France (at the CEA Cadarache Research Centre), in the Fast Reactor Operation and Safety School (FROSS) created in 2005 at the Phenix plant, and in the Institut National des Sciences et Techniques Nucleaires (INSTN). It presents their recent developments and the current collaborations throughout the world with some other nuclear organizations and industrial companies. Owing to these three entities, CEA provides education and training sessions for students, researchers, and operators involved in the operation or development of sodium fast reactors and related experimental facilities. The sum of courses provided by CEA through its sodium school, FROSS, and INSTN organizations is a unique valuable amount of knowledge on sodium fast reactor design, technology, safety and operation experience, decommissioning aspects and practical exercises. It is provided for the national demand and, since the last ten years, it is extensively opened to foreign countries. Over more than 35 years, the ESML, FROSS, and INSTN have demonstrated their flexibility in adapting their courses to the changing demand in the sodium fast reactor field, operation of PHENIX and SUPERPHENIX plants, and decommissioning and dismantling operations. The results of this ambitious and constant strategy are first sharing of knowledge obtained from experimental studies carried out in research laboratories and operational feedback from reactors, secondly standardized information on safety, and finally the creation of a 'sodium community' that debates, shares the knowledge, and suggests new tracks for a better definition of design and operating rules. (author)

  18. Development of a Global Validation Package for Satellite Oceanic Aerosol Optical Thickness Retrieval Based on AERONET Observations and Its Application to NOAA/NESDIS Operational Aerosol Retrievals.

    Science.gov (United States)

    Zhao, Tom X.-P.; Stowe, Larry L.; Smirnov, Alexander; Crosby, David; Sapper, John; McClain, Charles R.

    2002-02-01

    In this paper, a global validation package for satellite aerosol optical thickness retrieval using the Aerosol Robotic Network (AERONET) observations as ground truth is described. To standardize the validation procedure, the optimum time-space match-up window, the ensemble statistical analysis method, the best selection of AERONET channels, and the numerical scheme used to interpolate/extrapolate these observations to satellite channels have been identified through sensitivity studies. The package is shown to be a unique tool for more objective validation and intercomparison of satellite aerosol retrievals, helping to satisfy an increasingly important requirement of the satellite aerosol remote sensing community. Results of applying the package to the second-generation operational aerosol observational data (AEROBS) from the NOAA-14 Advanced Very High Resolution Radiometer (AVHRR) in 1998 and to the same year aerosol observation data [Clouds and the Earth's Radiant Energy System-Single Scanner Foodprint version 4 (CERES-SSF4)] from the Tropical Rainfall Measuring Mission (TRMM) Visible Infrared Scanner (VIRS) are presented as examples of global validation. The usefulness of the package for identifying improvements to the aerosol optical thickness retrieval algorithm is also demonstrated.The principal causes of systematic errors in the current National Oceanic and Atmospheric Administration (NOAA)/National Environmental Satellite, Data, and Information Service (NESDIS) operational aerosol optical thickness retrieval algorithm have been identified and can be reduced significantly, if the correction and adjustment suggested from the global validation are adopted. Random error in the retrieval is identified to be a major source of error on deriving the effective Ångström wavelength exponent and may be associated with regional differences in aerosol particles, which are not accounted for in the current second-generation operational algorithm. Adjustments to the

  19. 48{sup th} Annual meeting on nuclear technology (AMNT 2017). Key topic / Enhanced safety and operation excellence. Focus session: International operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Mohrbach, Ludger [VGB PowerTech e.V., Essen (Germany). Abteilung ' ' N' ' ; Gottschling, Helge

    2017-11-15

    Summary report on the Key Topic Enhanced Safety and Operation Excellence: Focus Session: International Operational Experience and the Nuclear Energy Campus of the 48{sup th} Annual Meeting on Nuclear Technology (AMNT 2017) held in Berlin, 16 to 17 May 2017.

  20. Deployable Network Operations Center (DNOC): A Collaborative Technology Infostructure Designed to Support Tactical Sensor-Decision Maker Network Operations

    National Research Council Canada - National Science Library

    Johnson, Shawn E

    2005-01-01

    .... The increasing use of expeditionary and special operations forces operating in ad hoc, dynamic, and tactical environments poses a need for an adaptable, flexible, and responsive Deployable Network Operations Center (DNOC...

  1. The experiences from implementing decision support technology to address water management plans in an operational environment

    Energy Technology Data Exchange (ETDEWEB)

    McArdle, S. [4DM Inc., Toronto, ON (Canada); Tonkin, C. [Ontario Power Generation Inc., Toronto, ON (Canada)

    2005-07-01

    This presentation described Ontario Power Generation's experience in implementing a decision support tool to enable water management plans for its operations through technology solutions. All hydroelectric producers in Ontario are required to make water management plans in order to maintain water levels and flows in their operating regions. This regulation was created in response to environmental concerns as well as to changes in the electricity market and growth of residential and cottage property near water bodies. In order to keep informed and to address compliance issues, operators and managers need situation awareness information to balance operational decisions. The online Adaptive Water Management System (AWMS) decision support tool was recently adopted by Ontario Power Generation to provide information needed to address the requirements of Water Management Plans. The AWMS provides users with information on water levels and flows; the ability to implement, modify, and manage daily instructions at the facilities; track conditions in the watershed; and, provide a status of compliance. The tool was developed by 4DM Inc. in collaboration with Ottawa St. Lawrence Plant Group for the Madawaska River Watershed Management, a model partnership between operator, regulator and Public Advisory Committee to develop a water management plan.

  2. Environmental Audit at Santa Barbara Operations, Special Technologies Laboratory, Remote Sensing Laboratory, North Las Vegas Facilities

    International Nuclear Information System (INIS)

    1991-03-01

    This report documents the results of the Environmental Audit of selected facilities under the jurisdiction of the DOE Nevada Operations Office (NV) that are operated by EG and G Energy Measurements, Incorporated (EG and G/EM). The facilities included in this Audit are those of Santa Barbara Operation (SBO) at Goleta, California; the Special Technologies Laboratory (STL) at Santa Barbara, California; and Las Vegas Area Operations (LVAO) including the Remote Sensing Laboratory (RSL) at Nellis Air Force Base in Nevada, and the North Las Vegas Facilities (NLVF) at North Las Vegas, Nevada. The Environmental Audit was conducted by the US Department of Energy's (DOE) Office of Environmental Audit, commencing on January 28, 1991 and ending on February 15, 1991. The scope of the Audit was comprehensive, addressing environmental activities in the technical areas of air, surface water/drinking water, groundwater, waste management, toxic and chemical materials, quality assurance, radiation, inactive waste sites, and environmental management. Also assessed was compliance with applicable Federal, state, and local regulations and requirements; internal operating requirements; DOE Orders; and best management practices. 8 tabs

  3. Improving CANDU plant operation and maintenance through retrofit information technology systems

    International Nuclear Information System (INIS)

    Lupton, L. R.; Judd, R. A.

    1998-01-01

    CANDU plant owners are facing an increasingly competitive environment for the generation of electricity. To meet this challenge, all owners have identified that information technology offers opportunities for significant improvements in CANDU operation, maintenance and administration (OM and A) costs. Targeted information technology application areas include instrumentation and control, engineering, construction, operations and plant information management. These opportunities also pose challenges and issues that must be addressed if the full benefits of the advances in information technology are to be achieved. Key among these are system hardware and software maintenance, and obsolescence protection. AECL has been supporting CANDU stations with the initial development and evaluation of systems to improve plant performance and cost. Five key initiatives that have been implemented or are in the process of being implemented in some CANDU plants to achieve cooperational benefits include: critical safety parameter monitor system; advanced computerized annunciation system; plant historical data system; plant display system; and digital protection system. Each system will be described in terms of its role in enhancing current CANDU plant performance and how they will contribute to future CANDU plant performance. (author). 8 refs., 3 figs

  4. Proceedings of the Fourteenth NASA Propagation Experimenters Meeting (NAPEX 14) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Davarian, Faramaz (Editor)

    1990-01-01

    The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. NAPEX XIV was held on May 11, 1990, at the Balcones Research Centers, University of Texas, Austin, Texas. The meeting was organized into two technical sessions: Satellite (ACTS) and the Olympus Spacecraft, while the second focused on the fixed and mobile satellite propagation studies and experiments. Following NAPEX XIV, the ACTS Miniworkshop was held at the Hotel Driskill, Austin, Texas, on May 12, 1990, to review ACTS propagation activities since the First ACTS Propagation Studies Workshop was held in Santa Monica, California, on November 28 and 29, 1989.

  5. Telelibrary: Library Services via Satellite.

    Science.gov (United States)

    Liu, Rosa

    1979-01-01

    Investigates the provision of library services via satellite, explains briefly the operation and advantages of communication satellites, and discusses the various telecommunications equipment and services which, when coupled with satellite transmission, will enhance library activities. Demand trend projections for telecommunications services…

  6. Safe Operation of Nuclear Power Plants: Impacts of Human and Organisational Factors and Emerging Technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    In co-operation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on ''Safe Operation of Nuclear Power Plants: Impacts of Human and Organisational Factors and Emerging Technologies'' in the period August 27-August 31, 2001. The Summer School was intended for scientists, engineers and technicians working for nuclear installations, engineering companies, industry and members of universities and research institutes, who wanted to broaden their nuclear background by getting acquainted with Man-Technology-Organisation-related subjects and issues. The Summer School should also serve to transfer knowledge to the ''young generation'' in the nuclear field. The following presentations were given: (1) Overview of the Nuclear Community and Current issues, (2) The Elements of Safety Culture; Evaluation of Events, (3) Quality Management (QM), (4) Probabilistic Risk Assessment (PSA), (5) Human Behaviour from the Viewpoint of Industrial Psychology, (6) Technical tour of the Halden Project Experimental Facilities, (7) Human Factors in Control Room Design, (8) Computerised Operator Support Systems (COSSs) and (9) Artificial Intelligence; a new Approach. Most of the contributions are overhead figures from spoken lectures.

  7. Transmission Technologies and Operational Characteristic Analysis of Hybrid UHV AC/DC Power Grids in China

    Science.gov (United States)

    Tian, Zhang; Yanfeng, Gong

    2017-05-01

    In order to solve the contradiction between demand and distribution range of primary energy resource, Ultra High Voltage (UHV) power grids should be developed rapidly to meet development of energy bases and accessing of large-scale renewable energy. This paper reviewed the latest research processes of AC/DC transmission technologies, summarized the characteristics of AC/DC power grids, concluded that China’s power grids certainly enter a new period of large -scale hybrid UHV AC/DC power grids and characteristics of “strong DC and weak AC” becomes increasingly pro minent; possible problems in operation of AC/DC power grids was discussed, and interaction or effect between AC/DC power grids was made an intensive study of; according to above problems in operation of power grids, preliminary scheme is summarized as fo llows: strengthening backbone structures, enhancing AC/DC transmission technologies, promoting protection measures of clean energ y accessing grids, and taking actions to solve stability problems of voltage and frequency etc. It’s valuable for making hybrid UHV AC/DC power grids adapt to operating mode of large power grids, thus guaranteeing security and stability of power system.

  8. Building a Smooth Medical Service for Operating Room Using RFID Technologies

    Directory of Open Access Journals (Sweden)

    Lun-Ping Hung

    2014-01-01

    Full Text Available Due to the information technology advancement, the feasibility for the establishment of mobile medical environments has been strengthened. Using RFID to facilitate the tracing of patients’ mobile position in hospital has attracted more attentions from researchers due to the demand on advanced features. Traditionally, the management of surgical treatment is generally manually operated and there is no consistent operating procedure for patients transferring among wards, surgery waiting rooms, operating rooms, and recovery rooms, resulting in panicky and urgent transferring work among departments and, thus, leading to delays and errors. In this paper, we propose a new framework using radio frequency identification (RFID technology for a mobilized surgical process monitoring system. Through the active tag, an application management system used before, during, and after the surgical processes has been proposed. The concept of signal level matrix, SLM, was proposed to accurately identify patients and dynamically track patients’ location. By updating patient’s information real-time, the preprocessing time needed for various tasks and incomplete transfers among departments can be reduced, the medical resources can be effectively used, unnecessary medical disputes can be reduced, and more comprehensive health care environment can be provided. The feasibility and effectiveness of our proposed system are demonstrated with a number of experimental results.

  9. Safe Operation of Nuclear Power Plants: Impacts of Human and Organisational Factors and Emerging Technologies

    International Nuclear Information System (INIS)

    2001-01-01

    In co-operation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on ''Safe Operation of Nuclear Power Plants: Impacts of Human and Organisational Factors and Emerging Technologies'' in the period August 27-August 31, 2001. The Summer School was intended for scientists, engineers and technicians working for nuclear installations, engineering companies, industry and members of universities and research institutes, who wanted to broaden their nuclear background by getting acquainted with Man-Technology-Organisation-related subjects and issues. The Summer School should also serve to transfer knowledge to the ''young generation'' in the nuclear field. The following presentations were given: (1) Overview of the Nuclear Community and Current issues, (2) The Elements of Safety Culture; Evaluation of Events, (3) Quality Management (QM), (4) Probabilistic Risk Assessment (PSA), (5) Human Behaviour from the Viewpoint of Industrial Psychology, (6) Technical tour of the Halden Project Experimental Facilities, (7) Human Factors in Control Room Design, (8) Computerised Operator Support Systems (COSSs) and (9) Artificial Intelligence; a new Approach. Most of the contributions are overhead figures from spoken lectures

  10. Internal Impedance of the Lithium-Ion Secondary Cells Used for Reimei Satellite after the Eleven Years Operation in Space

    Directory of Open Access Journals (Sweden)

    Sone Yoshitsugu

    2017-01-01

    The lithium-ion secondary cell of the REIMEI battery was designed using spinel manganese oxide type material for the positive electrode, and the graphitized type carbon for the negative electrode. The cell case was made of aluminium laminated film and the structure was reinforced by the epoxy resin and aluminium housing. After the operation of eleven years, the cells still maintain the appropriate uniform balance and operative. In order to identify the internal condition of the battery/cell, we calculated the ac impedance by the pulse duration to the on-board battery.

  11. Shuttle Imaging Radar-C mission operations - Technology test bed for Earth Observing System synthetic aperture radar

    Science.gov (United States)

    Trimble, J. P.; Collins, C. E.

    1992-01-01

    The mission operations for the Space Radar Lab (SRL), particularly in the areas of real-time replanning and science activity coordination, are presented. The two main components of SRL are the Shuttle Imaging Radar-C and the X-Band Synthetic Aperture Radar. The Earth Observing System SAR will be a multispectral, multipolarization radar satellite that will provide information over an entire decade, permitting scientists to monitor large-scale changes in the earth's environment over a long period of time.

  12. The Swedish Small Satellite Program for Space Plasma Investigations

    Science.gov (United States)

    Marklund, Göran; André, Mats; Lundin, Rickard; Grahn, Sven

    2004-04-01

    The success of the Swedish small satellite program, in combination with an active participation by Swedish research groups in major international missions, has placed Sweden in the frontline of experimental space research. The program started with the development of the research satellite Viking which was launched in 1986, for detailed investigations of the aurora. To date, Sweden has developed and launched a total of six research satellites; five for space plasma investigations; and the most recent satellite Odin, for research in astronomy and aeronomy. These fall into three main categories according to their physical dimension, financial cost and level of ambition: nano-satellites, micro-satellites, and mid-size satellites with ambitious scientific goals. In this brief review we focus on five space plasma missions, for which operations have ended and a comprehensive scientific data analysis has been conducted, which allows for a judgement of their role and impact on the progress in auroral research. Viking and Freja, the two most well-known missions of this program, were pioneers in the exploration of the aurora. The more recent satellites, Munin, Astrid, and Astrid-2 (category 1 and 2), proved to be powerful tools, both for testing new technologies and for carrying out advanced science missions. The Swedish small satellite program has been internationally recognized as cost efficient and scientifically very successful.

  13. Evaluation of Temperature and Material Combinations on Several Lubricants for Use in the Geostationary Operational Environmental Satellite (GOES) Mission Filter Wheel Bearings

    Science.gov (United States)

    Jansen, Mark J.; Jones, William R., Jr.; Predmore, Roamer E.

    2001-01-01

    A bearing test apparatus was used to investigate lubricant degradation rates and elastohydrodynamic transition temperatures for several perfluoropolyether (Krytox) formulations, a pentasilahydrocarbon, and a synthetic hydrocarbon (Pennzane 2001 A) in an MPB 1219 bearing, which is used in the geostationary operational environmental satellite (GOES) mission filter wheel assembly. Test conditions were the following: 1000-hr duration, 75 C, 20 lb axial load, vacuum level less than 1 x 10(exp -6) Torr, and a 600-rpm rotational speed. Baseline tests were performed using unformulated Krytox 143AB, the heritage lubricant. Krytox additive formulations showed small reductions in degradation rate. Krytox GPL-105, a higher viscosity version, yielded the least amount of degradation products. Both the silahydrocarbon and Pennzane 2001A showed no signs of lubricant degradation and had ample amounts of free oil at test conclusion.

  14. Enhancing the ecological and operational characteristics of water treatment units at TPPs based on baromembrane technologies

    Science.gov (United States)

    Chichirova, N. D.; Chichirov, A. A.; Filimonova, A. A.; Saitov, S. R.

    2017-12-01

    The innovative baromembrane technologies for water demineralization were introduced at Russian TPPs more than 25 years ago. While being used in the power engineering industry of Russia, these technologies demonstrated certain advantages over the traditional ion-exchange and thermal technologies of makeup water treatment for steam boilers. Water treatment units based on the baromembrane technology are compact, easy to operate, and highly automated. The experience gained from the use of these units shows that their reliability depends directly on preliminary water treatment. The popular water pretreatment technology with coagulation by aluminum oxychloride proved to be inefficient during the seasonal changes of source water quality that occurs at some stations. The use of aluminum coagulant at pH 8 and higher does not ensure the stable and qualitative pretreatment regime: soluble aluminum forms slip on membranes of the ultrafiltration unit, thereby causing pollution and intoxication as well as leading to structural damages or worsening of mechanical properties of the membranes. The problem of increased pH and seasonal changes of the source water quality can be solved by substitution of the traditional coagulant into a new one. To find the most successful coagulant for water pretreatment, experiments have been performed on both qualitative and quantitative analysis of the content of natural organic matters in the Volga water and their structure. We have developed a software program and measured the concentrations of soluble aluminum and iron salts at different pH values of the source water. The analysis of the obtained results has indicated that iron sulfate at pH 6.0-10.2, in contrast to aluminum oxychloride, is not characterized by increased solubility. Thus, the basic process diagrams of water pretreatment based on baromembrane technologies with pretreatment through coagulation by iron salts and wastewater amount reducing from 60-40 to 5-2% have been introduced for

  15. Satellite pattern classification using charge transfer devices

    Science.gov (United States)

    Snyder, W. E.; Husson, C.; Benz, H. F.

    1979-01-01

    The potential uses of Charge Transfer Devices (CTDs) in pattern classification operations are explored. The needs for a hardware-based pattern classifier are established, and a matrix multiplication subsystem based upon a sum-of-products CTD is presented. Applications of the subsystem to the classification of multi-modal Gaussian distributions in general and to LANDSAT data processing in particular are discussed. Finally, the potential impact of this technology on satellite data processing methodologies is discussed.

  16. On small satellites for oceanography: A survey

    OpenAIRE

    Guerra, Andre G.C.; Francisco, Frederico; Villate, Jaime; Agelet, Fernando; Bertolami, Orfeu; Rajan, Kanna

    2016-01-01

    The recent explosive growth of small satellite operations driven primarily from an academic or pedagogical need, has demonstrated the viability of commercial-off-the-shelf technologies in space. They have also leveraged and shown the need for development of compatible sensors primarily aimed for Earth observation tasks including monitoring terrestrial domains, communications and engineering tests. However, one domain that these platforms have not yet made substantial inroads into, is in the o...

  17. Modeling the impact of improved aircraft operations technologies on the environment and airline behavior

    Science.gov (United States)

    Foley, Ryan Patrick

    The overall goal of this thesis is to determine if improved operations technologies are economically viable for US airlines, and to determine the level of environmental benefits available from such technologies. Though these operational changes are being implemented primarily with the reduction of delay and improvement of throughput in mind, economic factors will drive the rate of airline adoption. In addition, the increased awareness of environmental impacts makes these effects an important aspect of decision-making. Understanding this relationship may help policymakers make decisions regarding implementation of these advanced technologies at airports, and help airlines determine appropriate levels of support to provide for these new technologies. In order to do so, the author models the behavior of a large, profit-seeking airline in response to the introduction of advanced equipage allowing improved operations procedures. The airline response included changes in deployed fleet, assignment of aircraft to routes, and acquisition of new aircraft. From these responses, changes in total fleet-level CO2 emissions and airline profit were tallied. As awareness of the environmental impact of aircraft emissions has grown, several agencies (ICAO, NASA) have moved to place goals for emissions reduction. NASA, in particular, has set goals for emissions reduction through several areas of aircraft technology. Among these are "Operational Improvements," technologies available in the short-term through avionics and airport system upgrades. The studies in this thesis make use of the Fleet-Level Environmental Evaluation Tool (FLEET), a simulation tool developed by Purdue University in support of a NASA-sponsored research effort. This tool models the behavior of a large, profit-seeking airline through an allocation problem. The problem is contained within a systems dynamics type approach that allows feedback between passenger demand, ticket price, and the airline fleet composition

  18. A role for arms control and technology in peace-keeping operations

    Energy Technology Data Exchange (ETDEWEB)

    Indusi, J.; Allentuck, J.

    1995-08-01

    This paper describes a potential role for arms control monitoring technology in peace-keeping operations. The basic idea is to utilize monitoring technology developed or suggested for treaty verification (primarily Conventional Forces Europe (CFE), but other treaties as well) to minimize the exposure of humans as part of ``peace-keeping`` forces in various trouble spots throughout the world. The impetus comes from the dangers and high costs of stationing peace-keeping of forces in areas such as Bosnia-Herzegovina. Aside from the costs associated with such efforts the loss of life has escalated recently from 743 peace keepers lost from 1948 to 1988, to 180 lives lost in 1993 alone. Some potential advantages to using technology for certain monitoring roles are discussed in the paper and include: minimizing exposure/risk to peace-keeping personnel from hostile fire, hostage taking, etc.; sharable technology will allow all parties to view results, assess violations or transgressions, etc.; can be applied to equipment, railways, roads, etc., to confirm human and other monitoring capabilities; and provides data to settle disputes on which side initiated hostilities.

  19. The FSM technology -- Operational experience and improvements in local corrosion analysis

    International Nuclear Information System (INIS)

    Stroemmen, R.; Horn, H.; Gartland, P.O.; Wold, K.

    1996-01-01

    FSM (Field Signature Method) is a non-intrusive monitoring technique based on a patented principle, developed for the purpose of detection and monitoring of both general and localized corrosion, erosion and cracking in steel and metal structures, piping systems and vessels. Since 1991 FSM has been used for a wide range of applications e.g. for buried and open pipelines, process piping offshore, subsea pipelines and flowlines, applications in the nuclear power industry and in materials research in general. This paper describes typical applications of the FSM technology, and presents operational experience from some of the landbased and subsea installations. The paper also describes recent enhancements in the FSM technology and in the analysis of FSM readings, allowing for monitoring and detailed quantification of pitting and mesa corrosion, and of corrosion in welds

  20. A Feasible Approach for Implementing Greater Levels of Satellite Autonomy

    Science.gov (United States)

    Lindsay, Steve; Zetocha, Paul

    2002-01-01

    In this paper, we propose a means for achieving increasingly autonomous satellite operations. We begin with a brief discussion of the current state-of-the-art in satellite ground operations and flight software, as well as the real and perceived technical and political obstacles to increasing the levels of autonomy on today's satellites. We then present a list of system requirements that address these hindrances and include the artificial intelligence (AI) technologies with the potential to satisfy these requirements. We conclude with a discussion of how the space industry can use this information to incorporate increased autonomy. From past experience we know that autonomy will not just "happen," and we know that the expensive course of manually intensive operations simply cannot continue. Our goal is to present the aerospace industry with an analysis that will begin moving us in the direction of autonomous operations.