WorldWideScience

Sample records for technology research directions

  1. 1997 Annual report. Technological Research Direction

    International Nuclear Information System (INIS)

    Instituto Nacional de Investigaciones Nucleares

    1998-01-01

    This document describes the results for one year of work. Here is presented the goals of the Technological Research Direction of the National Institute of Nuclear Research in Mexico, which is promoting and developing the production of high technologies in the nuclear sciences and related disciplines as well as to generate the technologies, products, quality insume for academic organizations, health, industrial and commercial that are required. (Author)

  2. Nanoscale Science, Engineering and Technology Research Directions

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  3. MBR Technology: future research directions

    NARCIS (Netherlands)

    Brouwer, H.; Temmink, B.G.; Remy, M.J.J.; Geilvoet, S.

    2005-01-01

    Cutting down the operational costs of MBR technology will be the key driver for research. This article outlines some research areas and specific topics that potentially will contribute to lower costs. Special attention to these topics should be given the coming years. Long term research should focus

  4. 1997 Annual report. Technological Research Direction; Informe Anual 1997. Direccion de Investigacion Tecnologica

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This document describes the results for one year of work. Here is presented the goals of the Technological Research Direction of the National Institute of Nuclear Research in Mexico, which is promoting and developing the production of high technologies in the nuclear sciences and related disciplines as well as to generate the technologies, products, quality insume for academic organizations, health, industrial and commercial that are required. (Author)

  5. Advances and Research Directions in Data-Warehousing Technology

    Directory of Open Access Journals (Sweden)

    Mukesh Mohania

    1999-11-01

    Full Text Available Information is one of the most valuable assets of an organisation and when used properly can assist in intelligent decision making that can significantly improve the functioning of an organisation. Data Warehousing is a recent technology that allows information to be easily and efficiently accessed for decision-making activities by collecting data from many operational, legacy and possibly heterogeneous data sources. On-Line Analytical Processing (OLAP tools are well-suited for complex data analysis, such as multi-dimensional data analysis, and to assist in decision support activities while data mining tools take the process one step further and actively search the data for patterns and hidden knowledge in the data held in the warehouse. Many organisations are building, or are planning to develop, a data warehouse for their operational and decision support needs. In this paper, we present an overview of data warehousing, multi-dimensional databases, OLAP and data mining technology and discuss the directions of current research in the area. We also discuss recent developments in data warehouse modelling, view selection and maintenance, indexing schemes, parallel query processing and data mining issues. A number of technical issues for exploratory research are presented and possible solutions are also discussed.

  6. Laboratory Directed Research ampersand Development Program

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments

  7. 77 FR 46805 - Small Business Innovation Research Program Policy Directive

    Science.gov (United States)

    2012-08-06

    ... Vol. 77 Monday, No. 151 August 6, 2012 Part II Small Business Administration 13 CFR Chapter I Small Business Innovation Research Program Policy Directive; Small Business Technology Transfer Program Policy Directive; Small Business Innovation Research (SBIR) Program and Small Business Technology...

  8. Nuclear medicine. Medical technology research

    International Nuclear Information System (INIS)

    Lerch, H.; Jigalin, A.

    2005-01-01

    Aim, method: the scientific publications in the 2003 and 2004 issues of the journal Nuklearmedizin were analyzed retrospectively with regard to the proportion of medical technology research. Results: out of a total of 73 articles examined, 9 (12%) were classified as medical technology research, that is, 8/15 of the original papers (16%) and one of the case reports (5%). Of these 9 articles, 44% (4/9) focused on the combination of molecular and morphological imaging with direct technical appliance or information technology solutions. Conclusion: medical technology research is limited in the journal's catchment area. The reason for this is related to the interdependency between divergent development dynamics in the medical technology industry's locations, the many years that the area of scintigraphic technology has been underrepresented, research policy particularly in discrepancies in the promotion of molecular imaging and a policy in which health is not perceived as a predominantly good and positive economic factor, but more as a curb to economic development. (orig.)

  9. Proceedings of the advanced research and technology development direct utilization, instrumentation and diagnostics contractors' review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Geiling, D.W. (USDOE Morgantown Energy Technology Center, WV (USA)); Goldberg, P.M. (eds.) (USDOE Pittsburgh Energy Technology Center, PA (USA))

    1990-01-01

    The 1990 Advanced Research and Technology Development (AR TD) Direct Utilization, and Instrumentation and Diagnostics Contractors Review Meeting was held September 16--18, 1990, at the Hyatt at Chatham Center in Pittsburgh, PA. The meeting was sponsored by the US Department of Energy (DOE), Office of Fossil Energy, and the Pittsburgh and Morgantown Energy Technology Centers. Each year the meeting provides a forum for the exchange of information among the DOE AR TD contractors and interested parties. This year's meeting was hosted by the Pittsburgh Energy Technology Center and was attended by 120 individuals from industry, academia, national laboratories, and other governmental agencies. Papers were presented on research addressing coal surface, science, devolatilization and combustion, ash behavior, emission controls for gases particulates, fluid bed combustion and utilization in diesels and turbines. Individual reports are processed separately for the data bases.

  10. 1996 Laboratory directed research and development annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.; Chavez, D.L.; Whiddon, C.P. [comp.

    1997-04-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  11. Geysers advanced direct contact condenser research

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, J.; Bahning, T.; Bharathan, D.

    1997-12-31

    The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for the Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.

  12. Five disruptive technology directions for 5G

    DEFF Research Database (Denmark)

    Boccardi, Federico; W. Heath Jr., Robert; Lozano, Angel

    2014-01-01

    New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive ...

  13. UNIVERSITY RESEARCH PROGRAMS IN ROBOTICS, TECHNOLOGIES FOR MICROELECTROMECHANICAL SYSTEMS IN DIRECTED STOCKPILE WORK RADIATION AND ENGINEERING CAMPAIGNS - 2005-06 FINAL ANNUAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    James S. Tulenko; Dean Schoenfeld; David Hintenlang; Carl Crane; Shannon Ridgeway; Jose Santiago; Charles Scheer

    2006-11-30

    The research performed by the University of Florida (UF) is directed to the development of technologies that can be utilized at a micro-scale in varied environments. Work is focused on micro-scale energy systems, visualization, and mechanical devices. This work will impact the NNSA need related to micro-assembly operations. The URPR activities are executed in a University environment, yet many applications of the resulting technologies may be classified or highly restrictive in nature. The NNSA robotics technologists apply an NNSA needs focus to the URPR research, and actively work to transition relevant research into the deployment projects in which they are involved. This provides a “Research to Development to Application” structure within which innovative research has maximum opportunity for impact without requiring URPR researchers to be involved in specific NNSA projects. URPR researchers need to be aware of the NNSA applications in order to ensure the research being conducted has relevance, the URPR shall rely upon the NNSA sites for direction.

  14. UNIVERSITY RESEARCH PROGRAMS IN ROBOTICS, TECHNOLOGIES FOR MICROELECTROMECHANICAL SYSTEMS IN DIRECTED STOCKPILE WORK RADIATION AND ENGINEERING CAMPAIGNS - 2005-2006 FINAL ANNUAL REPORT

    International Nuclear Information System (INIS)

    James S. Tulenko; Dean Schoenfeld; David Hintenlang; Carl Crane; Shannon Ridgeway; Jose Santiago; Charles Scheer

    2006-01-01

    The research performed by the University of Florida (UF) is directed to the development of technologies that can be utilized at a micro-scale in varied environments. Work is focused on micro-scale energy systems, visualization, and mechanical devices. This work will impact the NNSA need related to micro-assembly operations. The URPR activities are executed in a University environment, yet many applications of the resulting technologies may be classified or highly restrictive in nature. The NNSA robotics technologists apply an NNSA needs focus to the URPR research, and actively work to transition relevant research into the deployment projects in which they are involved. This provides a ''Research to Development to Application'' structure within which innovative research has maximum opportunity for impact without requiring URPR researchers to be involved in specific NNSA projects. URPR researchers need to be aware of the NNSA applications in order to ensure the research being conducted has relevance, the URPR shall rely upon the NNSA sites for direction

  15. Jeab at 50: coevolution of research and technology.

    Science.gov (United States)

    Lattal, Kennon A

    2008-01-01

    Evidence of how behavioral research and technology have evolved together abounds in the history of the Journal of the Experimental Analysis of Behavior (JEAB). Technology from outside the discipline (exogenous), from such disciplines as electronics and computer science, has been adapted for use in behavioral research. Technology from within the discipline (endogenous) has developed from both basic behavioral research and existing apparatus. All of these sources of technology have contributed to the corpus of behavioral research as it has evolved in JEAB. Such research, in turn, has provided the environmental pressure necessary for continuing technological evolution both within and outside the discipline. The new technology thus evolved further spurs research along in novel directions. This dynamic coevolutionary interplay between research and technology is an important variable in the past, present, and future of JEAB.

  16. Bridging the Gap: Self-Directed Staff Technology Training

    Directory of Open Access Journals (Sweden)

    Kayla L. Quinney

    2010-12-01

    Full Text Available Undergraduates, as members of the Millennial Generation, are proficient in Web 2.0 technology and expect to apply these technologies to their coursework—including scholarly research. To remain relevant, academic libraries need to provide the technology that student patrons expect, and academic librarians need to learn and use these technologies themselves. Because leaders at the Harold B. Lee Library of Brigham Young University (HBLL perceived a gap in technology use between students and their staff and faculty, they developed and implemented the Technology Challenge, a self-directed technology training program that rewarded employees for exploring technology daily. The purpose of this paper is to examine the Technology Challenge through an analysis of results of surveys given to participants before and after the Technology Challenge was implemented. The program will also be evaluated in terms of the adult learning theories of andragogy and selfdirected learning. HBLL found that a self-directed approach fosters technology skills that librarians need to best serve students. In addition, it promotes lifelong learning habits to keep abreast of emerging technologies. This paper offers some insights and methods that could be applied in other libraries, the most valuable of which is the use of self-directed and andragogical training methods to help academic libraries better integrate modern technologies.

  17. Emerging Education Technologies and Research Directions

    Science.gov (United States)

    Spector, J. Michael

    2013-01-01

    Two recent publications report the emerging technologies that are likely to have a significant impact on learning and instruction: (a) New Media Consortium's "2011 Horizon Report" (Johnson, Smith, Willis, Levine & Haywood, 2011), and (b) "A Roadmap for Education Technology" funded by the National Science Foundation in…

  18. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  19. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  20. Laboratory Directed Research and Development LDRD-FY-2011

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  1. Current and Future Research Directions in Requirements Engineering

    Science.gov (United States)

    Cheng, Betty H. C.; Atlee, Joanne M.

    In this paper, we review current requirements engineering (RE) research and identify future research directions suggested by emerging software needs. First, we overview the state of the art in RE research. The research is considered with respect to technologies developed to address specific requirements tasks, such as elicitation, modeling, and analysis. Such a review enables us to identify mature areas of research, as well as areas that warrant further investigation. Next, we review several strategies for performing and extending RE research results, to help delineate the scope of future research directions. Finally, we highlight what we consider to be the “hot” current and future research topics, which aim to address RE needs for emerging systems of the future.

  2. Health effects of coal technologies: research needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

  3. Laboratory Directed Research and Development Program FY98

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  4. Digital technology use in ELT classrooms and self-directed learning

    Directory of Open Access Journals (Sweden)

    Nehir Sert

    2016-04-01

    Full Text Available The digital era is a new challenge for teachers. While children get acquainted with digital technology before the age of six, teachers, who have encountered the digital world at a later time in their lives, struggle with it. Self-directed learning, which is crucial for lifelong learning, can be enhanced by the use of technology within and beyond classroom settings. The aim of this study was to examine the difference between the perceptions of students in low- and high-income groups about their use of technology in a general sense and their teachers’ use of technology in ELT classrooms. It also tested the correlation between the perceptions of their self-directed learning behaviours and their own/their teachers’ technology use. The population of the study consisted of 75 students from high- and 70 students from low-income groups. Causal comparative and correlational research methods were adopted in the study. The surveys to measure the students’ perceptions about technology use were developed by the researchers. A scale, established by Demirtas and Sert (2010, was used to identify the level of self-directed learning views of the students. The data were collected at the beginning of the first term of the 2015-2016 school year. The results indicated that there was no significant difference between perceptions of the low- and high-income students regarding their own technology use. Likewise, perceptions of the low- and high-income students did not differ regarding their teachers’ technology use. There was no correlation between the perceptions of the low-/high-income mixed group regarding their use of technology and their teachers’ use of technology. Lastly, self-directed learning perceptions of the low-/high-income mixed group did not correlate with their perceptions on any aspects of technology use. The educational implications of these results were discussed and suggestions were put forward in order to produce more effective learning

  5. Laboratory-directed research and development

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Caughran, A.B.

    1992-05-01

    This report summarizes progress from the Laboratory-Directed Research and Development (LDRD) program during fiscal year 1991. In addition to a programmatic and financial overview, the report includes progress reports from 230 individual R ampersand D projects in 9 scientific categories: atomic and molecular physics; biosciences; chemistry; engineering and base technologies; geosciences; space sciences, and astrophysics; materials sciences; mathematics and computational sciences; nuclear and particle physics; and plasmas, fluids, and particle beams

  6. New directions for veterinary technology.

    Science.gov (United States)

    Chadderdon, Linda M; Lloyd, James W; Pazak, Helene E

    2014-01-01

    Veterinary technology has generally established itself well in companion-animal and mixed-animal veterinary medical practice, but the career's growth trajectory is uncertain. Michigan State University (MSU) convened a national conference, "Creating the Future of Veterinary Technology-A National Dialogue," in November 2011 to explore ways to elevate the veterinary technician/technologist's role in the veterinary medical profession and to identify new directions in which the career could expand. Veterinary technicians/technologists might advance their place in private practice by not only improving their clinical skills, but by also focusing on areas such as practice management, leadership training, business training, conflict resolution, information technology, and marketing/communications. Some new employment settings for veterinary technicians/technologists include more participation within laboratory animal medicine and research, the rural farm industry, regulatory medicine, and shelter medicine. Achieving these ends would call for new training options beyond the current 2-year and 4-year degree programs. Participants suggested specialty training programs, hybrid programs of various types, online programs, veterinary technician residency programs of 12-18 months, and more integration of veterinary technician/technology students and veterinary medicine students at colleges of veterinary medicine.

  7. Technology research and development

    International Nuclear Information System (INIS)

    Haas, G.M.; Abdov, M.A.; Baker, C.C.; Beuligmann, R.F.

    1985-01-01

    The U.S. Dept. of Energy discusses the new program plan, the parameters of which are a broad scientific and technology knowledge base, an attractive plasma configuration to be determined, and other issues concerning uncertainty as to what constitutes attractive fusion options to be determined in the future, and increased collaboration. Tables show changing directions in magnetic fusion energy, two examples of boundary condition impacts on long-term technology development, and priority classes of the latter. The Argonne National Laboratory comments on the relationship between science, technology and the engineering aspects of the fusion program. UCLA remarks on the role of fusion technology in the fusion program plan, particularly on results from the recent studies of FINESSE. General Dynamics offers commentary on the issues of a reduced budget, and new emphasis on science which creates an image of the program. A table illustrates technology research and development in the program plan from an industrial perspective

  8. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  9. 1997 Laboratory directed research and development. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P. [comps.

    1997-12-31

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

  10. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  11. Laboratory directed research and development annual report: 2005

    International Nuclear Information System (INIS)

    2006-01-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2005 for Sandia National Laboratories. In addition to a programmatic and financial overview, the report includes progress reports from 410 individual R and D projects in 19 categories. The categories and subheadings are: Science, Technology and Engineering (Advanced Components and Certification Engineering; Advanced Manufacturing; Biotechnology; Chemical and Earth Sciences; Computational and Information Sciences; Electronics and Photonics; Engineering Sciences; Materials Science and Technology; Pulsed Power Sciences and High Energy Density Sciences; Science and Technology Strategic Objectives); Mission Technologies (Energy and Infrastructure Assurance; Homeland Security; Military Technologies and Applications; Nonproliferation and Assessments; Grand Challanges); and Corporate Objectives (Advanced Concepts; Seniors' Council; University Collaborations)

  12. Using Action Research Projects to Examine Teacher Technology Integration Practices

    Science.gov (United States)

    Dawson, Kara

    2012-01-01

    This study examined the technology integration practices of teachers involved in a statewide initiative via one cycle of action research. It differs from other studies of teacher technology integration practices because it simultaneously involved and provided direct benefits to teachers and researchers. The study used thematic analysis to provide…

  13. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  14. Laboratory Directed Research and Development Program FY 2008 Annual Report

    International Nuclear Information System (INIS)

    Hansen, Todd C.

    2009-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  15. Where Is Current Research on Blockchain Technology?-A Systematic Review.

    Science.gov (United States)

    Yli-Huumo, Jesse; Ko, Deokyoon; Choi, Sujin; Park, Sooyong; Smolander, Kari

    2016-01-01

    Blockchain is a decentralized transaction and data management technology developed first for Bitcoin cryptocurrency. The interest in Blockchain technology has been increasing since the idea was coined in 2008. The reason for the interest in Blockchain is its central attributes that provide security, anonymity and data integrity without any third party organization in control of the transactions, and therefore it creates interesting research areas, especially from the perspective of technical challenges and limitations. In this research, we have conducted a systematic mapping study with the goal of collecting all relevant research on Blockchain technology. Our objective is to understand the current research topics, challenges and future directions regarding Blockchain technology from the technical perspective. We have extracted 41 primary papers from scientific databases. The results show that focus in over 80% of the papers is on Bitcoin system and less than 20% deals with other Blockchain applications including e.g. smart contracts and licensing. The majority of research is focusing on revealing and improving limitations of Blockchain from privacy and security perspectives, but many of the proposed solutions lack concrete evaluation on their effectiveness. Many other Blockchain scalability related challenges including throughput and latency have been left unstudied. On the basis of this study, recommendations on future research directions are provided for researchers.

  16. Laboratory directed research and development. FY 1995 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  17. Directed-energy process technology efforts

    Science.gov (United States)

    Alexander, P.

    1985-01-01

    A summary of directed-energy process technology for solar cells was presented. This technology is defined as directing energy or mass to specific areas on solar cells to produce a desired effect in contrast to exposing a cell to a thermal or mass flow environment. Some of these second generation processing techniques are: ion implantation; microwave-enhanced chemical vapor deposition; rapid thermal processing; and the use of lasers for cutting, assisting in metallization, assisting in deposition, and drive-in of liquid dopants. Advantages of directed energy techniques are: surface heating resulting in the bulk of the cell material being cooler and unchanged; better process control yields; better junction profiles, junction depths, and metal sintering; lower energy consumption during processing and smaller factory space requirements. These advantages should result in higher-efficiency cells at lower costs. The results of the numerous contracted efforts were presented as well as the application potentials of these new technologies.

  18. Geothermal Technologies Program: Direct Use

    Energy Technology Data Exchange (ETDEWEB)

    2004-08-01

    This general publication describes geothermal direct use systems, and how they have been effectively used throughout the country. It also describes the DOE program R&D efforts in this area, and summarizes several projects using direct use technology.

  19. Laboratory directed research and development program FY 1997

    International Nuclear Information System (INIS)

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized

  20. Laboratory directed research and development program FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  1. An overview of research on technological and telecommunication development

    Directory of Open Access Journals (Sweden)

    Marina Budimir

    2014-10-01

    Full Text Available The scientific and professional research on technological and telecommunication development started in the second half of the 20th century as the use of new media and technologies began to cause structural business and social changes. A review of research published in the early 1980s revealed that the focus was mainly on the acceptance, usefulness and impact of new media and information technology on the information society, whereas research conducted at the turn of the century was mostly interdisciplinary and related to the effect of technological and telecommunication development on various scientific and professional fields. The focus of this paper is an overview of published research on information technology since the 1980s to date, as well as technological and telecommunication development in recent years based on the latest official published data. On the basis of previous research, it can be concluded that more attention needs to be directed to monitoring trends of ICT products and services in order to increase benefits and reduce the costs for active users, as well as improving infrastructure and providing information to attract passive users in order to reduce technological and telecommunication gap between developed, developing and underdeveloped countries.

  2. Where Is Current Research on Blockchain Technology?-A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Jesse Yli-Huumo

    Full Text Available Blockchain is a decentralized transaction and data management technology developed first for Bitcoin cryptocurrency. The interest in Blockchain technology has been increasing since the idea was coined in 2008. The reason for the interest in Blockchain is its central attributes that provide security, anonymity and data integrity without any third party organization in control of the transactions, and therefore it creates interesting research areas, especially from the perspective of technical challenges and limitations. In this research, we have conducted a systematic mapping study with the goal of collecting all relevant research on Blockchain technology. Our objective is to understand the current research topics, challenges and future directions regarding Blockchain technology from the technical perspective. We have extracted 41 primary papers from scientific databases. The results show that focus in over 80% of the papers is on Bitcoin system and less than 20% deals with other Blockchain applications including e.g. smart contracts and licensing. The majority of research is focusing on revealing and improving limitations of Blockchain from privacy and security perspectives, but many of the proposed solutions lack concrete evaluation on their effectiveness. Many other Blockchain scalability related challenges including throughput and latency have been left unstudied. On the basis of this study, recommendations on future research directions are provided for researchers.

  3. 1995 Laboratory-Directed Research and Development Annual report

    International Nuclear Information System (INIS)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-01-01

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy

  4. 1995 Laboratory-Directed Research and Development Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  5. Research on synchronization technology of frequency hopping communication system

    Science.gov (United States)

    Zhao, Xiangwu; Quan, Houde; Cui, Peizhang

    2018-05-01

    Frequency Hopping (FH) communication is a technology of spread spectrum communication. It has strong anti-interference, anti-interception and security capabilities, and has been widely applied in the field of communications. Synchronization technology is one of the most crucial technologies in frequency hopping communication. The speed of synchronization establishment and the reliability of synchronous system directly affect the performance of frequency hopping communication system. Therefore, the research of synchronization technology in frequency hopping communication has important value.

  6. Readout technologies for directional WIMP Dark Matter detection

    International Nuclear Information System (INIS)

    Battat, J.B.R.; Irastorza, I.G.; Aleksandrov, A.; Asada, T.; Baracchini, E.; Billard, J.; Bosson, G.; Bourrion, O.; Bouvier, J.; Buonaura, A.; Burdge, K.; Cebrián, S.

    2016-01-01

    The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies.

  7. Direct disposal of spent nuclear fuel. The current status of technology January 1987

    International Nuclear Information System (INIS)

    Wheelton, I.S.; Kelly, B.R.; Wood, E.

    1987-02-01

    The Study assesses the degree and status of research and development worldwide on Direct Disposal of Spent Nuclear Fuel. It is limited to technological, radiological and waste management aspects appertaining to Light Water and AGR Reactor Systems and reviews the 'State of the Art' in terms of applicability to the United Kingdom. The report concludes that much technology exists both at National and International level which the UK can apply to the subject of Direct Disposal. (author)

  8. Where Is Current Research on Blockchain Technology?—A Systematic Review

    Science.gov (United States)

    Yli-Huumo, Jesse; Ko, Deokyoon; Park, Sooyong; Smolander, Kari

    2016-01-01

    Blockchain is a decentralized transaction and data management technology developed first for Bitcoin cryptocurrency. The interest in Blockchain technology has been increasing since the idea was coined in 2008. The reason for the interest in Blockchain is its central attributes that provide security, anonymity and data integrity without any third party organization in control of the transactions, and therefore it creates interesting research areas, especially from the perspective of technical challenges and limitations. In this research, we have conducted a systematic mapping study with the goal of collecting all relevant research on Blockchain technology. Our objective is to understand the current research topics, challenges and future directions regarding Blockchain technology from the technical perspective. We have extracted 41 primary papers from scientific databases. The results show that focus in over 80% of the papers is on Bitcoin system and less than 20% deals with other Blockchain applications including e.g. smart contracts and licensing. The majority of research is focusing on revealing and improving limitations of Blockchain from privacy and security perspectives, but many of the proposed solutions lack concrete evaluation on their effectiveness. Many other Blockchain scalability related challenges including throughput and latency have been left unstudied. On the basis of this study, recommendations on future research directions are provided for researchers. PMID:27695049

  9. CURRENT DIRECTIONS OF RESEARCH IN INFORMATION- COMMUNICATION TECHNOLOGIES IN THE FIELD OF PEDAGOGICAL SCIENCE.

    Directory of Open Access Journals (Sweden)

    O.N. Spirin

    2010-11-01

    Full Text Available In the publication modern research areas of information-communication technologies in pedagogical science are identified. The basic requirements of the new passport for the specialty 13.00.10 - Information and Communication Technologies in Education are described. On this specialty the defence of the degree of doctor and candidate of pedagogical science may be carried out.

  10. An Overview to Research on Education Technology Based on Constructivist Learning Approach

    Science.gov (United States)

    Asiksoy, Gulsum; Ozdamli, Fezile

    2017-01-01

    The aim of this research is to determine the trends of education technology researches on Constructivist Learning Approach, which were published on database of ScienceDirect between 2010 and 2016. It also aims to guide researchers who will do studies in this field. After scanning the database, 81 articles published on ScienceDirect's data base…

  11. Laboratory Directed Research and Development Program. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  12. Soviet precision timekeeping research and technology

    Energy Technology Data Exchange (ETDEWEB)

    Vessot, R.F.C.; Allan, D.W.; Crampton, S.J.B.; Cutler, L.S.; Kern, R.H.; McCoubrey, A.O.; White, J.D.

    1991-08-01

    This report is the result of a study of Soviet progress in precision timekeeping research and timekeeping capability during the last two decades. The study was conducted by a panel of seven US scientists who have expertise in timekeeping, frequency control, time dissemination, and the direct applications of these disciplines to scientific investigation. The following topics are addressed in this report: generation of time by atomic clocks at the present level of their technology, new and emerging technologies related to atomic clocks, time and frequency transfer technology, statistical processes involving metrological applications of time and frequency, applications of precise time and frequency to scientific investigations, supporting timekeeping technology, and a comparison of Soviet research efforts with those of the United States and the West. The number of Soviet professionals working in this field is roughly 10 times that in the United States. The Soviet Union has facilities for large-scale production of frequency standards and has concentrated its efforts on developing and producing rubidium gas cell devices (relatively compact, low-cost frequency standards of modest accuracy and stability) and atomic hydrogen masers (relatively large, high-cost standards of modest accuracy and high stability). 203 refs., 45 figs., 9 tabs.

  13. Soviet precision timekeeping research and technology

    International Nuclear Information System (INIS)

    Vessot, R.F.C.; Allan, D.W.; Crampton, S.J.B.; Cutler, L.S.; Kern, R.H.; McCoubrey, A.O.; White, J.D.

    1991-08-01

    This report is the result of a study of Soviet progress in precision timekeeping research and timekeeping capability during the last two decades. The study was conducted by a panel of seven US scientists who have expertise in timekeeping, frequency control, time dissemination, and the direct applications of these disciplines to scientific investigation. The following topics are addressed in this report: generation of time by atomic clocks at the present level of their technology, new and emerging technologies related to atomic clocks, time and frequency transfer technology, statistical processes involving metrological applications of time and frequency, applications of precise time and frequency to scientific investigations, supporting timekeeping technology, and a comparison of Soviet research efforts with those of the United States and the West. The number of Soviet professionals working in this field is roughly 10 times that in the United States. The Soviet Union has facilities for large-scale production of frequency standards and has concentrated its efforts on developing and producing rubidium gas cell devices (relatively compact, low-cost frequency standards of modest accuracy and stability) and atomic hydrogen masers (relatively large, high-cost standards of modest accuracy and high stability). 203 refs., 45 figs., 9 tabs

  14. Research and Technology 1997

    Science.gov (United States)

    1998-01-01

    NASA Lewis Research Center is responsible for developing and transferring critical technologies that address national priorities in aeropropulsion and space applications in partnership with U.S. industries, universities, and Government institutions. As NASA s designated Lead Center for Aeropropulsion, our role is to develop, verify, and transfer aeropropulsion technologies to U.S. industry. As NASA s designated Center of Excellence in Turbomachinery, our role is to develop new and innovative turbomachinery technology to improve the reliability, performance, efficiency and affordability, capacity, and environmental compatibility of future aerospace vehicles. We also maintain a science and technology development role in aeropropulsion, communications, space power and onboard propulsion, and microgravity fluid physics and combustion. We are committed to enabling non-aerospace U.S. industries to benefit directly from the technologies developed through our programs to maximize the benefit to the Nation and the return on each taxpayer s investment. In addition, we are aggressively pursuing continuous improvement in our management and business practices and striving for diversity in our workforce as together we push the edge of technology in space and aeronautics. The Lewis Research Center is a unique facility located in an important geographical area, the southwest corner of Cleveland, Ohio. Situated on 350 acres of land adjacent to the Cleveland Hopkins International Airport, Lewis comprises more than 140 buildings that include 24 major facilities and over 500 specialized research and test facilities. Additional facilities are located at Plum Brook Station, which is about 50 miles west of Cleveland. Over 3700 people staff Lewis, including civil service employees and support service contractors. Over half of them are scientists and engineers, who plan, conduct or oversee, and report on our research tasks and projects. They are assisted by technical specialists, skilled

  15. Self-Directed Learning: College Students' Technology Preparedness Change in the Last 10 Years

    Science.gov (United States)

    Caravello, Michael J.; Jiménez, Joel R.; Kahl, Lois J.; Brachio, Brian; Morote, Elsa-Sofia

    2015-01-01

    This study compares a sample of approximately 44 first year college students in 2005 and 2015 on Long Island, New York, in their technology preparedness and self-directed instruction. The researchers used a survey instrument including demographic information focused upon students' preparation for classroom technology in high school and college.…

  16. Application of BIM technology in green scientific research office building

    Science.gov (United States)

    Ni, Xin; Sun, Jianhua; Wang, Bo

    2017-05-01

    BIM technology as a kind of information technology, has been along with the advancement of building industrialization application in domestic building industry gradually. Based on reasonable construction BIM model, using BIM technology platform, through collaborative design tools can effectively improve the design efficiency and design quality. Vanda northwest engineering design and research institute co., LTD., the scientific research office building project in combination with the practical situation of engineering using BIM technology, formed in the BIM model combined with related information according to the energy energy model (BEM) and the application of BIM technology in construction management stage made exploration, and the direct experience and the achievements gained by the architectural design part made a summary.

  17. Energy Technology Division research summary - 1999.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  18. Research Capabilities Directed to all Electric Engineering Teachers, from an Alternative Energy Model

    Directory of Open Access Journals (Sweden)

    Víctor Hugo Ordóñez Navea

    2017-08-01

    Full Text Available The purpose of this work was to contemplate research capabilities directed to all electric engineering teachers from an alternative energy model intro the explanation of a semiconductor in the National Training Program in Electricity. Some authors, such as. Vidal (2016, Atencio (2014 y Camilo (2012 point out to technological applications with semiconductor electrical devices. In this way; a diagnostic phase is presented, held on this field research as a descriptive type about: a how to identify the necessities of alternative energies, and b The research competences in the alternatives energies of researcher from a solar cell model, to boost and innovate the academic praxis and technologic ingenuity. Themselves was applied a survey for a group of 15 teachers in the National Program of Formation in electricity to diagnose the deficiencies in the research area of alternatives energies. The process of data analysis was carried out through descriptive statistic. Later the conclusions are presented the need to generate strategies for stimulate and propose exploration of alternatives energies to the development of research competences directed to the teachers of electrical engineering for develop the research competences in the enforcement of the teachers exercise for the electric engineering, from an alternative energy model and boost the technologic research in the renewal energies field.

  19. Laboratory directed research and development annual report 2004

    International Nuclear Information System (INIS)

    Not Available

    2005-01-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2004. In addition to a programmatic and financial overview, the report includes progress reports from 352 individual R and D projects in 15 categories. The 15 categories are: (1) Advanced Concepts; (2) Advanced Manufacturing; (3) Biotechnology; (4) Chemical and Earth Sciences; (5) Computational and Information Sciences; (6) Differentiating Technologies; (7) Electronics and Photonics; (8) Emerging Threats; (9) Energy and Critical Infrastructures; (10) Engineering Sciences; (11) Grand Challenges; (12) Materials Science and Technology; (13) Nonproliferation and Materials Control; (14) Pulsed Power and High Energy Density Sciences; and (15) Corporate Objectives

  20. Laboratory directed research and development

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  1. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions.

    Science.gov (United States)

    Patra, Amlan Kumar

    2012-04-01

    Enteric methane (CH(4)) emission in ruminants, which is produced via fermentation of feeds in the rumen and lower digestive tract by methanogenic archaea, represents a loss of 2% to 12% of gross energy of feeds and contributes to global greenhouse effects. Globally, about 80 million tonnes of CH(4) is produced annually from enteric fermentation mainly from ruminants. Therefore, CH(4) mitigation strategies in ruminants have focused to obtain economic as well as environmental benefits. Some mitigation options such as chemical inhibitors, defaunation, and ionophores inhibit methanogenesis directly or indirectly in the rumen, but they have not confirmed consistent effects for practical use. A variety of nutritional amendments such as increasing the amount of grains, inclusion of some leguminous forages containing condensed tannins and ionophore compounds in diets, supplementation of low-quality roughages with protein and readily fermentable carbohydrates, and addition of fats show promise for CH(4) mitigation. These nutritional amendments also increase the efficiency of feed utilization and, therefore, are most likely to be adopted by farmers. Several new potential technologies such as use of plant secondary metabolites, probiotics and propionate enhancers, stimulation of acetogens, immunization, CH(4) oxidation by methylotrophs, and genetic selection of low CH(4)-producing animals have emerged to decrease CH(4) production, but these require extensive research before they can be recommended to livestock producers. The use of bacteriocins, bacteriophages, and development of recombinant vaccines targeting archaeal-specific genes and cell surface proteins may be areas worthy of investigation for CH(4) mitigation as well. A combination of different CH(4) mitigation strategies should be adopted in farm levels to substantially decrease methane emission from ruminants. Evidently, comprehensive research is needed to explore proven and reliable CH(4) mitigation technologies

  2. Energy Technology Division research summary 2001

    International Nuclear Information System (INIS)

    2001-01-01

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the U.S. Department of Energy. As shown on the preceding page, the Division is organized into eight sections, four with concentrations in the materials area and four in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officer, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. This Overview highlights some major ET research areas. Research related to the operational safety of commercial light water nuclear reactors (LWRs) for the U.S. Nuclear Regulatory Commission (NRC) remains a significant area of interest for the Division. We currently have programs on environmentally assisted cracking, steam generator integrity, and the integrity of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out by three ET sections: Corrosion and Mechanics of Materials; Irradiation Performance; and Sensors, Instrumentation, and Nondestructive Evaluation

  3. State of technology of direct contact heat exchanging

    Energy Technology Data Exchange (ETDEWEB)

    Vallario, R.W.; DeBellis, D.E.

    1984-05-01

    Specific objectives of this study were to assess the state of technology development and to identify and evaluate the constraints to wider use of direct contact heat exchanger (DCHE) technology in the U.S. The scope of this study is relatively broad; it includes many types of generic systems and end-use applications, both current and future. Domestic and foreign experience with DCHE technology are compared, although the primary focus is on domestic experience. Twenty-two distinct applications of DCHE technology were identified in this study and are examined in this report. The general format is to describe each system, explore its potential applications, discuss current and past research activities and identify major implementation barriers. Finally, as a result of discussions with principal users of DCHE systems and with other knowledgeable sources, generic and specific R and D needs to overcome specific implementation barriers have been identified. The following list of DCHE systems/concepts has been classified into four major end-uses; there is also a category for specialized (other) applications.

  4. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new

  5. Laboratory Directed Research and Development Program Assessment for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which

  6. United States Department of Agriculture-Agricultural Research Service research in application technology for pest management.

    Science.gov (United States)

    Smith, L A; Thomson, S J

    2003-01-01

    A research summary is presented that emphasizes ARS achievements in application technology over the past 2-3 years. Research focused on the improvement of agricultural pesticide application is important from the standpoint of crop protection as well as environmental safety. Application technology research is being actively pursued within the ARS, with a primary focus on application system development, drift management, efficacy enhancement and remote sensing. Research on application systems has included sensor-controlled hooded sprayers, new approaches to direct chemical injection, and aerial electrostatic sprayers. For aerial application, great improvements in on-board flow controllers permit accurate field application of chemicals. Aircraft parameters such as boom position and spray release height are being altered to determine their effect on drift. Other drift management research has focused on testing of low-drift nozzles, evaluation of pulsed spray technologies and evaluation of drift control adjuvants. Research on the use of air curtain sprayers in orchards, air-assist sprayers for row crops and vegetables, and air deflectors on aircraft has documented improvements in application efficacy. Research has shown that the fate of applied chemicals is influenced by soil properties, and this has implications for herbicide efficacy and dissipation in the environment. Remote sensing systems are being used to target areas in the field where pests are present so that spray can be directed to only those areas. Soil and crop conditions influence propensity for weeds and insects to proliferate in any given field area. Research has indicated distinct field patterns favorable for weed growth and insect concentration, which can provide further assistance for targeted spraying.

  7. Research and Technology 1997

    Science.gov (United States)

    1998-01-01

    This report highlights the challenging work accomplished during fiscal year 1997 by Ames research scientists and engineers. The work is divided into accomplishments that support the goals of NASA s four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Science, Human Exploration and Development of Space (HEDS), and Earth Science. NASA Ames Research Center s research effort in the Space, Earth, and HEDS Enterprises is focused i n large part to support Ames lead role for Astrobiology, which broadly defined is the scientific study of the origin, distribution, and future of life in the universe. This NASA initiative in Astrobiology is a broad science effort embracing basic research, technology development, and flight missions. Ames contributions to the Space Science Enterprise are focused in the areas of exobiology, planetary systems, astrophysics, and space technology. Ames supports the Earth Science Enterprise by conducting research and by developing technology with the objective of expanding our knowledge of the Earth s atmosphere and ecosystems. Finallv, Ames supports the HEDS Enterprise by conducting research, managing spaceflight projects, and developing technologies. A key objective is to understand the phenomena surrounding the effects of gravity on living things. Ames has also heen designated the Agency s Center of Evcellence for Information Technnlogv. The three cornerstones of Information Technology research at Ames are automated reasoning, human-centered computing, and high performance computing and networking.

  8. Laboratory Directed Research & Development Program. Annual report to the Department of Energy, Revised December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments.

  9. Laboratory Directed Research and Development FY 2000

    International Nuclear Information System (INIS)

    Hansen, Todd; Levy, Karin

    2001-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000

  10. NATIONAL TECHNOLOGICAL INITIATIVE AS THE STRATEGIC DIRECTION OF THE TECHNOLOGICAL DEVELOPMENT OF RUSSIA

    Directory of Open Access Journals (Sweden)

    E. V. Sibirskaya

    2018-01-01

    Full Text Available Russia, having lost a significant part of a high-tech industrial complex during the reforms (1993–2000, sharply reducing the state support of scientific research and development, has turned into a power dependent on the conjuncture in the hydrocarbon energy market and from foreign sup-plies of technologies, consumption goods, including those necessary for life support, thus being on the "technological needle". The main factor of development was the resource-producing complex. This situation had a negative impact on the pace of the country's development, on its defense capability and created real prerequisites for the loss of technological, economic, and, in the long run, political sovereignty and disintegration of the state. Nevertheless, the availability of natural resources along with human capi-tal and geographic location is a global competitive advantage of theRussian Federation, and the task is to use this advantage maximally as one of the first echelon countries in the emerging world order. One of the most important tasks was the search for such a direction of technological devel-opment that allows, on the one hand, to preserve Russia's position in the world market of traditional products; on the other – to strengthen positions in the markets of products with a higher degree of processing of Russian raw materials (oil and gas complex and agro-industrial complex; and finally – to master new "growth points" (services, new markets, talents, technologies in the world market of high-tech products and services. The set tasks assume several solutions. First, scientific and technological development should be based on the strategy of scientific and technological development of theRussian Federationand the national technological initiative, as it sets both resource constraints and priorities in the needs of the economy in new products and new technological solutions. Secondly,Russiashould take into account existing and emerging trends in the

  11. Ames Research Center Research and Technology 2000

    Science.gov (United States)

    2002-01-01

    This report highlights the challenging work accomplished during fiscal year 2000 by Ames research scientists,engineers, and technologists. It discusses research and technologies that enable the Information Age, that expand the frontiers of knowledge for aeronautics and space, and that help to maintain U.S. leadership in aeronautics and space research and technology development. The accomplishments are grouped into four categories based on four of NASA's Strategic Enterprises: Aerospace Technology, Space Science, Biological and Physical Research, and Earth Science. The primary purpose of this report is to communicate knowledge-to inform our stakeholders, customer, and partners, and the people of the United States about the scope and diversity of Ames' mission,the nature of Ames' research and technolog) activities,and the stimulating challenges ahead. The accomplishments cited illustrate the contributions that Ames is willing to improve the quality of life for our citizens and the economic position of the United States in the world marketplace.

  12. Research directions in computer engineering. Report of a workshop

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H

    1982-09-01

    The results of a workshop held in November 1981 in Washington, DC, to outline research directions for computer engineering are reported upon. The purpose of the workshop was to provide guidance to government research funding agencies, as well as to universities and industry, as to the directions which computer engineering research should take for the next five to ten years. A select group of computer engineers was assembled, drawn from all over the United States and with expertise in virtually every aspect of today's computer technology. Industrial organisations and universities were represented in roughly equal numbers. The panel proceeded to provide a sharper definition of computer engineering than had been in popular use previously, to identify the social and national needs which provide the basis for encouraging research, to probe for obstacles to research and seek means of overcoming them and to delineate high-priority areas in which computer engineering research should be fostered. These included experimental software engineering, architectures in support of programming style, computer graphics, pattern recognition. VLSI design tools, machine intelligence, programmable automation, architectures for speech and signal processing, computer architecture and robotics. 13 references.

  13. Laboratory Directed Research and Development annual report, fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  14. Research & Technology 2005

    Science.gov (United States)

    2006-01-01

    This report selectively summarizes NASA Glenn Research Center's research and technology accomplishments for fiscal year 2005. It comprises 126 short articles submitted by the staff scientists and engineers. The report is organized into three major sections: Programs and Projects, Research and Technology, and Engineering and Technical Services. A table of contents and an author index have been developed to assist readers in finding articles of special interest. This report is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Glenn-published technical reports, journal articles, and presentations prepared by Glenn staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Glenn contact person has been identified, and where possible, a reference document is listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information, visit Glenn's Web site at http://www.nasa.gov/glenn/. This document is available online (http://www.grc.nasa.gov/WWW/RT/). For publicly available reports, visit the Glenn Technical Report Server (http://gltrs.grc.nasa.gov).

  15. Research and Technology, 1994

    Science.gov (United States)

    1995-01-01

    This report selectively summarizes the NASA Lewis Research Center's research and technology accomplishments for the fiscal year 1994. It comprises approximately 200 short articles submitted by the staff members of the technical directorates. The report is organized into six major sections: Aeronautics, Aerospace Technology, Space Flight Systems, Engineering and Computational Support, Lewis Research Academy, and Technology Transfer. A table of contents and author index have been developed to assist the reader in finding articles of special interest. This report is not intended to be a comprehensive summary of all research and technology work done over the past fiscal year. Most of the work is reported in Lewis-published technical reports, journal articles, and presentations prepared by Lewis staff members and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report a Lewis contact person has been identified, and where possible, reference documents are listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible.

  16. Research and Technology, 1998

    Science.gov (United States)

    1999-01-01

    This report selectively summarizes the NASA Lewis Research Center's research and technology accomplishments for the fiscal year 1998. It comprises 134 short articles submitted by the staff scientists and engineers. The report is organized into five major sections: Aeronautics, Research and Technology, Space, Engineering and Technical Services, and Commercial Technology. A table of contents and an author index have been developed to assist readers in finding articles of special interest. This report is not intended to he a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Lewis-published technical reports, journal articles, and presentations prepared by Lewis staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Lewis contact person has been identified, and where possible, reference documents are listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. At the time of publication, NASA Lewis was undergoing a name change to the NASA John H. Glenn Research Center at Lewis Field.

  17. Research and Technology, 1995

    Science.gov (United States)

    1996-01-01

    This report presents some of the challenging research and technology accomplished at NASA Ames Research Center during FY95. The accomplishments address almost all goals of NASA's four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Sciences, Human Exploration and Development of Space, and Mission to Planet Earth. The report's primary purpose is to inform stakeholders, customers, partners, colleagues, contractors, employees, and the American people in general about the scope and diversity of the research and technology activities. Additionally, the report will enable the reader to know how these goals are being addressed.

  18. Laboratory Directed Research and Development Program Activities for FY 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in

  19. Information seeking research needs extension towards tasks and technology

    Directory of Open Access Journals (Sweden)

    Kalervo Järvelin

    2004-01-01

    Full Text Available This paper discusses the research into information seeking and its directions at a general level. We approach this topic by analysis and argumentation based on past research in the domain. We begin by presenting a general model of information seeking and retrieval (IS&R which is used to derive nine broad dimensions that are needed to analyze IS&R. Past research is then contrasted with the dimensions and shown not to cover the dimensions sufficiently. Based on an analysis of the goals of information seeking research, and a view on human task performance augmentation, it is then shown that information seeking is intimately associated with, and dependent on, other aspects of work; tasks and technology included. This leads to a discussion on design and evaluation frameworks for IS&R, based on which two action lines are proposed: information retrieval research needs extension towards more context and information seeking research needs extension towards tasks and technology.

  20. Analysis of Petroleum Technology Advances Through Applied Research by Independent Oil Producers

    Energy Technology Data Exchange (ETDEWEB)

    Brashear, Jerry P.; North, Walter B.; Thomas Charles P.; Becker, Alan B.; Faulder, David D.

    2000-01-12

    Petroleum Technology Advances Through Applied Research by Independent Oil Producers is a program of the National Oil Research Program, U.S. Department of Energy. Between 1995 and 1998, the program competitively selected and cost-shared twenty-two projects with small producers. The purpose was to involve small independent producers in testing technologies of interest to them that would advance (directly or indirectly) one or more of four national program objectives: (1) Extend the productive life of reservoirs; (2) Increase production and/or reserves; (3) Improve environmental performance; and (4) Broaden the exchange of technology information.

  1. Research field of fire technology in Finland

    Science.gov (United States)

    Loikkanen, P.; Holm, C.

    1987-02-01

    The goal of the study is to give an overview of the whole diversified research field of fire technology and its problems. For this reason the research subjects have been grouped so that the responsibilities of different authorities, the legislation and specifications, various fields of technology, areas of industry, and groups of products could all be found as clearly as possible. The field has been divided into nine sub-areas. They are: general grounds, fire physics and chemistry, structural fire prevention, textiles and furnishings, devices for heating and other use, detection, fire fighting and rescue, quality control, and special problems. The sub-areas have been divided into 34 main subjects and these, excluding those of special problems, further into as many as 117 subject groups. Characteristics and problems of the sub-areas and the main subjects have been described. The subject groups have been characterized by key words and concepts which outline the projects. No concrete research projects and programs have, however, been directly suggested because their extent and contents depend essentially on financing and other available resources.

  2. Research and Technology 2000

    Science.gov (United States)

    2001-01-01

    This report selectively summarizes the NASA Glenn Research Center's research and technology accomplishments for the fiscal year 2000. It comprises 138 short articles submitted by staff scientists and engineers. The report is organized into five major sections: Aeronautics, Research and Technology, Space, Engineering and Technical Services, and Commercial Technology, a table of contents and an author index have been developed to assist readers in finding articles of special interest. This report is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Glenn-published technical reports, journal articles, and presentations prepared by Glenn staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that was reported at technical meetings or in journal articles. For each article in this report, a Glenn contact person has been identified, and where possible, reference documents are listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information about research at NASA Glenn, visit us on the World Wide Web (http://www.grc.nasa.gov). This document is available online (http://www.grc.nasa.gov/WWW/RT). For publicly available reports, visit the Glenn Technical Report Server (http://gltrs.gre.nasa.gov/GLTRS).

  3. Research and Technology 2002

    Science.gov (United States)

    Kim, Walter S.

    2003-01-01

    This report selectively summarizes NASA Glenn Research Center s research and technology accomplishments for fiscal year 2002. It comprises 166 short articles submitted by the staff scientists and engineers. The report is organized into five major sections: Aeronautics, Research and Technology, Space, Engineering and Technical Services, and Commercial Technology. A table of contents and author index have been developed to assist readers in finding articles of special interest. This report is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Glenn-published technical reports, journal articles, and presentations prepared by Glenn staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Glenn contact person has been identified, and where possible, a reference document is listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information about research at Glenn, visit us on the World Wide Web (http://www.grc.nasa.gov). This document is available online (http://www.grc.nasa.gov/WWW/RT). For publicly available reports, visit the Glenn Technical Report Server (http://gltrs.grc.nasa.gov/GLTRS/).

  4. Research and Technology 2001

    Science.gov (United States)

    2002-01-01

    This report selectively summarizes NASA Glenn Research Center's research and technology accomplishments for fiscal year 2001. It comprises 156 short articles submitted by the staff scientists and engineers. The report is organized into five major sections: Aeronautics, Research and Technology, Space, Engineering and Technical Services, and Commercial Technology. A table of contents and author index have been developed to assist readers in finding articles of special interest. This report is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Glenn-published technical reports, journal articles, and presentations prepared by Glenn staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Glenn contact person has been identified, and, where possible, a reference document is listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information about research at Glenn, visit us on the World Wide Web (http://www.grc.nasa.gov). This document is available online (http://www.grc.nasa.gov/www/RT). For publicly available reports, visit the Glenn Technical Report Server (http://gltrs.grc.nasa.gov/GLTRS).

  5. Nevada Test Site-Directed Research, Development, and Demonstration

    International Nuclear Information System (INIS)

    Will Lewis, Compiler

    2006-01-01

    The Nevada Test Site-Directed Research, Development, and Demonstration (SDRD) program completed a very successful year of research and development activities in FY 2005. Fifty new projects were selected for funding this year, and five FY 2004 projects were brought to conclusion. The total funds expended by the SDRD program were $5.4 million, for an average per project cost of just under $100,000. Two external audits of SDRD accounting practices were conducted in FY 2005. Both audits found the program's accounting practices consistent with the requirements of DOE Order 413.2A, and one included the observation that the NTS contractor ''did an exceptional job in planning and executing year-start activities.'' Highlights for the year included: the filing of 18 invention disclosures for intellectual property generated by FY 2005 projects; programmatic adoption of 17 FY 2004 SDRD-developed technologies; participation in the tri-lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2005 projects; and the successful completion of 55 R and D projects, as presented in this report

  6. Seven Years after the Manifesto: Literature Review and Research Directions for Technologies in Animal Computer Interaction

    Directory of Open Access Journals (Sweden)

    Ilyena Hirskyj-Douglas

    2018-06-01

    Full Text Available As technologies diversify and become embedded in everyday lives, the technologies we expose to animals, and the new technologies being developed for animals within the field of Animal Computer Interaction (ACI are increasing. As we approach seven years since the ACI manifesto, which grounded the field within Human Computer Interaction and Computer Science, this thematic literature review looks at the technologies developed for (non-human animals. Technologies that are analysed include tangible and physical, haptic and wearable, olfactory, screen technology and tracking systems. The conversation explores what exactly ACI is whilst questioning what it means to be animal by considering the impact and loop between machine and animal interactivity. The findings of this review are expected to form the first grounding foundation of ACI technologies informing future research in animal computing as well as suggesting future areas for exploration.

  7. Research on the Mode of Technology Innovation Alliance of the New Material Industry in Hunan Province

    Science.gov (United States)

    Wang, Fan

    2018-03-01

    One of the main directions of technology development in the 21st century is the development and application of new materials, and the key to the development of the new material industry lies in the industrial technology innovation. The gross scale of the new material industry in Hunan Province ranks the first array in China. Based on the present situation of Hunan’s new material industry, three modes of technology innovation alliance are put forward in this paper, namely the government-driven mode, the research-driven and the market-oriented mode. The government-driven mode is applicable to the major technology innovation fields with uncertain market prospect, high risk of innovation and government’s direct or indirect intervention;the research-driven mode is applicable to the key technology innovation fields with a high technology content; and the market-oriented mode is applicable to the general innovation fields in which enterprises have demands for technology innovation but such innovation must be achieved via cooperative research and development.

  8. Exploration Technology Program plans and directions

    Science.gov (United States)

    Aldrich, A.; Rosen, R.; Craig, M.; Mankins, J. C.

    During the first part of the next century, the United States will return to the Moon to create a permanent lunar base, and, before the year 2019, we will send a human mission to Mars. In addition to these human operations, the Space Exploration Initiative will integrally incorporate robotic lunar and Mars missions. In achieving these efforts to expand human presence and activity in space and also exerted and frontiers of human knowledge, the SEI will require an array of new technologies. Mission architecture definition is still underway, but previous studies indicate that the SEI will require developments in areas such as advanced engines for space transportation, in-space assembly and construction to support permanent basing of exploration systems in space, and advanced surface operations capabilities including adequate levels of power and surface roving vehicles, and technologies to support safely long-duration human operations in space. Plans are now being put into place to implement an Exploration Technology Program (ETP) which will develop the major technologies needed for SEI. In close coordination with other ongoing U.S. government research and development efforts, the ETP will provide in the near term clear demonstrations of potential exploration technologies, research results to support SEI architecture decisions, and a foundation of mature technology that is ready to be applied in the first round of SEI missions. In addition to the technology needed for the first round of SEI missions, the ETP will also put in place a foundation of research for longer-term technology needs—ultimately leading the human missions to Mars. The Space Exploration Initiative and the Exploration Technology Program will challenge the best and the brightest minds across government, industry and academia, inspiring students of all ages and making possible future terrestial applications of SEI technologies that may create whole new industries for the future.

  9. Research and Technology 1996

    Science.gov (United States)

    1997-01-01

    This report highlights the challenging work accomplished during fiscal year 1996 by Ames research scientists, engineers, and technologists. It discusses research and technologies that enable the Information Age, that expand the frontiers of knowledge for aeronautics and space, and that help to maintain U.S. leadership in aeronautics and space research and technology development. The accomplishments span the range of goals of NASA's four Strategic Enterprises: (1) Aeronautics and Space Transportation Technology, (2) Space Science, (3) Human Exploration and Development of Space, and (4) Mission to Planet Earth. The primary purpose of this report is to communicate knowledge--to inform our stakeholders, customers, and partners, and the people of the United States about the scope and diversity of Ames' mission, the nature of Ames' research and technology activities, and the stimulating challenges ahead. The accomplishments cited illustrate the contributions that Ames is making to improve the quality of life for our citizens and the economic position of the United States in the world marketplace.

  10. Laboratory Directed Research and Development FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  11. Science for Energy Technology: Strengthening the Link Between Basic Research and Industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-04-01

    out a broad view of the basic and grand challenge science needs for the development of future clean energy technologies in a series of comprehensive 'Basic Research Needs' workshops and reports (inside front cover and http://www.sc.doe.gov/bes/reports/list.html) and has structured its programs and launched initiatives to address the challenges. The basic science needs of industry, however, are often more narrowly focused on solving specific nearer-term roadblocks to progress in existing and emerging clean energy technologies. To better define these issues and identify specific barriers to progress, the Basic Energy Sciences Advisory Committee (BESAC) sponsored the Workshop on Science for Energy Technology, January 18-21, 2010. A wide cross-section of scientists and engineers from industry, universities, and national laboratories delineated the basic science Priority Research Directions most urgently needed to address the roadblocks and accelerate the innovation of clean energy technologies. These Priority Research Directions address the scientific understanding underlying performance limitations in existing but still immature technologies. Resolving these performance limitations can dramatically improve the commercial penetration of clean energy technologies. A key conclusion of the Workshop is that in addition to the decadal challenges defined in the 'Basic Research Needs' reports, specific research directions addressing industry roadblocks are ripe for further emphasis. Another key conclusion is that identifying and focusing on specific scientific challenges and translating the results to industry requires more direct feedback and communication and collaboration between industrial and BES-supported scientists. BES-supported scientists need to be better informed of the detailed scientific issues facing industry, and industry more aware of BES capabilities and how to utilize them. An important capability is the suite of BES scientific user

  12. Laboratory Directed Research and Development Program Assessment for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps

  13. Research and Technology 1995

    Science.gov (United States)

    1996-01-01

    This report selectively summarizes the NASA Lewis Research Center's research and technology accomplishments for fiscal year 1995. It comprises over 150 short articles submitted by the staff members of the technical directorates. The report is organized into six major sections: aeronautics, aerospace technology, space flight systems, engineering support, Lewis Research Academy, and technology transfer. A table of contents, an author index, and a list of NASA Headquarters program offices have been included to assist the reader in finding articles of special interest. This report is not intended to be a comprehensive summary of all research and technology work done over the past fiscal year. Most of the work is reported in Lewis-published technical reports, journal articles, and presentations prepared by Lewis staff members and contractors (for abstracts of these Lewis-authored reports, visit the Lewis Technical Report Server (LETRS) on the World Wide Web-http://letrs.lerc.nasa.gov/LeTRS/). In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Lewis contact person has been identified, and where possible, reference documents are listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information about Lewis' research, visit us on the World Wide web-http://www.lerc.nasa.gov.

  14. Critical technologies research: Opportunities for DOE

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Recent studies have identified a number of critical technologies that are essential to the nation`s defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy`s Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE`s capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  15. Critical technologies research: Opportunities for DOE

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Recent studies have identified a number of critical technologies that are essential to the nation's defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy's Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE's capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  16. Development of prostate cancer research database with the clinical data warehouse technology for direct linkage with electronic medical record system.

    Science.gov (United States)

    Choi, In Young; Park, Seungho; Park, Bumjoon; Chung, Byung Ha; Kim, Choung-Soo; Lee, Hyun Moo; Byun, Seok-Soo; Lee, Ji Youl

    2013-01-01

    In spite of increased prostate cancer patients, little is known about the impact of treatments for prostate cancer patients and outcome of different treatments based on nationwide data. In order to obtain more comprehensive information for Korean prostate cancer patients, many professionals urged to have national system to monitor the quality of prostate cancer care. To gain its objective, the prostate cancer database system was planned and cautiously accommodated different views from various professions. This prostate cancer research database system incorporates information about a prostate cancer research including demographics, medical history, operation information, laboratory, and quality of life surveys. And, this system includes three different ways of clinical data collection to produce a comprehensive data base; direct data extraction from electronic medical record (EMR) system, manual data entry after linking EMR documents like magnetic resonance imaging findings and paper-based data collection for survey from patients. We implemented clinical data warehouse technology to test direct EMR link method with St. Mary's Hospital system. Using this method, total number of eligible patients were 2,300 from 1997 until 2012. Among them, 538 patients conducted surgery and others have different treatments. Our database system could provide the infrastructure for collecting error free data to support various retrospective and prospective studies.

  17. Space Transportation Technology Workshop: Propulsion Research and Technology

    Science.gov (United States)

    2000-01-01

    This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.

  18. Laboratory-directed research and development: FY 1996 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  19. Laboratory-directed research and development: FY 1996 progress report

    International Nuclear Information System (INIS)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects' principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences

  20. Korea-China Optical Technology Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Cha, H. K.; Rhee, Y. J. (and others)

    2007-04-15

    The main objectives of this project are to develop cooperative channel by personnel exchanges between industrial, educational and research partners of Korea and China on the fields of optical technologies which are the basis of optical industry and being spot-lighted as new industry of 21th century, and to raise the class of Korean optical technology up to world class by utilization of Chinese large facilities through the cooperative research between the optical technology institutions of both sides. To attain the goals mentioned above, we carried out the cooperative researches between the Korean and Chinese optical technology institutions in the following 7 fields; ? research cooperation between KAERI-SITP for the quantum structured far-IR sensor technology - research cooperation for the generation of femtosecond nuclear fusion induced neutrons - research cooperation between KAERI-AIOFM for laser environment analysis and remote sensing technology - research cooperation between KAERI-SIOM for advanced diode-pumped laser technology - cooperative research related on linear and nonlinear magneto-optical properties of advanced magnetic quantum structures - design of pico-second PW high power laser system and its simulation and - cooperative research related on the femto-second laser-plasma interaction physics.

  1. Korea-China Optical Technology Research Centre

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Cha, H. K.; Rhee, Y. J.

    2007-04-01

    The main objectives of this project are to develop cooperative channel by personnel exchanges between industrial, educational and research partners of Korea and China on the fields of optical technologies which are the basis of optical industry and being spot-lighted as new industry of 21th century, and to raise the class of Korean optical technology up to world class by utilization of Chinese large facilities through the cooperative research between the optical technology institutions of both sides. To attain the goals mentioned above, we carried out the cooperative researches between the Korean and Chinese optical technology institutions in the following 7 fields; ? research cooperation between KAERI-SITP for the quantum structured far-IR sensor technology - research cooperation for the generation of femtosecond nuclear fusion induced neutrons - research cooperation between KAERI-AIOFM for laser environment analysis and remote sensing technology - research cooperation between KAERI-SIOM for advanced diode-pumped laser technology - cooperative research related on linear and nonlinear magneto-optical properties of advanced magnetic quantum structures - design of pico-second PW high power laser system and its simulation and - cooperative research related on the femto-second laser-plasma interaction physics

  2. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  3. Energy Technology Division research summary 1997

    International Nuclear Information System (INIS)

    1997-01-01

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear

  4. Energy Technology Division research summary 1997.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water

  5. Locating assistive technology research in a clinical setting: an occupational perspective.

    Science.gov (United States)

    Fowler-Davis, Sally; Evans, Laura; Cudd, Peter

    2015-01-01

    Peer research was used to identify the experience and perceptions of assistive technology and telecare adoption in a UK healthcare context. A narrative account of participation and learning is intended to provoke further dialogue. There have been a range of policy and implementation initiatives that are within the direct experience of organisational actors over the last 15 years and this engagement allows for specific reflection on the service achievements and some of the barriers to implementation of technology changes in rehabilitation practice and service design. Insights are presented that suggest a reification of research priorities and a need to align technology, through patient and public engagement, to provider priorities. In addition, an improvement in adoption would be based on sustained capacity building within the Occupational Therapy workforce and a re-focus on specific knowledge sharing and learning about technology. Given the shared desire to promote the sustained adoption of appropriate technology for assistance and rehabilitation it is suggested the voice of practitioners is strengthened through research and knowledge exchange in the clinical setting.

  6. Center for Alternative Energy Storage Research and Technology

    Science.gov (United States)

    2013-03-28

    and civilian markets . Research at CAESRT has been directed primarily at Defense Department (Army) applications to provide effective technology...applications are sensitive to the characteristics of the applications. Often it takes more than 3nS 2pS 4pS 1pS 3pS 2nS 4nS 1Li 3Li 1C 2C 3C 4C 5C 2Li

  7. 1991 research and technology

    Science.gov (United States)

    1992-01-01

    Selected research and technology activities at Ames Research Center, including the Moffett Field site and the Dryden Flight Research Facility, are summarized. These activities exemplify the Center's varied and productive research efforts for 1991.

  8. 2007 Research and Technology

    Science.gov (United States)

    Riddlebaugh, Stephen M. (Editor)

    2008-01-01

    The NASA Glenn Research Center is pushing the envelope of research and technology in aeronautics, space exploration, science, and space operations. Our research in aeropropulsion, structures and materials, and instrumentation and controls is enabling next-generation transportation systems that are faster, more environmentally friendly, more fuel efficient, and safer. Our research and development of space flight systems is enabling advanced power, propulsion, communications, and human health systems that will advance the exploration of our solar system. This report selectively summarizes NASA Glenn Research Center s research and technology accomplishments for fiscal year 2007. Comprising 104 short articles submitted by the staff scientists and engineers, the report is organized into six major sections: Aeropropulsion, Power and Space Propulsion, Communications, Space Processes and Experiments, Instrumentation and Controls, and Structures and Materials. It is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year; most of the work is reported in Glenn-published technical reports, journal articles, and presentations. For each article in this report, a Glenn contact person has been identified, and where possible, a reference document is listed so that additional information can be easily obtained.

  9. Energy research and energy technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Research and development in the field of energy technologies was and still is a rational necessity of our time. However, the current point of main effort has shifted from security of supply to environmental compatibility and safety of the technological processes used. Nuclear fusion is not expected to provide an extension of currently available energy resources until the middle of the next century. Its technological translation will be measured by the same conditions and issues of political acceptance that are relevant to nuclear technology today. Approaches in the major research establishments to studies of regenerative energy systems as elements of modern energy management have led to research and development programs on solar and hydrogen technologies as well as energy storage. The percentage these systems might achieve in a secured energy supply of European national economies is controversial yet today. In the future, the Arbeitsgemeinschaft Grossforschungseinrichtungen (AGF) (Cooperative of Major Research Establishments) will predominantly focus on nuclear safety research and on areas of nuclear waste disposal, which will continue to be a national task even after a reorganization of cooperation in Europe. In addition, they will above all assume tasks of nuclear plant safety research within international cooperation programs based on government agreements, in order to maintain access for the Federal Republic of Germany to an advancing development of nuclear technology in a concurrent partnership with other countries. (orig./HSCH) [de

  10. Laboratory Directed Research and Development annual report, Fiscal year 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER ampersand D, as well as other discretionary research and development activities not provided for in a DOE program.'' Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL's LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  11. Laboratory Directed Research and Development annual report, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  12. Laboratory Directed Research and Development Program FY 2007 Annual Report

    International Nuclear Information System (INIS)

    Sjoreen, Terrence P.

    2008-01-01

    The Oak Ridge National LaboratoryLaboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R and D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R and D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science

  13. Laboratory Directed Research and Development Program FY 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating

  14. Technology Transfer, Foreign Direct Investment and International Trade

    OpenAIRE

    Leonard K. Cheng

    2000-01-01

    By developing a Ricardian trade model that features technology transfer via foreign direct investment (FDI), we show that technology transfer via multinational enterprises (MNEs) increases world output and trade in goods and services. When there are many goods a continuous reduction in the cost of technology transfer will cause increasingly more technologically advanced goods to go through the product cycle, i.e., goods initially produced in the advanced North are later produced in the backwa...

  15. Research and technology, 1991. Langley Research Center

    Science.gov (United States)

    1992-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights are given of the major accomplishments and applications that have been made during the past year. The highlights illustrate both the broad range of the research and technology (R&T) activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  16. Research and Technology 1999

    Science.gov (United States)

    2000-01-01

    This report selectively summarizes the NASA Glenn Research Center's research and technology accomplishments for the fiscal year 1999. It comprises 130 short articles submitted by the staff scientists and engineers. The report is organized into four major sections: Aeronautics. Research and Technology, Space, and Engineering and Technical Services. A table of contents and an author index have been developed to assist readers in finding articles of special interest. This report is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Glenn-published technical reports, journal articles, and presentations prepared by Glenn staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Glenn contact person has been identified, and where possible, reference documents are listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information about research at NASA Glenn, visit us on the World Wide Web (http://www.grc.nasa.gov). This document is available on the World Wide Web (http://www.grc.nasa.gov/WWW/RT/). For publicly available reports, visit the Glenn Technical Report Server (GLTRS) on the World Wide Web (http://gltrs.grc.nasa.gov/GLTRS/).

  17. Research and Technology 2004

    Science.gov (United States)

    2005-01-01

    This report selectively summarizes NASA Glenn Research Center's research and technology accomplishments for fiscal year 2004. It comprises 133 short articles submitted by the staff scientists and engineers. The report is organized into three major sections: Programs and Projects, Research and Technology, and Engineering and Technical Services. A table of contents and an author index have been developed to assist readers in finding articles of special interest. This report is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Glenn-published technical reports, journal articles, and presentations prepared by Glenn staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Glenn contact person has been identified, and where possible, a reference document is listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information, visit Glenn's Web site at http://www.nasa.gov/glenn/. This document is available online (http://www.grc.nasa.gov/WWW/RT/). For publicly available reports, visit the Glenn Technical Report Server (http://gltrs.grc.nasa.gov).

  18. Achievements of Theoretical Research on Chinese Technological Innovation

    Directory of Open Access Journals (Sweden)

    Wang Hanxi

    2017-01-01

    Full Text Available Using the CNKI database as the sample source, we investigated the makeup of current research results on Chinese technological innovation, and found that the study of Chinese technological innovation consists of nine directions - underlying principles of innovation behavior, concepts of innovation cognition, methods of innovation, behavior of innovation subjects, structure of innovation mediators, innovation capacity, public service system of innovation, policy support system of innovation, and cultural environment of innovation, as well as several issues of innovation, including its behavior mechanism, operational mechanism, work mechanism, modes of implementation, modes of mathematical representation, modes of physical representation, modes of behavioral representation, modes of performance representation, modes of function realization, modes of structure realization, modes of workflow realization, modes of carrier realization, etc. Such a scattered makeup requires us to formulate the system of Chinese technological innovation achievements from the perspective of philosophy of science. This will be an important mission in the study of Chinese technological innovation.

  19. Collaborative Action Research on Technology Integration for Science Learning

    Science.gov (United States)

    Wang, Chien-Hsing; Ke, Yi-Ting; Wu, Jin-Tong; Hsu, Wen-Hua

    2012-02-01

    This paper briefly reports the outcomes of an action research inquiry on the use of blogs, MS PowerPoint [PPT], and the Internet as learning tools with a science class of sixth graders for project-based learning. Multiple sources of data were essential to triangulate the key findings articulated in this paper. Corresponding to previous studies, the incorporation of technology and project-based learning could motivate students in self-directed exploration. The students were excited about the autonomy over what to learn and the use of PPT to express what they learned. Differing from previous studies, the findings pointed to the lack information literacy among students. The students lacked information evaluation skills, note-taking and information synthesis. All these findings imply the importance of teaching students about information literacy and visual literacy when introducing information technology into the classroom. The authors suggest that further research should focus on how to break the culture of "copy-and-paste" by teaching the skills of note-taking and synthesis through inquiry projects for science learning. Also, further research on teacher professional development should focus on using collaboration action research as a framework for re-designing graduate courses for science teachers in order to enhance classroom technology integration.

  20. Laboratory-Directed Research and Development 2016 Summary Annual Report

    International Nuclear Information System (INIS)

    Pillai, Rekha Sukamar; Jacobson, Julie Ann

    2017-01-01

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclear Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world's energy future and secure our critical infrastructure. Operating since 1949, INL is the nation's leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL's research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy, enable clean

  1. Engineering research, development and technology: Thrust area report FY 91

    International Nuclear Information System (INIS)

    1991-01-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence, Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) conduct high quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. The thrust area leader is also responsible for carrying out the work that follows from the Engineering Research, Development, and Technology Program so that the results can be applied as early as possible to the needs of LLNL programs. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year, 1991. Its intent is to provide timely summaries of objectives, theories, methods, and results

  2. A Framework for Developing Self-Directed Technology Use for Language Learning

    Science.gov (United States)

    Lai, Chun

    2013-01-01

    Critical to maximizing the potential of technology for learning is enhancing language learners' self-directed use of technology for learning purposes. This study aimed to enhance our understanding of the determinants of self-directed technology use through the construction of a structural equation modelling (SEM) framework of factors and…

  3. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  4. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  5. Nevada Test Site-Directed Research and Development: FY 2006 Report

    International Nuclear Information System (INIS)

    Wil Lewis, editor

    2007-01-01

    The Nevada Test Site Directed Research and Development (SDRD) program completed its fifth successful year of research and development activities in FY 2006. Forty new projects were selected for funding this year, and ten FY 2005 projects were brought to conclusion. The total funds expended by the SDRD program were $6 million, for an average per-project cost of $120 thousand. Beginning in May, 2006 programmatic burden rates were applied to SDRD project costs. An external audit conducted in September 2006 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: the filing of 27 invention disclosures for intellectual property generated by FY 2006 projects; programmatic adoption of four FY 2005 SDRD-developed technologies; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2006 projects; and the successful completion of 50 R and D projects, as presented in this report

  6. Nevada Test Site-Directed Research and Development: FY 2006 Report

    Energy Technology Data Exchange (ETDEWEB)

    Wil Lewis, editor

    2007-08-01

    The Nevada Test Site–Directed Research and Development (SDRD) program completed its fifth successful year of research and development activities in FY 2006. Forty new projects were selected for funding this year, and ten FY 2005 projects were brought to conclusion. The total funds expended by the SDRD program were $6 million, for an average per-project cost of $120 thousand. Beginning in May, 2006 programmatic burden rates were applied to SDRD project costs. An external audit conducted in September 2006 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: the filing of 27 invention disclosures for intellectual property generated by FY 2006 projects; programmatic adoption of four FY 2005 SDRD-developed technologies; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2006 projects; and the successful completion of 50 R&D projects, as presented in this report.

  7. Direct Metal Laser Sintering: A Digitised Metal Casting Technology

    OpenAIRE

    Venkatesh, K. Vijay; Nandini, V. Vidyashree

    2013-01-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  8. Direct metal laser sintering: a digitised metal casting technology.

    Science.gov (United States)

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  9. A Review of Research Methods in Children's Technology Design

    DEFF Research Database (Denmark)

    Jensen, Janne Jul; Skov, Mikael B.

    2005-01-01

    Research methods have been objects of discussions for dec-ades and defining research methods is still a quite substan-tial challenge. However, it is important to understand how research methods have been adapted in different disciplines as it potentially informs us on future directions and influ......-ences on the discipline. Inspired by previous studies from other disciplines, we conduct a survey of research methods in paper publications. 105 papers on children's technology design are classified on a two-dimensional matrix on research method and pur-pose. Our results show a strong focus on engineering of products...... as applied research and on evaluation of devel-oped products in the field or in the lab. Also, we find that much research is conducted in natural setting environments with strong focus on field studies....

  10. How a diverse research ecosystem has generated new rehabilitation technologies: Review of NIDILRR's Rehabilitation Engineering Research Centers.

    Science.gov (United States)

    Reinkensmeyer, David J; Blackstone, Sarah; Bodine, Cathy; Brabyn, John; Brienza, David; Caves, Kevin; DeRuyter, Frank; Durfee, Edmund; Fatone, Stefania; Fernie, Geoff; Gard, Steven; Karg, Patricia; Kuiken, Todd A; Harris, Gerald F; Jones, Mike; Li, Yue; Maisel, Jordana; McCue, Michael; Meade, Michelle A; Mitchell, Helena; Mitzner, Tracy L; Patton, James L; Requejo, Philip S; Rimmer, James H; Rogers, Wendy A; Zev Rymer, W; Sanford, Jon A; Schneider, Lawrence; Sliker, Levin; Sprigle, Stephen; Steinfeld, Aaron; Steinfeld, Edward; Vanderheiden, Gregg; Winstein, Carolee; Zhang, Li-Qun; Corfman, Thomas

    2017-11-06

    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a "total approach to rehabilitation", combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970's, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet

  11. Research and technology, 1993

    Science.gov (United States)

    1994-01-01

    Selected research and technology activities at Ames Research Center, including the Moffett Field site and the Dryden Flight Research Facility, are summarized. These activities exemplify the center's varied and productive research efforts for 1993. This year's report presents some of the challenging work recently accomplished in the areas of aerospace systems, flight operations and research, aerophysics, and space research.

  12. Indocyanine green enhanced surgery; principle, clinical applications and future research directions

    Directory of Open Access Journals (Sweden)

    Catalin Alius

    2018-05-01

    Full Text Available Over the past decade a new emergent technology has become very popular in all fields of surgery using Indocyanine green and near infrared fluorescent optical systems. This revolutionary approach overlaps conventional and near infrared images to produce highly informative intraoperative images on the anatomy and physiology of various tissues. Near infrared fluorescence is employed for perioperative angiography in vascular mapping, assessment of anastomoses, location of sentinel lymph nodes and delineation of biliary tree anatomy, highlighting tumours and metastatic deposits, improving surgical techniques and for many other uses. A lot of researchers have reported better surgical outcomes and technique innovations facilitated by this novel technology which although in its early stages, it lights up great interest worldwide. This article reviews the principle of the method, the properties of the fluorescent dye, the main clinical applications and discusses future research directions.

  13. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  14. Technology and Research Requirements for Combating Human Trafficking: Enhancing Communication, Analysis, Reporting, and Information Sharing

    Energy Technology Data Exchange (ETDEWEB)

    Kreyling, Sean J.; West, Curtis L.; Olson, Jarrod

    2011-03-17

    DHS’ Science & Technology Directorate directed PNNL to conduct an exploratory study on the domain of human trafficking in the Pacific Northwest in order to examine and identify technology and research requirements for enhancing communication, analysis, reporting, and information sharing – activities that directly support efforts to track, identify, deter, and prosecute human trafficking – including identification of potential national threats from smuggling and trafficking networks. This effort was conducted under the Knowledge Management Technologies Portfolio as part of the Integrated Federal, State, and Local/Regional Information Sharing (RISC) and Collaboration Program.

  15. Institute for Scientific and Educational Technology (ISET)-Education, Research and Training Programs in Engineering and Sciences

    Science.gov (United States)

    Tiwari, S. N. (Principal Investigator); Massenberg, Samuel E. (Technical Monitor)

    2002-01-01

    The 'Institute for Scientific and Educational Technology' has been established to provide a mechanism through which universities and other research organizations may cooperate with one another and with different government agencies and industrial organizations to further and promote research, education, and training programs in science, engineering, and related fields. This effort has been undertaken consistent with the national vision to 'promote excellence in America s educational system through enhancing and expanding scientific and technological competence.' The specific programs are directed in promoting and achieving excellence for individuals at all levels (elementary and secondary schools, undergraduate and graduate education, and postdoctoral and faculty research). The program is consistent with the existing activities of the Institute for Computational and Applied Mechanics (ICAM) and the American Society for Engineering Education (ASEE) at NASA Langley Research Center (LaRC). The efforts will be directed to embark on other research, education, and training activities in various fields of engineering, scientific, and educational technologies. The specific objectives of the present program may be outlined briefly as follows: 1) Cooperate in the various research, education, and technology programs of the Office of Education at LaRC. 2) Develop procedures for interactions between precollege, college, and graduate students, and between faculty and students at all levels. 3) Direct efforts to increase the participation by women and minorities in educational programs at all levels. 4) Enhance existing activities of ICAM and ASEE in education, research, and training of graduate students and faculty. 5) Invite distinguished scholars as appropriate and consistent with ISET goals to spend their summers and/or sabbaticals at NASA Langley andor ODU and interact with different researchers and graduate students. Perform research and administrative activities as needed

  16. Innovative technology transfer of nondestructive evaluation research

    Science.gov (United States)

    Brian Brashaw; Robert J. Ross; Xiping Wang

    2008-01-01

    Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...

  17. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  18. NIH Common Fund - Disruptive Proteomics Technologies - Challenges and Opportunities | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    This Request for Information (RFI) is directed toward determining how best to accelerate research in disruptive proteomics technologies. The Disruptive Proteomics Technologies (DPT) Working Group of the NIH Common Fund wishes to identify gaps and opportunities in current technologies and methodologies related to proteome-wide measurements.  For the purposes of this RFI, “disruptive” is defined as very rapid, very significant gains, similar to the "disruptive" technology development that occurred in DNA sequencing technology.

  19. Directions for further research

    DEFF Research Database (Denmark)

    Minsaas, Atle; Psaraftis, Harilaos N.

    2015-01-01

    Green transportation logistics is an area that combines the following: (a) it is relatively new in terms of research carried out thus far, (b) it has become increasingly important for both industry and society, and (c) it is rich in topics for further research, both basic and applied. In this final...... chapter of this book we discuss directions for further research in this area. We do so by taking stock of (1) related recommendations of project SuperGreen, and (2) related activities mainly in European research. Links between research and policy-making as two activities that should go hand in hand...

  20. Laboratory directed research and development annual report: Fiscal year 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  1. Research on the Synergy Degree of China Yangtze River Delta Region Technology Innovation System Evolution from the Perspective of Technology Innovation Chain

    Directory of Open Access Journals (Sweden)

    Xu Bin Feng

    2014-08-01

    Full Text Available Abstract: This paper divides technology innovation system into research and development input subsystem, technology research and development subsystem and technology application subsystem from the perspective of technology innovation chain, combining with the system theory. Then selects the corresponding ordinal variables, makes an empirical analysis to the synergy degree of Yangtze River delta regional technology innovation system evolution by complex system synergy degree model which based on the data of 2002-2009. The results show that the development of synergy degree of the technology innovation system appears a rising trend and the technology application subsystem is the key factor of direction and degree of synergy development in the evolution process of regional technology innovation system in the Yangtze River Delta of China. Finally, this paper analyzes the characteristics and causes of synergy degree’s evolution, and puts forward the corresponding policy recommendations to different problems.

  2. Laboratory-Directed Research and Development 2016 Summary Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Julie Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclear Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy

  3. Mode of foreign entry, technology transfer, and foreign direct investment policy

    OpenAIRE

    Mattoo, Aaditya; Olarreaga, Marcelo; Saggi, Kamal

    2001-01-01

    Foreign direct investment can take place through the direct entry of foreign firms or the acquisition of existing domestic firms. Mattoo, Olarreaga, and Saggi examine the preferences of a foreign firm and the host country government with respect to these two modes of foreign direct investment in the presence of costly technology transfer. The tradeoff between technology transfer and market...

  4. Emerging Technologies for Gut Microbiome Research

    Science.gov (United States)

    Arnold, Jason W.; Roach, Jeffrey; Azcarate-Peril, M. Andrea

    2016-01-01

    Understanding the importance of the gut microbiome on modulation of host health has become a subject of great interest for researchers across disciplines. As an intrinsically multidisciplinary field, microbiome research has been able to reap the benefits of technological advancements in systems and synthetic biology, biomaterials engineering, and traditional microbiology. Gut microbiome research has been revolutionized by high-throughput sequencing technology, permitting compositional and functional analyses that were previously an unrealistic undertaking. Emerging technologies including engineered organoids derived from human stem cells, high-throughput culturing, and microfluidics assays allowing for the introduction of novel approaches will improve the efficiency and quality of microbiome research. Here, we will discuss emerging technologies and their potential impact on gut microbiome studies. PMID:27426971

  5. Significance, progress and prospects for research in simplified cultivation technologies for rice in China.

    Science.gov (United States)

    Huang, M; Ibrahim, Md; Xia, B; Zou, Y

    2011-08-01

    Simplified cultivation technologies for rice have become increasingly attractive in recent years in China because of their social, economical and environmental benefits. To date, several simplified cultivation technologies, such as conventional tillage and seedling throwing (CTST), conventional tillage and direct seeding (CTDS), no-tillage and seedling throwing (NTST), no-tillage and direct seeding (NTDS) and no-tillage and transplanting (NTTP), have been developed in China. Most studies have shown that rice grown under each of these simplified cultivation technologies can produce a grain yield equal to or higher than traditional cultivation (conventional tillage and transplanting). Studies that have described the influences of agronomic practices on yield formation of rice under simplified cultivation have demonstrated that optimizing agronomy practices would increase the efficiencies of simplified cultivation systems. Further research is needed to optimize the management strategies for CTST, CTDS and NTST rice which have developed quickly in recent years, to strengthen basic research for those simplified cultivation technologies that are rarely used at present (such as NTTP and NTDS), to select and breed cultivars suitable for simplified cultivation and to compare the practicability and effectiveness of different simplified cultivation technologies in different rice production regions.

  6. Laboratory Directed Research and Development FY2011 Annual Report

    International Nuclear Information System (INIS)

    Craig, W.; Sketchley, J.; Kotta, P.

    2012-01-01

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial

  7. Research, development, demonstration, and early deployment policies for advanced-coal technology in China

    International Nuclear Information System (INIS)

    Zhao Lifeng; Gallagher, Kelly Sims

    2007-01-01

    Advanced-coal technologies will increasingly play a significant role in addressing China's multiple energy challenges. This paper introduces the current status of energy in China, evaluates the research, development, and demonstration policies for advanced-coal technologies during the Tenth Five-Year Plan, and gives policy prospects for advanced-coal technologies in the Eleventh Five-Year Plan. Early deployment policies for advanced-coal technologies are discussed and some recommendations are put forward. China has made great progress in the development of advanced-coal technologies. In terms of research, development, and demonstration of advanced-coal technologies, China has achieved breakthroughs in developing and demonstrating advanced-coal gasification, direct and indirect coal liquefaction, and key technologies of Integrated Gasification Combined Cycle (IGCC) and co-production systems. Progress on actual deployment of advanced-coal technologies has been more limited, in part due to insufficient supporting policies. Recently, industry chose Ultra Super Critical (USC) Pulverized Coal (PC) and Super Critical (SC) PC for new capacity coupled with pollution-control technology, and 300 MW Circulating Fluidized Bed (CFB) as a supplement

  8. Laboratory directed research and development: Annual report to the Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    As one of the premier scientific laboratories of the DOE, Brookhaven must continuously foster the development of new ideas and technologies, promote the early exploration and exploitation of creative and innovative concepts, and develop new fundable R and D projects and programs. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments are described in this report. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.

  9. Research on Technology Innovation Management in Big Data Environment

    Science.gov (United States)

    Ma, Yanhong

    2018-02-01

    With the continuous development and progress of the information age, the demand for information is getting larger. The processing and analysis of information data is also moving toward the direction of scale. The increasing number of information data makes people have higher demands on processing technology. The explosive growth of information data onto the current society have prompted the advent of the era of big data. At present, people have more value and significance in producing and processing various kinds of information and data in their lives. How to use big data technology to process and analyze information data quickly to improve the level of big data management is an important stage to promote the current development of information and data processing technology in our country. To some extent, innovative research on the management methods of information technology in the era of big data can enhance our overall strength and make China be an invincible position in the development of the big data era.

  10. Qualitative research in rehabilitation science: opportunities, challenges, and future directions.

    Science.gov (United States)

    VanderKaay, Sandra; Moll, Sandra E; Gewurtz, Rebecca E; Jindal, Pranay; Loyola-Sanchez, Adalberto; Packham, Tara L; Lim, Chun Y

    2018-03-01

    Qualitative research has had a significant impact within rehabilitation science over time. During the past 20 years the number of qualitative studies published per year in Disability and Rehabilitation has markedly increased (from 1 to 54). In addition, during this period there have been significant changes in how qualitative research is conceptualized, conducted, and utilized to advance the field of rehabilitation. The purpose of this article is to reflect upon the progress of qualitative research within rehabilitation to date, to explicate current opportunities and challenges, and to suggest future directions to continue to strengthen the contribution of qualitative research in this field. Relevant literature searches were conducted in electronic data bases and reference lists. Pertinent literature was examined to identify current opportunities and challenges for qualitative research use in rehabilitation and to identify future directions. Six key areas of opportunity and challenge were identified: (a) paradigm shifts, (b) advancements in methodology, (c) emerging technology, (d) advances in quality evaluation, (e) increasing popularity of mixed methods approaches, and (f) evolving approaches to knowledge translation. Two important future directions for rehabilitation are posited: (1) advanced training in qualitative methods and (2) engaging qualitative communities of research. Qualitative research is well established in rehabilitation and has an important place in the continued growth of this field. Ongoing development of qualitative researchers and methods are essential. Implications for Rehabilitation Qualitative research has the potential to improve rehabilitation practice by addressing some of the most pervasive concerns in the field such as practitioner-client interaction, the subjective and lived experience of disability, and clinical reasoning and decision making. This will serve to better inform those providing rehabilitation services thereby benefiting

  11. Research and Technology 2003

    Science.gov (United States)

    2004-01-01

    The NASA Glenn Research Center at Lewis Field, in partnership with U.S. industries, universities, and other Government institutions, is responsible for developing critical technologies that address national priorities in aeropropulsion and space applications. Our work is focused on research for new aeropropulsion technologies, aerospace power, microgravity science (fluids and combustion), electric propulsion, and communications technologies for aeronautics, space, and aerospace applications. As NASA s premier center for aeropropulsion, aerospace power, and turbomachinery, our role is to conduct world-class research and to develop key technologies. We contribute to economic growth and national security through safe, superior, and environmentally compatible U.S. civil and military aircraft propulsion systems. Our Aerospace Power Program supports all NASA Enterprises and major programs, including the International Space Station, Advanced Space Transportation, and new initiatives in human and robotic exploration. Glenn Research Center leads NASA s research in the microgravity science disciplines of fluid physics, combustion science, and acceleration measurement. Almost every space shuttle science mission has had an experiment managed by NASA Glenn, and we have conducted a wide array of similar experiments on the International Space Station. The Glenn staff consists of over 3200 civil service employees and support service contractor personnel. Scientists and engineers comprise more than half of our workforce, with technical specialists, skilled workers, and an administrative staff supporting them. We aggressively strive for technical excellence through continuing education, increased diversity in our workforce, and continuous improvement in our management and business practices so that we can expand the boundaries of aeronautics, space, and aerospace technology. Glenn Research Center is a unique facility located in northeast Ohio. Situated on 350 acres of land adjacent

  12. Overview of Stirling Technology Research at NASA Glenn Research Center

    Science.gov (United States)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2016-01-01

    Stirling Radioisotope Power Systems (RPSs) are under development to provide power on future space science missions where robotic spacecraft will orbit, fly by, land, or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. NASA Glenn Research Center's newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability and system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  13. Laboratory Directed Research and Development Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  14. Laboratory Directed Research and Development Program FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  15. The Global Climate and Energy Project at Stanford University: Fundamental Research Towards Future Energy Technologies

    Science.gov (United States)

    Milne, Jennifer L.; Sassoon, Richard E.; Hung, Emilie; Bosshard, Paolo; Benson, Sally M.

    The Global Climate and Energy Project (GCEP), at Stanford University, invests in research with the potential to lead to energy technologies with lower greenhouse gas emissions than current energy technologies. GCEP is sponsored by four international companies, ExxonMobil, GE, Schlumberger, and Toyota and supports research programs in academic institutions worldwide. Research falls into the broad areas of carbon based energy systems, renewables, electrochemistry, and the electric grid. Within these areas research efforts are underway that are aimed at achieving break-throughs and innovations that greatly improve efficiency, performance, functionality and cost of many potential energy technologies of the future including solar, batteries, fuel cells, biofuels, hydrogen storage and carbon capture and storage. This paper presents a summary of some of GCEP's activities over the past 7 years with current research areas of interest and potential research directions in the near future.

  16. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  17. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

  18. Process Design and Costing of Bioethanol Technology: A Tool for Determining the Status and Direction of Research and Development.

    Science.gov (United States)

    Wooley; Ruth; Glassner; Sheehan

    1999-10-01

    Bioethanol is a fuel-grade ethanol made from trees, grasses, and waste materials. It represents a sustainable substitute for gasoline in today's passenger cars. Modeling and design of processes for making bioethanol are critical tools used in the U.S. Department of Energy's bioethanol research and development program. We use such analysis to guide new directions for research and to help us understand the level at which and the time when bioethanol will achieve commercial success. This paper provides an update on our latest estimates for current and projected costs of bioethanol. These estimates are the result of very sophisticated modeling and costing efforts undertaken in the program over the past few years. Bioethanol could cost anywhere from $1.16 to $1.44 per gallon, depending on the technology and the availability of low cost feedstocks for conversion to ethanol. While this cost range opens the door to fuel blending opportunities, in which ethanol can be used, for example, to improve the octane rating of gasoline, it is not currently competitive with gasoline as a bulk fuel. Research strategies and goals described in this paper have been translated into cost savings for ethanol. Our analysis of these goals shows that the cost of ethanol could drop by 40 cents per gallon over the next ten years by taking advantage of exciting new tools in biotechnology that will improve yield and performance in the conversion process.

  19. Laboratory Directed Research and Development Program Activities for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  20. Directed Vapor Deposition: Low Vacuum Materials Processing Technology

    National Research Council Canada - National Science Library

    Groves, J. F; Mattausch, G; Morgner, H; Hass, D. D; Wadley, H. N

    2000-01-01

    Directed vapor deposition (DVD) is a recently developed electron beam-based evaporation technology designed to enhance the creation of high performance thick and thin film coatings on small area surfaces...

  1. Computational fluid dynamics research at the United Technologies Research Center requiring supercomputers

    Science.gov (United States)

    Landgrebe, Anton J.

    1987-01-01

    An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.

  2. What Motivates Brazilian Academic Researchers to Transfer Technology?

    Directory of Open Access Journals (Sweden)

    Lisiane Closs

    2013-12-01

    Full Text Available This study investigated what motivates Brazilian academic researchers to get involved in University-Industry Technology Transfer (UITT and deterrents to contributing to this process. The research relied on interviews with experienced academic scientists and managers from four universities in Brazil. Determination, persistence and entrepreneurship, related to motivational types Self-direction and Stimulation, were prominent. Hedonism, Achievement and Power - highlighting a shift in their professional identity - were also observed. Universalism type involved opening career opportunities, awakening and maintaining the interest of students. The major motivational goals were: generate resources, solve problems, professional challenge, personal gains, personal gratification, academic prestige, competition, and solving problems of society. Factors that discouraged researchers were: time required for UITT, lack of incentive, innovation environment, and fear of contravening university rules, among others. Knowledge of motivational profiles of academic scientists favors the development of incentive policies and programs for UITT, helping to attract and retain qualified researchers at Brazilian universities.

  3. Laboratory Directed Research and Development FY2008 Annual Report

    International Nuclear Information System (INIS)

    Kammeraad, J.E.; Jackson, K.J.; Sketchley, J.A.; Kotta, P.R.

    2009-01-01

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities

  4. Research and technology strategy to help overcome the environmental problems in relation to transport

    International Nuclear Information System (INIS)

    Gwilliam, K.M.; Geerlings, H.

    1992-04-01

    This report has been prepared for the Strategic Analysis in Science and Technology Unit (SAST) of the Directorate-General for Science, Research and Development of the Commission of the European Communities. The background of the project to which this report contributes is a recognition of the growing impact of transportation on the environment, both as a function of growth in trade and as a leisure activity. The project is directed towards the elucidation of the many interactions between technology, transport and environment, in order to provide the Commission with (a) recommendations on the priorities for Community research and development in transport technology and other related areas of technology, and (b) an understanding of the implications of technological change on policy options, within the Community with regard to transport and environment and other related areas, such as energy and regional planning

  5. Using design science in educational technology research projects

    Directory of Open Access Journals (Sweden)

    Susan M. Chard

    2017-12-01

    Full Text Available Design science is a research paradigm where the development and evaluation of a technology artefact is a key contribution. Design science is used in many domains and this paper draws on those domains to formulate a generic structure for design science research suitable for educational technology research projects. The paper includes guidelines for writing proposals using the design science research methodology for educational technology research and presents a generic research report structure. The paper presents ethical issues to consider in design science research being conducted in educational settings and contributes guidelines for assessment when the research contribution involves the creation of a technology artefact.

  6. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001

    International Nuclear Information System (INIS)

    FOX, K.J.

    2001-01-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about$450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R and D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence

  7. Application Technology Research Unit

    Data.gov (United States)

    Federal Laboratory Consortium — To conduct fundamental and developmental research on new and improved application technologies to protect floricultural, nursery, landscape, turf, horticultural, and...

  8. Engineering research, development and technology

    International Nuclear Information System (INIS)

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report

  9. Nevada Test Site-Directed Research and Development, FY 2007 Report

    International Nuclear Information System (INIS)

    Wil Lewis, editor

    2008-01-01

    The Nevada Test Site-Directed Research and Development (SDRD) program completed a very successful year of research and development activities in FY 2007. Twenty-nine new projects were selected for funding this year, and eight projects started in FY 2006 were brought to conclusion. The total funds expended by the SDRD program were $5.67 million, for an average per-project cost of $153 thousand. An external audit conducted in September 2007 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: programmatic adoption of 8 SDRD-developed technologies; the filing of 9 invention disclosures for innovation evolving from SDRD projects; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD Symposium that was broadly attended by Nevada Test Site (NTS), National Nuclear Security Administration (NNSA), LDRD, U.S. Department of Homeland Security (DHS), and U.S. Department of Defense (DoD) representatives; peer reviews of all FY 2007 projects; and the successful completion of 37 R and D projects, as presented in this report. In response to a company-wide call, authors throughout the NTS complex submitted 182 proposals for FY 2007 SDRD projects. The SDRD program has seen a dramatic increase in the yearly total of submitted proposals--from 69 in FY 2002 to 182 this year--while the number of projects funded has actually decreased from a program high of 57 in FY 2004. The overall effect of this trend has helped ensure an increasingly competitive program that benefited from a broader set of innovative ideas, making project selection both challenging and rewarding. Proposals were evaluated for technical merit, including such factors as innovation, probability of success, potential benefit, and mission applicability. Authors and reviewers benefited from the use of a shortfalls list entitled the 'NTS Technology Needs Assessment' that was compiled from NTS, National Weapons Laboratory (NWL

  10. Nevada Test Site-Directed Research and Development, FY 2007 Report

    Energy Technology Data Exchange (ETDEWEB)

    Wil Lewis, editor

    2008-02-20

    The Nevada Test Site-Directed Research and Development (SDRD) program completed a very successful year of research and development activities in FY 2007. Twenty-nine new projects were selected for funding this year, and eight projects started in FY 2006 were brought to conclusion. The total funds expended by the SDRD program were $5.67 million, for an average per-project cost of $153 thousand. An external audit conducted in September 2007 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: programmatic adoption of 8 SDRD-developed technologies; the filing of 9 invention disclosures for innovation evolving from SDRD projects; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD Symposium that was broadly attended by Nevada Test Site (NTS), National Nuclear Security Administration (NNSA), LDRD, U.S. Department of Homeland Security (DHS), and U.S. Department of Defense (DoD) representatives; peer reviews of all FY 2007 projects; and the successful completion of 37 R&D projects, as presented in this report. In response to a company-wide call, authors throughout the NTS complex submitted 182 proposals for FY 2007 SDRD projects. The SDRD program has seen a dramatic increase in the yearly total of submitted proposals--from 69 in FY 2002 to 182 this year--while the number of projects funded has actually decreased from a program high of 57 in FY 2004. The overall effect of this trend has helped ensure an increasingly competitive program that benefited from a broader set of innovative ideas, making project selection both challenging and rewarding. Proposals were evaluated for technical merit, including such factors as innovation, probability of success, potential benefit, and mission applicability. Authors and reviewers benefited from the use of a shortfalls list entitled the 'NTS Technology Needs Assessment' that was compiled from NTS, National Weapons Laboratory

  11. Directions for memory hierarchies and their components: research and development

    International Nuclear Information System (INIS)

    Smith, A.J.

    1978-10-01

    The memory hierarchy is usually the largest identifiable part of a computer system and making effective use of it is critical to the operation and use of the system. The levels of such a memory hierarchy are considered and the state of the art and likely directions for both research and development are described. Algorithmic and logical features of the hierarchy not directly associated with specific components are also discussed. Among the problems believed to be the most significant are the following: (a) evaluate the effectiveness of gap filler technology as a level of storage between main memory and disk, and if it proves to be effective, determine how/where it should be used, (b) develop algorithms for the use of mass storage in a large computer system, and (c) determine how cache memories should be implemented in very large, fast multiprocessor systems

  12. What is past is prologue: future directions in Tokamak Power Reactor Design Research

    International Nuclear Information System (INIS)

    Conn, R.W.

    1976-01-01

    After reviewing the first generation of studies and the primary conclusions they produced, four current designs are discussed that are representative of present trends in this area of research. In particular, the trends towards reduced reactor size and higher neutron wall loadings are discussed. Moving in this direction requires new approaches to many subsystem designs. New approaches and future directions in first wall and blanket designs that can achieve reliable operation and reasonable lifetime, the use of cryogenic but normal aluminum magnets for the pulsed coils in a tokamak, blanket designs that allow elimination of the intermediate loop, and low activity shields and toroidal field magnets are described. A discussion is given of the future role of conceptual reactor design research and the need for close interactions with ongoing experiments in fusion technology

  13. PRODUCTION OF PROTOTYPE PARTS USING DIRECT METAL LASER SINTERING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Josef Sedlak

    2015-08-01

    Full Text Available Unconventional methods of modern materials preparation include additive technologies which involve the sintering of powders of different chemical composition, granularity, physical, chemical and other utility properties. The technology called Rapid Prototyping, which uses different technological principles of producing components, belongs to this type of material preparation. The Rapid Prototyping technology facilities use photopolymers, thermoplastics, specially treated paper or metal powders. The advantage is the direct production of metal parts from input data and the fact that there is no need for the production of special tools (moulds, press tools, etc.. Unused powder from sintering technologies is re-used for production 98% of the time, which means that the process is economical, as well as ecological.The present paper discusses the technology of Direct Metal Laser Sintering (DMLS, which falls into the group of additive technologies of Rapid Prototyping (RP. The major objective is a detailed description of DMLS, pointing out the benefits it offers and its application in practice. The practical part describes the production and provides an economic comparison of several prototype parts that were designed for testing in the automotive industry.

  14. Engineering Research and Development and Technology thrust area report FY92

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R.T.; Minichino, C. [eds.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

  15. Engineering Research and Development and Technology thrust area report FY92

    International Nuclear Information System (INIS)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering

  16. Laboratory Directed Research and Development FY2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High

  17. Technology-based suicide prevention: current applications and future directions.

    Science.gov (United States)

    Luxton, David D; June, Jennifer D; Kinn, Julie T

    2011-01-01

    This review reports on current and emerging technologies for suicide prevention. Technology-based programs discussed include interactive educational and social networking Web sites, e-mail outreach, and programs that use mobile devices and texting. We describe innovative applications such as virtual worlds, gaming, and text analysis that are currently being developed and applied to suicide prevention and outreach programs. We also discuss the benefits and limitations of technology-based applications and discuss future directions for their use.

  18. Armstrong Flight Research Center Research Technology and Engineering 2017

    Science.gov (United States)

    Voracek, David F. (Editor)

    2018-01-01

    I am delighted to present this report of accomplishments at NASA's Armstrong Flight Research Center. Our dedicated innovators possess a wealth of performance, safety, and technical capabilities spanning a wide variety of research areas involving aircraft, electronic sensors, instrumentation, environmental and earth science, celestial observations, and much more. They not only perform tasks necessary to safely and successfully accomplish Armstrong's flight research and test missions but also support NASA missions across the entire Agency. Armstrong's project teams have successfully accomplished many of the nation's most complex flight research projects by crafting creative solutions that advance emerging technologies from concept development and experimental formulation to final testing. We are developing and refining technologies for ultra-efficient aircraft, electric propulsion vehicles, a low boom flight demonstrator, air launch systems, and experimental x-planes, to name a few. Additionally, with our unique location and airborne research laboratories, we are testing and validating new research concepts. Summaries of each project highlighting key results and benefits of the effort are provided in the following pages. Technology areas for the projects include electric propulsion, vehicle efficiency, supersonics, space and hypersonics, autonomous systems, flight and ground experimental test technologies, and much more. Additional technical information is available in the appendix, as well as contact information for the Principal Investigator of each project. I am proud of the work we do here at Armstrong and am pleased to share these details with you. We welcome opportunities for partnership and collaboration, so please contact us to learn more about these cutting-edge innovations and how they might align with your needs.

  19. A snapshot of research in learning technology

    Directory of Open Access Journals (Sweden)

    Rhona Sharpe

    2010-12-01

    Full Text Available The papers in this issue present a convenient snapshot of current research in learning technology, both in their coverage of the issues that concern us and the methods that are being used to investigate them. This issue shows that e-learning researchers are interested in: what technologies are available and explorations of their potential (Nie et al. explore the role of podcasting, how to design technology-mediated learning activities in ways which support specific learning outcomes (Simpson evaluates the role of ‘book raps' in supporting critical thinking, the identification of critical success factors in implementations (Cochrane's observation of three mobile learning projects and how such e-learning initiatives can be sustained within an institutional context (Gunn's examination of the challenges of embedding ‘grass roots' initiatives. Finally e-learning research is concerned with investigating the impact of emerging technologies on education – in this case Traxler's discussion of mobile, largely student-owned, devices. Together these five papers demonstrate the scope of research in learning technology and it is with this in mind that we will soon be referring to this journal by its subtitle: Research in Learning Technology.

  20. THE SOCIAL AND ECONOMIC DIRECTIONS OF DEVELOPMENT OF IT-TECHNOLOGIES IN SYSTEM OF INTERNET BANKING

    Directory of Open Access Journals (Sweden)

    Irina Sergeevna Vinnikova

    2015-12-01

    Full Text Available Relevance of work is caused by active introduction of IT-technologies in various spheres of economic activity and in particular the bank environment, and also social and economic problems of use of information systems which arose along with a world economic crisis, sanctions and growth of the competition.Purpose: to define the main social and economic problems and the directions of development of IT-technologies in system of Internet banking at the present stage.Methodology: general scientific methods were used: analysis and synthesis, comparison, generalization, system approach.Results. Features of development of IT-technologies within remote bank customer service in Russia are defined. The directions of development of IT-technologies of the BSS company from a position of dynamic distribution of Internet banking in the future and from a position of development of the relations with clients are presented.Practical implications: results of research will be demanded by the scientists dealing with problems of Internet banking, heads of the commercial banks dealing with issues of remote bank service, students, undergraduates and graduate students of higher educational institutions.

  1. Social technologies and socialization of research

    Directory of Open Access Journals (Sweden)

    Jos Leijten

    2009-09-01

    Full Text Available Whether we like it or not, and how many difficulties this may pose, scientific research and technology are becoming the “property” of everybody and increasingly will become subject of public guidance and political decision making. Socialization happens because what people think, want and do has become central to the development of science and technology. Socialization of research is simply happening because it is the development characteristic of a society in which knowledge is becoming the main driving force. And just like in agricultural or industrial societies in the past it leads to (re-invent the institutions and mechanisms which allow the knowledge society to function properly.This note will further explore the developments contributing to the socialization of research and their impact on research and research institutes. It will focus more on technologies than on science per se, because applications and usage will become the main drivers.

  2. Information Technology in the Home Barriers, Opportunities, and Research Directions

    National Research Council Canada - National Science Library

    Lewis, Rosalind

    2000-01-01

    ...; but what are the implications of increased Information Technology (IT) in the home? Can increased in-home IT create opportunities that will change the way we live and function within our homes and communities and facilitate greater societal benefits...

  3. Adapting qualitative research strategies to technology savvy adolescents.

    Science.gov (United States)

    Mason, Deanna Marie; Ide, Bette

    2014-05-01

    To adapt research strategies involving adolescents in a grounded theory qualitative research study by conducting email rather than face-to-face interviews. Adolescent culture relies heavily on text-based communication and teens prefer interactions mediated through technology. Traditional qualitative research strategies need to be rethought when working with adolescents. Adapting interviewing strategies to electronic environments is timely and relevant for researching adolescents. Twenty three adolescents (aged 16-21) were interviewed by email. A letter of invitation was distributed. Potential participants emailed the researcher to convey interest in participating. If the inclusion criteria were met, email interviews were initiated. Participants controlled the interviews through their rate of response to interview questions. A grounded theory methodology was employed. Initial contact with participants reiterated confidentiality and the ability to withdraw from the study at any time. Interviews began with the collection of demographic information and a broad opening based on a semi-structured interview guide. All data were permissible, including text, photos, music, videos or outside media, for example YouTube. The participant was allowed to give direction to the interview after initial questions were posed. Email interviews continued until saturation was reached in the data. Participants were enthusiastic about email interviewing. Attrition did not occur. Email interviewing gave participants more control over the research, decreased power differentials between the adolescent and researcher, allowed the study to be adapted to cultural, linguistic and developmental needs, and maintained confidentiality. As participants said that email communication was slow and they preferred instant messaging, replication in faster-paced media is recommended. Repetition in face-to-face settings is warranted to evaluate how technology may have influenced the findings. Implications for

  4. Technology meets research 60 years of CERN technology : selected highlights

    CERN Document Server

    Taylor, Thomas; Treille, Daniel; Wenninger, Horst

    2017-01-01

    "Big" science and advanced technology are known to cross-fertilize. This book emphasizes the interplay between particle physics and technology at CERN that has led to breakthroughs in both research and technology over the laboratory's first 60 years. The innovations, often the work of individuals or by small teams, are illustrated with highlights describing selected technologies from the domains of accelerators and detectors. The book also presents the framework and conditions prevailing at CERN that enabled spectacular advances in technology and contributed to propel the European organization into the league of leading research laboratories in the world. While the book is specifically aimed at providing information for the technically interested general public, more expert readers may also appreciate the broad variety of subjects presented. Ample references are given for those who wish to further explore a given topic.

  5. Concept-oriented research and development in information technology

    CERN Document Server

    Mori, Kinji

    2014-01-01

    This book thoroughly analyzes the relationships between concept, technology, and market-which are the main factors in shifting information technology research and development (R&D) to a new approach. It discusses unconventional methods and viewpoints of concept creation, technology innovation, and market cultivation. Featuring contributions from international experts and case studies from IBM and Hitachi, this book is perfect for graduate students in information technology, engineering, technology management, operation research, and business-as well as for R&D researchers, directors, strategis

  6. Educational Technology Research Journals: "Journal of Research on Technology in Education," 2001-2010

    Science.gov (United States)

    Billings, Christopher; Nielsen, P. Lynne; Snyder, Aaron; Sorensen, Alec; West, Richard E.

    2012-01-01

    In this study, the authors examined the "Journal of Research on Technology in Education (JRTE)" to discover trends from 2001-2010 in the topics covered in the articles, article types (including research methods used), authorship, and citation frequency. Articles from the journal dealt mostly with PK-12 settings and focused on technology…

  7. Innovative sport technology through cross-disciplinary research ...

    African Journals Online (AJOL)

    Innovative sport technology through cross-disciplinary research: Future of sport ... South African Journal for Research in Sport, Physical Education and Recreation ... of the advantages and disadvantages of innovative sport technology brought ...

  8. Laboratory Directed Research and Development FY2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with

  9. Educational Technology Research Journals: Educational Technology Research and Development 2001-2010

    Science.gov (United States)

    Zaugg, Holt; Amado, Mayavel; Small, Tyler R.; West, Richard E.

    2011-01-01

    This article examines 10 years (2001-2010) of journal articles from "Educational Technology Research and Development" (ETR&D) to determine trends in article topics, key contributing authors, citation patterns, and methodological trends. The analysis identified several unique characteristics of this journal over the past decade, including a balance…

  10. Leading survey and research report for fiscal 1999. Survey and research on supercompiler technology; 1999 nendo supercompiler technology no chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Survey and research are conducted into the global computing technology and the next-generation parallel computer for their compiler technology and programming environment-related technology, which is for the preparation of basic key technologies for the embodiment of high-performance computing for the next generation, and efforts are exerted to extract and define technological problems and to deliberate a research system to achieve the goal. This fiscal year's achievements are mentioned below. Two territories were provided to be respectively covered by a Parallel Compiler Working Group and a Global Computing Working Group whose activities centered about overseas surveys and short-term reception of researchers from abroad. The Parallel Compiler Working Group was engaged in (1) the technological survey of the latest parallel compiler technology and, in its effort to execute researches under the project, in (2) the materialization of the contents of technology research and development and in (3) the materialization of a technology research and development system. The Global Computing Working Group was engaged in (1) the technological survey of the latest high-performance global computing and in (2) the survey of fields to accept global computing application. (NEDO)

  11. Leading survey and research report for fiscal 1999. Survey and research on supercompiler technology; 1999 nendo supercompiler technology no chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Survey and research are conducted into the global computing technology and the next-generation parallel computer for their compiler technology and programming environment-related technology, which is for the preparation of basic key technologies for the embodiment of high-performance computing for the next generation, and efforts are exerted to extract and define technological problems and to deliberate a research system to achieve the goal. This fiscal year's achievements are mentioned below. Two territories were provided to be respectively covered by a Parallel Compiler Working Group and a Global Computing Working Group whose activities centered about overseas surveys and short-term reception of researchers from abroad. The Parallel Compiler Working Group was engaged in (1) the technological survey of the latest parallel compiler technology and, in its effort to execute researches under the project, in (2) the materialization of the contents of technology research and development and in (3) the materialization of a technology research and development system. The Global Computing Working Group was engaged in (1) the technological survey of the latest high-performance global computing and in (2) the survey of fields to accept global computing application. (NEDO)

  12. Technology Spillover from Foreign Direct Investment in Turkey

    Directory of Open Access Journals (Sweden)

    Özcan Karahan

    2016-12-01

    quarterly data for the period of 2002 and 2015 in Turkey. Thus we try to examine whether technological diffusion generated by FDI inflows to Turkey enhances the innovative capability of the country or not. Design/methodology/approach – The variables Foreign Direct Investment (FDI and Gross Domestic Product (GDP are sourced from Electronic Data Delivery System (EDDS in Central Bank of the Republic of Turkey. FDI series consist of values called "Net Incurrence of Liabilities" in Balance of Payments Analytical Presentation while GDP series gather from the expenditure based GDP data in EDDS. Both Johansen Cointegration Test and Granger Causality Test are applied to examine between Foreign Direct Investment flows and economic growth in Turkey. Findings – Results reveal that there is not any significant link among the FDI and economic growth during the studied time period in Turkey. It seems that FDI inflows to Turkey is not complementary to economic growth, which shows that positive spillover effect sourced from FDI inflows to Turkey does not exist. Research limitations/implications – Policymakers should recognize that technology spillover effects of FDI do not occur without greater absorptive capacity. Attracting FDI is only one part of the story and thus not yield the desired benefits itself. Positive effects of FDI depends on the overall incentive and capacity structure of the host country. Then the key policy implication here is that policymakers should give same weight of policies aimed at attracting FDI versus those that seek to improve local economic conditions. Originality/value – This study insight the spillover effects of FDI based on Turkish experience that benefits from FDI do not occur automatically and effortlessly in developing countries.

  13. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2006

    Energy Technology Data Exchange (ETDEWEB)

    FOX, K.J.

    2006-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2006.

  14. A Review of Previous Research in Direct Energy Conversion Fission Reactors

    International Nuclear Information System (INIS)

    DUONG, HENRY; POLANSKY, GARY F.; SANDERS, THOMAS L.; SIEGEL, MALCOLM D.

    1999-01-01

    From the earliest days of power reactor development, direct energy conversion was an obvious choice to produce high efficiency electric power generation. Directly capturing the energy of the fission fragments produced during nuclear fission avoids the intermediate conversion to thermal energy and the efficiency limitations of classical thermodynamics. Efficiencies of more than 80% are possible, independent of operational temperature. Direct energy conversion fission reactors would possess a number of unique characteristics that would make them very attractive for commercial power generation. These reactors would be modular in design with integral power conversion and operate at low pressures and temperatures. They would operate at high efficiency and produce power well suited for long distance transmission. They would feature large safety margins and passively safe design. Ideally suited to production by advanced manufacturing techniques, direct energy conversion fission reactors could be produced more economically than conventional reactor designs. The history of direct energy conversion can be considered as dating back to 1913 when Moseleyl demonstrated that charged particle emission could be used to buildup a voltage. Soon after the successful operation of a nuclear reactor, E.P. Wigner suggested the use of fission fragments for direct energy conversion. Over a decade after Wigner's suggestion, the first theoretical treatment of the conversion of fission fragment kinetic energy into electrical potential appeared in the literature. Over the ten years that followed, a number of researchers investigated various aspects of fission fragment direct energy conversion. Experiments were performed that validated the basic physics of the concept, but a variety of technical challenges limited the efficiencies that were achieved. Most research in direct energy conversion ceased in the US by the late 1960s. Sporadic interest in the concept appears in the literature until this

  15. Armstrong Flight Research Center Research Technology and Engineering Report 2015

    Science.gov (United States)

    Voracek, David F.

    2016-01-01

    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Center’s Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Center’s agility to develop technologies supporting each of NASA’s core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASA’s mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Don’t hesitate to contact them for more information or for collaboration ideas.

  16. Institutional Support : Centre for Research and Technology ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    year-old science and technology research centre at Maseno University in western Kenya. The Centre focuses on science and technology research to influence both national policies and development practices at the community level. Currently ...

  17. Defining Future Directions for Endometriosis Research

    Science.gov (United States)

    D’Hooghe, Thomas M.; Fazleabas, Asgerally; Giudice, Linda C.; Montgomery, Grant W.; Petraglia, Felice; Taylor, Robert N.

    2013-01-01

    Endometriosis, defined as estrogen-dependent lesions containing endometrial glands and stroma outside the uterus, is a chronic and often painful gynecological condition that affects 6% to 10% of reproductive age women. Endometriosis has estimated annual costs of US $12 419 per woman (approximately €9579), comprising one-third of the direct health care costs with two-thirds attributed to loss of productivity. Decreased quality of life is the most important predictor of direct health care and total costs. It has been estimated that there is a mean delay of 6.7 years between onset of symptoms and a surgical diagnosis of endometriosis, and each affected woman loses on average 10.8 hours of work weekly, mainly owing to reduced effectiveness while working. To encourage and facilitate research into this debilitating disease, a consensus workshop to define future directions for endometriosis research was held as part of the 11th World Congress on Endometriosis in September 2011 in Montpellier, France. The objective of this workshop was to review and update the endometriosis research priorities consensus statement developed following the 10th World Congress on Endometriosis in 2008.1 A total of 56 recommendations for research have been developed, grouped under 6 subheadings: (1) diagnosis, (2) classification and prognosis, (3) clinical trials, treatment, and outcomes, (4) epidemiology, (5) pathophysiology, and (6) research policy. By producing this consensus international research priorities statement, it is the hope of the workshop participants that researchers will be encouraged to develop new interdisciplinary research proposals that will attract increased funding support for work on endometriosis. PMID:23427182

  18. The technology benefits of inertial confinement fusion research

    International Nuclear Information System (INIS)

    Powell, H.T.

    1999-01-01

    The development and demonstration of inertial fusion is incredibly challenging because it requires simultaneously controlling and precisely measuring parameters at extreme values in energy, space, and time. The challenges range from building megajoule (10 6 J) drivers that perform with percent-level precision to fabricating targets with submicron specifications to measuring target performance at micron scale (10 -6 m) with picosecond (10 -12 s) time resolution. Over the past 30 years in attempting to meet this challenge, the inertial fusion community around the world has invented new technologies in lasers, particle beams, pulse power drivers, diagnostics, target fabrication, and other areas. These technologies have found applications in diverse fields of industry and science. Moreover, simply assembling the teams with the background, experience, and personal drive to meet the challenging requirements of inertial fusion has led to spin-offs in unexpected directions, for example, in laser isotope separation, extreme ultraviolet lithography for microelectronics, compact and inexpensive radars, advanced laser materials processing, and medical technology. The experience of inertial fusion research and development of spinning off technologies has not been unique to any one laboratory or country but has been similar in main research centers in the US, Europe, and Japan. Strengthening and broadening the inertial fusion effort to focus on creating a new source of electrical power (inertial fusion energy [IFE]) that is economically competitive and environmentally benign will yield rich rewards in technology spin-offs. The additional challenges presented by IFE are to make drivers affordable, efficient, and long-lived while operating at a repetition rate of a few Hertz; to make fusion targets that perform consistently at high-fusion yield; and to create target chambers that can repetitively handle greater than 100-MJ yields while producing minimal radioactive by

  19. Nigerian Journal of Technological Research

    African Journals Online (AJOL)

    The Nigerian Journal of Technological Research is a pure scientific journal with a philosophy of attempting to provide information on problem solving technology to its immediate environs and the international community. The scope of the journal is in the core areas of: Pure and Applied Sciences; Engineering Sciences; ...

  20. FY08 Engineering Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C; McNichols, D

    2009-02-24

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technology development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

  1. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2001-12-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas

  2. Research progress from the SCI Model Systems (SCIMS): An interactive discussion on future directions.

    Science.gov (United States)

    Boninger, Michael L; Field-Fote, Edelle C; Kirshblum, Steven C; Lammertse, Daniel P; Dyson-Hudson, Trevor A; Hudson, Lesley; Heinemann, Allen W

    2018-03-01

    To describe current and future directions in spinal cord injury (SCI) research. The SCI Model Systems (SCIMS) programs funded by the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR) during the 2011 to 2016 cycle provided abstracts describing findings from current research projects. Discussion among session participants generated ideas for research opportunities. Pre-conference workshop before the 2016 American Spinal Injury Association (ASIA) annual meeting. A steering committee selected by the SCIMS directors that included the moderators of the sessions at the ASIA pre-conference workshop, researchers presenting abstracts during the session, and the audience of over 100 attending participants in the pre-conference workshop. Group discussion followed presentations in 5 thematic areas of (1) Demographics and Measurement; (2) Functional Training; (3) Psychosocial Considerations; (4) Assistive Technology; and (5) Secondary Conditions. The steering committee reviewed and summarized discussion points on future directions for research and made recommendations for research based on the discussion in each of the five areas. Significant areas in need of research in SCI remain, the goal of which is continued improvement in the quality of life of individuals with SCI.

  3. 77 FR 46855 - Small Business Technology Transfer Program Policy Directive

    Science.gov (United States)

    2012-08-06

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Chapter I RIN 3245-AF45 Small Business Technology Transfer Program Policy Directive AGENCY: Small Business Administration. ACTION: Final policy directive with request for comments. SUMMARY: The U.S. Small Business Administration (SBA) is amending its Small Business...

  4. Systematic review of research investigating psychotherapy and information and communication technologies.

    Science.gov (United States)

    Hallberg, Sílvia Cristina Marceliano; Lisboa, Carolina Saraiva de Macedo; de Souza, Déborah Brandão; Mester, Ariela; Braga, Andréia Zambon; Strey, Artur Marques; da Silva, Camila Sartori

    2015-01-01

    Information and communication technologies (ICTs) are devices, services and knowledge that reproduce, process and distribute information. Psychotherapy has been influenced by these technologies, and there is a tendency for their role to expand. To describe the current panorama of the scientific literature on psychotherapy and ICTs. This is a systematic and descriptive review. Searches were run on the electronic databases Biblioteca Virtual em Saude (BVS), PsycINFO, Scopus, PePSIC, ScienceDirect and Index Psi, using the Boolean operator AND and the descriptors psychotherapy, computers, Internet, cell phones and social networks. A considerable volume of empirical research was found, published recently in many different parts of the world, especially in the United States. There is very little Brazilian research on the subject. The majority of the studies identified assess the efficacy or describe the development of techniques and psychotherapies, via ICTs, for prevention, diagnosis or treatment of mental and behavioral disorders. The psychopathology most investigated in this area is depression and it was not possible to draw conclusions on a possible trend for research into the subject to increase. The technology most investigated was the Internet and cognitive-behavioral therapy was the most common theoretical approach in these studies. Systematic reviews of published studies can detect gaps in the research agenda within a specific field of knowledge.

  5. Systematic review of research investigating psychotherapy and information and communication technologies

    Directory of Open Access Journals (Sweden)

    Sílvia Cristina Marceliano Hallberg

    2015-09-01

    Full Text Available Introduction:Information and communication technologies (ICTs are devices, services and knowledge that reproduce, process and distribute information. Psychotherapy has been influenced by these technologies, and there is a tendency for their role to expand.Objective: To describe the current panorama of the scientific literature on psychotherapy and ICTs.Method: This is a systematic and descriptive review. Searches were run on the electronic databases Biblioteca Virtual em Saude (BVS, PsycINFO, Scopus, PePSIC, ScienceDirect and Index Psi, using the Boolean operator AND and the descriptors psychotherapy, computers, Internet, cell phones and social networks.Results: A considerable volume of empirical research was found, published recently in many different parts of the world, especially in the United States. There is very little Brazilian research on the subject. The majority of the studies identified assess the efficacy or describe the development of techniques and psychotherapies, via ICTs, for prevention, diagnosis or treatment of mental and behavioral disorders. The psychopathology most investigated in this area is depression and it was not possible to draw conclusions on a possible trend for research into the subject to increase. The technology most investigated was the Internet and cognitive-behavioral therapy was the most common theoretical approach in these studies.Conclusions:Systematic reviews of published studies can detect gaps in the research agenda within a specific field of knowledge.

  6. Technology development activities for housing research animals on Space Station Freedom

    Science.gov (United States)

    Jenner, Jeffrey W.; Garin, Vladimir M.; Nguyen, Frank D.

    1991-01-01

    The development and design of animal facilities are described in terms of the technological needs for NASA's Biological Flight Research Laboratory. Animal habitats are presented with illustrations which encompass waste-collection techniques for microgravity conditions that reduce the need for crew participation. The technology is intended to be highly compatible with animal morphology, and airflow is employed as the primary mechanism of waste control. The airflow can be utilized in the form of localized high-speed directed flow that simultaneously provides a clean animal habitat and low airflow rates. The design of an animal-habitat testbed is presented which capitalizes on contamination-control mechanisms and suitable materials for microgravity conditions. The developments in materials and technologies represent significant contributions for the design of the centrifuge facilities for the Space Station Freedom.

  7. Laboratory Directed Research and Development FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A. [eds.

    1992-12-31

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation`s only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible.

  8. Laboratory Directed Research and Development FY 1992

    International Nuclear Information System (INIS)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A.

    1992-01-01

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation's only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible

  9. NNSA Laboratory Directed Research and Development Program 2008 Symposium--Focus on Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Kotta, P R; Sketchley, J A

    2008-08-20

    The Laboratory Directed Research and Development (LDRD) Program was authorized by Congress in 1991 to fund leading-edge research and development central to the national laboratories core missions. LDRD anticipates and engages in projects on the forefront of science and engineering at the Department of Energy (DOE) national laboratories, and has a long history of addressing pressing national security needs at the National Nuclear Security Administration (NNSA) laboratories. LDRD has been a scientific success story, where projects continue to win national recognition for excellence through prestigious awards, papers published and cited in peer-reviewed journals, mainstream media coverage, and patents granted. The LDRD Program is also a powerful means to attract and retain top researchers from around the world, to foster collaborations with other prominent scientific and technological institutions, and to leverage some of the world's most technologically advanced assets. This enables the LDRD Program to invest in high-risk and potentially high-payoff research that creates innovative technical solutions for some of our nation's most difficult challenges. Worldwide energy demand is growing at an alarming rate, as developing nations continue to expand their industrial and economic base on the back of limited global resources. The resulting international conflicts and environmental consequences pose serious challenges not only to this nation, but to the international community as well. The NNSA and its national security laboratories have been increasingly called upon to devote their scientific and technological capabilities to help address issues that are not limited solely to the historic nuclear weapons core mission, but are more expansive and encompass a spectrum of national security missions, including energy security. This year's symposium highlights some of the exciting areas of research in alternative fuels and technology, nuclear power, carbon

  10. Korea-China Optical Technology Research Centre Project

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Rhee, Y. J.; Jung, D. Y. and others

    2004-06-01

    The main objectives of this project are to establish the international collaboration basis of optical technologies between Korea and China. The combination of the Chinese advanced fundamental technologies with the Korean industrialization and commercialization infrastructures is realized, by ways of exchanging scientists and informations, holding joint seminars, cooperative utilization of research resources. On the ground of this establishment, the optical technologies of Korea are supposed to be leveled up to those of the world-most advanced. At the same time, for the improvement of mutual benefit and financial profit of both countries, providing technical advice and suggestions to the optical industries in the two countries is an another goal of this project. The state-of-the-arts of the Chinese technologies such as aerospace engineering, military defence technology, medical technology, laser fusion research, and so on, are known to be far above those of Korean and up to one of the most advanced in the world. Thus it is thought to be necessary that the acquisition of these technologies, implementation of joint research projects for technology development as well as the balanced opportunities for commercial product/sales and cooperation should be actively pursued in order to enhance the levels of Korean technologies in these fields

  11. Korea-China Optical Technology Research Centre Project

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Rhee, Y. J.; Jung, D. Y. and others

    2004-06-15

    The main objectives of this project are to establish the international collaboration basis of optical technologies between Korea and China. The combination of the Chinese advanced fundamental technologies with the Korean industrialization and commercialization infrastructures is realized, by ways of exchanging scientists and informations, holding joint seminars, cooperative utilization of research resources. On the ground of this establishment, the optical technologies of Korea are supposed to be leveled up to those of the world-most advanced. At the same time, for the improvement of mutual benefit and financial profit of both countries, providing technical advice and suggestions to the optical industries in the two countries is an another goal of this project. The state-of-the-arts of the Chinese technologies such as aerospace engineering, military defence technology, medical technology, laser fusion research, and so on, are known to be far above those of Korean and up to one of the most advanced in the world. Thus it is thought to be necessary that the acquisition of these technologies, implementation of joint research projects for technology development as well as the balanced opportunities for commercial product/sales and cooperation should be actively pursued in order to enhance the levels of Korean technologies in these fields.

  12. Scientific Merit Review of Directed Research Tasks Within the NASA Human Research Program

    Science.gov (United States)

    Charles, John B.

    2010-01-01

    The Human Research Program is instrumental in developing and delivering research findings, health countermeasures, and human systems technologies for spacecraft. :HRP is subdivided into 6 research entities, or Elements. Each Element is charged with providing the Program with knowledge and capabilities to conduct research to address the human health and performance risks as well as advance the readiness levels of technology and countermeasures. Project: An Element may be further subdivided into Projects, which are defined as an integrated set of tasks undertaken to deliver a product or set of products

  13. Technological Determinism in Educational Technology Research: Some Alternative Ways of Thinking about the Relationship between Learning and Technology

    Science.gov (United States)

    Oliver, M.

    2011-01-01

    This paper argues that research on the educational uses of technology frequently overemphasizes the influence of technology. Research in the field is considered a form of critical perspective, and assumptions about technology are questioned. Technological determinism is introduced, and different positions on this concept are identified. These are…

  14. Nevada Test Site-Directed Research, Development, and Demonstration. FY2005 report

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Will [comp.

    2006-09-01

    The Nevada Test Site-Directed Research, Development, and Demonstration (SDRD) program completed a very successful year of research and development activities in FY 2005. Fifty new projects were selected for funding this year, and five FY 2004 projects were brought to conclusion. The total funds expended by the SDRD program were $5.4 million, for an average per project cost of just under $100,000. Two external audits of SDRD accounting practices were conducted in FY 2005. Both audits found the program's accounting practices consistent with the requirements of DOE Order 413.2A, and one included the observation that the NTS contractor ''did an exceptional job in planning and executing year-start activities.'' Highlights for the year included: the filing of 18 invention disclosures for intellectual property generated by FY 2005 projects; programmatic adoption of 17 FY 2004 SDRD-developed technologies; participation in the tri-lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2005 projects; and the successful completion of 55 R&D projects, as presented in this report.

  15. Role of national centers of research and development in nuclear technology transfer

    International Nuclear Information System (INIS)

    Graf, J.-J.; Millies, Pierre.

    1977-01-01

    National Research Centers are shown to play a leading role in nuclear technology transfer, whatever may be the directing scheme of nuclear development in the country envisaged. The first act of the Center consists in training specialists in the various nuclear fields. It must ensure the transfer of technological knowledge towards industry (in metallurgy, mechanics, electronics) and other nuclear auxiliary techniques, together with the transfer towards administration (laws). A simplified scheme of nuclear development strategy based on the French scheme (the French Atomic Energy Commission (CEA) with its subsidiary Companies) is presented that is usable for developing countries [fr

  16. Review of the research contract programs in the field of nuclear science and technology (1959-1979)

    Energy Technology Data Exchange (ETDEWEB)

    Bonoan, L S; Marasigan, C J; Relunia, E D [Philippine Atomic Energy Commission, Diliman, Quezon City

    1982-01-01

    This paper presents the 20 year span of cooperative services in the form of research contracts availed of by the country with the International Atomic Energy Agency (IAEA). All research contract grants are placed under the direct supervision of educational institutions, industrial laboratories, research centers and other institutions on areas of direct interest of the Agency's work. These areas are generally in the field of: life sciences with emphasis on medical and agricultural applications, radiation biology; nuclear safety; environmental protection; physical sciences such as physics and chemistry; engineering and technology, with special emphasis on nuclear power. Tables and figures graphically present research contracts grants and field classification.

  17. FY2012 Engineering Research & Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Monya

    2014-07-22

    This report documents engineering research, development, and technology advancements performed by LLNL during fiscal year 2012 in the following areas: computational engineering, engineering information systems, micro/nano-devices and structures, and measurement technologies.

  18. Wireless Sensor Network Security Enhancement Using Directional Antennas: State of the Art and Research Challenges.

    Science.gov (United States)

    Curiac, Daniel-Ioan

    2016-04-07

    Being often deployed in remote or hostile environments, wireless sensor networks are vulnerable to various types of security attacks. A possible solution to reduce the security risks is to use directional antennas instead of omnidirectional ones or in conjunction with them. Due to their increased complexity, higher costs and larger sizes, directional antennas are not traditionally used in wireless sensor networks, but recent technology trends may support this method. This paper surveys existing state of the art approaches in the field, offering a broad perspective of the future use of directional antennas in mitigating security risks, together with new challenges and open research issues.

  19. Research directions in plant protection chemistry

    Directory of Open Access Journals (Sweden)

    Andras Szekacs

    2017-09-01

    Full Text Available This Opinion paper briefly summarizes the views of the authors on the directions of research in the area of plant protection chemistry. We believe these directions need to focus on (1 the discovery of new pesticide active ingredients, and (2 the protection of human health and the environment. Research revenues are discussed thematically in topics of target site identification, pesticide discovery, environmental aspects, as well as keeping track with the international trends. The most fundamental approach, target site identification, covers both computer-aided molecular design and research on biochemical mechanisms. The discovery of various classes of pesticides is reviewed including classes that hold promise to date, as well as up-to-date methods of innovation, e.g. utilization of plant metabolomics in identification of novel target sites of biological activity. Environmental and ecological aspects represent a component of increasing importance in pesticide development by emphasizing the need to improve methods of environmental analysis and assess ecotoxicological side-effects, but also set new directions for future research. Last, but not least, pesticide chemistry and biochemistry constitute an integral part in the assessment of related fields of plant protection, e.g. agricultural biotechnology, therefore, issues of pesticide chemistry related to the development and cultivation of genetically modified crops are also discussed.

  20. Experience and Enlightenment of Dutch Agricultural Research and Technology

    OpenAIRE

    Liu Zhen, Zhen; Hu, D.

    2011-01-01

    This study analyzes the achievements of agricultural science and technology, the reform of agricultural research system and technology transfer system of agricultural in the Netherlands. With case studies, it tries to find the mode of Dutch agricultural research and technology transfer system, and aims to provide suggestions to optimize agricultural research and technology transfer system in China.

  1. Research and technology highlights, 1993

    Science.gov (United States)

    1994-01-01

    This report contains highlights of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year. The highlights illustrate both the broad range of the research and technology activities supported by NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research. This report also describes some of the Center's most important research and testing facilities.

  2. 78 FR 40098 - Emerging Technology and Research Advisory Committee;

    Science.gov (United States)

    2013-07-03

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Emerging Technology and Research Advisory Committee; Notice of Partially Closed Meeting The Emerging Technology and Research Advisory Committee (ETRAC... Assistant Secretary for Export Administration on emerging technology and research activities, including...

  3. Research on NGN network control technology

    Science.gov (United States)

    Li, WenYao; Zhou, Fang; Wu, JianXue; Li, ZhiGuang

    2004-04-01

    Nowadays NGN (Next Generation Network) is the hotspot for discussion and research in IT section. The NGN core technology is the network control technology. The key goal of NGN is to realize the network convergence and evolution. Referring to overlay network model core on Softswitch technology, circuit switch network and IP network convergence realized. Referring to the optical transmission network core on ASTN/ASON, service layer (i.e. IP layer) and optical transmission convergence realized. Together with the distributing feature of NGN network control technology, on NGN platform, overview of combining Softswitch and ASTN/ASON control technology, the solution whether IP should be the NGN core carrier platform attracts general attention, and this is also a QoS problem on NGN end to end. This solution produces the significant practical meaning on equipment development, network deployment, network design and optimization, especially on realizing present network smooth evolving to the NGN. This is why this paper puts forward the research topic on the NGN network control technology. This paper introduces basics on NGN network control technology, then proposes NGN network control reference model, at the same time describes a realizable network structure of NGN. Based on above, from the view of function realization, NGN network control technology is discussed and its work mechanism is analyzed.

  4. Distance Learning With NASA Lewis Research Center's Learning Technologies Project

    Science.gov (United States)

    Petersen, Ruth

    1998-01-01

    The NASA Lewis Research Center's Learning Technologies Project (LTP) has responded to requests from local school district technology coordinators to provide content for videoconferencing workshops. Over the past year we have offered three teacher professional development workshops that showcase NASA Lewis-developed educational products and NASA educational Internet sites. In order to determine the direction of our involvement with distance learning, the LTP staff conducted a survey of 500 U.S. schools. We received responses from 72 schools that either currently use distance learning or will be using distance learning in 98-99 school year. The results of the survey are summarized in the article. In addition, the article provides information on distance learners, distance learning technologies, and the NASA Lewis LTP videoconferencing workshops. The LTP staff will continue to offer teacher development workshops through videoconferencing during the 98-99 school year. We hope to add workshops on new educational products as they are developed at NASA Lewis.

  5. Research progress of laser welding process dynamic monitoring technology based on plasma characteristics signal

    Directory of Open Access Journals (Sweden)

    Teng WANG

    2017-02-01

    Full Text Available During the high-power laser welding process, plasmas are induced by the evaporation of metal under laser radiation, which can affect the coupling of laser energy and the workpiece, and ultimately impact on the reliability of laser welding quality and process directly. The research of laser-induced plasma is a focus in high-power deep penetration welding field, which provides a promising research area for realizing the automation of welding process quality inspection. In recent years, the research of laser welding process dynamic monitoring technology based on plasma characteristics is mainly in two aspects, namely the research of plasma signal detection and the research of laser welding process modeling. The laser-induced plasma in the laser welding is introduced, and the related research of laser welding process dynamic monitoring technology based on plasma characteristics at home and abroad is analyzed. The current problems in the field are summarized, and the future development trend is put forward.

  6. Technology teachers as researchers : philosophical and empirical technology education studies in the Swedish TUFF Research School

    NARCIS (Netherlands)

    Skogh, I.B.; Vries, de M.J.

    2013-01-01

    This book presents the scientific output of the TUFF research school in Sweden. In this school, a group of active teachers worked together on a series of educational research studies. All of those studies were related to the teaching about technology and engineering. The research program consisted

  7. KSC Education Technology Research and Development Plan

    Science.gov (United States)

    Odell, Michael R. L.

    2003-01-01

    Educational technology is facilitating new approaches to teaching and learning science, technology, engineering, and mathematics (STEM) education. Cognitive research is beginning to inform educators about how students learn providing a basis for design of more effective learning environments incorporating technology. At the same time, access to computers, the Internet and other technology tools are becoming common features in K-20 classrooms. Encouraged by these developments, STEM educators are transforming traditional STEM education into active learning environments that hold the promise of enhancing learning. This document illustrates the use of technology in STEM education today, identifies possible areas of development, links this development to the NASA Strategic Plan, and makes recommendations for the Kennedy Space Center (KSC) Education Office for consideration in the research, development, and design of new educational technologies and applications.

  8. Directions and dilemmas in massage therapy research: a workshop report from the 2009 north american research conference on complementary and integrative medicine.

    Science.gov (United States)

    Moyer, Christopher A; Dryden, Trish; Shipwright, Stacey

    2009-06-29

    Massage therapy (MT) is widely used and expanding rapidly, but systematic research on its mechanisms and effects has, in contrast with many other therapeutic fields, a short history. To take stock of the current state of MT research and to explore approaches, directions, and strategies with the potential to make the next two decades of MT research optimally productive. The 2009 North American Research Conference on Complementary and Integrative Medicine held in Minneapolis, Minnesota. Using a modified Delphi method, the study authors led an interactive workshop that aimed to identify established MT research findings, needed MT research, weaknesses and limitations in currently available MT research, and directions to pursue in the next two decades of MT research. The thirty-seven conference attendees-including MT researchers, educators, and practitioners, and other health care practitioners who already work interprofessionally with MT-actively participated in the workshop and ensured that a diversity of perspectives were represented. The MT field has made rapid and laudable progress in its short history, but at the same time this short history is probably the main reason for most of the current shortcomings in MT research. Drawing on a diversity of backgrounds, workshop participants identified many opportunities and strategies for future research. Though lost time can never be recovered, the field's late start in research should not be allowed to be a demoralizing handicap to progress. Modern scientific methods and technologies, applied to the range of directions and dilemmas highlighted in this report, can lead to impressive progress in the next twenty years of MT research.

  9. Proceedings of the Seminar on Research Result of Research Reactor Technology Centre 2003

    International Nuclear Information System (INIS)

    Endiah Puji Hastuti; Setiyanto; Taswanda Taryo; Mohammad Dhandhang Purwadi; Pinem, Surian; Tarigan, Alim; Hasibuan, Djaruddin; Kadarusmanto; Amir Hamzah

    2004-05-01

    The Proceeding of the Seminar on Research Result of Research Reactor Technology Centre 2003 held by P2TRR has been reported researcher are expected to use the reports as references to research activities in Science and Technology, especially in field of Nuclear Reactor. There are 27 papers which have separated index. (PPIN)

  10. "JEAB" at 50: Coevolution of Research and Technology

    Science.gov (United States)

    Lattal, Kennon A.

    2008-01-01

    Evidence of how behavioral research and technology have evolved together abounds in the history of the "Journal of the Experimental Analysis of Behavior" ("JEAB"). Technology from outside the discipline (exogenous) from such disciplines as electronics and computer science has been adapted for use in behavioral research. Technology from within the…

  11. GPS Technology and Human Psychological Research: A Methodological Proposal

    Directory of Open Access Journals (Sweden)

    Pedro S. A. Wolf

    2010-10-01

    Full Text Available Animal behaviorists have made extensive use of GPS technology since 1991. In contrast, psychological research has made little use of the technology, even though the technology is relatively inexpensive, familiar, and widespread. Hence, its potential for pure and applied psychological research remains untapped. We describe three methods psychologists could apply to individual differences research, clinical research, or spatial use research. In the context of individual differences research, GPS technology permits us to test hypotheses predicting specific relations among patterns of spatial use and individual differences variables. In a clinical context, GPS technology provides outcome measures that may relate to the outcome of interventions designed to treat psychological disorders that, for example, may leave a person homebound (e.g. Agoraphobia, PTSD, TBI. Finally, GPS technology provides natural measures of spatial use. We, for example, used GPS technology to quantify traffic flow and exhibit use at the Arizona Sonora Desert Museum. Interested parties could easily extend this methodology some aspects of urban planning or business usage.DOI: 10.2458/azu_jmmss.v1i1.74

  12. Mapping Translation Technology Research in Translation Studies

    DEFF Research Database (Denmark)

    Schjoldager, Anne; Christensen, Tina Paulsen; Flanagan, Marian

    2017-01-01

    /Schjoldager 2010, 2011; Christensen 2011). Unfortunately, the increasing professional use of translation technology has not been mirrored within translation studies (TS) by a similar increase in research projects on translation technology (Munday 2009: 15; O’Hagan 2013; Doherty 2016: 952). The current thematic...... section aims to improve this situation by presenting new and innovative research papers that reflect on recent technological advances and their impact on the translation profession and translators from a diversity of perspectives and using a variety of methods. In Section 2, we present translation...... technology research as a subdiscipline of TS, and we define and discuss some basic concepts and models of the field that we use in the rest of the paper. Based on a small-scale study of papers published in TS journals between 2006 and 2016, Section 3 attempts to map relevant developments of translation...

  13. Food waste-to-energy conversion technologies: current status and future directions.

    Science.gov (United States)

    Pham, Thi Phuong Thuy; Kaushik, Rajni; Parshetti, Ganesh K; Mahmood, Russell; Balasubramanian, Rajasekhar

    2015-04-01

    Food waste represents a significantly fraction of municipal solid waste. Proper management and recycling of huge volumes of food waste are required to reduce its environmental burdens and to minimize risks to human health. Food waste is indeed an untapped resource with great potential for energy production. Utilization of food waste for energy conversion currently represents a challenge due to various reasons. These include its inherent heterogeneously variable compositions, high moisture contents and low calorific value, which constitute an impediment for the development of robust, large scale, and efficient industrial processes. Although a considerable amount of research has been carried out on the conversion of food waste to renewable energy, there is a lack of comprehensive and systematic reviews of the published literature. The present review synthesizes the current knowledge available in the use of technologies for food-waste-to-energy conversion involving biological (e.g. anaerobic digestion and fermentation), thermal and thermochemical technologies (e.g. incineration, pyrolysis, gasification and hydrothermal oxidation). The competitive advantages of these technologies as well as the challenges associated with them are discussed. In addition, the future directions for more effective utilization of food waste for renewable energy generation are suggested from an interdisciplinary perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Korea-China optical technology research centre project

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Lee, J M; Rhee, Y J. and others

    2001-09-01

    The main objectives of this project are to establish the internatinal collaboration basis of optical technolgies between Korean and China through the combination of the Chinese advanced fundamental technologies with the Korea industrialization and commercialization infrastructures, by ways of exchanging scientist and informations, holding joint seminars, cooperative utilization of research resources. On the ground of this establishment, the optical technologies of Korea are supposed to be leveled up to that of the world-most advanced. At the same time, for the improvement of mutual benefit and financial profit of both of the countries, technical support for the investment on the optical industries in the two countries and establishment of foundation for the venture capitals are also the purpose of this project. Because the state-of-the-arts of the Chinese technologies such as aerospace engineering, military defense technology, applications to medical treatments, laser fusion research, and so on, are known to be far above those of Korean and upto one of the most advanced in the world, it is necessary that the acquisition of these technologies, resulting in the enhancement of the levels of domestic technologies in these fields, implementation of joint research projects for technology development as well as the balanced opportunities for commercial product/sales and cooperation should be actively pursued.

  15. Korea-China optical technology research centre project

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Lee, J. M.; Rhee, Y. J. and others

    2001-09-01

    The main objectives of this project are to establish the internatinal collaboration basis of optical technolgies between Korean and China through the combination of the Chinese advanced fundamental technologies with the Korea industrialization and commercialization infrastructures, by ways of exchanging scientist and informations, holding joint seminars, cooperative utilization of research resources. On the ground of this establishment, the optical technologies of Korea are supposed to be leveled up to that of the world-most advanced. At the same time, for the improvement of mutual benefit and financial profit of both of the countries, technical support for the investment on the optical industries in the two countries and establishment of foundation for the venture capitals are also the purpose of this project. Because the state-of-the-arts of the Chinese technologies such as aerospace engineering, military defense technology, applications to medical treatments, laser fusion research, and so on, are known to be far above those of Korean and upto one of the most advanced in the world, it is necessary that the acquisition of these technologies, resulting in the enhancement of the levels of domestic technologies in these fields, implementation of joint research projects for technology development as well as the balanced opportunities for commercial product/sales and cooperation should be actively pursued

  16. An Emerging Strategy of "Direct" Research.

    Science.gov (United States)

    Mintzberg, Henry

    1979-01-01

    Discusses seven basic themes that underlie the author's "direct research" activities. These themes include reliance on research based on description and induction instead of prescription and deduction, and the measurement of many elements in real settings, supported by anecdote, instead of few variables in perceptual terms from a…

  17. User research & technology, pt.2

    CERN Document Server

    Greifeneder, Elke

    2011-01-01

    This e-book is Part 2 on the theme "User Research and Technology". The research covers the testing of online digital library resources using various methods. Library and information science as a field is changing and the requirements for top quality research are growing more stringent. This is typical of the experience of other professional fields as they have moved from practitioners advising practitioners to researchers building on past results. This e-book contains 12 papers on this theme.

  18. Technology transfer from nuclear research

    International Nuclear Information System (INIS)

    1989-01-01

    A number of processes, components and instruments developed at the Bhabha Atomic Research Centre, (BARC), Bombay, find application in industry and are available for transfer to private or public sector undertakings for commercial exploitation. The Technology Transfer Group (TTG) constituted in January 1980 identifies such processes and prototypes which can be made available for transfer. This catalogue contains brief descriptions of such technologies and they are arranged under three groups, namely, Group A containing descriptions of technologies already transferred, Group B containing descriptions of technologies ready for transfer and Group C containing descriptions of technology transfer proposals being processed. The position in the above-mentioned groups is as on 1 March 1989. The BARC has also set up a Technology Corner where laboratory models and prototypes of instruments, equipment and components are displayed. These are described in the second part of the catalogue. (M.G.B.)

  19. Information technology research and development critical trends and issues

    CERN Document Server

    1985-01-01

    Information Technology Research and Development: Critical Trends and Issues is a report of the Office of Technology Assessment of the United States Government on the research and development in the area of information technology. The report discusses information technology research and development - its goals, nature, issues, and strategies; environment and its changes; the roles of the participants; and the health of its field. The book then goes on to four selected case studies in information technology: advanced computer architecture; fiber optic communications; software engineering; and ar

  20. PROCEEDINGS OF THE 2004 NATIONAL OILHEAT RESEARCH RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM.

    Energy Technology Data Exchange (ETDEWEB)

    MCDONALD,R.J.

    2004-08-31

    This meeting is the seventeenth oilheat industry technology meeting held since 1984 and the forth since the National Oilheat Research Alliance was formed. This year's symposium is a very important part of the effort in technology transfer, which is supported by the Oilheat Research Program under the United States Department of Energy, Building Technologies Program within the Office of Energy Efficiency and Renewable Energy. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. The conference provides a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

  1. Science, Technology and Arts Research Journal: Site Map

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal: Site Map. Journal Home > About the Journal > Science, Technology and Arts Research Journal: Site Map. Log in or Register to get access to full text downloads.

  2. Science, Technology and Arts Research Journal: Journal Sponsorship

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal: Journal Sponsorship. Journal Home > About the Journal > Science, Technology and Arts Research Journal: Journal Sponsorship. Log in or Register to get access to full text downloads.

  3. Advanced energy systems and technologies research in Finland. NEMO 2 annual report 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Advanced energy technologies were linked to the national energy research in beginning of 1988 when energy research was reorganised in Finland. The Ministry of Trade and Industry set up many energy research programmes and NEMO was one of them. Major objectives of the programme were to assess the potential of new energy systems for the national energy supply system and to promote industrial activities. Within the NEMO 2 programme for the years 1993-1998, research was focused on technological solutions. In the beginning of the 1995, the national energy research activities were passed on to the Technology Development Centre TEKES. The NEMO 2 programme is directed towards those areas that have particular potential for commercial exploitation or development. Emphasis is placed particularly on solar and wind energy, as well as supporting technologies such as energy storage and hydrogen technology. Resources has been focused on three specific areas: Arctic wind technology, wind turbine components, and the integration of solar energy into applications (including thin film solar cells). It seems that in Finland the growth of the new energy technology industry is focused on these areas. The sales of the industry have been growing considerable due to the national research activities and support of technology development. The sales have increased 6 - 7 times compared to the year 1987 and is now over 200 million FIM. The support to industries and their involvement in the program has grown more than 15 times compared to 1988. The total funding of the NEMO 2 program me was 30 million FIM in 1994 and 21 million FIM in 1995. The programme consists of 20 research projects, 15 joint development projects, and 5 EU projects. In this report, the essential research projects of the programme in 1994-1995 are described. The total funding for these projects was about 25 million FIM, of which the TEKES`s share was about half. When the research projects and joint development projects are

  4. Implications of the second law for future directions in controlled fusion research

    International Nuclear Information System (INIS)

    Roth, J.R.; Miley, G.H.

    1980-01-01

    Many existing energy related technologies have developed under the influence of social, economic, or state of the art constraints, and they cannot be viewed as optimum systems according to the second law of thermodynamics. Controlled fusion research presents an opportunity to optimize a nascent technology with respect to second law considerations in order to develop a practical energy source. In its present state of development, fusion research offers several independent approaches that may result in a net power producing fusion reactor. This paper discusses how second law considerations might be used to narrow the range of choices that must be made among various fusion fuel cycles. From a second law point of view, the most desirable fusion reactors are those for which the energy of charged particles can be converted directly into d.c. electrical power, while still allowing the energy that could be recovered by an efficient high-temperature 'blanket' to be transported largely by radiation. Fusion research in all major industrialized countries is developing the deuterium-tritium (D-T) fuel cycle for first-generation fusion power plants. It will be shown that other fuel cycles have significant advantages over the D-T fuel cycle according to second law principles. (author)

  5. Study on engineering technologies in the Mizunami Underground Research Laboratory (FY 2015). Development of design and construction planning and countermeasure technologies (Contract research)

    International Nuclear Information System (INIS)

    Toguri, Satohito; Kobayashi, Shinji; Tsuji, Masakuni; Yahagi, Ryoji; Yamada, Toshiko; Matsui, Hiroya; Mikake, Shinichiro; Aoyagi, Yoshiaki; Sato, Toshinori

    2017-03-01

    The study on engineering technology in the Mizunami Underground Research Laboratory (MIU) project roughly consists of (1)development of design and construction planning technologies, (2)development of construction technology, (3)development of countermeasure technology, (4)development of technology for security, and (5) development of technologies regarding restoration and mitigating of the excavation effect. So far, the verification of the initial design based on the data obtained during excavation was mainly conducted as a research in the Construction Phase, also the countermeasure technologies to control groundwater inflow were examined as a research in the Operation Phase. In FY2015, as a part of the important issues on the research program, “Development of countermeasure technologies for reducing groundwater inflow” in the Japan Atomic Energy Agency 3rd Midterm Plan, water-tight grouting method has been developed. Grouting methods utilized in the MIU were evaluated and the post-excavation grouting at the -500m Access/Research Gallery-South was planned based on these evaluation results. Also, technology development from the viewpoint of geological disposal was summarized, and information on the alternative method to the grouting method was collected and organized. (author)

  6. Laboratory Directed Research and Development Program. Annual report to the Department of Energy, December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Searing, J.M.

    1997-12-01

    New ideas and opportunities fostering the advancement of technology are occurring at an ever increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and develops new fundable R and D projects and programs if BNL is to carry out its primary mission and support the basic Department of Energy activities. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.

  7. Laboratory Directed Research and Development Program annual report to the Department of Energy, December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    New ideas and opportunities fostering the advancement of technology are occurring at an ever increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and develops new fundable R and D projects and programs if BNL is to carry out its primary mission and support the basic Department of Energy activities. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.

  8. Laboratory Directed Research and Development Program. Annual report to the Department of Energy, December 1997

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Searing, J.M.

    1997-12-01

    New ideas and opportunities fostering the advancement of technology are occurring at an ever increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and develops new fundable R and D projects and programs if BNL is to carry out its primary mission and support the basic Department of Energy activities. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums

  9. National Rehabilitation Hospital Assistive Technology Research Center

    Science.gov (United States)

    1995-10-01

    Shoulder-Arm Orthoses Several years ago, the Rehabilitation Engineering Research Center (RERC) on Rehabilitation Robotics in Delaware1 identified a... exoskeletal applications for persons with disabilities. 2. Create a center of expertise in rehabilitation technology transfer that benefits persons with...AD COOPERATIVE AGREEMENT NUMBER: DAMD17-94-V-4036 TITLE: National Rehabilitation Hospital Assistive Technology- Research Center PRINCIPAL

  10. Mapping Translation Technology Research in Translation Studies

    DEFF Research Database (Denmark)

    Schjoldager, Anne; Christensen, Tina Paulsen; Flanagan, Marian

    2017-01-01

    section aims to improve this situation by presenting new and innovative research papers that reflect on recent technological advances and their impact on the translation profession and translators from a diversity of perspectives and using a variety of methods. In Section 2, we present translation......Due to the growing uptake of translation technology in the language industry and its documented impact on the translation profession, translation students and scholars need in-depth and empirically founded knowledge of the nature and influences of translation technology (e.g. Christensen....../Schjoldager 2010, 2011; Christensen 2011). Unfortunately, the increasing professional use of translation technology has not been mirrored within translation studies (TS) by a similar increase in research projects on translation technology (Munday 2009: 15; O’Hagan 2013; Doherty 2016: 952). The current thematic...

  11. Laboratory Directed Research and Development Annual Report FY 2017

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O.

    2018-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  12. Laboratory Directed Research and Development Annual Report FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  13. Risk assessment research and technology assessment

    International Nuclear Information System (INIS)

    Albach, H.; Schade, D.; Sinn, H.

    1991-01-01

    The concepts and approaches for technology assessment, the targets and scientific principles, as well as recognizable deficits and recommendations concerning purposeful strategies for the promotion of this research field require a dialog between those concerned. Conception, deficits, and the necessary measures for risk assessment research and technology assessment were discussed as well as ethical aspects. The problematic nature of using organisms altered through genetic engineering in the open land, traffic and transport, site restoration, nuclear energy, and isotope applications were subjects particularly dealt with. (DG) [de

  14. Laboratory directed research and development. FY 1991 program activities: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle``; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  15. Nanotechnology Research Directions for Societal Needs in 2020 Retrospective and Outlook

    CERN Document Server

    Roco, Mihail C; Mirkin, Chad A

    2011-01-01

    This volume presents a comprehensive perspective on the global scientific, technological, and societal impact of nanotechnology since 2000, and explores the opportunities and research directions in the next decade to 2020.  The vision for the future of nanotechnology presented here draws on scientific insights from U.S. experts in the field, examinations of lessons learned, and international perspectives shared by participants from 35 countries in a series of high-level workshops organized by Mike Roco of the National Science Foundation (NSF), along with a team of American co-hosts that includes Chad Mirkin, Mark Hersam, Evelyn Hu, and several other eminent U.S. scientists.  The study performed in support of the U.S. National Nanotechnology Initiative (NNI) aims to redefine the R&D goals for nanoscale science and engineering integration and to establish nanotechnology as a general-purpose technology in the next decade. It intends to provide decision makers in academia, industry, and government with a n...

  16. A Study on the Planning of Technology Development and Research for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J. and others

    2005-08-15

    This study aimed at the planning the domestic technology development of the Gen IV and the formulating the international collaborative project contents and executive plan for 'A Validity Assessment and Policies of the R and D of Generation IV Nuclear Energy Systems'. The results of the study include follows; - Survey of the technology state in the fields of the Gen IV system specific technologies and the common technologies, and the plans of the international collaborative research - Drawing up the executive research and development plan by the experts of the relevant technology field for the systems which Korean will participate in. - Formulating the effective conduction plan of the program reflecting the view of the experts from the industry, the university and the research institute. - Establishing the plan for estimation of the research fund and the manpower for the efficient utilization of the domestic available resources. This study can be useful material for evaluating the appropriateness of the Korea's participation in the international collaborative development of the Gen IV, and can be valuably utilized to establish the strategy for the effective conduction of the program. The executive plan of the research and development which was produced in this study will be used to the basic materials for the establishing the guiding direction and the strategic conduction of the program when the research and development is launched in the future.

  17. Creating the Future: Research and Technology

    Science.gov (United States)

    1998-01-01

    With the many different technical talents, Marshall Space Flight Center (MSFC) continues to be an important force behind many scientific breakthroughs. The MSFC's annual report reviews the technology developments, research in space and microgravity sciences, studies in space system concepts, and technology transfer. The technology development programs include development in: (1) space propulsion and fluid management, (2) structures and dynamics, (3) materials and processes and (4) avionics and optics.

  18. JSC research and technology

    Science.gov (United States)

    1993-01-01

    The primary roles and missions of JSC incorporate all aspects of human presence in space. Therefore, the Center is involved in the development of technology that will allow humans to stay longer in Earth orbit, allow safe flight in space, and provide capabilities to explore the Moon and Mars. The Center's technology emphasis areas include human spacecraft development, human support systems and infrastructure, and human spacecraft operations. Safety and reliability are critical requirements for the technologies that JSC pursues for long-duration use in space. One of the objectives of technology development at the Center is to give employees the opportunity to enhance their technological expertise and project management skills by defining, designing, and developing projects that are vital to the Center's strategy for the future. This report is intended to communicate within and outside the Agency our research and technology (R&T) accomplishments, as well as inform Headquarters program managers and their constituents of the significant accomplishments that have promise for future Agency programs. While not inclusive of all R&T efforts, the report presents a comprehensive summary of JSC projects in which substantial progress was made in the 1992 fiscal year. At the beginning of each project description, names of the Principal Investigator (PI) and the Technical Monitor (TM) are given, followed by their JSC mail codes or their company or university affiliations. The funding sources and technology focal points are identified in the index.

  19. FY10 Engineering Innovations, Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

    2011-01-11

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but

  20. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  1. The Factors Affecting Definition of Research Problems in Educational Technology Researches

    Science.gov (United States)

    Bahçekapili, Ekrem; Bahçekapili, Tugba; Fis Erümit, Semra; Göktas, Yüksel; Sözbilir, Mustafa

    2013-01-01

    Research problems in a scientific research are formed after a certain process. This process starts with defining a research topic and transforms into a specific research problem or hypothesis. The aim of this study was to examine the way educational technology researchers identify their research problems. To this end, sources that educational…

  2. Oil Pollution Research and Technology Plan

    Science.gov (United States)

    1997-04-01

    Title VII of the Oil Pollution Act of 1990 (OPA 90) established the thirteen member Interagency Coordinating Committee on Oil Pollution Research (Committee). The Committee is charged with coordinating a comprehensive program of research, technology d...

  3. Space Photovoltaic Research and Technology 1995

    Science.gov (United States)

    Landis, Geoffrey (Compiler)

    1995-01-01

    The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.

  4. Enhancing public involvement in assistive technology design research.

    Science.gov (United States)

    Williamson, Tracey; Kenney, Laurence; Barker, Anthony T; Cooper, Glen; Good, Tim; Healey, Jamie; Heller, Ben; Howard, David; Matthews, Martin; Prenton, Sarah; Ryan, Julia; Smith, Christine

    2015-05-01

    To appraise the application of accepted good practice guidance on public involvement in assistive technology research and to identify its impact on the research team, the public, device and trial design. Critical reflection and within-project evaluation were undertaken in a case study of the development of a functional electrical stimulation device. Individual and group interviews were undertaken with lay members of a 10 strong study user advisory group and also research team members. Public involvement was seen positively by research team members, who reported a positive impact on device and study designs. The public identified positive impact on confidence, skills, self-esteem, enjoyment, contribution to improving the care of others and opportunities for further involvement in research. A negative impact concerned the challenge of engaging the public in dissemination after the study end. The public were able to impact significantly on the design of an assistive technology device which was made more fit for purpose. Research team attitudes to public involvement were more positive after having witnessed its potential first hand. Within-project evaluation underpins this case study which presents a much needed detailed account of public involvement in assistive technology design research to add to the existing weak evidence base. The evidence base for impact of public involvement in rehabilitation technology design is in need of development. Public involvement in co-design of rehabilitation devices can lead to technologies that are fit for purpose. Rehabilitation researchers need to consider the merits of active public involvement in research.

  5. 3D technology of Sony Bloggie has no advantage in decision-making of tennis serve direction: A randomized placebo-controlled study.

    Science.gov (United States)

    Liu, Sicong; Ritchie, Jason; Sáenz-Moncaleano, Camilo; Ward, Savanna K; Paulsen, Cody; Klein, Tyler; Gutierrez, Oscar; Tenenbaum, Gershon

    2017-06-01

    This study aimed at exploring whether 3D technology enhances tennis decision-making under the conceptual framework of human performance model. A 3 (skill-level: varsity, club, recreational) × 3 (experimental condition: placebo, weak 3D [W3D], strong 3D [S3D]) between-participant design was used. Allocated to experimental conditions by a skill-level stratified randomization, 105 tennis players judged tennis serve direction from video scenarios and rated their perceptions of enjoyment, flow, and presence during task performance. Results showed that varsity players made more accurate decisions than less skilled ones. Additionally, applying 3D technology to typical video displays reduced tennis players' decision-making accuracy, although wearing the 3D glasses led to a placebo effect that shortened the decision-making reaction time. The unexpected negative effect of 3D technology on decision-making was possibly due to participants being more familiar to W3D than to S3D, and relatedly, a suboptimal task-technology match. Future directions for advancing this area of research are offered. Highlights 3D technology augments binocular depth cues to tradition video displays, and thus results in the attainment of more authentic visual representation. This process enhances task fidelity in researching perceptual-cognitive skills in sports. The paper clarified both conceptual and methodological difficulties in testing 3D technology in sports settings. Namely, the nomenclature of video footage (with/without 3D technology) and the possible placebo effect (arising from wearing glasses of 3D technology) merit researchers' attention. Participants varying in level of domain-specific expertise were randomized into viewing conditions using a placebo-controlled design. Measurement consisted of both participants' subjective experience (i.e., presence, flow, and enjoyment) and objective performance (i.e., accuracy and reaction time) in a decision-making task. Findings revealed that

  6. Manufacturing technologies for direct methanol fuel cells (DMFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Gluesen, Andreas; Mueller, Martin; Kimiaie, Nicola; Konradi, Irene; Mergel, Juergen; Stolten, Detlef [Forschungszentrum Juelich (Germany). Inst. of Energy Research - IEF-3: Fuel Cells

    2010-07-01

    Fuel cell research is focussing on increasing power density and lifetime and reducing costs of the whole fuel cell system. In order to reach these aims, it is necessary to develop appropriately designed components outgoing from high quality materials, a suitable manufacturing process and a well balanced system. To make use of the advantages that can be obtained by developing production technology, we are mainly improving the coating and assembling techniques for polymer electrolyte fuel cells, especially Direct Methanol Fuel Cells (DMFCs). Coating is used for making fuel cell electrodes as well as highly conductive contacts. Assembling is used to join larger components like membrane electrode assemblies (MEAs) and bipolar units consisting of flow fields and the separator plate, as well as entire stacks. On the one hand a reproducible manufacturing process is required to study fine differences in fuel cell performance affected by new materials or new designs. On the other hand a change in each parameter of the manufacturing process itself can change product properties and therefore affect fuel cell performance. As a result, gas diffusion electrodes (GDEs) are now produced automatically in square-meter batches, the hot-pressing of MEAs is a fully automated process and by pre-assembling the number of parts that have to be assembled in a stack was reduced by a factor of 10. These achievements make DMFC manufacturing more reproducible and less error-prone. All these and further developments of manufacturing technology are necessary to make DMFCs ready for the market. (orig.)

  7. Is it design or is it inquiry? Exploring technology research in a Filipino school setting

    Science.gov (United States)

    Yazon, Jessamyn Marie Olivares

    , and technological design need to be re-examined; that integrated science-technology school programs must be implemented to enhance students' academic and vocational knowledge and skills; and that career direction interventions should address personal and socio-cultural factors other than student interest and aptitude. My study provides strong evidence that technology research pedagogy can change teaching-learning approaches in a Filipino classroom. This study showed that academic-vocational, technology-enriched science curriculum could be effectively designed to help equip students to become critical thinkers and leaders in the 21st century.

  8. Plutonium stabilization and storage research in the DNFSB 94-1 core technology program

    International Nuclear Information System (INIS)

    Eller, P.G.; Avens, L.R.; Roberson, G.D.

    1998-04-01

    Recommendation 94-1 of the Defense Nuclear Facility Safety Board (DNFSB) addresses legacy actinide materials left in the US nuclear defense program pipeline when the production mission ended in 1989. The Department of Energy (DOE) Implementation Plan responding to this recommendation instituted a Core Technology program to augment the knowledge base about general chemical and physical processing and storage behavior and to assure safe interim nuclear material storage, until disposition policies are formulated. The Core Technology program focuses on plutonium, in concert with a complex-wide applied R/D program administered by Los Alamos National Laboratory. This paper will summarize the Core Technology program's first two years, describe the research program for FY98, and project the overall direction of the program in the future

  9. Research on key technology of planning and design for AC/DC hybrid distribution network

    Science.gov (United States)

    Shen, Yu; Wu, Guilian; Zheng, Huan; Deng, Junpeng; Shi, Pengjia

    2018-04-01

    With the increasing demand of DC generation and DC load, the development of DC technology, AC and DC distribution network integrating will become an important form of future distribution network. In this paper, the key technology of planning and design for AC/DC hybrid distribution network is proposed, including the selection of AC and DC voltage series, the design of typical grid structure and the comprehensive evaluation method of planning scheme. The research results provide some ideas and directions for the future development of AC/DC hybrid distribution network.

  10. Experience and Enlightenment of Dutch Agricultural Research and Technology

    NARCIS (Netherlands)

    Liu Zhen, Zhen; Hu, D.

    2011-01-01

    This study analyzes the achievements of agricultural science and technology, the reform of agricultural research system and technology transfer system of agricultural in the Netherlands. With case studies, it tries to find the mode of Dutch agricultural research and technology transfer system, and

  11. Challenges in Governing the Digital Transportation Ecosystem in Jakarta: A Research Direction in Smart City Frameworks

    Directory of Open Access Journals (Sweden)

    Iqbal Yulizar Mukti

    2018-03-01

    Full Text Available Mobility is one of the most difficult domains of the smart city to face. In fact, most large cities in the world are still facing urban mobility problems, especially traffic congestion. Particularly, in Jakarta, Indonesia, traffic congestion is a major issue that negatively affects productivity and the overall living quality of the citizens. Along with the development of the information communication and technology (ICT, the transportation domain in Jakarta has formed a digital transportation ecosystem, shown by the emergence of innovative digital-based transportation services. In line with this current condition, this paper hopes to contribute to the improvement of urban traffic in Jakarta by proposing research directions to govern the digital transportation ecosystem within a smart city framework. The significance of the research directions is reviewed using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA methodology in a systematic review of previous studies. Ultimately, the research directions proposed in this paper lead to the necessity for an architectural perspective and relevant big data analytical tools to improve the digital transportation ecosystem in Jakarta.

  12. Bipolar disorder research 2.0: Web technologies for research capacity and knowledge translation.

    Science.gov (United States)

    Michalak, Erin E; McBride, Sally; Barnes, Steven J; Wood, Chanel S; Khatri, Nasreen; Balram Elliott, Nusha; Parikh, Sagar V

    2017-12-01

    Current Web technologies offer bipolar disorder (BD) researchers many untapped opportunities for conducting research and for promoting knowledge exchange. In the present paper, we document our experiences with a variety of Web 2.0 technologies in the context of an international BD research network: The Collaborative RESearch Team to Study psychosocial issues in BD (CREST.BD). Three technologies were used as tools for enabling research within CREST.BD and for encouraging the dissemination of the results of our research: (1) the crestbd.ca website, (2) social networking tools (ie, Facebook, Twitter), and (3) several sorts of file sharing (ie YouTube, FileShare). For each Web technology, we collected quantitative assessments of their effectiveness (in reach, exposure, and engagement) over a 6-year timeframe (2010-2016). In general, many of our strategies were deemed successful for promoting knowledge exchange and other network goals. We discuss how we applied our Web analytics to inform adaptations and refinements of our Web 2.0 platforms to maximise knowledge exchange with people with BD, their supporters, and health care providers. We conclude with some general recommendations for other mental health researchers and research networks interested in pursuing Web 2.0 strategies. © 2017 John Wiley & Sons, Ltd.

  13. Technology Estimating 2: A Process to Determine the Cost and Schedule of Space Technology Research and Development

    Science.gov (United States)

    Cole, Stuart K.; Wallace, Jon; Schaffer, Mark; May, M. Scott; Greenberg, Marc W.

    2014-01-01

    As a leader in space technology research and development, NASA is continuing in the development of the Technology Estimating process, initiated in 2012, for estimating the cost and schedule of low maturity technology research and development, where the Technology Readiness Level is less than TRL 6. NASA' s Technology Roadmap areas consist of 14 technology areas. The focus of this continuing Technology Estimating effort included four Technology Areas (TA): TA3 Space Power and Energy Storage, TA4 Robotics, TA8 Instruments, and TA12 Materials, to confine the research to the most abundant data pool. This research report continues the development of technology estimating efforts completed during 2013-2014, and addresses the refinement of parameters selected and recommended for use in the estimating process, where the parameters developed are applicable to Cost Estimating Relationships (CERs) used in the parametric cost estimating analysis. This research addresses the architecture for administration of the Technology Cost and Scheduling Estimating tool, the parameters suggested for computer software adjunct to any technology area, and the identification of gaps in the Technology Estimating process.

  14. Fusion of smart, multimedia and computer gaming technologies research, systems and perspectives

    CERN Document Server

    Favorskaya, Margarita; Jain, Lakhmi; Howlett, Robert

    2015-01-01

      This monograph book is focused on the recent advances in smart, multimedia and computer gaming technologies. The Contributions include:   ·         Smart Gamification and Smart Serious Games. ·         Fusion of secure IPsec-based Virtual Private Network, mobile computing and rich multimedia technology. ·         Teaching and Promoting Smart Internet of Things Solutions Using the Serious-game Approach. ·         Evaluation of Student Knowledge using an e-Learning Framework. ·         The iTEC Eduteka. ·         3D Virtual Worlds as a Fusion of Immersing, Visualizing, Recording, and Replaying Technologies. ·         Fusion of multimedia and mobile technology in audioguides for Museums and Exhibitions: from Bluetooth Push to Web Pull. The book is directed to researchers, students and software developers working in the areas of education and information technologies.  

  15. The next ten years in neonatology: new directions in research

    Directory of Open Access Journals (Sweden)

    Vassilios Fanos

    2014-06-01

    Full Text Available This paper is a prelude to proceedings of the 10th International Workshop on Neonatology to be held in Cagliari, Italy from October 21st to 25th, 2014. These proceedings will be a significant milestone, highlighting the new frontiers of perinatal and neonatal research. Over the five days of this meeting, we aim to (1 examine the roots of the new directions in perinatal and neonatal research; (2 predict the trajectories of advancement in medical technologies, research, clinical care and teaching that will be the future of perinatology and neonatology. The discussion will be in four sections:back to the future: the placenta and perinatal programming;paradigm shift: the revolution of metabolomics in perinatalogy and neonatology;brave new world: the microbiome and microbiomics from perinatal to adult life;new inhabitants on the planet earth: adults who were born with extremely low birth weight. Proceedings of the 10th International Workshop on Neonatology · Cagliari (Italy · October 22nd-25th, 2014 · The last ten years, the next ten years in Neonatology Guest Editors: Vassilios Fanos, Michele Mussap, Gavino Faa, Apostolos Papageorgiou

  16. Fiscal 1999 project for research and development of industrial and scientific technologies. Report on the achievements on research and development of a technology to structure accelerated type living organism functions (Unit zone combination technology and the advancement experimental system structuring technology); 1999 nendo kasokugata seibutsu kino kochiku gijutsu no kenkyu kaihatsu seika hokokusho. Tan'i ryoiki kumiawase gijutsu oyobi shinka jikkenkei system kochiku gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With an aim at structuring an advancement experimental system that can introduce high-level functions efficiently, research was performed on the unit zone combination technology and the advancement experimental system structuring technology. This paper summarizes the achievements in fiscal 1999. In the research of the unit zone combination technology, analysis was made on the structures and functions of barnase mutants replaced with modules and secondary structure units, in order to investigate how much of plasticity is possessed by the amino acid array constituting natural proteins. In addition, establishment was implemented on the random multi-recombination PCR that can link randomly the DNAs having arbitrary arrangement. Furthermore, the STABLE method was developed successfully to put proteins and DNAs coding thereof into direct correspondence. The research on the optimal advancement experimental system structuring technology using model enzymes placed the importance on the mutation generating technology, or the random peptide library fabricating technology. Research was carried out with an intention of structuring a system to discover quickly an optimal method. (NEDO)

  17. From translational research to open technology innovation systems.

    Science.gov (United States)

    Savory, Clive; Fortune, Joyce

    2015-01-01

    The purpose of this paper is to question whether the emphasis placed within translational research on a linear model of innovation provides the most effective model for managing health technology innovation. Several alternative perspectives are presented that have potential to enhance the existing model of translational research. A case study is presented of innovation of a clinical decision support system. The paper concludes from the case study that an extending the triple helix model of technology transfer, to one based on a quadruple helix, present a basis for improving the performance translational research. A case study approach is used to help understand development of an innovative technology within a teaching hospital. The case is then used to develop and refine a model of the health technology innovation system. The paper concludes from the case study that existing models of translational research could be refined further through the development of a quadruple helix model of heath technology innovation that encompasses greater emphasis on user-led and open innovation perspectives. The paper presents several implications for future research based on the need to enhance the model of health technology innovation used to guide policy and practice. The quadruple helix model of innovation that is proposed can potentially guide alterations to the existing model of translational research in the healthcare sector. Several suggestions are made for how innovation activity can be better supported at both a policy and operational level. This paper presents a synthesis of the innovation literature applied to a theoretically important case of open innovation in the UK National Health Service. It draws in perspectives from other industrial sectors and applies them specifically to the management and organisation of innovation activities around health technology and the services in which they are embedded.

  18. A research proposal for investigating the effect of foreign direct investments on technology transfer in the Arabian Gulf (GCC)

    Science.gov (United States)

    Tahat, Kaher; Whelan, Susan

    2015-02-01

    In terms of hosting countries perspectives, Foreign Direct Investments (FDI) could have a positive effect on its developing economy, by transferring, both: resources of finance in addition to the international technology (ITT) (Choi, 1997). Multinational companies (MNC) are engaging in the transferring of the new technology, internally as well as licensing older one; they create "Spillover" (Knowledge) for facilitating the transfer of ITT in line with geographical location, period of investment, and the type of industry. Furthermore, the effect of these spillovers depends on the level of transferring this knowledge based on FDI attraction policies of the host country (Huang, 2009). Considering the Arabian Gulf council countries (GCC) as "FDI- rich hosting countries", who are not seeking for financial resources, i.e., they already have a huge financial capacity for funding their different projects, even though FDI has been powerfully presented in GCC . They saw noticeable increases in FDI inflows beginning in 2002, (www.unctad.org.fdistatistics). Therefore by assumption, FDI inflows to GCC could positively affect their economic growth through transferring the advanced technology, in order to build up their level of technology (productivity growth) as well as their economic diversification strategy. If so how this Knowledge could be diffused and measured in order to maximize its benefit and enhancing the productivity growth, and what is the current status of (GCC).

  19. Laboratory technology research - abstracts of FY 1997 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  20. Technology Base Research Project for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, K.

    1985-06-01

    The DOE Electrochemical Energy Storage Program is divided into two projects: (1) the exploratory technology development and testing (ETD) project and (2) the technology base research (TBR) project. The role of the TBR Project is to perform supporting research for the advanced battery systems under development by the ETD Project, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the TBR Project is to identify the most promising electrochemical technologies and transfer them to industry and/or the ETD Project for further development and scale-up. This report summarizes the research, financial, and management activities relevant to the TBR Project in CY 1984. General problem areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the assessment of fuel-cell technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: exploratory research, applied science research, and air systems research.

  1. Teaching and research opportunities in technology entrepreneurship

    OpenAIRE

    Mosey, Simon

    2016-01-01

    Technology entrepreneurship as a discipline of study has come of age. The international research community is no longer debating what technology entrepreneurship means or spending time justifying its importance. We are rather engaged in building theory to encourage and enhance technology entrepreneurship in those organisations and institutions that wish to do so. In this paper, we define technology entrepreneurship as the interface between the more established academic fields of entrepreneurs...

  2. The diffusion of renewable energy technology: an analytical framework and key issues for research

    International Nuclear Information System (INIS)

    Jacobsson, S.; Johnson, A.

    2000-01-01

    During the last two decades there has been a great deal of research on renewable energy technologies. It is commonly thought that very little has come out of this research in terms of commercially interesting technologies. The first objective of this paper is to demonstrate that this perception is no longer correct; in the 1990s there has been a double-digit growth rate in the market for some renewable energy technologies. The consequent alteration in the energy system, is, however, a slow, painful and highly uncertain process. This process, we argue, needs to be studied using an innovation system perspective where the focus is on networks, institutions and firms' perceptions, competencies and strategies. The second objective of the paper is therefore to present the bare bones of such an analytical framework. A third objective is to identify a set of key issues related to the speed and direction of that transformation process which needs to be studied further. (author)

  3. Advanced energy systems and technologies research in Finland. NEMO-2 Programme Annual Report 1996-1997

    International Nuclear Information System (INIS)

    1998-01-01

    Advanced energy technologies were linked to the national energy research in the beginning of 1988 when energy research was reorganised in Finland. The Ministry of Trade and Industry established several energy research programmes and NEMO was one of them. Major objectives of the programme were to assess the potential of new energy systems for the national energy supply system and to promote industrial activities. Within the NEMO 2 programme for the years 1993-1998, research was focused on a few promising technological solutions. In the beginning of 1995, the national energy research activities were passed on to the Technology Development Centre TEKES. The NEMO 2 programme is directed towards those areas that have particular potential for commercial exploitation or development. Emphasis is placed particularly on solar and wind energy, as well as supporting technologies, such as energy storage and hydrogen technology. Resources have been focused on three specific areas: arctic wind technology, wind turbine components, and the integration of solar energy into applications (including thin film solar cells). In Finland, the growth of the new energy technology industry is concentrated on these areas. The turnover of the Finnish industry has been growing considerably due to the national research activities and support of technology development. The sales have increased more than 10 times compared with the year 1987 and is now over 300 million FIM. The support to industries and their involvement in the program has grown considerably. In this report, the essential research projects of the programme during 1996-1997 are described. The total funding for these projects was about 30 million FIM per year, of which the TEKES's share was about 40 per cent. The programme consists of 10 research projects, some 15 joint development projects, and 9 EU projects. In case the research projects and joint development projects are acting very closely, the description of the project is

  4. Advanced energy systems and technologies research in Finland. NEMO-2 Programme Annual Report 1996-1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    Advanced energy technologies were linked to the national energy research in the beginning of 1988 when energy research was reorganised in Finland. The Ministry of Trade and Industry established several energy research programmes and NEMO was one of them. Major objectives of the programme were to assess the potential of new energy systems for the national energy supply system and to promote industrial activities. Within the NEMO 2 programme for the years 1993-1998, research was focused on a few promising technological solutions. In the beginning of 1995, the national energy research activities were passed on to the Technology Development Centre TEKES. The NEMO 2 programme is directed towards those areas that have particular potential for commercial exploitation or development. Emphasis is placed particularly on solar and wind energy, as well as supporting technologies, such as energy storage and hydrogen technology. Resources have been focused on three specific areas: arctic wind technology, wind turbine components, and the integration of solar energy into applications (including thin film solar cells). In Finland, the growth of the new energy technology industry is concentrated on these areas. The turnover of the Finnish industry has been growing considerably due to the national research activities and support of technology development. The sales have increased more than 10 times compared with the year 1987 and is now over 300 million FIM. The support to industries and their involvement in the program has grown considerably. In this report, the essential research projects of the programme during 1996-1997 are described. The total funding for these projects was about 30 million FIM per year, of which the TEKES`s share was about 40 per cent. The programme consists of 10 research projects, some 15 joint development projects, and 9 EU projects. In case the research projects and joint development projects are acting very closely, the description of the project is

  5. Office of Industrial Technologies research in progress

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  6. Current directions in radiopharmaceutical research

    Energy Technology Data Exchange (ETDEWEB)

    Mather, S J [Department of Nuclear Medicine, St. Bartholomew` s Hospital, London (United Kingdom)

    1998-08-01

    Much of current radiopharmaceutical research is directed towards the development of receptor-binding tracers which are targeted towards biochemical processes. These may be extra or intracellular in nature and hold promise for an imaging approach to tissue characterisation in-vivo. Many of these products are based on proteins which range in size from large monoclonal antibodies to small neuropeptides and share a radiolabelling chemistry based on the use of bifunctional chelating agents. Although developed initially for use with indium-111, considerations of cost and isotope availability have continued to direct the efforts of many researchers towards the use of technetium-99m. While polypeptide-based radiopharmaceuticals may be useful for imaging peripheral cell-surface receptors, access to sites of interest within the cell, or in the brain, requires the development of small lipophilic molecules with retained ability to interact with intracellular targets. The design and synthesis of these compounds presents a particular challenge to the radiopharmaceutical chemist which is being met through either a pendant or integrated approach to the use of technetium coordination with particular emphasis on technetium (v) cores. Progress continues to be made in the application of targeted radionuclide therapy particularly in the development of radiopharmaceuticals for the treatment of malignant bone disease. methods for labelling antibodies with a great variety of cytotoxic radionuclides have now been refined and their use for radioimmunotherapy in the treatment of haematological malignancies shows great promise. The major medical areas for application of these new radiopharmaceuticals will be in oncology, neurology and inflammation but the increasingly difficult regulatory climate in which drug development and health-care now operate will make it essential for researchers to direct their products toward specific clinical problems as well as biological targets. (author) 36 refs

  7. Current directions in radiopharmaceutical research

    International Nuclear Information System (INIS)

    Mather, S.J.

    1998-01-01

    Much of current radiopharmaceutical research is directed towards the development of receptor-binding tracers which are targeted towards biochemical processes. These may be extra or intracellular in nature and hold promise for an imaging approach to tissue characterisation in-vivo. Many of these products are based on proteins which range in size from large monoclonal antibodies to small neuropeptides and share a radiolabelling chemistry based on the use of bifunctional chelating agents. Although developed initially for use with indium-111, considerations of cost and isotope availability have continued to direct the efforts of many researchers towards the use of technetium-99m. While polypeptide-based radiopharmaceuticals may be useful for imaging peripheral cell-surface receptors, access to sites of interest within the cell, or in the brain, requires the development of small lipophilic molecules with retained ability to interact with intracellular targets. The design and synthesis of these compounds presents a particular challenge to the radiopharmaceutical chemist which is being met through either a pendant or integrated approach to the use of technetium coordination with particular emphasis on technetium (v) cores. Progress continues to be made in the application of targeted radionuclide therapy particularly in the development of radiopharmaceuticals for the treatment of malignant bone disease. methods for labelling antibodies with a great variety of cytotoxic radionuclides have now been refined and their use for radioimmunotherapy in the treatment of haematological malignancies shows great promise. The major medical areas for application of these new radiopharmaceuticals will be in oncology, neurology and inflammation but the increasingly difficult regulatory climate in which drug development and health-care now operate will make it essential for researchers to direct their products toward specific clinical problems as well as biological targets. (author)

  8. Research on the Scientific and Technological Innovation of Research University and Its Strategic Measures

    Science.gov (United States)

    Cheng, Yongbo; Ge, Shaowei

    2005-01-01

    This paper illustrates the important role that the scientific and technological innovation plays in the research university. Technological innovation is one of the main functions that the research university serves and contributes for the development of economy and society, which is the essential measure for Research University to promote…

  9. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2004

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2004-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $460 million. There are about 2,800 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  10. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2003

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2003-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 41 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  11. Oral History as Educational Technology Research

    Science.gov (United States)

    Butler, Rebecca P.

    2008-01-01

    Oral history is a significant type of historical research. Its use in retaining records of the early days of educational technology provides another way to look at the history of this field. The remembrances of its founders inform everyone today of, not only of what went on before, but also of how current and future technologies evolve. There are…

  12. Research Directions for AI in Computer Games

    OpenAIRE

    Fairclough, Chris; Fagan, Michael; Cunningham, Padraig; Mac Namee, Brian

    2001-01-01

    The computer games industry is now bigger than the film industry. Until recently, technology in games was driven by a desire to achieve real-time, photo-realistic graphics. To a large extent, this has now been achieved. As game developers look for new and innovative technologies to drive games development, AI is coming to the fore. This paper will examine how sophisticated AI techniques, such as those being used in mainstream academic research, can be applied to computer games ...

  13. Working Group 2: Future Directions for Safeguards and Verification, Technology, Research and Development

    International Nuclear Information System (INIS)

    Zykov, S.; Blair, D.

    2013-01-01

    For traditional safeguards it was recognized that the hardware presently available is, in general, addressing adequately fundamental IAEA needs, and that further developments should therefore focus mainly on improving efficiencies (i.e. increasing cost economies, reliability, maintainability and user-friendliness, keeping abreast of continual advancements in technologies and of the evolution of verification approaches). Specific technology areas that could benefit from further development include: -) Non-destructive measurement systems (NDA), in particular, gamma-spectroscopy and neutron counting techniques; -) Containment and surveillance tools, such as tamper indicating seals, video-surveillance, surface identification methods, etc.; -) Geophysical methods for design information verification (DIV) and safeguarding of geological repositories; and -) New tools and methods for real-time monitoring. Furthermore, the Working Group acknowledged that a 'building block' (or modular) approach should be adopted towards technology development, enabling equipment to be upgraded efficiently as technologies advance. Concerning non-traditional safeguards, in the area of satellite-based sensors, increased spatial resolution and broadened spectral range were identified as priorities. In the area of wide area surveillance, the development of LIDAR-like tools for atmospheric sensing was discussed from the perspective of both potential benefits and certain limitations. Recognizing the limitations imposed by the human brain in terms of information assessment and analysis, technologies are needed that will enable the more effective utilization of all information, regardless of its format and origin. The paper is followed by the slides of the presentation. (A.C.)

  14. What is past is prologue: future directions in tokamak power reactor design research

    International Nuclear Information System (INIS)

    Conn, R.W.

    1976-01-01

    Conceptual tokamak power reactor designs over the last five years have provided us with many fundamental insights regarding tokamaks as fusion reactors. This first generation of studies has helped lay the groundwork upon which to build improvements in reactor design and begin a process of optimization. After reviewing the first generation of studies and the primary conclusions they produced, we discuss four current designs that are representative of present trends in this area of research. In particular, we discuss the trends towards reduced reactor size and higher neutron wall loadings. Moving in this direction requires new approaches to many subsystem designs. We describe new approaches and future directions in first wall and blanket designs that can achieve reliable operation and reasonable lifetime, the use of cryogenic but normal aluminum magnets for the pulsed coils in a tokamak, blanket designs that allow elimination of the intermediate loop, and low activity shields and toroidal field magnets. We close with a discussion of the future role of conceptual reactor design research and the need for close interaction with ongoing experiments in fusion technology

  15. Report on surveys in fiscal 2000 on the surveys and researches on fundamental technology of polymeric materials in relation to materials nano-technology program; 2000 nendo zairyo nano technology program ni kansuru kobunshi zairyo kiban gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    On the 'polymeric' technology field being the constitution elementary technology of the material neon-technology program, surveys and researches have been performed through holding workshops on the directionality of technological development to be proceeded in a medium term in the future, and the assignments to be worked on with emphasis. The 'Fundamental technology of polymeric materials workshop' was held together with the 49th polymer discussion meeting, in which 300 persons have attended showing high interest of researchers. With regard to the prospect and possibility of the polymeric technology, statements were given on the ways the polymeric technology development should be in the future, and expectations toward the polymeric technology. In the development assignments for the polymeric technology, discussions were given on the current status and problems in the primary structure control technology, tertiary structure control technology, and surface and interface structure control technology. Discussions were also given on the current status and problems in textiles as the high-order structure control technology, the current status and problems in the material forming technology, and the systematization of the polymeric technology and the knowledge thereof. The core of the polymeric technology is the nano-technology itself, whereas the expectations toward the 'Fundamental Polymeric Technology Research Center' were indicated. (NEDO)

  16. Report on surveys in fiscal 2000 on the surveys and researches on fundamental technology of polymeric materials in relation to materials nano-technology program; 2000 nendo zairyo nano technology program ni kansuru kobunshi zairyo kiban gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    On the 'polymeric' technology field being the constitution elementary technology of the material neon-technology program, surveys and researches have been performed through holding workshops on the directionality of technological development to be proceeded in a medium term in the future, and the assignments to be worked on with emphasis. The 'Fundamental technology of polymeric materials workshop' was held together with the 49th polymer discussion meeting, in which 300 persons have attended showing high interest of researchers. With regard to the prospect and possibility of the polymeric technology, statements were given on the ways the polymeric technology development should be in the future, and expectations toward the polymeric technology. In the development assignments for the polymeric technology, discussions were given on the current status and problems in the primary structure control technology, tertiary structure control technology, and surface and interface structure control technology. Discussions were also given on the current status and problems in textiles as the high-order structure control technology, the current status and problems in the material forming technology, and the systematization of the polymeric technology and the knowledge thereof. The core of the polymeric technology is the nano-technology itself, whereas the expectations toward the 'Fundamental Polymeric Technology Research Center' were indicated. (NEDO)

  17. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2000.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2000-12-31

    The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and I exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, ,projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2000. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All FY 2000 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2001. The BNL LDRD budget authority by DOE in FY 2000 was $6 million. The.actual allocation totaled $5.5 million. The following sections in this report contain the management processes, peer

  18. Technologies for direct production of flexible H2/CO synthesis gas

    International Nuclear Information System (INIS)

    Song Xueping; Guo Zhancheng

    2006-01-01

    The use of synthesis gas offers the opportunity to furnish a broad range of environmentally clean fuels and high value chemicals. However, synthesis gas manufacturing systems based on natural gas are capital intensive, and hence, there is great interest in technologies for cost effective synthesis gas production. Direct production of synthesis gas with flexible H 2 /CO ratio, which is in agreement with the stoichiometric ratios required by major synthesis gas based petrochemicals, can decrease the capital investment as well as the operating cost. Although CO 2 reforming and catalytic partial oxidation can directly produce desirable H 2 /CO synthesis gas, they are complicated and continued studies are necessary. In fact, direct production of flexible H 2 /CO synthesis gas can be obtained by optimizing the process schemes based on steam reforming and autothermal reforming as well as partial oxidation. This paper reviews the state of the art of the technologies

  19. Exploring health information technology education: an analysis of the research.

    Science.gov (United States)

    Virgona, Thomas

    2012-01-01

    This article is an analysis of the Health Information Technology Education published research. The purpose of this study was to examine selected literature using variables such as journal frequency, keyword analysis, universities associated with the research and geographic diversity. The analysis presented in this paper has identified intellectually significant studies that have contributed to the development and accumulation of intellectual wealth of Health Information Technology. The keyword analysis suggests that Health Information Technology research has evolved from establishing concepts and domains of health information systems, technology and management to contemporary issues such as education, outsourcing, web services and security. The research findings have implications for educators, researchers, journal.

  20. Fusion research and technology records in INIS database

    International Nuclear Information System (INIS)

    Hillebrand, C.D.

    1998-01-01

    This article is a summary of a survey study ''''A survey on publications in Fusion Research and Technology. Science and Technology Indicators in Fusion R and T'''' by the same author on Fusion R and T records in the International Nuclear Information System (INIS) bibliographic database. In that study, for the first time, all scientometric and bibliometric information contained in a bibliographic database, using INIS records, is analyzed and quantified, specific to a selected field of science and technology. A variety of new science and technology indicators which can be used for evaluating research and development activities is also presented in that study that study

  1. Landmine research: technology solutions looking for problems

    Science.gov (United States)

    Trevelyan, James P.

    2004-09-01

    The global landmine problem came to the attention of researchers in the mid 1990's and by 1997 several advanced and expensive sensor research programs had started. Yet, by the end of 2003, there is little sign of a major advance in the technology available to humanitarian demining programs. Given the motivation and dedication of researchers, public goodwill to support such programs, and substantial research resources devoted to the problem, it is worth asking why these programs do not seem to have had an impact on demining costs or casualty rates. Perhaps there are factors that have been overlooked. This paper reviews several research programs to gain a deeper understanding of the problem. A possible explanation is that researchers have accepted mistaken ideas on the nature of the landmine problems that need to be solved. The paper provides several examples where the realities of minefield conditions are quite different to what researchers have been led to believe. Another explanation may lie in the political and economic realities that drive the worldwide effort to eliminate landmines. Most of the resources devoted to landmine clearance programs come from humanitarian aid budgets: landmine affected countries often contribute only a small proportion because they have different priorities based on realistic risk-based assessment of needs and political views of local people. Some aid projects have been driven by the need to find a market for demining technologies rather than by user needs. Finally, there is a common misperception that costs in less developed countries are intrinsically low, reflecting low rates paid for almost all classes of skilled labour. When actual productivity is taken into account, real costs can be higher than industrialized countries. The costs of implementing technological solutions (even using simple technologies) are often significantly under-estimated. Some political decisions may have discouraged thorough investigation of cost

  2. Direct effect of ownership and technology import: Firm level evidence from large and medium-enterprises in Shanghai

    Institute of Scientific and Technical Information of China (English)

    ZHU Pingfang; LI Lei

    2007-01-01

    This paper explores the direct effect of ownership and technology imports under the fiamework of neoclassical economic theory.The econometric analysis is based on panel data from a random sample of large and mediumenterprises in Shanghai,during the period of 1998 to 2003.The results show that Sino-foreign joint ventures,Sino-foralgn cooperative enterprises and foreignfunded enterprises (SANZI) enjoy higher labor productivity and total factor productlvity (TFP) than domestic enterprises.Intra-firm diffusion of non-codified technology,proxied by ovwnership,is the main source of their better performance,whereas internally transferred codified technology makes little contribution to TFP.For state-owned enterprises,codified technology imports have significantly raised both labor productivity and TFP,but such positive effect is significantly dependent on the S&T human resource.In contrast,no evidence supports that introduction of foreign technology has enhanced the productivity in domestic nonstate-owned enterprises.The empirical results indicate that SANZI do not have a distinct advantage in their codified technology.In addition,inadequate investment in assimilation process and research and development together with inefficient management of science and technology activities,may impede the use of imported technology.

  3. Laboratory Directed Research and Development Program FY2011

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  4. A Framework for Research on Education With Technology

    Directory of Open Access Journals (Sweden)

    Daniel B. Wright

    2018-04-01

    Full Text Available Educational software offers the potential for greatly enhanced student learning. The current availability and political will for trying new approaches means that there is currently much interest in and expenditure on technology for education. After reviewing some of the relevant issues, a framework that builds upon Marr and Poggio's (1977 levels of explanation is presented. The research itself should draw upon existing cognitive, educational, and social research; much existing research is applicable. Guidelines for those conducting research and those wishing to acquire technology are presented.

  5. Integrating information technologies as tools for surgical research.

    Science.gov (United States)

    Schell, Scott R

    2005-10-01

    Surgical research is dependent upon information technologies. Selection of the computer, operating system, and software tool that best support the surgical investigator's needs requires careful planning before research commences. This manuscript presents a brief tutorial on how surgical investigators can best select these information technologies, with comparisons and recommendations between existing systems, software, and solutions. Privacy concerns, based upon HIPAA and other regulations, now require careful proactive attention to avoid legal penalties, civil litigation, and financial loss. Security issues are included as part of the discussions related to selection and application of information technology. This material was derived from a segment of the Association for Academic Surgery's Fundamentals of Surgical Research course.

  6. Technology Estimating: A Process to Determine the Cost and Schedule of Space Technology Research and Development

    Science.gov (United States)

    Cole, Stuart K.; Reeves, John D.; Williams-Byrd, Julie A.; Greenberg, Marc; Comstock, Doug; Olds, John R.; Wallace, Jon; DePasquale, Dominic; Schaffer, Mark

    2013-01-01

    NASA is investing in new technologies that include 14 primary technology roadmap areas, and aeronautics. Understanding the cost for research and development of these technologies and the time it takes to increase the maturity of the technology is important to the support of the ongoing and future NASA missions. Overall, technology estimating may help provide guidance to technology investment strategies to help improve evaluation of technology affordability, and aid in decision support. The research provides a summary of the framework development of a Technology Estimating process where four technology roadmap areas were selected to be studied. The framework includes definition of terms, discussion for narrowing the focus from 14 NASA Technology Roadmap areas to four, and further refinement to include technologies, TRL range of 2 to 6. Included in this paper is a discussion to address the evaluation of 20 unique technology parameters that were initially identified, evaluated and then subsequently reduced for use in characterizing these technologies. A discussion of data acquisition effort and criteria established for data quality are provided. The findings obtained during the research included gaps identified, and a description of a spreadsheet-based estimating tool initiated as a part of the Technology Estimating process.

  7. Application and research of special waste plasma disposal technology

    International Nuclear Information System (INIS)

    Lan Wei

    2007-12-01

    The basic concept of plasma and the principle of waste hot plasma disposal technology are simply introduced. Several sides of application and research of solid waste plasma disposal technology are sumed up. Compared to the common technology, the advantages of waste hot plasma disposal technology manifest further. It becomes one of the most prospective and the most attended high tech disposal technology in particular kind of waste disposal field. The article also simply introduces some experiment results in Southwest Institute of Physics and some work on the side of importation, absorption, digestion, development of foreign plasma torch technology and researching new power sources for plasma torch. (authors)

  8. Research on Technology and Physics Education

    Science.gov (United States)

    Bonham, Scott

    2010-10-01

    From Facebook to smart phones, technology is an integral part of our student's lives. For better or for worse, technology has become nearly inescapable in the classroom, enhancing instruction, distracting students, or simply complicating life. As good teachers we want to harness the power we have available to impact our students, but it is getting harder as the pace of technological change accelerates. How can we make good choices in which technologies to invest time and resources in to use effectively? Do some technologies make more of a difference in student learning? In this talk we will look at research studies looking at technology use in the physics classroom---both my work and that of others---and their impact on student learning. Examples will include computers in the laboratory, web-based homework, and different forms of electronic communication. From these examples, I will draw some general principles for effective educational technology and physics education. Technology is simply a tool; the key is how we use those tools to help our students develop their abilities and understanding.

  9. Diamond bits for directional drilling of wells and technology of using them

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, V P; Steblev, B Ye; Sumaneyev, N N

    1979-01-01

    Characteristics are presented for a diamond bit for directional drilling ADN-08. Technology of using it is described, as well as cutter bits for directional drilling. Based on specially developed technique, the economic effect of using the diamond bits is calculated. This indicates that the use of the diamond bits in rocks of the VIII category significantly improves the quality of directional drilling.

  10. Research Needs for Technology Education: An International Perspective

    Science.gov (United States)

    Ritz, John M.; Martin, Gene

    2013-01-01

    These authors report the findings of a study that sought to determine the most relevant research issues needed to be studied by the technology education profession. It used an international panel of experts to develop a list of important research issues for the school subject of technology education and for the preparation of teachers to better…

  11. Arsenic removal methods for drinking water in the developing countries: technological developments and research needs.

    Science.gov (United States)

    Kabir, Fayzul; Chowdhury, Shakhawat

    2017-11-01

    Arsenic pollution of drinking water is a concern, particularly in the developing countries. Removal of arsenic from drinking water is strongly recommended. Despite the availability of efficient technologies for arsenic removal, the small and rural communities in the developing countries are not capable of employing most of these technologies due to their high cost and technical complexity. There is a need for the "low-cost" and "easy to use" technologies to protect the humans in the arsenic affected developing countries. In this study, arsenic removal technologies were summarized and the low-cost technologies were reviewed. The advantages and disadvantages of these technologies were identified and their scopes of applications and improvements were investigated. The costs were compared in context to the capacity of the low-income populations in the developing countries. Finally, future research directions were proposed to protect the low-income populations in the developing countries.

  12. Vital directions for mathematics education research

    CERN Document Server

    Leatham, Keith R

    2013-01-01

    In this book, experts discuss vital issues in mathematics education and what they see as viable directions for research in mathematics education to address them. Their recommendations take the form of overarching principles and ideas that cut across the field.

  13. Linking theory to practice in learning technology research

    Directory of Open Access Journals (Sweden)

    Cathy Gunn

    2012-03-01

    Full Text Available We present a case to reposition theory so that it plays a pivotal role in learning technology research and helps to build an ecology of learning. To support the case, we present a critique of current practice based on a review of articles published in two leading international journals from 2005 to 2010. Our study reveals that theory features only incidentally or not at all in many cases. We propose theory development as a unifying theme for learning technology research study design and reporting. The use of learning design as a strategy to develop and test theories in practice is integral to our argument. We conclude by supporting other researchers who recommend educational design research as a theory focused methodology to move the field forward in productive and consistent ways. The challenge of changing common practice will be involved. However, the potential to raise the profile of learning technology research and improve educational outcomes justifies the effort required.

  14. Digital technology use in ELT classrooms and self-directed learning

    OpenAIRE

    Nehir Sert; Ebru Boynueğri

    2016-01-01

    The digital era is a new challenge for teachers. While children get acquainted with digital technology before the age of six, teachers, who have encountered the digital world at a later time in their lives, struggle with it. Self-directed learning, which is crucial for lifelong learning, can be enhanced by the use of technology within and beyond classroom settings. The aim of this study was to examine the difference between the perceptions of students in low- and high-income groups about thei...

  15. Students' Perceptions of Self-Directed Learning and Collaborative Learning with and without Technology

    Science.gov (United States)

    Lee, K.; Tsai, P.-S.; Chai, C. S.; Koh, J. H. L.

    2014-01-01

    This study explored students' perceptions of self-directed learning (SDL) and collaborative learning (CL) with/without technology in an information and communications technology-supported classroom environment. The factors include SDL, CL, SDL supported by technology, and CL supported by technology. Based on the literature review, this study…

  16. CONCERNING CORRELATION BETWEEN METHODOLOGY AND TECHNOLOGY IN PEDAGOGICAL RESEARCH

    Directory of Open Access Journals (Sweden)

    Vladimir I. Zagvyazinsky

    2015-01-01

    Full Text Available The purpose of the paper is the continuation of a cycle of the methodological articles, called to help work of young researchers.The general dissatisfaction with quality and results of research work in an education sphere and pedagogics has been largely caused not only insufficient level of methodological culture of competitors of scientific degrees and researchers-experts, but also their inability to choose a work technology of procedure of research that will be adequate to the purposes, problems and a plan of it. The present article is also devoted to this problem.Methods. The methods of the analysis, synthesis, idealisation, generalisation of author’s experience, a concrete definition and modelling are used.Results and scientific novelty. The general technology of scientific search in an education sphere is presented; the technology is developed on the basis of long-term experience of the Tyumen scientific and pedagogical school, and justified in practice. The author doesn’t take into consideration the rigid technology of algorithmic type which is hardly useful in works of creative character; but in the present case – frame technology that defines the expedient organisation, sequence of stages of work and its corresponding maintenance. The following technology components are described: self-determination of the researcher or research group on the basis of creation and the statement of the developed project of all procedures of search; statement of questions on initial allocation of the problem conducting ideas, a plan-way of its realisation; project performance, its ascertaining and a reformative part, research procedures (the basic stage; summarising, generalisation of the research performed, a writing of the text of report documents, preparation of total publications. Examples of typical errors of the young scientists who do not own the technology of scientific activity are given.Practical significance. Proposed recommendations stated

  17. Contributions of mobile technologies to addiction research.

    Science.gov (United States)

    Swendsen, Joel

    2016-06-01

    Mobile technologies are revolutionizing the field of mental health, and particular progress has been made in their application to addiction research and treatment. The use of smartphones and other mobile devices has been shown to be feasible with individuals addicted to any of a wide range of substances, with few biases being observed concerning the repeated monitoring of daily life experiences, craving, or substance use. From a methodological point of view, the use of mobile technologies overcomes longstanding limitations of traditional clinical research protocols, including the more accurate assessment of temporal relationships among variables, as well as the reduction in both contextual constraints and discipline-specific methodological isolation. The present article presents a conceptual review of these advances while using illustrations of research applications that are capable of overcoming specific methodological barriers. Finally, a brief review of both the benefits and risks of mobile technology use for the treatment of patients will be addressed.

  18. Commentary on ``Future directions: Building technologies and design tools``

    Energy Technology Data Exchange (ETDEWEB)

    Quadrel, R.W.

    1992-08-10

    This paper presents a number of interesting and thought-provoking scenarios about the future use of advanced technology in the design and operation of commercial buildings. I will express my reactions in the following series of short paragraphs. These thoughts will, I hope, raise some new questions and offer fruitful directions for further exploration.

  19. Research and Development Opportunities for Technologies to Influence Water Consumption Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Horner, Robert M. [Argonne National Lab. (ANL), Argonne, IL (United States); Muehleisen, Ralph T. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    psychology as they relate to human behavior regarding water consumption. The findings presented here can help to inform policy makers as they develop new policies and seek to support new research to help consumers use water more efficiently. It is our hope that these findings will also be utilized to prioritize topics for additional follow-up workshops to address individual issues and barriers more directly and in more detail. The goal of such future workshops will be to develop specific solutions, research plans, and technology development pathways that can be undertaken to increase the market penetration of technologies that effect behavioral change and reduce water consumption.

  20. Youth, Technology and HIV: Recent Advances and Future Directions

    Science.gov (United States)

    Hightow-Weidman, Lisa B.; Muessig, Kathryn E.; Bauermeister, Jose; Zhang, Chen; LeGrand, Sara

    2015-01-01

    Technology, including mobile technologies and social media, offers powerful tools to reach, engage, and retain youth and young adults in HIV prevention and care interventions both in the United States and globally. In this report we focus on HIV, technology, and youth, presenting a synthesis of recently published (Jan 2014-May 2015) observational and experimental studies relevant for understanding and intervening on HIV risk, prevention and care. We present findings from a selection of the 66 relevant citations identified, highlighting studies that demonstrate a novel approach to technology interventions among youth in regard to content, delivery, target population or public health impact. We discuss current trends globally and in the US in how youth are using technology, as well as emergent research issues in this field – including the need for new theories for developing technology-based HIV interventions and new metrics of engagement, exposure, and evaluation. PMID:26385582

  1. Five Years of Research Into Technology-Enhanced Learning at the Faculty of Materials Science and Technology

    Science.gov (United States)

    Svetský, Štefan; Moravčík, Oliver; Rusková, Dagmar; Balog, Karol; Sakál, Peter; Tanuška, Pavol

    2011-01-01

    The article describes a five-year period of Technology Enhanced Learning (TEL) implementation at the Faculty of Materials Science and Technology (MTF) in Trnava. It is a part of the challenges put forward by the 7th Framework Programme (ICT research in FP7) focused on "how information and communication technologies can be used to support learning and teaching". The empirical research during the years 2006-2008 was focused on technology-driven support of teaching, i. e. the development of VLE (Virtual Learning Environment) and the development of database applications such as instruments developed simultaneously with the information support of the project, and tested and applied directly in the teaching of bachelor students. During this period, the MTF also participated in the administration of the FP7 KEPLER project proposal in the international consortium of 20 participants. In the following period of 2009-2010, the concept of educational activities automation systematically began to develop. Within this concept, the idea originated to develop a universal multi-purpose system BIKE based on the batch processing knowledge paradigm. This allowed to focus more on educational approach, i.e. TEL educational-driven and to finish the programming of the Internet application - network for feedback (communication between teachers and students). Thanks to this specialization, the results of applications in the teaching at MTF could gradually be presented at the international conferences focused on computer-enhanced engineering education. TEL was implemented at a detached workplace and four institutes involving more than 600 students-bachelors and teachers of technical subjects. Four study programmes were supported, including technical English language. Altogether, the results have been presented via 16 articles in five countries, including the EU level (IGIP-SEFI).

  2. Study on engineering technologies in the Mizunami Underground Research Laboratory. FY 2014. Development of recovery and mitigation technology on excavation damage (Contract research)

    International Nuclear Information System (INIS)

    Fukaya, Masaaki; Hata, Koji; Akiyoshi, Kenji; Sato, Shin; Takeda, Nobufumi; Miura, Norihiko; Uyama, Masao; Kanata, Tsutomu; Ueda, Tadashi; Hara, Akira; Torisu, Seda; Ishida, Tomoko; Sato, Toshinori; Mikake, Shinichiro; Aoyagi, Yoshiaki

    2016-03-01

    The researches on engineering technology in the Mizunami Underground Research Laboratory (MIU) project consist of (1) development of design and construction planning technologies, (2) development of construction technology, (3) development of countermeasure technology, (4) development of technology for security and (5) development of technologies for restoration and/or reduction of the excavation damage. As a part of the second phase of the MIU project, research has been focused on the evaluation of engineering technologies including the initial design based on the data obtained during construction. In this research, examination of the plug applied to the future reflood test was conducted as a part of (5) development of technologies for restoration and/or reduction of the excavation damage relating to the engineering technology in the MIU (2014), specifically focused on (1) plug examination (e.g. functions, structure and material) and the quality control methods and (2) analytical evaluation of rock mass behavior around the plug through the reflood test. As a result, specifications of the plug were determined. These specifications should be able to meet requirements for the safety structure and surrounding rock mass against predicted maximum water pressure, temperature stress and seismic force, and for controlling the groundwater inflow, ensuring the access into the reflood gallery and the penetration performance of measurement cable. Also preliminary knowledge regarding the rock mass behavior around the plug after flooding the reflood gallery by installed plug was obtained. A CD-ROM is attached as an appendix. (J.P.N.)

  3. Technology-assisted Interventions for Parents of Young Children: Emerging Practices, Current Research, and Future Directions.

    Science.gov (United States)

    Hall, Cristin M; Bierman, Karen L

    Technology can potentially expand the reach and cut the costs of providing effective, evidence-based interventions. This paper reviews existing publications that describe the application and evaluation of technology-assisted interventions for parents of young children. A broad review of the early childhood literature revealed 48 studies describing technology-assisted parent education and interventions. Across these studies, multiple forms of technology were used, including web-based platforms, discussion forums, mobile devices, and video conferencing. Results are described moving from feasibility and acceptability of technology-based delivery systems to more rigorous evaluations examining their impact on parent and child outcomes. Potential exists for technology to deliver interventions to parents. Limitations are discussed including differential acceptability and elevated attrition associated with internet-only intervention delivery.

  4. Educational Technology Research Journals: "Australasian Journal of Educational Technology," 2003-2012

    Science.gov (United States)

    Hadlock, Camey Andersen; Clegg, J. Aleta; Hickman, Garrett R.; Huyett, Sabrina Lynn; Jensen, Hyrum C.; West, Richard E.

    2014-01-01

    The authors analyzed all research articles in the "Australasian Journal of Educational Technology" from 2003 to 2012 to determine the types of research methodologies published, major contributing authors, and most frequently referenced keywords, abstract terms, and cited articles. During this decade, the majority of articles published…

  5. Stepping beyond the paradigm wars: pluralist methods for research in learning technology

    Directory of Open Access Journals (Sweden)

    Chris Jones

    2011-02-01

    Full Text Available This paper outlines a problem we have found in our own practice when we have been developing new researchers at post-graduate level. When students begin research training and practice, they are often confused between different levels of thinking when they are faced with methods, methodologies and research paradigms. We argue that this confusion arises from the way research methods are taught, embedded and embodied in educational systems. We set out new ways of thinking about levels of research in the field of learning technology. We argue for a problem driven/pragmatic approach to research and consider the range of methods that can be applied as diverse lenses to particular research problems. The problem of developing a coherent approach to research and research methods is not confined to research in learning technology because it is arguably a problem for all educational research and one that also affects an even wider range of disciplinary and interdisciplinary subject areas. For the purposes of this paper we will discuss the problem in relation to research in learning technologies and make a distinction between developmental and basic research that we think is particularly relevant in this field. The paradigms of research adopted have real consequences for the ways research problems are conceived and articulated, and the ways in which research is conducted. This has become an even more pressing concern in the challenging funding climate that researchers now face. We argue that there is not a simple 1 to 1 relationship between levels and most particularly that there usually is not a direct association of particular methods with either a philosophical outlook or paradigm of research. We conclude by recommending a pluralist approach to thinking about research problems and we illustrate this with the suggestion that we should encourage researchers to think in terms of counterpositives. If the researcher suggests one way of doing research in an

  6. Learning Practice and Technology: Extending the Structurational Practice Lens to Educational Technology Research

    Science.gov (United States)

    Halperin, Ruth

    2017-01-01

    Scholars in the field of educational technology have been calling for robust use of social theory within learning technology research. In view of that, interest has been noted in applying Giddens' structuration theory to the understanding of human interaction with technology in learning settings. However, only few such attempts have been published…

  7. Navy Telemedicine: Current Research and Future Directions

    National Research Council Canada - National Science Library

    Reed, Cheryl

    2002-01-01

    .... This report reviews military and civilian models for evaluating telemedicine systems in order to determine future directions for Navy telemedicine research within the current funding environment...

  8. Research needs of the new accelerator technologies

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1982-08-01

    A review is given of some of the new accelerator technologies with a special eye to the requirements which they generate for research and development. Some remarks are made concerning the organizational needs of accelerator research

  9. Future directions for positive body image research

    OpenAIRE

    Halliwell, E.

    2015-01-01

    The emergence of positive body image research during the last 10 years represents an important shift in the body image literature. The existing evidence provides a strong empirical basis for the study of positive body image and research has begun to address issues of age, gender, ethnicity, culture, development, and intervention in relation to positive body image. This article briefly reviews the existing evidence before outlining directions for future research. Specifically, six areas for fu...

  10. Studies on engineering technologies in the Mizunami Underground Research Laboratory. FY 2007 (Contract research)

    International Nuclear Information System (INIS)

    Noda, Masaru; Suyama, Yasuhiro; Nobuto, Jun; Ijiri, Yuji; Mikake, Shinichiro; Matsui, Hiroya

    2009-07-01

    The Mizunami Underground Research Laboratory (MIU) of the Japan Atomic Energy Agency is a major site for geoscientific research to advance the scientific and technological basis for geological disposal of high-level radioactive waste in crystalline rock. Studies on relevant engineering technologies in the MIU consist of a) research on design and construction technology for very deep underground applications, and b) research on engineering technology as a basis of geological disposal. In the Second Phase of the MIU project (the construction phase), engineering studies have focused on research into design and construction technologies for deep underground. The main subjects in the study of very deep underground structures consist of the following: 'Demonstration of the design methodology', 'Demonstration of existing and supplementary excavation methods', 'Demonstration of countermeasures during excavation' and 'Demonstration of safe construction'. In the FY 2007 studies, identification and evaluation of the subjects for study of engineering technologies in the construction phase were carried out to optimize future research work. Specific studies included: validation of the existing design methodology based on data obtained during construction; validation of existing and supplementary rock excavation methods for very deep shafts; estimation of rock stability under high differential water pressures, methodology on long-term maintenance of underground excavations and risk management systems for construction of underground structures have been performed. Based on these studies, future research focused on the four subject areas, which are 'Demonstration of the design methodology', 'Demonstration of existing and supplementary excavation methods', 'Demonstration of countermeasures during excavation' and 'Demonstration of safe construction', has been identified. The design methodology in the first phase of the MIU Project (surface-based investigation phase) was verified to

  11. Direct digital conversion detector technology

    Science.gov (United States)

    Mandl, William J.; Fedors, Richard

    1995-06-01

    Future imaging sensors for the aerospace and commercial video markets will depend on low cost, high speed analog-to-digital (A/D) conversion to efficiently process optical detector signals. Current A/D methods place a heavy burden on system resources, increase noise, and limit the throughput. This paper describes a unique method for incorporating A/D conversion right on the focal plane array. This concept is based on Sigma-Delta sampling, and makes optimum use of the active detector real estate. Combined with modern digital signal processors, such devices will significantly increase data rates off the focal plane. Early conversion to digital format will also decrease the signal susceptibility to noise, lowering the communications bit error rate. Computer modeling of this concept is described, along with results from several simulation runs. A potential application for direct digital conversion is also reviewed. Future uses for this technology could range from scientific instruments to remote sensors, telecommunications gear, medical diagnostic tools, and consumer products.

  12. Thrust Area Report, Engineering Research, Development and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  13. Materials and Components Technology Division research summary, 1992

    International Nuclear Information System (INIS)

    1992-11-01

    The Materials and Components Technology Division (MCT) provides a research and development capability for the design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs related to nuclear energy support the development of the Integral Fast Reactor (IFR): life extension and accident analyses for light water reactors (LWRs); fuels development for research and test reactors; fusion reactor first-wall and blanket technology; and safe shipment of hazardous materials. MCT Conservation and Renewables programs include major efforts in high-temperature superconductivity, tribology, nondestructive evaluation (NDE), and thermal sciences. Fossil Energy Programs in MCT include materials development, NDE technology, and Instrumentation design. The division also has a complementary instrumentation effort in support of Arms Control Technology. Individual abstracts have been prepared for the database

  14. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Xiaodi Huang; Dr. J. Y. Hwang

    2005-03-28

    Steel is a basic material broadly used by perhaps every industry and individual. It is critical to our nation's economy and national security. Unfortunately, the American steel industry is losing competitiveness in the world steel production field. There is an urgent need to develop the next generation of steelmaking technology for the American steel industry. Direct steelmaking through the combination of microwave, electric arc, and exothermal heating is a revolutionary change from current steelmaking technology. This technology can produce molten steel directly from a shippable agglomerate, consisting of iron oxide fines, powdered coal, and ground limestone. This technology is projected to eliminate many current intermediate steelmaking steps including coking, pellet sintering, blast furnace (BF) ironmaking, and basic oxygen furnace (BOF) steelmaking. This technology has the potential to (a) save up to 45% of the energy consumed by conventional steelmaking; (b) dramatically reduce the emission of CO{sub 2}, SO{sub 2}, NO{sub x}, VOCs, fine particulates, and air toxics; (c) substantially reduce waste and emission control costs; (d) greatly lower capital cost; and (e) considerably reduce steel production costs. This technology is based on the unique capability of microwaves to rapidly heat steelmaking raw materials to elevated temperature, then rapidly reduce iron oxides to metal by volumetric heating. Microwave heating, augmented with electric arc and exothermal reactions, is capable of producing molten steel. This technology has the components necessary to establish the ''future'' domestic steel industry as a technology leader with a strong economically competitive position in world markets. The project goals were to assess the utilization of a new steelmaking technology for its potential to achieve better overall energy efficiency, minimize pollutants and wastes, lower capital and operating costs, and increase the competitiveness of the

  15. Research on TIG weld machine of the upper side ring slot of Gd-rod technology reconstruct

    International Nuclear Information System (INIS)

    Fang Shixiang; Lan Zhibing; Cui Quhu

    2010-01-01

    The research on TIG weld machine of the upper side ring slot of Gd-rod existent matter: seal electrical source got up difficulty; control system had graveness aging; space between was adjusted precision lowness; welding torch lay mode and structure were not in reason. carried through all around technology reconstruct: had chosen the best of TIG weld machine; designed ignite arc device, designed optics imaging device, designed tungsten mighty axis direction auto conditioning, was provided with arc slot, adopted PLC to control the whole system and realization auto control. After TIG weld machine of the upper side ring slot of Gd-rod technology reconstruct research , provided with arc slot the first time in the Gd-rod of nuclear fuel, optimized the weld technics, improved welding line melt width and deep equality, stability, and great breadth advanced nuclear fuel product line technology and throughput. (authors)

  16. Research and Technology Objectives and Plans Summary (RTOPS)

    Science.gov (United States)

    1993-01-01

    This publication represents the NASA research and technology program for FY-93. It is a compilation of the Summary portions of each of the RTOP's (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOP's is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number.

  17. Science and Technology Research for Sustainable Development in ...

    African Journals Online (AJOL)

    FIRST LADY

    A fundamental need for development of science, technology, research and national ... that encourages partnership for exchange of people, ideas, and support facilities. .... ii Imagination to apply existing technology to new problems or.

  18. Energy from Biomass Research and Technology Transfer Program

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dorin

    2015-12-31

    The purpose of CPBR is to foster and facilitate research that will lead to commercial applications. The goals of CPBR’s Energy from Biomass Research and Technology Transfer Program are to bring together industry, academe, and federal resources to conduct research in plant biotechnology and other bio-based technologies and to facilitate the commercialization of the research results to: (1) improve the utilization of plants as energy sources; (2) reduce the cost of renewable energy production; (3) facilitate the replacement of petroleum by plant-based materials; (4) create an energy supply that is safer in its effect on the environment, and (5) contribute to U.S. energy independence.

  19. Legislation on university technology transfer and research management 2012

    International Nuclear Information System (INIS)

    2012-02-01

    This book deals with legislation on university technology transfer in 2012, which includes invention promotion act, legislation on technology transfer and promotion of industrialization, legislation on industrial education and industrial cooperation, and special legislation on venture business. It lists the legislation related research and development by government department : fundamental law of scientific technique, law on evaluation and management of domestic research development business, national science and technology council and the patent office.

  20. Securing Canada’s Information-Technology Infrastructure: Context, Principles, and Focus Areas of Cybersecurity Research

    Directory of Open Access Journals (Sweden)

    Dan Craigen

    2013-07-01

    Full Text Available This article addresses the challenges of cybersecurity and ultimately the provision of a stable and resilient information-technology infrastructure for Canada and, more broadly, the world. We describe the context of current cybersecurity challenges by synthesizing key source material whose importance was informed by our own real-world experiences. Furthermore, we present a checklist of guiding principles to a unified response, complete with a set of action-oriented research topics that are linked to known operational limitations. The focus areas are used to drive the formulation of a unified and relevant research and experimental development program, thereby moving us towards a stable and resilient cyberinfrastructure. When cybersecurity is viewed as an inherently interdisciplinary problem of societal concern, we expect that fundamentally new research perspectives will emerge in direct response to domain-specific protection requirements for information-technology infrastructure. Purely technical responses to cybersecurity challenges will be inadequate because human factors are an inherent aspect of the problem. This article will interest managers and entrepreneurs. Senior management teams can assess new technical developments and product releases to fortify their current security solutions, while entrepreneurs can harness new opportunities to commercialize novel technology to solve a high-impact cybersecurity problem..

  1. Interviewing Objects: Including Educational Technologies as Qualitative Research Participants

    Science.gov (United States)

    Adams, Catherine A.; Thompson, Terrie Lynn

    2011-01-01

    This article argues the importance of including significant technologies-in-use as key qualitative research participants when studying today's digitally enhanced learning environments. We gather a set of eight heuristics to assist qualitative researchers in "interviewing" technologies-in-use (or other relevant objects), drawing on concrete…

  2. High School Students' Reasons for Their Science Dispositions: Community-Based Innovative Technology-Embedded Environmental Research Projects

    Science.gov (United States)

    Ebenezer, Jazlin; Kaya, Osman Nafiz; Kasab, Dimma

    2018-05-01

    The purpose of this investigation was to qualitatively describe high school students' reasons for their science dispositions (attitude, perception, and self-confidence) based on their long-term experience with innovative technology-embedded environmental research projects. Students in small groups conducted research projects in and out of school with the help of their teachers and community experts (scientists and engineers). During the 3-year period of this nationally funded project, a total of 135 students from five schools in a mid-west State participated in research activities. Of the 135 students, 53 students were individually interviewed to explore reasons for their science dispositions. Students' reasons for each disposition were grouped into categories, and corresponding frequency was converted to a percentage. The categories of reasons were not only attributed to the use of innovative technologies in environmental research but also the contexts and events that surrounded it. The reasons that influenced students' science dispositions positively were because engaging in environmental research projects with technology contributed to easing fear and difficulty, building a research team, disseminating findings, communicating with the community, researching with scientists, training by teachers, and acknowledging teachers' knowledge. These results advanced how and why students develop science dispositions in the positive direction, which are as follows: building science teacher capacity, developing a community of inquirers, and committing to improve pedagogical practices.

  3. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction.

    Science.gov (United States)

    Xie, Ming; Shon, Ho Kyong; Gray, Stephen R; Elimelech, Menachem

    2016-02-01

    Wastewater nutrient recovery holds promise for more sustainable water and agricultural industries. We critically review three emerging membrane processes - forward osmosis (FO), membrane distillation (MD) and electrodialysis (ED) - that can advance wastewater nutrient recovery. Challenges associated with wastewater nutrient recovery were identified. The advantages and challenges of applying FO, MD, and ED technologies to wastewater nutrient recovery are discussed, and directions for future research and development are identified. Emphasis is given to exploration of the unique mass transfer properties of these membrane processes in the context of wastewater nutrient recovery. We highlight that hybridising these membrane processes with existing nutrient precipitation process will lead to better management of and more diverse pathways for near complete nutrient recovery in wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Research and technology organisations and smart specialisation

    OpenAIRE

    Charles, David; Ciampi Stancova, Katerina

    2015-01-01

    Research and Technology Organisations (RTOs) have developed in many European countries at both national and regional levels to assist in the support of local industry, often around specific industrial technologies or sectors. With a core responsibility for technological upgrading they play a key role in regional and national innovation systems. Yet there is great variety in the form and mission of such RTOs, especially in terms of the degree of regional alignment, and whilst some regions are ...

  5. Technology and Teacher-Student Interactions: A Review of Empirical Research

    Science.gov (United States)

    Harper, Ben

    2018-01-01

    As technology becomes ubiquitous in education, it is critical to understand the ways in which technology influences interactions between teachers and their students. The overarching research question that guided this systematic review was: What does research tell us about how technology influences interactions between teachers and students in K-12…

  6. Fuels from microalgae: Technology status, potential, and research requirements

    Energy Technology Data Exchange (ETDEWEB)

    Neenan, B.; Feinberg, D.; Hill, A.; McIntosh, R.; Terry, K.

    1986-08-01

    Although numerous options for the production of fuels from microalgae have been proposed, our analysis indicates that only two qualify for extensive development - gasoline and ester fuel. In developing the comparisons that support this conclusion, we have identified the major areas of microalgae production and processing that require extensive development. Technology success requires developing and testing processes that fully utilize the polar and nonpolar lipids produced by microalgae. Process designs used in these analyses were derived from fragmented, preliminary laboratory data. These results must be substantiated and integrated processes proposed, tested, and refined to be able to evaluate the commercial feasibility from microalgae. The production of algal feedstocks for processing to gasoline or ester fuel requires algae of high productivity and high lipid content that efficiently utilize saline waters. Species screening and development suggest that algae can achieve required standards taken individually, but algae that can meet the integrated requirements still elude researchers. Effective development of fuels from microalgae technology requires that R and D be directed toward meeting the integrated standards set out in the analysis. As technology analysts, it is inappropriate for us to dictate how the R and D effort should proceed to meet these standards. We end our role by noting that alternative approaches to meeting the feasibility targets have been identified, and it is now the task of program managers and scientists to choose the appropriate approach to assure the greatest likelihood of realizing a commercially viable technology. 70 refs., 39 figs., 35 tabs.

  7. Computer science research and technology volume 3

    CERN Document Server

    Bauer, Janice P

    2011-01-01

    This book presents leading-edge research from across the globe in the field of computer science research, technology and applications. Each contribution has been carefully selected for inclusion based on the significance of the research to this fast-moving and diverse field. Some topics included are: network topology; agile programming; virtualization; and reconfigurable computing.

  8. Social Media Technology and Public Health in Ontario: Findings from a Planning Meeting Exploring Current Practices and Future Research Directions.

    Science.gov (United States)

    Booth, Richard; McMurray, Josephine; Regan, Sandra; Kothari, Anita; Donelle, Lorie; McBride, Susan; Sobel, Annette; Hall, Jodi; Fraser, Robert; Foisey, Lyndsay

    2017-01-01

    In the province of Ontario, many of the public health units (PHUs) now possess and use social media as part of their daily health promotion and communication operations. To explore this topic, a planning meeting was held to generate deeper insights toward the use of these forms of technology for preventative services delivery. The planning meeting was held with 50 participants, comprising representatives from 20 of the 36 PHUs in Ontario, interested academics, students and government representatives. A nominal group technique (NGT) was used to build consensus related to future research needs, as related to public health and social media. Participants generated a range of insights around the use of social media, including the need for: leadership buy-in and resource allocation; social media policy and governance structure; performance measurement and evaluation; practices related to engagement with program recipients and addressing the lack of resources faced by many health units. Future research priorities were also generated, related to evaluating the cost-benefit of social media activities and understanding behaviour change implications. Further research is needed to evaluate the functionality, leadership and competency requirements and impact(s) of these new forms of health communication technology within public health service delivery. Copyright © 2017 Longwoods Publishing.

  9. Recommended Research Directions for Improving the Validation of Complex Systems Models.

    Energy Technology Data Exchange (ETDEWEB)

    Vugrin, Eric D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trucano, Timothy G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Finley, Patrick D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flanagan, Tatiana Paz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Naugle, Asmeret Bier [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tsao, Jeffrey Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Verzi, Stephen Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Improved validation for models of complex systems has been a primary focus over the past year for the Resilience in Complex Systems Research Challenge. This document describes a set of research directions that are the result of distilling those ideas into three categories of research -- epistemic uncertainty, strong tests, and value of information. The content of this document can be used to transmit valuable information to future research activities, update the Resilience in Complex Systems Research Challenge's roadmap, inform the upcoming FY18 Laboratory Directed Research and Development (LDRD) call and research proposals, and facilitate collaborations between Sandia and external organizations. The recommended research directions can provide topics for collaborative research, development of proposals, workshops, and other opportunities.

  10. The Development of Sloyd Teacher Students’ Self-Directed Learning Readiness

    Directory of Open Access Journals (Sweden)

    Mika Metsärinne

    2012-09-01

    Full Text Available This research is the first part of a longitudinal study of sloyd teacher students’ self-directed learning of craft & technology studies at the end of bachelor level throughout three decades in Finland. Sloyd education is the main subject in the sloyd teacher study program in University of Turku and Åbo Akademi University in Finland. These sloyd teacher study programs progresses to the master’s level of education and provides readiness to teach the school subject sloyd in comprehensive and high schools. This study is focused mainly of the craft and technology combination in purposes of sloyd education in university of Turku. The studies consists mainly of wood, plastic, metal, information and textile technologies, mechanical engineering, electricity and some basics of automation technologies, research methodologies, pedagogics and product planning. The aim of the present research was to study whether there are any Self-Directed Learning Readiness (SDLR differences between the craft & technology studies of sloyd teacher students in the year 1992 and 2002. The main result was that the 92-group had higher SDLR -points compared to the 02-group. The main conclusion is that craft & technology studies require plenty of time for students’ development of self –directed learning that is adequate for sloyd teacher education.Key words: Sloyd education, Self-direction learning; self-directed learning readiness, Sloyd (craft & technology teacher education

  11. 75 FR 15756 - Small Business Innovation Research Program Policy Directive

    Science.gov (United States)

    2010-03-30

    ... SMALL BUSINESS ADMINISTRATION RIN 3244-AF61 Small Business Innovation Research Program Policy Directive AGENCY: U.S. Small Business Administration. ACTION: Notice of Final Amendments to Policy Directive. SUMMARY: This document announces a final amendment to the Small Business Innovation Research (SBIR...

  12. Science and Technology Research for Sustainable Development in ...

    African Journals Online (AJOL)

    Science and Technology Research for Sustainable Development in Africa: The Imperative ... This has placed African countries at a disadvantage. ... In this paper, effort is made to establish the imperative of education to science and technology.

  13. Virtual Reality: Directions in Research and Development.

    Science.gov (United States)

    Stuart, Rory

    1992-01-01

    Discussion of virtual reality (VR) focuses on research and development being carried out at NYNEX to solve business problems. Component technologies are described; design decisions are considered, including interactivity, connectivity, and locus of control; potential perils of VR are discussed, including user dissociation; and areas of promise are…

  14. Laboratory Directed Research and Development FY-15 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  15. Overview of remote technologies applied to research reactor fuel

    International Nuclear Information System (INIS)

    Oerdoegh, M.; Takats, F.

    1999-01-01

    This paper gives a brief overview of the remote technologies applied to research reactor fuels. Due to many reasons, the remote technology utilization to research reactor fuel is not so widespread as it is for power reactor fuels, however, the advantages of the application of such techniques are obvious. (author)

  16. The 1975 schedule of deliberation of the Ministry of Research and Technology

    International Nuclear Information System (INIS)

    1975-01-01

    This syllabus contains details about tasks and members of A. the advisory board on research and technology (BAFT) and the discussion forum concerned with analysing and forecasting the needs of research (DK) B. committees of experts - data processing and documentation - energy research and technology - the arts - humanizing working conditions - maritime research and technology - space research and technology C. 51 special panels and 66 specialist circles D. the Ministry's project committee. (orig./LN) [de

  17. Diagnosing Management of Agricultural Research and Technology Development under the Agricultural Innovation Framework

    Directory of Open Access Journals (Sweden)

    2014-06-01

    Full Text Available This study aimed at identifying and analyzing issues and challenges on the agricultural research and technology development under the national innovation framework. The survey consisted of two groups: agricultural researchers of Agriculture-Research and Education Organization and all faculty members of public agricultural faculties of Ministry of Scientific, Research and Technology. Using Cochran sampling formula and multi-stage sampling method, 188 researchers and 205 faculty members were selected in order to fill in the survey questionnaire. Using the SPSS, collected data analyzed based on explanatory factor analysis. Totally, factor analysis of three sets of issues and challenges on the agricultural research and technology development under the national innovation framework led to extract 13 factors, including agricultural structure and policy, infrastructure and resources of agricultural development, supportive services for agricultural development (level of agricultural development, investment and capacity building in research and technology, management of research and technology development, research and technology productivity, research culture, networks for research and technology development (level of national innovation system, agricultural research policy, impacts and effectiveness of agricultural research and technology development, integrated management of research and technology, institutional development for agricultural research and technology and systematic synergy of agricultural research and higher education (level of agricultural innovation system. Totally, these three sets of factors explained 64%, 75% and 73% of the total variances. Finally, using conceptual clustering for the extracted factors, a conceptual model of issues and challenges of agricultural research and technology development under the national innovation framework was presented.

  18. Innovative and basic researches for high temperature technologies at HTTR

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku

    1995-01-01

    The HTTR is the first HTGR which is under construction at JAERI. The objectives of the HTTR are to establish basic technologies for HTGRs, to upgrade technologies for HTGRs and to conduct innovative and basic researches for high temperature technologies. The first two are concerned with HTGR developments. The last one is not necessarily for HTGR developments, but for future innovative researches which are expected to be applied to various technologies. (author)

  19. Learning Analytics: Challenges and Future Research Directions

    Directory of Open Access Journals (Sweden)

    Vlatko Lukarov

    2014-12-01

    Full Text Available In recent years, learning analytics (LA has attracted a great deal of attention in technology-enhanced learning (TEL research as practitioners, institutions, and researchers are increasingly seeing the potential that LA has to shape the future TEL landscape. Generally, LA deals with the development of methods that harness educational data sets to support the learning process. This paper provides a foundation for future research in LA. It provides a systematic overview on this emerging field and its key concepts through a reference model for LA based on four dimensions, namely data, environments, context (what?, stakeholders (who?, objectives (why?, and methods (how?. It further identifies various challenges and research opportunities in the area of LA in relation to each dimension.

  20. Research and development in technology enriched schools: a case for cooperation between teachers and researchers

    NARCIS (Netherlands)

    Beishuizen, J.J.; Beishuizen, J.J.; Moonen, J.C.M.M.

    1993-01-01

    Technology-enriched schools offer unique opportunities for research into the use of information technology in education. As in every applied educational research project, some concerns should be carefully considered. One of them is teacher involvement. Another issue of concern is finding a proper

  1. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    International Nuclear Information System (INIS)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-01-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of approximately minus8 m (minus27 ft.), following a predetermined drill path, tracking the drill path to within a radius of approximately1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of ∼ -21 m (-70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned

  2. Research and development and management of technology

    International Nuclear Information System (INIS)

    Kim, Yeong Gil

    1989-04-01

    This book mentions current state of affairs on research and development and prospect : activity of business, field like information and materials, energy and resource, public welfare, general industry technology. It introduces policy on promotion of research and development such as propel of special research and development business, propel strategy for 10 priority tasks, reinforcement of basic research, promotion of information industry and propel for technical development of business.

  3. Blending addiction research and practice: strategies for technology transfer.

    Science.gov (United States)

    Condon, Timothy P; Miner, Lucinda L; Balmer, Curtis W; Pintello, Denise

    2008-09-01

    Consistent with traditional conceptions of technology transfer, efforts to translate substance abuse and addiction research into treatment practice have typically relied on the passive dissemination of research findings. The large gap between addiction research and practice, however, indicates that there are many barriers to successful technology transfer and that dissemination alone is not sufficient to produce lasting changes in addiction treatment. To accelerate the translation of research into practice, the National Institute on Drug Abuse launched the Blending Initiative in 2001. In part a collaboration with the Substance Abuse and Mental Health Services Administration/Center for Substance Abuse Treatment's Addiction Technology Transfer Center program, this initiative aims to improve the development, effectiveness, and usability of evidence-based practices and reduce the obstacles to their timely adoption and implementation.

  4. Research and development of nitride fuel cycle technology in Japan

    International Nuclear Information System (INIS)

    Minato, Kazuo; Arai, Yasuo; Akabori, Mitsuo; Tamaki, Yoshihisa; Itoh, Kunihiro

    2004-01-01

    The research on the nitride fuel was started for an advanced fuel, (U, Pn)N, for fast reactors, and the research activities have been expanded to minor actinide bearing nitride fuels. The fuel fabrication, property measurements, irradiation tests and pyrochemical process experiments have been made. In 2002 a five-year-program named PROMINENT was started for the development of nitride fuel cycle technology within the framework of the Development of Innovative Nuclear Technologies by the Ministry of Education, Culture, Sports, Science and Technology of Japan. In the research program PROMINENT, property measurements, pyrochemical process and irradiation experiments needed for nitride fuel cycle technology are being made. (author)

  5. Health technology assessment: research trends and future priorities in Europe.

    Science.gov (United States)

    Nielsen, Camilla Palmhøj; Funch, Tina Maria; Kristensen, Finn Børlum

    2011-07-01

    To provide an overview of health services research related to health technology assessment (HTA) and to identify research priorities from a European perspective. Several methods were used: systematic review of articles indexed with the MeSH term 'technology assessment' in PubMed from February 1999-2009; online survey among experts; and conference workshop discussions. Research activity in HTA varies considerably across Europe. The research was categorised into six areas: (1) the breadth of analysis in HTA (such as economic, organizational and social aspects); (2) HTA products developed to meet the needs of policy-makers (such as horizon scanning, mini-HTA, and core HTA); (3) handling life-cycle perspectives in relation to technologies; (4) topics that challenge existing methods and for which HTA should be developed to address the themes more comprehensively (such as public health interventions and organizational interventions); (5) development of HTA capacity and programmes; and (6) links between policy and HTA. An online survey showed that the three areas that were given priority were the relationship between HTA and policy-making (71%), the impact of HTA (62%) and incorporating patient aspects in HTA (50%). Policy-makers highlighted HTA and innovation processes as their main research priority (42%). Areas that the systematic review identified as future priorities include issues within the six existing research areas such as disinvestment, developing evidence for new technologies, assessing the wider effects of technology use, and determining how HTA affects decision-making. In addition, relative effectiveness and individualized treatments are areas of growing interest. The research priorities identified are important for obtaining high quality and cost-effective health care in Europe. Managing the introduction, use and phasing out of technologies challenges health services throughout Europe, and these processes need to be improved to successfully manage future

  6. Fiscal 1998 research report on super compiler technology; 1998 nendo super konpaira technology no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For next-generation super computing systems, research was made on parallel and distributed compiler technology for enhancing an effective performance, and concerned software and architectures for enhancing a performance in coordination with compilers. As for parallel compiler technology, the researches of scalable automated parallel compiler technology, parallel tuning tools, and an operating system to use multi-processor resources effectively are pointed out to be important as concrete technical development issues. In addition, by developing these research results to the architecture technology of single-chip multi-processors, the possibility of development and expansion of the PC, WS and HPC (high-performance computer) markets, and creation of new industries is pointed out. Although wide-area distributed computing is being watched as next-generation computing industry, concrete industrial fields using such computing are now not clear, staying in the groping research stage. (NEDO)

  7. Clinical Research with Transcranial Direct Current Stimulation (tDCS): Challenges and Future Directions

    Science.gov (United States)

    Brunoni, Andre Russowsky; Nitsche, Michael A.; Bolognini, Nadia; Bikson, Marom; Wagner, Tim; Merabet, Lotfi; Edwards, Dylan J.; Valero-Cabre, Antoni; Rotenberg, Alexander; Pascual-Leone, Alvaro; Ferrucci, Roberta; Priori, Alberto; Boggio, Paulo; Fregni, Felipe

    2011-01-01

    Background Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low-intensity, direct current to cortical areas facilitating or inhibiting spontaneous neuronal activity. In the past ten years, tDCS physiological mechanisms of action have been intensively investigated giving support for the investigation of its applications in clinical neuropsychiatry and rehabilitation. However, new methodological, ethical, and regulatory issues emerge when translating the findings of preclinical and phase I studies into phase II and III clinical studies. The aim of this comprehensive review is to discuss the key challenges of this process and possible methods to address them. Methods We convened a workgroup of researchers in the field to review, discuss and provide updates and key challenges of neuromodulation use for clinical research. Main Findings/Discussion We reviewed several basic and clinical studies in the field and identified potential limitations, taking into account the particularities of the technique. We review and discuss the findings into four topics: (i) mechanisms of action of tDCS, parameters of use and computer-based human brain modeling investigating electric current fields and magnitude induced by tDCS; (ii) methodological aspects related to the clinical research of tDCS as divided according to study phase (i.e., preclinical, phase I, phase II and phase III studies); (iii) ethical and regulatory concerns; (iv) future directions regarding novel approaches, novel devices, and future studies involving tDCS. Finally, we propose some alternative methods to facilitate clinical research on tDCS. PMID:22037126

  8. Virtual reality technologies for research and education in obesity and diabetes: research needs and opportunities.

    Science.gov (United States)

    Ershow, Abby G; Peterson, Charles M; Riley, William T; Rizzo, Albert Skip; Wansink, Brian

    2011-03-01

    The rising rates, high prevalence, and adverse consequences of obesity and diabetes call for new approaches to the complex behaviors needed to prevent and manage these conditions. Virtual reality (VR) technologies, which provide controllable, multisensory, interactive three-dimensional (3D) stimulus environments, are a potentially valuable means of engaging patients in interventions that foster more healthful eating and physical activity patterns. Furthermore, the capacity of VR technologies to motivate, record, and measure human performance represents a novel and useful modality for conducting research. This article summarizes background information and discussions for a joint July 2010 National Institutes of Health - Department of Defense workshop entitled Virtual Reality Technologies for Research and Education in Obesity and Diabetes. The workshop explored the research potential of VR technologies as tools for behavioral and neuroscience studies in diabetes and obesity, and the practical potential of VR in fostering more effective utilization of diabetes- and obesity-related nutrition and lifestyle information. Virtual reality technologies were considered especially relevant for fostering desirable health-related behaviors through motivational reinforcement, personalized teaching approaches, and social networking. Virtual reality might also be a means of extending the availability and capacity of health care providers. Progress in the field will be enhanced by further developing available platforms and taking advantage of VR's capabilities as a research tool for well-designed hypothesis-testing behavioral science. Multidisciplinary collaborations are needed between the technology industry and academia, and among researchers in biomedical, behavioral, pedagogical, and computer science disciplines. Research priorities and funding opportunities for use of VR to improve prevention and management of obesity and diabetes can be found at agency websites (National

  9. Contradictory directionalities of digital learning technology and its implications for the scope of imaginable possibilities for collaborating

    DEFF Research Database (Denmark)

    Chimirri, Niklas Alexander

    Contradictory learning directionalities are immanent to digital learning technology: Any technology suggests a limited multiplicity of situated uses in a learning practice, of understandings of how to learn and of what learning should be about. Herewith any technology offers a scope of imaginable...... possibilities for acting through it. Sociomaterially maintained learning directionalities – among others through the intended uses of learning technology in educational arrangements – afford the enactment of a delimited ensemble of experiential modes, sensualities, epistemologies, knowledges, and future hopes....... Next to offering opportunities to expand the learners’ scope of possibilities for transforming these learning directionalities together, digital learning technology thus also promotes the taken for grantedness of particular understandings of (most often instrumental) learning. They may consequently...

  10. Micro Ethnographic Research as a Method for Informing Educational Technology Design in Practice

    DEFF Research Database (Denmark)

    Davidsen, Jacob; Vanderlinde, Ruben

    2013-01-01

    Objectives and purposes. This paper describes research on how micro ethnographic classroom studies (Mehan, 1979) of the integration of technology can inform researchers understanding of teachers and children’s situated acts with technology. Hence, the objective of this paper is to show stories...... of the integration of technology from the teachers and children’s perspective. The central research question of the study is: how can researchers of educational technology represent the local and situated action of teachers and children to inform future technologies? Theoretical frameworks. Integrating technology...... technology researchers discuss how to bridge the gap between researchers and practitioners (Vanderlinde & Van Braak, 2010). Similar, there is also a gap between educational technology developers and practitioners. This gap between developers of technology and the users have been described in the Scandinavian...

  11. The rehabilitation engineering research center for the advancement of cognitive technologies.

    Science.gov (United States)

    Heyn, Patricia Cristine; Cassidy, Joy Lucille; Bodine, Cathy

    2015-02-01

    Barring few exceptions, allied health professionals, engineers, manufacturers of assistive technologies (ATs), and consumer product manufacturers have developed few technologies for individuals with cognitive impairments (CIs). In 2004, the National Institute on Disability Rehabilitation Research (NIDRR) recognized the need to support research in this emergent field. They funded the first Rehabilitation Engineering Research Center for the Advancement of Cognitive Technologies (RERC-ACT). The RERC-ACT has since designed and evaluated existing and emerging technologies through rigorous research, improving upon existing AT devices, and creating new technologies for individuals with CIs. The RERC-ACT has contributed to the development and testing of AT products that assist persons with CIs to actively engage in tasks of daily living at home, school, work, and in the community. This article highlights the RERC-ACT's engineering development and research projects and discusses how current research may impact the quality of life for an aging population. © The Author(s) 2014.

  12. Producer firms, technology diffusion and spillovers to local suppliers : Examining the effects of Foreign Direct Investment and the technology gap

    NARCIS (Netherlands)

    Jordaan, J.A.

    2017-01-01

    In this paper, we conduct a detailed examination of the effects of Foreign Direct Investment (FDI) and the technology gap on local technology dissemination and spillovers. Using unique firm level data from surveys among FDI firms and domestic producer firms and a random sample of their suppliers in

  13. Energy Technology Division research summary 2004

    International Nuclear Information System (INIS)

    Poeppel, R. B.; Shack, W. J.

    2004-01-01

    The Energy Technology (ET) Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy (DOE). The Division's capabilities are generally applied to technical issues associated with energy systems, biomedical engineering, transportation, and homeland security. Research related to the operational safety of commercial light water nuclear reactors (LWRs) for the US Nuclear Regulatory Commission (NRC) remains another significant area of interest for the Division. The pie chart below summarizes the ET sources of funding for FY 2004

  14. A Bottom-up Trend in Research of Management of Technology

    Directory of Open Access Journals (Sweden)

    Yoko Ishino

    2014-12-01

    Full Text Available Management of Technology (MOT is defined as an academic discipline of management that enables organizations to manage their technological fundamentals to create competitive advantage. MOT covers a wide range of contents including administrative strategy, R&D management, manufacturing management, technology transfer, production control, marketing, accounting, finance, business ethics, and others. For each topic, researchers have conducted their MOT research at various levels. However, a practical and pragmatic side of MOT surely affects its research trends. Finding changes of MOT research trends, or the chronological transitions of principal subjects, can help understand the key concepts of current MOT. This paper studied a bottom-up trend in research fields in MOT by applying a text-mining method to the conference proceedings of IAMOT (International Association for Management of Technology. First, focusing on only nouns found several keywords, which more frequently emerge over time in the IAMOT proceedings. Then, expanding the scope into other parts of speech viewed the keywords in a natural context. Finally, it was found that the use of an important keyword has qualitatively and quantitatively extended over time. In conclusion, a bottom-up trend in MOT research was detected and the effects of the social situation on the trend were discussed.Keywords: Management of Technology; Text Mining; Research Trend; Bottom-up Trend; Patent

  15. Laboratory directed research and development program FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd

    2004-03-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  16. Munchausen by internet: current research and future directions.

    Science.gov (United States)

    Pulman, Andy; Taylor, Jacqui

    2012-08-22

    The Internet has revolutionized the health world, enabling self-diagnosis and online support to take place irrespective of time or location. Alongside the positive aspects for an individual's health from making use of the Internet, debate has intensified on how the increasing use of Web technology might have a negative impact on patients, caregivers, and practitioners. One such negative health-related behavior is Munchausen by Internet. Munchausen by Internet occurs when medically well individuals fake recognized illnesses in virtual environments, such as online support groups. This paper focuses on the aspect of Munchausen by Internet in which individuals actively seek to disrupt groups for their own satisfaction, which has not yet been associated with the wider phenomena of Internet trolls (users who post with the intention of annoying someone or disrupting an online environment). A wide-ranging review was conducted to investigate the causes and impacts of online identity deception and Munchausen by Internet drawing on academic research and case studies reported online and in the media. The limited research relating to motivation, opportunity, detection, effects, and consequences of Munchausen by Internet is highlighted and it is formally linked to aspects of trolling. Case studies are used to illustrate the phenomenon. What is particularly worrying is the ease with which the deception can be carried out online, the difficulty in detection, and the damaging impact and potential danger to isolated victims. We suggest ways to deal with Munchausen by Internet and provide advice for health group facilitators. We also propose that Munchausen by Internet and Munchausen by Internet trolling should be formally acknowledged in a revised version of the Diagnostic and Statistical Manual DSM-5. This will assist in effectively identifying and minimizing the growth of this behavior as more people seek reassurance and support about their health in the online environment. We

  17. Physics and high technology

    International Nuclear Information System (INIS)

    Shao Liqin; Ma Junru.

    1992-01-01

    At present, the development of high technology has opened a new chapter in world's history of science and technology. This review describes the great impact of physics on high technology in six different fields (energy technology, new materials, information technology, biotechnology, space technology, and Ocean technology). It is shown that the new concepts and new methods created in physics and the special conditions and measurements established for physics researches not only deepen human's knowledge about nature but also point out new directions for engineering and technology. The achievements in physics have been more and more applied to high technology, while the development of high technology has explored some new research areas and raised many novel, important projects for physics. Therefore, it is important for us to strengthen the research on these major problems in physics

  18. The need for interdisciplinary research on exponential technologies and sustainability

    OpenAIRE

    Alier Forment, Marc; Casany Guerrero, María José

    2017-01-01

    Technology has a clear influence on the way we live, our culture and how society functions, and last but not least our environment. At a moment when the transformational factor of technology is accelerating at an exponential pace, it is really important to reflect the direction that we want this acceleration to go. In this paper we present some of the factors relevant to this mater: 1) the influence of technology in the society and the environment. 2) The acceleration of some technologies ...

  19. Science, Technology and Arts Research Journal

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 1, No 1 (2012) >. Log in or Register to get access to full text downloads.

  20. Science, Technology and Arts Research Journal

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 1, No 2 (2012) >. Log in or Register to get access to full text downloads.

  1. Report on achievements in fiscal 1998. Research and development of a technology to promote non-ferrous metal based material recycling. (Research on component technologies and a total system); 1998 nendo hitetsu kinzokukei sozai recycle sokushin gijutsu seika hokokusho. Kenkyu kaihatsu yoso gijutsu kenkyu, total system kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project is intended to research and develop a high level aluminum recycling technology to realize the 'product to product' philosophy to return different aluminum scraps into the original materials, while attempting to develop and unify the aluminum recycling technologies and promote utilization of LNG. This fiscal year has studied the following methods as the component technology research: (1) an inclusion removing method, (2) a crystal sorting method, (3) a vacuum distillation method, and (4) a semi-melting method. The studies on (1), (2) and (3) were performed on identification of basic data and systematization to determine the life and facility specifications, with the full-swing demonstration tests being waited to start in fiscal 1999. The research and development on the item (4) was determined technologically feasible although additional discussions are required on the engineering aspect for practical application. The component technology study thereon will be finished with the current fiscal year. For the demonstration tests among the studies on total system technologies, the crystal sorting method and the vacuum distillation method had the achievements obtained in the research of the component technologies reflected directly to the facility design and fabrication. There has been no large-scale facility fabrication for the inclusion removing method and effective utilization of ash remaining in dross, and the researches were performed as scheduled. (NEDO)

  2. Technology for the Stars: Extending Our Reach. [Research and Technology: 1995 Annual Report of the Marshall Space Flight Center.

    Science.gov (United States)

    1996-01-01

    Marshall Space Flight Center's (MSFC's) Advanced Studies, Research, Technology, and Technology Transfer projects are summarized in this report. The focus of the report is on the three spotlights at MSFC in 1995: space transportation technology, microgravity research, and technology transfer.

  3. The socialisation of scientific and technological research

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available In the last decades, production of science and technology as well as science-society relationships started changing rapidly. Research is asked to be more effective, fast, accountable, trans-disciplinary, result-oriented, policy-driven and able to generate benefits for people and firms in the short and middle run. While a strong intensification of science-society relationships is occurring, an increasing number of actors and stakeholders are involved in research production. At the same time, pervasiveness of technology is rendering users an active part in technological development; economic and social interests on science and technology are growing on a global scale; new democratic and ethical issues emerge. Despite the European institutions’ efforts, all those trends and phenomena are occurring in an extremely fragmented way. In this scenario, a fairly balanced and consistent co-evolution between science and society can no longer be taken for granted. This is just the starting point of the following comment section that, through the Luciano d’Andrea, Sally Wyatt, Erik Aarden, Jos Lejten and Peter Sekloča’s writings, aims to analyse the different aspects and questions around the socialisation of science and technology’s matter.

  4. Material challenges for solar cells in the twenty-first century: directions in emerging technologies.

    Science.gov (United States)

    Almosni, Samy; Delamarre, Amaury; Jehl, Zacharie; Suchet, Daniel; Cojocaru, Ludmila; Giteau, Maxime; Behaghel, Benoit; Julian, Anatole; Ibrahim, Camille; Tatry, Léa; Wang, Haibin; Kubo, Takaya; Uchida, Satoshi; Segawa, Hiroshi; Miyashita, Naoya; Tamaki, Ryo; Shoji, Yasushi; Yoshida, Katsuhisa; Ahsan, Nazmul; Watanabe, Kentaro; Inoue, Tomoyuki; Sugiyama, Masakazu; Nakano, Yoshiaki; Hamamura, Tomofumi; Toupance, Thierry; Olivier, Céline; Chambon, Sylvain; Vignau, Laurence; Geffroy, Camille; Cloutet, Eric; Hadziioannou, Georges; Cavassilas, Nicolas; Rale, Pierre; Cattoni, Andrea; Collin, Stéphane; Gibelli, François; Paire, Myriam; Lombez, Laurent; Aureau, Damien; Bouttemy, Muriel; Etcheberry, Arnaud; Okada, Yoshitaka; Guillemoles, Jean-François

    2018-01-01

    Photovoltaic generation has stepped up within the last decade from outsider status to one of the important contributors of the ongoing energy transition, with about 1.7% of world electricity provided by solar cells. Progress in materials and production processes has played an important part in this development. Yet, there are many challenges before photovoltaics could provide clean, abundant, and cheap energy. Here, we review this research direction, with a focus on the results obtained within a Japan-French cooperation program, NextPV, working on promising solar cell technologies. The cooperation was focused on efficient photovoltaic devices, such as multijunction, ultrathin, intermediate band, and hot-carrier solar cells, and on printable solar cell materials such as colloidal quantum dots.

  5. Technological Affordances for the Music Education Researcher

    Science.gov (United States)

    Bauer, William I.

    2016-01-01

    The purpose of this study was to examine music education researchers' perceptions of the importance of selected technologies to scholarly inquiry. Participants (N = 460), individuals who had published articles during a 5-year period between 2008 and 2012 in six prominent journals that disseminate music education research, were invited to complete…

  6. An Assistive Technology Design Framework for ADHD

    DEFF Research Database (Denmark)

    Sonne, Tobias; Marshall, Paul; Obel, Carsten

    2016-01-01

    In this paper, we present a design framework for ADHD assistive technologies that aims to give researchers grounding in the background research on the condition, to provide a lingua franca, and to highlight potential research directions for HCI researchers within assistive technology. The design ...... map existing assistive technologies and potential new research efforts to the framework concepts. This way we show how it is used to support and advance the research and development of novel assistive technologies for the ADHD domain....

  7. Technology applications bulletins

    International Nuclear Information System (INIS)

    Koncinski, W. Jr.

    1989-02-01

    Martin Marietta Energy Systems, Inc. (Energy Systems), operates five facilities for the US Department of Energy (DOE): the Oak Ridge National Laboratory (ORNL), which is a large, multidisciplinary research and development (R and D) center whose primary mission is energy research; the Oak Ridge Y-12 Plant, which engages in defense research, development, and production; and the uranium-enrichment plants at Oak Ridge; Paducah, Kentucky; and Portsmouth, Ohio. Much of the research carried out at these facilities is of interest to industry and to state or local governments. To make information about this research available, the Energy Systems Office of Technology Applications publishes brief descriptions of selected technologies and reports. These technology applications bulletins describe the new technology and inform the reader about how to obtain further information, gain access to technical resources, and initiate direct contact with Energy Systems researchers

  8. Developing engineering students' research and technology assessment abilities

    NARCIS (Netherlands)

    Vries, de M.J.; Stroeken, J.H.M.

    1996-01-01

    This article describes research done among M. Eng. students in several faculties of the Eindhoven University of Technology into their abilities to integrate nontechnical (social) elements in the research that led to their M. Eng. theses. It was found that these students often lacked research skills

  9. Finding Qualitative Research Evidence for Health Technology Assessment.

    Science.gov (United States)

    DeJean, Deirdre; Giacomini, Mita; Simeonov, Dorina; Smith, Andrea

    2016-08-01

    Health technology assessment (HTA) agencies increasingly use reviews of qualitative research as evidence for evaluating social, experiential, and ethical aspects of health technologies. We systematically searched three bibliographic databases (MEDLINE, CINAHL, and Social Science Citation Index [SSCI]) using published search filters or "hedges" and our hybrid filter to identify qualitative research studies pertaining to chronic obstructive pulmonary disease and early breast cancer. The search filters were compared in terms of sensitivity, specificity, and precision. Our screening by title and abstract revealed that qualitative research constituted only slightly more than 1% of all published research on each health topic. The performance of the published search filters varied greatly across topics and databases. Compared with existing search filters, our hybrid filter demonstrated a consistently high sensitivity across databases and topics, and minimized the resource-intensive process of sifting through false positives. We identify opportunities for qualitative health researchers to improve the uptake of qualitative research into evidence-informed policy making. © The Author(s) 2016.

  10. Linking theory to practice in learning technology research

    OpenAIRE

    Cathy Gunn; Caroline Steel

    2012-01-01

    We present a case to reposition theory so that it plays a pivotal role in learning technology research and helps to build an ecology of learning. To support the case, we present a critique of current practice based on a review of articles published in two leading international journals from 2005 to 2010. Our study reveals that theory features only incidentally or not at all in many cases. We propose theory development as a unifying theme for learning technology research study design and repor...

  11. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    International Nuclear Information System (INIS)

    Creed, R.J.; Laney, P.T.

    2002-01-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives

  12. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Creed, R.J.; Laney, P.T.

    2002-05-14

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  13. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Creed, Robert John; Laney, Patrick Thomas

    2002-06-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  14. Building Technologies Research and Integration Center (BTRIC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Building Technologies Research and Integration Center (BTRIC), in the Energy and Transportation Science Division (ETSD) of Oak Ridge National Laboratory (ORNL),...

  15. Virtual Laboratory Enabling Collaborative Research in Applied Vehicle Technologies

    Science.gov (United States)

    Lamar, John E.; Cronin, Catherine K.; Scott, Laura E.

    2005-01-01

    The virtual laboratory is a new technology, based on the internet, that has had wide usage in a variety of technical fields because of its inherent ability to allow many users to participate simultaneously in instruction (education) or in the collaborative study of a common problem (real-world application). The leadership in the Applied Vehicle Technology panel has encouraged the utilization of this technology in its task groups for some time and its parent organization, the Research and Technology Agency, has done the same for its own administrative use. This paper outlines the application of the virtual laboratory to those fields important to applied vehicle technologies, gives the status of the effort, and identifies the benefit it can have on collaborative research. The latter is done, in part, through a specific example, i.e. the experience of one task group.

  16. 77 FR 46909 - Small Business Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR...

    Science.gov (United States)

    2012-08-06

    ... Technology Transfer (STTR) Program Policy Directives AGENCY: U.S. Small Business Administration. ACTION...) and Small Business Technology Transfer Program (STTR) Policy Directives. These amendments implement... to Edsel Brown, Assistant Director, Office of Technology, U.S. Small Business Administrator, 409...

  17. Development of a Technology Transfer Score for Evaluating Research Proposals: Case Study of Demand Response Technologies in the Pacific Northwest

    Science.gov (United States)

    Estep, Judith

    Investment in Research and Development (R&D) is necessary for innovation, allowing an organization to maintain a competitive edge. The U.S. Federal Government invests billions of dollars, primarily in basic research technologies to help fill the pipeline for other organizations to take the technology into commercialization. However, it is not about just investing in innovation, it is about converting that research into application. A cursory review of the research proposal evaluation criteria suggests that there is little to no emphasis placed on the transfer of research results. This effort is motivated by a need to move research into application. One segment that is facing technology challenges is the energy sector. Historically, the electric grid has been stable and predictable; therefore, there were no immediate drivers to innovate. However, an aging infrastructure, integration of renewable energy, and aggressive energy efficiency targets are motivating the need for research and to put promising results into application. Many technologies exist or are in development but the rate at which they are being adopted is slow. The goal of this research is to develop a decision model that can be used to identify the technology transfer potential of a research proposal. An organization can use the model to select the proposals whose research outcomes are more likely to move into application. The model begins to close the chasm between research and application--otherwise known as the "valley of death". A comprehensive literature review was conducted to understand when the idea of technology application or transfer should begin. Next, the attributes that are necessary for successful technology transfer were identified. The emphasis of successful technology transfer occurs when there is a productive relationship between the researchers and the technology recipient. A hierarchical decision model, along with desirability curves, was used to understand the complexities of the

  18. Future Directions in Research on Mathematics-Related Teacher Identity

    Science.gov (United States)

    Lutovac, Sonja; Kaasila, Raimo

    2018-01-01

    Mathematics education research has placed great emphasis on teacher identity, examining both pre- and in-service teachers, and within these cohorts, specialised mathematics teachers and non-specialists such as elementary teachers. Extensive research has already been done; hence, this paper discusses possible future directions for research on…

  19. Socio-economic research for innovative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Yuichi [Tokyo Univ., High Temperature Plasma Center, Kashiwa, Chiba (Japan); Okano, Kunihiko [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2006-10-15

    In the 21st century global environment and energy issues become very important, and this is characterized by the long-term (in the scale of a few tens years) and world-wide issue. In addition, future prospect of these issues might be quite uncertain, and scientific prediction could be very difficult. For these issues vigorous researches and various efforts have been carried out from various aspects; e.g., world-wide discussion such as COP3 in Kyoto, promotion of the energy-saving technology and so on. Development of environment-friendly energy has been promoted, and new innovative technologies are explored. Nuclear fusion is, of course, a promising candidate. While, there might be some criticism for nuclear fusion from the socio-economic aspect; e.g., it would take long time and huge cost for the fusion reactor development. In addition, other innovative energy technologies might have their own criticism, as well. Therefore, socio-economic research might be indispensable for future energy resources. At first we have selected six items as for the characteristics, which might be important for future energy resources; i.e., energy resource, environmental load, economics, reliability/stability, flexibility on operation and safety/security. Concerning to innovative energy technologies, we have nominated seven candidates; i.e., advanced coal technology with CO2 recovery system, SOFC top combined cycle, solar power, wind power, space solar power station, advanced fission and fusion. Based on questionnaires for ordinary people and fusion scientists, we have tried to assess the fusion energy development, comparing with other innovative energy technologies. (author)

  20. Technology transfer from research and development to European industry

    International Nuclear Information System (INIS)

    Conrads, H.; Theenhaus, R.

    1989-01-01

    This paper gives an overview of technology transfer, i.e. the transfer of knowledge, insights and technologies from research and development to practical application, especially in the Federal Republic of Germany. Some examples and perspectives of technology transfer for nuclear fusion are given. (author). 7 refs.; 5 figs

  1. Virtual Reality Technologies for Research and Education in Obesity and Diabetes: Research Needs and Opportunities

    Science.gov (United States)

    Ershow, Abby G; Peterson, Charles M; Riley, William T; Rizzo, Albert “Skip”; Wansink, Brian

    2011-01-01

    The rising rates, high prevalence, and adverse consequences of obesity and diabetes call for new approaches to the complex behaviors needed to prevent and manage these conditions. Virtual reality (VR) technologies, which provide controllable, multisensory, interactive three-dimensional (3D) stimulus environments, are a potentially valuable means of engaging patients in interventions that foster more healthful eating and physical activity patterns. Furthermore, the capacity of VR technologies to motivate, record, and measure human performance represents a novel and useful modality for conducting research. This article summarizes background information and discussions for a joint July 2010 National Institutes of Health – Department of Defense workshop entitled Virtual Reality Technologies for Research and Education in Obesity and Diabetes. The workshop explored the research potential of VR technologies as tools for behavioral and neuroscience studies in diabetes and obesity, and the practical potential of VR in fostering more effective utilization of diabetes- and obesity-related nutrition and lifestyle information. Virtual reality technologies were considered especially relevant for fostering desirable health-related behaviors through motivational reinforcement, personalized teaching approaches, and social networking. Virtual reality might also be a means of extending the availability and capacity of health care providers. Progress in the field will be enhanced by further developing available platforms and taking advantage of VR’s capabilities as a research tool for well-designed hypothesis-testing behavioral science. Multidisciplinary collaborations are needed between the technology industry and academia, and among researchers in biomedical, behavioral, pedagogical, and computer science disciplines. Research priorities and funding opportunities for use of VR to improve prevention and management of obesity and diabetes can be found at agency websites (National

  2. Current status and technology development tendency of research reactors in china

    International Nuclear Information System (INIS)

    Ke Guotu; Shen Feng; Zhao Shouzhi; Zhang Weiguo; Yuan Luzheng

    2009-01-01

    The current status and development history of domestic and abroad research reactors (RRs) are mentioned. The representative RRs and their respective technology characteristics are introduced. The utilizations of China's RRs, mainly included as nuclear engineering technology, basic research applications of nuclear technology, teaching and personnel training, are explained. (authors)

  3. After the clinic? Researching sexual health technology in context.

    Science.gov (United States)

    Davis, Mark

    2015-01-01

    There is great interest in what testing, pharmaceutical, information and social media technology can do for sexual health. Much programmatic and research activity is focused on assessing how these technologies can be used to best effect. Less obvious are analyses that place technology into historical, political and real-world settings. Developing an 'in-context' analysis of sexual health technology, this paper draws on interviews with leading community advocates, researchers and clinicians in Australia, Canada and the UK and looks across examples, including social media, rapid HIV testing, pre-Exposure Prophylaxis for HIV and polymerase chain reaction Chlamydia testing. The analysis is framed by studies of techno-society and the dialectics of sex-affirmative advocacy with biomedical authority and attends to: the rationalistic and affective dimensions of the imaginary associated with technology; the role of technology in the re-spatialisation and re-temporalisation of the sexual health clinic; and the re-invention of technology in its real-world contexts. This in-context approach is important for: the effective implementation of new technology; strengthening the social science contribution to the field; and enriching social theory in general on life in techno-societies.

  4. Direct sulfation of limestone based on oxy-fuel combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.M.; Zhao, C.S.; Liu, S.T.; Wang, C.B. [North China Electric Power University, Baoding (China)

    2009-10-15

    With limestone as the sorbent, the sulfation reaction can proceed via two different routes depending on whether calcination of the limestone takes place under the given reaction conditions. The direct sulfation reaction is defined as the sulfation reaction between sulfur dioxide (SO{sub 2}) and limestone in an uncalcined state. This reaction, based on oxyfuel combustion technology, was studied by thermogravimetric analysis. Surface morphologies of the limestone particles after sulfation were examined by a scanning electron microscope. Results show that there are more pores or gaps in the product layer formed by direct sulfation of limestone than by indirect sulfation, which can be attributed to the generation of carbon dioxide (CO{sub 2}) at a reaction interface. Compared with indirect sulfation, direct sulfation of limestone can yield much higher conversion and has a much higher reaction rate. For direct sulfation, the greater porosity in the product layer greatly reduces the solid-state ion diffusion distance, resulting in a higher reaction rate and higher conversion.

  5. On founding of the science and technology intelligence (STI) research system for the grand engineering research organization

    International Nuclear Information System (INIS)

    Li Zhimin; Tang Yong; Shi Yi; Wang Yirong

    2010-01-01

    This article discusses the science and technology intelligence (STI) research system for grand engineering research organization, and pose that this system should be composed of five elements of research category, research form, service patterns , quality control and fruit evaluation and precession with ability, and describes its definition, connotation and function for each element. research category includes strategy intelligence, technology route and develop trend, technology detail; research form has dynamic track, investigation and analysis, consult study; service patterns involve demand or induction service, independence or mutual action service; quality control and fruit evaluation should be conducted by a group of technologist and intelligence expert; precession with ability should be an organized system with good configuration and learning ability. (authors)

  6. Nevada Test Site-Directed Research and Development FY 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Howard Bender, comp.

    2011-04-04

    This annual report of the Site-Directed Research and Development (SDRD) program represents the highly significant R&D accomplishments conducted during fiscal year 2010. This year was noteworthy historically, as the Nevada Test Site was renamed to the Nevada National Security Site (NNSS). This change not only recognizes how the site's mission has evolved, but also heralds a future of new challenges and opportunities for the NNSS. In many ways, since its inception in 2002, the SDRD program has helped shape that evolving mission. As we approach 2012, SDRD will also mark a milestone, having completed its first full decade of innovative R&D in support of the site and national security. The program continues to fund advanced science and technology development across traditional Department of Energy (DOE) nuclear security areas such as stockpile stewardship and non-proliferation while also supporting Department of Homeland Security (DHS) needs, and specialized work for government agencies like the Department of Defense (DoD) and others. The NNSS will also contribute technologies in the areas of treaty verification and monitoring, two areas of increasing importance to national security. Keyed to the NNSS's broadened scope, the SDRD program will continue to anticipate and advance R&D projects that will help the NNSS meet forthcoming challenges.

  7. The stories we tell: qualitative research interviews, talking technologies and the 'normalisation' of life with HIV.

    Science.gov (United States)

    Mazanderani, Fadhila; Paparini, Sara

    2015-04-01

    Since the earliest days of the HIV/AIDS epidemic, talking about the virus has been a key way affected communities have challenged the fear and discrimination directed against them and pressed for urgent medical and political attention. Today, HIV/AIDS is one of the most prolifically and intimately documented of all health conditions, with entrenched infrastructures, practices and technologies--what Vinh-Kim Nguyen has dubbed 'confessional technologies'--aimed at encouraging those affected to share their experiences. Among these technologies, we argue, is the semi-structured interview: the principal methodology used in qualitative social science research focused on patient experiences. Taking the performative nature of the research interview as a talking technology seriously has epistemological implications not merely for how we interpret interview data, but also for how we understand the role of research interviews in the enactment of 'life with HIV'. This paper focuses on one crucial aspect of this enactment: the contemporary 'normalisation' of HIV as 'just another' chronic condition--a process taking place at the level of individual subjectivities, social identities, clinical practices and global health policy, and of which social science research is a vital part. Through an analysis of 76 interviews conducted in London (2009-10), we examine tensions in the experiential narratives of individuals living with HIV in which life with the virus is framed as 'normal', yet where this 'normality' is beset with contradictions and ambiguities. Rather than viewing these as a reflection of resistances to or failures of the enactment of HIV as 'normal', we argue that, insofar as these contradictions are generated by the research interview as a distinct 'talking technology', they emerge as crucial to the normative (re)production of what counts as 'living with HIV' (in the UK) and are an inherent part of the broader performative 'normalisation' of the virus. Copyright © 2015

  8. Technology Transfer: A Qualitative Analysis of Air Force Office of Research and Technology Applications

    National Research Council Canada - National Science Library

    Trexler, David C

    2006-01-01

    Everyday within United States Air Forces? research laboratories there are hundreds of scientists and engineers whose research and development activities contribute to the advancement of science and technology for mankind...

  9. Quality and Characteristics of Recent Research in Technology Education

    Science.gov (United States)

    Johnson, Scott D.; Daugherty, Jenny

    2008-01-01

    The focus of research in technology education has evolved throughout its history as the field changed from industrial arts to technology education (Spencer & Rogers, 2006). With the move to technology education, the field has begun to broaden its focus to better understand the teaching, learning, curriculum, and policy implications of preparing…

  10. Progress and status of fusion technology and materials research in China

    International Nuclear Information System (INIS)

    Xu Zengyu; Liu Xiang; Chen Jiming; Zhang Fu

    2003-01-01

    Fusion technology and materials research in China was included in the National High Technology Project during 1986-2000. Since 2000, the National Natural Science Foundation Committee, the State Development Planning Commission, and the Ministry of Science and Technology have supported this field of research. The research program has covered the topics of tritium engineering, plasma facing materials and structural materials. The Southwestern Institute of Physics has been a leading institute in this research program in the last 15 years in China, and over ten universities and institutes have joined the program. (author)

  11. Research Data Reusability: Conceptual Foundations, Barriers and Enabling Technologies

    Directory of Open Access Journals (Sweden)

    Costantino Thanos

    2017-01-01

    Full Text Available High-throughput scientific instruments are generating massive amounts of data. Today, one of the main challenges faced by researchers is to make the best use of the world’s growing wealth of data. Data (reusability is becoming a distinct characteristic of modern scientific practice. By data (reusability, we mean the ease of using data for legitimate scientific research by one or more communities of research (consumer communities that is produced by other communities of research (producer communities. Data (reusability allows the reanalysis of evidence, reproduction and verification of results, minimizing duplication of effort, and building on the work of others. It has four main dimensions: policy, legal, economic and technological. The paper addresses the technological dimension of data reusability. The conceptual foundations of data reuse as well as the barriers that hamper data reuse are presented and discussed. The data publication process is proposed as a bridge between the data author and user and the relevant technologies enabling this process are presented.

  12. University of Maine Integrated Forest Product Refinery (IFPR) Technology Research

    Energy Technology Data Exchange (ETDEWEB)

    Pendse, Hemant P.

    2010-11-23

    This project supported research on science and technology that forms a basis for integrated forest product refinery for co-production of chemicals, fuels and materials using existing forest products industry infrastructure. Clear systems view of an Integrated Forest Product Refinery (IFPR) allowed development of a compelling business case for a small scale technology demonstration in Old Town ME for co-production of biofuels using cellulosic sugars along with pulp for the new owners of the facility resulting in an active project on Integrated Bio-Refinery (IBR) at the Old Town Fuel & Fiber. Work on production of advanced materials from woody biomass has led to active projects in bioplastics and carbon nanofibers. A lease for 40,000 sq. ft. high-bay space has been obtained to establish a Technology Research Center for IFPR technology validation on industrially relevant scale. UMaine forest bioproducts research initiative that began in April 2006 has led to establishment of a formal research institute beginning in March 2010.

  13. Summary of research achievements in fiscal 1980 in research and development of new energy technologies (Research and development expense); Shin energy gijutsu kenkyu kaihatsu 1980 nendo kenkyu seika no gaiyo. Kenkyu kaihatsuhi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    This paper describes the achievements in fiscal 1980 of new energy research at the General Research Institute of Electronics Technologies using the NEDO's development expense. To optimize the heat and electric power composite solar system, analyses were performed on heat production, devices and materials, and economy of the whole experimental facilities of the original model. Fundamental researches are being made on crystalline silicon, thin amorphous film and compound semiconductor solar cells. The solar thermionic generation element producing equipment installed in the previous fiscal year has produced and tested different types of electrodes, and operated the modules for an extended period of time. Measurement data of solar beam in ultraviolet, visible and near infrared zones were processed statistically, whereas the research work has been completed in the current fiscal year, having established successfully the reference solar radiation. In the hydrogen manufacturing technology using high-temperature direct pyrolysis, fundamental discussions were given on effects of electric and magnetic fields on dissociation of steam, and diffusion and separation of hydrogen by using permeation membranes. For hydrogen fuel cells, trial fabrication and tests were continued on single cells by using mainly the high frequency sputtering process. Experiments were continued on a solid electrolyte fuel cell system. Researches are under way as comprehensive study on such technological seeds as power generation using ocean temperature difference, and superconduction magnets for energy storage (NEDO)

  14. Building for tomorrow today: opportunities and directions in radiology resident research.

    Science.gov (United States)

    Yu, John-Paul J; Kansagra, Akash P; Thaker, Ashesh; Colucci, Andrew; Sherry, Steven J; Subramaniam, Rathan M

    2015-01-01

    With rapid scientific and technological advancements in radiological research, there is renewed emphasis on promoting early research training to develop researchers who are capable of tackling the hypothesis-driven research that is typically funded in contemporary academic research enterprises. This review article aims to introduce radiology residents to the abundant radiology research opportunities available to them and to encourage early research engagement among trainees. To encourage early resident participation in radiology research, we review the various research opportunities available to trainees spanning basic, clinical, and translational science opportunities to ongoing research in information technology, informatics, and quality improvement research. There is an incredible breadth and depth of ongoing research at academic radiology departments across the country, and the material presented herein aspires to highlight both subject matter and opportunities available to radiology residents eager to engage in radiologic research. The opportunities for interested radiology residents are as numerous as they are broad, spanning the basic sciences to clinical research to informatics, with abundant opportunities to shape our future practice of radiology. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  15. Policies for fostering health science, technology and innovation in Brazil and the role of clinical research.

    Science.gov (United States)

    Tenório, Marge; Mello, Guilherme Arantes; Viana, Ana Luiza D'Ávila

    2017-05-01

    The purpose of this article is to highlight a number of underlying issues that may be useful for a comprehensive review of the management of Health-Related Science, Technology and Innovation policies (ST&I/H), and its strategies and priorities. It is an analytical study supported by an extensive review of the technical and journalistic literature, clippings, legislation and federal government directives. The results show that the Healthcare Production Complex undeniably and increasingly needs science to maintain itself. One may infer that a framework of institutional milestones is being built in Brazil, to strengthen, guide and encourage Research and Development, and that clinical research creates scientific knowledge to address public healthcare issues by generating new inputs or enhancing existing techniques, processes and technologies that will be produced, marketed and used in the different segments, thus feeding the Healthcare Productive Complex.

  16. Fiscal 1999 research report. Research on photonic measurement and processing technology (Development of high- efficiency production process technology); 1999 nendo foton keisoku kako gijutsu seika hokokusho. Kokoritsu seisan process gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the fiscal 1999 research result on R and D of laser processing technology, in-situ measurement technology, and generation and control technology of photon as laser beam source, for energy saving and efficiency improvement of energy-consumptive production processes such as welding, jointing, surface treatment and fine particle fabrication. The research was carried out by a technical center, 9 companies and a university as contract research. The research themes are as follows: (1) Processing technology: simulation technology for laser welding phenomena, synthesis technology for quantum dot functional structures, and fabrication technology for functional composite materials, (2) In-situ measurement technology: fine particle element and size measurement technology, (3) All- solid state laser technology: efficient rod type LD-pumping laser module, pumping chamber of slab type laser, improvement of E/O efficiency of laser diode, high-quality nonlinear crystal growth technology, fabrication technology for nonlinear crystals, and high-efficiency harmonic generation technology. Comprehensive survey was also made on high- efficiency photon generation technologies. (NEDO)

  17. A survey on publications in fusion research and technology science and technology indicators in fusion R and T

    International Nuclear Information System (INIS)

    Hillebrand, C.D.

    1999-01-01

    Scientific publications disseminate research results and are therefore an interesting subject for science and technology analysis. Bibliographic databases contain scientific publications which are indexed and structured. The paper considers Fusion Research and Technology records which are stored in the International Nuclear Information System (INIS) bibliographic database. For the first time, all scientometric and bibliometric information specific to a selected field of science and technology contained in a bibliographic database, using INIS records, is analysed and quantified. A variety of new science and technology indicators which can be used for assessing research and development activities are also presented. (author)

  18. A survey on publications in fusion research and technology science and technology indicators in fusion R and T

    International Nuclear Information System (INIS)

    Hillebrand, C.-D.

    2001-01-01

    Scientific publications disseminate research results and are therefore an interesting subject for science and technology analysis. Bibliographic databases contain scientific publications which are indexed and structured. The paper considers Fusion Research and Technology records which are stored in the International Nuclear Information System (INIS) bibliographic database. For the first time, all scientometric and bibliometric information specific to a selected field of science and technology contained in a bibliographic database, using INIS records, is analysed and quantified. A variety of new science and technology indicators which can be used for assessing research and development activities are also presented. (author)

  19. International Conference on Emerging Research in Electronics, Computer Science and Technology

    CERN Document Server

    Sheshadri, Holalu; Padma, M

    2014-01-01

    PES College of Engineering is organizing an International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT-12) in Mandya and merging the event with Golden Jubilee of the Institute. The Proceedings of the Conference presents high quality, peer reviewed articles from the field of Electronics, Computer Science and Technology. The book is a compilation of research papers from the cutting-edge technologies and it is targeted towards the scientific community actively involved in research activities.

  20. Current state and future direction of computer systems at NASA Langley Research Center

    Science.gov (United States)

    Rogers, James L. (Editor); Tucker, Jerry H. (Editor)

    1992-01-01

    Computer systems have advanced at a rate unmatched by any other area of technology. As performance has dramatically increased there has been an equally dramatic reduction in cost. This constant cost performance improvement has precipitated the pervasiveness of computer systems into virtually all areas of technology. This improvement is due primarily to advances in microelectronics. Most people are now convinced that the new generation of supercomputers will be built using a large number (possibly thousands) of high performance microprocessors. Although the spectacular improvements in computer systems have come about because of these hardware advances, there has also been a steady improvement in software techniques. In an effort to understand how these hardware and software advances will effect research at NASA LaRC, the Computer Systems Technical Committee drafted this white paper to examine the current state and possible future directions of computer systems at the Center. This paper discusses selected important areas of computer systems including real-time systems, embedded systems, high performance computing, distributed computing networks, data acquisition systems, artificial intelligence, and visualization.

  1. Future directions in fusion research

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1987-01-01

    The author discusses his analysis to quantify the priority of fusion R and D in the United States. The conclusion is that this priority has been essentially constant for 35 years with only two exceptions. He identifies four basic problems that must be solved. These problems are: to improve the scientific understanding of confinement concepts if we are going to have an energy source that can be utilized some day; to understand the physics of burning plasmas; to develop the materials for fusion use to realize the environmental potential of fusion; and to develop fusion nuclear technology. A response to these problems is given, based on the author's argument for international collaboration in fusion research

  2. Future directions for positive body image research.

    Science.gov (United States)

    Halliwell, Emma

    2015-06-01

    The emergence of positive body image research during the last 10 years represents an important shift in the body image literature. The existing evidence provides a strong empirical basis for the study of positive body image and research has begun to address issues of age, gender, ethnicity, culture, development, and intervention in relation to positive body image. This article briefly reviews the existing evidence before outlining directions for future research. Specifically, six areas for future positive body image research are outlined: (a) conceptualization, (b) models, (c) developmental factors, (d) social interactions, (e) cognitive processing style, and (f) interventions. Finally, the potential role of positive body image as a protective factor within the broader body image literature is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Research Status on the Heterogeneous Sheet Connection Forming Technology

    Directory of Open Access Journals (Sweden)

    SHI Wen-yong

    2017-04-01

    Full Text Available The heterogeneous sheet connection forming is one of the effective ways to realize lightweight in many fields,such as equipment manufacturing and transportation. However, there are obvious differences in the material properties,when using the traditional connection methods,there is a certain technical bottlenecks. In this paper, the technological characteristics and research status of the welding method and mechanical connection method are discussed in detail,such as the TIC welding and the laser welding. The advantages and development potential of the technology are introduced in the field of the heterogeneous sheet connection,in combination with the industry development and the use demand,the development of the heterogeneous sheet connection technology is expected,to provide the technical support for the research and development of new heterogeneous sheet connection technology.

  4. DIRECTIONS OF PREPARATION OF FUTURE TEACHERS TO THE USE OF DISTANCE LEARNING TECHNOLOGIES IN PROFESSIONAL ACTIVITY (PRAXIOLOGICAL ASPECT OF THE ACTIVITY APPROACH

    Directory of Open Access Journals (Sweden)

    Tatyana A. Boronenko

    2015-01-01

    Full Text Available The aim of the article is to demonstrate the need of preparing future teachers to use distance learning technologies in the professional activities. Introduction in educational process of distance learning technologies contributes to improving the quality of education. Methods. The authors’ technique of preparation of students of pedagogical specialities to work in the information-educational environment is designed on the basis of the analysis and generalisation of numerous scientific publications. Results. The system of training to implementation of the distance learning technologies in the teaching activity is developed and described, consisting of the following directions: realisation within the program of the principal educational program of specialised training courses in variable-based curriculum parts; the organisation of educational and research activity of students with the use of distance learning technologies; classroom-based and extracurricular independent work of students directed to designing of teaching and learning aids and materials on the basis of distance learning technologies; application of elements of distance learning technologies for students’ teaching; attraction of students to formation of corpus of multimedia educational resources of university. The purposes, the content and expected results of each direction are specified. Scientific novelty. The authors point out that concrete scientifically wellfounded methodical recommendations for the future teachers on implementation of distance learning technologies haven’t been presented in the Russian literature till now; despite an abundance of scientifically-information sources of distance learning technologies and sufficiently high-leveled degree knowledge of the issues of its efficiency in educational activity, conditions of introduction of such technologies in high school, construction of models of distance training. Authors of article have tried to close this

  5. An assessment of research and development leadership in ocean energy technologies

    International Nuclear Information System (INIS)

    Bruch, V.L.

    1994-04-01

    Japan is clearly the leader in ocean energy technologies. The United Kingdom also has had many ocean energy research projects, but unlike Japan, most of the British projects have not progressed from the feasibility study stage to the demonstration stage. Federally funded ocean energy research in the US was stopped because it was perceived the technologies could not compete with conventional sources of fuel. Despite the probable small market for ocean energy technologies, the short sighted viewpoint of the US government regarding funding of these technologies may be harmful to US economic competitiveness. The technologies may have important uses in other applications, such as offshore construction and oil and gas drilling. Discontinuing the research and development of these technologies may cause the US to lose knowledge and miss market opportunities. If the US wishes to maintain its knowledge base and a market presence for ocean energy technologies, it may wish to consider entering into a cooperative agreement with Japan and/or the United Kingdom. Cooperative agreements are beneficial not only for technology transfer but also for cost-sharing

  6. Material challenges for solar cells in the twenty-first century: directions in emerging technologies

    Science.gov (United States)

    Delamarre, Amaury; Jehl, Zacharie; Suchet, Daniel; Cojocaru, Ludmila; Giteau, Maxime; Behaghel, Benoit; Julian, Anatole; Ibrahim, Camille; Tatry, Léa; Wang, Haibin; Kubo, Takaya; Uchida, Satoshi; Segawa, Hiroshi; Miyashita, Naoya; Tamaki, Ryo; Shoji, Yasushi; Yoshida, Katsuhisa; Ahsan, Nazmul; Watanabe, Kentaro; Inoue, Tomoyuki; Sugiyama, Masakazu; Nakano, Yoshiaki; Hamamura, Tomofumi; Toupance, Thierry; Olivier, Céline; Chambon, Sylvain; Vignau, Laurence; Geffroy, Camille; Cloutet, Eric; Hadziioannou, Georges; Cavassilas, Nicolas; Rale, Pierre; Cattoni, Andrea; Collin, Stéphane; Gibelli, François; Paire, Myriam; Lombez, Laurent; Aureau, Damien; Bouttemy, Muriel; Etcheberry, Arnaud; Okada, Yoshitaka

    2018-01-01

    Abstract Photovoltaic generation has stepped up within the last decade from outsider status to one of the important contributors of the ongoing energy transition, with about 1.7% of world electricity provided by solar cells. Progress in materials and production processes has played an important part in this development. Yet, there are many challenges before photovoltaics could provide clean, abundant, and cheap energy. Here, we review this research direction, with a focus on the results obtained within a Japan–French cooperation program, NextPV, working on promising solar cell technologies. The cooperation was focused on efficient photovoltaic devices, such as multijunction, ultrathin, intermediate band, and hot-carrier solar cells, and on printable solar cell materials such as colloidal quantum dots. PMID:29707072

  7. Application of single-cell technology in cancer research.

    Science.gov (United States)

    Liang, Shao-Bo; Fu, Li-Wu

    2017-07-01

    In this review, we have outlined the application of single-cell technology in cancer research. Single-cell technology has made encouraging progress in recent years and now provides the means to detect rare cancer cells such as circulating tumor cells and cancer stem cells. We reveal how this technology has advanced the analysis of intratumor heterogeneity and tumor epigenetics, and guided individualized treatment strategies. The future prospects now are to bring single-cell technology into the clinical arena. We believe that the clinical application of single-cell technology will be beneficial in cancer diagnostics and treatment, and ultimately improve survival in cancer patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Research on novel coal conversion technology for energy and environment in 21st century

    Energy Technology Data Exchange (ETDEWEB)

    T. Takarada [Gunma University (Japan)

    2003-07-01

    In the 21st century, more efficient coal conversion technology will be needed. In this paper, novel gasification, pyrolysis and desulfurization processes using active catalysts are introduced. In particular, the application of ion-exchanged metals in brown coal to coal conversion technology is featured in this study. Other topics discussed include: Catalysis of mineral matter in coal; Catalytic effectiveness of Ni and K{sub 2}CO{sub 3} for various coals; Direct production of methane from steam gasification; Preparation of active catalysts from NaCl and KCl using brown coal; Gasification of high rank coal by mixing K-exchanged brown coal; Recovery of sulfur via catalytic SO{sub 2} gasification of coal char; Research on novel coal conversion technology BTX production by hydropyrolysis of coal in PPFB using catalyst; High BTU gas production by low-temperature catalytic hydropyrolysis of coal; and Ca-exchanged brown coal as SO{sub 2} and H{sub 2}S sorbents. 12 refs., 17 figs.

  9. An overview of enabling technology research in the United States

    International Nuclear Information System (INIS)

    Baker, Charles C.

    2002-01-01

    The mission of the US Fusion Energy Sciences Program is to advance plasma science, fusion science, and fusion technology--the knowledge base needed for an economically and environmentally attractive fusion energy source. In support of this overall mission, the Enabling Technology Program in the US incorporates both near and long term R and D, contributes to material and engineering sciences as well as technology development, contributes to spin-off applications, and performs global systems assessments and focused design studies. This work supports both magnetic and inertial fusion energy (IFE) concepts. The Enabling Technology research mission is to contribute to the national science and technology base by developing the enabling technology for existing and next-step experimental devices, by exploring and understanding key materials and technology feasibility issues for attractive fusion power sources, by conducting advanced design studies that integrate the wealth of our understanding to guide R and D priorities and by developing design solutions for next-step and future devices. The Enabling Technology Program Plan is organized around five elements: plasma technologies, fusion (chamber) technologies, materials sciences, advanced design, and IFE chamber and target technologies. The principal technical features and research objectives are described for each element

  10. Educational Research on the Technological Dimension of Private Life

    Directory of Open Access Journals (Sweden)

    Liliana Mata

    2010-04-01

    Full Text Available The goal of this study consists in analyzing the technological dimension of private life in school. It deals with an observational research on curricula documents and the perception of high school teenagers and teachers of this dimension as developed in the Romanian educational system.
    The main objectives of this research aim at: a the identification of the specific aspects of the technological dimension as reflected in textbooks and school curricula, and b defining the level of openness of teachers and high school pupils towards the technological dimension of private life.
    Firslty, we conducted a content analysis of school documents, taking into account specific themes and categories. Secondly, we conducted a survey that tested the way in which 1456 high school students and 890 teachers perceive the technological dimension of the Romanian educational system. The results are distinguished through frequencies on specific themes structured on technological dimension at the level of school documents, and on opening level of high school pupils and teachers.

  11. Educational Technology Research Journals: "International Journal of Technology and Design Education", 2005-2014

    Science.gov (United States)

    Christensen, James M.; Jones, Brian; Cooper, Jessica Rose; McAllister, Laura; Ware, Mark B.; West, Richard E.

    2015-01-01

    This study examines the trends of the "International Journal of Technology and Design Education" over the past decade (2005-2014). The researchers looked at trends in article topics, research methods, authorship, and article citations by analyzing keyword frequencies, performing word counts of article titles, classifying studies…

  12. Influence of University Level Direct Instruction on Educators' Use of Technology in the Classroom

    Science.gov (United States)

    Garner, Angie M.; Bonds-Raacke, Jennifer M.

    2013-01-01

    Previous research regarding technology integration in education has indicated that when technology is integrated into the classroom with fidelity it can enhance educational experiences. Research has also indicated, however that despite the growing presence of technology in classrooms, it is not being effectively utilized. The present study…

  13. Research into industrial technology policy trends in Australia. Role of government in promoting industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The paper reported the investigation into strategies of industrial technology, results of the R and D support plans, management of support fund plans, etc. by the Australian government. The present government introduced policies on industrial innovation and industrial technology, research and higher education, etc. from the end of 1997 to the end of 1999. Especially, recently the R and D preferential taxation system was introduced. As to organizations pertaining to science, technology, engineering and innovation, PMSEIC (prime minister's science, engineering and innovation council) under the direct control of prime minister is a top self-supporting organization, in which minister from each ministry join. Further, the assembly committee, which is not the bureaucratic organization, was separately established. In February 2000, the innovation summit was held, in which a lot of organizations from the industrial circle, government and research institutes participated. The conclusion was as follows: Australia is now at the crossroads of the resource dependent economy. The solution adopted in the past cannot meet the age of new knowledge. The rapidly advancing globalization makes the society more competitive. Enterprises that avoid the innovative investment are to expose themselves to danger. Australia is requested to make continued efforts for more innovative creation. (NEDO)

  14. Research into industrial technology policy trends in Australia. Role of government in promoting industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The paper reported the investigation into strategies of industrial technology, results of the R and D support plans, management of support fund plans, etc. by the Australian government. The present government introduced policies on industrial innovation and industrial technology, research and higher education, etc. from the end of 1997 to the end of 1999. Especially, recently the R and D preferential taxation system was introduced. As to organizations pertaining to science, technology, engineering and innovation, PMSEIC (prime minister's science, engineering and innovation council) under the direct control of prime minister is a top self-supporting organization, in which minister from each ministry join. Further, the assembly committee, which is not the bureaucratic organization, was separately established. In February 2000, the innovation summit was held, in which a lot of organizations from the industrial circle, government and research institutes participated. The conclusion was as follows: Australia is now at the crossroads of the resource dependent economy. The solution adopted in the past cannot meet the age of new knowledge. The rapidly advancing globalization makes the society more competitive. Enterprises that avoid the innovative investment are to expose themselves to danger. Australia is requested to make continued efforts for more innovative creation. (NEDO)

  15. Small Business Innovation Research and Small Business Technology Transfer Programs

    Science.gov (United States)

    Garrison, Lynn; Jasper, Gwen

    2015-01-01

    The Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) programs fund the research, development, and demonstration of innovative technologies that fulfill NASA's needs as described in the annual Solicitations and have significant potential for successful commercialization. The only eligible participants are small business concern (SBC) with 500 or fewer employees or a nonprofit research institute such as a university or a research laboratory with ties to an SBC. These programs are potential sources of seed funding for the development of small business innovations.

  16. Direct Connect Supersonic Combustion Facility (Research Cell 22)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  17. Base technology approaches in materials research for future nuclear applications

    International Nuclear Information System (INIS)

    Kondo, Tatsuo

    1992-01-01

    In the development of advanced nuclear systems for future, majority of critical issues in material research and development are more or less related with the effects of neutron irradiation. The approaches to those issues in the past have been mainly concerned with interpretation of the facts and minor modification of existing materials, having been inevitably of passive nature. In combating against predicted complex effects arising from variety of critical parameters, approaches must be reviewed more strategically. Some attempts of shifting research programs to such a direction have been made at JAERI in the Base (Common) Technology Programs either by adding to or restructuring the existing tasks. Major tasks currently in progress after the reorientation are categorized in several disciplines including new tasks for material innovation and concept development for neutron sources. The efforts have been set forth since 1988, and a few of them are now mature to transfer to the tasks in the projects of advanced reactors. The paper reviews the status of some typical activities emphasizing the effects of the reorientation and possible extensions of the outcomes to future applications. (author)

  18. Nigerian Journal of Technological Research: Submissions

    African Journals Online (AJOL)

    Contributions to The Nigerian Journal of Technological Research are invited on the ... to Pure and Applied Sciences, Engineering Sciences, Environmental Sciences, ... Acceptance of paper for publication in The Journal implies that it has not been ... In line with the development in ICT, electronic versions for all MS will be ...

  19. Research and Development Opportunities for Joining Technologies in HVAC&R

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Guernsey, Matt [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States)

    2015-10-01

    The Building Technologies Office (BTO) works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. This opportunity assessment aims to advance BTO’s energy savings, GHG reduction, and other program goals by identifying research and development (R&D) initiatives for joining technologies in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) systems. Improving joining technologies for HVAC&R equipment has the potential to increase lifetime equipment operating efficiency, decrease equipment and project cost, and most importantly reduce hydroflourocarbon (HFC) refrigerant leakage to support HFC phasedown and GHG reduction goals.

  20. Research Directions in Anthropological Pragmatics

    Directory of Open Access Journals (Sweden)

    Piotr P. Chruszczewski

    2011-08-01

    Full Text Available Anthropological linguistics, and by default also anthropological pragmatics, grew as sub-disciplines of both anthropology and linguistics. “The intellectual basis for anthropological linguistics in the United States derives from Boas ([1911] 1966, whose interests and concerns led to the anthropological view of language, which is that language is an integral part of culture (…” (Klein 2006: 296. Pragmatics enters the scene, telling the researcher how to analyse the aforementioned phenomena. Therefore, anthropological pragmatics would be responsible for equipping the researcher with tools, for it is language and language-oriented mechanisms of communication, the study of which provides a much clearer insight into cultural phenomena which often direct the use of language representing culture from both the synchronic and the diachronic point of view. “[O]ne approaches language from an anthropological view, which includes the uses of language and the uses of silence, as well as the cultural problems involved in silence and speech” (ibid..

  1. An empirical research on relationships between subjective judgement, technology acceptance tendency and knowledge transfer.

    Science.gov (United States)

    Yuan, Yu-Hsi; Tsai, Sang-Bing; Dai, Chien-Yun; Chen, Hsiao-Ming; Chen, Wan-Fei; Wu, Chia-Huei; Li, Guodong; Wang, Jiangtao

    2017-01-01

    The purpose of this study was to explore the relationships among employees' usage intention pertaining to mobile information devices, focusing on subjective judgement, technology acceptance tendency, information sharing behavior and information transfer. A research model was established to verify several hypotheses. The research model based on integrated concepts of knowledge management and technology acceptance modeling. Participants were employees of enterprises in Taiwan, selected by combining snowball and convenience sampling. Data obtained from 779 e-surveys. Multiple-regression analysis was employed for hypothesis verification. The results indicate that perceived ease-of-use of mobile devices was affected by computer self-efficacy and computer playfulness directly; meanwhile, perceived ease-of-use directly affects perceived usefulness. In addition, perceived ease-of-use and perceived usefulness can predict information-sharing behavior in a positive manner, and impact knowledge transfer as well. Based on the research findings, it suggested that enterprises should utilize mobile information devices to create more contact with customers and enrich their service network. In addition, it is recommended that managers use mobile devices to transmit key information to their staff and that they use these devices for problem-solving and decision-making. Further, the staff's skills pertaining to the operation of mobile information devices and to fully implement their features are reinforced in order to inspire the users' knowledge transfer. Enhancing the playfulness of the interface is also important. In general, it is useful to promote knowledge transfer behavior within an organization by motivating members to share information and ideas via mobile information devices. In addition, a well-designed interface can facilitate employees' use of these devices.

  2. An empirical research on relationships between subjective judgement, technology acceptance tendency and knowledge transfer

    Science.gov (United States)

    Dai, Chien-Yun; Chen, Hsiao-Ming; Chen, Wan-Fei; Wu, Chia-Huei; Li, Guodong; Wang, Jiangtao

    2017-01-01

    The purpose of this study was to explore the relationships among employees' usage intention pertaining to mobile information devices, focusing on subjective judgement, technology acceptance tendency, information sharing behavior and information transfer. A research model was established to verify several hypotheses. The research model based on integrated concepts of knowledge management and technology acceptance modeling. Participants were employees of enterprises in Taiwan, selected by combining snowball and convenience sampling. Data obtained from 779 e-surveys. Multiple-regression analysis was employed for hypothesis verification. The results indicate that perceived ease-of-use of mobile devices was affected by computer self-efficacy and computer playfulness directly; meanwhile, perceived ease-of-use directly affects perceived usefulness. In addition, perceived ease-of-use and perceived usefulness can predict information-sharing behavior in a positive manner, and impact knowledge transfer as well. Based on the research findings, it suggested that enterprises should utilize mobile information devices to create more contact with customers and enrich their service network. In addition, it is recommended that managers use mobile devices to transmit key information to their staff and that they use these devices for problem-solving and decision-making. Further, the staff’s skills pertaining to the operation of mobile information devices and to fully implement their features are reinforced in order to inspire the users' knowledge transfer. Enhancing the playfulness of the interface is also important. In general, it is useful to promote knowledge transfer behavior within an organization by motivating members to share information and ideas via mobile information devices. In addition, a well-designed interface can facilitate employees' use of these devices. PMID:28886088

  3. 78 FR 70917 - Emerging Technology and Research Advisory Committee; Notice of Open Meeting

    Science.gov (United States)

    2013-11-27

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Emerging Technology and Research Advisory Committee; Notice of Open Meeting The Emerging Technology and Research Advisory Committee (ETRAC) will meet... Secretary for Export Administration on emerging technology and research activities, including those related...

  4. 77 FR 39209 - Emerging Technology and Research Advisory Committee; Notice of Open Meeting

    Science.gov (United States)

    2012-07-02

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Emerging Technology and Research Advisory Committee; Notice of Open Meeting The Emerging Technology and Research Advisory Committee (ETRAC) will meet... Secretary for Export Administration on emerging technology and research activities, including those related...

  5. 77 FR 59374 - Emerging Technology and Research Advisory Committee; Notice of Open Meeting

    Science.gov (United States)

    2012-09-27

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Emerging Technology and Research Advisory Committee; Notice of Open Meeting The Emerging Technology and Research Advisory Committee (ETRAC) will meet... Secretary for Export Administration on emerging technology and research activities, including those related...

  6. Health information technology needs help from primary care researchers.

    Science.gov (United States)

    Krist, Alex H; Green, Lee A; Phillips, Robert L; Beasley, John W; DeVoe, Jennifer E; Klinkman, Michael S; Hughes, John; Puro, Jon; Fox, Chester H; Burdick, Tim

    2015-01-01

    While health information technology (HIT) efforts are beginning to yield measurable clinical benefits, more is needed to meet the needs of patients and clinicians. Primary care researchers are uniquely positioned to inform the evidence-based design and use of technology. Research strategies to ensure success include engaging patient and clinician stakeholders, working with existing practice-based research networks, and using established methods from other fields such as human factors engineering and implementation science. Policies are needed to help support primary care researchers in evaluating and implementing HIT into everyday practice, including expanded research funding, strengthened partnerships with vendors, open access to information systems, and support for the Primary Care Extension Program. Through these efforts, the goal of improved outcomes through HIT can be achieved. © Copyright 2015 by the American Board of Family Medicine.

  7. Research on advanced technology of performance assessment for geological disposal of high-level radioactive waste (Joint research)

    International Nuclear Information System (INIS)

    2006-12-01

    JAEA and RWMC have carried out a joint research program on advanced technologies that could be used to support performance assessments of geological disposal concepts for high-level radioactive waste. The following 5 items were considered in the program: 1) planning of a basic strategy for the development of analysis technologies on nuclide migration over various spatial and temporal scales; 2) development of analysis technologies for vitrified waste scale; 3) development of analysis technologies for repository scale; 4) development of integration technologies for geochemical information; and 5) development of technologies to promote the logical understanding of repository performance and safety. The above items were discussed in the context of technological experiences gained by JAEA and RWMC in previous repository-related studies. According to the results of these discussions, development strategies for each of the technology areas identified above were efficiently formulated by appropriate task allocations. Specific technical subjects requiring further investigation were also identified using this approach, and potential feed-backs from the results of these investigations into the overall research plan and strategy were considered. These specific research and development subjects in the overall strategy defined by this project should be implemented in the future. (author)

  8. Changing governance of research and technology policy : The European research area

    NARCIS (Netherlands)

    Edler, Jakob; Kuhlmann, Stefan; Behrens, Maria

    2003-01-01

    This collection analyses and comments on the development of the ERA, which seeks to coordinate national research and advance European wide projects. The contributors include leading scholars of European integration and technology policy and high-level administrators. They discuss the potential

  9. Mobile technology and academic libraries innovative services for research and learning

    CERN Document Server

    Canuel, Robin

    2017-01-01

    In seventeen chapters ranging from A Mobile-First Library Site Redesign to Mobile Technology Support for Field Research to Virtual Reality Library Environments, Mobile Technology and Academic Libraries explores how librarians around the world are working to adapt their spaces, collections, teaching, and services to the new possibilities presented by mobile technology. This is a detailed and thorough examination of technology that's emerging now and how to incorporate it into your library to help the students and researchers of both today and tomorrow.

  10. Field demonstration and transition of SCAPS direct push VOC in-situ sensing technologies

    International Nuclear Information System (INIS)

    Davis, William M.

    1999-01-01

    This project demonstrated two in-situ volatile organic compound (VOC) samplers in combination with the direct sampling ion trap mass spectrometer (DSITMS). The technologies chosen were the Vadose Sparge and the Membrane Interface Probe (MIP) sensing systems. Tests at two demonstration sites showed the newer VOC technologies capable of providing in situ contaminant measurements at two to four times the rate of the previously demonstrated Hydrosparge sensor. The results of this project provide initial results supporting the utility of these new technologies to provide rapid site characterization of VOC contaminants in the subsurface

  11. Fiscal 1998 research achievement report. Project for promoting development of super-advanced electronic technology; 1998 nendo chosentan denshi gijutsu kaihatsu sokushin jigyo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    For the purpose of establishing super-advanced technologies two generations ahead in the field of electronics and information, research and development was carried out involving ultrafine machining process technology, technologies of ultimate measuring, analysis, and control, and technologies of electronic materials equipped with novel functions. In the study of writing systems in which writing is performed directly by an electron beam, writing technologies using electron beams under single-column and multi-column systems were taken up. In the study of ultrashort wavelength electromagnetic wave patterning systems, studies were made about equimultiple ultrashort wavelength and reduced ultrashort wavelength electromagnetic wave patterning. In the study of ultrahigh precision shielding systems, studies involved high precision in situ measurement and control of writing distortion, and ultrahigh precision and high current density electronic optical technologies. Also carried out were research and development of technologies of super-advanced plasma measurement, analysis, and control, technology of cleaning by ultrafine particle control, technology of ultrahigh sensitivity medium, and technologies of new functional elements and film fabrication. In the overall research and survey, surveys were conducted of the trends of development of technology of semiconductor related lithography. (NEDO)

  12. Examining the Use of Theory within Educational Technology and Media Research

    Science.gov (United States)

    Bulfin, Scott; Henderson, Michael; Johnson, Nicola

    2013-01-01

    Academic research in the areas of educational technology and media is often portrayed to be limited in terms of its use of theory. This short paper reports on data collected from a survey of 462 "research active" academic researchers working in the broad area of educational technology and educational media. The paper explores their use…

  13. Evaluating the risks of clinical research: direct comparative analysis.

    Science.gov (United States)

    Rid, Annette; Abdoler, Emily; Roberson-Nay, Roxann; Pine, Daniel S; Wendler, David

    2014-09-01

    Many guidelines and regulations allow children and adolescents to be enrolled in research without the prospect of clinical benefit when it poses minimal risk. However, few systematic methods exist to determine when research risks are minimal. This situation has led to significant variation in minimal risk judgments, raising concern that some children are not being adequately protected. To address this concern, we describe a new method for implementing the widely endorsed "risks of daily life" standard for minimal risk. This standard defines research risks as minimal when they do not exceed the risks posed by daily life activities or routine examinations. This study employed a conceptual and normative analysis, and use of an illustrative example. Different risks are composed of the same basic elements: Type, likelihood, and magnitude of harm. Hence, one can compare the risks of research and the risks of daily life by comparing the respective basic elements with each other. We use this insight to develop a systematic method, direct comparative analysis, for implementing the "risks of daily life" standard for minimal risk. The method offers a way of evaluating research procedures that pose the same types of risk as daily life activities, such as the risk of experiencing anxiety, stress, or other psychological harm. We thus illustrate how direct comparative analysis can be applied in practice by using it to evaluate whether the anxiety induced by a respiratory CO2 challenge poses minimal or greater than minimal risks in children and adolescents. Direct comparative analysis is a systematic method for applying the "risks of daily life" standard for minimal risk to research procedures that pose the same types of risk as daily life activities. It thereby offers a method to protect children and adolescents in research, while ensuring that important studies are not blocked because of unwarranted concerns about research risks.

  14. Next generation DIRCM for 2.1-2.3 micron wavelength based on direct-diode GaSb technology

    Science.gov (United States)

    Dvinelis, Edgaras; Naujokaitė, Greta; Greibus, Mindaugas; Trinkūnas, Augustinas; Vizbaras, Kristijonas; Vizbaras, Augustinas

    2018-02-01

    Continuous advances in low-cost MANPAD heat-seeking missile technology over the past 50 years remains the number one hostile threat to airborne platforms globally responsible for over 60 % of casualties. Laser based directional countermeasure (DIRCM) technology have been deployed to counter the threat. Ideally, a laser based DIRCM system must involve a number of lasers emitting at different spectral bands mimicking the spectral signature of the airborne platform. Up to now, near and mid infrared spectral bands have been covered with semiconductor laser technology and only SWIR band remained with bulky fiber laser technology. Recent technology developments on direct-diode GaSb laser technology at Brolis Semiconductors offer a replacement for the fiber laser source leading to significant improvements by few orders of magnitude in weight, footprint, efficiency and cost. We demonstrate that with careful engineering, several multimode emitters can be combined to provide a directional laser beam with radiant intensity from 10 kW/sr to 60 kW/sr in an ultra-compact hermetic package with weight < 30 g and overall efficiency of 15 % in the 2.1- 2.3 micron spectral band offering 150 times improvement in efficiency and reduction in footprint. We will discuss present results, challenges and future developments for such next-generation integrated direct diode DIRCM modules for SWIR band.

  15. Improving collaboration between primary care research networks using Access Grid technology

    Directory of Open Access Journals (Sweden)

    Zsolt Nagykaldi

    2008-05-01

    Full Text Available Access Grid (AG is an Internet2-driven, high performance audio_visual conferencing technology used worldwide by academic and government organisations to enhance communication, human interaction and group collaboration. AG technology is particularly promising for improving academic multi-centre research collaborations. This manuscript describes how the AG technology was utilised by the electronic Primary Care Research Network (ePCRN that is part of the National Institutes of Health (NIH Roadmap initiative to improve primary care research and collaboration among practice- based research networks (PBRNs in the USA. It discusses the design, installation and use of AG implementations, potential future applications, barriers to adoption, and suggested solutions.

  16. Foreign direct investment and technology spillovers in Mexico: 20 years of NAFTA

    OpenAIRE

    Armas, Enrique; Rodríguez, José Carlos

    2017-01-01

    This article analyses the development of technology capabilities in the manufacturing sector of Mexico during the last two decades. It has been argued that the inclusion of Mexico in the North America Free Trade Agreement (NAFTA) in 1994 would be enough to catch up with Canada and the United States. In this regard, trade liberalisation and foreign direct investment (FDI) would have been two strategic tools to close the technology gap between Mexico and its commercial partners in North America...

  17. Information Technology Research & Development Foresight in Iran.

    Directory of Open Access Journals (Sweden)

    Mansoor Sheydaee

    2017-09-01

    The results of the Delphi process was reported in national level, including Delphi panel members demography, public questions and specialized questions for each of the technologies. Finally the research provides some recommendations for decision makers.

  18. Fiscal 1999 project for research and development of industrial and scientific technologies. Report on the achievements on the 'research and development of an ultimate atom and molecule manipulation technology' (Development of a technology to analyze and manipulate DNAs at high efficiency); 1999 nendo genshi bunshi kyokugen sosa gijutsu no kenkyu kaihatsu seika hokokusho. DNA nado kokoritsu kaiseki sosa gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In the 'research and development of an ultimate atom and molecule manipulation technology', research has been made on an organic atom and molecule identification and manipulation technology and a dynamic organic molecule simulation technology. This paper summarizes the achievements in fiscal 1999. In the magnetic force controlling AFM for the force spectroscopy aimed at non-destructive atom and molecule identification, a prototype cantilever was fabricated that can excite and detect displacement in lateral direction and is suitable for friction measurement. The SrO surface and TiO2 surface of SrTiO{sub 3}. A carbon nano-tube was employed as a probe. In addition, the molecule inserting SAM technology was used to have developed a technology to measure electric conductivity inside and between molecules. With an aim at realizing a high-speed DNA base arrangement analyzing method, research is being performed upon noticing the single molecule method based on the light measuring method using the single molecule imaging as the base and the scanning probe microscope method. For the dynamic organic molecule simulation technology, theoretical analysis was advanced on synthesis of methanol on copper surface. (NEDO)

  19. Future directions in international financial integration research - A crowdsourced perspective

    OpenAIRE

    Lucey, B.M.; Vigne, S.A.; Ballester, L.; Barbopoulos, L.; Brzeszczynski, J.; Carchano, O.; Dimic, N.; Fernandez, V.; Gogolin, F.; González-Urteaga, A.; Goodell, J.W.; Helbing, P.; Ichev, R.; Kearney, F.; Laing, E.

    2018-01-01

    This paper is the result of a crowdsourced effort to surface perspectives on the present and future direction of international finance. The authors are researchers in financial economics who attended the INFINITI 2017 conference in the University of Valencia in June 2017 and who participated in the crowdsourcing via the Overleaf platform. This paper highlights the actual state of scientific knowledge in a multitude of fields in finance and proposes different directions for future research.

  20. UNISWA Research Journal of Agriculture, Science and Technology ...

    African Journals Online (AJOL)

    The UNISWA Research Journal of Agriculture, Science and Technology is a publication of the Faculties of Agriculture, Health Sciences and Science of the University of Swaziland. It publishes results of original research or continuations of previous studies that are reproducible. Review articles, short communications and ...

  1. UNISWA Research Journal of Agriculture, Science and Technology

    African Journals Online (AJOL)

    The UNISWA Research Journal of Agriculture, Science and Technology is a publication of the Faculties of Agriculture, Health Sciences and Science of the University of Swaziland. It publishes results of original research or continuations of previous studies that are reproducible. Review articles, short communications and ...

  2. Research Fellows | NREL

    Science.gov (United States)

    Research Fellows Research Fellows Our research fellows advise on the strategic direction of science and technology research at NREL and ensure our work meets the highest standards for quality and objectivity. Find all research staff by visiting our various research program areas. Photo of Mowafak Al

  3. Role of a national research organization in the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Ahmad, Ishaq

    1977-01-01

    Nuclear technology holds great promise for developing countries because it can contribute to national development. The developing countries, however, lack the resources and expertise to develop nuclear technology through their own efforts. A national research organization devoted to the promotion and utilization of nucler technology can provide an effective channel for the transfer of nuclear technology. The problems which the national research organization is likely to face in executing its tasks as an agent for the transfer of technology are discussed. An appreciation of these problems would enable the organization to restructure its priorities so as to achieve maximum effectiveness. The various ways by which the national research organization can speed up the task of transfer of technology are also discussed

  4. Engineering Research, Development and Technology, FY95: Thrust area report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  5. WTEC panel report on research submersibles and undersea technologies

    Science.gov (United States)

    Seymore, Richard J.; Blidberg, D. Richard; Brancart, Claude P.; Gentry, Larry L.; Kalvaitis, Algis N.; Lee, Michael J.; Mooney, Brad; Walsh, Don

    1994-06-01

    This report covers research submersibles and related subsea technologies in Finland, France, Russia, Ukraine and the United Kingdom. Manned, teleoperated, and autonomous submersibles were of interest. The panel found that, in contrast to the United States, Europe is making substantial progress in cooperative and coordinated research in subsea technology, including the development of standards. France is a leader in autonomous vehicle technology. Because much less was known a priori about the technologies in Russia and Ukraine, there were more new findings in those countries than in those Western European nations visited. However, Russia and Ukraine have a sizeable (and currently underutilized) infrastructure in this field, including a highly educated and experienced manpower pool, impressive (in some cases unique) facilities for physical testing, extensive fleets of seagoing research vessels capable of long voyages, and state-of-the-art facilities for conducting oceanographic investigations. The panel visited newly-formed commercial companies associated with long-standing submersible R&D and production centers in Russia and Ukraine. So far, these new efforts are undercapitalized, and as such represent opportunities at very low cost for Western nations, as detailed in the site reports.

  6. Does Foreign Direct Investment Transfer Technology Across Borders? A Reexamination

    OpenAIRE

    Jürgen Bitzer; Monika Kerekes

    2005-01-01

    Reexamining foreign direct investment (FDI) as a potential channel for knowledge diffusion -- based on industry data from seventeen OECD countries during the period 1973-2000 -- we find that FDI-receiving countries benefit strongly from FDI-related knowledge spillovers. We do not find evidence for positive FDI-related technology sourcing effects. Instead, our results suggest that outward FDI might have negative effects on the output of the FDI-sending country.

  7. FY2011 Engineering Innovations, Research, and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Kip [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, Harry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Poyneer, Lisa A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shusteff, Maxim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spadaccini, Christopher M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hopkins, Jonathan B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bernier, Joel V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); King, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Puso, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, Todd H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Goldstein, Noah C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sales, Ana Paula De Oliveira [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dehlinger, Dietrich A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kotovsky, Jack [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kuntz, Joshua D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Voss, Lars F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wheeler, Elizabeth K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chang, John T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lehman, Sean K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vernon, Stephen P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tang, Vincent [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-04-24

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory’s Engineering Directorate for FY2011. These efforts exemplify Engineering’s nearly 60-year history of developing and applying the technology innovations needed for the Laboratory’s national security missions, and embody Engineering’s mission to “Enable program success today and ensure the Laboratory’s vitality tomorrow.

  8. Commentary on Future directions: Building technologies and design tools''

    Energy Technology Data Exchange (ETDEWEB)

    Quadrel, R.W.

    1992-08-10

    This paper presents a number of interesting and thought-provoking scenarios about the future use of advanced technology in the design and operation of commercial buildings. I will express my reactions in the following series of short paragraphs. These thoughts will, I hope, raise some new questions and offer fruitful directions for further exploration.

  9. III International Conference on Laser and Plasma Researches and Technologies

    Science.gov (United States)

    2017-12-01

    A.P. Kuznetsov and S.V. Genisaretskaya III Conference on Plasma and Laser Research and Technologies took place on January 24th until January 27th, 2017 at the National Research Nuclear University "MEPhI" (NRNU MEPhI). The Conference was organized by the Institute for Laser and Plasma Technologies and was supported by the Competitiveness Program of NRNU MEPhI. The conference program consisted of nine sections: • Laser physics and its application • Plasma physics and its application • Laser, plasma and radiation technologies in industry • Physics of extreme light fields • Controlled thermonuclear fusion • Modern problems of theoretical physics • Challenges in physics of solid state, functional materials and nanosystems • Particle accelerators and radiation technologies • Modern trends of quantum metrology. The conference is based on scientific fields as follows: • Laser, plasma and radiation technologies in industry, energetic, medicine; • Photonics, quantum metrology, optical information processing; • New functional materials, metamaterials, “smart” alloys and quantum systems; • Ultrahigh optical fields, high-power lasers, Mega Science facilities; • High-temperature plasma physics, environmentally-friendly energetic based on controlled thermonuclear fusion; • Spectroscopic synchrotron, neutron, laser research methods, quantum mechanical calculation and computer modelling of condensed media and nanostructures. More than 250 specialists took part in the Conference. They represented leading Russian scientific research centers and universities (National Research Centre "Kurchatov Institute", A.M. Prokhorov General Physics Institute, P.N. Lebedev Physical Institute, Troitsk Institute for Innovation and Fusion Research, Joint Institute for Nuclear Research, Moscow Institute of Physics and Tecnology and others) and leading scientific centers and universities from Germany, France, USA, Canada, Japan. We would like to thank heartily all of

  10. 75 FR 18484 - Emerging Technology and Research Advisory Committee; Notice of Open Meeting

    Science.gov (United States)

    2010-04-12

    ... Emerging Technologies Analysis. 2. ETRAC Panel on Emerging Technologies. 3. History of the Laser. 4... DEPARTMENT OF COMMERCE Bureau of Industry and Security Emerging Technology and Research Advisory Committee; Notice of Open Meeting The Emerging Technology and Research Advisory Committee (ETRAC) [[Page...

  11. Impact of design research on industrial practice tools, technology, and training

    CERN Document Server

    Lindemann, Udo

    2016-01-01

    Showcasing exemplars of how various aspects of design research were successfully transitioned into and influenced, design practice, this book features chapters written by eminent international researchers and practitioners from industry on the Impact of Design Research on Industrial Practice. Chapters written by internationally acclaimed researchers of design analyse the findings (guidelines, methods and tools), technologies/products and educational approaches that have been transferred as tools, technologies and people to transform industrial practice of engineering design, whilst the chapters that are written by industrial practitioners describe their experience of how various tools, technologies and training impacted design practice. The main benefit of this book, for educators, researchers and practitioners in (engineering) design, will be access to a comprehensive coverage of case studies of successful transfer of outcomes of design research into practice; as well as guidelines and platforms for successf...

  12. The current situation and prospect of fundamental research about nuclear logging technology

    International Nuclear Information System (INIS)

    Zhang Feng; Wang Xinguang; Yuan Chao

    2010-01-01

    Nuclear logging technology is one of the important methods to evaluate complex hydrocarbon reservoir in the process of petroleum exploration and development. The fundamental research of nuclear logging is an important step of logging technology innovation. Through analyzing the current situation of the development of nuclear logging technology at home and abroad in recent years, the problems and gaps are pointed out in the field of fundamental research of nuclear logging at home, and the future development of new nuclear logging technologies is concisely analyzed. Therefore, the optimal design and processing are conducted from aspects of ray source, detector, data acquisition and processing method. In addition, the fundamental research of LWD and pulsed neutron logging technology is taken as the main breach. In the fundamental research of nuclear logging technology, innovative thinking should be expressed and the innovation should be achieved in every field of the development of nuclear logging technology. Meanwhile, the logging key lab should be taken as the platform and the latest achievement in the field of nuclear logging technology should be fully utilized. Thus, the level of independent R and D and technology innovation of logging tools will be raised and service for the exploration and development of petroleum and other mineral resources. (authors)

  13. New Directions of Research in Molecules and Materials

    Indian Academy of Sciences (India)

    Wintec

    New Directions of Research in Molecules and Materials. Foreword. 'Materials' has ... Solution phase chemistry is a central aspect of materials as demonstrated by. Panchakarla and ... Changes at the atomic scale affect bulk properties such as ...

  14. Nuclear technology in research and everyday life

    International Nuclear Information System (INIS)

    2015-12-01

    The paper.. discusses the impact of nuclear technology in research and everyday life covering the following issues: miniaturization of memory devices, neutron radiography in material science, nuclear reactions in the universe, sterilization of food, medical applies, cosmetics and packaging materials using beta and gamma radiation, neutron imaging for radioactive waste analysis, microbial transformation of uranium (geobacter uraniireducens), nuclear technology knowledge preservation, spacecrafts voyager 1 and 2, future fusion power plants, prompt gamma activation analysis in archeology, radiation protection and radioecology and nuclear medicine (radiotherapy).

  15. Methodology is more than research design and technology.

    Science.gov (United States)

    Proctor, Robert W

    2005-05-01

    The Society for Computers in Psychology has been at the forefront of disseminating information about advances in computer technology and their applications for psychologists. Although technological advances, as well as clean research designs, are key contributors to progress in psychological research, the justification of methodological rules for interpreting data and making theory choices is at least as important. Historically, methodological beliefs and practices have been justified through intuition and logic, an approach known as foundationism. However, naturalism, a modern approach in the philosophy of science inspired by the work of Thomas S. Kuhn, indicates that all aspects of scientific practice, including its methodology, should be evaluated empirically. This article examines implications of the naturalistic approach for psychological research methods in general and for the current debate that is often framed as one of qualitative versus quantitative methods.

  16. Mass spectrometry-based proteomics: basic principles and emerging technologies and directions.

    Science.gov (United States)

    Van Riper, Susan K; de Jong, Ebbing P; Carlis, John V; Griffin, Timothy J

    2013-01-01

    As the main catalytic and structural molecules within living systems, proteins are the most likely biomolecules to be affected by radiation exposure. Proteomics, the comprehensive characterization of proteins within complex biological samples, is therefore a research approach ideally suited to assess the effects of radiation exposure on cells and tissues. For comprehensive characterization of proteomes, an analytical platform capable of quantifying protein abundance, identifying post-translation modifications and revealing members of protein complexes on a system-wide level is necessary. Mass spectrometry (MS), coupled with technologies for sample fractionation and automated data analysis, provides such a versatile and powerful platform. In this chapter we offer a view on the current state of MS-proteomics, and focus on emerging technologies within three areas: (1) New instrumental methods; (2) New computational methods for peptide identification; and (3) Label-free quantification. These emerging technologies should be valuable for researchers seeking to better understand biological effects of radiation on living systems.

  17. Research Opportunities for Fischer-Tropsch Technology

    International Nuclear Information System (INIS)

    Jackson, Nancy B.

    1999-01-01

    Fischer-Tropsch synthesis was discovered in Germany in the 1920's and has been studied by every generation since that time. As technology and chemistry, in general, improved through the decades, new insights, catalysts, and technologies were added to the Fischer-Tropsch process, improving it and making it more economical with each advancement. Opportunities for improving the Fischer-Tropsch process and making it more economical still exist. This paper gives an overview of the present Fischer-Tropsch processes and offers suggestions for areas where a research investment could improve those processes. Gas-to-liquid technology, which utilizes the Fischer Tropsch process, consists of three principal steps: Production of synthesis gas (hydrogen and carbon monoxide) from natural gas, the production of liquid fuels from syngas using a Fischer-Tropsch process, and upgrading of Fischer-Tropsch fuels. Each step will be studied for opportunities for improvement and areas that are not likely to reap significant benefits without significant investment

  18. Impact of Antecedent Factors on Collaborative Technologies Usage among Academic Researchers in Malaysian Research Universities

    Science.gov (United States)

    Mohd Daud, Norzaidi; Zakaria, Halimi

    2017-01-01

    Purpose: The purpose of this paper is to investigate the impact of antecedent factors on collaborative technologies usage among academic researchers in Malaysian research universities. Design/methodology/approach: Data analysis was conducted on data collected from 156 academic researchers from five Malaysian research universities. This study…

  19. Horizontal directional drilling: a green and sustainable technology for site remediation.

    Science.gov (United States)

    Lubrecht, Michael D

    2012-03-06

    Sustainability has become an important factor in the selection of remedies to clean up contaminated sites. Horizontal directional drilling (HDD) is a relatively new drilling technology that has been successfully adapted to site remediation. In addition to the benefits that HDD provides for the logistics of site cleanup, it also delivers sustainability advantages, compared to alternative construction methods.

  20. Summary of researches being performed in the Institute of Mathematics and Computer Science on computer science and information technologies

    Directory of Open Access Journals (Sweden)

    Artiom Alhazov

    2008-07-01

    Full Text Available Evolution of the informatization notion (which assumes automation of majority of human activities applying computers, computer networks, information technologies towards the notion of {\\it Global Information Society} (GIS challenges the determination of new paradigms of society: automation and intellectualization of production, new level of education and teaching, formation of new styles of work, active participation in decision making, etc. To assure transition to GIS for any society, including that from Republic of Moldova, requires both special training and broad application of progressive technologies and information systems. Methodological aspects concerning impact of GIS creation over the citizen, economic unit, national economy in the aggregate demands a profound study. Without systematic approach to these aspects the GIS creation would have confront great difficulties. Collective of researchers from the Institute of Mathematics and Computer Science (IMCS of Academy of Sciences of Moldova, which work in the field of computer science, constitutes the center of advanced researches and activates in those directions of researches of computer science which facilitate technologies and applications without of which the development of GIS cannot be assured.

  1. Summaries of FY 1996 geosciences research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward building the long-term fundamental knowledge base necessary to provide for energy technologies of the future. Future energy technologies and their individual roles in satisfying the nations energy needs cannot be easily predicted. It is clear, however, that these future energy technologies will involve consumption of energy and mineral resources and generation of technological wastes. The earth is a source for energy and mineral resources and is also the host for wastes generated by technological enterprise. Viable energy technologies for the future must contribute to a national energy enterprise that is efficient, economical, and environmentally sound. The Geosciences Research Program emphasizes research leading to fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy by-products of man.

  2. Technology Roadmap Research Program for the Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Joseph R. Vehec

    2010-12-30

    The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

  3. Research Funding, Patent Search Training and Technology Transfer: a collaboration

    KAUST Repository

    Tyhurst, Janis

    2016-01-01

    This paper will focus on the collaboration efforts of three different university departments to create, teach and evaluate the benefits of a joint patent training series, as well as the future directions this collaboration will take. KAUST has as one of its goals the diversification of the Saudi economy. There is a strong focus at the university on developing entrepreneurial ideas and commercializing research done. The University Library supports this goal through the provision of electronic resources and introductory patent search training skills. However, the patent training class offered by the University Library is only one step in a process that faculty and students need when starting or taking their research to the next level. In the Fall of 2015, I met with representatives of the two major stakeholders in the patent arena, the office of Sponsored Research (OSR) and the Technology Transfer Office (TTO), to develop a patent training program to meet the needs of researchers. The OSR provides funding to researchers who have demonstrated that their ideas have merit with potential applications, the TTO works with researchers who are at the point of needing IP protection. The resulting discussion led us to collaborate on creating a workshop series that benefit the researcher’s information needs and each of our departments as well. In the first of the series of three 2 hour workshops, the Manager of TTO and the Lead Integrative Specialist from the OSR presented a workshop on an overview of Intellectual Property and the patenting process. These presentations focused on when and how to determine whether research is potentially patentable, why a researcher needs to protect his/her research and how to go about protecting it. The second workshop focused on introductory patent search skills and tools, how to expand a literature search to include the information found in patents, and how this kind of research will improve not only the literature search but the research

  4. Nevada Natonal Security Site-Directed Research and Development FY 2010 Annual Report

    International Nuclear Information System (INIS)

    Bender, Howard

    2011-01-01

    This annual report of the Site-Directed Research and Development (SDRD) program represents the highly significant R and D accomplishments conducted during fiscal year 2010. This year was noteworthy historically, as the Nevada Test Site was renamed to the Nevada National Security Site (NNSS). This change not only recognizes how the site's mission has evolved, but also heralds a future of new challenges and opportunities for the NNSS. In many ways, since its inception in 2002, the SDRD program has helped shape that evolving mission. As we approach 2012, SDRD will also mark a milestone, having completed its first full decade of innovative R and D in support of the site and national security. The program continues to fund advanced science and technology development across traditional Department of Energy (DOE) nuclear security areas such as stockpile stewardship and non-proliferation while also supporting Department of Homeland Security (DHS) needs, and specialized work for government agencies like the Department of Defense (DoD) and others. The NNSS will also contribute technologies in the areas of treaty verification and monitoring, two areas of increasing importance to national security. Keyed to the NNSS's broadened scope, the SDRD program will continue to anticipate and advance R and D projects that will help the NNSS meet forthcoming challenges.

  5. Analisis dan Perancangan Sistem Informasi Direktorat Research & Technology Transfer Binus University

    Directory of Open Access Journals (Sweden)

    Mahenda Metta Surya

    2014-12-01

    Full Text Available Rapid growth of information technology development as well as increasing level of competition make every company need to establish an information system to support its business process. Research & Technology Transfer Directorate of Binus University is aware of this matter and makes a goal to improve the existing business process and develop a web-based information system that is able to support the existing business process to be more effective and efficient. This study aims to conduct an analysis and a design of information system for Research & Technology Transfer Directorate Binus University that can enhance the existing business process. Research used two methods, firstly data gathering done by conducting field studies and literature reviews, secondly the analysis and design of the system with object-oriented method. The result achieved from this research is a web-based information system that can support Research & Technology Transfer Directorate business process. The conclusion of this research is a new integrated web-based information system that can support and enhance current business process by connecting all parts of the system with the result to make all process more effective and efficient.

  6. Educational Technology Research in a VUCA World

    Science.gov (United States)

    Reeves, Thomas C.; Reeves, Patricia M.

    2015-01-01

    The status of educational technology research in a VUCA world is examined. The acronym, VUCA, stands for "Volatility" (rapidly changing contexts and conditions), "Uncertainty" (information missing that is critical to problem solving), "Complexity" (multiple factors difficult to categorize or control), and…

  7. A future perspective on technological obsolescenceat NASA, Langley Research Center

    Science.gov (United States)

    Mcintyre, Robert M.

    1990-01-01

    The present research effort was the first phase of a study to forecast whether technological obsolescence will be a problem for the engineers, scientists, and technicians at NASA Langley Research Center (LaRC). There were four goals of the research: to review the literature on technological obsolescence; to determine through interviews of division chiefs and branch heads Langley's perspective on future technological obsolescence; to begin making contacts with outside industries to find out how they view the possibility of technological obsolescence; and to make preliminary recommendations for dealing with the problem. A complete description of the findings of this research can be reviewed in a technical report in preparation. The following are a small subset of the key findings of the study: NASA's centers and divisions vary in their missions and because of this, in their capability to control obsolescence; research-oriented organizations within NASA are believed by respondents to keep up to date more than the project-oriented organizations; asked what are the signs of a professional's technological obsolescence, respondents had a variety of responses; top performing scientists were viewed as continuous learners, keeping up to date by a variety of means; when asked what incentives were available to aerospace technologists for keeping up to data, respondents specified a number of ideas; respondents identified many obstacles to professionals' keeping up to date in the future; and most respondents expressed some concern for the future of the professionals at NASA vis a vis the issue of professional obsolescence.

  8. The main directions of technologic modernization in the field of subsurface resources management

    Directory of Open Access Journals (Sweden)

    Vyacheslav Petrovich Pakhomov

    2011-09-01

    Full Text Available One of the priorities of Russia's transition to post-industrial development is the upgrade of mineral resources sector as a major system-building industry which includes exploration, extraction, refining, transportation and processing of minerals. The main directions of modernization in the subsoil resources management are improvement of methods and technologies under exploration, automation and computerization of work and equipment at the stages of production and transportation of mineral resources, improvement of equipment and technology with the use of nanotechnology in the stages of enrichment and processing of mineral raw materials. Actual direction of modernization in the ore mining industry today is creation and improvement of techniques and technologies to work in the northern climate according to the Program of subsoil resources development of the North and the Arctic shelf. Due to the exhaustion of large raw mineral deposits and geological complexity of the conditions of mining, there is a need for new types of mining and extraction equipment in the industry and development of processes to extract minerals from the non-traditional raw materials.

  9. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix II research laboratories and facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    This document contains summaries of the research facilities that support the Defense Programs Research and Technology Development Program for FY 1993. The nine program elements are aggregated into three program clusters as follows: (1) Advanced materials sciences and technologies; chemistry and materials, explosives, special nuclear materials (SNM), and tritium. (2) Design sciences and advanced computation; physics, conceptual design and assessment, and computation and modeling. (3) Advanced manufacturing technologies and capabilities; system engineering science and technology, and electronics, photonics, sensors, and mechanical components. Section I gives a brief summary of 23 major defense program (DP) research and technology facilities and shows how these major facilities are organized by program elements. Section II gives a more detailed breakdown of the over 200 research and technology facilities being used at the Laboratories to support the Defense Programs mission.

  10. Inequitable Variations: A Review of Research in Technology, Literacy Studies and Special Education

    Science.gov (United States)

    Pandya, Jessica Zacher; Ávila, JuliAnna

    2017-01-01

    This essay presents the results of a review of research published in the last 10 years on the uses of what we term "productive" digital technologies in special education contexts. There is little overlap between research on productive technologies such as digital storytelling in mainstream contexts and research on technology use to…

  11. Two Micron Laser Technology Advancements at NASA Langley Research Center

    Science.gov (United States)

    Singh, Upendra N.

    2010-01-01

    An Independent Laser Review Panel set up to examine NASA s space-based lidar missions and the technology readiness of lasers appropriate for space-based lidars indicated a critical need for an integrated research and development strategy to move laser transmitter technology from low technical readiness levels to the higher levels required for space missions. Based on the review, a multiyear Laser Risk Reduction Program (LRRP) was initiated by NASA in 2002 to develop technologies that ensure the successful development of the broad range of lidar missions envisioned by NASA. This presentation will provide an overview of the development of pulsed 2-micron solid-state laser technologies at NASA Langley Research Center for enabling space-based measurement of wind and carbon dioxide.

  12. Laboratory Directed Research and Development FY-10 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  13. Laboratory directed research and development 2006 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Westrich, Henry Roger

    2007-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  14. Multidisciplinary Methods in Educational Technology Research and Development

    Science.gov (United States)

    Randolph, Justus J.

    2008-01-01

    Over the past thirty years, there has been much dialogue, and debate, about the conduct of educational technology research and development. In this brief volume, the author helps clarify that dialogue by theoretically and empirically charting the research methods used in the field and provides much practical information on how to conduct…

  15. Technology Time Machine 2012

    DEFF Research Database (Denmark)

    Lehner, Wolfgang; Fettweis, Gerhard; Fitzek, Frank

    2013-01-01

    The IEEE Technology Time Machine (TTM) is a unique event for industry leaders, academics, and decision making government officials who direct R&D activities, plan research programs or manage portfolios of research activities. This report covers the main topics of the 2nd Symposium of future...... technologies. The Symposium brought together world renowned experts to discuss the evolutionary and revolutionary advances in technology landscapes as we look towards 2020 and beyond. TTM facilitated informal discussions among the participants and speakers thus providing an excellent opportunity for informal...... interaction between attendees, senior business leaders, world-renowned innovators, and the press. The goal of the Symposium is to discover key critical innovations across technologies which will alter the research and application space of the future. Topics covered the future of Wireless Technology, Smart...

  16. Blockchain technology for improving clinical research quality

    OpenAIRE

    Benchoufi, Mehdi; Ravaud, Philippe

    2017-01-01

    Reproducibility, data sharing, personal data privacy concerns and patient enrolment in clinical trials are huge medical challenges for contemporary clinical research. A new technology, Blockchain, may be a key to addressing these challenges and should draw the attention of the whole clinical research community. Blockchain brings the Internet to its definitive decentralisation goal. The core principle of Blockchain is that any service relying on trusted third parties can be built in a transpar...

  17. Contributions of research Reactors in science and technology

    International Nuclear Information System (INIS)

    Butt, N.M.; Bashir, J.

    1992-12-01

    In the present paper, after defining a research reactor, its basic constituents, types of reactors, their distribution in the world, some typical examples of their uses are given. Particular emphasis in placed on the contribution of PARR-I (Pakistan Research Reactor-I), the 5 MW Swimming Pool Research reactor which first became critical at the Pakistan Institute of Nuclear Science and Technology (PINSTECH) in Dec. 1965 and attained its full power in June 1966. This is still the major research facility at PINSTECH for research and development. (author)

  18. Prospects of power conversion technology of direct-cycle helium gas turbine for MHTGR

    International Nuclear Information System (INIS)

    Li Yong; Zhang Zuoyi

    1999-01-01

    The modular high temperature gas cooled reactor (MHTGR) is a modern passively safe reactor. The reactor and helium gas turbine may be combined for high efficiency's power conversion, because MHTGR has high outlet temperature up to 950 degree C. Two different schemes are planed separately by USA and South Africa. the helium gas turbine methodologies adopted by them are mainly based on the developed heavy duty industrial and aviation gas turbine technology. The author introduces the differences of two technologies and some design issues in the design and manufacture. Moreover, the author conclude that directly coupling a closed Brayton cycle gas turbine concept to the passively safe MHTGR is the developing direction of MHTGR due to its efficiency which is much higher than that of using steam turbine

  19. HTGR technology development: status and direction

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1982-01-01

    During the last two years there has been an extensive and comprehensive effort expended primarily by General Atomic (GA) in generating a revised technology development plan. Oak Ridge National Laboratory (ORNL) has assisted in this effort, primarily through its interactions over the past years in working together with GA in technology development, but also through detailed review of the initial versions of the technology development plan as prepared by GA. The plan covers Fuel Technology, Materials Technology (including metals, graphite, and ceramics), Plant Technology (including methods, safety, structures, systems, heat exchangers, control and electrical, and mechanical), and Component Design Verification and Support areas

  20. New energy technologies. Research program proposition

    International Nuclear Information System (INIS)

    2005-02-01

    This document presents the most promising program propositions of research and development and the public financing needed for their realization. The concerned technologies are: the hydrogen and the fuel cell PAN-H, the separation and the storage of the CO 2 , the photovoltaic solar electricity, the PREBAT program of the building energy recovery and the bio-energies. (A.L.B.)