WorldWideScience

Sample records for technology remote sensing

  1. Technology Progress Report for Microwave Remote Sensing

    Institute of Scientific and Technical Information of China (English)

    JIANG Jingshan; DONG Xiaolong; LIU Heguang

    2004-01-01

    In this presentation, technological progress for China's microwave remote sensing is introduced. New developments of the microwave remote sensing instruments for China's lunar exploration satellite (Chang'E-1), meteorological satellite FY-3 and ocean dynamic measurement satellite (HY-2) are reported.

  2. A technology path to distributed remote sensing

    Science.gov (United States)

    Fountain, Glen H.; Gold, Robert E.; Jenkins, Robert E.; Lew, Ark L.; Raney, R. Keith

    2000-03-01

    The Johns Hopkins University Applied Physics Laboratory (APL) has been engaged for over 40 years in Earth science missions spanning geodesy to atmospheric science. In parallel, APL's Advanced Technology Program is supporting research in autonomy, scalable architectures, miniaturization, and instrument innovation. These are key technologies for the development of affordable observation programs that could benefit from distributed remote sensing. This paper brings these applications and technology themes together in the form of an innovative, three-satellite remote sensing scenario. This pathfinding mission fills an important scientific niche, and relies on state-of-the-art small-satellite technology.

  3. Remote Sensing Technologies Mitigate Drought

    Science.gov (United States)

    2015-01-01

    Ames Research Center has partnered with the California Department of Water Resources to develop satellite-based technologies to mitigate drought conditions. One project aims to help water managers adjust their irrigation to match the biological needs of each crop, and another involves monitoring areas where land is fallow so emergency relief can more quickly aid affected communities.

  4. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  5. Technology Progress Report for Spaceborne Microwave Remote Sensing

    Institute of Scientific and Technical Information of China (English)

    JHANG Jingshan; LIU Heguang; DONG Xiaolong

    2006-01-01

    In this presentation, technological progress for China's microwave remote sensing is introduced. New developments of the microwave remote sensing instruments formeteorological satellite FY-3, ocean dynamic measurement satellite (HY-2), environment small SAR satellite (H J-1C) and China's lunar exploration satellite (Chang'E-1), are reported.

  6. Satellite remote-sensing technologies used in forest fire management

    Institute of Scientific and Technical Information of China (English)

    TIAN Xiao-rui; Douglas J. Mcrae; SHU Li-fu; WANG Ming-yu; LI Hong

    2005-01-01

    Satellite remote sensing has become a primary data source for fire danger rating prediction, fuel and fire mapping, fire monitoring, and fire ecology research. This paper summarizes the research achievements in these research fields, and discusses the future trend in the use of satellite remote-sensing techniques in wildfire management. Fuel-type maps from remote-sensing data can now be produced at spatial and temporal scales quite adequate for operational fire management applications. US National Oceanic and Atmospheric Administration (NOAA) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellites are being used for fire detection worldwide due to their high temporal resolution and ability to detect fires in remote regions. Results can be quickly presented on many Websites providing a valuable service readily available to fire agency. As cost-effective tools, satellite remote-sensing techniques play an important role in fire mapping. Improved remote-sensing techniques have the potential to date older fire scars and provide estimates of burn severity. Satellite remote sensing is well suited to assessing the extent of biomass burning, a prerequisite for estimating emissions at regional and global scales, which are needed for better understanding the effects of fire on climate change. The types of satellites used in fire research are also discussed in the paper. Suggestions on what remote-sensing efforts should be completed in China to modernize fire management technology in this country are given.

  7. APPLICATION OF REMOTE SENSING TECHNOLOGY TO POPULATION ESTIMATION

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bao-guang

    2003-01-01

    This paper attempts to explore a new avenue of urban small-regional population estimation by remote sensing technology, creatively and comprehensively for the first time using a residence count method, area (density) method and model method, incorporating the application experience of American scholars in the light of the state of our country. Firstly, the author proposes theoretical basis for population estimation by remote sensing, on the basis of analysing and evaluating the history and state quo of application of methods of population estimation by remote sens-ing. Secondly, two original types of mathematical models of population estimation are developed on the basis of remote sensing data, taking Tianjin City as an example. By both of the mathematical models the regional population may be estimated from remote sensing variable values with high accuracy. The number of the independent variables in the lat-ter model is somewhat smaller and the collection of remote sensing data is somewhat easier, but the deviation is a little larger. Finally, some viewpoints on the principled problems about the practical application of remote sensing to popu-lation estimation are put forward.

  8. Advanced technologies for remote sensing imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Wood, L.L.

    1993-06-07

    Generating and returning imagery from great distances has been generally associated with national security activities, with emphasis on reliability of system operation. (While the introduction of such capabilities was usually characterized by high levels of innovation, the evolution of such systems has followed the classical track of proliferation of ``standardized items`` expressing ever more incremental technological advances.) Recent focusing of interest on the use of remote imaging systems for commercial and scientific purposes can be expected to induce comparatively rapid advances along the axes of efficiency and technological sophistication, respectively. This paper reviews the most basic reasons for expecting the next decade of advances to dwarf the impressive accomplishments of the past ten years. The impact of these advances clearly will be felt in all major areas of large-scale human endeavor, commercial, military and scientific.

  9. Remote sensing education and Internet/World Wide Web technology

    Science.gov (United States)

    Griffith, J.A.; Egbert, S.L.

    2001-01-01

    Remote sensing education is increasingly in demand across academic and professional disciplines. Meanwhile, Internet technology and the World Wide Web (WWW) are being more frequently employed as teaching tools in remote sensing and other disciplines. The current wealth of information on the Internet and World Wide Web must be distilled, nonetheless, to be useful in remote sensing education. An extensive literature base is developing on the WWW as a tool in education and in teaching remote sensing. This literature reveals benefits and limitations of the WWW, and can guide its implementation. Among the most beneficial aspects of the Web are increased access to remote sensing expertise regardless of geographic location, increased access to current material, and access to extensive archives of satellite imagery and aerial photography. As with other teaching innovations, using the WWW/Internet may well mean more work, not less, for teachers, at least at the stage of early adoption. Also, information posted on Web sites is not always accurate. Development stages of this technology range from on-line posting of syllabi and lecture notes to on-line laboratory exercises and animated landscape flyovers and on-line image processing. The advantages of WWW/Internet technology may likely outweigh the costs of implementing it as a teaching tool.

  10. Microwave Remote Sensing: Needs and Requirements Concerning Technology

    DEFF Research Database (Denmark)

    Skou, Niels

    2003-01-01

    Spaceborne microwave remote sensing instruments, like the imaging radiometer and the synthetic aperture radar, are over timed faced with two partly conflicting requirements: performance expectations (resolutions, sensitivity, coverage) steadily increase with resource allocations (weight, power, b......, bulk, cost) decrease. This results in needs and requirements to the development of advanced technology thus enabling the future advanced systems to be viable and realistic.......Spaceborne microwave remote sensing instruments, like the imaging radiometer and the synthetic aperture radar, are over timed faced with two partly conflicting requirements: performance expectations (resolutions, sensitivity, coverage) steadily increase with resource allocations (weight, power...

  11. The Impact of Drone Technology on Arctic Remote Sensing Data

    Science.gov (United States)

    Ruthkoski, T.; Greaves, H.

    2016-12-01

    Unmanned Aircraft Systems (UAS), more commonly known as drones, present unique remote sensing capabilities. In the harsh climate and remoteness of the Alaskan Arctic, UAS are expected to dramatically advance data collection methods. In August 2016, the Federal Aviation Administration (FAA) will begin to allow small UAS to be used in research activities beyond aviation technology development. However, the quality of remote sensing data collected by drone is still a matter of speculation and flight operations protocol is in early stages. This project presents preliminary evidence that consumer-grade optics mounted on small UAS are able to produce valid scientific data. Lessons learned from Toolik Field Station flight operations development in accordance with current FAA guidelines will also be discussed.

  12. Application of Remote Sensing Technology in Mine Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Li Yue

    2015-01-01

    Full Text Available Mine environment problem caused by the exploitation of mineral resources has become a key factor which affects normal production of mine and safety of ecological environment for human settlement. For better protection and management of mine environment, this article has introduced the important role of remote sensing technology in pollution monitoring of mine environment, geological disaster monitoring and monitoring of mining activities.

  13. Remote Sensing.

    Science.gov (United States)

    Williams, Richard S., Jr.; Southworth, C. Scott

    1983-01-01

    The Landsat Program became the major event of 1982 in geological remote sensing with the successful launch of Landsat 4. Other 1982 remote sensing accomplishments, research, publications, (including a set of Landsat worldwide reference system index maps), and conferences are highlighted. (JN)

  14. Remote sensing validation through SOOP technology: implementation of Spectra system

    Science.gov (United States)

    Piermattei, Viviana; Madonia, Alice; Bonamano, Simone; Consalvi, Natalizia; Caligiore, Aurelio; Falcone, Daniela; Puri, Pio; Sarti, Fabio; Spaccavento, Giovanni; Lucarini, Diego; Pacci, Giacomo; Amitrano, Luigi; Iacullo, Salvatore; D'Andrea, Salvatore; Marcelli, Marco

    2017-04-01

    The development of low-cost instrumentation plays a key role in marine environmental studies and represents one of the most innovative aspects of marine research. The availability of low-cost technologies allows the realization of extended observatory networks for the study of marine phenomena through an integrated approach merging observations, remote sensing and operational oceanography. Marine services and practical applications critically depends on the availability of large amount of data collected with sufficiently dense spatial and temporal sampling. This issue directly influences the robustness both of ocean forecasting models and remote sensing observations through data assimilation and validation processes, particularly in the biological domain. For this reason it is necessary the development of cheap, small and integrated smart sensors, which could be functional both for satellite data validation and forecasting models data assimilation as well as to support early warning systems for environmental pollution control and prevention. This is particularly true in coastal areas, which are subjected to multiple anthropic pressures. Moreover, coastal waters can be classified like case 2 waters, where the optical properties of inorganic suspended matter and chromophoric dissolved organic matter must be considered and separated by the chlorophyll a contribution. Due to the high costs of mooring systems, research vessels, measure platforms and instrumentation a big effort was dedicated to the design, development and realization of a new low cost mini-FerryBox system: Spectra. Thanks to the modularity and user-friendly employment of the system, Spectra allows to acquire continuous in situ measures of temperature, conductivity, turbidity, chlorophyll a and chromophoric dissolved organic matter (CDOM) fluorescences from voluntary vessels, even by non specialized operators (Marcelli et al., 2014; 2016). This work shows the preliminary application of this technology to

  15. Mapping of Ecosystems in Mount Bromo Using Remote Sensing Technology

    Directory of Open Access Journals (Sweden)

    Bangun Muljo Sukojo

    2010-10-01

    Full Text Available Covered land analyses of Landsat image have been done to get ecosystem types and map in Mount Bromo region using remote sensing technology. There are nine types of   ecosystems in Mount Bromo region, i.e. primary forest, secondary forest, lake, crater, sands, uncovered land, underbrush, dry-field and residence. Distribution of rock analysis has also been done by comparing the manual image interpretation with  geological map. The results were coorelated with the digital image interpretation to find rock distribution map which can be useful to get the information about water reservation potencial in Mount Bromo region. The coorelation results together with slope, covered vegetation and rain falls can give description about absolute water reservation and buffer zone map in Mount Bromo region.

  16. Assessment of biochemical concentrations of vegetation using remote sensing technology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The main biochemicals (such as lignin, protein, cellulose, sugar, starch, chlorophyll and water) of vegetation are directly or indirectly involved in major ecological processes, such as the functions of terrestrial ecosystems (i.e., nutrient-cycling processes, primary production, and decomposition). Remote sensing techniques provide a very convenient way of data acquisition capable of covering a large area several times during one season, so it can play a unique and essential role provided that we can relate remote sensing measurements to the biochemical characteristics of the Earth surface in a reliable and operational way. The application of remote sensing techniques for the estimation of canopy biochemicals was reviewed. Three methods of estimating biochemical concentrations of vegetation were included in this paper: index, stepwise multiple linear regression, and stepwise multiple linear regression based on a model of the forest crown. In addition, the vitality and potential applying value are stressed.

  17. Research on Coal Exploration Technology Based on Satellite Remote Sensing

    Directory of Open Access Journals (Sweden)

    Dong Xiao

    2016-01-01

    Full Text Available Coal is the main source of energy. In China and Vietnam, coal resources are very rich, but the exploration level is relatively low. This is mainly caused by the complicated geological structure, the low efficiency, the related damage, and other bad situations. To this end, we need to make use of some advanced technologies to guarantee the resource exploration is implemented smoothly and orderly. Numerous studies show that remote sensing technology is an effective way in coal exploration and measurement. In this paper, we try to measure the distribution and reserves of open-air coal area through satellite imagery. The satellite picture of open-air coal mining region in Quang Ninh Province of Vietnam was collected as the experimental data. Firstly, the ENVI software is used to eliminate satellite imagery spectral interference. Then, the image classification model is established by the improved ELM algorithm. Finally, the effectiveness of the improved ELM algorithm is verified by using MATLAB simulations. The results show that the accuracies of the testing set reach 96.5%. And it reaches 83% of the image discernment precision compared with the same image from Google.

  18. Malaria Modeling using Remote Sensing and GIS Technologies

    Science.gov (United States)

    Kiang, Richard

    2004-01-01

    Malaria has been with the human race since the ancient time. In spite of the advances of biomedical research and the completion of genomic mapping of Plasmodium falciparum, the exact mechanisms of how the various strains of parasites evade the human immune system and how they have adapted and become resistant to multiple drugs remain elusive. Perhaps because of these reasons, effective vaccines against malaria are still not available. Worldwide, approximately one to three millions deaths are attributed to malaria annually. With the increased availability of remotely sensed data, researchers in medical entomology, epidemiology and ecology have started to associate environmental and ecological variables with malaria transmission. In several studies, it has been shown that transmission correlates well with certain environmental and ecological parameters, and that remote sensing can be used to measure these determinants. In a NASA project, we have taken a holistic approach to examine how remote sensing and GIs can contribute to vector and malaria controls. To gain a better understanding of the interactions among the possible promoting factors, we have been developing a habitat model, a transmission model, and a risk prediction model, all using remote sensing data as input. Our objectives are: 1) To identify the potential breeding sites of major vector species and the locations for larvicide and insecticide applications in order to reduce costs, lessen the chance of developing pesticide resistance, and minimize the damage to the environment; 2) To develop a malaria transmission model characterizing the interactions among hosts, vectors, parasites, landcover and environment in order to identify the key factors that sustain or intensify malaria transmission, and 3) To develop a risk model to predict the occurrence of malaria and its transmission intensity using epidemiological data and satellite-derived or ground-measured environmental and meteorological data.

  19. Malaria Modeling using Remote Sensing and GIS Technologies

    Science.gov (United States)

    Kiang, Richard

    2004-01-01

    Malaria has been with the human race since the ancient time. In spite of the advances of biomedical research and the completion of genomic mapping of Plasmodium falciparum, the exact mechanisms of how the various strains of parasites evade the human immune system and how they have adapted and become resistant to multiple drugs remain elusive. Perhaps because of these reasons, effective vaccines against malaria are still not available. Worldwide, approximately one to three millions deaths are attributed to malaria annually. With the increased availability of remotely sensed data, researchers in medical entomology, epidemiology and ecology have started to associate environmental and ecological variables with malaria transmission. In several studies, it has been shown that transmission correlates well with certain environmental and ecological parameters, and that remote sensing can be used to measure these determinants. In a NASA project, we have taken a holistic approach to examine how remote sensing and GIs can contribute to vector and malaria controls. To gain a better understanding of the interactions among the possible promoting factors, we have been developing a habitat model, a transmission model, and a risk prediction model, all using remote sensing data as input. Our objectives are: 1) To identify the potential breeding sites of major vector species and the locations for larvicide and insecticide applications in order to reduce costs, lessen the chance of developing pesticide resistance, and minimize the damage to the environment; 2) To develop a malaria transmission model characterizing the interactions among hosts, vectors, parasites, landcover and environment in order to identify the key factors that sustain or intensify malaria transmission, and 3) To develop a risk model to predict the occurrence of malaria and its transmission intensity using epidemiological data and satellite-derived or ground-measured environmental and meteorological data.

  20. Detection of Septic System Performance via Remote Sensing Technologies

    Science.gov (United States)

    Patterson, A. H.; Kuszmaul, J. S.; Harvey, C.

    2005-05-01

    Failing and improperly managed septic systems can affect water quality in their environs and cause health problems for individuals or community residents. When unchecked, failing systems can allow disease-causing pathogens to enter groundwater aquifers and pollute surface waters, contaminating drinking water, recreational waterways, and fishing grounds. Early detection of septic system leakage and failure can limit the extent of these problems. External symptoms which occur over an improperly functioning septic system can include lush or greener growth of vegetation, distress of vegetation, excessive soil moisture levels, or pooling of surface effluent. The use of remote sensing technologies coupled with attainable permit records to successfully identify these features could enable the appropriate agencies to target problem areas without extensive field inspection. High-resolution, airborne imagery was identified as having the potential to detect relative changes in soil moisture, to delineate individual leach fields, and to locate effluent discharges into water bodies. In addition, vegetation patterns responding to nutrient-rich effluent and increased soil moisture could be examined using a vegetation index. Both thermal- and color-infrared imagery were acquired for a study area in Jackson County, Mississippi, adjacent to the Gulf of Mexico. Within this coastal neighborhood known to have significant septic system failures, over 50 volunteer residents supplied information regarding the function of their systems and access to their property. Following data collection, regression methods were used to nominate the major indicators of malfunctioning systems. A ranking system for the "level of function" was derived from these analyses. A model was created which inputs data from attainable records and imagery analysis and outputs a predicted level of septic system function. The end product of this research will permit evaluation of septic system performance to be

  1. Long-Term Monitoring of Desert Land and Natural Resources and Application of Remote Sensing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuki [Argonne National Lab. (ANL), Argonne, IL (United States); Rollins, Katherine E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    Monitoring environmental impacts over large, remote desert regions for long periods of time can be very costly. Remote sensing technologies present a promising monitoring tool because they entail the collection of spatially contiguous data, automated processing, and streamlined data analysis. This report provides a summary of remote sensing products and refinement of remote sensing data interpretation methodologies that were generated as part of the U.S. Department of the Interior Bureau of Land Management Solar Energy Program. In March 2015, a team of researchers from Argonne National Laboratory (Argonne) collected field data of vegetation and surface types from more than 5,000 survey points within the eastern part of the Riverside East Solar Energy Zone (SEZ). Using the field data, remote sensing products that were generated in 2014 using very high spatial resolution (VHSR; 15 cm) multispectral aerial images were validated in order to evaluate potential refinements to the previous methodologies to improve the information extraction accuracy.

  2. Application of remote sensing technology in the study of vegetation: Example of vegetation of zhejiang province in China

    Science.gov (United States)

    CHU, MengRu

    2015-04-01

    Application of remote sensing technology in the study of vegetation: Example of vegetation of zhejiang province in China Remote sensing technology , is one of the pillars of the space information technology in the 21st century ,play an important role in the study of vegetation. Vegetation coverage as an important parameter reflecting surface information, has been an important research topic in the field of vegetation remote sensing. Administrative region in zhejiang Province as the study area, use of microwave remote sensing and hyperspectral remote sensing technology, combined with the related data, to survey the area of forest resources in zhejiang Province, establishes an index system of sustainable forest resources management ability in zhejiang, and to evaluate its ability. Remote Sensing is developed in the 1960 s of the earth observation technology, comprehensive instruments refers to the application, not contact with the object detection phase, the target characteristics of electromagnetic waves recorded from a distance, through the analysis, reveals the characteristics of the object properties and changes of comprehensive detection technology. Investigation of vegetation is an important application field of remote sensing investigation. Vegetation is an important factor of environment, and also is one of the best sign to reflect the regional ecological environment, at the same times is the interpretation of soil, hydrological elements such as logo, individual or prospecting indicator plant. Vegetation imaging and interpretation of research results for environmental monitoring, biodiversity conservation, agriculture, forestry and other relevant departments to provide information services.Microwave remote sensing hyperspectral remote sensing technology and application in the research of vegetation is an important direction of remote sensing technology in the future. This paper introduces the principle of microwave remote sensing and hyperspectral remote

  3. Advances on Technology and Application of Ocean Color Remote Sensing in China (2004 - 2006)

    Institute of Scientific and Technical Information of China (English)

    PAN Delu; BAI Yan

    2006-01-01

    China has great progress in the technology and application of ocean color remote sensing during 2004-2006. In this report, firstly, four major technical advances are displaying, including (1) the vector radiative transfer numerical model of coupled ocean-atmosphere system; (2) the atmospheric correction algorithm specialized on Chinese high turbid water; (3) systematical research of hyper-spectrum ocean color remote sensing; (4) local algorithms of oceanic parameters, like ocean color components, ocean primary productivity, water transparency, water quality parameters, etc. On the foundation of technical advances, ocean color remote sensing takes effect on ocean environment monitoring, with four major kinds of application systems, namely, (1) the automatic multi-satellites data receiving, processing and application system; (2) the shipboard satellite data receiving and processing system for fishery ground information; (3) Coastal water quality monitoring system, integrating satellite and airborne remote sensing technology and ship measurement; (4) the preliminary system of airborne ocean color remote sensing application system. Finally, the prospective development of Chinese ocean color remote sensing is brought forward. With Chinese second ocean color satellite (HY-1B) orbiting, great strides will take place in Chinese ocean color information accumulation and application.

  4. High resolution remote sensing image processing technology and its application to uranium geology

    Science.gov (United States)

    Zhang, Jie-lin

    2008-12-01

    Hyperspectral and high spatial resolution remote sensing technology take important role in uranium geological application, data mining and knowledge discovery methods are key to character spectral and spatial information of uranium mineralization factors. Based on curvelet transform algorithm, this paper developed the image fusion technology of hyperspectral (Hyperion) and high spatial data (SPOT5), and results demonstrated that fusion image had advantage in denoising, enhancing and information identification. Used discrete wavelet transform, the spectral parameters of uranium mineralization factors were acquired, the spectral identification pedigrees of typical quadrivalence and hexavalence uranium minerals were established. Furthermore, utilizing hyperspectral remote sensing observation technology, this paper developed hyperspectral logging of drill cores and trench, it can quickly processed lots of geological and spectral information, and the relationship between radioactive intensity and abnormal spectral characteristics of Fe3+ was established. All those provided remote sensing technical bases to uranium geology, and the better results have been achieved in Taoshan uranium deposits in south China.

  5. Remote Sensing and the Earth.

    Science.gov (United States)

    Brosius, Craig A.; And Others

    This document is designed to help senior high school students study remote sensing technology and techniques in relation to the environmental sciences. It discusses the acquisition, analysis, and use of ecological remote data. Material is divided into three sections and an appendix. Section One is an overview of the basics of remote sensing.…

  6. Remote Sensing and the Earth.

    Science.gov (United States)

    Brosius, Craig A.; And Others

    This document is designed to help senior high school students study remote sensing technology and techniques in relation to the environmental sciences. It discusses the acquisition, analysis, and use of ecological remote data. Material is divided into three sections and an appendix. Section One is an overview of the basics of remote sensing.…

  7. Mapping of submerged vegetation using remote sensing technology

    Science.gov (United States)

    Savastano, K. J.; Faller, K. H.; Mcfadin, L. W.; Holley, H.

    1981-01-01

    Techniques for mapping submerged sea grasses using aircraft supported remote sensors are described. The 21 channel solid state array spectroradiometer was successfully used as a remote sensor in the experiment in that the system operated without problem and obtained data. The environmental conditions of clear water, bright sandy bottom and monospecific vegetation (Thalassia) were ideal.

  8. Research on Key Technology of Mining Remote Sensing Dynamic Monitoring Information System

    Science.gov (United States)

    Sun, J.; Xiang, H.

    2017-09-01

    Problems exist in remote sensing dynamic monitoring of mining are expounded, general idea of building remote sensing dynamic monitoring information system is presented, and timely release of service-oriented remote sensing monitoring results is established. Mobile device-based data verification subsystem is developed using mobile GIS, remote sensing dynamic monitoring information system of mining is constructed, and "timely release, fast handling and timely feedback" rapid response mechanism of remote sensing dynamic monitoring is implemented.

  9. A Remote-Sensing Mission

    Science.gov (United States)

    Hotchkiss, Rose; Dickerson, Daniel

    2008-01-01

    Sponsored by NASA and the JASON Education Foundation, the remote Sensing Earth Science Teacher Education Program (RSESTeP) trains teachers to use state-of-the art remote-sensing technology with the idea that participants bring back what they learn and incorporate it into Earth science lessons using technology. The author's participation in the…

  10. A Remote-Sensing Mission

    Science.gov (United States)

    Hotchkiss, Rose; Dickerson, Daniel

    2008-01-01

    Sponsored by NASA and the JASON Education Foundation, the remote Sensing Earth Science Teacher Education Program (RSESTeP) trains teachers to use state-of-the art remote-sensing technology with the idea that participants bring back what they learn and incorporate it into Earth science lessons using technology. The author's participation in the…

  11. Measurement of Oil and Natural Gas Well Pad Enclosed Combustor Emissions Using Optical Remote Sensing Technologies

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD) and EPA Region 8 are collaborating under the EPA’s Regional Applied Research Effort (RARE) program to evaluate ground-based remote sensing technologies that could be used to characterize emis...

  12. Land Desertification Monitoring on Tibetan Plateau Using Remote Sensing Technology

    Science.gov (United States)

    Liu, Z.; Zou, X.; Liu, H.

    2012-12-01

    As one of the serious ecological environmental problems of the Tibetan plateau, desertification has critically hampered the economic and social development in Tibet, so it is imperative to monitoring the desertification in Tibet area. Due to its 200 thousand km2 vast area and steep terrain, this paper uses multi-source remote sensing image to survey the current situation of land desertification in Tibetan plateau, and study dynamic desertification change on the 10 km2 land between Namucuo lake and Selincuo lake. Data of the 250 meters time-series MODIS-NDVI images, 30 m resolution Landsat TM images and 90 m SRTM DEM data were used. Through the analysis of the relationship between MODIS-NDVI, vegetation growth characteristics and vegetation vertical distribution, this paper chooses the MODIS-NDVI time series data and principal component analysis of the first band (PC1), vegetation coverage(VC), DEM and its derived slope data as indicators for desertification monitoring. Visual interpretation based on 30 m TM image is also used to classify each type of desertification. Using the high temporal resolution data, we can quickly obtain desertification hot spot areas then accurately distinguish each degree of desertification with high spatial resolution images. The results are: (1) The desertification area in Tibetan plateau in 2008 is 218,286 km2, which is 18.91% of the total area, and mainly distributed in the Ali region, next by Nagqu and Xigaze. The severe desertification land area is 8,866 km2 ( 4.06% of the desertified land), of which the mobile dune area is 3224 km2, heavy saline area is 5641 km2. Moderate desertified land area is 110,915 km2( 50.81% of the desertified land), of which semi-fixed sand dune area is 10,075 km2 and the bare sand area is 100,839 km2. Mild desertified land area is 98,504 km2 ( 45.12% of the desertified land), of which the fixed dune area is 4,177 km2 and the half bare gravel area is 94,326 km2. (2) By using GIS spatial analysis, westudied

  13. An overview of remote sensing technology transfer in Canada and the United States

    Science.gov (United States)

    Strome, W. M.; Lauer, D. T.

    1977-01-01

    To realize the maximum potential benefits of remote sensing, the technology must be applied by personnel responsible for the management of natural resources and the environment. In Canada and the United States, these managers are often in local offices and are not those responsible for the development of systems to acquire, preprocess, and disseminate remotely sensed data, nor those leading the research and development of techniques for analysis of the data. However, the latter organizations have recognized that the technology they develop must be transferred to the management agencies if the technology is to be useful to society. Problems of motivation and communication associated with the technology transfer process, and some of the methods employed by Federal, State, Provincial, and local agencies, academic institutions, and private organizations to overcome these problems are explored.

  14. Introduction to remote sensing

    CERN Document Server

    Cracknell, Arthur P

    2007-01-01

    Addressing the need for updated information in remote sensing, Introduction to Remote Sensing, Second Edition provides a full and authoritative introduction for scientists who need to know the scope, potential, and limitations in the field. The authors discuss the physical principles of common remote sensing systems and examine the processing, interpretation, and applications of data. This new edition features updated and expanded material, including greater coverage of applications from across earth, environmental, atmospheric, and oceanographic sciences. Illustrated with remotely sensed colo

  15. Submillimeter-Wave Radiometer Technology for Earth Remote Sensing Applications

    Science.gov (United States)

    Siegel, P.

    2000-01-01

    Recent innovations in ultra-high frequency, semiconductor device/component technology have enabled both traditional and new applications for space-borne millimeter- and submillimeter-wave heterodyne radiometer instruments.

  16. Research on fast Fourier transforms algorithm of huge remote sensing image technology with GPU and partitioning technology.

    Science.gov (United States)

    Yang, Xue; Li, Xue-You; Li, Jia-Guo; Ma, Jun; Zhang, Li; Yang, Jan; Du, Quan-Ye

    2014-02-01

    Fast Fourier transforms (FFT) is a basic approach to remote sensing image processing. With the improvement of capacity of remote sensing image capture with the features of hyperspectrum, high spatial resolution and high temporal resolution, how to use FFT technology to efficiently process huge remote sensing image becomes the critical step and research hot spot of current image processing technology. FFT algorithm, one of the basic algorithms of image processing, can be used for stripe noise removal, image compression, image registration, etc. in processing remote sensing image. CUFFT function library is the FFT algorithm library based on CPU and FFTW. FFTW is a FFT algorithm developed based on CPU in PC platform, and is currently the fastest CPU based FFT algorithm function library. However there is a common problem that once the available memory or memory is less than the capacity of image, there will be out of memory or memory overflow when using the above two methods to realize image FFT arithmetic. To address this problem, a CPU and partitioning technology based Huge Remote Fast Fourier Transform (HRFFT) algorithm is proposed in this paper. By improving the FFT algorithm in CUFFT function library, the problem of out of memory and memory overflow is solved. Moreover, this method is proved rational by experiment combined with the CCD image of HJ-1A satellite. When applied to practical image processing, it improves effect of the image processing, speeds up the processing, which saves the time of computation and achieves sound result.

  17. Challenges of Remote Sensing and Spatial Information Education and Technology Transfer in a Fast Developing Industry

    Science.gov (United States)

    Tsai, F.; Chen, L.-C.

    2014-04-01

    During the past decade, Taiwan has experienced an unusual and fast growing in the industry of mapping, remote sensing, spatial information and related markets. A successful space program and dozens of advanced airborne and ground-based remote sensing instruments as well as mobile mapping systems have been implemented and put into operation to support the vast demands of geospatial data acquisition. Moreover, in addition to the government agencies and research institutes, there are also tens of companies in the private sector providing geo-spatial data and services. However, the fast developing industry is also posing a great challenge to the education sector in Taiwan, especially the higher education for geo-spatial information. Facing this fast developing industry, the demands of skilled professionals and new technologies in order to address diversified needs are indubitably high. Consequently, while delighting in the expanding and prospering benefitted from the fast growing industry, how to fulfill these demands has become a challenge for the remote sensing and spatial information disciplines in the higher education institutes in Taiwan. This paper provides a brief insight into the status of the remote sensing and spatial information industry in Taiwan as well as the challenges of the education and technology transfer to support the increasing demands and to ensure the continuous development of the industry. In addition to the report of the current status of the remote sensing and spatial information related courses and programs in the colleges and universities, current and potential threatening issues and possible resolutions are also discussed in different points of view.

  18. Preliminary Findings of Inflight Icing Field Test to Support Icing Remote Sensing Technology Assessment

    Science.gov (United States)

    King, Michael; Reehorst, Andrew; Serke, Dave

    2015-01-01

    NASA and the National Center for Atmospheric Research have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology has recently been extended to provide volumetric coverage surrounding an airport. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize a vertical pointing cloud radar, a multifrequency microwave radiometer with azimuth and elevation pointing, and a NEXRAD radar. The new terminal area icing remote sensing system processes the data streams from these instruments to derive temperature, liquid water content, and cloud droplet size for each examined point in space. These data are then combined to ultimately provide icing hazard classification along defined approach paths into an airport.

  19. A Summary of Change Detection Technology of Remotely-Sensed Image

    Institute of Scientific and Technical Information of China (English)

    Zhou Shilun

    2013-01-01

      ABSRACT:This paper will describe three aspects of change detection technology of remotely-sensed images. At first, the process of change detection is presented. Then, the author makes a summary of several common change detection methods and a brief review of the advantages and disadvantages of them. At the end of this paper, the applications and difficulty of current change detection techniques are discussed.

  20. Technology Reconciliation in the Remote Sensing ERA of United States Civilian Weather Forecasting: 1957 -1987.

    Science.gov (United States)

    Courain, Margaret Eileen

    This dissertation seeks to advance an understanding of the management of a major technological change in meteorology. The study examines the connection between changes in production and real-time use of data products derived from remote -sensing data collection and the evolution of U.S. civilian weather forecasting 1957-1987. The role of data collection in weather forecasting throughout history is examined, giving most attention to the 1957-1987 period. Critical to the real-time use of remote-sensing data was technology reconciliation. As defined by the author, it is the function or process by which data products and information derived from a new technology are made consistent or congruent with the existing data representations of a science in order to be used effectively. No model had been developed for a technology reconciliation process, or definition of the major role technology reconciliators played in the 30-year evolution of the science of weather forecasting. In order to assess the new remote-sensing data resource and its use in U.S. civilian weather forecasting, a Data Accountability and Review Technique (DART) was developed by the author in 1989. This technique was used to identify 16 of the technology reconciliators who developed and reconciled 25 new remote-sensing data products with the weather charts, maps and computer models of the National Weather Service. In five separate program teams, they were responsible for 15 improvements in the products--forecasts--and 18 improvement in the process of weather forecasting. A model of the technology reconciliation is proposed which can be applied to understanding the contemporary history of other sciences. The model, as well as the methods developed by the author to recognize the process of technology reconciliation has a much more general applicability beyond the sciences. Any field implementing new technology that promises to improve its whole way of working will be faced with the task of technology

  1. Close-range environmental remote sensing with 3D hyperspectral technologies

    Science.gov (United States)

    Nevalainen, O.; Honkavaara, E.; Hakala, T.; Kaasalainen, Sanna; Viljanen, N.; Rosnell, T.; Khoramshahi, E.; Näsi, R.

    2016-10-01

    Estimation of the essential climate variables (ECVs), such as photosynthetically active radiation (FAPAR) and the leaf area index (LAI), is largely based on satellite-based remote sensing and the subsequent inversion of radiative transfer (RT) models. In order to build models that accurately describe the radiative transfer within and below the canopy, detailed 3D structural (geometrical) and spectral (radiometrical) information of the canopy is needed. Close-range remote sensing, such as terrestrial remote sensing and UAV-based 3D spectral measurements, offers significant opportunity to improve the RT modelling and ECV estimation of forests. Finnish Geospatial Research Institute (FGI) has been developing active and passive high resolution 3D hyperspectral measurement technologies that provide reflectance, anisotropy and 3D structure information of forests (i.e. hyperspectral point clouds). Technologies include hyperspectral imaging from unmanned airborne vehicle (UAV), terrestrial hyperspectral lidar (HSL) and terrestrial hyperspectral stereoscopic imaging. A measurement campaign to demonstrate these technologies in ECV estimation with uncertainty propagation was carried out in the Wytham Woods, Oxford, UK, in June 2015. Our objective is to develop traceable processing procedures for generating hyperspectral point clouds with geometric and radiometric uncertainty propagation using hyperspectral aerial and terrestrial imaging and hyperspectral terrestrial laser scanning. The article and presentation will present the methodology, instrumentation and first results of our study.

  2. Research on remote sensing assessment technology for porphyry copper in south of Arequipa province of Peru

    Science.gov (United States)

    Yang, Rihong; Li, Zhizhong; Cheng, Xiufa; Zhao, Yuling

    2014-05-01

    been carried out by using man-machine interactive remote sensing interpretation technology, and then in connection with the metallogenic geological characteristics, the mine indicating information such as ore-controlling structure, source rocks and ore-hosted rocks of PCD were achieved in the study area. Finally, a comprehensive assessment for mineral exploration by remote sensing in the study area is accomplished and five favorable area for mineral exploration by remote sensing is delineated, based on the remote sensing mine-indicating information such as linear and circular-shaped ore-controlling structures, source rocks and ore-hosted rocks, argillic-and phyllic- altered and propylitization altered minerals assemblages.

  3. Remote Sensing and the Kyoto Protocol: A Review of Available and Future Technology for Monitoring Treaty Compliance

    Science.gov (United States)

    Imhoff, Marc L.; Rosenquist, A.; Milne, A. K.; Dobson, M. C.; Qi, J.

    2000-01-01

    An International workshop was held to address how remote sensing technology could be used to support the environmental monitoring requirements of the Kyoto Protocol. An overview of the issues addressed and the findings of the workshop are discussed.

  4. Methodology for conceptual remote sensing spacecraft technology: insertion analysis balancing performance, cost, and risk

    Science.gov (United States)

    Bearden, David A.; Duclos, Donald P.; Barrera, Mark J.; Mosher, Todd J.; Lao, Norman Y.

    1997-12-01

    Emerging technologies and micro-instrumentation are changing the way remote sensing spacecraft missions are developed and implemented. Government agencies responsible for procuring space systems are increasingly requesting analyses to estimate cost, performance and design impacts of advanced technology insertion for both state-of-the-art systems as well as systems to be built 5 to 10 years in the future. Numerous spacecraft technology development programs are being sponsored by Department of Defense (DoD) and National Aeronautics and Space Administration (NASA) agencies with the goal of enhancing spacecraft performance, reducing mass, and reducing cost. However, it is often the case that technology studies, in the interest of maximizing subsystem-level performance and/or mass reduction, do not anticipate synergistic system-level effects. Furthermore, even though technical risks are often identified as one of the largest cost drivers for space systems, many cost/design processes and models ignore effects of cost risk in the interest of quick estimates. To address these issues, the Aerospace Corporation developed a concept analysis methodology and associated software tools. These tools, collectively referred to as the concept analysis and design evaluation toolkit (CADET), facilitate system architecture studies and space system conceptual designs focusing on design heritage, technology selection, and associated effects on cost, risk and performance at the system and subsystem level. CADET allows: (1) quick response to technical design and cost questions; (2) assessment of the cost and performance impacts of existing and new designs/technologies; and (3) estimation of cost uncertainties and risks. These capabilities aid mission designers in determining the configuration of remote sensing missions that meet essential requirements in a cost- effective manner. This paper discuses the development of CADET modules and their application to several remote sensing satellite

  5. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  6. REMOTE SENSING IN OCEANOGRAPHY.

    Science.gov (United States)

    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  7. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  8. AN INTERCOMPARISON OF PASSIVE TERRESTRIAL REMOTE SENSING TECHNOLOGIES TO DERIVE LAI AND CANOPY COVER METRICS

    Directory of Open Access Journals (Sweden)

    W. L. Woodgate

    2012-07-01

    Full Text Available Forest indicators such as Leaf Area Index (LAI and vegetation cover type are recognised as Essential Climate Variables (ECVs which support the '…research, modelling, analysis, and capacity-building activities…' requirements of the United Nations Framework Convention on Climate Change. This research compares the use of passive terrestrial remote sensing technologies for LAI and canopy cover metrics. The passive sensors used are the LAI-2200 and Digital Hemispherical Photography (DHP. The research was conducted at a Victorian reference site containing tree species with predominantly erectophile leaf angle distributions, which are significantly under-represented in the literature. The reference site contributes to a network of sites representative of Victorian land systems and is considered to be in good condition. Preliminary results indicate a low correlation (R2=0.46 between the LAI-2200 and DHP. Further comparisons to be conducted include adding a passive CI-110 plant canopy analyser and an active Terrestrial Laser Scanner. The future objective is to scale the in situ data to aerial and satellite remotely sensed datasets. The aerial remotely sensed data include LiDAR flown by a Riegl LMS Q560, and high resolution multispectral and hyperspectral imagery flown by the ASIA Eagle and Hawk system. The in situ data can be utilised for both calibration and validation of the coincident aerial imagery and LiDAR. Finally, the derived datasets are intended for use to validate the global MODIS LAI product.

  9. An Intercomparison of Passive Terrestrial Remote Sensing Technologies to Derive Lai and Canopy Cover Metrics

    Science.gov (United States)

    Woodgate, W. L.

    2012-07-01

    Forest indicators such as Leaf Area Index (LAI) and vegetation cover type are recognised as Essential Climate Variables (ECVs) which support the '…research, modelling, analysis, and capacity-building activities…' requirements of the United Nations Framework Convention on Climate Change. This research compares the use of passive terrestrial remote sensing technologies for LAI and canopy cover metrics. The passive sensors used are the LAI-2200 and Digital Hemispherical Photography (DHP). The research was conducted at a Victorian reference site containing tree species with predominantly erectophile leaf angle distributions, which are significantly under-represented in the literature. The reference site contributes to a network of sites representative of Victorian land systems and is considered to be in good condition. Preliminary results indicate a low correlation (R2=0.46) between the LAI-2200 and DHP. Further comparisons to be conducted include adding a passive CI-110 plant canopy analyser and an active Terrestrial Laser Scanner. The future objective is to scale the in situ data to aerial and satellite remotely sensed datasets. The aerial remotely sensed data include LiDAR flown by a Riegl LMS Q560, and high resolution multispectral and hyperspectral imagery flown by the ASIA Eagle and Hawk system. The in situ data can be utilised for both calibration and validation of the coincident aerial imagery and LiDAR. Finally, the derived datasets are intended for use to validate the global MODIS LAI product.

  10. An evaluation of the role played by remote sensing technology following the World Trade Center attack

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Remote sensing technology has been widely recognized for contributing to emergency response efforts after the World Trade Center attack on September 11th, 2001. The need to coordinate activities in the midst of a dense, yet relatively small area, made the combination of imagery and mapped data strategically useful. This paper reviews the role played by aerial photography, satellite imagery, and LIDAR data at Ground Zero. It examines how emergency managers utilized these datasets, and identifies significant problems that were encountered. It goes on to explore additional ways in which imagery could have been used, while presenting recommendations for more effective use in future disasters and Homeland Security applications. To plan adequately for future events, it was important to capture knowledge from individuals who responded to the World Trade Center attack. In recognition, interviews with key emergency management and geographic information system (GIS) personnel provide the basis of this paper. Successful techniques should not be forgotten, or serious problems dismissed. Although widely used after September 11th, it is important to recognize that with better planning, remote sensing and GIS could have played an even greater role. Together with a data acquisition timeline, an expanded discussion of these issues is available in the MCEER/NSF report "Emergency Response in the Wake of the World Trade Center Attack: The Remote Sensing Perspective" (Huyck and Adams, 2002).

  11. Hyperspectral remote sensing

    CERN Document Server

    Eismann, Michael

    2012-01-01

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications that builds on the principles of material spectroscopy, radiative transfer, imaging spectrometry, and hyperspectral data processing. This book provides a holistic treatment that captures its multidisciplinary nature, emphasizing the physical principles of hyperspectral remote sensing.

  12. [Ecosystem services evaluation based on geographic information system and remote sensing technology: a review].

    Science.gov (United States)

    Li, Wen-Jie; Zhang, Shi-Huang; Wang, Hui-Min

    2011-12-01

    Ecosystem services evaluation is a hot topic in current ecosystem management, and has a close link with human beings welfare. This paper summarized the research progress on the evaluation of ecosystem services based on geographic information system (GIS) and remote sensing (RS) technology, which could be reduced to the following three characters, i. e., ecological economics theory is widely applied as a key method in quantifying ecosystem services, GIS and RS technology play a key role in multi-source data acquisition, spatiotemporal analysis, and integrated platform, and ecosystem mechanism model becomes a powerful tool for understanding the relationships between natural phenomena and human activities. Aiming at the present research status and its inadequacies, this paper put forward an "Assembly Line" framework, which was a distributed one with scalable characteristics, and discussed the future development trend of the integration research on ecosystem services evaluation based on GIS and RS technologies.

  13. Advanced Soil Moisture Network Technologies; Developments in Collecting in situ Measurements for Remote Sensing Missions

    Science.gov (United States)

    Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.

    2015-12-01

    The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.

  14. AN ASSESSMENT OF LAND USE CHANGES IN FUQING COUNTY OF CHINA USING REMOTE SENSING TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fuqing County of southeast China has witnessed significant land use changes during the last decade. Remote sensing technology using multitemporal Landsat TM images was used to characterize land use types and to monitor land use changes in the county. Two TM scenes from 1991 and 1996 were used to cover the county and a five-year time period. Digital image processing was carried out for the remotely sensed data to produce classified images. The images were further processed using GIS software to generate GIS databases so that the data could be further spatially analyzed taking the advantages of the software. Land use change areas were determined by using the change detection technique. The comparison of the two classified TM images using the above technologies reveals that during the five study years, a large area of arable lands in the county has been lost and deforestation has taken place largely because of the dramatic increase in built-up land and orchard. The conclusive statistical information is useful to understand the processes, causes and impacts of the land use changes in the county. The major driving force to the land use changes in the county appeared to be the rapid economic development. The decision makers of the county have to pay more attention to the land use changes for the county′ s sustainable development.

  15. The research of a gyro-stabilized platform and POS application technology in airborne remote sensing

    Science.gov (United States)

    Xu, Jiang; Du, Qi

    2009-07-01

    The distortion of the collected images usually takes place since the attitude changes along with the flying aerocraft on airborne remote sensing. In order to get original images without distortion, it is necessary to use professional gyro-stabilized platform. In addition to this, another solution of correcting the original image distortion is to utilize later geometric rectification using position & orientation system ( POS ) data. The third way is to utilize medium-accuracy stabilized platform to control the distortion at a tolerant range, and then make use of the data obtained by high-solution posture measure system to correct the low-quality remote sensing images. The third way which takes advantage of both techniques is better than using only one of the two other ways. This paper introduces several kinds of structural forms of gyro-stabilized platforms, and POS acquiring instruments respectively. Then, the essay will make some analysis of their advantages and disadvantages, key technologies and the application experiment of the third method. After the analysis, the thesis discusses the design of the gyro-stabilized platform. The thesis provides crucial information not only for the application technology of gyro-stabilized platform and POS but also for future development.

  16. Beyond Monitoring: A Brief Review of the Use of Remote Sensing Technology for Assessing Dryland Sustainability

    Science.gov (United States)

    Washington-Allen, R. A.

    2015-12-01

    Drylands cover 41% of the terrestrial surface and provide > $1 trillion in ecosystem services to one-third of the global population, yet are not well studied with estimates of degradation ranging from 10 - 80%. Here I will present an abbreviated history of the use of remote sensing (RS) to monitor Dryland degradation, review contemporary applications, and provide guidance for future directions. These early monitoring attempts (and some recent efforts) assumed the social model of "Tragedy of the Commons" and the ecological model of "the Balance of Nature". These assumptions justified a monitoring approach rather than an assessment, where land degradation was understood to be primarily a function of human action through livestock grazing management. The perceived linear impact of grazing on grassland biomass led to the early development of a remote sensing-based proxy of vegetation response: the normalized difference vegetation index (NDVI). Many RS studies of Drylands are biased towards the NDVI or variants, whereas the contemporary view of Drylands as complex systems has led to a new synthesis of approaches from ecological modeling, ecohydrology, landscape ecology, and remote sensing that now explicitly confront both multiple drivers that include land-use policy, droughts & floods, fire, and responses that include increased soil erosion and changes in soil quality, landscape composition, pattern, and structure. However, problems still abound including 1) a consensus on the definition of Drylands, 2) the need for time series of drivers to conduct assessments, 3) a lack of understanding of below-ground biomass dynamics, 4) improved mapping of grassland, shrubland, and savanna dryland cover types and their 3D structure. There are new technologies in Dryland RS including multi-frequency ground penetrating radar (GPR), RADAR, IFSAR, LIDAR, and MISR that may lead to the development of new indicators to address these issues.

  17. Remote Sensing Information Gateway

    Science.gov (United States)

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  18. Combination of multispectral remote sensing, variable rate technology and environmental modeling for citrus pest management.

    Science.gov (United States)

    Du, Qian; Chang, Ni-Bin; Yang, Chenghai; Srilakshmi, Kanth R

    2008-01-01

    The Lower Rio Grande Valley (LRGV) of south Texas is an agriculturally rich area supporting intensive production of vegetables, fruits, grain sorghum, and cotton. Modern agricultural practices involve the combined use of irrigation with the application of large amounts of agrochemicals to maximize crop yields. Intensive agricultural activities in past decades might have caused potential contamination of soil, surface water, and groundwater due to leaching of pesticides in the vadose zone. In an effort to promote precision farming in citrus production, this paper aims at developing an airborne multispectral technique for identifying tree health problems in a citrus grove that can be combined with variable rate technology (VRT) for required pesticide application and environmental modeling for assessment of pollution prevention. An unsupervised linear unmixing method was applied to classify the image for the grove and quantify the symptom severity for appropriate infection control. The PRZM-3 model was used to estimate environmental impacts that contribute to nonpoint source pollution with and without the use of multispectral remote sensing and VRT. Research findings using site-specific environmental assessment clearly indicate that combination of remote sensing and VRT may result in benefit to the environment by reducing the nonpoint source pollution by 92.15%. Overall, this study demonstrates the potential of precision farming for citrus production in the nexus of industrial ecology and agricultural sustainability.

  19. Integration of environmental simulation models with satellite remote sensing and geographic information systems technologies: case studies

    Science.gov (United States)

    Steyaert, Louis T.; Loveland, Thomas R.; Brown, Jesslyn F.; Reed, Bradley C.

    1993-01-01

    Environmental modelers are testing and evaluating a prototype land cover characteristics database for the conterminous United States developed by the EROS Data Center of the U.S. Geological Survey and the University of Nebraska Center for Advanced Land Management Information Technologies. This database was developed from multi temporal, 1-kilometer advanced very high resolution radiometer (AVHRR) data for 1990 and various ancillary data sets such as elevation, ecological regions, and selected climatic normals. Several case studies using this database were analyzed to illustrate the integration of satellite remote sensing and geographic information systems technologies with land-atmosphere interactions models at a variety of spatial and temporal scales. The case studies are representative of contemporary environmental simulation modeling at local to regional levels in global change research, land and water resource management, and environmental simulation modeling at local to regional levels in global change research, land and water resource management and environmental risk assessment. The case studies feature land surface parameterizations for atmospheric mesoscale and global climate models; biogenic-hydrocarbons emissions models; distributed parameter watershed and other hydrological models; and various ecological models such as ecosystem, dynamics, biogeochemical cycles, ecotone variability, and equilibrium vegetation models. The case studies demonstrate the important of multi temporal AVHRR data to develop to develop and maintain a flexible, near-realtime land cover characteristics database. Moreover, such a flexible database is needed to derive various vegetation classification schemes, to aggregate data for nested models, to develop remote sensing algorithms, and to provide data on dynamic landscape characteristics. The case studies illustrate how such a database supports research on spatial heterogeneity, land use, sensitivity analysis, and scaling issues

  20. AN ASSESSMENT OF LAND USE CHANGES IN FUQING COUNTY OF CHINA USING REMOTE SENSING TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    XUHan-qin

    2002-01-01

    Fuqing County of southeast Chian has witnessed significant land use changes during the last decade.Re-mote sensing technology using multitemporal Landsat TM images was used to characterize land use types and to monitor land use changes in the county.Two TM scenes from 1991and 1996 were used to cover the county and a five-year time period.Digital image processing was carried out for the remotely sensed data to produce classified images.The images were further processed using GIS software to generate GIS databases so that the data could be further spatially analyzed taking the advantages of the software.Land use change areas were determined by using the change detection technique.The comparison of the two classified TM images using the above technologies reveals that during the five study years,a large area of arable lands in the county has been lost and deforestation has taken place largely because of the dramatic in-crease in built-up land and orchard.The conclusive statistical information is useful to understand the processes,causes and impacts of the land use changes in the county.The major driving force to the land use changes in the county ap-peared to be the rapid economic development.The decision makers of the county have to pay more attention to the land use changes for the county's sustainable development.

  1. Expanding Alaska's Remote Ocean Observing Capabilities Using Robotic Gliders and Remote Sensing Technologies

    Science.gov (United States)

    Janzen, C.; McCammon, M.; Winsor, P.; Murphy, D. J.; Mathis, J. T.; Baumgartner, M.; Stafford, K.; Statscewich, H.; Evans, W.; Potter, R. A.

    2016-02-01

    The Alaska Ocean Observing System (AOOS) is directed by Congress to facilitate, implement and support ocean observing for the entire coast of Alaska, working with federal, state, local and private sector partners. However, developing an integrated ocean observing system at high latitudes presents unique challenges. In addition to the harsh environment, the region covered by AOOS is made up of nearly 44,000 miles of coastline, larger than the marine systems in the rest of the United States combined. No other observing system in the United States has such climate extremes, significant geographic distances, and limited observing infrastructure. Making use of robotic technologies in Alaskan waters has been successfully demonstrated with the pilot deployment of a real-time marine mammal detection system deployed on a Slocum buoyancy controlled glider. The glider also carries payload to measure high resolution temperature and salinity data. With these simultaneous data streams, scientists are investigating how marine mammal occurrences are related to water column conditions and mixing fronts, as well as comparing northern versus southern Chukchi community composition, inshore (Alaska Coastal Current) waters, and offshore (Bering Sea) waters. In its third year, the glider is now equipped with lithium batteries that allow it to operate unattended for an entire Arctic summer season, whereas past deployments were limited to about 10 days. Developing and applying such cutting edge, long-endurance autonomous technology is benefitting others monitoring in Arctic regions where shipboard access is not only expensive, but limited to fair weather conditions during the openwater (ice free) seasons of summer to early fall.

  2. An overview of GNSS remote sensing

    Science.gov (United States)

    Yu, Kegen; Rizos, Chris; Burrage, Derek; Dempster, Andrew G.; Zhang, Kefei; Markgraf, Markus

    2014-12-01

    The Global Navigation Satellite System (GNSS) signals are always available, globally, and the signal structures are well known, except for those dedicated to military use. They also have some distinctive characteristics, including the use of L-band frequencies, which are particularly suited for remote sensing purposes. The idea of using GNSS signals for remote sensing - the atmosphere, oceans or Earth surface - was first proposed more than two decades ago. Since then, GNSS remote sensing has been intensively investigated in terms of proof of concept studies, signal processing methodologies, theory and algorithm development, and various satellite-borne, airborne and ground-based experiments. It has been demonstrated that GNSS remote sensing can be used as an alternative passive remote sensing technology. Space agencies such as NASA, NOAA, EUMETSAT and ESA have already funded, or will fund in the future, a number of projects/missions which focus on a variety of GNSS remote sensing applications. It is envisaged that GNSS remote sensing can be either exploited to perform remote sensing tasks on an independent basis or combined with other techniques to address more complex applications. This paper provides an overview of the state of the art of this relatively new and, in some respects, underutilised remote sensing technique. Also addressed are relevant challenging issues associated with GNSS remote sensing services and the performance enhancement of GNSS remote sensing to accurately and reliably retrieve a range of geophysical parameters.

  3. Use of remote sensing in agriculture

    Science.gov (United States)

    Pettry, D. E.; Powell, N. L.; Newhouse, M. E.

    1974-01-01

    Remote sensing studies in Virginia and Chesapeake Bay areas to investigate soil and plant conditions via remote sensing technology are reported ant the results given. Remote sensing techniques and interactions are also discussed. Specific studies on the effects of soil moisture and organic matter on energy reflection of extensively occurring Sassafras soils are discussed. Greenhouse and field studies investigating the effects of chlorophyll content of Irish potatoes on infrared reflection are presented. Selected ground truth and environmental monitoring data are shown in summary form. Practical demonstrations of remote sensing technology in agriculture are depicted and future use areas are delineated.

  4. Photogrammetry - Remote Sensing and Geoinformation

    Science.gov (United States)

    Lazaridou, M. A.; Patmio, E. N.

    2012-07-01

    Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS) is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc), and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers) in the Lab. of Photogrammetry - Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.

  5. Remote Sensing and Reflectance Profiling in Entomology.

    Science.gov (United States)

    Nansen, Christian; Elliott, Norman

    2016-01-01

    Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.

  6. LIDAR and atmosphere remote sensing

    CSIR Research Space (South Africa)

    Venkataraman, S

    2008-05-01

    Full Text Available and to consist of theory and practical exercises • Theory: Remote sensing process, Photogrammetry, introduction to multispectral, remote sensing systems, Thermal infra-red remote sensing, Active and passive remote sensing, LIDAR, Application of remotely... Aerosol measurements and cloud characteristics head2right Water vapour measurements in the lower troposphere region up to 8 km head2right Ozone measurements in the troposphere regions up to 18 km Slide 22 © CSIR 2008 www...

  7. Introduction to remote sensing

    CERN Document Server

    Campbell, James B

    2012-01-01

    A leading text for undergraduate- and graduate-level courses, this book introduces widely used forms of remote sensing imagery and their applications in plant sciences, hydrology, earth sciences, and land use analysis. The text provides comprehensive coverage of principal topics and serves as a framework for organizing the vast amount of remote sensing information available on the Web. Including case studies and review questions, the book's four sections and 21 chapters are carefully designed as independent units that instructors can select from as needed for their courses. Illustrations in

  8. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  9. Modular, Reconfigurable, and Rapid Response Space Systems: The Remote Sensing Advanced Technology Microsatellite

    Science.gov (United States)

    Esper, Jaime; Andary, Jim; Oberright, John; So, Maria; Wegner, Peter; Hauser, Joe

    2004-01-01

    Modular, Reconfigurable, and Rapid-response (MR(sup 2)) space systems represent a paradigm shift in the way space assets of all sizes are designed, manufactured, integrated, tested, and flown. This paper will describe the MR(sup 2) paradigm in detail, and will include guidelines for its implementation. The Remote Sensing Advanced Technology microsatellite (RSAT) is a proposed flight system test-bed used for developing and implementing principles and best practices for MR(sup 2) spacecraft, and their supporting infrastructure. The initial goal of this test-bed application is to produce a lightweight (approx. 100 kg), production-minded, cost-effective, and scalable remote sensing micro-satellite capable of high performance and broad applicability. Such applications range from future distributed space systems, to sensor-webs, and rapid-response satellite systems. Architectures will be explored that strike a balance between modularity and integration while preserving the MR(sup 2) paradigm. Modularity versus integration has always been a point of contention when approaching a design: whereas one-of-a-kind missions may require close integration resulting in performance optimization, multiple and flexible application spacecraft benefit &om modularity, resulting in maximum flexibility. The process of building spacecraft rapidly (system integration and test processes and pitfalls. Although the concept of modularity is not new and was first developed in the 1970s by NASA's Goddard Space Flight Center (Multi-Mission Modular Spacecraft), it was never modernized and was eventually abandoned. Such concepts as the Rapid Spacecraft Development Office (RSDO) became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years technology has advanced considerably, and the time is ripe to reconsider modularity in its own right, as enabler of R(sup 2), and as a key element of transformational systems. The MR2 architecture provides a competitive advantage over

  10. EPA REMOTE SENSING RESEARCH

    Science.gov (United States)

    The 2006 transgenic corn imaging research campaign has been greatly assisted through a cooperative effort with several Illinois growers who provided planting area and crop composition. This research effort was designed to evaluate the effectiveness of remote sensed imagery of var...

  11. Section summary: Remote sensing

    Science.gov (United States)

    Belinda Arunarwati Margono

    2013-01-01

    Remote sensing is an important data source for monitoring the change of forest cover, in terms of both total removal of forest cover (deforestation), and change of canopy cover, structure and forest ecosystem services that result in forest degradation. In the context of Intergovernmental Panel on Climate Change (IPCC), forest degradation monitoring requires information...

  12. Remote sensing: best practice

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gareth [Sgurr Energy (Canada)

    2011-07-01

    This paper presents remote sensing best practice in the wind industry. Remote sensing is a technique whereby measurements are obtained from the interaction of laser or acoustic pulses with the atmosphere. There is a vast diversity of tools and techniques available and they offer wide scope for reducing project uncertainty and risk but best practice must take into account versatility and flexibility. It should focus on the outcome in terms of results and data. However, traceability of accuracy requires comparison with conventional instruments. The framework for the Boulder protocol is given. Overviews of the guidelines for IEA SODAR and IEA LIDAR are also mentioned. The important elements of IEC 61400-12-1, an international standard for wind turbines, are given. Bankability is defined based on the Boulder protocol and a pie chart is presented that illustrates the uncertainty area covered by remote sensing. In conclusion it can be said that remote sensing is changing perceptions about how wind energy assessments can be made.

  13. Wildfire monitoring via the integration of remote sensing with innovative information technologies

    NARCIS (Netherlands)

    Kontoes, C.; Papoutsis, I.; Michail, D.; Herekakis, T.; Koubarakis, M.; Kyzirakos, K.; Karpathiotakis, M.; Nikolaou, C.; Sioutis, M.; Garbis, G.; Vassos, S.; Keramitsoglou, I.; Manegold, S.; Kersten, M.L.; Pirk, H.

    2012-01-01

    In the Institute for Space Applications and Remote Sensing of the National Observatory of Athens (ISARS/NOA) volumes of Earth Observation images of different spectral and spatial resolutions are being processed on a systematic basis to derive thematic products that cover a wide spectrum of applicati

  14. Wildfire monitoring via the integration of remote sensing with innovative information technologies

    NARCIS (Netherlands)

    C. Kontoes (Charalampos); I. Papoutsis (Ioannis); D. Michail (Dimitrios); T. Herekakis (Themistocles); M. Koubarakis (Manolis); K. Kyzirakos (Konstantinos); M. Karpathiotakis (Manos); C. Nikolaou (Charalampos); M. Sioutis (Michael); G. Garbis (George); S. Vassos (Stavros); I. Keramitsoglou; S. Manegold (Stefan); M.L. Kersten (Martin); H. Pirk (Holger)

    2012-01-01

    textabstractIn the Institute for Space Applications and Remote Sensing of the National Observatory of Athens (ISARS/NOA) volumes of Earth Observation images of different spectral and spatial resolutions are being processed on a systematic basis to derive thematic products that cover a wide spectrum

  15. Integration of modern remote sensing technologies for faster utility mapping and data extraction

    Science.gov (United States)

    Ristic, Aleksandar; Govedarica, Miro; Vrtunski, Milan; Petrovacki, Dusan

    2015-04-01

    Analysis of the application of modern remote sensing technologies in current research shows a significant increase in interest in fast and efficient detection of underground installations. The most important reasons of the said application are preventing damage during excavation works, as well as the formation of the cadastre of underground utilities suitable for operating and maintaining of such resources. Given the wide area of application in the detection of underground installations, ground penetrating radar scanning technology (GPR), in this instance, is used as prevalent method for the purpose of the acquisition radargram of pipelines and the comparison with the results of the acquisition of Unmanned Aerial Vehicle - UAV drone Aibot X6 equipped with Optris PI Lightweight Kit (which consists of a miniaturized lightweight PC and a weight-optimized PI450 Optris LW infrared camera). The aim of the research presented in the this paper is to analyze the benefits of integrating a mobile system capable of very fast, reliable and relatively inexpensive detection of heating pipelines using thermal imaging aerial inspection and GPR technology for control sampling of radargrams on specific locations of routes in order to achieve following: a simple identification of the characteristics of heating pipelines, prevention and registration of damage, as well as automated data extraction. The results of integrated application of the above-mentioned remote sensing technologies have shown that, within 10min of planned flight, it is possible to detect and georeference routes of heating pipelines in the area of 50.000m2 by application of thermal imaging inspection that assigns an adequate temperature value to each pixel in an image. The experiment showed that the registration is also possible in the case of pre-insulated and conventionally insulated heating pipes, and the difference in temperature measurements above the routes and the environment was up to 4 degrees. It should be

  16. Study on the urban heat island effect based on quantitative remote sensing technology

    Science.gov (United States)

    Nie, Yunju; Tong, Chengzhuo; Cheng, Penggen; Chen, Xiaoyong; Zhou, Mengyu

    2015-12-01

    In recent years, the effect of urban heat island (UHI) is increasingly obvious with moving forward in further urbanization process, which has become one of the prominent issues of environment. The image data of Nanchang city supplied by Landsat 5 Thematic Mapper (TM) in September 2006 is used in this paper, and the land surface temperature (LST) over the same period has been retrieved by using a mono-window algorithm based on remote sensing technology. The classification of LST is subsequently fulfilled by the method of proper density cutting. Characteristics of intensity and spatial distribution of UHI effect in Nanchang, as well as its relationships with land use type and vegetation coverage degree (VCD) are discussed in detail. The result shows that the phenomena of UHI are significantly presented in urban area with an inhomogeneous distribution, and the degree of influence of UHI depends on types of land uses. The intensity of UHI effect has a significant negative linear correlation with normalized difference vegetation index (NDVI). It is deduced that suitably optimizing land use types and raising VCR are obvious and effective ways to reduce UHI.

  17. Current Research in Lidar Technology Used for the Remote Sensing of Atmospheric Aerosols.

    Science.gov (United States)

    Comerón, Adolfo; Muñoz-Porcar, Constantino; Rocadenbosch, Francesc; Rodríguez-Gómez, Alejandro; Sicard, Michaël

    2017-06-20

    Lidars are active optical remote sensing instruments with unique capabilities for atmospheric sounding. A manifold of atmospheric variables can be profiled using different types of lidar: concentration of species, wind speed, temperature, etc. Among them, measurement of the properties of aerosol particles, whose influence in many atmospheric processes is important but is still poorly stated, stands as one of the main fields of application of current lidar systems. This paper presents a review on fundamentals, technology, methodologies and state-of-the art of the lidar systems used to obtain aerosol information. Retrieval of structural (aerosol layers profiling), optical (backscatter and extinction coefficients) and microphysical (size, shape and type) properties requires however different levels of instrumental complexity; this general outlook is structured following a classification that attends these criteria. Thus, elastic systems (detection only of emitted frequencies), Raman systems (detection also of Raman frequency-shifted spectral lines), high spectral resolution lidars, systems with depolarization measurement capabilities and multi-wavelength instruments are described, and the fundamentals in which the retrieval of aerosol parameters is based is in each case detailed.

  18. Experimental Research on Quantitative Inversion Models of Suspended Sediment Concentration Using Remote Sensing Technology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Research on quantitative models of suspended sediment concentration (SSC) using remote sensing technology is very important to understand the scouring and siltation variation in harbors and water channels. Based on laboratory study of the relationship between different suspended sediment concentrations and reflectance spectra measured synchronously, quantitative inversion models of SSC based on single factor, band ratio and sediment parameter were developed, which provides an effective method to retrieve the SSC from satellite images. Results show that the b1 (430-500nm) and b3 (670-735nm) are the optimal wavelengths for the estimation of lower SSC and the b4 (780-835nm) is the optimal wavelength to estimate the higher SSC. Furthermore the band ratio B2/B3 can be used to simulate the variation of lower SSC better and the B4/B1 to estimate the higher SSC accurately. Also the inversion models developed by sediment parameters of higher and lower SSCs can get a relatively higher accuracy than the single factor and band ratio models.

  19. Yellow River Icicle Hazard Dynamic Monitoring Using UAV Aerial Remote Sensing Technology

    Science.gov (United States)

    Wang, H. B.; Wang, G. H.; Tang, X. M.; Li, C. H.

    2014-02-01

    Monitoring the response of Yellow River icicle hazard change requires accurate and repeatable topographic surveys. A new method based on unmanned aerial vehicle (UAV) aerial remote sensing technology is proposed for real-time data processing in Yellow River icicle hazard dynamic monitoring. The monitoring area is located in the Yellow River ice intensive care area in southern BaoTou of Inner Mongolia autonomous region. Monitoring time is from the 20th February to 30th March in 2013. Using the proposed video data processing method, automatic extraction covering area of 7.8 km2 of video key frame image 1832 frames took 34.786 seconds. The stitching and correcting time was 122.34 seconds and the accuracy was better than 0.5 m. Through the comparison of precise processing of sequence video stitching image, the method determines the change of the Yellow River ice and locates accurate positioning of ice bar, improving the traditional visual method by more than 100 times. The results provide accurate aid decision information for the Yellow River ice prevention headquarters. Finally, the effect of dam break is repeatedly monitored and ice break five meter accuracy is calculated through accurate monitoring and evaluation analysis.

  20. Wildfire monitoring via the integration of remote sensing with innovative information technologies

    Science.gov (United States)

    Kontoes, C.; Papoutsis, I.; Michail, D.; Herekakis, Th.; Koubarakis, M.; Kyzirakos, K.; Karpathiotakis, M.; Nikolaou, C.; Sioutis, M.; Garbis, G.; Vassos, S.; Keramitsoglou, I.; Kersten, M.; Manegold, S.; Pirk, H.

    2012-04-01

    In the Institute for Space Applications and Remote Sensing of the National Observatory of Athens (ISARS/NOA) volumes of Earth Observation images of different spectral and spatial resolutions are being processed on a systematic basis to derive thematic products that cover a wide spectrum of applications during and after wildfire crisis, from fire detection and fire-front propagation monitoring, to damage assessment in the inflicted areas. The processed satellite imagery is combined with auxiliary geo-information layers, including land use/land cover, administrative boundaries, road and rail network, points of interest, and meteorological data to generate and validate added-value fire-related products. The service portfolio has become available to institutional End Users with a mandate to act on natural disasters and that have activated Emergency Support Services at a European level in the framework of the operational GMES projects SAFER and LinkER. Towards the goal of delivering integrated services for fire monitoring and management, ISARS/NOA employs observational capacities which include the operation of MSG/SEVIRI and NOAA/AVHRR receiving stations, NOA's in-situ monitoring networks for capturing meteorological parameters to generate weather forecasts, and datasets originating from the European Space Agency and third party satellite operators. The qualified operational activity of ISARS/NOA in the domain of wildfires management is highly enhanced by the integration of state-of-the-art Information Technologies that have become available in the framework of the TELEIOS (EC/ICT) project. TELEIOS aims at the development of fully automatic processing chains reliant on a) the effective storing and management of the large amount of EO and GIS data, b) the post-processing refinement of the fire products using semantics, and c) the creation of thematic maps and added-value services. The first objective is achieved with the use of advanced Array Database technologies, such

  1. Research Dynamics of the Classification Methods of Remote Sensing Images

    Institute of Scientific and Technical Information of China (English)

    Yan; ZHANG; Baoguo; WU; Dong; WANG

    2013-01-01

    As the key technology of extracting remote sensing information,the classification of remote sensing images has always been the research focus in the field of remote sensing. The paper introduces the classification process and system of remote sensing images. According to the recent research status of domestic and international remote sensing classification methods,the new study dynamics of remote sensing classification,such as artificial neural networks,support vector machine,active learning and ensemble multi-classifiers,were introduced,providing references for the automatic and intelligent development of remote sensing images classification.

  2. Remote Sensing Technology for Identification of Alteration Information of Gold Deposits in the Eastern Tianshan Area, Xinjiang

    Institute of Scientific and Technical Information of China (English)

    FU Shuixing; ZHANG Shoulin; LI Chunxia; FENG Jianzhong; FANG Tonghui; SUN Baosheng

    2004-01-01

    Based on specific well-exposed rocks useful for high-quality remote sensing interpretation in the goldprospecting area in the eastern Tianshan, this paper gives a detailed description of a remote sensing model for metallogenic prediction. The model reveals that multi-spectral remote sensing data are integrated with high-resolution remote sensing data, and enhanced extraction and visual description of weak remote sensing information are used for prospecting. This model has tested in the given gold deposit, and used successfully in Au-Cu prospecting in the Kalatage area.

  3. Advanced laser remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.; Czuchlewski, S.; Karl, R. [and others

    1996-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Remote measurement of wind velocities is critical to a wide variety of applications such as environmental studies, weather prediction, aircraft safety, the accuracy of projectiles, bombs, parachute drops, prediction of the dispersal of chemical and biological warfare agents, and the debris from nuclear explosions. Major programs to develop remote sensors for these applications currently exist in the DoD and NASA. At present, however, there are no real-time, three-dimensional wind measurement techniques that are practical for many of these applications and we report on two new promising techniques. The first new technique uses an elastic backscatter lidar to track aerosol patterns in the atmosphere and to calculate three dimensional wind velocities from changes in the positions of the aerosol patterns. This was first done by Professor Ed Eloranta of the University of Wisconsin using post processing techniques and we are adapting Professor Eloranta`s algorithms to a real-time data processor and installing it in an existing elastic backscatter lidar system at Los Alamos (the XM94 helicopter lidar), which has a compatible data processing and control system. The second novel wind sensing technique is based on radio-frequency (RF) modulation and spatial filtering of elastic backscatter lidars. Because of their compactness and reliability, solid state lasers are the lasers of choice for many remote sensing applications, including wind sensing.

  4. Novel Technique and Technologies for Active Optical Remote Sensing of Greenhouse Gases

    Science.gov (United States)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta

    2017-01-01

    The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.

  5. Advances in Remote Sensing for Oil Spill Disaster Management: State-of-the-Art Sensors Technology for Oil Spill Surveillance

    OpenAIRE

    Yang Gao; Jason Levy; Maya Nand Jha

    2008-01-01

    Reducing the risk of oil spill disasters is essential for protecting the environment and reducing economic losses. Oil spill surveillance constitutes an important component of oil spill disaster management. Advances in remote sensing technologies can help to identify parties potentially responsible for pollution and to identify minor spills before they cause widespread damage. Due to the large number of sensors currently available for oil spill surveillance, there is a need for a comprehensiv...

  6. Using the Remote Sensing and GIS Technology for Erosion Risk Mapping of Kartalkaya Dam Watershed in Kahramanmaras, Turkey

    OpenAIRE

    2008-01-01

    The soil erosion is the most serious environmental problem in watershed areas in Turkey. The main factors affecting the amount of soil erosion include vegetation cover, topography, soil, and climate. In order to describe the areas with high soil erosion risks and to develop adequate erosion prevention measures in the watersheds of dams, erosion risk maps should be generated considering these factors. Remote Sensing (RS) and Geographic Information System (GIS) technologies were used for erosio...

  7. Remote sensing of natural phenomena

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2014-06-01

    Full Text Available There has always been a need to directly perceive and study the events whose extent is beyond people's possibilities. In order to get new data and to make observations and studying much more objective in comparison with past syntheses - a new method of examination called remote sensing has been adopted. The paper deals with the principles and elements of remote sensing, as well as with the basic aspects of using remote research in examining meteorological (weather parameters and the conditions of the atmosphere. The usage of satellite images is possible in all phases of the global and systematic research of different natural phenomena when airplane and satellite images of different characteristics are used and their analysis and interpretation is carried out by viewing and computer added procedures. Introduction Remote sensing of the Earth enables observing and studying global and local events that occur on it. Satellite images are nowadays used in geology, agriculture, forestry, geodesy, meteorology, spatial and urbanism planning, designing of infrastructure and other objects, protection from natural and technological catastrophes, etc. It it possible to use satellite images in all phases of global and systematic research of different natural phenomena. Basics of remote sensing Remote sensing is a method of the acquisition and interpretation of information about remote objects without making a physical contact with them. The term Daljinska detekcija is a literal translation of the English term Remote Sensing. In French it isTeledetection, in German - Fernerkundung, in Russian - дистанционие иследования. We also use terms such as: remote survailance, remote research, teledetection, remote methods, and distance research. The basic elements included in Remote Sensing are: object, electromagnetic energy, sensor, platform, image, analysis, interpretation and the information (data, fact. Usage of satellite remote research in

  8. Assessment of remote sensing technologies to discover and characterize waste sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-11

    This report presents details about waste management practices that are being developed using remote sensing techniques to characterize DOE waste sites. Once the sites and problems have been located and characterized and an achievable restoration and remediation program have been established, efforts to reclaim the environment will begin. Special problems to be considered are: concentrated waste forms in tanks and pits; soil and ground water contamination; ground safety hazards for workers; and requirement for long-term monitoring.

  9. Assessment of remote sensing technologies to discover and characterize waste sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-11

    This report presents details about waste management practices that are being developed using remote sensing techniques to characterize DOE waste sites. Once sites and problems have been located and an achievable restoration and remediation program have been established, efforts to reclaim the environment will begin. Special problems to be considered are: concentrated wastes in tanks and pits; soil and ground water contamination; ground safety hazards for workers; and requirements for long-term monitoring.

  10. Developments in remote sensing technology enable more detailed urban flood risk analysis.

    Science.gov (United States)

    Denniss, A.; Tewkesbury, A.

    2009-04-01

    digital airborne sensors, both optical and lidar, to produce the input layer for surface water flood modelling. A national flood map product has been created. The new product utilises sophisticated modelling techniques, perfected over many years, which harness graphical processing power. This product will prove particularly valuable for risk assessment decision support within insurance/reinsurance, property/environmental, utilities, risk management and government agencies. However, it is not just the ground elevation that determines the behaviour of surface water. By combining height information (surface and terrain) with high resolution aerial photography and colour infrared imagery, a high definition land cover mapping dataset (LandBase) is being produced, which provides a precise measure of sealed versus non sealed surface. This will allows even more sophisticated modelling of flood scenarios. Thus, the value of airborne survey data can be demonstrated by flood risk analysis down to individual addresses in urban areas. However for some risks, an even more detailed survey may be justified. In order to achieve this, Infoterra is testing new 360˚ mobile lidar technology. Collecting lidar data from a moving vehicle allows each street to be mapped in very high detail, allowing precise information about the location, size and shape of features such as kerbstones, gullies, road camber and building threshold level to be captured quickly and accurately. These data can then be used to model the problem of overland flood risk at the scale of individual properties. Whilst at present it might be impractical to undertake such detailed modelling for all properties, these techniques can certainly be used to improve the flood risk analysis of key locations. This paper will demonstrate how these new high resolution remote sensing techniques can be combined to provide a new resolution of detail to aid urban flood modelling.

  11. Kite Aerial Photography as a Tool for Remote Sensing

    Science.gov (United States)

    Sallee, Jeff; Meier, Lesley R.

    2010-01-01

    As humans, we perform remote sensing nearly all the time. This is because we acquire most of our information about our surroundings through the senses of sight and hearing. Whether viewed by the unenhanced eye or a military satellite, remote sensing is observing objects from a distance. With our current technology, remote sensing has become a part…

  12. Kite Aerial Photography as a Tool for Remote Sensing

    Science.gov (United States)

    Sallee, Jeff; Meier, Lesley R.

    2010-01-01

    As humans, we perform remote sensing nearly all the time. This is because we acquire most of our information about our surroundings through the senses of sight and hearing. Whether viewed by the unenhanced eye or a military satellite, remote sensing is observing objects from a distance. With our current technology, remote sensing has become a part…

  13. Remote sensing of natural resources

    CERN Document Server

    Wang, Guangxing

    2013-01-01

    "… a comprehensive view on and real world examples of remote sensing technologies in natural resources assessment and monitoring. … state-of-the-art knowledge in this multidisciplinary field. Readers can expect to finish the book armed with the required knowledge to understand the immense literature available and apply their knowledge to the understanding of sampling design, the analysis of multi-source imagery, and the application of the techniques to specific problems relevant to natural resources."-Yuhong He, University of Toronto Mississauga, Ontario, Canada"The list of topics covered is so complete that I would recommend the book to anyone teaching a graduate course on vegetation analysis through digital image analysis. … I recommend this book then for anyone doing advanced digital image analysis and environmental GIS courses who want to cover topics related to applied remote sensing work involving vegetation analysis."-Charles Roberts, Florida Atlantic University, Boca Raton, USA, in Economic Bota...

  14. Application of GIS and remote sensing technologies for assessing CO{sub 2} capture and transmission

    Energy Technology Data Exchange (ETDEWEB)

    Volosko-Demkiv, O.; Ryabokonenko, O. [Ukrainian Land and Resource Management Center, Kyiv (Ukraine)

    2005-07-01

    This paper described current research methods used in the Ukraine to assess the impacts of changes to land use on the carbon cycle implemented as a result of the ratification of the Kyoto Protocol. Satellite imagery is widely applied in the Ukraine to determine interaction between climate variability, carbon cycles and land use changes. Remote sensing is used for fire monitoring, estimating forest cover, as well as to differentiate forest types. Carbon dioxide (CO{sub 2}) monitoring is conducted to gain an improved understanding of carbon sinks and sources. Mathematical models using remote sensing data are then used to estimate total amounts of carbon released as well as to determine the subsequent loss of carbon sequestration capacity. Agriculture currently occupies approximately 71 per cent of the Ukraine's territories. Land privatization has caused major shifts in the agricultural landscape of the country. While agricultural soils can be used to sequester CO{sub 2}, agricultural activities in the Ukraine are currently responsible for 14 per cent of total greenhouse gas (GHG) emissions. Carbon cycle studies of GHG sinks and emissions have largely focused on the Polissja region and in the Carpathian mountains. In 2003, a pilot project examined the impact of forest fires on carbon cycling in the northern Ukraine. Remote sensing data, topographic maps, and state forest inventory data were compared. Forest type classifications have also been conducted using satellite data. The total forest cover area derived from remote sensing data is now known to be smaller than previous forest cover area data by approximately 23 per cent. Carbon sequestration capacities have been reduced by approximately 23 per cent. It was estimated that 1 per cent of forest phytomass has been lost as a result of fires occurring in 2002, when an estimated 1.8 Mt of carbon was emitted. A real time satellite-based fire monitoring system is now being used to provide the government of Ukraine

  15. Remote Sensing and Imaging Physics

    Science.gov (United States)

    2012-03-07

    Program Manager AFOSR/RSE Air Force Research Laboratory Remote Sensing and Imaging Physics 7 March 2012 Report Documentation Page Form...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Remote Sensing And Imaging Physics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Imaging of Space Objects •Information without Imaging •Predicting the Location of Space Objects • Remote Sensing in Extreme Conditions •Propagation

  16. Remote sensing technologies applied to the irrigation water management on a golf course

    Science.gov (United States)

    Pedras, Celestina; Lança, Rui; Martins, Fernando; Soares, Cristina; Guerrero, Carlos; Paixão, Helena

    2015-04-01

    An adequate irrigation water management in a golf course is a complex task that depends upon climate (multiple microclimates) and land cover (where crops differ in morphology, physiology, plant density, sensitivity to water stress, etc.). These factors change both in time and space on a landscape. A direct measurement provides localized values of the evapotranspiration and climate conditions. Therefore this is not a practical or economical methodology for large-scale use due to spatial and temporal variability of vegetation, soils, and irrigation management strategies. Remote sensing technology combines large scale with ground measurement of vegetation indexes. These indexes are mathematical combinations of different spectral bands mostly in the visible and near infrared regions of the electromagnetic spectrum. They represent the measures of vegetation activity that vary not only with the seasonal variability of green foliage, but also across space, thus they are suitable for detecting spatial landscape variability. The spectral vegetation indexes may enhance irrigation management through the information contained in spectral reflectance data. This study was carried out on the 18th fairway of the Royal Golf Course, Vale do Lobo, Portugal, and it aims to establish the relationship between direct measurements and vegetation indexes. For that it is required (1) to characterize the soil and climatic conditions, (2) to assessment of the irrigation system, (3) to estimate the evapotranspiration (4) and to calculate the vegetation indices. The vegetation indices were determined with basis on spectral bands red, green and blue, RGB, and near Infrared, NIR, obtained from the analysis of images acquired from a unpiloted aerial vehicle, UAV, platform. The measurements of reference evapotranspiration (ETo) were obtained from two meteorological stations located in the study area. The landscape evapotranspiration, ETL, was determined in the fairway with multiple microclimates

  17. Integrated Use of Remote Sensing, GIS and GPS Technology for Monitoring the Environmental Problem of Shyamnagar

    Science.gov (United States)

    Akbar, M. S.; Sarker, M. H.; Sattar, M. A.; Sarwar, G. M.; Rahman, S. M. M.; Rahman, M. M.; Khan, Z. U.

    2017-05-01

    Cultivation of shrimp mostly in unplanned way has been considered as one of the major environmental disasters of Shamnagar. Villagers surrounding the rivers are mainly involved with fish (shrimp) cultivation. So, fertile agriculture land has been converted to shrimp cultivation. Conversion of agriculture land to other usage is a common but acute problem for land resources of the country like Bangladesh. Conventional methods for collecting this information are relatively costly and time consuming. Contrarily, Remote Sensing satellite observation with its unique capability to provide cost-effective support in compiling the latest information about the natural resource. Remote sensing, in conjunction with GIS, has been widely applied and been recognized as a powerful and effective tool in detecting land use and land cover changes. RapidEye, Landsat8 images were used to identify land use and land cover of the area during the period 2008 and 2015. Google images were used to identify the micro-level land use features of the same period. Multi-spectral classifications using unsupervised and supervised classification were done and results have been compared based on the field investigation. The study reveals that during the period 2008 to 2015 agricultural practice has been reduced from 35 % to 21 % and shrimp cultivation area increased from 38 % to 50 %. Due to the impact of high salinity and salt water intrusion caused by natural disaster, agricultural activities is reduced and farmers have been converted to other practices, as a result shrimp farming is gaining popularity in the area.

  18. NATO Advanced Study Institute on Remote Sensing Applications in Marine Science and Technology

    CERN Document Server

    1983-01-01

    This summer school was a sequel to the summer school on Remote Sensing in Meteorology, Oceanography and Hydrology which was held in Dundee in 1980 and the proceedings of which were published by Ellis Horwood Ltd., Chichester, England. At the present summer scnool we concentrated on only part of the subject area that was covered in 1980. Although there was some repetit­ ion of material that was presented in 1980, because by and large we had a new set of participants, most subjects were treated in considerably greater detail than had been possible previously. The major topics covered in the present summer school were (i) the general principles of remote sensing with particular reference to marine applications, (ii) applications to physical oceanography, (iii) marine resources applications and (iv) coastal monitoring and protection. The material contained in this volume represents the written texts of most of the lectures presented at the summer school. One important set of lecture notes was not available; this...

  19. Multisensor fusion remote sensing technology for assessing multitemporal responses in ecohydrological systems

    Science.gov (United States)

    Makkeasorn, Ammarin

    ) satellite imagery as previously developed was used. Eight commonly used vegetation indices were calculated from the reflectance obtained from Landsat 5 TM satellite images. The vegetation indices were individually used to classify vegetation cover in association with genetic programming algorithm. The soil moisture and vegetation indices were integrated into Landsat TM images based on a pre-pixel channel approach for riparian classification. Two different classification algorithms were used including genetic programming, and a combination of ISODATA and maximum likelihood supervised classification. The white box feature of genetic programming revealed the comparative advantage of all input parameters. The GP algorithm yielded more than 90% accuracy, based on unseen ground data, using vegetation index and Landsat reflectance band 1, 2, 3, and 4. The detection of changes in the buffer zone was proved to be technically feasible with high accuracy. Overall, the development of the RICAL algorithm may lead to the formulation of more effective management strategies for the handling of non-point source pollution control, bird habitat monitoring, and grazing and live stock management in the future. Geo-environmental information amassed in this study includes soil permeability, surface temperature, soil moisture, precipitation, leaf area index (LAI) and normalized difference vegetation index (NDVI). With the aid of a remote sensing-based GIP analysis, only five locations out of more than 800 candidate sites were selected by the spatial analysis, and then confirmed by a field investigation. The methodology developed in this remote sensing-based GIP analysis will significantly advance the state-of-the-art technology in optimum arrangement/distribution of water sensor platforms for maximum sensing coverage and information-extraction capacity. To more efficiently use the limited amount of water or to resourcefully provide adequate time for flood warning, the results have led us to seek

  20. Remote sensing, imaging, and signal engineering

    Energy Technology Data Exchange (ETDEWEB)

    Brase, J.M.

    1993-03-01

    This report discusses the Remote Sensing, Imaging, and Signal Engineering (RISE) trust area which has been very active in working to define new directions. Signal and image processing have always been important support for existing programs at Lawrence Livermore National Laboratory (LLNL), but now these technologies are becoming central to the formation of new programs. Exciting new applications such as high-resolution telescopes, radar remote sensing, and advanced medical imaging are allowing us to participate in the development of new programs.

  1. INTEGRATED USE OF REMOTE SENSING, GIS AND GPS TECHNOLOGY FOR MONITORING THE ENVIRONMENTAL PROBLEM OF SHYAMNAGAR

    Directory of Open Access Journals (Sweden)

    M. S. Akbar

    2017-05-01

    Full Text Available Cultivation of shrimp mostly in unplanned way has been considered as one of the major environmental disasters of Shamnagar. Villagers surrounding the rivers are mainly involved with fish (shrimp cultivation. So, fertile agriculture land has been converted to shrimp cultivation. Conversion of agriculture land to other usage is a common but acute problem for land resources of the country like Bangladesh. Conventional methods for collecting this information are relatively costly and time consuming. Contrarily, Remote Sensing satellite observation with its unique capability to provide cost-effective support in compiling the latest information about the natural resource. Remote sensing, in conjunction with GIS, has been widely applied and been recognized as a powerful and effective tool in detecting land use and land cover changes. RapidEye, Landsat8 images were used to identify land use and land cover of the area during the period 2008 and 2015. Google images were used to identify the micro-level land use features of the same period. Multi-spectral classifications using unsupervised and supervised classification were done and results have been compared based on the field investigation. The study reveals that during the period 2008 to 2015 agricultural practice has been reduced from 35 % to 21 % and shrimp cultivation area increased from 38 % to 50 %. Due to the impact of high salinity and salt water intrusion caused by natural disaster, agricultural activities is reduced and farmers have been converted to other practices, as a result shrimp farming is gaining popularity in the area.

  2. Monitoring of the mercury mining site Almadén implementing remote sensing technologies.

    Science.gov (United States)

    Schmid, Thomas; Rico, Celia; Rodríguez-Rastrero, Manuel; José Sierra, María; Javier Díaz-Puente, Fco; Pelayo, Marta; Millán, Rocio

    2013-08-01

    The Almadén area in Spain has a long history of mercury mining with prolonged human-induced activities that are related to mineral extraction and metallurgical processes before the closure of the mines and a more recent post period dominated by projects that reclaim the mine dumps and tailings and recuperating the entire mining area. Furthermore, socio-economic alternatives such as crop cultivation, livestock breeding and tourism are increasing in the area. Up till now, only scattered information on these activities is available from specific studies. However, improved acquisition systems using satellite borne data in the last decades opens up new possibilities to periodically study an area of interest. Therefore, comparing the influence of these activities on the environment and monitoring their impact on the ecosystem vastly improves decision making for the public policy makers to implement appropriate land management measures and control environmental degradation. The objective of this work is to monitor environmental changes affected by human-induced activities within the Almadén area occurring before, during and after the mine closure over a period of nearly three decades. To achieve this, data from numerous sources at different spatial scales and time periods are implemented into a methodology based on advanced remote sensing techniques. This includes field spectroradiometry measurements, laboratory analyses and satellite borne data of different surface covers to detect land cover and use changes throughout the mining area. Finally, monitoring results show that the distribution of areas affected by mercury mining is rapidly diminishing since activities ceased and that rehabilitated mining areas form a new landscape. This refers to mine tailings that have been sealed and revegetated as well as an open pit mine that has been converted to an "artificial" lake surface. Implementing a methodology based on remote sensing techniques that integrate data from

  3. Remote sensing for the control of marine pollution. Preliminary inventory of available technologies

    Energy Technology Data Exchange (ETDEWEB)

    Massin, J.

    1978-03-01

    As regards damage to the marine environment, oil spills at sea are considered to be one of the main sources of pelagic pollution: at the present time, it is estimated that more than six million tons of hydrocarbons enter the marine environment as a result of shipping and certain coastal, industrial and urban activities, river-borne pollution, oil prospecting and mining at sea and, finally, natural seepage from certain sea bottoms. This pollution is mainly due to intentional discharge, i.e. the routine evacuation of hydrocarbon-carrying effluents, or to accidental discharge, as a result of damage to installations or ships. Because of the rapid development of techniques and the multiplicity of studies and research undertaken, particularly with a view to developing integrated remote detection systems to meet the overall requirements of users, it has been found desirable to take stock of present knowledge in this field (excluding satellites for the time being) so that the lines to be followed in the mentioned areas can be determined and assessed. This manual is a first inventory of available techniques, instrumentation, and research centers in the field of remote sensing of the marine environment for detection of pollution. Inclusion in this inventory of information from specific organizations or firms does not in any way imply approval or endorsement of the organizations or firms, or of particular equipment, by the CCMS, NATO, or the Alliance Nations.

  4. Signal processing for remote sensing

    CERN Document Server

    Chen, CH

    2007-01-01

    Written by leaders in the field, Signal Processing for Remote Sensing explores the data acquisitions segment of remote sensing. Each chapter presents a major research result or the most up to date development of a topic. The book includes a chapter by Dr. Norden Huang, inventor of the Huang-Hilbert transform who, along with and Dr. Steven Long discusses the application of the transform to remote sensing problems. It also contains a chapter by Dr. Enders A. Robinson, who has made major contributions to seismic signal processing for over half a century, on the basic problem of constructing seism

  5. Classification of remotely sensed images

    CSIR Research Space (South Africa)

    Dudeni, N

    2008-10-01

    Full Text Available (s)) is the data vector for a pixel located at s θ(s) is an unknown ground class to which pixel s belongs Objective is to classify the pixel at location s to the one of the k clusters Classification of remotely sensed images N. Dudeni, P. Debba...(s) is an unknown ground class to which pixel s belongs Objective is to classify the pixel at location s to the one of the k clusters Classification of remotely sensed images N. Dudeni, P. Debba Introduction to Remote Sensing Introduction to Image...

  6. Construction of analysis system on personal computer for slope disaster information using remote sensing technology. Remote sensing wo riyoshita pasokongata no shamen bosai joho kaiseki system no kochiku

    Energy Technology Data Exchange (ETDEWEB)

    Setojima, M. (Kokusai Kogyo Co. Ltd., Tokyo (Japan)); Goto, K. (Nagasaki Universtiy, Nagasaki (Japan). FAculty of Engineering)

    1991-08-25

    An analytical system with superposition of images which uses picture elements as a unit was developed to treat information obtained by remote sensing and other geographical information by superposing the images in order to extract the second information which expresses qualitatively and quantitatively the degree of slope disaster in the future, based on the first information about the damage caused by disaster and landform and geology. As necessary function for analytical system of the second information, precise correction of geometrical strain, superposition of images, visual reading treatment, and output of analytical result in map are listed and described respectively. Next, the detailed explanation of hardware and software of pilot system which used personal computer was given. The analytical procedure and result of land conditions around the landslide occurred at Nagano city in 1985 was shown. 3 refs., 1 fig., 1 tab.

  7. Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists.

    Science.gov (United States)

    Wang, Kai; Franklin, Steven E; Guo, Xulin; Cattet, Marc

    2010-01-01

    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS).

  8. Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists

    Directory of Open Access Journals (Sweden)

    Marc Cattet

    2010-11-01

    Full Text Available Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC. Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI, inversion algorithm, data fusion, and the integration of remote sensing (RS and geographic information system (GIS.

  9. Modelling submerged coastal environments: Remote sensing technologies, techniques, and comparative analysis

    Science.gov (United States)

    Dillon, Chris

    Built upon remote sensing and GIS littoral zone characterization methodologies of the past decade, a series of loosely coupled models aimed to test, compare and synthesize multi-beam SONAR (MBES), Airborne LiDAR Bathymetry (ALB), and satellite based optical data sets in the Gulf of St. Lawrence, Canada, eco-region. Bathymetry and relative intensity metrics for the MBES and ALB data sets were run through a quantitative and qualitative comparison, which included outputs from the Benthic Terrain Modeller (BTM) tool. Substrate classification based on relative intensities of respective data sets and textural indices generated using grey level co-occurrence matrices (GLCM) were investigated. A spatial modelling framework built in ArcGIS(TM) for the derivation of bathymetric data sets from optical satellite imagery was also tested for proof of concept and validation. Where possible, efficiencies and semi-automation for repeatable testing was achieved using ArcGIS(TM) ModelBuilder. The findings from this study could assist future decision makers in the field of coastal management and hydrographic studies. Keywords: Seafloor terrain characterization, Benthic Terrain Modeller (BTM), Multi-beam SONAR, Airborne LiDAR Bathymetry, Satellite Derived Bathymetry, ArcGISTM ModelBuilder, Textural analysis, Substrate classification.

  10. Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) Project

    Science.gov (United States)

    Raup, B.; Kääb, Andreas; Kargel, J.S.; Bishop, M.P.; Hamilton, G.; Lee, E.; Paul, F.; Rau, F.; Soltesz, D.; Khalsa, S.J.S.; Beedle, M.; Helm, C.

    2007-01-01

    Global Land Ice Measurements from Space (GLIMS) is an international consortium established to acquire satellite images of the world's glaciers, analyze them for glacier extent and changes, and to assess these change data in terms of forcings. The consortium is organized into a system of Regional Centers, each of which is responsible for glaciers in their region of expertise. Specialized needs for mapping glaciers in a distributed analysis environment require considerable work developing software tools: terrain classification emphasizing snow, ice, water, and admixtures of ice with rock debris; change detection and analysis; visualization of images and derived data; interpretation and archival of derived data; and analysis to ensure consistency of results from different Regional Centers. A global glacier database has been designed and implemented at the National Snow and Ice Data Center (Boulder, CO); parameters have been expanded from those of the World Glacier Inventory (WGI), and the database has been structured to be compatible with (and to incorporate) WGI data. The project as a whole was originated, and has been coordinated by, the US Geological Survey (Flagstaff, AZ), which has also led the development of an interactive tool for automated analysis and manual editing of glacier images and derived data (GLIMSView). This article addresses remote sensing and Geographic Information Science techniques developed within the framework of GLIMS in order to fulfill the goals of this distributed project. Sample applications illustrating the developed techniques are also shown. ?? 2006 Elsevier Ltd. All rights reserved.

  11. Extraction of Remote Sensing Information Ofbanana Under Support of 3S Technology Inguangxi Province

    Science.gov (United States)

    Yang, Xin; Sun, Han; Tan, Zongkun; Ding, Meihua

    This paper presents an automatic approach to planting areas extraction for mixed vegetation and hilly region, more cloud using moderate spatial resolution and high temporal resolution MODIS data around Guangxi province, south of China. According to banana growth lasting more 9 to 11 months, and the areas are reduced during crush season, the Maximum likelihood was used to extract the information of banana planting and their spatial distribution through the calculation of multiple-phase MODIS-NDVI in Guangxi and stylebook training regions of banana of being selected by GPS. Compared with the large and little regions of banana planting in monitoring image and the investigation of on the spot with GPS, the resolute shows that the banana planting information in remote sensing image are true. In this research, multiple-phase MODIS data were received during banana main growing season and preprocessed; NDVI temporal profiles of banana were generated;models for planting areas extraction were developed based on the analysis of temporal NDVI curves; and spatial distribution map of planting areas of banana in Guangxi in 2006 were created. The study suggeststhat it is possible to extract planting areas automatically from MODIS data for large areas.

  12. Remote Sensing and Geospatial Technological Applications for Site-specific Management of Fruit and Nut Crops: A Review

    Directory of Open Access Journals (Sweden)

    Joel O. Paz

    2010-08-01

    Full Text Available Site-specific crop management (SSCM is one facet of precision agriculture which is helping increase production with minimal input. It has enhanced the cost-benefit scenario in crop production. Even though the SSCM is very widely used in row crop agriculture like corn, wheat, rice, soybean, etc. it has very little application in cash crops like fruit and nut. The main goal of this review paper was to conduct a comprehensive review of advanced technologies, including geospatial technologies, used in site-specific management of fruit and nut crops. The review explores various remote sensing data from different platforms like satellite, LIDAR, aerial, and field imaging. The study analyzes the use of satellite sensors, such as Quickbird, Landsat, SPOT, and IRS imagery as well as hyperspectral narrow-band remote sensing data in study of fruit and nut crops in blueberry, citrus, peach, apple, etc. The study also explores other geospatial technologies such as GPS, GIS spatial modeling, advanced image processing techniques, and information technology for suitability study, orchard delineation, and classification accuracy assessment. The study also provides an example of a geospatial model developed in ArcGIS ModelBuilder to automate the blueberry production suitability analysis. The GIS spatial model is developed using various crop characteristics such as chilling hours, soil permeability, drainage, and pH, and land cover to determine the best sites for growing blueberry in Georgia, U.S. The study also provides a list of spectral reflectance curves developed for some fruit and nut crops, blueberry, crowberry, redblush citrus, orange, prickly pear, and peach. The study also explains these curves in detail to help researchers choose the image platform, sensor, and spectrum wavelength for various fruit and nut crops SSCM.

  13. An Updating System for the Gridded Population Database of China Based on Remote Sensing, GIS and Spatial Database Technologies

    Directory of Open Access Journals (Sweden)

    Xiaohuan Yang

    2009-02-01

    Full Text Available The spatial distribution of population is closely related to land use and land cover (LULC patterns on both regional and global scales. Population can be redistributed onto geo-referenced square grids according to this relation. In the past decades, various approaches to monitoring LULC using remote sensing and Geographic Information Systems (GIS have been developed, which makes it possible for efficient updating of geo-referenced population data. A Spatial Population Updating System (SPUS is developed for updating the gridded population database of China based on remote sensing, GIS and spatial database technologies, with a spatial resolution of 1 km by 1 km. The SPUS can process standard Moderate Resolution Imaging Spectroradiometer (MODIS L1B data integrated with a Pattern Decomposition Method (PDM and an LULC-Conversion Model to obtain patterns of land use and land cover, and provide input parameters for a Population Spatialization Model (PSM. The PSM embedded in SPUS is used for generating 1 km by 1 km gridded population data in each population distribution region based on natural and socio-economic variables. Validation results from finer township-level census data of Yishui County suggest that the gridded population database produced by the SPUS is reliable.

  14. Remote sensing of oil slicks

    Digital Repository Service at National Institute of Oceanography (India)

    Fondekar, S.P.; Rao, L.V.G.

    the drawback of expensive conventional surveying methods. An airborne remote sensing system used for monitoring and surveillance of oil comprises different sensors such as side-looking airborne radar, synthetic aperture radar, infrared/ultraviolet line scanner...

  15. Scale issues in remote sensing

    CERN Document Server

    Weng, Qihao

    2014-01-01

    This book provides up-to-date developments, methods, and techniques in the field of GIS and remote sensing and features articles from internationally renowned authorities on three interrelated perspectives of scaling issues: scale in land surface properties, land surface patterns, and land surface processes. The book is ideal as a professional reference for practicing geographic information scientists and remote sensing engineers as well as a supplemental reading for graduate level students.

  16. Exploration of SGD structures by remote sensing technologies and aquatic geochemistry

    Science.gov (United States)

    Siebert, Christian; Merkel, Broder; Pohl, Thomas; Ionescu, Danny; Mallast, Ulf

    2015-04-01

    As in many other regions of the world, where groundwater migrates through soluble rocks and sediments, the shoreline of the Dead Sea is extremely endangered to the formation of sinkholes. Additionally, in those areas, where enhanced subrosion dynamics are recognisable, groundwaters emerge submarine either diffuse or from open holes, suggesting a strong connection between both phenomenon: SGD and sinkholes. Independently from the source shapes, submarine groundwaters emerge with a wide range of salinity, from brackish (12 mS/cm) to briny (229 mS/cm). Along their way from the hard-rock mountains to the Dead Sea, groundwaters must pass in places several 1,000 meters of unconsolidated highly saline sediments, a fact which should impede the observed freshness of the discharging waters. However, geochemical and isotopic investigations in the groundwaters prove the origin in remote recharge areas in the mountain ranges to both sides of the sea. By observing the SGD-locations by applying echo sounding, side scan sonar and thermal imaging, it could be found SGD occurs through open holes and seems to be organised along lineaments, which follow +/-the regional neo-tectonic patterns. At the same time, deep shafts and craters were discovered, some of them reaching depths of 20 m and more. Particularly the high discharging brackish springs are mostly on the base of such a caldera, which might be a submarine sinkhole with slipped walls. Scuba diving discovered, these springs often discharge from the sediment through open holes, some of them up to 0.8 m wide. They are considered to be microbial forced karst structures. Investigations are continuing. Although exercised in the hyper saline Dead Sea, the application of aquatic geochemistry and isotope methods in combination with microbial investigations and remote sensing techniques allows integration of SGD into a broader (hydro)geological and structural framework, which is often much better understood on land. This methodology is

  17. The Current Status of Research on GNSS-R Remote Sensing Technology in China and Future Development

    National Research Council Canada - National Science Library

    Li Huang; Xia Qing; Yin Cong; Wan Wei

    2013-01-01

    .... In recent years, development of the navigation satellite remote sensing applications using GNSS as a external illuminator, it has been forming a new Global Navigation Satellite System METeorology (GNSS/MET...

  18. Space remote sensing systems an introduction

    CERN Document Server

    Chen, H S

    1985-01-01

    Space Remote Sensing Systems: An Introduction discusses the space remote sensing system, which is a modern high-technology field developed from earth sciences, engineering, and space systems technology for environmental protection, resource monitoring, climate prediction, weather forecasting, ocean measurement, and many other applications. This book consists of 10 chapters. Chapter 1 describes the science of the atmosphere and the earth's surface. Chapter 2 discusses spaceborne radiation collector systems, while Chapter 3 focuses on space detector and CCD systems. The passive space optical rad

  19. WPS-based technology for client-side remote sensing data processing

    Science.gov (United States)

    Kazakov, E.; Terekhov, A.; Kapralov, E.; Panidi, E.

    2015-04-01

    Server-side processing is principal for most of the current Web-based geospatial data processing tools. However, in some cases the client-side geoprocessing may be more convenient and acceptable. This study is dedicated to the development of methodology and techniques of Web services elaboration, which allow the client-side geoprocessing also. The practical objectives of the research are focused on the remote sensing data processing, which are one of the most resource-intensive data types. The idea underlying the study is to propose such geoprocessing Web service schema that will be compatible with the current serveroriented Open Geospatial Consortium standard (OGC WPS standard), and additionally will allow to run the processing on the client, transmitting processing tool (executable code) over the network instead of the data. At the same time, the unity of executable code must be preserved, and the transmitted code should be the same to that is used for server-side processing. This unity should provide unconditional identity of the processing results that performed using of any schema. The appropriate services are pointed by the authors as a Hybrid Geoprocessing Web Services (HGWSs). The common approaches to architecture and structure of the HGWSs are proposed at the current stage as like as a number of service prototypes. For the testing of selected approaches, the geoportal prototype was implemented, which provides access to created HGWS. Further works are conducted on the formalization of platform independent HGWSs implementation techniques, and on the approaches to conceptualization of theirs safe use and chaining possibilities. The proposed schema of HGWSs implementation could become one of the possible solutions for the distributed systems, assuming that the processing servers could play the role of the clients connecting to the service supply server. The study was partially supported by Russian Foundation for Basic Research (RFBR), research project No. 13

  20. 遥感技术在环境污染监测中的应用%Application of Remote Sensing Technology to Environmental Pollution Monitoring

    Institute of Scientific and Technical Information of China (English)

    谭衢霖; 邵芸

    2000-01-01

    环境污染遥感监测技术具有监测范围广、速度快、成本低,且便于进行长期的动态监测等优点,是实现宏观、快速、连续、动态地监测环境污染的有效高新技术手段。介绍了应用于环境污染监测的可见光、反射红外遥感技术、热红外遥感技术、高光谱技术以及微波遥感监测技术,并着重阐述了遥感监测技术在水环境污染、大气环境污染中的应用。最后,指出了我国环境污染遥感监测技术存在的问题和发展趋势,建议尽快发展我国的环境污染遥感监测技术,以满足我国环境污染监测的需要。%Remote sensing technology is an effective way to continually, rapidly and dynamically monitor the large-scale environmental pollution since the technology possess the advantages of low-cost, regional and global, long-term monitoring, and of real-time or timely prediction. This paper summarizes the achievements of visible, reflected and thermal infrared, hyper-spectral and microwave remote sensing technology applied to environmental pollution monitoring. The applications of remote sensing technology to water and atmosphere environment pollution monitoring are illustrated, including water turbidity analysis, oil pollution, urban sewage, water-body thermal pollution and eutrophication. Finally, it is pointed out that the remote sensing technology of environment pollution monitoring exists much deficiency in China. And some suggestions on developing the technology are given as follows: (1) Utilizing remote sensing technology, it is necessitated to construct largescale real-time monitoring and predicting system of environment pollution accidents. (2) Developing new remote sensing sensors and improving their performances in pollution monitoring. (3) Developing quantitative remote sensing monitoring technology for environment pollutants. (4) Integrating environment pollution remote sensing monitoring

  1. Sensing our Environment: Remote sensing in a physics classroom

    Science.gov (United States)

    Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit

    2017-04-01

    Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora

  2. Remote Sensing of Environmental Pollution

    Science.gov (United States)

    North, G. W.

    1971-01-01

    Environmental pollution is a problem of international scope and concern. It can be subdivided into problems relating to water, air, or land pollution. Many of the problems in these three categories lend themselves to study and possible solution by remote sensing. Through the use of remote sensing systems and techniques, it is possible to detect and monitor, and in some cases, identify, measure, and study the effects of various environmental pollutants. As a guide for making decisions regarding the use of remote sensors for pollution studies, a special five-dimensional sensor/applications matrix has been designed. The matrix defines an environmental goal, ranks the various remote sensing objectives in terms of their ability to assist in solving environmental problems, lists the environmental problems, ranks the sensors that can be used for collecting data on each problem, and finally ranks the sensor platform options that are currently available.

  3. Surfactant-Associated Bacteria in the Sea Surface Microlayer and their Effect on Remote Sensing Technology

    Science.gov (United States)

    Kurata, N.; Vella, K.; Tartar, A.; Matt, S.; Shivji, M.; Perrie, W. A.; Soloviev, A.

    2012-12-01

    Synthetic aperture radar remote sensing captures various fine-scale features on the ocean surface such as coastal discharges, oil pollution, vessel traffic, algal blooms and sea slicks. Although numerous factors potentially affect the synthetic aperture radar imaging process, the influence of biogenic and anthropogenic surfactants has been suggested as one of the primary parameters, especially under relatively low wind conditions. Surfactants have a tendency to dampen the short gravity-capillary ocean waves causing the sea surface to smoothen, thus allowing the radar to detect areas of surfactants. Surfactants are found in sea slicks, which are the accumulation of organic material shaped as elongated bands on the ocean's surface. Sea slicks are often observable with the naked eye due to their glassy appearance and can also be seen on synthetic aperture radar images as dark scars. While the sources of surfactants can vary, some are known to be of marine bacteria origin. Countless numbers of marine bacteria are present in the oceanic environment, and their biogeochemical contributions cannot be overlooked. Not only does marine-bacteria produce surfactants, but they also play an important role in the transformation of surfactants. In this study, we profiled the surfactant-associated bacteria composition within the biogenic thin layer of the ocean surface more commonly referred as the sea surface microlayer. Bacterial samples were collected from the sea surface microlayer for comparative analysis from both within and outside of sea slick areas as well as the underlying subsurface water. The bacterial microlayer sampling coincided with synthetic aperture radar satellite, RADARSAT-2, overpasses to demonstrate the simultaneous in-situ measurements during a satellite image capture. The sea surface microlayer sampling method was designed to enable aseptic bacterial sampling. A 47 mm polycarbonate membrane was utilized at each sampling site to obtain a snapshot of the

  4. Satellite Remote Sensing for Monitoring and Assessment

    Science.gov (United States)

    Remote sensing technology has the potential to enhance the engagement of communities and managers in the implementation and performance of best management practices. This presentation will use examples from U.S. numeric criteria development and state water quality monitoring prog...

  5. Satellite Remote Sensing for Monitoring and Assessment

    Science.gov (United States)

    Remote sensing technology has the potential to enhance the engagement of communities and managers in the implementation and performance of best management practices. This presentation will use examples from U.S. numeric criteria development and state water quality monitoring prog...

  6. Offshore winds mapped from satellite remote sensing

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    2014-01-01

    the uncertainty on the model results on the offshore wind resource, it is necessary to compare model results with observations. Observations from ground-based wind lidar and satellite remote sensing are the two main technologies that can provide new types of offshore wind data at relatively low cost....... The advantages of microwave satellite remote sensing are 1) horizontal spatial coverage, 2) long data archives and 3) high spatial detail both in the coastal zone and of far-field wind farm wake. Passive microwave ocean wind speed data are available since 1987 with up to 6 observations per day with near...

  7. Remote sensing/vegetation classification. [California

    Science.gov (United States)

    Parker, I. E.

    1981-01-01

    The CALVEG classification system for identification of vegetation is described. This hierarchical system responds to classification requirements and to interpretation of vegetation at various description levels, from site description to broad identification levels. The system's major strength is its flexibility in application of remote sensing technology to assess, describe and communicate data relative to vegetative resources on a state-wide basis. It is concluded that multilevel remote sensing is a cost effective tool for assessment of the natural resource base. The CLAVEG system is found to be an economically efficient tool for both existing and potential vegetation.

  8. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus...... of the compendium, and we also acknowledge all our colleagues in the Meteorology and Test and Measurements Programs from the Wind Energy Division at Risø DTU in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state......-of-the-art compendium available for people involved in Remote Sensing in Wind Energy....

  9. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus...... in the Meteorology and Test and Measurements Programs from the Wind Energy Division at Risø DTU in the PhD Summer Schools. We hope to add more topics in future editions and to update as necessary, to provide a truly state-of-the-art compendium available for people involved in Remote Sensing in Wind Energy....

  10. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    Peña, Alfredo; Hasager, Charlotte Bay; Badger, Merete

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy...... colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art ‘guideline’ available for people involved in Remote Sensing...... in Wind Energy....

  11. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    Peña, Alfredo; Hasager, Charlotte Bay; Lange, Julia

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy...... for their work in the writing of the chapters, and we also acknowledge all our colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly...... state-of-the-art ‘guideline’ available for people involved in Remote Sensing in Wind Energy....

  12. Remote sensing for urban planning

    Science.gov (United States)

    Davis, Bruce A.; Schmidt, Nicholas; Jensen, John R.; Cowen, Dave J.; Halls, Joanne; Narumalani, Sunil; Burgess, Bryan

    1994-01-01

    Utility companies are challenged to provide services to a highly dynamic customer base. With factory closures and shifts in employment becoming a routine occurrence, the utility industry must develop new techniques to maintain records and plan for expected growth. BellSouth Telecommunications, the largest of the Bell telephone companies, currently serves over 13 million residences and 2 million commercial customers. Tracking the movement of customers and scheduling the delivery of service are major tasks for BellSouth that require intensive manpower and sophisticated information management techniques. Through NASA's Commercial Remote Sensing Program Office, BellSouth is investigating the utility of remote sensing and geographic information system techniques to forecast residential development. This paper highlights the initial results of this project, which indicate a high correlation between the U.S. Bureau of Census block group statistics and statistics derived from remote sensing data.

  13. Fundamentals of polarimetric remote sensing

    CERN Document Server

    Schott, John R

    2009-01-01

    This text is for those who need an introduction to polarimetric signals to begin working in the field of polarimetric remote sensing, particularly where the contrast between manmade objects and natural backgrounds are the subjects of interest. The book takes a systems approach to the physical processes involved with formation, collection, and analysis of polarimetric remote sensing data in the visible through longwave infrared. Beginning with a brief review of the polarized nature of electromagnetic energy and radiometry, Dr. Schott then introduces ways to characterize a beam of polarized ene

  14. Using the Remote Sensing and GIS Technology for Erosion Risk Mapping of Kartalkaya Dam Watershed in Kahramanmaras, Turkey

    Directory of Open Access Journals (Sweden)

    Abdullah E. Akay

    2008-08-01

    Full Text Available The soil erosion is the most serious environmental problem in watershed areas in Turkey. The main factors affecting the amount of soil erosion include vegetation cover, topography, soil, and climate. In order to describe the areas with high soil erosion risks and to develop adequate erosion prevention measures in the watersheds of dams, erosion risk maps should be generated considering these factors. Remote Sensing (RS and Geographic Information System (GIS technologies were used for erosion risk mapping in Kartalkaya Dam Watershed of Kahramanmaras, Turkey, based on the methodology implemented in COoRdination of INformation on the Environment (CORINE model. ASTER imagery was used to generate a land use/cover classification in ERDAS Imagine. The digital maps of the other factors (topography, soil types, and climate were generated in ArcGIS v9.2, and were then integrated as CORINE input files to produce erosion risk maps. The results indicate that 33.82%, 35.44%, and 30.74% of the study area were under low, moderate, and high actual erosion risks, respectively. The CORINE model integrated with RS and GIS technologies has great potential for producing accurate and inexpensive erosion risk maps in Turkey.

  15. Remote sensing in soil science.

    NARCIS (Netherlands)

    Mulders, M.A.

    1987-01-01

    This book provides coverage of remote sensing techniques and their application in soil science. A clear, step-by-step approach to the various aspects ensures that the reader will gain a good grasp of the subject so that he can apply the techniques to his own field of study. The book opens with an in

  16. Remote Sensing of Water Pollution

    Science.gov (United States)

    White, P. G.

    1971-01-01

    Remote sensing, as a tool to aid in the control of water pollution, offers a means of making rapid, economical surveys of areas that are relatively inaccessible on the ground. At the same time, it offers the only practical means of mapping pollution patterns that cover large areas. Detection of oil slicks, thermal pollution, sewage, and algae are discussed.

  17. Remote Sensing Best Paper Award 2013

    OpenAIRE

    Prasad Thenkabail

    2013-01-01

    Remote Sensing has started to institute a “Best Paper” award to recognize the most outstanding papers in the area of remote sensing techniques, design and applications published in Remote Sensing. We are pleased to announce the first “Remote Sensing Best Paper Award” for 2013. Nominations were selected by the Editor-in-Chief and selected editorial board members from among all the papers published in 2009. Reviews and research papers were evaluated separately.

  18. Progress for Spaceborne Microwave Remote Sensing in China

    Institute of Scientific and Technical Information of China (English)

    JIANG Jingshan; LIU Heguang; DONG Xiaolong

    2008-01-01

    In this paper, technological progress for China's microwave remote sensing is introduced. New developments of the microwave remote sensing instruments for meteorological satellite FY-3, ocean dynamic measurement satellite (HY-2), environment small SAR satellite (HJ-1C) and China's lunar exploration satellite (Chang'E-1), geostationary orbit meteorological satellite FY-4M,are reported.

  19. Long-Term Monitoring of Utility-Scale Solar Energy Development and Application of Remote Sensing Technologies: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuki [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division; Grippo, Mark A. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division; Smith, Karen P. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division

    2014-09-30

    In anticipation of increased utility-scale solar energy development over the next 20 to 50 years, federal agencies and other organizations have identified a need to develop comprehensive long-term monitoring programs specific to solar energy development. Increasingly, stakeholders are requesting that federal agencies, such as the U.S. Department of the Interior Bureau of Land Management (BLM), develop rigorous and comprehensive long-term monitoring programs. Argonne National Laboratory (Argonne) is assisting the BLM in developing an effective long-term monitoring plan as required by the BLM Solar Energy Program to study the environmental effects of solar energy development. The monitoring data can be used to protect land resources from harmful development practices while at the same time reducing restrictions on utility-scale solar energy development that are determined to be unnecessary. The development of a long-term monitoring plan that incorporates regional datasets, prioritizes requirements in the context of landscape-scale conditions and trends, and integrates cost-effective data collection methods (such as remote sensing technologies) will translate into lower monitoring costs and increased certainty for solar developers regarding requirements for developing projects on public lands. This outcome will support U.S. Department of Energy (DOE) Sunshot Program goals. For this reason, the DOE provided funding for the work presented in this report.

  20. Land Use Transformation Rule Analysis in Beijing-Tianjin-Tangshan Region Using Remote Sensing and GIS Technology

    Directory of Open Access Journals (Sweden)

    Shang-min Zhao

    2016-01-01

    Full Text Available Based on land use classification system, this paper acquires the land use distribution status at 2000, 2005, and 2010 in Beijing-Tianjin-Tangshan Region using remote sensing images, field survey data, images in Google Earth, and visual interpretation methods. Then, the land use transformation rules from 2000 to 2010 are achieved using GIS (geographic information system technology. The research results shows the following: (1 as to the distribution area of the land use types, dry field has the largest area, followed by forest land, building land, paddy field, water area, grassland, and unused land; (2 from 2000 to 2010, the area of building land has the largest increase, which is mainly transformed from cropland and sea reclamation area; the largest decreased land use type is paddy field, which mainly transforms to dry field and building land; (3 the high increase of building land and decrease of cropland suggest the land use transformation in the quick development process of economy; meanwhile, the total area of forestland and grassland changes little, so the ecological environment does not have apparent deterioration in the 1st decade of the new century.

  1. Remote sensing science - new concepts and applications

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, S.A.; Cooke, B.J.; Henderson, B.G.; Love, S.P.; Zardecki, A.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The science and technology of satellite remote sensing is an emerging interdisciplinary field that is growing rapidly with many global and regional applications requiring quantitative sensing of earth`s surface features as well as its atmosphere from space. It is possible today to resolve structures on the earth`s surface as small as one meter from space. If this high spatial resolution is coupled with high spectral resolution, instant object identification can also be achieved. To interpret these spectral signatures correctly, it is necessary to perform a computational correction on the satellite imagery that removes the distorting effects of the atmosphere. This project studied such new concepts and applied innovative new approaches in remote sensing science.

  2. Measurement of Oil and Gas Well Pad Enclosed Combustor Emissions Using Optical Remote Sensing Technologies

    Science.gov (United States)

    The U.S. EPA Office of Research and Development and U.S. EPA Region 8 are collaborating to investigate the impact of energy production under the EPA’s Regional Applied Research Effort (RARE) program. As part of this effort, a research study was conducted to evaluate technologies...

  3. Using Remote Sensing and Spatial Information Technologies to Detect and Map Two Aquatic Macrophytes

    OpenAIRE

    Everitt, J.H.; Yang, C.; Escobar, D.E.; Webster, C.F.; Lonard, R.I.; Davis, M.R.

    1999-01-01

    This paper describes the light reflectance characteristics ofwaterhyacinth [Eichhornia crassipes (Mort.) Solms] and hydrilla [Hydrilla verticillata (L.F.) Royle] and the application of airborned videography with global positioning system (GPS) and geographic information system (GIS) technologies for distinguishing and mapping the distribution of these two aquatic weeds in waterways of southern Texas. Field reflectance measurements made at several locations showed that waterhyacinth generall...

  4. Remote sensing and water resources

    CERN Document Server

    Champollion, N; Benveniste, J; Chen, J

    2016-01-01

    This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives. Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of th...

  5. Sensitivity analysis in remote sensing

    CERN Document Server

    Ustinov, Eugene A

    2015-01-01

    This book contains a detailed presentation of general principles of sensitivity analysis as well as their applications to sample cases of remote sensing experiments. An emphasis is made on applications of adjoint problems, because they are more efficient in many practical cases, although their formulation may seem counterintuitive to a beginner. Special attention is paid to forward problems based on higher-order partial differential equations, where a novel matrix operator approach to formulation of corresponding adjoint problems is presented. Sensitivity analysis (SA) serves for quantitative models of physical objects the same purpose, as differential calculus does for functions. SA provides derivatives of model output parameters (observables) with respect to input parameters. In remote sensing SA provides computer-efficient means to compute the jacobians, matrices of partial derivatives of observables with respect to the geophysical parameters of interest. The jacobians are used to solve corresponding inver...

  6. Dr. Natarajan Ishwaran: Use Remote Sensing Technologies to Build Landscape Scenarios for Conservation-Development Interactions

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Dr. Natarajan Ishwaran has been working as Director of the Division of Ecological and Earth Sciences of UNESCO and Secretary of the Man and Biosphere Program for many years. In September 2012, after his retirement, he will arrive at the Center for Earth Observation and Digital Earth(CEODE) of the Chinese Academy of Sciences in Beijing, and embark on a new career as a special- retained foreign expert at the International Center on Space Technologies for Natural and Cultural Heritage (HIST) hosted by CEODE.

  7. Remote Sensing Information Science Research

    Science.gov (United States)

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin

    2002-01-01

    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  8. Remote sensing in biological oceanography

    Science.gov (United States)

    Esaias, W. E.

    1981-01-01

    The main attribute of remote sensing is seen as its ability to measure distributions over large areas on a synoptic basis and to repeat this coverage at required time periods. The way in which the Coastal Zone Color Scanner, by showing the distribution of chlorophyll a, can locate areas productive in both phytoplankton and fishes is described. Lidar techniques are discussed, and it is pointed out that lidar will increase the depth range for observations.

  9. Road Traffic Accident Analysis of Ajmer City Using Remote Sensing and GIS Technology

    Science.gov (United States)

    Bhalla, P.; Tripathi, S.; Palria, S.

    2014-12-01

    With advancement in technology, new and sophisticated models of vehicle are available and their numbers are increasing day by day. A traffic accident has multi-facet characteristics associated with it. In India 93% of crashes occur due to Human induced factor (wholly or partly). For proper traffic accident analysis use of GIS technology has become an inevitable tool. The traditional accident database is a summary spreadsheet format using codes and mileposts to denote location, type and severity of accidents. Geo-referenced accident database is location-referenced. It incorporates a GIS graphical interface with the accident information to allow for query searches on various accident attributes. Ajmer city, headquarter of Ajmer district, Rajasthan has been selected as the study area. According to Police records, 1531 accidents occur during 2009-2013. Maximum accident occurs in 2009 and the maximum death in 2013. Cars, jeeps, auto, pickup and tempo are mostly responsible for accidents and that the occurrence of accidents is mostly concentrated between 4PM to 10PM. GIS has proved to be a good tool for analyzing multifaceted nature of accidents. While road safety is a critical issue, yet it is handled in an adhoc manner. This Study is a demonstration of application of GIS for developing an efficient database on road accidents taking Ajmer City as a study. If such type of database is developed for other cities, a proper analysis of accidents can be undertaken and suitable management strategies for traffic regulation can be successfully proposed.

  10. Application of Remote Sensing and GIS Technology to the Study of Desertification of Arable Lands in North Shaanxi, China

    Institute of Scientific and Technical Information of China (English)

    Mushtak Talib Jabbar; HU Guangdao; ZHANG Zhenfei

    2004-01-01

    The policy of the Chinese government concerning the horizontal expansion of the cultivated land through the reclamation of desert soils result in a total increase of 665.985 km2 during the period 1987-1999 in North Shaanxi. This increase is less than the loss in arable land by urbanization. The accelerated rate of change in agricultural areas calls for more rapid surveys of urbanization and loss of arable land. Remote sensing has a number of advantages over ground-based methods for such surveys. The multi-scale concept of remote sensing data help us study the problem in four towns. Several maps were produced to analyze the situation of urban coverage in different times. The evaluation of the status, rate and risk of urbanization are based on an accepted average of urban increase as 2% of population growth per year.

  11. Remote sensing for wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.; Bay Hasager, C.; Lange, J. [Technical Univ. of Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark) (and others

    2013-06-15

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risoe) during the first PhD Summer School: Remote Sensing in Wind Energy. Thus it is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the report is to supplement with in-depth, article style information. Thus we strive to provide link from the lectures, field demonstrations, and hands-on exercises to theory. The report will allow alumni to trace back details after the course and benefit from the collection of information. This is the third edition of the report (first externally available), after very successful and demanded first two, and we warmly acknowledge all the contributing authors for their work in the writing of the chapters, and we also acknowledge all our colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art 'guideline' available for people involved in Remote Sensing in Wind Energy. (Author)

  12. [A review on polarization information in the remote sensing detection].

    Science.gov (United States)

    Gong, Jie-Qiong; Zhan, Hai-Gang; Liu, Da-Zhao

    2010-04-01

    Polarization is one of the inherent characteristics. Because the surface of the target structure, internal structure, and the angle of incident light are different, the earth's surface and any target in atmosphere under optical interaction process will have their own characteristic nature of polarization. Polarimetric characteristics of radiation energy from the targets are used in polarization remote sensing detection as detective information. Polarization remote sensing detection can get the seven-dimensional information of targets in complicated backgrounds, detect well-resolved outline of targets and low-reflectance region of objectives, and resolve the problems of atmospheric detection and identification camouflage detection which the traditional remote sensing detection can not solve, having good foreground in applications. This paper introduces the development of polarization information in the remote sensing detection from the following four aspects. The rationale of polarization remote sensing detection is the base of polarization remote sensing detection, so it is firstly introduced. Secondly, the present researches on equipments that are used in polarization remote sensing detection are particularly and completely expatiated. Thirdly, the present exploration of theoretical simulation of polarization remote sensing detection is well detailed. Finally, the authors present the applications research home and abroad of the polarization remote sensing detection technique in the fields of remote sensing, atmospheric sounding, sea surface and underwater detection, biology and medical diagnosis, astronomical observation and military, summing up the current problems in polarization remote sensing detection. The development trend of polarization remote sensing detection technology in the future is pointed out in order to provide a reference for similar studies.

  13. Characterization of users of remotely-sensed data in the Alabama coastal zone. [user requirements, surveys - technology utilization

    Science.gov (United States)

    Vittor, B. A. (Editor)

    1975-01-01

    Federal, State, local, universities and private companies were polled to determine their needs for remote sensing data. A total of 62 users were polled. Poll results are given in tables. A comprehensive research program was developed to satisfy user needs, and is examined for the disciplines of Geology, Water Resources, Archaeology, Geography, and Conservation. An investigation of silt plume discharge from Mobile Bay is also examined. Sample poll forms used in the surveys are shown.

  14. Research Advances in Monitoring Agro-meteorological Disasters Using Remote Sensing

    Institute of Scientific and Technical Information of China (English)

    Xueyan; SUI; Rujuan; WANG; Huimin; YAO; Meng; WANG; Shaokun; LI; Xiaodong; ZHANG

    2014-01-01

    Remote sensing is an important method for rapidly obtaining farmland information. Once meteorological disaster occurs,using the remote sensing technology to extract disaster area of crops and monitor disaster level has great significance for evaluating disasters and making a timely remedy. This paper elaborated the importance of monitoring agro-meteorological disasters using remote sensing in current special historical period,overviewed remote sensing methods both at home and abroad,analyzed existing problems,made clear major problems to be solved in monitoring agro-meteorological disasters using remote sensing,and discussed the development prospect of the remote sensing technology.

  15. A Web-Based Airborne Remote Sensing Telemetry Server Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Web-based Airborne Remote Sensing Telemetry Server (WARSTS) is proposed to integrate UAV telemetry and web-technology into an innovative communication, command,...

  16. 遥感地质勘查技术与应用研究%Remote Sensing Technology and its Application in Geological Exploration

    Institute of Scientific and Technical Information of China (English)

    王润生; 童立强; 林键; 甘甫平; 陈微; 杨苏明; 张瑞江; 葛大庆; 张晓坤; 张振华; 王品清; 熊盛青; 郭小方; 李丽; 聂洪峰; 梁树能; 齐泽荣; 杨金中; 闫柏琨; 赵福岳; 范景辉

    2011-01-01

    transforming from qualitative explanation to quantitative inversion and from macro detection to micro identification, promoting remote sensing technology and its application to a new height. This study starts with the latest developments and significance of remote sensing technology, the principle, methodology and modeling of ore prospecting. Then, seven fields related to remote sensing are described, such as reflectance spectral measurement of rocks and minerals, processing of remote sensing images, extraction of multispectral anomaly information, identification and mapping of hyperspectral minerals, surface deformation investigation and monitoring with radar interferometer, remote sensing exploration model, geohazard monitoring with remote sensing, respectively. At the end of this study are some research achievements and application examples presented.

  17. Remote sensing and vegetation stress detection - Problems and progress

    Science.gov (United States)

    Duggin, M. J.; Whitehead, V.

    1983-01-01

    Although considerable progress has been made in applying remote sensing technology to vegetation monitoring, considerable problems still exist in the improvement of techniques for crop type discrimination, stress detection on a large scale, and stress quantification. In this paper, some of the problems remaining in the operational use of remote sensing technology for vegetation stress detection are discussed, and directions in which some of these problems might be solved are proposed.

  18. NASA Remote Sensing Research as Applied to Archaeology

    Science.gov (United States)

    Giardino, Marco J.; Thomas, Michael R.

    2002-01-01

    The use of remotely sensed images is not new to archaeology. Ever since balloons and airplanes first flew cameras over archaeological sites, researchers have taken advantage of the elevated observation platforms to understand sites better. When viewed from above, crop marks, soil anomalies and buried features revealed new information that was not readily visible from ground level. Since 1974 and initially under the leadership of Dr. Tom Sever, NASA's Stennis Space Center, located on the Mississippi Gulf Coast, pioneered and expanded the application of remote sensing to archaeological topics, including cultural resource management. Building on remote sensing activities initiated by the National Park Service, archaeologists increasingly used this technology to study the past in greater depth. By the early 1980s, there were sufficient accomplishments in the application of remote sensing to anthropology and archaeology that a chapter on the subject was included in fundamental remote sensing references. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, or nearing deployment, offer significantly finer spatial and spectral resolutions than were previously available. Paired with new techniques of image analysis, this technology may make the direct detection of archaeological sites a realistic goal.

  19. Biogeochemical cycling and remote sensing

    Science.gov (United States)

    Peterson, D. L.

    1985-01-01

    Research is underway at the NASA Ames Research Center that is concerned with aspects of the nitrogen cycle in terrestrial ecosystems. An interdisciplinary research group is attempting to correlate nitrogen transformations, processes, and productivity with variables that can be remotely sensed. Recent NASA and other publications concerning biogeochemical cycling at global scales identify attributes of vegetation that could be related or explain the spatial variation in biologically functional variables. These functional variables include net primary productivity, annual nitrogen mineralization, and possibly the emission rate of nitrous oxide from soils.

  20. Remote Sensing Wind and Wind Shear System.

    Science.gov (United States)

    Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.

  1. Satellite Remote Sensing Image Analysis Technology Based on eCognition%基于eCognition的卫星遥感影像分析技术

    Institute of Scientific and Technical Information of China (English)

    孙悦

    2014-01-01

    The satellite remote sensing image analysis is a research hotspot in recent years. In this paper,the current progress of information extraction technology on satellite sensing images is analyzed,the advantage of object-oriented high-resolution image analysis is highlighted,and the application of target change detection of satellite sensing images in military field is introduced. In this paper,the object-oriented multiscale segmentation strategy is used in the field of satellite remote sensing image processing,and secondary develop-ment processes is implemented based on eCognition SDK. The results of multiple experiments show that the proposed satellite remote sensing image analysis technology can implement better information extraction and analysis.%卫星遥感影像分析技术是近年来的一个研究热点问题。归纳总结了遥感影像信息提取技术的发展现状,阐述了面向对象的高分辨率遥感影像分析技术的优势,介绍了遥感影像目标变化检测技术的应用情况。将面向对象的多尺度分割策略应用在卫星遥感影像处理领域,实现了基于eCognition SDK的二次开发流程,取得了良好的实验效果。

  2. Introductory remote sensing principles and concepts principles and concepts

    CERN Document Server

    Gibson, Paul

    2013-01-01

    Introduction to Remote Sensing Principles and Concepts provides a comprehensive student introduction to both the theory and application of remote sensing. This textbook* introduces the field of remote sensing and traces its historical development and evolution* presents detailed explanations of core remote sensing principles and concepts providing the theory required for a clear understanding of remotely sensed images.* describes important remote sensing platforms - including Landsat, SPOT and NOAA * examines and illustrates many of the applications of remotely sensed images in various fields.

  3. LWIR Microgrid Polarimeter for Remote Sensing Studies

    Science.gov (United States)

    2010-02-28

    Polarimeter for Remote Sensing Studies 5b. GRANT NUMBER FA9550-08-1-0295 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 1. Scott Tyo 5e. TASK...and tested at the University of Arizona, and preliminary images are shown in this final report. 15. SUBJECT TERMS Remote Sensing , polarimetry 16...7.0 LWIR Microgrid Polarimeter for Remote Sensing Studies J. Scott Tyo College of Optical Sciences University of Arizona Tucson, AZ, 85721 tyo

  4. Basic Remote Sensing Investigations for Beach Reconnaissance.

    Science.gov (United States)

    Progress is reported on three tasks designed to develop remote sensing beach reconnaissance techniques applicable to the benthic, beach intertidal...and beach upland zones. Task 1 is designed to develop remote sensing indicators of important beach composition and physical parameters which will...ultimately prove useful in models to predict beach conditions. Task 2 is designed to develop remote sensing techniques for survey of bottom features in

  5. Preface: Remote Sensing in Coastal Environments

    OpenAIRE

    Deepak R. Mishra; Gould, Richard W.

    2016-01-01

    The Special Issue (SI) on “Remote Sensing in Coastal Environments” presents a wide range of articles focusing on a variety of remote sensing models and techniques to address coastal issues and processes ranging for wetlands and water quality to coral reefs and kelp habitats. The SI is comprised of twenty-one papers, covering a broad range of research topics that employ remote sensing imagery, models, and techniques to monitor water quality, vegetation, habitat suitability, and geomorphology i...

  6. The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce

    Science.gov (United States)

    Chen, Xi; Zhou, Liqing

    2015-12-01

    With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.

  7. Data Quality in Remote Sensing

    Science.gov (United States)

    Batini, C.; Blaschke, T.; Lang, S.; Albrecht, F.; Abdulmutalib, H. M.; Barsi, Á.; Szabó, G.; Kugler, Zs.

    2017-09-01

    The issue of data quality (DQ) is of growing importance in Remote Sensing (RS), due to the widespread use of digital services (incl. apps) that exploit remote sensing data. In this position paper a body of experts from the ISPRS Intercommission working group III/IVb "DQ" identifies, categorises and reasons about issues that are considered as crucial for a RS research and application agenda. This ISPRS initiative ensures to build on earlier work by other organisations such as IEEE, CEOS or GEO, in particular on the meritorious work of the Quality Assurance Framework for Earth Observation (QA4EO) which was established and endorsed by the Committee on Earth Observation Satellites (CEOS) but aims to broaden the view by including experts from computer science and particularly database science. The main activities and outcomes include: providing a taxonomy of DQ dimensions in the RS domain, achieving a global approach to DQ for heterogeneous-format RS data sets, investigate DQ dimensions in use, conceive a methodology for managing cost effective solutions on DQ in RS initiatives, and to address future challenges on RS DQ dimensions arising in the new era of the big Earth data.

  8. Modeling dynamic assessment of ecosystem services based on remote sensing technology:A sampling of the Gansu grassland ecosystem

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The ecosystem is important because it is the life sustaining system for human survival.Three ecosystem characteristics are:regional particularities,ecosystem complexity and conventional cultural particularities.This paper develops a remote sensing based dynamic model to assess grassland ecosystem service values involving multidisciplinary knowledge.The ecological value of grassland ecosystems is focused on using a remote sensing technique in the model,and setting up the framework for a dynamic assessing model.The grassland ecological services condition and value in 1985 is used as the benchmark.The dynamic model has two adjusting indicators:biomass and price index.The biomass is simulated using the CASA(Carnegie-Ames-Stanford Approach) model.The price index was obtained from statistics data published by the statistical bureau.Results show that the grassland ecosystem value in Gansu Province was 28.36 billion Chinese Yuan in 1985,140.37 billion in 1999 and 130.86 billion in 2002.

  9. 基于遥感技术的矿山环境监测%Mine Environment Monitoring Based on Remote Sensing Technology

    Institute of Scientific and Technical Information of China (English)

    吕玉凤; 修晓龙; 郭玉斌; 陈哲锋

    2015-01-01

    The maturity and development of remote sensing technology provides a scientific method and means for mine environmental monitoring and management.This paper,by taking the high spatial resolution re-mote sensing data (QuickBird) as the main information source,and through the computer image processing,uses the man-machine interactive interpretation method to extract the mine development area condition,mine geologi-cal hazard and mine environment restoration management,among other remote sensing information.The paper makes the work area mine environment remote sensing monitoring chart,and with the appropriate field verifica-tion,finally achieves the goal of mine environment monitoring.%遥感技术的不断成熟与发展,为矿山环境监测治理提供了科学的方法和手段.本文以高空间分辨率遥感数据(QuickBird影像)为主要信息源,通过计算机图像处理,采用人机交互解译方式,提取矿山开发占地状况、矿山地质灾害及矿山环境恢复治理等遥感信息,制作工作区矿山环境遥感监测图,配合适当的野外验证,最终达到对矿山环境进行监测的目的.

  10. Progress in Soil Heavy Metal Pollution Monitoring via Remote Sensing Technology%土壤重金属污染遥感监测研究进展

    Institute of Scientific and Technical Information of China (English)

    沈文娟; 蒋超群; 侍昊; 王春红; 李明诗

    2014-01-01

    本文总结了基于样点地面实测光谱分析和基于遥感影像的多光谱和高光谱定量化监测方法在土壤重金属污染中应用的优劣势,分析出现有研究数据和方法的不足与需改进之处,并指出整合多源数据和多变量方法用于连续动态监测并制图土壤重金属污染将是遥感定量化监测新的发展趋势。尺度的变化和定量遥感的不确定性影响土壤重金属污染遥感监测的精度。%How to map the pollution quality and severity in an accurate,timely,and large scale manner has definitely been recognized as the crux of bringing the pollution under control.Remote sensing technology,with the monitoring advantages of wide coverage,expeditiousness,affordable price and suitable revisit frequency remains irreplaceable in monitoring large-scale soil pollution.In this paper,the advantages and disadvantages of monitoring methods for soil heavy metal pollution evaluation based on the measured spectral analysis of the samples as well as the quantitative detection by the multispectral and hyperspectral remote sensing imagery were summarized and the deficiency of the existing research data and methods and which need to be improved were analyzed.Finally,it pointed out that the continuous dynamic monitoring and mapping soil heavy metal pollution by the integration of multi-source data and multivariate methods will be the new development trend of quantitative monitoring via remote sensing technology.Scale changes in detection and the uncertainty of quantitative remote sensing affect the accuracy of remote sensing monitoring on soil heavy metal pollution.

  11. Remote sensing and actuation using unmanned vehicles

    CERN Document Server

    Chao, Haiyang

    2012-01-01

    Unmanned systems and robotics technologies have become very popular recently owing to their ability to replace human beings in dangerous, tedious, or repetitious jobs. This book fill the gap in the field between research and real-world applications, providing scientists and engineers with essential information on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes. Target scenarios include environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks.

  12. Optical remote sensing of the earth

    Science.gov (United States)

    Goetz, A. F. H.; Wellman, J. B.; Barnes, W. L.

    1985-01-01

    In the present assessment of the contributions of optical earth resources remote sensing in the 0.4-15.0 micron region, attention is given to underlying principles, applications to scientific disciplines such as geology, hydrology and oceanography, the recent development history of the requisite sensors, and sensor development trends. Development status characterizations are given for thematic mapping, modular optoelectronic multispectral scanning, the telescope/CCD 'SPOT' program of France, the thermal IR multispectral scanner for mineral signature identification, airborne imaging spectrometry, and the Advanced Visible and IR Imaging Spectrometer that is nearing deployment. Technology development trends and the capabilities they portend are projected.

  13. Educational activities of remote sensing archaeology (Conference Presentation)

    Science.gov (United States)

    Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasilki; Themistocleous, Kyriacos; Cuca, Branka; Nisantzi, Argyro; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter

    2016-10-01

    Remote sensing science is increasingly being used to support archaeological and cultural heritage research in various ways. Satellite sensors either passive or active are currently used in a systematic basis to detect buried archaeological remains and to systematic monitor tangible heritage. In addition, airborne and low altitude systems are being used for documentation purposes. Ground surveys using remote sensing tools such as spectroradiometers and ground penetrating radars can detect variations of vegetation and soil respectively, which are linked to the presence of underground archaeological features. Education activities and training of remote sensing archaeology to young people is characterized of highly importance. Specific remote sensing tools relevant for archaeological research can be developed including web tools, small libraries, interactive learning games etc. These tools can be then combined and aligned with archaeology and cultural heritage. This can be achieved by presenting historical and pre-historical records, excavated sites or even artifacts under a "remote sensing" approach. Using such non-form educational approach, the students can be involved, ask, read, and seek to learn more about remote sensing and of course to learn about history. The paper aims to present a modern didactical concept and some examples of practical implementation of remote sensing archaeology in secondary schools in Cyprus. The idea was built upon an ongoing project (ATHENA) focused on the sue of remote sensing for archaeological research in Cyprus. Through H2020 ATHENA project, the Remote Sensing Science and Geo-Environment Research Laboratory at the Cyprus University of Technology (CUT), with the support of the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR) aims to enhance its performance in all these new technologies.

  14. Remote sensing solutions for when spectrometers no longer are affordable

    Science.gov (United States)

    van Brug, Hedser; Visser, Huib

    2016-10-01

    This paper describes one of the issues that are facing the remote sensing community in the not so far future; scientists ask for certain requirement that cannot be fulfilled either due to cost issues or technological issues. The paper starts with giving a short and quick historical overview of the development of spectrometer based remote sensing systems. Next, the likely end of the spectrometers will be explained, followed by a possible alternative.

  15. Geological remote sensing in Africa

    Science.gov (United States)

    Sabins, Floyd F., Jr.; Bailey, G. Bryan; Abrams, Michael J.

    1987-01-01

    Programs using remote sensing to obtain geologic information in Africa are reviewed. Studies include the use of Landsat MSS data to evaluate petroleum resources in sedimentary rock terrains in Kenya and Sudan and the use of Landsat TM 30-m resolution data to search for mineral deposits in an ophiolite complex in Oman. Digitally enhanced multispectral SPOT data at a scale of 1:62,000 were used to map folds, faults, diapirs, bedding attitudes, and stratigraphic units in the Atlas Mountains in northern Algeria. In another study, SIR-A data over a vegetated and faulted area of Sierra Leone were compared with data collected by the Landsat MSS and TM systems. It was found that the lineaments on the SIR-A data were more easily detected.

  16. Lunar remote sensing and measurements

    Science.gov (United States)

    Moore, H.J.; Boyce, J.M.; Schaber, G.G.; Scott, D.H.

    1980-01-01

    Remote sensing and measurements of the Moon from Apollo orbiting spacecraft and Earth form a basis for extrapolation of Apollo surface data to regions of the Moon where manned and unmanned spacecraft have not been and may be used to discover target regions for future lunar exploration which will produce the highest scientific yields. Orbital remote sensing and measurements discussed include (1) relative ages and inferred absolute ages, (2) gravity, (3) magnetism, (4) chemical composition, and (5) reflection of radar waves (bistatic). Earth-based remote sensing and measurements discussed include (1) reflection of sunlight, (2) reflection and scattering of radar waves, and (3) infrared eclipse temperatures. Photographs from the Apollo missions, Lunar Orbiters, and other sources provide a fundamental source of data on the geology and topography of the Moon and a basis for comparing, correlating, and testing the remote sensing and measurements. Relative ages obtained from crater statistics and then empirically correlated with absolute ages indicate that significant lunar volcanism continued to 2.5 b.y. (billion years) ago-some 600 m.y. (million years) after the youngest volcanic rocks sampled by Apollo-and that intensive bombardment of the Moon occurred in the interval of 3.84 to 3.9 b.y. ago. Estimated fluxes of crater-producing objects during the last 50 m.y. agree fairly well with fluxes measured by the Apollo passive seismic stations. Gravity measurements obtained by observing orbiting spacecraft reveal that mare basins have mass concentrations and that the volume of material ejected from the Orientale basin is near 2 to 5 million km 3 depending on whether there has or has not been isostatic compensation, little or none of which has occurred since 3.84 b.y. ago. Isostatic compensation may have occurred in some of the old large lunar basins, but more data are needed to prove it. Steady fields of remanent magnetism were detected by the Apollo 15 and 16 subsatellites

  17. Natural Resource Information System. Remote Sensing Studies.

    Science.gov (United States)

    Leachtenauer, J.; And Others

    A major design objective of the Natural Resource Information System entailed the use of remote sensing data as an input to the system. Potential applications of remote sensing data were therefore reviewed and available imagery interpreted to provide input to a demonstration data base. A literature review was conducted to determine the types and…

  18. Remote sensing and reflectance profiling in entomology

    Science.gov (United States)

    Remote sensing is about characterizing the status of objects and/or classifies their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be ground-based, and therefore acquired at a high spatial resolutio...

  19. Planning and Implementation of Remote Sensing Experiments.

    Science.gov (United States)

    Contents: TEKTITE II experiment-upwelling detection (NASA Mx 138); Design of oceanographic experiments (Gulf of Mexico, Mx 159); Design of oceanographic experiments (Gulf of Mexico, Mx 165); Experiments on thermal pollution; Remote sensing newsletter; Symposium on remote sensing in marine biology and fishery resources.

  20. Preface: Remote Sensing of Water Resources

    OpenAIRE

    Deepak R. Mishra; Eurico J. D’Sa; Sachidananda Mishra

    2016-01-01

    The Special Issue (SI) on “Remote Sensing of Water Resources” presents a diverse range of papers studying remote sensing tools, methods, and models to better monitor water resources which include inland, coastal, and open ocean waters. The SI is comprised of fifteen articles on widely ranging research topics related to water bodies. This preface summarizes each article published in the SI.

  1. Application of integrated remote sensing and GIS technologies to geoenvironmental issues in far west Texas and southern New Mexico

    Science.gov (United States)

    Perez, Adriana Evangelina

    The primary goal of this dissertation was to utilize a geographic information system (GIS) to better understand geological, geophysical, forestry and environmental issues in the west Texas-New Mexico region. Studies such as these are especially important in the border region where economic limitations are usually a factor in studying and solving some of these problems. The availability of satellite imagery through the Pan-American Center for Earth and Environmental Studies (PACES), data from the Geospatial Center and the collaboration with the United States Department of Agriculture (USDA) and National Forest entities (Guadalupe and Lincoln Ranger Districts) enhance the value of our investigation. Research was conducted in two distinct areas: Cloudcroft-Ruidoso, New Mexico, and the Salt Flat basin of southwest Texas (Figure 1). The dissertation will be presented as a set of independent chapters. Chapter 1. A GIS and remote sensing investigation of the effects of interactions of terrain, soil, and other physiographic factors on the Pine Community of Lincoln National Park in the Sacramento Mountains of Southwest New Mexico. This study utilized GIS and remote sensing to better understand the dynamics of White Pine Blister Rust (WPBR) infestation in the white pine community of the Sacramento Mountains of southwest New Mexico. Both field spectral sampling of the needles and imagery analysis were incorporated to better understand the infestation, progression and vulnerability of the forest to this and other diseases. A major contribution of this study was to construct a GIS database, which was utilized to analyze USDA, elevation, satellite imagery, geological, and hydrological data to produce a hazard-rating map. The GIS environment also allowed for a 3-D perspective on the data, which was very useful in spatial visualization. Chapter 2. An integrated study of the basin structure of the Salt Flat basin. In this study we utilized, gravity and magnetic data, satellite

  2. Optical Remote Sensing Potentials for Looting Detection

    Directory of Open Access Journals (Sweden)

    Athos Agapiou

    2017-10-01

    Full Text Available Looting of archaeological sites is illegal and considered a major anthropogenic threat for cultural heritage, entailing undesirable and irreversible damage at several levels, such as landscape disturbance, heritage destruction, and adverse social impact. In recent years, the employment of remote sensing technologies using ground-based and/or space-based sensors has assisted in dealing with this issue. Novel remote sensing techniques have tackled heritage destruction occurring in war-conflicted areas, as well as illicit archeological activity in vast areas of archaeological interest with limited surveillance. The damage performed by illegal activities, as well as the scarcity of reliable information are some of the major concerns that local stakeholders are facing today. This study discusses the potential use of remote sensing technologies based on the results obtained for the archaeological landscape of Ayios Mnason in Politiko village, located in Nicosia district, Cyprus. In this area, more than ten looted tombs have been recorded in the last decade, indicating small-scale, but still systematic, looting. The image analysis, including vegetation indices, fusion, automatic extraction after object-oriented classification, etc., was based on high-resolution WorldView-2 multispectral satellite imagery and RGB high-resolution aerial orthorectified images. Google Earth© images were also used to map and diachronically observe the site. The current research also discusses the potential for wider application of the presented methodology, acting as an early warning system, in an effort to establish a systematic monitoring tool for archaeological areas in Cyprus facing similar threats.

  3. An overview of GNSS remote sensing

    OpenAIRE

    Kegen, Yu; Rizos, Chris; Burrage, Derek; Dempster, Andrew; Zhang, Kefei; Markgraf, Markus

    2014-01-01

    The Global Navigation Satellite System (GNSS) signals are always available, globally, and the signal structures are well known, except for those dedicated to military use. They also have some distinctive characteristics, including the use of L-band frequencies, which are particularly suited for remote sensing purposes. The idea of using GNSS signals for remote sensing - the atmosphere, oceans or Earth surface - was first proposed more than two decades ago. Since then, GNSS remote ...

  4. Ten ways remote sensing can contribute to conservation.

    Science.gov (United States)

    Rose, Robert A; Byler, Dirck; Eastman, J Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A; Laporte, Nadine; Leidner, Allison; Leimgruber, Peter; Morisette, Jeffrey; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara

    2015-04-01

    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to

  5. Using Remote Sensing Technology, Web Casts, and Participation in a Valuable Research Project to Jazz Teachers and Excite Students About Science

    Science.gov (United States)

    Benko, T. M.; Czajkowski, K. P.; Struble, J.; Zhao, L.

    2002-12-01

    Scientific education of primary and secondary school children has become a topic of concern in Ohio and throughout the United States. So with that in mind, how do you get students excited about learning science? One route is to inform and jazz teachers about current technology! The University of Toledo has hosted three one-week, NASA and OhioView sponsored professional development institutes entitled, Observing Earth from Space, for teachers from grades K-12 during July 2000, 2001, and 2002. Sixty-seven teachers from the Upper Midwest and Kansas with Earth Science, Social Studies, and Physics backgrounds attended. Each participant acquired new ideas, plenty of educational materials, and posters of satellite imagery. The teachers received basic training in remote sensing, global positioning systems, digital elevation models, and weather observing techniques and learned about useful remote sensing applications. This instruction was conducted through: 1) presentations given by research scientists, 2) integration of the learned content into authentic, hands-on lesson plans, and 3) participation in a learning adventure, where their students collected real-time earth science data at their respective schools while university research scientists gathered corresponding satellite imagery. The students observations were submitted via a simple Web interface: www.remotesensing.utoledo.edu. One of the very exciting platforms used to communicate with the teachers and students throughout the school year were live Web Casts sponsored by NASA Glenn Research Center. The students data have successfully assisted in the validation of cloud/snow remote sensing algorithms, and next year the students observations will include various surface temperature readings. The participation in a cutting-edge technology workshop and in an important global climate change research project, applicable in the classroom, has added another worthwhile dimension to the learning process and career awareness

  6. Remote Sensing and the Kyoto Protocol: A Workshop Summary

    Science.gov (United States)

    Rosenqvist, Ake; Imhoff, Marc; Milne, Anthony; Dobson, Craig

    2000-01-01

    The Kyoto Protocol to the United Nations Framework Convention on Climate Change contains quantified, legally binding commitments to limit or reduce greenhouse gas emissions to 1990 levels and allows carbon emissions to be balanced by carbon sinks represented by vegetation. The issue of using vegetation cover as an emission offset raises a debate about the adequacy of current remote sensing systems and data archives to both assess carbon stocks/sinks at 1990 levels, and monitor the current and future global status of those stocks. These concerns and the potential ratification of the Protocol among participating countries is stimulating policy debates and underscoring a need for the exchange of information between the international legal community and the remote sensing community. On October 20-22 1999, two working groups of the International Society for Photogrammetry and Remote Sensing (ISPRS) joined with the University of Michigan (Michigan, USA) to convene discussions on how remote sensing technology could contribute to the information requirements raised by implementation of, and compliance with, the Kyoto Protocol. The meeting originated as a joint effort between the Global Monitoring Working Group and the Radar Applications Working Group in Commission VII of the ISPRS, co-sponsored by the University of Michigan. Tile meeting was attended by representatives from national government agencies and international organizations and academic institutions. Some of the key themes addressed were: (1) legal aspects of transnational remote sensing in the context of the Kyoto Protocol; (2) a review of the current and future and remote sensing technologies that could be applied to the Kyoto Protocol; (3) identification of areas where additional research is needed in order to advance and align remote sensing technology with the requirements and expectations of the Protocol; and 94) the bureaucratic and research management approaches needed to align the remote sensing

  7. The U.S. Geological Survey Land Remote Sensing Program

    Science.gov (United States)

    ,

    2007-01-01

    The fundamental goals of the U.S. Geological Survey's Land Remote Sens-ing (LRS) Program are to provide the Federal Government and the public with a primary source of remotely sensed data and applications and to be a leader in defining the future of land remote sensing, nationally and internationally. Remotely sensed data provide information that enhance the understand-ing of ecosystems and the capabilities for predicting ecosystem change. The data promote an understanding of the role of the environment and wildlife in human health issues, the requirements for disaster response, the effects of climate variability, and the availability of energy and mineral resources. Also, as land satellite systems acquire global coverage, the program coordinates a network of international receiving stations and users of the data. It is the responsibility of the program to assure that data from land imaging satellites, airborne photography, radar, and other technologies are available to the national and global science communities.

  8. MICROWAVE REMOTE SENSING IN SOIL QUALITY ASSESSMENT

    Directory of Open Access Journals (Sweden)

    S. K. Saha

    2012-08-01

    Full Text Available Information of spatial and temporal variations of soil quality (soil properties is required for various purposes of sustainable agriculture development and management. Traditionally, soil quality characterization is done by in situ point soil sampling and subsequent laboratory analysis. Such methodology has limitation for assessing the spatial variability of soil quality. Various researchers in recent past showed the potential utility of hyperspectral remote sensing technique for spatial estimation of soil properties. However, limited research studies have been carried out showing the potential of microwave remote sensing data for spatial estimation of various soil properties except soil moisture. This paper reviews the status of microwave remote sensing techniques (active and passive for spatial assessment of soil quality parameters such as soil salinity, soil erosion, soil physical properties (soil texture & hydraulic properties; drainage condition; and soil surface roughness. Past and recent research studies showed that both active and passive microwave remote sensing techniques have great potentials for assessment of these soil qualities (soil properties. However, more research studies on use of multi-frequency and full polarimetric microwave remote sensing data and modelling of interaction of multi-frequency and full polarimetric microwave remote sensing data with soil are very much needed for operational use of satellite microwave remote sensing data in soil quality assessment.

  9. Remote Sensing Training for Middle School through the Center of Excellence in Remote Sensing Education

    Science.gov (United States)

    Hayden, L. B.; Johnson, D.; Baltrop, J.

    2012-12-01

    Remote sensing has steadily become an integral part of multiple disciplines, research, and education. Remote sensing can be defined as the process of acquiring information about an object or area of interest without physical contact. As remote sensing becomes a necessity in solving real world problems and scientific questions an important question to consider is why remote sensing training is significant to education and is it relevant to training students in this discipline. What has been discovered is the interest in Science, Technology, Engineering and Mathematics (STEM) fields, specifically remote sensing, has declined in our youth. The Center of Excellence in Remote Sensing Education and Research (CERSER) continuously strives to provide education and research opportunities on ice sheet, coastal, ocean, and marine science. One of those continued outreach efforts are Center for Remote Sensing of Ice Sheets (CReSIS) Middle School Program. Sponsored by the National Science Foundation CReSIS Middle School Program offers hands on experience for middle school students. CERSER and NSF offer students the opportunity to study and learn about remote sensing and its vital role in today's society as it relate to climate change and real world problems. The CReSIS Middle School Program is an annual two-week effort that offers middle school students experience with remote sensing and its applications. Specifically, participants received training with Global Positioning Systems (GPS) where the students learned the tools, mechanisms, and applications of a Garmin 60 GPS. As a part of the program the students were required to complete a fieldwork assignment where several longitude and latitude points were given throughout campus. The students had to then enter the longitude and latitude points into the Garmin 60 GPS, navigate their way to each location while also accurately reading the GPS to make sure travel was in the right direction. Upon completion of GPS training the

  10. 麦蚜灾害遥感监测技术应用研究%STUDY ON APPLYING REMOTE SENSING TECHNOLOGY ON THE MONITORING OF WHEAT APHID INFESTATION

    Institute of Scientific and Technical Information of China (English)

    郭永旺; 金晓华; 杨建国; 李国强

    2001-01-01

    Based on the theory of remote sensing technology, comparative studies were carried out between the analysis of satellite remote sensing data and the application of the 4 wavelength infrared radiator (Model EXOTECH - 100, made in USA) on the monitoring of wheat aphid infestation. Results indicated that the 4 wavelength infrared radiator was applicable, a system appliance was developed through the renovation of EXOTECH-100, and it was successfully used on the monitoring of wheat aphid infestation with appropriate efficiency and accuracy. Results also showed that it was impractical for the monitoring of wheat aphid infestation by the analysis of satellite remote sensing data due to the limitation on its accession and high costs.%根据遥感技术原理,对卫星遥感与四波段野外辐射计(EXOTECH-100美国)在麦蚜灾害监测中的使用情况进行了研究比较。结果表明,四波段野外辐射计具有很好的适用性。并在此基础上,通过对四波段野外辐射计EXOTECH-100进行改造,自制了病虫害监测仪,在麦蚜灾害遥感监测中成功使用,提高监测效率和测量的准确率。卫星遥感由于成本高、可用数据有限,不便于在麦蚜灾害监测中应用。

  11. Quarterly literature review of the remote sensing of natural resources

    Science.gov (United States)

    Fears, C. B. (Editor); Inglis, M. H. (Editor)

    1977-01-01

    The Technology Application Center reviewed abstracted literature sources, and selected document data and data gathering techniques which were performed or obtained remotely from space, aircraft or groundbased stations. All of the documentation was related to remote sensing sensors or the remote sensing of the natural resources. Sensors were primarily those operating within the 10 to the minus 8 power to 1 meter wavelength band. Included are NASA Tech Briefs, ARAC Industrial Applications Reports, U.S. Navy Technical Reports, U.S. Patent reports, and other technical articles and reports.

  12. Hyperspectral remote sensing for terrestrial applications

    Science.gov (United States)

    Thenkabail, Prasad S.; Teluguntla, Pardhasaradhi G.; Murali Krishna Gumma,; Venkateswarlu Dheeravath,

    2015-01-01

    Remote sensing data are considered hyperspectral when the data are gathered from numerous wavebands, contiguously over an entire range of the spectrum (e.g., 400–2500 nm). Goetz (1992) defines hyperspectral remote sensing as “The acquisition of images in hundreds of registered, contiguous spectral bands such that for each picture element of an image it is possible to derive a complete reflectance spectrum.” However, Jensen (2004) defines hyperspectral remote sensing as “The simultaneous acquisition of images in many relatively narrow, contiguous and/or non contiguous spectral bands throughout the ultraviolet, visible, and infrared portions of the electromagnetic spectrum.

  13. An international organization for remote sensing

    Science.gov (United States)

    Helm, Neil R.; Edelson, Burton I.

    1991-01-01

    A recommendation is presented for the formation of a new commercially oriented international organization to acquire or develop, coordinate or manage, the space and ground segments for a global operational satellite system to furnish the basic data for remote sensing and meteorological, land, and sea resource applications. The growing numbers of remote sensing programs are examined and possible ways of reducing redundant efforts and improving the coordination and distribution of these global efforts are discussed. This proposed remote sensing organization could play an important role in international cooperation and the distribution of scientific, commercial, and public good data.

  14. Remote sensing and urban public health

    Science.gov (United States)

    Rush, M.; Vernon, S.

    1975-01-01

    The applicability of remote sensing in the form of aerial photography to urban public health problems is examined. Environmental characteristics are analyzed to determine if health differences among areas could be predicted from the visual expression of remote sensing data. The analysis is carried out on a socioeconomic cross-sectional sample of census block groups. Six morbidity and mortality rates are the independent variables while environmental measures from aerial photographs and from the census constitute the two independent variable sets. It is found that environmental data collected by remote sensing are as good as census data in evaluating rates of health outcomes.

  15. Preface: Remote Sensing in Coastal Environments

    Directory of Open Access Journals (Sweden)

    Deepak R. Mishra

    2016-08-01

    Full Text Available The Special Issue (SI on “Remote Sensing in Coastal Environments” presents a wide range of articles focusing on a variety of remote sensing models and techniques to address coastal issues and processes ranging for wetlands and water quality to coral reefs and kelp habitats. The SI is comprised of twenty-one papers, covering a broad range of research topics that employ remote sensing imagery, models, and techniques to monitor water quality, vegetation, habitat suitability, and geomorphology in the coastal zone. This preface provides a brief summary of each article published in the SI.

  16. Suntracker for atmospheric remote sensing

    Science.gov (United States)

    Hawat, Toufic-Michel; Camy-Peyret, Claude; Torguet, Roger J.

    1998-05-01

    A heliostat is designed and built to track the sun for optical remote sensing of the stratosphere from a balloon- borne pointed gondola. The tracking mechanism is controlled by two direct torque motors used to drive a single flat acquisition mirror. A horizontal turntable, rigidly attached to the azimuth drive, supports the elevation assembly. A position sensor receiving a small part of the solar beam reflected off the main acquisition mirror is used for the fine servo control. Using a CCD camera prepointing of the acquisition mirror is achieved when the sun is in the field of view of the heliostat. This system is coupled with a high-resolution (0.02-cm-1) Fourier transform IR spectrometer to retrieve stratospheric trace species concentration profiles. The suntracker directs the solar radiation in a stable direction along the spectrometer optical axis. The pointing precision is 1 arcmin from a stratospheric gondola, which has static and dynamic angular excursions up to 6 deg. The heliostat coupled to the Limb Profile Monitor of the Atmosphere instrument performs successfully on several balloon flights. The description, ground tests, and balloon flight results of the suntracker are presented.

  17. 防震减灾中卫星遥感技术应用分析%Application of satellite remote sensing technology in earthquake disaster reduction

    Institute of Scientific and Technical Information of China (English)

    谢礼立; 张景发

    2000-01-01

    卫星遥感技术在减轻自然灾害中发挥了十分重要的作用,但也不得不指出,卫星遥感技术在防震减灾工作中,无论在国内或国外均尚未得到有效的应用.这一方面固然是由于地震事件十分复杂,地震孕育和发生的规律尚未搞清,难以发挥卫星遥感技术的作用,另一方面也由于可以使用的卫星遥感技术的分辨率还不够高,重复观察的周期长,限制了这一技术在防震减灾工作中的应用.有鉴于近年来卫星遥感技术有了新的进展,使其有可能在防震减灾中发挥特殊的作用,本文旨在对卫星遥感技术在防震减灾工作的应用,对它的可行性、有效性、经济性和与此相关的科学技术问题进行探讨,使这项技术能在防震减灾领域早日得到应用,以促进我国防震减灾工作的发展.%With the rapid development of satellite remote sensing technology,it has been widely applied in national economics and martial area,in particular,in the field of natural disaster reduction,for examples,in forecasting and controlling of flood,preventing of forest-fire,monitoring of landslide and debris flow and so on.Regretfully,as we understand the satellite remote sensing technology are rarely applied both at home and abroad for earthquake disaster reduction.It is because that on the one side,earthquake is a very complicated natural phenomenon with its indistinct genesis mechanism and occurrence of very low probability and on the other side,the resolution of satellite remote sensing image is too low and satellite repeat period is too long that constrain this technique to be used in earthquake disaster reduction.This paper intends to address the application,practicability and other relative scientific-technical and economic issues,of satellite remote sensing technology in reducing earthquake disaster,it is believed that the earlier use of satellite remote sensing technology in China will provide a more effective and economic

  18. A method to analyze "source-sink" structure of non-point source pollution based on remote sensing technology.

    Science.gov (United States)

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui

    2013-11-01

    With the purpose of providing scientific basis for environmental planning about non-point source pollution prevention and control, and improving the pollution regulating efficiency, this paper established the Grid Landscape Contrast Index based on Location-weighted Landscape Contrast Index according to the "source-sink" theory. The spatial distribution of non-point source pollution caused by Jiulongjiang Estuary could be worked out by utilizing high resolution remote sensing images. The results showed that, the area of "source" of nitrogen and phosphorus in Jiulongjiang Estuary was 534.42 km(2) in 2008, and the "sink" was 172.06 km(2). The "source" of non-point source pollution was distributed mainly over Xiamen island, most of Haicang, east of Jiaomei and river bank of Gangwei and Shima; and the "sink" was distributed over southwest of Xiamen island and west of Shima. Generally speaking, the intensity of "source" gets weaker along with the distance from the seas boundary increase, while "sink" gets stronger.

  19. Benthic habitat mapping using hyperspectral remote sensing

    Science.gov (United States)

    Vélez-Reyes, Miguel; Goodman, James A.; Castrodad-Carrau, Alexey; Jiménez-Rodriguez, Luis O.; Hunt, Shawn D.; Armstrong, Roy

    2006-09-01

    Benthic habitats are the different bottom environments as defined by distinct physical, geochemical, and biological characteristics. Remote sensing is increasingly being used to map and monitor the complex dynamics associated with estuarine and nearshore benthic habitats. Advantages of remote sensing technology include both the qualitative benefits derived from a visual overview, and more importantly, the quantitative abilities for systematic assessment and monitoring. Advancements in instrument capabilities and analysis methods are continuing to expand the accuracy and level of effectiveness of the resulting data products. Hyperspectral sensors in particular are rapidly emerging as a more complete solution, especially for the analysis of subsurface shallow aquatic systems. The spectral detail offered by hyperspectral instruments facilitates significant improvements in the capacity to differentiate and classify benthic habitats. This paper reviews two techniques for mapping shallow coastal ecosystems that both combine the retrieval of water optical properties with a linear unmixing model to obtain classifications of the seafloor. Example output using AVIRIS hyperspectral imagery of Kaneohe Bay, Hawaii is employed to demonstrate the application potential of the two approaches and compare their respective results.

  20. Remote sensing application for property tax evaluation

    Science.gov (United States)

    Jain, Sadhana

    2008-02-01

    This paper presents a study for linking remotely sensed data with property tax related issues. First, it discusses the key attributes required for property taxation and evaluates the capabilities of remote sensing technology to measure these attributes accurately at parcel level. Next, it presents a detailed case study of six representative wards of different characteristics in Dehradun, India, that illustrates how measurements of several of these attributes supported by field survey can be combined to address the issues related to property taxation. Information derived for various factors quantifies the property taxation contributed by an average dwelling unit of the different income groups. Results show that the property tax calculated in different wards varies between 55% for the high-income group, 32% for the middle-income group, 12% for the low-income group and 1% for squatter units. The study concludes that higher spatial resolution satellite data and integrates social survey helps to assess the socio-economic status of the population for tax contribution purposes.

  1. Strategic Environmental Research and Development Project FY 1994: Assessing national remote sensing technologies for use in US Department of Energy Environmental Restoration Activities, Oak Ridge Solid Waste Storage Area 4 case study

    Energy Technology Data Exchange (ETDEWEB)

    King, A.L.; Smyre, J.L.; Evers, T.K.

    1995-02-01

    During FY 1994, the Oak Ridge Environmental Restoration (ER) Remote Sensing Program teamed with members of the Oak Ridge National Security Program Office (NSPO), the Environmental Research Institute of Michigan (ERIM) under contract to the National Exploitation Laboratory (NEL), the Oak Ridge Waste Area Group 4 (WAG 4) ER Program, and the US Department of Energy (DOE), Offices of Technology Development, Nonproliferation and National Security, and Environmental Restoration, to conduct a test and demonstration of the uses of national remote sensing technologies at DOE hazardous waste sites located in Oak Ridge, Tennessee. Objectives of the Oak Ridge study were to determine if national remote sensing technologies are useful in conducting prescreening, characterization, and/or monitoring activities to expedite the clean-up process at hazardous waste sites and to cut clean-up costs wherever possible. This project was sponsored by the Strategic Environmental Research and Development Project (SERDP).

  2. 摄影测量与遥感技术在工程建设中的应用分析%Analysis on Photogrammetry and Remote Sensing Technology in Engineering Construction

    Institute of Scientific and Technical Information of China (English)

    张维

    2016-01-01

    摄影测量与遥感技术在工程建设中的应用价值是很大的,文章研究了摄影测量遥感技术在工程建设中的具体应用,对于工程建设质量的提升,对于摄影测量与遥感技术的推广具有积极的推动作用。%Photogrammetry and Remote Sensing Technology Value in engineering construction is great, here to study the specific application of photogrammetry remote sensing technology in engineering construction, for construction quality improvement, promotion for Photogrammetry and Remote Sensing Technology has positive role in promoting.

  3. 高分辨率遥感图像融合技术的研究%Research on high resolution remote sensing image fusion technology

    Institute of Scientific and Technical Information of China (English)

    刘钢; 郭晗

    2016-01-01

    图像融合已成为图像理解和计算机视觉领域中的一项重要而有用的新技术,多源遥感图像数据融合也成为遥感领域的研究热点,其目的是将来自多信息源的图像数据加以智能化合成,产生比单一传感器数据更精确、更可靠的描述和判决,使融合图像更符合人和机器的视觉特性,更有利于诸如目标检测与识别等进一步的图像理解与分析。%Image fusion has become in the field of image understanding and computer vision a important and useful new technology,multi-source remote sensing image fusion has become research hotspot in the field of remote sensing and its purpose is the future image data from multiple sources of information to be intelligent synthesis,than that of single sensor data more accurate and more reliable description and decision. The fusion image more in line with the visual characteristics of human and machine, more conducive to such as target detection and recognition of further image analysis and understanding.

  4. 基于遥感技术的城市热岛问题研究%The Urban Heat Island Effect Research Based on Remote Sensing Technology

    Institute of Scientific and Technical Information of China (English)

    王传东

    2013-01-01

    Urban heat island effect is brought by the urbaniza-tion of the more obvious by-product of urban climate environ-ment caused by the huge impact. Remote sensing technique has wide coverage, synchronous observation etc., in the urban heat island in the study play a large role. This reading report sumarizes the previous research methods in use of remote sen-sing technology in the urban heat island problems, for the futu-re direction of the research laid the foundation.%  城市热岛效应是城市化带来的较为明显的副产品之一,对城市气候环境造成了巨大的影响。遥感技术具有覆盖率广、同步观测等特点,在城市热岛问题研究中发挥着巨大的作用。本论文总结了前人利用遥感技术在城市热岛问题方面的研究方法,为今后该方向的研究奠定了基础。

  5. Remote sensing applications to hydrologic modeling

    Science.gov (United States)

    Dozier, J.; Estes, J. E.; Simonett, D. S.; Davis, R.; Frew, J.; Marks, D.; Schiffman, K.; Souza, M.; Witebsky, E.

    1977-01-01

    An energy balance snowmelt model for rugged terrain was devised and coupled to a flow model. A literature review of remote sensing applications to hydrologic modeling was included along with a software development outline.

  6. Hyperspectral remote sensing for light pollution monitoring

    Directory of Open Access Journals (Sweden)

    P. Marcoionni

    2006-06-01

    Full Text Available industries. In this paper we introduce the results from a remote sensing campaign performed in September 2001 at night time. For the first time nocturnal light pollution was measured at high spatial and spectral resolution using two airborne hyperspectral sensors, namely the Multispectral Infrared and Visible Imaging Spectrometer (MIVIS and the Visible InfraRed Scanner (VIRS-200. These imagers, generally employed for day-time Earth remote sensing, were flown over the Tuscany coast (Italy on board of a Casa 212/200 airplane from an altitude of 1.5-2.0 km. We describe the experimental activities which preceded the remote sensing campaign, the optimization of sensor configuration, and the images as far acquired. The obtained results point out the novelty of the performed measurements and highlight the need to employ advanced remote sensing techniques as a spectroscopic tool for light pollution monitoring.

  7. Application of Spaceborne Remote Sensing to Archaeology

    Science.gov (United States)

    Crippen, Robert E.

    1997-01-01

    Spaceborne remote sensing data have been underutilized in archaeology for a variety of seasons that are slowly but surely being overcome. Difficulties have included cost/availability of data, inadequate resolution, and data processing issues.

  8. GNSS remote sensing theory, methods and applications

    CERN Document Server

    Jin, Shuanggen; Xie, Feiqin

    2014-01-01

    This book presents the theory and methods of GNSS remote sensing as well as its applications in the atmosphere, oceans, land and hydrology. It contains detailed theory and study cases to help the reader put the material into practice.

  9. NOAA Coastal Mapping Remote Sensing Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Remote Sensing Division is responsible for providing data to support the Coastal Mapping Program, Emergency Response efforts, and the Aeronautical Survey Program...

  10. Biophysical applications of satellite remote sensing

    CERN Document Server

    Hanes, Jonathan

    2014-01-01

    Including an introduction and historical overview of the field, this comprehensive synthesis of the major biophysical applications of satellite remote sensing includes in-depth discussion of satellite-sourced biophysical metrics such as leaf area index.

  11. Integrating spatial statistics and remote sensing.

    NARCIS (Netherlands)

    Stein, A.; Bastiaanssen, W.G.M.; Bruin, de S.; Cracknell, A.P.; Curran, P.J.; Fabbri, A.G.; Gorte, B.G.H.; Groenigen, van J.W.; Meer, van der F.D.; Saldana, A.

    1998-01-01

    This paper presents an integrated approach towards spatial statistics for remote sensing. Using the layer concept in Geographical Information Systems we treat successively elements of spatial statistics, scale, classification, sampling and decision support. The layer concept allows to combine contin

  12. Remote Sensing of Ecosystem Health: Opportunities, Challenges, and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Zhaoqin Li

    2014-11-01

    Full Text Available Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1 scale issue; (2 transportability issue; (3 data availability; and (4 uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges.

  13. Remote sensing of ecosystem health: opportunities, challenges, and future perspectives.

    Science.gov (United States)

    Li, Zhaoqin; Xu, Dandan; Guo, Xulin

    2014-11-07

    Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges.

  14. Freeware for GIS and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Lena Halounová

    2007-12-01

    Full Text Available Education in remote sensing and GIS is based on software utilization. The software needs to be installed in computer rooms with a certain number of licenses. The commercial software equipment is therefore financially demanding and not only for universities, but especially for students. Internet research brings a long list of free software of various capabilities. The paper shows a present state of GIS, image processing and remote sensing free software.

  15. Preface: Remote Sensing of Water Resources

    Directory of Open Access Journals (Sweden)

    Deepak R. Mishra

    2016-02-01

    Full Text Available The Special Issue (SI on “Remote Sensing of Water Resources” presents a diverse range of papers studying remote sensing tools, methods, and models to better monitor water resources which include inland, coastal, and open ocean waters. The SI is comprised of fifteen articles on widely ranging research topics related to water bodies. This preface summarizes each article published in the SI.

  16. Talisman-Saber 2009 Remote Sensing Experiment

    Science.gov (United States)

    2012-03-30

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/7230--12-9404 Talisman -Saber 2009 Remote Sensing Experiment March 30, 2012 Approved for... Talisman -Saber 2009 Remote Sensing Experiment Charles M. Bachmann, Robert A. Fusina, Marcos J. Montes, Rong-Rong Li, Carl Gross, C. Reid Nichols,* John C...sensor were used to build shallow water bathymetric charts and trafficability maps that were provided to military planners during Exercise Talisman

  17. Remote sensing of coastal and ocean studies

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.

    the sensors on board 2 satellites or aircrafts (and vice versa). Hence, they cannot be used in remote sensing. Similarly, long waves like radio waves are also not used in remote sensing because of their poor information carrying capacity. Only visible, infra..., infra-red radiation is also affected by clouds (though less significantly). This requires atmospheric corrections to be applied to such data. At present, sea surface temperatures are routinely being retrieved from the sensor called AVBRR (Advanced Vary...

  18. LOCATING BURIED WORLD WAR 1 MUNITIONS WITH REMOTE SENSING AND GIS

    Science.gov (United States)

    Remote Sensing is a scientific discipline of non-contact monitoring. It includes a range of technologies that span from aerial photography to advanced spectral imaging and analytical methods. This Session is designed to demonstrate contemporary practical applications of remote ...

  19. Remote Sensing Digital Image Analysis An Introduction

    CERN Document Server

    Richards, John A

    2013-01-01

    Remote Sensing Digital Image Analysis provides the non-specialist with a treatment of the quantitative analysis of satellite and aircraft derived remotely sensed data. Since the first edition of the book there have been significant developments in the algorithms used for the processing and analysis of remote sensing imagery; nevertheless many of the fundamentals have substantially remained the same.  This new edition presents material that has retained value since those early days, along with new techniques that can be incorporated into an operational framework for the analysis of remote sensing data. The book is designed as a teaching text for the senior undergraduate and postgraduate student, and as a fundamental treatment for those engaged in research using digital image processing in remote sensing.  The presentation level is for the mathematical non-specialist.  Since the very great number of operational users of remote sensing come from the earth sciences communities, the text is pitched at a leve...

  20. Preparation of earthquake-triggered landslide inventory maps using remote sensing and GIS technologies:Principles and case studies

    Institute of Scientific and Technical Information of China (English)

    Chong Xu

    2015-01-01

    Inventory maps of earthquake-triggered landslides can be constructed using several methods, which are often subject to obvious differences due to lack of commonly accepted criteria or principles. To solve this problem, the author describes the principles for preparing inventory maps of earthquake-triggered landslides, focusing on varied methods and their criteria. The principles include the following key points: all landslides should be mapped as long as they can be recognized from images; both the boundary and source area position of landslides should be mapped; spatial distribution pattern of earthquake-triggered landslides should be continuous; complex landslides should be divided into distinct groups;three types of errors such as precision of the location and boundary of landslides, false positive errors, and false negative errors of earthquake-triggered landslide inventories should be controlled and reduced; and inventories of co-seismic landslides should be constructed by the visual interpretation method rather than automatic extraction of satellite images or/and aerial photographs. In addition, selection of remote sensing images and creation of landslides attribute database are also dis-cussed in this paper. Then the author applies these principles to produce inventory maps of four events:the 12 May 2008 Wenchuan, China Mw 7.9, 14 April 2010 Yushu, China Mw 6.9, 12 January 2010 Haiti Mw 7.0, and 2007 Aysén Fjord, Chile Mw 6.2. The results show obvious differences in comparison with pre-vious studies by other researchers, which again attest to the necessity of establishment of unified principles for preparation of inventory maps of earthquake-triggered landslides.

  1. Tunnel-Site Selection by Remote Sensing Techniques

    Science.gov (United States)

    A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave

  2. Remote Sensing Best Paper Award for the Year 2014

    OpenAIRE

    Prasad Thenkabail

    2014-01-01

    Remote Sensing has started to institute a “Best Paper” award to recognize the most outstanding papers in the area of remote sensing techniques, design and applications published in Remote Sensing. We are pleased to announce the first “Remote Sensing Best Paper Award” for the year 2014.

  3. Remote sensing strategies for global resource exploration and environmental management

    Science.gov (United States)

    Henderson, Frederick B.

    Since 1972, satellite remote sensing, when integrated with other exploration techniques, has demonstrated operational exploration and engineering cost savings and reduced exploration risks through improved geological mapping. Land and ocean remote sensing satellite systems under development for the 1990's by the United States, France, Japan, Canada, ESA, Russia, China, and others, will significantly increase our ability to explore for, develop, and manage energy and mineral resources worldwide. A major difference between these systems is the "Open Skies" and "Non-Discriminatory Access to Data" policies as have been practiced by the U.S. and France and the restrictive nationalistic data policies as have been practiced by Russia and India. Global exploration will use satellite remote sensing to better map regional structural and basin-like features that control the distribution of energy and mineral resources. Improved sensors will better map lithologic and stratigraphic units and identify alteration effects in rocks, soils, and vegetation cover indicative of undiscovered subsurface resources. These same sensors will also map and monitor resource development. The use of satellite remote sensing data will grow substantially through increasing integration with other geophysical, geochemical, and geologic data using improved geographic information systems (GIS). International exploration will focus on underdeveloped countries rather than on mature exploration areas such as the United States, Europe, and Japan. Energy and mineral companies and government agencies in these countries and others will utilize available remote sensing data to acquire economic intelligence on global resources. If the "Non-Discriminatory Access to Data" principle is observed by satellite producing countries, exploration will remain competitive "on the ground". In this manner, remote sensing technology will continue to be developed to better explore for and manage the world's needed resources

  4. Researching on the process of remote sensing video imagery

    Science.gov (United States)

    Wang, He-rao; Zheng, Xin-qi; Sun, Yi-bo; Jia, Zong-ren; Wang, He-zhan

    Unmanned air vehicle remotely-sensed imagery on the low-altitude has the advantages of higher revolution, easy-shooting, real-time accessing, etc. It's been widely used in mapping , target identification, and other fields in recent years. However, because of conditional limitation, the video images are unstable, the targets move fast, and the shooting background is complex, etc., thus it is difficult to process the video images in this situation. In other fields, especially in the field of computer vision, the researches on video images are more extensive., which is very helpful for processing the remotely-sensed imagery on the low-altitude. Based on this, this paper analyzes and summarizes amounts of video image processing achievement in different fields, including research purposes, data sources, and the pros and cons of technology. Meantime, this paper explores the technology methods more suitable for low-altitude video image processing of remote sensing.

  5. Target Detection: Remote Sensing Techniques for Defence Applications

    Directory of Open Access Journals (Sweden)

    B. B. Chaudhuri

    1995-10-01

    Full Text Available The tremendous development in remote sensing technology in the recent past has opened up new challenges in defence applications. On important area of such applications is in target detection. This paper describes both classical and newly developed approaches to detect the targets by using remotely-sensed digital images. The classical approach includes statistical classification methods and image processing techniques. The new approach deals with a relatively new sensor technology, namely, synthetic aperture radar (SAR systems and fast developing tools, like neural networks and multisource data integration for analysis and interpretation. With SAR images, it is possible to detect targets or features of a target that is otherwise not possible. Neural networks and multisource data integration tools also have a great potential in analysing and interpreting remote sensing data for target detection.

  6. Levee Health Monitoring With Radar Remote Sensing

    Science.gov (United States)

    Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.

    2012-12-01

    the entire network of more than 1100 miles of levees in the area, has used several sets of in situ data to validate the results. This type of levee health status information acquired with radar remote sensing could provide a cost-effective method to significantly improve the spatial and temporal coverage of levee systems and identify areas of concern for targeted levee maintenance, repair, and emergency response in the future. Our results show, for example, that during an emergency, when time is of the essence, SAR remote sensing offers the potential of rapidly providing levee status information that is effectively impossible to obtain over large areas using conventional monitoring, e.g., through high precision measurements of subcentimeter-scale levee movement prior to failure. The research described here was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  7. SIXTH SENSE TECHNOLOGY

    OpenAIRE

    2014-01-01

    The aim of this thesis was to explain the development of the technology by describing current hot concept in its field. The thesis describes the trend of development and current phase of the technology. The trend was described by explaining the concept of sixth sense technology and the effort that have been applied for this technology. As the concept is new, finding the suitable material related to the subject matter was the challenge for this project. The objective was completed by condu...

  8. Utilization of remote sensing observations in hydrologic models

    Science.gov (United States)

    Ragan, R. M.

    1977-01-01

    Most of the remote sensing related work in hydrologic modeling has centered on modifying existing models to take advantage of the capabilities of new sensor techniques. There has been enough success with this approach to insure that remote sensing is a powerful tool in modeling the watershed processes. Unfortunately, many of the models in use were designed without recognizing the growth of remote sensing technology. Thus, their parameters were selected to be map or field crew definable. It is believed that the real benefits will come through the evolution of new models having new parameters that are developed specifically to take advantage of our capabilities in remote sensing. The ability to define hydrologically active areas could have a significant impact. The ability to define soil moisture and the evolution of new techniques to estimate evoportransportation could significantly modify our approach to hydrologic modeling. Still, without a major educational effort to develop an understanding of the techniques used to extract parameter estimates from remote sensing data, the potential offered by this new technology will not be achieved.

  9. 遥感技术在陆面过程研究中的应用进展%ADVANCES IN APPLICATION OF REMOTE SENSING TECHNOLOGY TO LAND SURFACE PROCESSES RESEARCH

    Institute of Scientific and Technical Information of China (English)

    高峰; 王介民; 马耀明; 孙成权

    2001-01-01

    探讨了当前陆面过程(LSP)研究的特点,指出遥感在陆面过程研究中的应用以及陆面过程国际合作实验是突出的特点,进而对遥感技术的陆面参数获取、地表能量通量的计算以及与LSP模式的结合研究及进展进行了综述。根据不同特征的地表参数选择光学遥感或微波遥感已成共识,而综合利用不同遥感数据获取同一种地表参数也已成为研究热点,当前及今后发射的携载多种遥感仪器的众多遥感卫星为此项研究提供了条件;遥感与LSP模式的结合研究是遥感在陆面过程研究中深入应用的一个方面,国际陆面过程合作实验是这项研究的重要保证。%At the present time remote sensing technology,because of its prominent advantages,is playing an important role in land surface processes (LSP)research.Main characteristics of land surface processes research can be summarized as follow:(1)more and more meteorologists pay attention to LSP research;(2)international cooperative research on LSP become very active;(3)interdisciplinary cooperative research between different research fields is being improved to LSP research;(4)remote sensing technology becomes one of necessary tools in LSP research.   With the development of remote sensing technology,more and more land surface parameters such as albedo,emissivity,land surface temperature(LST) and soil moisture etc.can be retrieved from satellite remotely sensed data,and the retrieval precise of the parameters become better and better.Optical remote sensing (including visible,near-infrared and thermal infrared remote sensing) prove to be effective in retrieving the parameters such as albedo,LST and emissivity,and a lot of retrieval algorithms have been developed.For example,LST,an important land surface parameter,can be estimated well by means of split window algorithms from NOAA/AVHRR data.In contrast to optical remote sensing,microwave remote sensing (both active and

  10. Using remote-sensing technologies in combination with Cesium-137 measurements to estimate soil-erosion quantity in semi-arid steppe areas

    Institute of Scientific and Technical Information of China (English)

    ZhanJiang Sha; HaiZhou Ma; LingQin Li; Jinzhou Du; FeiQuan Wu; QiShun Fan

    2009-01-01

    Soil erosion by wind is one of the most important processes in the changing the earth's surface in semi-arid areas, Thus it is of great importance to study soil-erosion action. Using integrated technologies of remote sensing and geochemistry radioactivity isotope to extract regional soil-erosion information and to calculate quantity of soil erosion is accomplished successfully in this paper by means of beneficial experiments in the Talatan region of the Gonghe Basin, which is located in northeastern Qinghai-Tibet Plateau in China. The results show that the soil erosion by wind is not intensive in this region; the erosion types belong to the classes of very-soft erosion and soft-erosion type, which account for 47.12 percent and 35.58 percent, respectively, of the total study area.In total, two kinds of soil erosion account for 82.70 percent of the study area; only a small area belongs to the classes of severe erosion and very-severe erosion; this area is about 22.14 km2. Severe deposition activity has taken place in this region, and has appeared in a large area (322.67 km2), which accounts for 11.78 percent of the total study area. The results of this study show that soil erosion and deposition inventories are 870,000-1,150,000 tons and 550,000-780,000 tons, respectively, per year. The soil inventory shows about 320,000-370,000 tons from Talatan to Longyangxia reservoir per year. Using remote-sensing technology and 137Cs techniques is a valid means to analyze and to evaluate the quantity of soil erosion by wind in semi-arid environments.

  11. Using remote-sensing technologies in combination with Cesium-137 measurements to estimate soil-erosion quantity in semi-arid steppe areas

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Soil erosion by wind is one of the most important processes in the changing the earth’s surface in semi-arid areas,Thus it is of great importance to study soil-erosion action.Using integrated technologies of remote sensing and geochemistry radioactivity iso-tope to extract regional soil-erosion information and to calculate quantity of soil erosion is accomplished successfully in this paper by means of beneficial experiments in the Talatan region of the Gonghe Basin,which is located in northeastern Qinghai-Tibet Pla-teau in China.The results show that the soil erosion by wind is not intensive in this region;the erosion types belong to the classes of very-soft erosion and soft-erosion type,which account for 47.12 percent and 35.58 percent,respectively,of the total study area.In total,two kinds of soil erosion account for 82.70 percent of the study area;only a small area belongs to the classes of severe erosion and very-severe erosion;this area is about 22.14 km2.Severe deposition activity has taken place in this region,and has appeared in a large area(322.67 km2),which accounts for 11.78 percent of the total study area.The results of this study show that soil erosion and deposition inventories are 870,000-1,150,000 tons and 550,000-780,000 tons,respectively,per year.The soil in-ventory shows about 320,000-370,000 tons from Talatan to Longyangxia reservoir per year.Using remote-sensing technology and 137Cs techniques is a valid means to analyze and to evaluate the quantity of soil erosion by wind in semi-arid environments.

  12. Near-earth orbital guidance and remote sensing

    Science.gov (United States)

    Powers, W. F.

    1972-01-01

    The curriculum of a short course in remote sensing and parameter optimization is presented. The subjects discussed are: (1) basics of remote sensing and the user community, (2) multivariant spectral analysis, (3) advanced mathematics and physics of remote sensing, (4) the atmospheric environment, (5) imaging sensing, and (6)nonimaging sensing. Mathematical models of optimization techniques are developed.

  13. Multiscale and Multitemporal Urban Remote Sensing

    Science.gov (United States)

    Mesev, V.

    2012-07-01

    The remote sensing of urban areas has received much attention from scientists conducting studies on measuring sprawl, congestion, pollution, poverty, and environmental encroachment. Yet much of the research is case and data-specific where results are greatly influenced by prevailing local conditions. There seems to be a lack of epistemological links between remote sensing and conventional theoretical urban geography; in other words, an oversight for the appreciation of how urban theory fuels urban change and how urban change is measured by remotely sensed data. This paper explores basic urban theories such as centrality, mobility, materiality, nature, public space, consumption, segregation and exclusion, and how they can be measured by remote sensing sources. In particular, the link between structure (tangible objects) and function (intangible or immaterial behavior) is addressed as the theory that supports the wellknow contrast between land cover and land use classification from remotely sensed data. The paper then couches these urban theories and contributions from urban remote sensing within two analytical fields. The first is the search for an "appropriate" spatial scale of analysis, which is conveniently divided between micro and macro urban remote sensing for measuring urban structure, understanding urban processes, and perhaps contributions to urban theory at a variety of scales of analysis. The second is on the existence of a temporal lag between materiality of urban objects and the planning process that approved their construction, specifically how time-dependence in urban structural-functional models produce temporal lags that alter the causal links between societal and political functional demands and structural ramifications.

  14. remote sensing data combinations - global AOD maps

    Science.gov (United States)

    Kinne, S.

    2009-04-01

    More accurate and more complete measurement-based data-sets are needed to constrain the freedom of global modeling and raise confidence in model predictions. In remote sensing, different methods and sensors frequently yield estimates for the same (or a strongly related) atmospheric property. For maximum benefit to data-users (e.g. input or evaluation data to modeling) - in the context of differences in sensor capabilities and retrieval limitations - there is a desire to combine the strengths of these individual data sources for superior products. In a demonstration, different multi-annual global monthly maps for aerosol optical depth (AOD) from satellite remote sensing been compared and scored against local quality reference data from ground remote sensing. The regionally best performing satellite data-sets have been combined into global monthly AOD maps. As expected, this satellite composite scores better than any individual satellite retrieval. Further improvements are achieved by merging statistics of ground remote sensing into the composite. The global average mid-visible AOD of this remote sensing composite is near 0.13 annually, with lower values during northern hemispheric fall and winter (0.12) and larger values during northern hemispheric spring and summer (0.14). This measurement based data composite also reveals characteristic deficiencies in global modeling: Modeling tends to overestimates AOD over the northern mid-latitudes and to underestimate AOD over tropical and sub-tropical land regions. Also noteworthy are AOD underestimates by modeling in remote oceanic regions, though only in relative sense as AOD values in that region as small. The AOD remote sensing data composite is far from perfect, but it demonstrates the extra value of data-combinations.

  15. Technology Advancements for Active Remote Sensing of Carbon Dioxide From Space using the ASCENDS CarbonHawk Experiment Simulator

    Science.gov (United States)

    Obland, M. D.; Liu, Z.; Campbell, J. F.; Lin, B.; Kooi, S. A.; Carrion, W.; Hicks, J.; Fan, T. F.; Nehrir, A. R.; Browell, E. V.; Meadows, B.; Davis, K. J.

    2016-12-01

    This work describes advances in critical lidar technologies and techniques developed as part of the ASCENDS CarbonHawk Experiment Simulator (ACES) system for measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The ACES design demonstrates advancements in: (1) enhanced power-aperture product through the use and operation of multiple co-aligned laser transmitters and a multi-aperture telescope design; (2) high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation; and (4) advanced algorithms for cloud and aerosol discrimination. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. Specifically, the lidar simultaneously transmits three IM-CW laser beams from the high power EDFAs operating near 1571 nm. The outgoing laser beams are aligned to the field of view of three fiber-coupled 17.8-cm diameter telescopes, and the backscattered light collected by the same three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.9 MHz and operates service-free with a tactical Dewar and cryocooler. The electronic bandwidth is only slightly higher than 1 MHz, effectively limiting the noise level. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. This work provides an over view of these technologies, the modulation approaches, and results from recent test flights during the Atmospheric Carbon and Transport - America (ACT-America) Earth Venture Suborbital flight campaign.

  16. Activities of the Remote Sensing Information Sciences Research Group

    Science.gov (United States)

    Estes, J. E.; Botkin, D.; Peuquet, D.; Smith, T.; Star, J. L. (Principal Investigator)

    1984-01-01

    Topics on the analysis and processing of remotely sensed data in the areas of vegetation analysis and modelling, georeferenced information systems, machine assisted information extraction from image data, and artificial intelligence are investigated. Discussions on support field data and specific applications of the proposed technologies are also included.

  17. Use of radar remote sensing in coastal zone management

    NARCIS (Netherlands)

    Hoogeboom, P.

    1995-01-01

    This paper, presented in poster form addresses the use of radar remote sensing in coastal zone management. Current and future applications in The Netherlands are highlighted with an outlook to technology and models that are involved. Applications include monitoring of the environment, oil spills, sh

  18. Use of radar remote sensing in coastal zone management

    NARCIS (Netherlands)

    Hoogeboom, P.

    1995-01-01

    This paper, presented in poster form addresses the use of radar remote sensing in coastal zone management. Current and future applications in The Netherlands are highlighted with an outlook to technology and models that are involved. Applications include monitoring of the environment, oil spills,

  19. Interactive Online Tools for Enhancing Student Learning Experiences in Remote Sensing

    Science.gov (United States)

    Joyce, Karen E.; Boitshwarelo, Bopelo; Phinn, Stuart R.; Hill, Greg J. E.; Kelly, Gail D.

    2014-01-01

    The rapid growth in Information and Communications Technologies usage in higher education has provided immense opportunities to foster effective student learning experiences in geography. In particular, remote sensing lends itself to the creative utilization of multimedia technologies. This paper presents a case study of a remote sensing computer…

  20. Interactive Online Tools for Enhancing Student Learning Experiences in Remote Sensing

    Science.gov (United States)

    Joyce, Karen E.; Boitshwarelo, Bopelo; Phinn, Stuart R.; Hill, Greg J. E.; Kelly, Gail D.

    2014-01-01

    The rapid growth in Information and Communications Technologies usage in higher education has provided immense opportunities to foster effective student learning experiences in geography. In particular, remote sensing lends itself to the creative utilization of multimedia technologies. This paper presents a case study of a remote sensing computer…

  1. Acoustic Remote Sensing of Rogue Waves

    Science.gov (United States)

    Parsons, Wade; Kadri, Usama

    2016-04-01

    We propose an early warning system for approaching rogue waves using the remote sensing of acoustic-gravity waves (AGWs) - progressive sound waves that propagate at the speed of sound in the ocean. It is believed that AGWs are generated during the formation of rogue waves, carrying information on the rogue waves at near the speed of sound, i.e. much faster than the rogue wave. The capability of identifying those special sound waves would enable detecting rogue waves most efficiently. A lot of promising work has been reported on AGWs in the last few years, part of which in the context of remote sensing as an early detection of tsunami. However, to our knowledge none of the work addresses the problem of rogue waves directly. Although there remains some uncertainty as to the proper definition of a rogue wave, there is little doubt that they exist and no one can dispute the potential destructive power of rogue waves. An early warning system for such extreme waves would become a demanding safety technology. A closed form expression was developed for the pressure induced by an impulsive source at the free surface (the Green's function) from which the solution for more general sources can be developed. In particular, we used the model of the Draupner Wave of January 1st, 1995 as a source and calculated the induced AGW signature. In particular we studied the AGW signature associated with a special feature of this wave, and characteristic of rogue waves, of the absence of any local set-down beneath the main crest and the presence of a large local set-up.

  2. 遥感技术在毒草识别中的研究进展%A Review of Poisonous Weeds Detection Using Remote Sensing Technology

    Institute of Scientific and Technical Information of China (English)

    钱金波; 马明国

    2009-01-01

    The rapid spread of poisonous weeds often causes serious damage to grassland habitats,and limits the development of animal husbandry. Remote sensing technology offers the advantage of efficient natural resource investigation than ground survey,and it has become one of important techniques in pasture management. The spatial resolution and spectral resolution of the sensors are the key factors which will determine the ability of detecting poisonous weeds. Acquiring imagery data at proper phenological stage will help to improve the accuracy of discrimination. This paper reviewed three types of remote sensing technology in detecting poisonous weeds. Aerial photography has not been widely used because of its high cost and complex data processing. Most current multispectral satellite sensors have relatively coarse spatial resolution and only show some potential in detecting dense and large areas of poisonous weeds. The emergence of hy-perspectral remote sensing has improved the accuracy of vegetation classification and identification,and it will be the main basis for high accuracy poisonous weed detecting and mapping in the future. By reason of the redundancy and complexity of the hyperspectral remote sensing data,the methods of data handling and classification will be challenges which will influence the accuracy of detecting poisonous weeds.%毒草的滋生蔓延严重破坏草地生境,制约草地畜牧业的发展.遥感技术作为牧场管理的一种重要的技术手段,其传感器自身的空间分辨率和光谱分辨率的高低是决定毒草识别成功与否的关键.于毒草独特的物候特征出现时获取影像数据能帮助提高分类识别的精度.回顾了3种遥感技术在毒草识别中的研究进展.航空摄影成本高、数据处理复杂,难于得到推广;多光谱卫星遥感大多空间分辨率低,仅在识别大面积滋生、密度较大的毒草方面展现出了一定的潜力;高光谱遥感的出现改善了对植被分类

  3. Remote sensing models and methods for image processing

    CERN Document Server

    Schowengerdt, Robert A

    2007-01-01

    Remote sensing is a technology that engages electromagnetic sensors to measure and monitor changes in the earth's surface and atmosphere. Normally this is accomplished through the use of a satellite or aircraft. This book, in its 3rd edition, seamlessly connects the art and science of earth remote sensing with the latest interpretative tools and techniques of computer-aided image processing. Newly expanded and updated, this edition delivers more of the applied scientific theory and practical results that helped the previous editions earn wide acclaim and become classroom and industry standa

  4. Remote Chemical Sensing Using Quantum Cascade Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Harper, Warren W.; Schultz, John F.

    2003-01-30

    Spectroscopic chemical sensing research at Pacific Northwest National Laboratory (PNNL) is focused on developing advanced sensors for detecting the production of nuclear, chemical, or biological weapons; use of chemical weapons; or the presence of explosives, firearms, narcotics, or other contraband of significance to homeland security in airports, cargo terminals, public buildings, or other sensitive locations. For most of these missions, the signature chemicals are expected to occur in very low concentrations, and in mixture with ambient air or airborne waste streams that contain large numbers of other species that may interfere with spectroscopic detection, or be mistaken for signatures of illicit activity. PNNL’s emphasis is therefore on developing remote and sampling sensors with extreme sensitivity, and resistance to interferents, or selectivity. PNNL’s research activities include: 1. Identification of signature chemicals and quantification of their spectral characteristics, 2. Identification and development of laser and other technologies that enable breakthroughs in sensitivity and selectivity, 3. Development of promising sensing techniques through experimentation and modeling the physical phenomenology and practical engineering limitations affecting their performance, and 4. Development and testing of data collection methods and analysis algorithms. Close coordination of all aspects of the research is important to ensure that all parts are focused on productive avenues of investigation. Close coordination of experimental development and numerical modeling is particularly important because the theoretical component provides understanding and predictive capability, while the experiments validate calculations and ensure that all phenomena and engineering limitations are considered.

  5. 遥感技术服务城乡规划应用实践%Application and Practice of Remote Sensing Technology in Services of Urban and Rural Planning

    Institute of Scientific and Technical Information of China (English)

    黄华

    2013-01-01

    This paper carries out the analysis regarding the remote sensing technology in the application of urban planning and elaborates the practical application of the remote sensing in the target investigation statistics of city geography information as well as in the dynamic monitoring of urban planning.%对于遥感技术在城市规划中的应用进行了分析,论述了遥感在城市地理信息指标调查统计以及城市规划建设动态监测中的实际应用.

  6. Remote Sensing Open Access Journal: Increasing Impact through Quality Publications

    Directory of Open Access Journals (Sweden)

    Prasad S. Thenkabail

    2014-08-01

    Full Text Available Remote Sensing, an open access journal (http://www.mdpi.com/journal/remotesensing has grown at rapid pace since its first publication five years ago, and has acquired a strong reputation. It is a “pathfinder” being the first open access journal in remote sensing. For those academics who were used to waiting a year or two for their peer-reviewed scientific work to be reviewed, revised, edited, and published, Remote Sensing offers a publication time frame that is unheard of (in most cases, less than four months. However, we do this after multiple peer-reviews, multiple revisions, much editorial scrutiny and decision-making, and professional editing by an editorial office before a paper is published online in our tight time frame, bringing a paradigm shift in scientific publication. As a result, there has been a swift increase in submissions of higher and higher quality manuscripts from the best authors and institutes working on Remote Sensing, Geographic Information Systems (GIS, Global Navigation Satellite System (GNSS, GIScience, and all related geospatial science and technologies from around the world. The purpose of this editorial is to update everyone interested in Remote Sensing on the progress made over the last year, and provide an outline of our vision for the immediate future. [...

  7. Remote Sensing Image Deblurring Based on Grid Computation

    Institute of Scientific and Technical Information of China (English)

    LI Sheng-yang; ZHU Chong-guang; GE Ping-ju

    2006-01-01

    In general, there is a demand for real-time processing of mass quantity remote sensing images. However, the task is not only data-intensive but also computating-intensive. Distributed processing is a hot topic in remote sensing processing and image deblurring is also one of the most important needs. In order to satisfy the demand for quick processing and deblurring of mass quantity satellite images, we developed a distributed, grid computation-based platform as well as a corresponding middleware for grid computation. Both a constrained power spectrum equalization algorithm and effective block processing measures, which can avoid boundary effect, were applied during the processing. The result is satisfactory since computation efficiency and visual effect were greatly improved. It can be concluded that the technology of spatial information grids is effective for mass quantity remote sensing image processing.

  8. Remote sensing applications in environmental research

    CERN Document Server

    Srivastava, Prashant K; Gupta, Manika; Islam, Tanvir

    2014-01-01

    Remote Sensing Applications in Environmental Research is the basis for advanced Earth Observation (EO) datasets used in environmental monitoring and research. Now that there are a number of satellites in orbit, EO has become imperative in today's sciences, weather and natural disaster prediction. This highly interdisciplinary reference work brings together diverse studies on remote sensing and GIS, from a theoretical background to its applications, represented through various case studies and the findings of new models. The book offers a comprehensive range of contributions by well-known scientists from around the world and opens a new window for students in presenting interdisciplinary and methodological resources on the latest research. It explores various key aspects and offers state-of-the-art research in a simplified form, describing remote sensing and GIS studies for those who are new to the field, as well as for established researchers.

  9. Risk management support through India Remote Sensing Satellites

    Science.gov (United States)

    Aparna, N.; Ramani, A. V.; Nagaraja, R.

    2014-11-01

    Remote Sensing along with Geographical Information System (GIS) has been proven as a very important tools for the monitoring of the Earth resources and the detection of its temporal variations. A variety of operational National applications in the fields of Crop yield estimation , flood monitoring, forest fire detection, landslide and land cover variations were shown in the last 25 years using the Remote Sensing data. The technology has proven very useful for risk management like by mapping of flood inundated areas identifying of escape routes and for identifying the locations of temporary housing or a-posteriori evaluation of damaged areas etc. The demand and need for Remote Sensing satellite data for such applications has increased tremendously. This can be attributed to the technology adaptation and also the happening of disasters due to the global climate changes or the urbanization. However, the real-time utilization of remote sensing data for emergency situations is still a difficult task because of the lack of a dedicated system (constellation) of satellites providing a day-to-day revisit of any area on the globe. The need of the day is to provide satellite data with the shortest delay. Tasking the satellite to product dissemination to the user is to be done in few hours. Indian Remote Sensing satellites with a range of resolutions from 1 km to 1 m has been supporting disasters both National & International. In this paper, an attempt has been made to describe the expected performance and limitations of the Indian Remote Sensing Satellites available for risk management applications, as well as an analysis of future systems Cartosat-2D, 2E ,Resourcesat-2R &RISAT-1A. This paper also attempts to describe the criteria of satellite selection for programming for the purpose of risk management with a special emphasis on planning RISAT-1(SAR sensor).

  10. Thermal infrared remote sensing sensors, methods, applications

    CERN Document Server

    Kuenzer, Claudia

    2013-01-01

    This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni

  11. Remotely sensing the photochemical reflectance index, PRI

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2015-09-01

    In remote sensing, the Photochemical Reflectance Index (PRI) provides insight into physiological processes occurring inside leaves in a plant stand. Developed by1,2, PRI evolved from laboratory reflectance measurements of individual leaves. Yet in a remotely sensed image, a pixel measurement may include light from both reflecting and transmitting leaves. We compared values of PRI based upon polarized reflectance and transmittance measurements of water and nutrient stressed leaves. Our results show the polarized leaf surface reflection should be removed when calculating PRI and that the leaf physiology information is in leaf interior reflectance, not leaf transmittance.

  12. Monitoring water quality by remote sensing

    Science.gov (United States)

    Brown, R. L. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  13. Geobotanical Remote Sensing for Geothermal Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Pickles, W L; Kasameyer, P W; Martini, B A; Potts, D C; Silver, E A

    2001-05-22

    This paper presents a plan for increasing the mapped resource base for geothermal exploration in the Western US. We plan to image large areas in the western US with recently developed high resolution hyperspectral geobotanical remote sensing tools. The proposed imaging systems have the ability to map visible faults, surface effluents, historical signatures, and discover subtle hidden faults and hidden thermal systems. Large regions can be imaged at reasonable costs. The technique of geobotanical remote sensing for geothermal signatures is based on recent successes in mapping faults and effluents the Long Valley Caldera and Mammoth Mountain in California.

  14. Remote sensing of land surface phenology

    Science.gov (United States)

    Meier, G.A.; Brown, J.F.

    2014-01-01

    Remote sensing of land-surface phenology is an important method for studying the patterns of plant and animal growth cycles. Phenological events are sensitive to climate variation; therefore phenology data provide important baseline information documenting trends in ecology and detecting the impacts of climate change on multiple scales. The USGS Remote sensing of land surface phenology program produces annually, nine phenology indicator variables at 250 m and 1,000 m resolution for the contiguous U.S. The 12 year archive is available at http://phenology.cr.usgs.gov/index.php.

  15. Recent Progresses in Atmospheric Remote Sensing Research in China-- Chinese National Report on Atmospheric Remote Sensing Research in China during 1999-2003

    Institute of Scientific and Technical Information of China (English)

    邱金桓; 陈洪滨

    2004-01-01

    Progresses of atmospheric remote sensing research in China during 1999-2003 are summarily introduced.This research includes: (1) microwave remote sensing of the atmosphere; (2) Lidar remote sensing; (3)remote sensing of aerosol optical properties; and (4) other research related to atmospheric remote sensing,including GPS remote sensing of precipitable water vapor and radiation model development.

  16. Wind Predictability and Remote Sensing Techniques,

    Science.gov (United States)

    The report presents the unclassified findings from the Investigation of Airborne Wind Sensing Systems conducted under AIRTASK A30303/323/70F17311002. Included is a summary of the current accuracy of wind speed and direction forecasts, a list of possible methods for remote sensing meteorological data, a list of areas of application of the given methods and a list of contacts made for information relevant to this evaluation. (Author)

  17. Coral reef remote sensing a guide for mapping, monitoring and management

    CERN Document Server

    Goodman, James A; Phinn, Stuart R

    2013-01-01

    This book offers a multi-level examination of remote-sensing technologies for mapping and monitoring coral reef ecosystems, ranging from satellite and airborne imagery to ship-based observation. Includes examples of practical applications of the technologies.

  18. Satellite Remote Sensing in Offshore Wind Energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Astrup, Poul

    2013-01-01

    Satellite remote sensing of ocean surface winds are presented with focus on wind energy applications. The history on operational and research-based satellite ocean wind mapping is briefly described for passive microwave, scatterometer and synthetic aperture radar (SAR). Currently 6 GW installed...

  19. Remote sensing and today's forestry issues

    Science.gov (United States)

    Sayn-Wittgenstein, L.

    1977-01-01

    The actual and the desirable roles of remote sensing in dealing with current forestry issues, such as national forest policy, supply and demand for forest products and competing demands for forest land are discussed. Topics covered include wood shortage, regional timber inventories, forests in tropical and temperate zones, Skylab photography, forest management and protection, available biomass studies, and monitoring.

  20. Multisensor image fusion guidelines in remote sensing

    Science.gov (United States)

    Pohl, C.

    2016-04-01

    Remote sensing delivers multimodal and -temporal data from the Earth's surface. In order to cope with these multidimensional data sources and to make the most of them, image fusion is a valuable tool. It has developed over the past few decades into a usable image processing technique for extracting information of higher quality and reliability. As more sensors and advanced image fusion techniques have become available, researchers have conducted a vast amount of successful studies using image fusion. However, the definition of an appropriate workflow prior to processing the imagery requires knowledge in all related fields - i.e. remote sensing, image fusion and the desired image exploitation processing. From the findings of this research it can be seen that the choice of the appropriate technique, as well as the fine-tuning of the individual parameters of this technique, is crucial. There is still a lack of strategic guidelines due to the complexity and variability of data selection, processing techniques and applications. This paper gives an overview on the state-of-the-art in remote sensing image fusion including sensors and applications. Putting research results in image fusion from the past 15 years into a context provides a new view on the subject and helps other researchers to build their innovation on these findings. Recommendations of experts help to understand further needs to achieve feasible strategies in remote sensing image fusion.

  1. Remote sensing information sciences research group

    Science.gov (United States)

    Estes, John E.; Smith, Terence; Star, Jeffrey L.

    1988-01-01

    Research conducted under this grant was used to extend and expand existing remote sensing activities at the University of California, Santa Barbara in the areas of georeferenced information systems, matching assisted information extraction from image data and large spatial data bases, artificial intelligence, and vegetation analysis and modeling. The research thrusts during the past year are summarized. The projects are discussed in some detail.

  2. Remote Sensing Analysis of Forest Disturbances

    Science.gov (United States)

    Asner, Gregory P. (Inventor)

    2015-01-01

    The present invention provides systems and methods to automatically analyze Landsat satellite data of forests. The present invention can easily be used to monitor any type of forest disturbance such as from selective logging, agriculture, cattle ranching, natural hazards (fire, wind events, storms), etc. The present invention provides a large-scale, high-resolution, automated remote sensing analysis of such disturbances.

  3. Airborne remote sensing for Deepwater Horizon oil spill emergency response

    Science.gov (United States)

    Kroutil, Robert T.; Shen, Sylvia S.; Lewis, Paul E.; Miller, David P.; Cardarelli, John; Thomas, Mark; Curry, Timothy; Kudaraskus, Paul

    2010-08-01

    On April 28, 2010, the Environmental Protection Agency's (EPA) Airborne Spectral Photometric Environmental Collection Technology (ASPECT) aircraft was deployed to Gulfport, Mississippi to provide airborne remotely sensed air monitoring and situational awareness data and products in response to the Deepwater Horizon oil rig disaster. The ASPECT aircraft was released from service on August 9, 2010 after having flown over 75 missions that included over 250 hours of flight operation. ASPECT's initial mission responsibility was to provide air quality monitoring (i.e., identification of vapor species) during various oil burning operations. The ASPECT airborne wide-area infrared remote sensing spectral data was used to evaluate the hazard potential of vapors being produced from open water oil burns near the Deepwater Horizon rig site. Other significant remote sensing data products and innovations included the development of an advanced capability to correctly identify, locate, characterize, and quantify surface oil that could reach beaches and wetland areas. This advanced identification product provided the Incident Command an improved capability to locate surface oil in order to improve the effectiveness of oil skimmer vessel recovery efforts directed by the US Coast Guard. This paper discusses the application of infrared spectroscopy and multispectral infrared imagery to address significant issues associated with this national crisis. More specifically, this paper addresses the airborne remote sensing capabilities, technology, and data analysis products developed specifically to optimize the resources and capabilities of the Deepwater Horizon Incident Command structure personnel and their remediation efforts.

  4. Unmanned aerial systems for photogrammetry and remote sensing: A review

    Science.gov (United States)

    Colomina, I.; Molina, P.

    2014-06-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last five years, these two sister disciplines have developed technology and methods that challenge the current aeronautical regulatory framework and their own traditional acquisition and processing methods. Navety and ingenuity have combined off-the-shelf, low-cost equipment with sophisticated computer vision, robotics and geomatic engineering. The results are cm-level resolution and accuracy products that can be generated even with cameras costing a few-hundred euros. In this review article, following a brief historic background and regulatory status analysis, we review the recent unmanned aircraft, sensing, navigation, orientation and general data processing developments for UAS photogrammetry and remote sensing with emphasis on the nano-micro-mini UAS segment.

  5. Advances in Remote Sensing of Flooding

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2015-11-01

    Full Text Available With the publication of eight original research articles, four types of advances in the remote sensing of floods are achieved. The uncertainty of modeled outputs using precipitation datasets derived from in situ observations and remote sensors is further understood. With the terrestrial laser scanner and airborne light detection and ranging (LiDAR coupled with high resolution optical and radar imagery, researchers improve accuracy levels in estimating the surface water height, extent, and flow of floods. The unmanned aircraft system (UAS can be the game changer in the acquisition and application of remote sensing data. The UAS may fly everywhere and every time when a flood event occurs. With the development of urban structure maps, the flood risk and possible damage is well assessed. The flood mitigation plans and response activities become effective and efficient using geographic information system (GIS-based urban flood vulnerability and risk maps.

  6. Prospecting for coal in China with remote sensing

    Institute of Scientific and Technical Information of China (English)

    TAN Ke-long; WAN Yu-qing; SUN Sun-xin; BAO Gui-bao; KUANG Jing-shui

    2008-01-01

    With the rapid development of China's economy, coal resources are increasingly in great demand. As a result, the remaining coal reserves diminish gradually with large-scale exploitation of coal resources. Easily-found mines which used to be identiffed from outcrops or were buried under shallow overburden are decreasing, especially in the prosperous eastern regions of China,which experience coal shortages. Currently the main targets of coal prospecting are concealed and unidentified underground coal bodies, making it more and more difficult for coal prospecting. It is therefore important to explore coal prospecting by taking advantage of modern remote sensing and geographic information system technologies. Given a theoretical basis for coal prospecting by remote sensing, we demonstrate the methodologies and existing problems systematically by summarizing past practices of coal prospecting with remote sensing. We propose a new theory of coal prospecting with remote sensing. In uncovered areas, coal resources can be prospected for by direct interpretation. In coal beating strata of developed areas covered by thin Quaternary strata or vegetation, prospecting for coal can be carried out by indirect interpretation of geomorphology and vegetation. For deeply buried underground deposits, coal prospecting can rely on tectonic structures, interpretation and analysis of new tectonic clues and regularity of coal formation and preservation controlled by tectonic structures. By applying newly hyper-spectral, multi-polarization, multi-angle, multi-temporal and multi-resolution remote sensing data and carrying out integrated analysis of geographic attributes,ground attributes, geophysical exploration results, geochemical exploration results, geological drilling results and remote sensing data by GIS tools, coal geology resources and mineralogical regularities can be explored and coal resource information can be acquired with some confidence.

  7. Hyperspectral Remote Sensing of Foliar Nitrogen Content

    Science.gov (United States)

    Knyazikhin, Yuri; Schull, Mitchell A.; Stenberg, Pauline; Moettus, Matti; Rautiainen, Miina; Yang, Yan; Marshak, Alexander; Carmona, Pedro Latorre; Kaufmann, Robert K.; Lewis, Philip; Disney, Mathias I.; Vanderbilt, Vern; Davis, Anthony B.; Baret, Frederic; Jacquemoud, Stephane; Lyapustin, Alexei; Myneni, Ranga B.

    2013-01-01

    A strong positive correlation between vegetation canopy bidirectional reflectance factor (BRF) in the near infrared (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional role for nitrogen in the climate system via its influence on surface albedo and may offer a simple approach for monitoring foliar nitrogen using satellite data. We report, however, that the previously reported correlation is an artifact - it is a consequence of variations in canopy structure, rather than of %N. The data underlying this relationship were collected at sites with varying proportions of foliar nitrogen-poor needleleaf and nitrogen-rich broadleaf species, whose canopy structure differs considerably. When the BRF data are corrected for canopy-structure effects, the residual reflectance variations are negatively related to %N at all wavelengths in the interval 423-855 nm. This suggests that the observed positive correlation between BRF and %N conveys no information about %N. We find that to infer leaf biochemical constituents, e.g., N content, from remotely sensed data, BRF spectra in the interval 710-790 nm provide critical information for correction of structural influences. Our analysis also suggests that surface characteristics of leaves impact remote sensing of its internal constituents. This further decreases the ability to remotely sense canopy foliar nitrogen. Finally, the analysis presented here is generic to the problem of remote sensing of leaf-tissue constituents and is therefore not a specific critique of articles espousing remote sensing of foliar %N.

  8. ATHENA: Remote Sensing Science Center for Cultural Heritage in Cyprus

    Science.gov (United States)

    Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasiliki; Themistocleous, Kyriakos; Cuca, Branka; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter

    2016-04-01

    The Cultural Heritage (CH) sector, especially those of monuments and sites has always been facing a number of challenges from environmental pressure, pollution, human intervention from tourism to destruction by terrorism.Within this context, CH professionals are seeking to improve currently used methodologies, in order to better understand, protect and valorise the common European past and common identity. "ATHENA" H2020-TWINN-2015 project will seek to improve and expand the capabilities of the Cyprus University of Technology, involving professionals dealing with remote sensing technologies for supporting CH sector from the National Research Center of Italy (CNR) and German Aerospace Centre (DLR). The ATHENA centre will be devoted to the development, introduction and systematic use of advanced remote sensing science and technologies in the field of archaeology, built cultural heritage, their multi-temporal analysis and interpretation and the distant monitoring of their natural and anthropogenic environment in the area of Eastern Mediterranean.

  9. Geometric calibration of high-resolution remote sensing sensors

    Institute of Scientific and Technical Information of China (English)

    LIANG Hong-you; GU Xing-fa; TAO Yu; QIAO Chao-fei

    2007-01-01

    This paper introduces the applications of high-resolution remote sensing imagery and the necessity of geometric calibration for remote sensing sensors considering assurance of the geometric accuracy of remote sensing imagery. Then the paper analyzes the general methodology of geometric calibration. Taking the DMC sensor geometric calibration as an example, the paper discusses the whole calibration procedure. Finally, it gave some concluding remarks on geometric calibration of high-resolution remote sensing sensors.

  10. A Survey of Ethics Content in College-Level Remote Sensing Courses in the United States

    Science.gov (United States)

    Wetherholt, William A.; Rundquist, Bradley C.

    2010-01-01

    Easier access to submeter imagery has fueled debates over ethical uses of remote sensing. Some have called for ethics instruction to counter undesired uses of the technology. Here, this article reports the results of a survey examining attitudes related to teaching ethics in remote sensing. It was found that 52 percent of respondents teaching…

  11. Advances in remote sensing and modeling of terrestrial hydro-meteorological processes and extremes

    Science.gov (United States)

    Remote sensing is an indispensable tool for monitoring and detecting the evolution of the Earth’s hydro-meteorological processes. Fast-growing remote sensing observations and technologies have been a primary impetus to advancing our knowledge of hydro-meteorological processes and their extremes ove...

  12. The use of remote sensing for landslide studies in Europe

    Science.gov (United States)

    Tofani, Veronica; Agostini, Andrea; Segoni, Samuele; Catani, Filippo; Casagli, Nicola

    2013-04-01

    The existing remote sensing techniques and their actual application in Europe for landslide detection, mapping and monitoring have been investigated. Data and information necessary to evaluate the subjects have been collected through a questionnaire, designed using a Google form, which was disseminated among end-users and researchers involved in landslide. In total, 49 answers were collected, coming from 17 European countries and from different kinds of institutions (universities, research institutes, public institutes and private companies). The spatial distribution of the answers is consistent with the distribution of landslides in Europe, the significance of landslides impact on society and the estimated landslide susceptibility in the various countries. The outcomes showed that landslide detection and mapping is mainly performed with aerial photos, often associated with optical and radar imagery. Concerning landslide monitoring, satellite radars prevail over the other types of data followed by aerial photos and meteorological sensors. Since subsampling the answers according to the different typology of institutions it is not noticeable a clear gap between research institutes and end users, it is possible to infer that in landslide remote sensing the research is advancing at the same pace as its day-to-day application. Apart from optical and radar imagery, other techniques are less widespread and some of them are not so well established, notwithstanding their performances are increasing at a fast rate as scientific and technological improvements are accomplished. Remote sensing is mainly used for detection/mapping and monitoring of slides, flows and lateral spreads with a preferably large scale of analysis (1:5000 - 1:25000). All the compilers integrate remote sensing data with other thematic data, mainly geological maps, landslide inventory maps and DTMs and derived maps. Concerning landslide monitoring, the results of the questionnaire stressed that the best

  13. GPS Remote Sensing Measurements Using Aerosonde UAV

    Science.gov (United States)

    Grant, Michael S.; Katzberg, Stephen J.; Lawrence, R. W.

    2005-01-01

    In February 2004, a NASA-Langley GPS Remote Sensor (GPSRS) unit was flown on an Aerosonde unmanned aerial vehicle (UAV) from the Wallops Flight Facility (WFF) in Virginia. Using direct and surface-reflected 1.575 GHz coarse acquisition (C/A) coded GPS signals, remote sensing measurements were obtained over land and portions of open water. The strength of the surface-reflected GPS signal is proportional to the amount of moisture in the surface, and is also influenced by surface roughness. Amplitude and other characteristics of the reflected signal allow an estimate of wind speed over open water. In this paper we provide a synopsis of the instrument accommodation requirements, installation procedures, and preliminary results from what is likely the first-ever flight of a GPS remote sensing instrument on a UAV. The correct operation of the GPSRS unit on this flight indicates that Aerosonde-like UAV's can serve as platforms for future GPS remote sensing science missions.

  14. Towards operational environmental applications using terrestrial remote sensing

    NARCIS (Netherlands)

    Veldkamp JG; Velde RJ van de; LBG

    1996-01-01

    Dit rapport beschrijft de resultaten van het Beleidscommissie Remote Sensing (BCRS) project 'Verankering van toepassingen van terrestrische remote sensing bij RIVM'. Het had ten eerste tot doel te voldoen aan de voorwaarden, zoals gesteld in de inventarisatie van remote sensing als

  15. An introduction to quantitative remote sensing. [data processing

    Science.gov (United States)

    Lindenlaub, J. C.; Russell, J.

    1974-01-01

    The quantitative approach to remote sensing is discussed along with the analysis of remote sensing data. Emphasis is placed on the application of pattern recognition in numerically oriented remote sensing systems. A common background and orientation for users of the LARS computer software system is provided.

  16. The application of hyperspectral remote sensing to coast environment investigation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Liang; ZHANG bing; CHEN Zhengchao; ZHENG Lanfen; TONG Qingxi

    2009-01-01

    Requirements for monitoring the coastal zone environment are first summarized. Then the application of hyperspectral remote sensing to coast environment investigation is introduced, such as the classification of coast beaches and bottom matter, target recognition, mine detection, oil spill identification and ocean color remote sensing. Finally, what is needed to follow on in application of hyperspectral remote sensing to coast environment is recommended.

  17. Cooling Effect of Rivers on Metropolitan Taipei Using Remote Sensing

    Directory of Open Access Journals (Sweden)

    Yen-Chang Chen

    2014-01-01

    Full Text Available This study applied remote sensing technology to analyze how rivers in the urban environment affect the surface temperature of their ambient areas. While surface meteorological stations can supply accurate data points in the city, remote sensing can provide such data in a two-dimensional (2-D manner. The goal of this paper is to apply the remote sensing technique to further our understanding of the relationship between the surface temperature and rivers in urban areas. The 2-D surface temperature data was retrieved from Landsat-7 thermal infrared images, while data collected by Formosat-2 was used to categorize the land uses in the urban area. The land surface temperature distribution is simulated by a sigmoid function with nonlinear regression analysis. Combining the aforementioned data, the range of effect on the surface temperature from rivers can be derived. With the remote sensing data collected for the Taipei Metropolitan area, factors affecting the surface temperature were explored. It indicated that the effect on the developed area was less significant than on the ambient nature zone; moreover, the size of the buffer zone between the river and city, such as the wetlands or flood plain, was found to correlate with the affected distance of the river surface temperature.

  18. Cooling effect of rivers on metropolitan Taipei using remote sensing.

    Science.gov (United States)

    Chen, Yen-Chang; Tan, Chih-Hung; Wei, Chiang; Su, Zi-Wen

    2014-01-23

    This study applied remote sensing technology to analyze how rivers in the urban environment affect the surface temperature of their ambient areas. While surface meteorological stations can supply accurate data points in the city, remote sensing can provide such data in a two-dimensional (2-D) manner. The goal of this paper is to apply the remote sensing technique to further our understanding of the relationship between the surface temperature and rivers in urban areas. The 2-D surface temperature data was retrieved from Landsat-7 thermal infrared images, while data collected by Formosat-2 was used to categorize the land uses in the urban area. The land surface temperature distribution is simulated by a sigmoid function with nonlinear regression analysis. Combining the aforementioned data, the range of effect on the surface temperature from rivers can be derived. With the remote sensing data collected for the Taipei Metropolitan area, factors affecting the surface temperature were explored. It indicated that the effect on the developed area was less significant than on the ambient nature zone; moreover, the size of the buffer zone between the river and city, such as the wetlands or flood plain, was found to correlate with the affected distance of the river surface temperature.

  19. Teaching global and local environmental change through Remote Sensing

    Science.gov (United States)

    Mauri, Emanuela Paola; Rossi, Giovanni

    2013-04-01

    Human beings perceive the world primarily through their sense of sight. This can explain why the use of images is so important and common in educational materials, in particular for scientific subjects. The development of modern technologies for visualizing the scientific features of the Earth has provided new opportunities for communicating the increasing complexity of science both to the public and in school education. In particular, the use of Earth observation satellites for civil purposes, which started in the 70s, has opened new perspectives in the study of natural phenomena and human impact on the environment; this is particularly relevant for those processes developing on a long term period and on a global scale. Instruments for Remote Sensing increase the power of human sight, giving access to additional information about the physical world, which the human eye could not otherwise perceive. The possibility to observe from a remote perspective significant processes like climate change, ozone depletion, desertification, urban development, makes it possible for observers to better appreciate and experience the complexity of environment. Remote Sensing reveals the impact of human activities on ecosystems: this allows students to understand important concepts like global and local change in much more depth. This poster describes the role and effectiveness of Remote Sensing imagery in scientific education, and its importance towards a better global environmental awareness.

  20. An experiment using mid and thermal infrared in quantum remote sensing

    Institute of Scientific and Technical Information of China (English)

    BI; Siwen; HAN; Jixia

    2006-01-01

    The concept of quantum remote sensing and the differences between quantum remote sensing and remote sensing is introduced, an experiment about the uses of mid and thermal infrared in quantum remote sensing is described and results are analyzed.

  1. 基于MPI的海量遥感影像并行处理技术探析%Study on Parallel Processing Technology of Massive Remote Sensing Image Based on MPI

    Institute of Scientific and Technical Information of China (English)

    申焕; 石晓春; 邱宏华

    2012-01-01

    Effective operation of massive remote sensing image data is the key to solve large and complex application of remote sensing products production system. For general or- der processing has been unable to meet the requirements of mass data operation currently, based on MPI parallel processing development environment, this study has preproeessed re- mote sensing image data based on the classification, block pyramid technology firstly; and slice, block computation, parallel processing and image merge of massive remote sensing im- age data later. Operation speed of massive remote sensing image data has been improved ef- fectively. It provides practice for parallel processing of massive remote sensing image data.%有效处理海量遥感影像数据,是解决遥感产品生产系统的大规模复杂应用的关键。针对目前通用的顺序处理已不能满足海量数据运算要求的问题,基于MPI并行处理开发环境,采用分级、分块的金字塔技术来对遥感影像数据做预处理,进而进行海量遥感影像切片、分块计算、并行处理和影像合成,有效地提高了海量遥感影像数据的运算速度,为海量遥感影像并行处理提供实践依据。

  2. Application of Data Fusion Technology in Remote Sensing Interpretation for Railway Geology Engineering%数据融合技术在铁路地质遥感判释中的应用研究

    Institute of Scientific and Technical Information of China (English)

    刘桂卫

    2011-01-01

    Research purposes:The remote sensing interpretation technology for railway geology engineering, as acomplex system work, is difficult to get good effect only by using the single data or method. To improve the accuracy andquality of the interpretation, this paper studies the application of data fusion technology in the remote sensinginterpretation.Research conclusions: (1) The remote sensing interpretation accuracy for unfavorable geological condition can beenhanced by using the data fusion technology. (2 ) The quantitative interpretation and analysis for the unfavorablegeological condition can be realized by using the 2D interpretation method along with the 3D interpretation method.(3 ) The study should be strengthened on the application of fusion of remote sensing with the geophysical prospecting toextend the application range of remote sensing interpretation.%研究目的:铁路工程地质遥感判释作为一项复杂的系统工作,仅靠单一的数据源或手段很难达到较好的判释效果.为提高地质遥感判释的精度和质量,本文探讨数据融合技术在地质遥感判释中的应用.研究结论:(1)采用多源数据融合技术进行地质遥感判释,可提高不良地质判释的准确度;(2)二维和三维遥感判释相结合,可实现不良地质由定性到定量的判释和分析;(3)今后应加强遥感与物探等勘察手段的融合应用研究,拓宽地质遥感判释的应用范围.

  3. Application of airborne remote sensing to the ancient Pompeii site

    Science.gov (United States)

    Vitiello, Fausto; Giordano, Antonio; Borfecchia, Flavio; Martini, Sandro; De Cecco, Luigi

    1996-12-01

    The ancient Pompeii site is in the Sarno Valley, an area of about 400 km2 in the South of Italy near Naples, that was utilized by man since old time (thousands of years ago). Actually the valley is under critical environmental conditions because of the relevant industrial development. ENEA is conducting various studies and research in the valley. ENEA is employing historical research, ground campaigns, cartography and up-to-date airborne multispectral remote sensing technologies to make a geographical information system. Airborne remote sensing technologies are very suitable for situations as that of the Sarno Valley. The paper describes the archaeological application of the research in progress as regarding the ancient site of Pompeii and its fluvial port.

  4. Remote Sensing and Remote Control Activities in Europe and America: Part 2--Remote Sensing Ground Stations in Europe,

    Science.gov (United States)

    2007-11-02

    Development tasks and products of remote sensing ground stations in Europe are represented by the In-Sec Corporation and the Schlumberger Industries Corporation. The article presents the main products of these two corporations.

  5. The Use of a Geographic Information System and Remote Sensing Technology for Monitoring Land Use and Soil Carbon Change in the Subtropical Dry Forest Life Zone of Puerto Rico

    Science.gov (United States)

    Velez-Rodriguez, Linda L. (Principal Investigator)

    1996-01-01

    Aerial photography, one of the first form of remote sensing technology, has long been an invaluable means to monitor activities and conditions at the Earth's surface. Geographic Information Systems or GIS is the use of computers in showing and manipulating spatial data. This report will present the use of geographic information systems and remote sensing technology for monitoring land use and soil carbon change in the subtropical dry forest life zone of Puerto Rico. This research included the south of Puerto Rico that belongs to the subtropical dry forest life zone. The Guanica Commonwealth Forest Biosphere Reserve and the Jobos Bay National Estuarine Research Reserve are studied in detail, because of their location in the subtropical dry forest life zone. Aerial photography, digital multispectral imagery, soil samples, soil survey maps, field inspections, and differential global positioning system (DGPS) observations were used.

  6. 国内外遥感技术在非点源污染模拟中的应用%Application of Remote Sensing Technology in Non-point Source Pollution Monitoring

    Institute of Scientific and Technical Information of China (English)

    王天培

    2011-01-01

    综述了遥感技术在土壤类型和性质、植被类型和性质、水文气象以及土地利用等直接影响非点源污染产生的因素中的应用,以期为模型模拟与遥感技术联合研究非点源污染提供借鉴.%The application of remote sensing technology on the main factors, including soil types and properties, characteristics of vegetation,hydrological process, meteorological information, land use and so on were discussed in this paper so as to provide references for using modelsimulation and remote sensing technology to study the non-point source pollution.

  7. Remote sensing for disaster mitigation of Sinabung

    Science.gov (United States)

    Tampubolon, T.; Yanti, J.

    2016-05-01

    Indonesia, a country with many active volcanoes, potentially occur natural disaster due to eruptions. One of volcanoes at Indonesia was Sinabung mountain, that located on Karo Regency, North Sumatera 3°10'12″ N 98°23'31" E, 2,460 masl. A fasile and new observation method for mapping the erupted areas was remote sensing. the remote sensing consisted of Landsat 8 OLI that was published on February 8th 2015 as input data ENVI 4.7 and ArcGIS 10 as mapping tools. The Land surface temperature (LST) was applied on mapping this resulted. The highest LST was 90.929657 °C. In addition, the LST distribution indicated that the flowing lava through south east. Therefore, the south east areas should be considered as mitigated areas.

  8. Review of oil spill remote sensing.

    Science.gov (United States)

    Fingas, Merv; Brown, Carl

    2014-06-15

    Remote-sensing for oil spills is reviewed. The use of visible techniques is ubiquitous, however it gives only the same results as visual monitoring. Oil has no particular spectral features that would allow for identification among the many possible background interferences. Cameras are only useful to provide documentation. In daytime oil absorbs light and remits this as thermal energy at temperatures 3-8K above ambient, this is detectable by infrared (IR) cameras. Laser fluorosensors are useful instruments because of their unique capability to identify oil on backgrounds that include water, soil, weeds, ice and snow. They are the only sensor that can positively discriminate oil on most backgrounds. Radar detects oil on water by the fact that oil will dampen water-surface capillary waves under low to moderate wave/wind conditions. Radar offers the only potential for large area searches, day/night and foul weather remote sensing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Measurement Strategies for Remote Sensing Applications

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P.G.; Theiler, J.; Smith, B.; Love, S.P.; LaDelfe, P.C.; Cooke, B.J.; Clodius, W.B.; Borel, C.C.; Bender, S.C.

    1999-03-06

    Remote sensing has grown to encompass many instruments and observations, with concomitant data from a huge number of targets. As evidenced by the impressive growth in the number of published papers and presentations in this field, there is a great deal of interest in applying these capabilities. The true challenge is to transition from directly observed data sets to obtaining meaningful and robust information about remotely sensed targets. We use physics-based end-to-end modeling and analysis techniques as a framework for such a transition. Our technique starts with quantified observables and signatures of a target. The signatures are propagated through representative atmospheres to realistically modeled sensors. Simulated data are then propagated through analysis routines, yielding measurements that are directly compared to the original target attributes. We use this approach to develop measurement strategies which ensure that our efforts provide a balanced approach to obtaining substantive information on our targets.

  10. The Fundamental Framework of Remote Sensing Validation System

    Science.gov (United States)

    Jiang, X.-G.; Xi, X.-H.; Wu, M.-J.; Li, Z.-L.

    2009-04-01

    Remote sensing is a very complicated course. It is influenced by many factors, such as speciality of remote sensing sensor, radiant transmission characteristic of atmosphere, work environment of remote sensing platform, data transmission, data reception, data processing, and property of observed object etc. Whether the received data is consistent with the design specifications? Can the data meet the demands of remote sensing applications? How about the accuracy of the data products, retrieval products and application products of remote sensing? It is essential to carry out the validation to assess the data quality and application potential. Validation is effective approach to valuate remote sensing products. It is the significant link between remote sensing data and information. Research on remote sensing validation is very important for sensor development, data quality analysis and control. This paper focuses on the study of remote sensing validation and validation system. Different from the previous work done by other researchers, we study the validation from the viewpoint of systematic engineering considering that validation is involved with many aspects as talked about. Validation is not just a single and simple course. It is complicated system. Validation system is the important part of whole earth observation system. First of all, in this paper the category of remote sensing validation is defined. Remote sensing validation includes not only the data products validation, but also the retrieval products validation and application products validation. Second, the new concept, remote sensing validation system, is proposed. Then, the general framework, software structure and functions of validation system are studied and put forward. The validation system is composed of validation field module, data acquirement module, data processing module, data storage and management module, data scaling module, and remote sensing products validation module. And finally the

  11. Processing Remote Sensing Data with Python

    OpenAIRE

    Dillon, Ryan J., 1984-

    2013-01-01

    With public access available for numerous satellite imaging products, modelling in atmospheric and oceanographic applications has become increasingly more prevalent. Though there are numerous tools available for geospatial development, their use is more commonly applied towards mapping applications. With this being the case, there are a number of valuable texts for using these tools in such mapping applications; though, documentation for processing of remote sensing datasets is limited to ...

  12. Mesoscale Modeling, Forecasting and Remote Sensing Research.

    Science.gov (United States)

    remote sensing , cyclonic scale diagnostic studies and mesoscale numerical modeling and forecasting are summarized. Mechanisms involved in the release of potential instability are discussed and simulated quantitatively, giving particular attention to the convective formulation. The basic mesoscale model is documented including the equations, boundary condition, finite differences and initialization through an idealized frontal zone. Results of tests including a three dimensional test with real data, tests of convective/mesoscale interaction and tests with a detailed

  13. Remote sensing application on geothermal exploration

    Science.gov (United States)

    Gaffar, Eddy Z.

    2013-09-01

    Geothermal energy is produced when water coming down from the surface of the earth and met with magma or hot rocks, which the heat comes from the very high levels of magma rises from the earth. This process produced a heated fluid supplied to a power generator system to finally use as energy. Geothermal field usually associated with volcanic area with a component from igneous rocks and a complex geological structures. The fracture and fault structure are important geological structures associated with geothermal. Furthermore, their geothermal manifestations also need to be evaluated associated their geological structures. The appearance of a geothermal surface manifestation is close to the structure of the fracture and the caldera volcanic areas. The relationship between the fault and geothermal manifestations can be seen in the form of a pattern of alignment between the manifestations of geothermal locations with other locations on the fault system. The use of remote sensing using electromagnetic radiation sensors to record images of the Earth's environment that can be interpreted to be a useful information. In this study, remote sensing was applied to determine the geological structure and mapping of the distribution of rocks and alteration rocks. It was found that remote sensing obtained a better localize areas of geothermal prospects, which in turn could cut the chain of geothermal exploration to reduce a cost of geothermal exploration.

  14. Autofocus method for scanning remote sensing cameras.

    Science.gov (United States)

    Lv, Hengyi; Han, Chengshan; Xue, Xucheng; Hu, Changhong; Yao, Cheng

    2015-07-10

    Autofocus methods are conventionally based on capturing the same scene from a series of positions of the focal plane. As a result, it has been difficult to apply this technique to scanning remote sensing cameras where the scenes change continuously. In order to realize autofocus in scanning remote sensing cameras, a novel autofocus method is investigated in this paper. Instead of introducing additional mechanisms or optics, the overlapped pixels of the adjacent CCD sensors on the focal plane are employed. Two images, corresponding to the same scene on the ground, can be captured at different times. Further, one step of focusing is done during the time interval, so that the two images can be obtained at different focal plane positions. Subsequently, the direction of the next step of focusing is calculated based on the two images. The analysis shows that the method investigated operates without restriction of the time consumption of the algorithm and realizes a total projection for general focus measures and algorithms from digital still cameras to scanning remote sensing cameras. The experiment results show that the proposed method is applicable to the entire focus measure family, and the error ratio is, on average, no more than 0.2% and drops to 0% by reliability improvement, which is lower than that of prevalent approaches (12%). The proposed method is demonstrated to be effective and has potential in other scanning imaging applications.

  15. A Review of Wetland Remote Sensing.

    Science.gov (United States)

    Guo, Meng; Li, Jing; Sheng, Chunlei; Xu, Jiawei; Wu, Li

    2017-04-05

    Wetlands are some of the most important ecosystems on Earth. They play a key role in alleviating floods and filtering polluted water and also provide habitats for many plants and animals. Wetlands also interact with climate change. Over the past 50 years, wetlands have been polluted and declined dramatically as land cover has changed in some regions. Remote sensing has been the most useful tool to acquire spatial and temporal information about wetlands. In this paper, seven types of sensors were reviewed: aerial photos coarse-resolution, medium-resolution, high-resolution, hyperspectral imagery, radar, and Light Detection and Ranging (LiDAR) data. This study also discusses the advantage of each sensor for wetland research. Wetland research themes reviewed in this paper include wetland classification, habitat or biodiversity, biomass estimation, plant leaf chemistry, water quality, mangrove forest, and sea level rise. This study also gives an overview of the methods used in wetland research such as supervised and unsupervised classification and decision tree and object-based classification. Finally, this paper provides some advice on future wetland remote sensing. To our knowledge, this paper is the most comprehensive and detailed review of wetland remote sensing and it will be a good reference for wetland researchers.

  16. A Review of Wetland Remote Sensing

    Science.gov (United States)

    Guo, Meng; Li, Jing; Sheng, Chunlei; Xu, Jiawei; Wu, Li

    2017-01-01

    Wetlands are some of the most important ecosystems on Earth. They play a key role in alleviating floods and filtering polluted water and also provide habitats for many plants and animals. Wetlands also interact with climate change. Over the past 50 years, wetlands have been polluted and declined dramatically as land cover has changed in some regions. Remote sensing has been the most useful tool to acquire spatial and temporal information about wetlands. In this paper, seven types of sensors were reviewed: aerial photos coarse-resolution, medium-resolution, high-resolution, hyperspectral imagery, radar, and Light Detection and Ranging (LiDAR) data. This study also discusses the advantage of each sensor for wetland research. Wetland research themes reviewed in this paper include wetland classification, habitat or biodiversity, biomass estimation, plant leaf chemistry, water quality, mangrove forest, and sea level rise. This study also gives an overview of the methods used in wetland research such as supervised and unsupervised classification and decision tree and object-based classification. Finally, this paper provides some advice on future wetland remote sensing. To our knowledge, this paper is the most comprehensive and detailed review of wetland remote sensing and it will be a good reference for wetland researchers. PMID:28379174

  17. Design of Macro-ecological Environment Remote Sensing Monitoring System and the Key Technologies%宏观生态环境遥感监测系统总体设计与关键技术

    Institute of Scientific and Technical Information of China (English)

    王勇; 庄大方; 徐新良; 江东

    2011-01-01

    宏观生态环境遥感监测系统是基于环境遥感监测应用技术的软件实现.本文重点介绍了宏观生态环境遥感监测系统的总体结构设计、业务流程设计和核心功能设计,以及模型转换与实现技术、实时投影转换技术与以文件和数据库相结合的数据管理技术、基于XML的数据实时交换技术、产品自动化生产技术等关键技术,并给出了系统的应用实例.系统应用结果表明,该系统符合我国宏观生态环境遥感监测业务应用模式,提高了环保部门生态环境遥感常规模式下的监测水平和紧急模式下的应急监测能力,将会在宏观生态环境遥感监测和评价服务中发挥重要的作用.%As global environmental issues become more and more prominent, remote sensing technology with large amount of information to monitor global environmental change has become an important manner. Macro-ecological environment remote sensing monitoring system is implementation of environment remote sensing applied technologies. The architecture of the system and the transaction flow diagram and its core functions are introduced. At the same time, the model transformation and implementation of technology, real-time projection conversion technology, a combination of file-based data and database management technologies, XML-based real-time data exchange technology, automated production technology are expatiated. The prototype system is constructed using . NET and IDL mixing programming language and its application examples are presented. System application results show that this system meets the remote sensing monitoring requirements using macro-ecological environment business applications model to improve the environmental protection department level under the normal mode and emergency capability under the emergency mode. This system can play an important role in the macro-environment remote sensing monitoring and evaluation.

  18. Photogrammetry and Remote Sensing Technology Professional Practical Teaching Reform and Practice%摄影测量与遥感技术专业实训教学改革与实践

    Institute of Scientific and Technical Information of China (English)

    王冬梅; 闫纲丽

    2012-01-01

    实训教学质量是实现高职人才培养目标的重要环节,本文通过对高职摄影测量与遥感技术专业培养目标的分析,从营造实训环境、加强实训教学队伍建设、开创创新型实训项目、实施实训教学评价四个方面对高职摄影测量与遥感技术专业实训教学进行改革,通过实践,证明了该改革有利于提高高职摄影测量与遥感技术专业实训教学质量。%Practical teaching quality is an important link to realize higher vocational talents training target.In the article,through analyzing training objectives of higher vocational photogrammetry and remote sensing professional technology,it reformes higher vocational photogrammetry and remote sensing technology professional practical teaching from four aspects of the construction practice environment,strengthening practical teaching staff construction,pioneered innovative practice project and implement training teaching evaluation.It proves that the reform will improve vocational photogrammetry and remote sensing technology professional practical teaching quality through practice.

  19. Satellite Remote Sensing in Seismology. A Review

    Directory of Open Access Journals (Sweden)

    Andrew A. Tronin

    2009-12-01

    Full Text Available A wide range of satellite methods is applied now in seismology. The first applications of satellite data for earthquake exploration were initiated in the ‘70s, when active faults were mapped on satellite images. It was a pure and simple extrapolation of airphoto geological interpretation methods into space. The modern embodiment of this method is alignment analysis. Time series of alignments on the Earth's surface are investigated before and after the earthquake. A further application of satellite data in seismology is related with geophysical methods. Electromagnetic methods have about the same long history of application for seismology. Stable statistical estimations of ionosphere-lithosphere relation were obtained based on satellite ionozonds. The most successful current project "DEMETER" shows impressive results. Satellite thermal infra-red data were applied for earthquake research in the next step. Numerous results have confirmed previous observations of thermal anomalies on the Earth's surface prior to earthquakes. A modern trend is the application of the outgoing long-wave radiation for earthquake research. In ‘80s a new technology—satellite radar interferometry—opened a new page. Spectacular pictures of co-seismic deformations were presented. Current researches are moving in the direction of pre-earthquake deformation detection. GPS technology is also widely used in seismology both for ionosphere sounding and for ground movement detection. Satellite gravimetry has demonstrated its first very impressive results on the example of the catastrophic Indonesian earthquake in 2004. Relatively new applications of remote sensing for seismology as atmospheric sounding, gas observations, and cloud analysis are considered as possible candidates for applications.

  20. Popularization of remote sensing education and general course construction in undergraduate education

    Science.gov (United States)

    Wang, Jing'ai; Sheng, Zhongyao; Yu, Han

    2014-03-01

    The construction of a course focused on remote sensing is important because it cultivates college students' geographic abilities and popularizes remote sensing technology. Using internet datasets, this article compares data from general undergraduate courses at almost 100 universities located in the United States and China with 3 years of experimental teaching data from the general undergraduate "Remote sensing Region" course at Beijing Normal University. The comparison focuses on curricular concepts, course content, website construction and the popularity of the remote sensing topic. Our research shows that the "remote sensing region" course can promote the geographic abilities of college students by popularizing remote sensing observation technology. The course can improve the overall quality of college students by breaking major barriers, and it can promote global and national consciousness by presenting material with global and regional relevancy. Remote sensing imaging has become known as the third most intuitive geographic language after text and maps. The general remote sensing course have the three following developmental qualities: interdisciplinarity, popularization and internationalization.

  1. Advances in remote sensing of vegetation function and traits

    KAUST Repository

    Houborg, Rasmus

    2015-07-09

    Remote sensing of vegetation function and traits has advanced significantly over the past half-century in the capacity to retrieve useful plant biochemical, physiological and structural quantities across a range of spatial and temporal scales. However, the translation of remote sensing signals into meaningful descriptors of vegetation function and traits is still associated with large uncertainties due to complex interactions between leaf, canopy, and atmospheric mediums, and significant challenges in the treatment of confounding factors in spectrum-trait relations. This editorial provides (1) a background on major advances in the remote sensing of vegetation, (2) a detailed timeline and description of relevant historical and planned satellite missions, and (3) an outline of remaining challenges, upcoming opportunities and key research objectives to be tackled. The introduction sets the stage for thirteen Special Issue papers here that focus on novel approaches for exploiting current and future advancements in remote sensor technologies. The described enhancements in spectral, spatial and temporal resolution and radiometric performance provide exciting opportunities to significantly advance the ability to accurately monitor and model the state and function of vegetation canopies at multiple scales on a timely basis.

  2. Kent mixture model for classification of remote sensing data on spherical manifolds

    CSIR Research Space (South Africa)

    Lunga, D

    2011-10-01

    Full Text Available Modern remote sensing imaging sensor technology provides detailed spectral and spatial information that enables precise analysis of land cover usage. From a research point of view, traditional widely used statistical models are often limited...

  3. Solid-state Ceramic Laser Material for Remote Sensing of Ozone Using Nd:Yttria Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Tunable solid state lasers have played an important role in providing the technology necessary for active remote sensing of the atmosphere. Recently, polycrystalline...

  4. Applications of Remote Sensing and Geographic Information System (GIS) in Archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    ManiMurali, R.

    The advancement of remote sensing technology and the analysing capability of Geographical Information System (GIS) can very well be used in the science of Archaeology. Though these subjects look apart, they can be studied in conjunction with each...

  5. Specific sensors for special roles in oil spill remote sensing

    Science.gov (United States)

    Brown, Carl E.; Fingas, Mervin F.

    1997-01-01

    require remediation. The LURSOT sensor will provide an absolute measurement of oil thickness form an airborne platform. There are presently no sensors available, either airborne or in the laboratory which can provide an absolute measurement of oil thickness. This information is necessary for the effective direction of spill countermeasures such as dispersant application and in-situ burning. This paper will describe the development of laser-based airborne oil spill remote sensing instrumentation at Environment Canada and identify the anticipated benefits of the use of this technology to the oil spill response community.

  6. Remote sensing for quantification of agronomic properties

    Science.gov (United States)

    Sullivan, Dana Grace

    Remote sensing (RS) may be used to rapidly assess surface features and facilitate natural resource management, precision agriculture and soil survey. Information obtained in such a way would streamline data collection and improve diagnostic capabilities. Current RS technology has had limited testing, particularly within the Southeast. Our study was designed to evaluate RS as a rapid assessment tool in three different natural resource applications: nitrogen (N) management in a corn crop (Zea mays L.), assessment of in situ crop residue cover, and quantification of near-surface soil properties. In 2000, study sites were established in four physiographic provinces of Alabama: Tennessee Valley, Ridge and Valley, Appalachian Plateau, and Coastal Plain. Spectral measurements were acquired via spectroradiometer (350--1050 nm), airborne ATLAS multispectral scanner (400--12,500 nm), and IKONOS satellite (450--900 nm). Corn plots were established from fresh-tilled ground in a completely randomized design at the Appalachian Plateau and Coastal Plain study sites in 2000. Plots received four N rates (0, 56, 112, and 168 kg N ha-1 ), and were maintained for three consecutive growing seasons. Spectroradiometer data were acquired biweekly from V6-R2 and ATLAS and IKONOS were acquired per availability. Results showed vegetation indices derived from hand-held spectroradiometer measurements as early as V6-V8 were linearly related to yield and tissue N. ATLAS imagery showed promise at the AP site during the V6 stage (r2 = 0.66), but no significant relationships between plant N and IKONOS imagery were observed. Residue plots (15m x 15m) were established at the Appalachian Plateau and Coastal Plain in 2000 and 200. Residue treatments consisted of hand applied wheat straw cover (0, 10 20, 50, or 80%) arranged in a completely randomized design. Spectroradiometer data were acquired monthly and ATLAS and IKONOS were acquired per availability. Residue cover estimates were best with ATLAS

  7. Remote sensing for rural development planning in Africa

    Science.gov (United States)

    Dunford, C.; Mouat, D. A.; Norton-Griffiths, M.; Slaymaker, D. M.

    1983-01-01

    Multilevel remote-sensing techniques were combined to provide land resource and land-use information for rural development planning in Arusha Region, Tanzania. Enhanced Landsat imagery, supplemented by low-level aerial survey data, slope angle data from topographic sheets, and existing reports on vegetation and soil conditions, was used jointly by image analysts and district-level land-management officials to divide the region's six districts into land-planning units. District-planning officials selected a number of these land-planning units for priority planning and development activities. For the priority areas, natural color aerial photographs provided detailed information for land-use planning discussions between district officials and villagers. Consideration of the efficiency of this remote sensing approach leads to general recommendations for similar applications. The technology and timing of data collection and interpretation activities should allow maximum participation by intended users of the information.

  8. Research Prowess in Retrieving Land Surface Temperature Based on Thermal Infrared Remote Sensing Technologies%热红外遥感反演地表温度研究进展

    Institute of Scientific and Technical Information of China (English)

    陈桥驿; 蔡宜泳

    2013-01-01

    介绍在遥感技术支持下用热红外波段反演地表温度的各种方法及其优缺点和适用情况;总结目前通道法反演地表温度的问题所在,引出其研究新方向:组分温度反演;最后,对热红外遥感反演地表温度作出总结和提出展望.%The methods of retrieving land surface temperature based on thermal infrared remote sensing technologies were introduced. The features of the methods and application range were also discussed. The disadvantages in the channel algorithm of retrieving land surface temperature were summarized. The new direction of component temperature retrieving was introduced. Finally, retrieving land surface temperature based on thermal infrared remote sensing temperature was summarized and forecasted.

  9. Crop stress detection and classification using hyperspectral remote sensing

    Science.gov (United States)

    Irby, Jon Trenton

    Agricultural production has observed many changes in technology over the last 20 years. Producers are able to utilize technologies such as site-specific applicators and remotely sensed data to assist with decision making for best management practices which can improve crop production and provide protection to the environment. It is known that plant stress can interfere with photosynthetic reactions within the plant and/or the physical structure of the plant. Common types of stress associated with agricultural crops include herbicide induced stress, nutrient stress, and drought stress from lack of water. Herbicide induced crop stress is not a new problem. However, with increased acreage being planting in varieties/hybrids that contain herbicide resistant traits, herbicide injury to non-target crops will continue to be problematic for producers. With rapid adoption of herbicide-tolerant cropping systems, it is likely that herbicide induced stress will continue to be a major concern. To date, commercially available herbicide-tolerant varieties/hybrids contain traits which allow herbicides like glyphosate and glufosinate-ammonium to be applied as a broadcast application during the growing season. Both glyphosate and glufosinate-ammonium are broad spectrum herbicides which have activity on a large number of plant species, including major crops like non-transgenic soybean, corn, and cotton. Therefore, it is possible for crop stress from herbicide applications to occur in neighboring fields that contain susceptible crop varieties/hybrids. Nutrient and moisture stress as well as stress caused by herbicide applications can interact to influence yields in agricultural fields. If remotely sensed data can be used to accurately identify specific levels of crop stress, it is possible that producers can use this information to better assist them in crop management to maximize yields and protect their investments. This research was conducted to evaluate classification of specific

  10. Evolution: bats, radar, and science (The Remote Sensing Award Lecture)

    Science.gov (United States)

    Atlas, David

    1991-01-01

    A parallel is drawn between the evolution of the bat and the evolution of the science and technology of radar and remote sensing to illustrate the importance of the role of Darwinian processes in the culture and practice of science and technology, and thus in the survival of their vitality. The lecture touches on several themes of interest to the science community, such as the relation between basic and applied science and engineering; research in academia, industry, and government laboratories; elite scientists; and the survival of a scientific institution.

  11. NEON Airborne Remote Sensing of Terrestrial Ecosystems

    Science.gov (United States)

    Kampe, T. U.; Leisso, N.; Krause, K.; Karpowicz, B. M.

    2012-12-01

    The National Ecological Observatory Network (NEON) is the continental-scale research platform that will collect information on ecosystems across the United States to advance our understanding and ability to forecast environmental change at the continental scale. One of NEON's observing systems, the Airborne Observation Platform (AOP), will fly an instrument suite consisting of a high-fidelity visible-to-shortwave infrared imaging spectrometer, a full waveform small footprint LiDAR, and a high-resolution digital camera on a low-altitude aircraft platform. NEON AOP is focused on acquiring data on several terrestrial Essential Climate Variables including bioclimate, biodiversity, biogeochemistry, and land use products. These variables are collected throughout a network of 60 sites across the Continental United States, Alaska, Hawaii and Puerto Rico via ground-based and airborne measurements. Airborne remote sensing plays a critical role by providing measurements at the scale of individual shrubs and larger plants over hundreds of square kilometers. The NEON AOP plays the role of bridging the spatial scales from that of individual organisms and stands to the scale of satellite-based remote sensing. NEON is building 3 airborne systems to facilitate the routine coverage of NEON sites and provide the capacity to respond to investigator requests for specific projects. The first NEON imaging spectrometer, a next-generation VSWIR instrument, was recently delivered to NEON by JPL. This instrument has been integrated with a small-footprint waveform LiDAR on the first NEON airborne platform (AOP-1). A series of AOP-1 test flights were conducted during the first year of NEON's construction phase. The goal of these flights was to test out instrument functionality and performance, exercise remote sensing collection protocols, and provide provisional data for algorithm and data product validation. These test flights focused the following questions: What is the optimal remote

  12. Archimedean Witness: The Application of Remote Sensing as an Aid to Human Rights Prosecutions

    Science.gov (United States)

    Walker, James Robin

    The 21st century has seen a significant increase in the use of remote sensing technology in the international human rights arena for the purposes of documenting crimes against humanity. The nexus between remote sensing, human rights activism, and international criminal prosecutions sits at a significant crossroads within geographic thought, calling attention to the epistemological and geopolitical implications that stem from the "view from nowhere" afforded by satellite imagery. Therefore, this thesis is divided into three sections. The first looks at the geographical questions raised by the expansion of remote sensing use in the context of international activism. The second explores the complications inherent in the presentation of remote sensing data as evidence of war crimes. Building upon the first two, the third section is a case study in alternate forms of analysis, aimed at expanding the utility of remote sensing data in international criminal prosecutions.

  13. International Models and Methods of Remote Sensing Education and Training.

    Science.gov (United States)

    Anderson, Paul S.

    A classification of remote sensing courses throughout the world, the world-wide need for sensing instruction, and alternative instructional methods for meeting those needs are discussed. Remote sensing involves aerial photointerpretation or the use of satellite and other non-photographic imagery; its focus is to interpret what is in the photograph…

  14. Remote Sensing by Satellite for Environmental Education: A Survey and a Proposal for Teaching at Upper Secondary and University Level.

    Science.gov (United States)

    Bosler, Ulrich

    Knowledge of the environment has grown to such an extent that information technology (IT) is essential to make sense of the available data. An example of this is remote sensing by satellite. In recent years this field has grown in importance and remote sensing is used for a range of uses including the automatic survey of wheat yields in North…

  15. Hyperspectral remote sensing of wild oyster reefs

    Science.gov (United States)

    Le Bris, Anthony; Rosa, Philippe; Lerouxel, Astrid; Cognie, Bruno; Gernez, Pierre; Launeau, Patrick; Robin, Marc; Barillé, Laurent

    2016-04-01

    The invasion of the wild oyster Crassostrea gigas along the western European Atlantic coast has generated changes in the structure and functioning of intertidal ecosystems. Considered as an invasive species and a trophic competitor of the cultivated conspecific oyster, it is now seen as a resource by oyster farmers following recurrent mass summer mortalities of oyster spat since 2008. Spatial distribution maps of wild oyster reefs are required by local authorities to help define management strategies. In this work, visible-near infrared (VNIR) hyperspectral and multispectral remote sensing was investigated to map two contrasted intertidal reef structures: clusters of vertical oysters building three-dimensional dense reefs in muddy areas and oysters growing horizontally creating large flat reefs in rocky areas. A spectral library, collected in situ for various conditions with an ASD spectroradiometer, was used to run Spectral Angle Mapper classifications on airborne data obtained with an HySpex sensor (160 spectral bands) and SPOT satellite HRG multispectral data (3 spectral bands). With HySpex spectral/spatial resolution, horizontal oysters in the rocky area were correctly classified but the detection was less efficient for vertical oysters in muddy areas. Poor results were obtained with the multispectral image and from spatially or spectrally degraded HySpex data, it was clear that the spectral resolution was more important than the spatial resolution. In fact, there was a systematic mud deposition on shells of vertical oyster reefs explaining the misclassification of 30% of pixels recognized as mud or microphytobenthos. Spatial distribution maps of oyster reefs were coupled with in situ biomass measurements to illustrate the interest of a remote sensing product to provide stock estimations of wild oyster reefs to be exploited by oyster producers. This work highlights the interest of developing remote sensing techniques for aquaculture applications in coastal

  16. Remote sensing for land management and planning

    Science.gov (United States)

    Woodcock, Curtis E.; Strahler, Alan H.; Franklin, Janet

    1983-05-01

    The primary role of remote sensing in land management and planning has been to provide information concerning the physical characteristics of the land which influence the management of individual land parcels or the allocation of lands to various uses These physical characteristics have typically been assessed through aerial photography, which is used to develop resource maps and to monitor changing environmental conditions These uses are well developed and currently well integrated into the planning infrastructure at local, state, and federal levels in the United States. Many newly emerging uses of remote sensing involve digital images which are collected, stored, and processed automatically by electromechanical scanning devices and electronic computers Some scanning devices operate from aircraft or spacecraft to scan ground scenes directly; others scan conventional aerial transparencies to yield digital images. Digital imagery offers the potential for computer-based automated map production, a process that can significantly increase the amount and timeliness of information available to land managers and planners. Future uses of remote sensing in land planning and management will involve geographic information systems, which store resource information in a geocoded format. Geographic information systems allow the automated integration of disparate types of resource data through various types of spatial models so that with accompanying sample ground data, information in the form of thematic maps and/ or aerially aggregated statistics can be produced Key issues confronting the development and integration of geographic information systems into planning pathways are restoration and rectification of digital images, automated techniques for combining both quantitative and qualitative types of data in information-extracting procedures, and the compatibility of alternative data storage modes

  17. Shape saliency for remote sensing image

    Science.gov (United States)

    Xu, Sheng; Hong, Huo; Fang, Tao; Li, Deren

    2007-11-01

    In this paper, a shape saliency measure for only shape feature of each object in the image is described. Instead biologically-inspired bottom-up Itti model, the dissimilarity is measured by the shape feature. And, Fourier descriptor is used for measuring dissimilarity in this paper. In the model, the object is determined as a salient region, when it is far different from others. Different value of the saliency is ranged to generate a saliency map. It is shown that the attention shift processing can be recorded. Some results from psychological images and remote sensing images are shown and discussed in the paper.

  18. Characrterizing frozen ground with multisensor remote sensing

    Science.gov (United States)

    Csatho, B. M.; Ping, C.; Everett, L. R.; Kimble, J. M.; Michaelson, G.; Tremper, C.

    2006-12-01

    We have a physically based, conceptual understanding of many of the significant interactions that impact permafrost-affected soils. Our observationally based knowledge, however, is inadequate in many cases to quantify these interactions or to predict their net impact. To pursue key goals, such as understanding the response of permafrost-affected soil systems to global environmental changes and their role in the carbon balance, and to transform our conceptual understanding of these processes into quantitative knowledge, it is necessary to acquire geographically diverse sets of fundamental observations at high spatial and often temporal resolution. The main goals of the research presented here are developing methods for mapping soil and permafrost distributions in polar environment as well as characterizing glacial and perglacial geomorphology from multisensor, multiresolution remotely sensed data. The sheer amount of data and the disparate data sets (e.g., LIDAR, stereo imagery, multi- hyperspectral, and SAR imagery) make the joint interpretation (fusion) a daunting task. We combine remote sensing, pattern recognition and landscape analysis techniques for the delineation of soil landscape units and other geomorphic features, for inferring the physical properties and composition of the surface, and for generating numerical measurements of geomorphic features from remotely sensed data. Examples illustrating the concept are presented from the North Slope of Alaska and from the McMurdo Sound region in Antarctica. (1) On the North Slope, Alaska we separated different vegetative, soil and landscape units along the Haul Road. Point-source soils (pedon) data and field spectrometry data have been acquired at different units to provide ground-truth for the satellite image interpretation. (2) A vast amount of remote sensing data, such as multi- and hyperspectral (Landsat, SPOT, ASTER, HYPERION) and SAR satellite imagery (ERS, RADARSAT and JERS), high resolution topographic

  19. Introduction to Remote Sensing Image Registration

    Science.gov (United States)

    Le Moigne, Jacqueline

    2017-01-01

    For many applications, accurate and fast image registration of large amounts of multi-source data is the first necessary step before subsequent processing and integration. Image registration is defined by several steps and each step can be approached by various methods which all present diverse advantages and drawbacks depending on the type of data, the type of applications, the a prior information known about the data and the type of accuracy that is required. This paper will first present a general overview of remote sensing image registration and then will go over a few specific methods and their applications

  20. Branching model for vegetation. [polarimetric remote sensing

    Science.gov (United States)

    Yueh, Simon H.; Kong, J. A.; Jao, Jen K.; Shin, Robert T.; Le Toan, Thuy

    1992-01-01

    In the present branching model for remote sensing of vegetation, the frequency and angular responses of a two-scale cylinder cluster are calculated to illustrate the importance of vegetation architecture. Attention is given to the implementation of a two-scale branching model for soybeans, where the relative location of soybean plants is described by a pair of distribution functions. Theoretical backscattering coefficients evaluated by means of hole-correction pair distribution are in agreement with extensive data collected from soybean fields. The hole-correction approximation is found to be the more realistic.

  1. Branching model for vegetation. [polarimetric remote sensing

    Science.gov (United States)

    Yueh, Simon H.; Kong, J. A.; Jao, Jen K.; Shin, Robert T.; Le Toan, Thuy

    1992-01-01

    In the present branching model for remote sensing of vegetation, the frequency and angular responses of a two-scale cylinder cluster are calculated to illustrate the importance of vegetation architecture. Attention is given to the implementation of a two-scale branching model for soybeans, where the relative location of soybean plants is described by a pair of distribution functions. Theoretical backscattering coefficients evaluated by means of hole-correction pair distribution are in agreement with extensive data collected from soybean fields. The hole-correction approximation is found to be the more realistic.

  2. Remote sensing of vegetation and soil moisture

    Science.gov (United States)

    Kong, J. A.; Shin, R. T. (Principal Investigator)

    1983-01-01

    Progress in the investigation of problems related to the remote sensing of vegetation and soil moisture is reported. Specific topics addressed include: (1) microwave scattering from periodic surfaces using a rigorous modal technique; (2) combined random rough surface and volume scattering effects; (3) the anisotropic effects of vegetation structures; (4) the application of the strong fluctuation theory to the the study of electromagnetic wave scattering from a layer of random discrete scatterers; and (5) the investigation of the scattering of a plane wave obliquely incident on a half space of densely distributed spherical dielectric scatterers using a quantum mechanical potential approach.

  3. Remote shock sensing and notification system

    Science.gov (United States)

    Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.

    2008-11-11

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  4. Remote shock sensing and notification system

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [Knoxville, TN; Britton, Charles L [Alcoa, TN; Pearce, James [Lenoir City, TN; Jagadish, Usha [Knoxville, TN; Sikka, Vinod K [Oak Ridge, TN

    2010-11-02

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interface circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitter with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  5. Development of Remote Operations Technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Sub; Kwon, Sung Gyu; Kim, Ki Ho; Park, Byung Suk; Park Young Soo; Lee, Won Sang [Korea Atomic Energry Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    To control the swing of the load suspended to overhead crane, various devices, anti-swing control algorithms, and experimental and pilot-scaled cranes have been developed since 1989. In this year, the problems of control algorithm are identified and new algorithms which adopt an acceleration profile planning, a velocity feedback control, a fuzzy control, and an anti-swing/position control methods are developed. Also, the report includes the program of transferring the anti-swing overhead crane technology to industry. And, to improve the cask handling safety and to increase the cask handling capacity of a facility, a Remote Cask Grappling and Lid Unbolting Device (RCG=LUD) which is suspended to an anti-swing crane and remotely controlled to hold the cask and unbolt the cask lid is developed. the controller using PMAC is tested for successful remote operations. Technology for this device has the potential for developing other technologies, such as nuclear reactor maintenance and repair. 62 refs., 73 figs., 27 tabs.

  6. Remote sensing research in geographic education: An alternative view

    Science.gov (United States)

    Wilson, H.; Cary, T. K.; Goward, S. N.

    1981-01-01

    It is noted that within many geography departments remote sensing is viewed as a mere technique a student should learn in order to carry out true geographic research. This view inhibits both students and faculty from investigation of remotely sensed data as a new source of geographic knowledge that may alter our understanding of the Earth. The tendency is for geographers to accept these new data and analysis techniques from engineers and mathematicians without questioning the accompanying premises. This black-box approach hinders geographic applications of the new remotely sensed data and limits the geographer's contribution to further development of remote sensing observation systems. It is suggested that geographers contribute to the development of remote sensing through pursuit of basic research. This research can be encouraged, particularly among students, by demonstrating the links between geographic theory and remotely sensed observations, encouraging a healthy skepticism concerning the current understanding of these data.

  7. Hyperspectral Remote Sensing for Tropical Rain Forest

    Directory of Open Access Journals (Sweden)

    Kamaruzaman Jusoff

    2009-01-01

    Full Text Available Problem statement: Sensing, mapping and monitoring the rain forest in forested regions of the world, particularly the tropics, has attracted a great deal of attention in recent years as deforestation and forest degradation account for up to 30% of anthropogenic carbon emissions and are now included in climate change negotiations. Approach: We reviewed the potential for air and spaceborne hyperspectral sensing to identify and map individual tree species measure carbon stocks, specifically Aboveground Biomass (AGB and provide an overview of a range of approaches that have been developed and used to map tropical rain forest across a diverse set of conditions and geographic areas. We provided a summary of air and spaceborne hyperspectral remote sensing measurements relevant to mapping the tropical forest and assess the relative merits and limitations of each. We then provided an overview of modern techniques of mapping the tropical forest based on species discrimination, leaf chlorophyll content, estimating aboveground forest productivity and monitoring forest health. Results: The challenges in hyperspectral Imaging of tropical forests is thrown out to researchers in such field as to come with the latest techniques of image processing and improved mapping resolution leading towards higher precision mapping accuracy. Some research results from an airborne hyperspectral imaging over Bukit Nanas forest reserve was shared implicating high potential of such very high resolution imaging techniques for tropical mixed dipterocarp forest inventory and mapping for species discrimination, aboveground forest productivity, leaf chlorophyll content and carbon mapping. Conclusion/Recommendations: We concluded that while spaceborne hyperspectral remote sensing has often been discounted as inadequate for the task, attempts to map with airborne sensors are still insufficient in tropical developing countries like Malaysia. However, we demonstrated this with a case

  8. Basic research in the field of thermal infrared remote sensing

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This overview paper points out that one of the problems impeding further development of remote sensing is that not much attention has been paid to basic research.Key contents of basic research in remote sensing,including modeling,inversion,scaling and scientific experiments,are reviewed.Significance of basic research is demonstrated through summarizing the intentions and progress of the project "Quantitative Remote Sensing Research on Land Surface Energy Exchange".

  9. An Overview on Data Mining of Nighttime Light Remote Sensing

    Directory of Open Access Journals (Sweden)

    LI Deren

    2015-06-01

    Full Text Available When observing the Earth from above at night, it is clear that the human settlement and major economic regions emit glorious light. At cloud-free nights, some remote sensing satellites can record visible radiance source, including city light, fishing boat light and fire, and these nighttime cloud-free images are remotely sensed nighttime light images. Different from daytime remote sensing, nighttime light remote sensing provides a unique perspective on human social activities, thus it has been widely used for spatial data mining of socioeconomic domains. Historically, researches on nighttime light remote sensing mostly focus on urban land cover and urban expansion mapping using DMSP/OLS imagery, but the nighttime light images are not the unique remote sensing source to do these works. Through decades of development of nighttime light product, the nighttime light remote sensing application has been extended to numerous interesting and scientific study domains such as econometrics, poverty estimation, light pollution, fishery and armed conflict. Among the application cases, it is surprising to see the Gross Domestic Production (GDP data can be corrected using the nighttime light data, and it is interesting to see mechanism of several diseases can be revealed by nighttime light images, while nighttime light are the unique remote sensing source to do the above works. As the nighttime light remote sensing has numerous applications, it is important to summarize the application of nighttime light remote sensing and its data mining fields. This paper introduced major satellite platform and sensors for observing nighttime light at first. Consequently, the paper summarized the progress of nighttime light remote sensing data mining in socioeconomic parameter estimation, urbanization monitoring, important event evaluation, environmental and healthy effects, fishery dynamic mapping, epidemiological research and natural gas flaring monitoring. Finally, future

  10. DARLA: Data Assimilation and Remote Sensing for Littoral Applications

    Science.gov (United States)

    2013-09-30

    WA 98105 phone: (206) 685-2609 fax: (206) 543-6785 email: jessup@apl.washington.edu Robert A. Holman Merrick Haller, Alexander Kuropov, Tuba...Ozkan-Haller Oregon State University Corvallis, OR 97331 phone: (541) 737-2914 fax: (541) 737-2064 email: holman @coas.oregonstate.edu Steve...Infrared Remote Sensing and Lidar– UW: Chickadel and Jessup B. Electro-Optical Remote Sensing – OSU: Holman C. Microwave Remote Sensing – UW

  11. SYMPOSIUM ON REMOTE SENSING IN THE POLAR REGIONS

    Science.gov (United States)

    The Arctic Institute of North America long has been interested in encouraging full and specific attention to applications of remote sensing to polar...research problems. The major purpose of the symposium was to acquaint scientists and technicians concerned with remote sensing with some of the...special problems of the polar areas and, in turn, to acquaint polar scientists with the potential of the use of remote sensing . The Symposium therefore was

  12. Basic research in the field of thermal infrared remote sensing

    Institute of Scientific and Technical Information of China (English)

    徐冠华

    2000-01-01

    This overview paper points out that one of the problems impeding further development of remote sensing is that not much attention has been paid to basic research. Key contents of basic research in remote sensing, including modeling, inversion, scaling and scientific experiments, are reviewed. Significance of basic research is demonstrated through summarizing the intentions and progress of the project "Quantitative Remote Sensing Research on Land Surface Energy Exchange".

  13. Remote Sensing Time Series Product Tool

    Science.gov (United States)

    Predos, Don; Ryan, Robert E.; Ross, Kenton W.

    2006-01-01

    programmers to bypass the GUI and to create more user-specific output products, such as comparison time plots or images. This type of time series analysis tool for remotely sensed imagery could be the basis of a large-area vegetation surveillance system. The TSPT has been used to generate NDVI time series over growing seasons in California and Argentina and for hurricane events, such as Hurricane Katrina.

  14. A History of NASA Remote Sensing Contributions to Archaeology

    Science.gov (United States)

    Giardino, Marco J.

    2010-01-01

    During its long history of developing and deploying remote sensing instruments, NASA has provided a scientific data that have benefitted a variety of scientific applications among them archaeology. Multispectral and hyperspectral instrument mounted on orbiting and suborbital platforms have provided new and important information for the discovery, delineation and analysis of archaeological sites worldwide. Since the early 1970s, several of the ten NASA centers have collaborated with archaeologists to refine and validate the use of active and passive remote sensing for archeological use. The Stennis Space Center (SSC), located in Mississippi USA has been the NASA leader in archeological research. Together with colleagues from Goddard Space Flight Center (GSFC), Marshall Space Flight Center (MSFC), and the Jet Propulsion Laboratory (JPL), SSC scientists have provided the archaeological community with useful images and sophisticated processing that have pushed the technological frontiers of archaeological research and applications. Successful projects include identifying prehistoric roads in Chaco canyon, identifying sites from the Lewis and Clark Corps of Discovery exploration and assessing prehistoric settlement patterns in southeast Louisiana. The Scientific Data Purchase (SDP) stimulated commercial companies to collect archaeological data. At present, NASA formally solicits "space archaeology" proposals through its Earth Science Directorate and continues to assist archaeologists and cultural resource managers in doing their work more efficiently and effectively. This paper focuses on passive remote sensing and does not consider the significant contributions made by NASA active sensors. Hyperspectral data offers new opportunities for future archeological discoveries.

  15. Remotely Sensing the Photochemical Reflectance Index (PRI)

    Science.gov (United States)

    Vanderbilt, Vern

    2015-01-01

    In remote sensing, the Photochemical Reflectance Index (PRI) provides insight into physiological processes occurring inside the leaves in a stand of plants. Developed by Gamon et al., (1990 and 1992), PRI evolved from laboratory measurements of the reflectance of individual leaves (Bilger et al.,1989). Yet in a remotely sensed image, a pixel measurement may include light from both reflecting and transmitting leaves. We conducted laboratory experiments comparing values of PRI based upon polarized reflectance and transmittance measurements of water and nutrient stressed leaves. We illuminated single detached leaves using a current controlled light source (Oriel model 66881) and measured the leaf weight using an analytical balance (Mettler model AE 260) and the light reflected and transmitted by the leaf during dry down using two Analytical Spectral Devices spectroradiometers. Polarizers on the incident and reflected light beams allowed us to divide the leaf reflectance into two parts: a polarized surface reflectance and a non-polarized 'leaf interior' reflectance. Our results underscore the importance when calculating PRI of removing the leaf surface reflection, which contains no information about physiological processes ongoing in the leaf interior. The results show that the leaf physiology information is in the leaf interior reflectance, not the leaf transmittance. Applied to a plant stand, these results suggest use of polarization measurements in sun-view directions that minimize the number of sunlit transmitting leaves in the sensor field of view.

  16. Theory of Geological Anomaly in Remote Sensing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Geological anomaly is geological body or complex body with obviously different compositions, structures or orders of genesis as compared with those in the surrounding areas. Geological anomaly, restrained by the geological factors closely associated with ore-forming process, is an important clue to ore deposits. The geological anomaly serves as a geological sign to locate ore deposits. Therefore, it is very important to study how to define the characteristics of geological anomaly and further to locate the changes in these characteristics. In this paper, the authors propose the geological anomaly based on the remote-sensing images and data, and expound systematically such image features as scale, size, boundary, morphology and genesis of geological anomalies. Then the authors introduce the categorization of the geological anomalies according to their geneses. The image characteristics of some types of geological anomalies, such as the underground geological anomaly, are also explained in detail. Based on the remote-sensing interpretation of these geological anomalies, the authors conclude that the forecasting and exploration of ore deposits should be focused on the following three aspects: (1) the analysis of geological setting and geological anomaly; (2) the analysis of circular geological anomaly, and (3) the comprehensive forecasting of ore deposits and the research into multi-source information.

  17. Environmental impact prediction using remote sensing images

    Institute of Scientific and Technical Information of China (English)

    Pezhman ROUDGARMI; Masoud MONAVARI; Jahangir FEGHHI; Jafar NOURI; Nematollah KHORASANI

    2008-01-01

    Environmental impact prediction is an important step in many environmental studies. Awide variety of methods have been developed in this concern. During this study, remote sensing images were used for environmental impact prediction in Robatkarim area, Iran, during the years of 2005~2007. It was assumed that environmental impact could be predicted using time series satellite imageries. Natural vegetation cover was chosen as a main environmental element and a case study. Environmental impacts of the regional development on natural vegetation of the area were investigated considering the changes occurred on the extent of natural vegetation cover and the amount of biomass. Vegetation data, land use and land cover classes (as activity factors) within several years were prepared using satellite images. The amount ofbiomass was measured by Soil-adjusted Vegetation Index (SAVI) and Normalized Difference Vegetation Index (NDVI) based on satellite images. The resulted biomass estimates were tested by the paired samples t-test method. No significant difference was observed between the average biomass of estimated and control samples at the 5% significance level. Finally, regression models were used for the environmental impacts prediction. All obtained regression models for prediction of impacts on natural vegetation cover show values over 0.9 for both correlation coefficient and R-squared. According to the resulted methodology, the prediction models of projects and plans impacts can also be developed for other environmental elements which may be derived using time series remote sensing images.

  18. Machine learning in geosciences and remote sensing

    Institute of Scientific and Technical Information of China (English)

    David J. Lary; Amir H. Alavi; Amir H. Gandomi; Annette L. Walker

    2016-01-01

    Learning incorporates a broad range of complex procedures. Machine learning (ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regres-sion or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the ef-ficiency of ML for tackling the geosciences and remote sensing problems.

  19. Machine learning in geosciences and remote sensing

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2016-01-01

    Full Text Available Learning incorporates a broad range of complex procedures. Machine learning (ML is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc. that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.

  20. Land remote sensing commercialization: A status report

    Science.gov (United States)

    Bishop, W. P.; Heacock, E. L.

    1984-01-01

    The current offer by the United States Department of Commerce to transfer the U.S. land remote sensing program to the private sector is described. A Request for Proposals (RFP) was issued, soliciting offers from U.S. firms to provide a commercial land remote sensing satellite system. Proposals must address a complete system including satellite, communications, and ground data processing systems. Offerors are encouraged to propose to take over the Government LANDSAT system which consists of LANDSAT 4 and LANDSAT D'. Also required in proposals are the market development procedures and plans to ensure that commercialization is feasible and the business will become self-supporting at the earliest possible time. As a matter of Federal Policy, the solicitation is designed to protect both national security and foreign policy considerations. In keeping with these concerns, an offeror must be a U.S. Firm. Requirements for data quality, quantity, distribution and delivery are met by current operational procedures. It is the Government's desire that the Offeror be prepared to develop and operate follow-on systems without Government subsidies. However, to facilitate rapid commercialization, an offeror may elect to include in his proposal mechanisms for short term government financial assistance.

  1. Method of determining forest production from remotely sensed forest parameters

    Science.gov (United States)

    Corey, J.C.; Mackey, H.E. Jr.

    1987-08-31

    A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.

  2. Remotely Sensed, catchment scale, estimations of flow resistance

    Science.gov (United States)

    Carbonneau, P.; Dugdale, S. J.

    2009-12-01

    Despite a decade of progress in the field of fluvial remote sensing, there are few published works using this new technology to advance and explore fundamental ideas and theories in fluvial geomorphology. This paper will apply remote sensing methods in order to re-visit a classic concept in fluvial geomorphology: flow resistance. Classic flow resistance equations such as those of Strickler and Keulegan typically use channel slope, channel depth or hydraulic radius and some measure channel roughness usually equated to the 50th or 84th percentile of the bed material size distribution. In this classic literature, empirical equations such as power laws are usually calibrated and validated with a maximum of a few hundred data points. In contrast, fluvial remote sensing methods are now capable of delivering millions of high resolution data points in continuous, catchment scale, surveys. On the river Tromie in Scotland, a full dataset or river characteristics is now available. Based on low altitude imagery and NextMap topographic data, this dataset has a continuous sampling of channel width at a resolution of 3cm, of depth and median grain size at a resolution of 1m, and of slope at a resolution of 5m. This entire data set is systematic and continuous for the entire 20km length of the river. When combined with discharge at the time of data acquisition, this new dataset offers the opportunity to re-examine flow resistance equations with a 2-4 orders of magnitude increase in calibration data. This paper will therefore re-examine the classic approaches of Strickler and Keulagan along with other more recent flow resistance equations. Ultimately, accurate predictions of flow resistance from remotely sensed parameters could lead to acceptable predictions of velocity. Such a usage of classic equations to predict velocity could allow lotic habitat models to account for microhabitat velocity at catchment scales without the recourse to advanced and computationally intensive

  3. Laser-based sensors for oil spill remote sensing

    Science.gov (United States)

    Brown, Carl E.; Fingas, Mervin F.; Mullin, Joseph V.

    1997-07-01

    Remote sensing is becoming an increasingly important tool for the effective direction of oil spill countermeasures. Cleanup personnel have recognized that remote sensing can increase spill cleanup efficiency. It has long been recognized that there is no one sensor which is capable of detecting oil and related petroleum products in all environments and spill scenarios. There are sensors which possess a wide field-of- view and can therefore be used to map the overall extent of the spill. These sensors, however lack the capability to positively identify oil and related products, especially along complicated beach and shoreline environments where several substrates are present. The laser-based sensors under development by the Emergencies Science Division of Environment Canada are designed to fill specific roles in oil spill response. The scanning laser environmental airborne fluorosensor (SLEAF) is being developed to detect and map oil and related petroleum products in complex marine and shoreline environments where other non-specific sensors experience difficulty. The role of the SLEAF would be to confirm or reject suspected oil contamination sites that have been targeted by the non-specific sensors. This confirmation will release response crews from the time-consuming task of physically inspecting each site, and direct crews to sites that require remediation. The laser ultrasonic remote sensing of oil thickness (LURSOT) sensor will provide an absolute measurement of oil thickness from an airborne platform. There are presently no sensors available, either airborne or in the laboratory which can provide an absolute measurement of oil thickness. This information is necessary for the effective direction of spill countermeasures such as dispersant application and in-situ burning. This paper describes the development of laser-based airborne oil spill remote sensing instrumentation at Environment Canada and identifies the anticipated benefits of the use of this technology

  4. Key technology for remote sensing information acquisition based on micro UAV%基于微小型无人机的遥感信息获取关键技术综述

    Institute of Scientific and Technical Information of China (English)

    汪沛; 罗锡文; 周志艳; 臧英; 胡炼

    2014-01-01

    The small size and low cost micro-UAV information acquisition technology platforms have been widely applied in agricultural field in recent years. It has become the inevitable trend of development of precision agriculture and has offered a fast and flexible way to acquire data for crop management and monitoring, capable of timely provision of high resolution images. The key technology for remote Sensing information acquisition based on micro UAV in the world, which includes the development of micro UAV remote sensing platforms, information acquisition technology, image processing, and analysis and application of crop management, is reviewed in this paper. Micro UAV mainly has two type rotor helicopter and fixed-wing aircraft. The rotor helicopter has been used more widely in acquiring information of the field, because it has the ability of taking off and landing vertically, fixed-point hovering, and slow cruising. Japan was the first country that has used the micro-UAV in agricultural production, and is one of the countries that has the best and most mature technologies in using remote UAV in agriculture today. The United States, Netherlands, Israel, and the United Kingdom also have a very good development all over the world. The beginning of research and development of micro UAV in China was much later than the other developed countries, but it has a booming development and grows rapidly. In this paper, parameters and characteristics of different models of the micro UAVs from eight companies in China have been listed for comparison. In remote sensing information acquiring systems, due to the limited load capacity of micro-UAV, digital camera and light-weight multispectral camera are two main instruments that are used on micro UAV for remote sensing information acquiring. How to adjust the posture of airborne remote sensors quickly and accurately so that the detecting target is always in the center of monitoring view, and how to realize remote controlling, image

  5. Remote Sensing Monitor of Grassland Desertification of Ruoergai County Based on 3S Technology%基于TM影像在若尔盖县草原沙化洞查中的应用研究

    Institute of Scientific and Technical Information of China (English)

    廖习红

    2012-01-01

    遥感及其技术应用和卫星技术的发展为资源环境调查提供了丰富的信息,在经济活动中发挥着巨大作用。本文根据美国陆地资源卫星TM影像特点,分析了若尔盖县草原沙4ETM影像色调特征,同时根据草原沙化在遥感影像上的特征,建立图像解译标志,获取若尔盖县草原沙化分布和面积情况。为进一步开展四川省草原沙化调查提供技术支持,为宏观决策者实施草原沙化治理提供科学依据。%Desertification of gassland is one of most serious environmental problems which is concerned all over the world. technology, With the support of 3S (remote sensing, geographic information system and global posmonmg system) remote sensing image i,~ used, including ground investigation. This paper analyses remote sensing monitor of sandy grasslan d in rergai county by establishing the model of remote sensing image and ground data. Based on the difference of tones and patterns, the image' s interpretation and classification index system have been established, the area and distribution and level of sandy grassland have been gained. The research finding gives further technical support to the sandy grassland of Sichuan province. At the same time, the data presents a scientific view for decision controlling grassland desertification.

  6. Wageningen UR Unmanned Aerial Remote Sensing Facility - Overview of activities

    Science.gov (United States)

    Bartholomeus, Harm; Keesstra, Saskia; Kooistra, Lammert; Suomalainen, Juha; Mucher, Sander; Kramer, Henk; Franke, Jappe

    2016-04-01

    To support environmental management there is an increasing need for timely, accurate and detailed information on our land. Unmanned Aerial Systems (UAS) are increasingly used to monitor agricultural crop development, habitat quality or urban heat efficiency. An important reason is that UAS technology is maturing quickly while the flexible capabilities of UAS fill a gap between satellite based and ground based geo-sensing systems. In 2012, different groups within Wageningen University and Research Centre have established an Unmanned Airborne Remote Sensing Facility. The objective of this facility is threefold: a) To develop innovation in the field of remote sensing science by providing a platform for dedicated and high-quality experiments; b) To support high quality UAS services by providing calibration facilities and disseminating processing procedures to the UAS user community; and c) To promote and test the use of UAS in a broad range of application fields like habitat monitoring, precision agriculture and land degradation assessment. The facility is hosted by the Laboratory of Geo-Information Science and Remote Sensing (GRS) and the Department of Soil Physics and Land Management (SLM) of Wageningen University together with the team Earth Informatics (EI) of Alterra. The added value of the Unmanned Aerial Remote Sensing Facility is that compared to for example satellite based remote sensing more dedicated science experiments can be prepared. This includes for example higher frequent observations in time (e.g., diurnal observations), observations of an object under different observation angles for characterization of BRDF and flexibility in use of camera's and sensors types. In this way, laboratory type of set ups can be tested in a field situation and effects of up-scaling can be tested. In the last years we developed and implemented different camera systems (e.g. a hyperspectral pushbroom system, and multispectral frame cameras) which we operated in projects all

  7. NASA Remote Sensing Applications for Archaeology and Cultural Resources Management

    Science.gov (United States)

    Giardino, Marco J.

    2008-01-01

    NASA's Earth Science Mission Directorate recently completed the deployment of the Earth Observation System (EOS) which is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. One of the many applications derived from EOS is the advancement of archaeological research and applications. Using satellites, manned and unmanned airborne platform, NASA scientists and their partners have conducted archaeological research using both active and passive sensors. The NASA Stennis Space Center (SSC) located in south Mississippi, near New Orleans, has been a leader in space archaeology since the mid-1970s. Remote sensing is useful in a wide range of archaeological research applications from landscape classification and predictive modeling to site discovery and mapping. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, including commercial instruments, offer significantly improved spatial and spectral resolutions. Paired with new techniques of image analysis, this technology provides for the direct detection of archaeological sites. As in all archaeological research, the application of remote sensing to archaeology requires a priori development of specific research designs and objectives. Initially targeted at broad archaeological issues, NASA space archaeology has progressed toward developing practical applications for cultural resources management (CRM). These efforts culminated with the Biloxi Workshop held by NASA and the University of Mississippi in 2002. The workshop and resulting publication specifically address the requirements of cultural resource managers through

  8. NASA Remote Sensing Applications for Archaeology and Cultural Resources Management

    Science.gov (United States)

    Giardino, Marco J.

    2008-01-01

    NASA's Earth Science Mission Directorate recently completed the deployment of the Earth Observation System (EOS) which is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. One of the many applications derived from EOS is the advancement of archaeological research and applications. Using satellites, manned and unmanned airborne platform, NASA scientists and their partners have conducted archaeological research using both active and passive sensors. The NASA Stennis Space Center (SSC) located in south Mississippi, near New Orleans, has been a leader in space archaeology since the mid-1970s. Remote sensing is useful in a wide range of archaeological research applications from landscape classification and predictive modeling to site discovery and mapping. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, including commercial instruments, offer significantly improved spatial and spectral resolutions. Paired with new techniques of image analysis, this technology provides for the direct detection of archaeological sites. As in all archaeological research, the application of remote sensing to archaeology requires a priori development of specific research designs and objectives. Initially targeted at broad archaeological issues, NASA space archaeology has progressed toward developing practical applications for cultural resources management (CRM). These efforts culminated with the Biloxi Workshop held by NASA and the University of Mississippi in 2002. The workshop and resulting publication specifically address the requirements of cultural resource managers through

  9. OpenRS-Cloud:A remote sensing image processing platform based on cloud computing environment

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper explores the use of cloud computing for remote sensing image processing.The main contribution of our work is to develop a remote sensing image processing platform based on cloud computing technology(OpenRS-Cloud).This paper focuses on enabling methodical investigations into the development pattern,computational model,data management and service model exploring this novel distributed computing model.The experimental INSAR processing flow is implemented to verify the efficiency and feasibility of OpenRS-Cloud platform.The results show that cloud computing is well suited for computationally-intensive and data-intensive remote sensing services.

  10. Accurate Annotation of Remote Sensing Images via Active Spectral Clustering with Little Expert Knowledge

    Directory of Open Access Journals (Sweden)

    Gui-Song Xia

    2015-11-01

    Full Text Available It is a challenging problem to efficiently interpret the large volumes of remotely sensed image data being collected in the current age of remote sensing “big data”. Although human visual interpretation can yield accurate annotation of remote sensing images, it demands considerable expert knowledge and is always time-consuming, which strongly hinders its efficiency. Alternatively, intelligent approaches (e.g., supervised classification and unsupervised clustering can speed up the annotation process through the application of advanced image analysis and data mining technologies. However, high-quality expert-annotated samples are still a prerequisite for intelligent approaches to achieve accurate results. Thus, how to efficiently annotate remote sensing images with little expert knowledge is an important and inevitable problem. To address this issue, this paper introduces a novel active clustering method for the annotation of high-resolution remote sensing images. More precisely, given a set of remote sensing images, we first build a graph based on these images and then gradually optimize the structure of the graph using a cut-collect process, which relies on a graph-based spectral clustering algorithm and pairwise constraints that are incrementally added via active learning. The pairwise constraints are simply similarity/dissimilarity relationships between the most uncertain pairwise nodes on the graph, which can be easily determined by non-expert human oracles. Furthermore, we also propose a strategy to adaptively update the number of classes in the clustering algorithm. In contrast with existing methods, our approach can achieve high accuracy in the task of remote sensing image annotation with relatively little expert knowledge, thereby greatly lightening the workload burden and reducing the requirements regarding expert knowledge. Experiments on several datasets of remote sensing images show that our algorithm achieves state

  11. International Commercial Remote Sensing Practices and Policies: A Comparative Analysis

    Science.gov (United States)

    Stryker, Timothy

    sensing satellite industry. In commissioning this study, NOAA's goal was to better understand the role that U.S. Government policies and regulations have in shaping the prospects for emerging commercial remote sensing satellite firms. The study assessed the risks against broader trends in the larger U.S. remote sensing industry and geospatial technology and effective policy implementation. The Department of Commerce is working with NOAA licensees to identify foreign actions which could restrict market access by U.S. firms, and seeking to provide a "level playing field" for U.S. service providers. The Department of Commerce has dedicated new resources to its licensing activities. In Fiscal Year 2002, the Department obtained 1.2 million in funding to support the NOAA program, through staff, equipment, technical support, constituent outreach, and market and policy studies. To better understand the market and make more well-informed licensing decisions, NOAA is participating in a broad-based market study effort under the direction of the American Society for Photogrammetry and Remote Sensing (ASPRS) and NASA's Commercial Remote Sensing Program. This study is providing long-term analysis of the commercial remote sensing industry. It is being supported by interviews with industry and government experts, a web-based survey, and a thorough review and analysis of related literature. The project should more clearly determine future remote sensing needs and requirements, and maximize the industry's baselines, standards, and socio-economic potential. NOAA, through its participation in this study, has gained important new insights into the status and future trends of this industry. The study's initial findings estimate 2001 industry revenue at 2 billion, growing at 13% per year, to an approximate level of 6 billion in 2010 (in constant, calendar year 2000 dollars). Currently, across all sectors, the most active market segments are in nati onal /glo bal security, mapping

  12. Cassini's remote sensing pallet is installed in the PHSF

    Science.gov (United States)

    1997-01-01

    Technicians from the Jet Propulsion Laboratory (JPL) of the California Institute of Technology lift the remote sensing pallet in the Payload Hazardous Servicing Facility at KSC in July prior to installation on the Cassini spacecraft. A four- year, close-up study of the Saturnian system, the Cassini mission is scheduled for launch from Cape Canaveral Air Station in October 1997. It will take seven years for the spacecraft to reach Saturn. Scientific instruments carried aboard the spacecraft will study Saturn's atmosphere, magnetic field, rings, and several moons. JPL is managing the Cassini project for NASA.

  13. Can Hyperspectral Remote Sensing Detect Species Specific Biochemicals ?

    Science.gov (United States)

    Vanderbilt, V. C.; Daughtry, C. S.

    2011-12-01

    Discrimination of a few plants scattered among many plants is a goal common to detection of agricultural weeds, invasive plant species and illegal Cannabis clandestinely grown outdoors, the subject of this research. Remote sensing technology provides an automated, computer based, land cover classification capability that holds promise for improving upon the existing approaches to Cannabis detection. In this research, we investigated whether hyperspectral reflectance of recently harvested, fully turgid Cannabis leaves and buds depends upon the concentration of the psychoactive ingredient Tetrahydrocannabinol (THC) that, if present at sufficient concentration, presumably would allow species-specific identification of Cannabis.

  14. The potential and prospects of proximal remote sensing of arthropod pests

    OpenAIRE

    Nansen, C

    2016-01-01

    Bench-top or proximal remote sensing applications are widely used as part of quality control and machine vision systems in commercial operations. In addition, these technologies are becoming increasingly important in insect systematics and studies of insect physiology and pest management. This paper provides a review and discussion of how proximal remote sensing may contribute valuable quantitative information regarding identification of species, assessment of insect responses to insecticides...

  15. Biomass Burning Emissions from Fire Remote Sensing

    Science.gov (United States)

    Ichoku, Charles

    2010-01-01

    Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.

  16. Remote Sensing of Parasitic Nematodes in Plants

    Science.gov (United States)

    Lawrence, Gary W.; King, Roger; Kelley, Amber T.; Vickery, John

    2007-01-01

    A method and apparatus for remote sensing of parasitic nematodes in plants, now undergoing development, is based on measurement of visible and infrared spectral reflectances of fields where the plants are growing. Initial development efforts have been concentrated on detecting reniform nematodes (Rotylenchulus reniformis) in cotton plants, because of the economic importance of cotton crops. The apparatus includes a hand-held spectroradiometer. The readings taken by the radiometer are processed to extract spectral reflectances at sixteen wavelengths between 451 and 949 nm that, taken together, have been found to be indicative of the presence of Rotylenchulus reniformis. The intensities of the spectral reflectances are used to estimate the population density of the nematodes in an area from which readings were taken.

  17. Toward interactive search in remote sensing imagery

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Do [Los Alamos National Laboratory; Harvey, Neal [Los Alamos National Laboratory; Theile, James [Los Alamos National Laboratory

    2010-01-01

    To move from data to information in almost all science and defense applications requires a human-in-the-loop to validate information products, resolve inconsistencies, and account for incomplete and potentially deceptive sources of information. This is a key motivation for visual analytics which aims to develop techniques that complement and empower human users. By contrast, the vast majority of algorithms developed in machine learning aim to replace human users in data exploitation. In this paper we describe a recently introduced machine learning problem, called rare category detection, which may be a better match to visual analytic environments. We describe a new design criteria for this problem, and present comparisons to existing techniques with both synthetic and real-world datasets. We conclude by describing an application in broad-area search of remote sensing imagery.

  18. Remote sensing and characterization of anomalous debris

    Science.gov (United States)

    Sridharan, R.; Beavers, W.; Lambour, R.; Gaposchkin, E. M.; Kansky, J.; Stansbery, E.

    1997-01-01

    The analysis of orbital debris data shows a band of anomalously high debris concentration in the altitude range between 800 and 1000 km. Analysis indicates that the origin is the leaking coolant fluid from nuclear power sources that powered a now defunct Soviet space-based series of ocean surveillance satellites. A project carried out to detect, track and characterize a sample of the anomalous debris is reported. The nature of the size and shape of the sample set, and the possibility of inferring the composition of the droplets were assessed. The technique used to detect, track and characterize the sample set is described and the results of the characterization analysis are presented. It is concluded that the nature of the debris is consistent with leaked Na-K fluid, although this cannot be proved with the remote sensing techniques used.

  19. Remote sensing of balsam fir forest vigor

    Science.gov (United States)

    Luther, Joan E.; Carroll, Allen L.

    1997-12-01

    The potential of remote sensing to monitor indices of forest health was tested by examining the spectral separability of plots with different balsam fir, Abies balsamea (L.) Mill, vigor. Four levels of vigor were achieved with controlled experimental manipulations of forest stands. In order of increasing vigor, the treatments were root pruning, control, thinning and thinning in combination with fertilization. Spectral reflectance of branchlets from each plot were measured under laboratory conditions using a field portable spectroradiometer with a spectral range from 350 - 2500 nm. Branchlets were discriminated using combinations of factor and discriminant analyses techniques with classification accuracies of 91% and 83% for early and late season analyses, respectively. Relationships between spectral reflectance measurements at canopy levels, stand vigor, and foliage quality for an insect herbivore will be analyzed further in support of future large scale monitoring of balsam fir vulnerability to insect disturbance.

  20. Benefits to world agriculture through remote sensing

    Science.gov (United States)

    Buffalano, A. C.; Kochanowski, P.

    1976-01-01

    Remote sensing of agricultural land permits crop classification and mensuration which can lead to improved forecasts of production. This technique is particularly important for nations which do not already have an accurate agricultural reporting system. Better forecasts have important economic effects. International grain traders can make better decisions about when to store, buy, and sell. Farmers can make better planting decisions by taking advantage of production estimates for areas out of phase with their own agricultural calendar. World economic benefits will accrue to both buyers and sellers because of increased food supply and price stabilization. This paper reviews the econometric models used to establish this scenario and estimates the dollar value of benefits for world wheat as 200 million dollars annually for the United States and 300 to 400 million dollars annually for the rest of the world.

  1. Biomass Burning Emissions from Fire Remote Sensing

    Science.gov (United States)

    Ichoku, Charles

    2010-01-01

    Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.

  2. Multisensor image fusion techniques in remote sensing

    Science.gov (United States)

    Ehlers, Manfred

    Current and future remote sensing programs such as Landsat, SPOT, MOS, ERS, JERS, and the space platform's Earth Observing System (Eos) are based on a variety of imaging sensors that will provide timely and repetitive multisensor earth observation data on a global scale. Visible, infrared and microwave images of high spatial and spectral resolution will eventually be available for all parts of the earth. It is essential that efficient processing techniques be developed to cope with the large multisensor data volumes. This paper discusses data fusion techniques that have proved successful for synergistic merging of SPOT HRV, Landsat TM and SIR-B images. It is demonstrated that these techniques can be used to improve rectification accuracies, to depicit greater cartographic detail, and to enhance spatial resolution in multisensor image data sets.

  3. Adaptive Remote Sensing Texture Compression on GPU

    Directory of Open Access Journals (Sweden)

    Xiao-Xia Lu

    2010-11-01

    Full Text Available Considering the properties of remote sensing texture such as strong randomness and weak local correlation, a novel adaptive compression method based on vector quantizer is presented and implemented on GPU. Utilizing the property of Human Visual System (HVS, a new similarity measurement function is designed instead of using Euclid distance. Correlated threshold between blocks can be obtained adaptively according to the property of different images without artificial auxiliary. Furthermore, a self-adaptive threshold adjustment during the compression is designed to improve the reconstruct quality. Experiments show that the method can handle various resolution images adaptively. It can achieve satisfied compression rate and reconstruct quality at the same time. Index is coded to further increase the compression rate. The coding way is designed to guarantee accessing the index randomly too. Furthermore, the compression and decompression process is speed up with the usage of GPU, on account of their parallelism.

  4. Unsupervised classification of remote multispectral sensing data

    Science.gov (United States)

    Su, M. Y.

    1972-01-01

    The new unsupervised classification technique for classifying multispectral remote sensing data which can be either from the multispectral scanner or digitized color-separation aerial photographs consists of two parts: (a) a sequential statistical clustering which is a one-pass sequential variance analysis and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. Applications of the technique using an IBM-7094 computer on multispectral data sets over Purdue's Flight Line C-1 and the Yellowstone National Park test site have been accomplished. Comparisons between the classification maps by the unsupervised technique and the supervised maximum liklihood technique indicate that the classification accuracies are in agreement.

  5. Recent Progresses of Microwave Marine Remote Sensing

    Science.gov (United States)

    Yang, Jingsong; Ren, Lin; Zheng, Gang; Wang, He; He, Shuangyan; Wang, Juan; Li, Xiaohui

    2016-08-01

    It is presented in this paper the recent progresses of Dragon 3 Program (ID. 10412) in the field of microwave marine remote sensing including (1) ocean surface wind fields from full polarization synthetic aperture radars (SAR), (2) joint retrieval of directional ocean wave spectra from SAR and wave spectrometer, (3) error analysis on ENVISAT ASAR wave mode significant wave height (SWH) retrievals using triple collocation model, (4) typhoon observation from SAR and optical sensors, (5) ocean internal wave observation from SAR and optical sensors, (6) ocean eddy observation from SAR and optical sensors, (7) retrieval models of water vapor and wet tropospheric path delay for the HY-2A calibration microwave radiometer, (8) calibration of SWH from HY-2A satellite altimeter.

  6. Remote sensing with laser spectrum radar

    Science.gov (United States)

    Wang, Tianhe; Zhou, Tao; Jia, Xiaodong

    2016-10-01

    The unmanned airborne (UAV) laser spectrum radar has played a leading role in remote sensing because the transmitter and the receiver are together at laser spectrum radar. The advantages of the integrated transceiver laser spectrum radar is that it can be used in the oil and gas pipeline leak detection patrol line which needs the non-contact reflective detection. The UAV laser spectrum radar can patrol the line and specially detect the swept the area are now in no man's land because most of the oil and gas pipelines are in no man's land. It can save labor costs compared to the manned aircraft and ensure the safety of the pilots. The UAV laser spectrum radar can be also applied in the post disaster relief which detects the gas composition before the firefighters entering the scene of the rescue.

  7. Urban environmental health applications of remote sensing

    Science.gov (United States)

    Rush, M.; Goldstein, J.; Hsi, B. P.; Olsen, C. B.

    1974-01-01

    An urban area was studied through the use of the inventory-by-surrogate method rather than by direct interpretation of photographic imagery. Prior uses of remote sensing in urban and public research are examined. The effects of crowding, poor housing conditions, air pollution, and street conditions on public health are considered. Color infrared photography was used to categorize land use features and the grid method was used in photo interpretation analysis. The incidence of shigella and salmonella, hepatitis, meningitis, tuberculosis, myocardial infarction and veneral disease were studied, together with mortality and morbidity rates. Sample census data were randomly collected and validated. The hypothesis that land use and residential quality are associated with and act as an influence upon health and physical well-being was studied and confirmed.

  8. Remote sensing of vegetation at regional scales

    Science.gov (United States)

    Hall, F. G.

    1984-01-01

    Relations between spectroscopy and the concept of inferring surface cover type and condition from measurements of reflected or emitted radiation are examined, taking into account the observation of 'spectral signatures'. It has now become evident that the paradigm which had provided the basis for the spectroscopic identification of materials, is incomplete when applied to the inference of type and condition of materials in a natural environment. It was found that one could not collect a remote sensing signature from an unknown ground cover class at a particular time and place and match that signature with an a priori catalog value to infer the properties of the unknown cover class. The spectroscopy paradigm was, therefore, largely abandoned in favor of decision theoretic approaches. Attention is given to the temporal greenness profile feature space, the crop stage of development estimation using a temporal greenness profile, the temporal greenness profile for crop yield, and applications to regional scales.

  9. A selected bibliography: Remote sensing applications in wildlife management

    Science.gov (United States)

    Carneggie, David M.; Ohlen, Donald O.; Pettinger, Lawrence R.

    1980-01-01

    Citations of 165 selected technical reports, journal articles, and other publications on remote sensing applications for wildlife management are presented in a bibliography. These materials summarize developments in the use of remotely sensed data for wildlife habitat mapping, habitat inventory, habitat evaluation, and wildlife census. The bibliography contains selected citations published between 1947 and 1979.

  10. Estimation of Areal Soil Water Content through Microwave Remote Sensing

    NARCIS (Netherlands)

    Oevelen, van P.J.

    2000-01-01

    In this thesis the use of microwave remote sensing to estimate soil water content is investigated. A general framework is described which is applicable to both passive and active microwave remote sensing of soil water content. The various steps necessary to estimate areal soil water content are disc

  11. Hydrological Application of Remote Sensing: Surface States -- Snow

    Science.gov (United States)

    Hall, Dorothy K.; Kelly, Richard E. J.; Foster, James L.; Chang, Alfred T. C.

    2004-01-01

    Remote sensing research of snow cover has been accomplished for nearly 40 years. The use of visible, near-infrared, active and passive-microwave remote sensing for the analysis of snow cover is reviewed with an emphasis on the work on the last decade.

  12. Remote sensing observation used in offshore wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Pena Diaz, Alfredo; Christiansen, Merete Bruun

    2008-01-01

    Remote sensing observations used in offshore wind energy are described in three parts: ground-based techniques and applications, airborne techniques and applications, and satellite-based techniques and applications. Ground-based remote sensing of winds is relevant, in particular, for new large wind...

  13. Deriving harmonised forest information in Europe using remote sensing methods

    DEFF Research Database (Denmark)

    Seebach, Lucia Maria

    the need for harmonised forest information can be satisfied using remote sensing methods. In conclusion, the study showed that it is possible to derive harmonised forest information of high spatial detail in Europe with remote sensing. The study also highlighted the imperative provision of accuracy...

  14. Potential benefits of remote sensing: Theoretical framework and empirical estimate

    Science.gov (United States)

    Eisgruber, L. M.

    1972-01-01

    A theoretical framwork is outlined for estimating social returns from research and application of remote sensing. The approximate dollar magnitude is given of a particular application of remote sensing, namely estimates of corn production, soybeans, and wheat. Finally, some comments are made on the limitations of this procedure and on the implications of results.

  15. Streamflow modelling by remote sensing: a contribution to digital earth

    NARCIS (Netherlands)

    Tan, M.L.; Latif, A.B.; Pohl, C.; Duan, Z.

    2014-01-01

    Remote sensing contributes valuable information to streamflow estimates. This paper discusses its relevance to the digital earth concept. The authors categorize the role of remote sensing in streamflow modelling and estimation. This paper emphasizes the applications and challenges of satellite-based

  16. Application of remote sensing to agricultural field trials.

    NARCIS (Netherlands)

    Clevers, J.G.P.W.

    1986-01-01

    Remote sensing techniques enable quantitative information about a field trial to be obtained instantaneously and non-destructively. The aim of this study was to identify a method that can reduce inaccuracies in field trial analysis, and to identify how remote sensing can support and/or replace conve

  17. Remote sensing fire and fuels in southern California

    Science.gov (United States)

    Philip Riggan; Lynn Wolden; Bob Tissell; David Weise; J. Coen

    2011-01-01

    Airborne remote sensing at infrared wavelengths has the potential to quantify large-fire properties related to energy release or intensity, residence time, fuel-consumption rate, rate of spread, and soil heating. Remote sensing at a high temporal rate can track fire-line outbreaks and acceleration and spotting ahead of a fire front. Yet infrared imagers and imaging...

  18. Study on spectral structure of quantum remote sensing

    Institute of Scientific and Technical Information of China (English)

    BI; Siwen; HAN; Jixia

    2006-01-01

    A study of the use of fine spectral structure in quantum remote sensing, including an expression, begins with a summary of present-day applications of spectrum remote sensing, which is followed by a theoretical discussion of the influence of electronic spin upon hydrogen-like atom energy levels and the calculation of spectral line in the absence of a circumstance field.

  19. Quantitative Application Study on Remote Sensing of Suspended Sediment

    Institute of Scientific and Technical Information of China (English)

    CHEN Yi-mei; XU Su-dong; LIN Qiang

    2012-01-01

    Quantitative application on remote sensing of suspended sediment is an important aspect of the engineering application of remote sensing study.In this paper,the Xiamen Bay is chosen as the study area.Eleven different phases of the remote sensing data are selected to establish a quantitative remote sensing model to map suspended sediment by using remote sensing images and the quasi-synchronous measured sediment data.Based on empirical statistics developed are the conversion models between instantaneous suspended sediment concentration and tidally-averaged suspended sediment concentration as well as the conversion models between surface layer suspended sediment concentration and the depth-averaged suspended sediment concentration.On this basis,the quantitative application integrated model on remote sensing of suspended sediment is developed.By using this model as well as multi-temporal remote sensing images,multi-year averaged suspended sediment concentration of the Xiamen Bay are predicted.The comparison between model prediction and observed data shows that the multi-year averaged suspended sediment concentration of studied sites as well as the concentration difference of neighboring sites can be well predicted by the remote sensing model with an error rate of 21.61% or less,which can satisfy the engineering requirements of channel deposition calculation.

  20. Remote sensing of sagebrush canopy nitrogen

    Science.gov (United States)

    Mitchell, Jessica J.; Glenn, Nancy F.; Sankey, Temuulen T.; Derryberry, DeWayne R.; Germino, Matthew J.

    2012-01-01

    This paper presents a combination of techniques suitable for remotely sensing foliar Nitrogen (N) in semiarid shrublands – a capability that would significantly improve our limited understanding of vegetation functionality in dryland ecosystems. The ability to estimate foliar N distributions across arid and semi-arid environments could help answer process-driven questions related to topics such as controls on canopy photosynthesis, the influence of N on carbon cycling behavior, nutrient pulse dynamics, and post-fire recovery. Our study determined that further exploration into estimating sagebrush canopy N concentrations from an airborne platform is warranted, despite remote sensing challenges inherent to open canopy systems. Hyperspectral data transformed using standard derivative analysis were capable of quantifying sagebrush canopy N concentrations using partial least squares (PLS) regression with an R2 value of 0.72 and an R2 predicted value of 0.42 (n = 35). Subsetting the dataset to minimize the influence of bare ground (n = 19) increased R2 to 0.95 (R2 predicted = 0.56). Ground-based estimates of canopy N using leaf mass per unit area measurements (LMA) yielded consistently better model fits than ground-based estimates of canopy N using cover and height measurements. The LMA approach is likely a method that could be extended to other semiarid shrublands. Overall, the results of this study are encouraging for future landscape scale N estimates and represent an important step in addressing the confounding influence of bare ground, which we found to be a major influence on predictions of sagebrush canopy N from an airborne platform.

  1. Remote sensing monitoring of the global ozonosphere

    Science.gov (United States)

    Genco, S.; Bortoli, D.; Ravegnani, F.

    2013-10-01

    The use of CFCs, which are the main responsible for the ozone depletion in the upper atmosphere and the formation of the so-called "ozone hole" over Antarctic Region, was phase out by Montreal Protocol (1989). CFCs' concentration is recently reported to decrease in the free atmosphere, but severe episodes of ozone depletion in both Arctic and Antarctic regions are still occurring. Nevertheless the complete recovery of the Ozone layer is expected by about 2050. Recent simulation of perturbations in stratospheric chemistry highlight that circulation, temperature and composition are strictly correlated and they influence the global climate changes. Chemical composition plays an important role in the thermodynamic of the atmosphere, as every gaseous species can absorb and emit in different wavelengths, so their different concentration is responsible for the heating or cooling of the atmosphere. Therefore long-term observations are required to monitor the evolution of the stratospheric ozone layer. Measurements from satellite remote sensing instruments, which provide wide coverage, are supplementary to selective ground-based observations which are usually better calibrated, more stable in time and cover a wider time span. The combination of the data derived from different space-borne instruments calibrated with ground-based sensors is needed to produce homogeneous and consistent long-term data records. These last are required for robust investigations and especially for trend analysis. Here, we perform a review of the major remote-sensing techniques and of the principal datasets available to study the evolution of ozone layer in the past decades and predict future behavio

  2. [Researches of soil normalized difference water index (NDWI) of Yongding River based on multispectral remote sensing technology combined with genetic algorithm].

    Science.gov (United States)

    Mao, Hai-ying; Feng, Zhong-ke; Gong, Yin-xi; Yu, Jing-xin

    2014-06-01

    Basin soil type, moisture content and vegetation cover index are important factors affecting the basin water of Yongding River, using traditional sampling method to investigate soil moisture and the watershed soil type not only consuming a lot of manpower and material resources but also causing experimental error because of the instrument and other objective factors. This article selecting the Yongding River Basin-Beijing section as the study area, using total station instruments to survey field sampling and determination 34 plots, combined with 6 TM image data from 1978 to 2009 to extract soil information and the relationship between region's soil type, soil moisture and remote sensing factors. Using genetic algorithms normalization to select key factors which influenced NDWI, which is based on the green band and near-infrared bands normalized ratio index, usually used to extract water information in the image. In order to accurate screening and factors related to soil moisture, using genetic algorithms preferred characteristics, accelerate the convergence by controlling the number of iterations to filter key factor. Using multiple regression method to establish NDWI inversion model, which analysis the accuracy of model is 0.987, also use the species outside edges tree to meet accuracy test, which arrived that soil available nitrogen, phosphorus and potassium content and longitude correlation is not obvious, but a positive correlation with latitude and soil, inner precision researched 87.6% when the number of iterations to achieve optimal model calculation Maxgen. Models between NDWI and vegetation cover, topography, climate ect, through remote sensing and field survey methods could calculate the NDWI values compared with the traditional values, arrived the average relative error E is -0.021%, suits accord P reached 87.54%. The establishment of this model will be provide better practical and theoretical basis to the research and analysis of the watershed soil

  3. Mineralogy and Astrobiology Detection Using Laser Remote Sensing Instrument

    Science.gov (United States)

    Abedin, M. Nurul; Bradley, Arthur T.; Sharma, Shiv K.; Misra, Anupam K.; Lucey, Paul G.; Mckay, Chistopher P.; Ismail, Syed; Sandford, Stephen P.

    2015-01-01

    A multispectral instrument based on Raman, laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), and a lidar system provides high-fidelity scientific investigations, scientific input, and science operation constraints in the context of planetary field campaigns with the Jupiter Europa Robotic Lander and Mars Sample Return mission opportunities. This instrument conducts scientific investigations analogous to investigations anticipated for missions to Mars and Jupiter's icy moons. This combined multispectral instrument is capable of performing Raman and fluorescence spectroscopy out to a >100 m target distance from the rover system and provides single-wavelength atmospheric profiling over long ranges (>20 km). In this article, we will reveal integrated remote Raman, LIF, and lidar technologies for use in robotic and lander-based planetary remote sensing applications. Discussions are focused on recently developed Raman, LIF, and lidar systems in addition to emphasizing surface water ice, surface and subsurface minerals, organics, biogenic, biomarker identification, atmospheric aerosols and clouds distributions, i.e., near-field atmospheric thin layers detection for next robotic-lander based instruments to measure all the above-mentioned parameters. OCIS codes: (120.0280) Remote sensing and sensors; (130.0250) Optoelectronics; (280.3640) Lidar; (300.2530) Fluorescence, laser-induced; (300.6450) Spectroscopy, Raman; (300.6365) Spectroscopy, laser induced breakdown

  4. Remote Sensing of shallow sea floor for digital earth environment

    Science.gov (United States)

    Yahya, N. N.; Hashim, M.; Ahmad, S.

    2014-02-01

    Understanding the sea floor biodiversity requires spatial information that can be acquired from remote sensing satellite data. Species volume, spatial patterns and species coverage are some of the information that can be derived. Current approaches for mapping sea bottom type have evolved from field observation, visual interpretation from aerial photography, mapping from remote sensing satellite data along with field survey and hydrograhic chart. Remote sensing offers most versatile technique to map sea bottom type up to a certain scale. This paper reviews the technical characteristics of signal and light interference within marine features, space and remote sensing satellite. In addition, related image processing techniques that are applicable to remote sensing satellite data for sea bottom type digital mapping is also presented. The sea bottom type can be differentiated by classification method using appropriate spectral bands of satellite data. In order to verify the existence of particular sea bottom type, field observations need to be carried out with proper technique and equipment.

  5. Strategies for using remotely sensed data in hydrologic models

    Science.gov (United States)

    Peck, E. L.; Keefer, T. N.; Johnson, E. R. (Principal Investigator)

    1981-01-01

    Present and planned remote sensing capabilities were evaluated. The usefulness of six remote sensing capabilities (soil moisture, land cover, impervious area, areal extent of snow cover, areal extent of frozen ground, and water equivalent of the snow cover) with seven hydrologic models (API, CREAMS, NWSRFS, STORM, STANFORD, SSARR, and NWSRFS Snowmelt) were reviewed. The results indicate remote sensing information has only limited value for use with the hydrologic models in their present form. With minor modifications to the models the usefulness would be enhanced. Specific recommendations are made for incorporating snow covered area measurements in the NWSRFS Snowmelt model. Recommendations are also made for incorporating soil moisture measurements in NWSRFS. Suggestions are made for incorporating snow covered area, soil moisture, and others in STORM and SSARR. General characteristics of a hydrologic model needed to make maximum use of remotely sensed data are discussed. Suggested goals for improvements in remote sensing for use in models are also established.

  6. Progress in the application of ocean color remote sensing in China

    Institute of Scientific and Technical Information of China (English)

    PAN Delu; BAI Yan

    2008-01-01

    After many years'endeavor of research and application practice,the ocean color remote sensing in China has been growing into a new technique with valuable practicality from its initiate stage of trial research.With the aim of operational service,several kinds of ocean color remote sensing application systems have been developed and realized the long-term marine environmental monitoring utilizing the real-time or near real-time satellite and airborne remote sensing data.New progresses in the technology and application of ocean color remote sensing in China are described,including the research of key techniques and the development of various application systems.Meanwhile,according to the application status and demand,the prospective development of Chinese ocean color remote sensing is brought forward.With Chinese second ocean color satellite (HY-1B) orbiting on 11 April 2007 and the development of airborne ocean color remote sensing system for Chinese surveillance planes,great strides will take place in Chinese ocean color remote sensing application with the unique function in marine monitoring,resources management and national security,etc.

  7. A review of progress in identifying and characterizing biocrusts using proximal and remote sensing

    Science.gov (United States)

    Rozenstein, Offer; Adamowski, Jan

    2017-05-01

    Biocrusts are critical components of desert ecosystems, significantly modifying the surfaces they occupy. The mixture of biological components and soil particles that form the crust, in conjunction with moisture, determines the biocrusts' spectral signatures. Proximal and remote sensing in complementary spectral regions, namely the reflective region, and the thermal region, have been used to study biocrusts in a non-destructive manner, in the laboratory, in the field, and from space. The objectives of this review paper are to present the spectral characteristics of biocrusts across the optical domain, and to discuss significant developments in the application of proximal and remote sensing for biocrust studies in the last few years. The motivation for using proximal and remote sensing in biocrust studies is discussed. Next, the application of reflectance spectroscopy to the study of biocrusts is presented followed by a review of the emergence of high spectral resolution thermal remote sensing, which facilitates the application of thermal spectroscopy for biocrust studies. Four specific topics at the forefront of proximal and remote sensing of biocrusts are discussed: (1) The use of remote sensing in determining the role of biocrusts in global biogeochemical cycles; (2) Monitoring the inceptive establishment of biocrusts; (3) Identifying and characterizing biocrusts using Longwave infrared spectroscopy; and (4) Diurnal emissivity dynamics of biocrusts in a sand dune environment. The paper concludes by identifying innovative technologies such as low altitude and high resolution imagery that are increasingly used in remote sensing science, and are expected to be used in future biocrusts studies.

  8. 7th IGRSM International Remote Sensing & GIS Conference and Exhibition

    Science.gov (United States)

    Shariff, Abdul Rashid Mohamed

    2014-06-01

    IGRSM This proceedings consists of the peer-reviewed papers from the 7th IGRSM International Conference and Exhibition on Remote Sensing & GIS (IGRSM 2014), which was held on 21-22 April 2014 at Berjaya Times Square Hotel, Kuala Lumpur, Malaysia. The conference, with the theme Geospatial Innovation for Nation Building was aimed at disseminating knowledge, and sharing expertise and experiences in geospatial sciences in all aspects of applications. It also aimed to build linkages between local and international professionals in this field with industries. Highlights of the conference included: Officiation by Y B Datuk Dr Abu Bakar bin Mohamad Diah, Deputy Minister of Minister of Science, Technology & Innovation Keynote presentations by: Associate Professor Dr Francis Harvey, Chair of the Geographic Information Science Commission at the International Geographical Union (IGU) and Director of U-Spatial, University of Minnesota, US: The Next Age of Discovery and a Future in a Post-GIS World. Professor Dr Naoshi Kondo, Bio-Sensing Engineering, University of Kyoto, Japan: Mobile Fruit Grading Machine for Precision Agriculture. Datuk Ir Hj Ahmad Jamalluddin bin Shaaban, Director-General, National Hydraulic Research Institute of Malaysia (NAHRIM), Malaysia: Remote Sensing & GIS in Climate Change Analyses. Oral and poster presentations from 69 speakers, from both Malaysia (35) and abroad (34), covering areas of water resources management, urban sprawl & social mobility, agriculture, land use/cover mapping, infrastructure planning, disaster management, technology trends, environmental monitoring, atmospheric/temperature monitoring, and space applications for the environment. Post-conference workshops on: Space Applications for Environment (SAFE), which was be organised by the Japan Aerospace Exploration Agency (JAXA) Global Positioning System (GPS) Receiver Evaluation Using GPS Simulation, which was be organised by the Science & Technology Research Institute for Defence

  9. An Interactive Web-Based Analysis Framework for Remote Sensing Cloud Computing

    Science.gov (United States)

    Wang, X. Z.; Zhang, H. M.; Zhao, J. H.; Lin, Q. H.; Zhou, Y. C.; Li, J. H.

    2015-07-01

    Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users' private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook. Users can write

  10. Commercial future: making remote sensing a media event

    Science.gov (United States)

    Lurie, Ian

    1999-12-01

    The rapid growth of commercial remote sensing has made high quality digital sensing data widely available -- now, remote sensing must become and remain a strong, commercially viable industry. However, this new industry cannot survive without an educated consumer base. To access markets, remote sensing providers must make their product more accessible, both literally and figuratively: Potential customers must be able to find the data they require, when they require it, and they must understand the utility of the information available to them. The Internet and the World Wide Web offer the perfect medium to educate potential customers and to sell remote sensing data to those customers. A well-designed web presence can provide both an information center and a market place for companies offering their data for sale. A very high potential web-based market for remote sensing lies in media. News agencies, web sites, and a host of other visual media services can use remote sensing data to provide current, relevant information regarding news around the world. This paper will provide a model for promotion and sale of remote sensing data via the Internet.

  11. In Situ/Remote Sensing Integration to Assess Forest Health—A Review

    Directory of Open Access Journals (Sweden)

    Marion Pause

    2016-06-01

    Full Text Available For mapping, quantifying and monitoring regional and global forest health, satellite remote sensing provides fundamental data for the observation of spatial and temporal forest patterns and processes. While new remote-sensing technologies are able to detect forest data in high quality and large quantity, operational applications are still limited by deficits of in situ verification. In situ sampling data as input is required in order to add value to physical imaging remote sensing observations and possibilities to interlink the forest health assessment with biotic and abiotic factors. Numerous methods on how to link remote sensing and in situ data have been presented in the scientific literature using e.g. empirical and physical-based models. In situ data differs in type, quality and quantity between case studies. The irregular subsets of in situ data availability limit the exploitation of available satellite remote sensing data. To achieve a broad implementation of satellite remote sensing data in forest monitoring and management, a standardization of in situ data, workflows and products is essential and necessary for user acceptance. The key focus of the review is a discussion of concept and is designed to bridge gaps of understanding between forestry and remote sensing science community. Methodological approaches for in situ/remote-sensing implementation are organized and evaluated with respect to qualifying for forest monitoring. Research gaps and recommendations for standardization of remote-sensing based products are discussed. Concluding the importance of outstanding organizational work to provide a legally accepted framework for new information products in forestry are highlighted.

  12. 基于遥感技术的陕西省渭河流域污染演变研究%Research on contamination evolution in Weihe River valley in Shaanxi province based on remote sensing technology

    Institute of Scientific and Technical Information of China (English)

    李思; 崔晨风; 梁宁

    2013-01-01

    Water pollution is one of the great issues in todays society. The paper analyzed the application of remote sensing technology especially with NDVI and water quality change trend in Weihe River valley in Shaanxi Province. The result indicated that water quality is one of the important factors which influence the growth of plants. The extremum of vegetation index went down in Weihe River valley, witch reflected that water quality turned into integral downtrend from 1998 to 2008 and pollution is more serious on high levels. The paper confirmed the feasibility of remote sensing technology to conduct water quality monitoring.%水污染是当今社会面临的一个重大问题.论文应用遥感技术,以NDVI为指标,对陕西省渭河流域水质变化趋势进行了分析.结果表明:水质是影响植物生长的重要的因素之一.渭河流域的植被指数极值下降,反映出渭河流域的水质从1998年到2008年整体呈下降趋势,污染日趋严重,且污染程度居高不下.证实了遥感技术进行水质监测的可行性.

  13. Remote Sensing Terminology in a Global and Knowledge-Based World

    Science.gov (United States)

    Kancheva, Rumiana

    The paper is devoted to terminology issues related to all aspects of remote sensing research and applications. Terminology is the basis for a better understanding among people. It is crucial to keep up with the latest developments and novelties of the terminology in advanced technology fields such as aerospace science and industry. This is especially true in remote sensing and geoinformatics which develop rapidly and have ever extending applications in various domains of science and human activities. Remote sensing terminology issues are directly relevant to the contemporary worldwide policies on information accessibility, dissemination and utilization of research results in support of solutions to global environmental challenges and sustainable development goals. Remote sensing and spatial information technologies are an integral part of the international strategies for cooperation in scientific, research and application areas with a particular accent on environmental monitoring, ecological problems natural resources management, climate modeling, weather forecasts, disaster mitigation and many others to which remote sensing data can be put. Remote sensing researchers, professionals, students and decision makers of different counties and nationalities should fully understand, interpret and translate into their native language any term, definition or acronym found in papers, books, proceedings, specifications, documentation, and etc. The importance of the correct use, precise definition and unification of remote sensing terms refers not only to people working in this field but also to experts in a variety of disciplines who handle remote sensing data and information products. In this paper, we draw the attention on the specifics, peculiarities and recent needs of compiling specialized dictionaries in the area of remote sensing focusing on Earth observations and the integration of remote sensing with other geoinformation technologies such as photogrammetry, geodesy

  14. Inland and coastal water environment remote sensing monitoring system: rapid construction and application

    Science.gov (United States)

    Xu, Hua; Gu, Xingfa; Yin, Qiu; Li, Li; Chen, Qiang; Ren, Yuhuan; Chen, Hong; Liu, Xudong; Zhang, Juan

    2009-10-01

    This paper aims at bridging the gap between the academic research and practical application in water environment monitoring by remote sensing. It mainly focuses on how to rapidly construct the Inland and coastal Water Environment Remote Sensing Monitoring System (IWERSMS) in a software perspective. In this paper, the remote sensed data processing framework, dataflow and product levels are designed based on the retrieval algorithms of water quality parameters. The prototype is four-tier architecture and modules are designed elaborately. The paper subsequently analyzes the strategy and key technology of conglutinating hybrid components, adopting semantic metafiles and tiling image during rapid construction of prototype. Finally, the paper introduces the successful application to 2008 Qingdao enteromorpha prolifra disaster emergency monitoring in Olympics Sailing Match fields. The solution can also fit other domains in remote sensing and especially it provides a clue for researchers who are in an attempt to establish a prototype to apply research fruits to practical applications.

  15. Technical foundation research on high resolution remote sensing system of China's coastal zone

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaomei; LAN Rongqin; DU Yunyan; CHEN Xiufa

    2004-01-01

    China's coastal zone is a region with a highly developed economy that contrasts clearly with the slow paced regular investigation on its natural environment,which cannot keep pace with the requirement of economic development and modem management. Laying a theoretical foundation for the modem management of China's costal zone is aimed at.This research focuses on the following processing and analyzing technologies for coastal zone high-resolution remote sensing data: organization and management of large amounts of high-resolution remote sensing data, quick and precise spatial positioning system,algorithms for image fusion in feature level and coastal zone feature extraction. They will form a technical foundation of the system. And, ifcombined with other research results such as coastal zone remote sensing classification system and its mapping subsystem, an advanced technical frame for remote sensing investigation of coastal zone resource will be constructed.

  16. The present status of remote sensing in the United Nations, 8 April 1977

    Science.gov (United States)

    Galloway, E.

    1977-01-01

    Problems arising from remote sensing of the earth by satellites have been the subject of indepth research and analysis by the United Nations. Every aspect of this multidisciplinary subject has been explored in more than 100 reports and papers published as UN documents dealing with all the implications of remote sensing: scientific, technological, institutional, political, economic, cultural, and legal. National, regional and international situations have been analyzed, and the General Assembly has passed resolutions requesting that the Committee on the Peaceful Uses of Outer Space give a high priority to remote sensing. The identification and analysis of issues has been going on for several years, the objective being international agreement on general principles to guide nations in the conduct of their remote sensing activities.

  17. Remote Oxygen Sensing by Ionospheric Excitation (ROSIE

    Directory of Open Access Journals (Sweden)

    K. S. Kalogerakis

    2009-05-01

    Full Text Available The principal optical observable emission resulting from ionospheric modification (IM experiments is the atomic oxygen red line at 630 nm, originating from the O(1D–3P transition. Because the O(1D atom has a long radiative lifetime, it is sensitive to collisional relaxation and an observed decay faster than the radiative rate can be attributed to collisions with atmospheric species. In contrast to the common practice of ignoring O-atoms in interpreting such observations in the past, recent experimental studies on the relaxation of O(1D by O(3P have revealed the dominant role of oxygen atoms in controlling the lifetime of O(1D at altitudes relevant to IM experiments. Using the most up-to-date rate coefficients for collisional relaxation of O(1D by O, N2, and O2, it is now possible to analyze the red line decays observed in IM experiments and thus probe the local ionospheric composition. In this manner, we can demonstrate an approach to remotely detect O-atoms at the altitudes relevant to IM experiments, which we call remote oxygen sensing by ionospheric excitation (ROSIE. The results can be compared with atmospheric models and used to study the temporal, seasonal, altitude and spatial variation of ionospheric O-atom density in the vicinity of heating facilities. We discuss the relevance to atmospheric observations and ionospheric heating experiments and report an analysis of representative IM data.

  18. Retrieval of Remote Sensing Images Using Colour and Texture Attribute

    CERN Document Server

    Maheswary, Priti

    2009-01-01

    Grouping images into semantically meaningful categories using low-level visual feature is a challenging and important problem in content-based image retrieval. The groupings can be used to build effective indices for an image database. Digital image analysis techniques are being used widely in remote sensing assuming that each terrain surface category is characterized with spectral signature observed by remote sensors. Even with the remote sensing images of IRS data, integration of spatial information is expected to assist and to improve the image analysis of remote sensing data. In this paper we present a satellite image retrieval based on a mixture of old fashioned ideas and state of the art learning tools. We have developed a methodology to classify remote sensing images using HSV color features and Haar wavelet texture features and then grouping them on the basis of particular threshold value. The experimental results indicate that the use of color and texture feature extraction is very useful for image r...

  19. Computational Ghost Imaging for Remote Sensing

    Science.gov (United States)

    Erkmen, Baris I.

    2012-01-01

    This work relates to the generic problem of remote active imaging; that is, a source illuminates a target of interest and a receiver collects the scattered light off the target to obtain an image. Conventional imaging systems consist of an imaging lens and a high-resolution detector array [e.g., a CCD (charge coupled device) array] to register the image. However, conventional imaging systems for remote sensing require high-quality optics and need to support large detector arrays and associated electronics. This results in suboptimal size, weight, and power consumption. Computational ghost imaging (CGI) is a computational alternative to this traditional imaging concept that has a very simple receiver structure. In CGI, the transmitter illuminates the target with a modulated light source. A single-pixel (bucket) detector collects the scattered light. Then, via computation (i.e., postprocessing), the receiver can reconstruct the image using the knowledge of the modulation that was projected onto the target by the transmitter. This way, one can construct a very simple receiver that, in principle, requires no lens to image a target. Ghost imaging is a transverse imaging modality that has been receiving much attention owing to a rich interconnection of novel physical characteristics and novel signal processing algorithms suitable for active computational imaging. The original ghost imaging experiments consisted of two correlated optical beams traversing distinct paths and impinging on two spatially-separated photodetectors: one beam interacts with the target and then illuminates on a single-pixel (bucket) detector that provides no spatial resolution, whereas the other beam traverses an independent path and impinges on a high-resolution camera without any interaction with the target. The term ghost imaging was coined soon after the initial experiments were reported, to emphasize the fact that by cross-correlating two photocurrents, one generates an image of the target. In

  20. Remote Sensing of Ionosphere by IONOLAB Group

    Science.gov (United States)

    Arikan, Feza

    2016-07-01

    Ionosphere is a temporally and spatially varying, dispersive, anisotropic and inhomogeneous medium that is characterized primarily by its electron density distribution. Electron density is a complex function of spatial and temporal variations of solar, geomagnetic, and seismic activities. Ionosphere is the main source of error for navigation and positioning systems and satellite communication. Therefore, characterization and constant monitoring of variability of the ionosphere is of utmost importance for the performance improvement of these systems. Since ionospheric electron density is not a directly measurable quantity, an important derivable parameter is the Total Electron Content (TEC), which is used widely to characterize the ionosphere. TEC is proportional to the total number of electrons on a line crossing the atmosphere. IONOLAB is a research group is formed by Hacettepe University, Bilkent University and Kastamonu University, Turkey gathered to handle the challenges of the ionosphere using state-of-the-art remote sensing and signal processing techniques. IONOLAB group provides unique space weather services of IONOLAB-TEC, International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model based IRI-Plas-MAP, IRI-Plas-STEC and Online IRI-Plas-2015 model at www.ionolab.org. IONOLAB group has been working for imaging and monitoring of ionospheric structure for the last 15 years. TEC is estimated from dual frequency GPS receivers as IONOLAB-TEC using IONOLAB-BIAS. For high spatio-temporal resolution 2-D imaging or mapping, IONOLAB-MAP algorithm is developed that uses automated Universal Kriging or Ordinary Kriging in which the experimental semivariogram is fitted to Matern Function with Particle Swarm Optimization (PSO). For 3-D imaging of ionosphere and 1-D vertical profiles of electron density, state-of-the-art IRI-Plas model based IONOLAB-CIT algorithm is developed for regional reconstruction that employs Kalman Filters for state

  1. Discrimination of wetland vegetation using close-range remote sensing

    Science.gov (United States)

    Demarey, Deborah Marie

    The protection and conservation of sensitive environmental habitats has, in recent years, focused public attention on wetland ecosystems. Traditional methods of wetland assessment have been augmented through the use of remote sensing technologies. Remote sensing offers acquisition of copious amounts of data in short periods of time over land areas that might otherwise be inaccessible. The problem, however, from a remote sensing standpoint is that verification of wetland composition relies on accurate ground truth inventories. The establishment of a library containing unique spectral responses for obligates and facultative wetland plant species would provide baseline reference data for accurate assessment of wetland condition. This research focused on the spectral discrimination of five species of wetland plants that commonly coexist in temperate North American non-tidal wetlands. A specially designed wetland was constructed to closely approximate natural conditions, and was planted with monospecific stands of Typha angustifolia L., Nymphaea tuberosa Paine, Sparganium eurycarpum Engelm., Scirpus acutus Muhl., and Sagittaria latifolia Willd. Spectral data from multiple quadrats were collected through the use of a hyperspectral spectroradiometer operating at close range. The degree of similarity and difference within each monospecific stand was evaluated as was the difference and similarity among the species on each of nine dates throughout a single growing season. If identification of a unique spectral response ("signature") was possible, the degree of variation within the stand must not exceed variation among the stands. A temporal investigation compared plant life cycles and physiology to spectral responses. Patterns of spectral variation clearly reflect seasonal lifecycle changes from juvenility through senescence, but do not exhibit spectral integrity that would consistently permit discrimination. Chlorophyll assays were compared to hyperspectral response to

  2. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing.

    Science.gov (United States)

    Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing

    2017-06-12

    Remote sensing technologies have been widely applied in urban environments' monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the "salt and pepper" phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive.

  3. Field-based Digital Mapping of the November 3, 2002 Susitna Glacier Fault Rupture - Integrating remotely sensed data, GIS, and photo-linking technologies

    Science.gov (United States)

    Staft, L. A.; Craw, P. A.

    2003-12-01

    In July 2003, the U.S. Geological Survey and the Alaska Division of Geological & Geophysical Surveys (DGGS) conducted field studies on the Susitna Glacier Fault (SGF), which ruptured on November 2002 during the M 7.9 Denali fault earthquake. The DGGS assumed responsibility for Geographic Information System (GIS) and data management, integrating remotely sensed imagery, GPS data, GIS, and photo-linking software to aid in planning and documentation of fieldwork. Pre-field preparation included acquisition of over 150, 1:6,000-scale true-color aerial photographs taken shortly after the SGF rupture, 1:63,360-scale color-infrared (CIR) 1980 aerial photographs, and digital geographic information including a 15-minute Digital Elevation Model (DEM), 1:63,360-scale Digital Raster Graphics (DRG), and LandSat 7 satellite imagery. Using Orthomapper software, we orthorectified and mosaiced seven CIRs, creating a georeferenced, digital photo base of the study area. We used this base to reference the 1:6,000-scale aerial photography, to view locations of field sites downloaded from GPS, and to locate linked digital photographs that were taken in the field. Photos were linked using GPS-Photo Link software which "links" digital photographs to GPS data by correlating time stamps from the GPS track log or waypoint file to those of the digital photos, using the correlated point data to create a photo location ESRI shape file. When this file is opened in ArcMap or ArcView with the GPS-Photo Link utility enabled, a thumbnail image of the linked photo appears when the cursor is over the photo location. Viewing photographed features and scarp-profile locations in GIS allowed us to evaluate data coverage of the rupture daily. Using remotely sensed imagery in the field with GIS gave us the versatility to display data on a variety of bases, including topographic maps, air photos, and satellite imagery, during fieldwork. In the field, we downloaded, processed, and reviewed data as it was

  4. Using remote sensing to research Beijing wetlands dynamics

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Wenji; GONG; Zhaoning; GONG; Huili; LI; Xiaojuan; ZHANG; Songmei; LI; Jing

    2006-01-01

    In Beijing, where wetlands are important to municipal freshwater conservation and biodiversity retention, three different types of wetlands were identified: riverside wetlands, wetlands surrounding lakes and reservoirs, and wetlands in municipal parks.Remote sensing technology was applied in combination with field investigations to monitor and analyze the changes in these wetlands, and a combination of fusion technologies,Landsat TM/ETM+ and IKONOS imaging, was used to investigate and map them. This study indicates that not only have wetland areas been reduced by half, but also their ecological environments have been degraded because of rapid economic development and population increase. Suggestions based on this research are made to reconstruct the ecological environment of the wetlands and return them to their previous state.

  5. Advanced Multispectral Scanner (AMS) study. [aircraft remote sensing

    Science.gov (United States)

    1978-01-01

    The status of aircraft multispectral scanner technology was accessed in order to develop preliminary design specifications for an advanced instrument to be used for remote sensing data collection by aircraft in the 1980 time frame. The system designed provides a no-moving parts multispectral scanning capability through the exploitation of linear array charge coupled device technology and advanced electronic signal processing techniques. Major advantages include: 10:1 V/H rate capability; 120 deg FOV at V/H = 0.25 rad/sec; 1 to 2 rad resolution; high sensitivity; large dynamic range capability; geometric fidelity; roll compensation; modularity; long life; and 24 channel data acquisition capability. The field flattening techniques of the optical design allow wide field view to be achieved at fast f/nos for both the long and short wavelength regions. The digital signal averaging technique permits maximization of signal to noise performance over the entire V/H rate range.

  6. Quantitative interpretation of Great Lakes remote sensing data

    Science.gov (United States)

    Shook, D. F.; Salzman, J.; Svehla, R. A.; Gedney, R. T.

    1980-01-01

    The paper discusses the quantitative interpretation of Great Lakes remote sensing water quality data. Remote sensing using color information must take into account (1) the existence of many different organic and inorganic species throughout the Great Lakes, (2) the occurrence of a mixture of species in most locations, and (3) spatial variations in types and concentration of species. The radiative transfer model provides a potential method for an orderly analysis of remote sensing data and a physical basis for developing quantitative algorithms. Predictions and field measurements of volume reflectances are presented which show the advantage of using a radiative transfer model. Spectral absorptance and backscattering coefficients for two inorganic sediments are reported.

  7. Remote sensing of rainfall for debris-flow hazard assessment

    Science.gov (United States)

    Wieczorek, G.F.; Coe, J.A.; Godt, J.W.; ,

    2003-01-01

    Recent advances in remote sensing of rainfall provide more detailed temporal and spatial data on rainfall distribution. Four case studies of abundant debris flows over relatively small areas triggered during intense rainstorms are examined noting the potential for using remotely sensed rainfall data for landslide hazard analysis. Three examples with rainfall estimates from National Weather Service Doppler radar and one example with rainfall estimates from infrared imagery from a National Oceanic and Atmospheric Administration satellite are compared with ground-based measurements of rainfall and with landslide distribution. The advantages and limitations of using remote sensing of rainfall for landslide hazard analysis are discussed. ?? 2003 Millpress,.

  8. A catalog system for remote-sensing data

    Science.gov (United States)

    Singh, R. S.; Scherz, J. P.

    1974-01-01

    The Practical System for Cataloging, Indexing, and Retrieval of Remote Sensing Data developed by the Interdisciplinary Remote Sensing Group at the University of Wisconsin consists of a card catalog, a site-index-map, a site-index-file, an industry-index-file, and a project-index-file. The system is designed for retrieval of remote-sensing data which include imagery, magnetic tapes, flight logs, maps, ground-truth reports, and research reports containing raw data. It can be operated by conventional library methods, but provision has been made for digitizing the system for computer retrieval.

  9. Geostatistical Solutions for Downscaling Remotely Sensed Land Surface Temperature

    Science.gov (United States)

    Wang, Q.; Rodriguez-Galiano, V.; Atkinson, P. M.

    2017-09-01

    Remotely sensed land surface temperature (LST) downscaling is an important issue in remote sensing. Geostatistical methods have shown their applicability in downscaling multi/hyperspectral images. In this paper, four geostatistical solutions, including regression kriging (RK), downscaling cokriging (DSCK), kriging with external drift (KED) and area-to-point regression kriging (ATPRK), are applied for downscaling remotely sensed LST. Their differences are analyzed theoretically and the performances are compared experimentally using a Landsat 7 ETM+ dataset. They are also compared to the classical TsHARP method.

  10. Remote sensing models and methods for image processing

    CERN Document Server

    Schowengerdt, Robert A

    1997-01-01

    This book is a completely updated, greatly expanded version of the previously successful volume by the author. The Second Edition includes new results and data, and discusses a unified framework and rationale for designing and evaluating image processing algorithms.Written from the viewpoint that image processing supports remote sensing science, this book describes physical models for remote sensing phenomenology and sensors and how they contribute to models for remote-sensing data. The text then presents image processing techniques and interprets them in terms of these models. Spectral, s

  11. Anomaly Detection from Hyperspectral Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Qiandong Guo

    2016-12-01

    Full Text Available Hyperspectral remote sensing imagery contains much more information in the spectral domain than does multispectral imagery. The consecutive and abundant spectral signals provide a great potential for classification and anomaly detection. In this study, two real hyperspectral data sets were used for anomaly detection. One data set was an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS data covering the post-attack World Trade Center (WTC and anomalies are fire spots. The other data set called SpecTIR contained fabric panels as anomalies compared to their background. Existing anomaly detection algorithms including the Reed–Xiaoli detector (RXD, the blocked adaptive computation efficient outlier nominator (BACON, the random selection based anomaly detector (RSAD, the weighted-RXD (W-RXD, and the probabilistic anomaly detector (PAD are reviewed here. The RXD generally sets strict assumptions to the background, which cannot be met in many scenarios, while BACON, RSAD, and W-RXD employ strategies to optimize the estimation of background information. The PAD firstly estimates both background information and anomaly information and then uses the information to conduct anomaly detection. Here, the BACON, RSAD, W-RXD, and PAD outperformed the RXD in terms of detection accuracy, and W-RXD and PAD required less time than BACON and RSAD.

  12. Visibility assesment using remote sensing data

    Science.gov (United States)

    Toanca, Florica; Vasilescu, Jeni; Nicolae, Doina; Stefan, Sabina

    2016-04-01

    Severe weather events like fog have a high impact on all kinds of traffic operations. During the last decade was proven the capability of remote sensing equipments to detect fog cases in terms of duration, occurrence and dissipation. Therefore, in this study the data from Väïsälä CL31 ceilometer and Raman Depolarization Lidar installed at Magurele, Romania (44.35 N, 26.03 E) were used. The backscatter coefficient from Ceilometer and extinction coefficient and different lidar ratios (LR) values from Lidar were used in order to determine horizontal visibility during the fog events in Magurele area. Ceilometer backscatter coefficient profiles are obtained with a time resolution of 16 s and up to 7.5 km altitude. . A neural network algorithm was used to calculate the lidar ratio values for different aerosol types and also for different relative humidity. Thus, for continental aerosol the LR value is 58srad, for continental polluted is 60srad and for smoke LR is 55srad. The average visibility computed for radiation fog , dominant type (57 cases) occurring in Magurele, during 2012-2014 was 50m. An important result is that the dependence of horizontal visibility for radiation fog at Magurele on LR is insignificant. This means that radiation, meteorological and geographical factors influence fog generation more much than aerosol type.

  13. Assessment of Watershed Drought Using Remote Sensing

    Science.gov (United States)

    Chataut, S.; Piechota, T.

    2005-12-01

    This paper focuses on drought assessment of the Upper Colorado River Basin (UCRB) using remote sensing. Lee's Ferry discharge data for Colorado river in the UCRB and the various Palmer Drought Indices (PDI) such as Palmer Hydrological Drought Indices (PHDI), Palmer Drought Severity Index (PDSI), and Palmer Z Index (ZINDX) for the five climatic divisions of the UCRB for last 100 years will be analyzed to find out the best climatic division in the UCRB for carrying out the further analysis between the Normalized Difference Vegetation Index (NDVI) obtained from 5 km resolution Advanced Very High Radiometric Radar (AVHRR) data and the various PDI. The multivariate statistical technique called rotated principal component analysis will be carried out in the time series of the NDVI data in order to avoid multicollinearity and to extract the component that significantly explains the variance in the dataset. The corresponding significant principal scores will be correlated with the PDI to derive relationship between the NDVI and PDI. Preliminary analysis has shown that there is significant correlation between the NDVI and the various PDI, which implies that NDVI could be used as an important data source to detect and monitor the drought condition in the UCRB.

  14. Remote sensing applied to forest resources

    Science.gov (United States)

    Hernandezfilho, P. (Principal Investigator)

    1984-01-01

    The development of methodologies to classify reforested areas using remotely sensed data is discussed. A preliminary study was carried out in northeast of the Sao Paulo State in 1978. The reforested areas of Pinus spp and Eucalyptus spp were based on the spectral, spatial and temporal characteristics fo LANDSAT imagery. Afterwards, a more detailed study was carried out in the Mato Grosso do Sul State. The reforested areas were mapped in functions of the age (from: 0 to 1 year, 1 to 2 years, 2 to 3 years, 3 to 4 years, 4 to 5 years and 5 to 6 years) and of the heterogeneity stand (from: 0 to 20%, 20 to 40%, 40 to 60%, 60 to 80% and 80 to 100%). The relative differences between the artificial forest areas, estimated from LANDSAT data and ground information, varied from -8.72 to +9.49%. The estimation of forest volume through a multistage sampling technique, with probability proportional to size, is also discussed.

  15. [Progress in inversion of vegetation nitrogen concentration by hyperspectral remote sensing].

    Science.gov (United States)

    Wang, Li-Wen; Wei, Ya-Xing

    2013-10-01

    Nitrogen is the necessary element in life activity of vegetation, which takes important function in biosynthesis of protein, nucleic acid, chlorophyll, and enzyme etc, and plays a key role in vegetation photosynthesis. The technology about inversion of vegetation nitrogen concentration by hyperspectral remote sensing has been the research hotspot since the 70s of last century. With the development of hyperspectral remote sensing technology in recent years, the advantage of spectral bands subdivision in a certain spectral region provides the powerful technology measure for correlative spectral characteristic research on vegetation nitrogen. In the present paper, combined with the newest research production about monitoring vegetation nitrogen concentration by hyperspectral remote sensing published in main geography science literature in recent several years, the principle and correlated problem about monitoring vegetation nitrogen concentration by hyperspectral remote sensing were introduced. From four aspects including vegetation nitrogen spectral index, vegetation nitrogen content inversion based on chlorophyll index, regression model, and eliminating influence factors to inversion of vegetation nitrogen concentration, main technology methods about inversion of vegetation nitrogen concentration by hyperspectral remote sensing were detailedly introduced. Correlative research conclusions were summarized and analyzed, and research development trend was discussed.

  16. An operational satellite remote sensing system for ocean fishery

    Institute of Scientific and Technical Information of China (English)

    MAOZhihua; ZHUQiankun; PANDelu

    2004-01-01

    Ocean environmental information is very important to supporting the fishermen in fishing and satellite remote sensing technology can provide it in large scale and in near real-time. Ocean fishery locations are always far away beyond the coverage of the satellite data received by a land-based satellite receiving station. A nice idea is to install the satellite ground station on a fishing boat. When the boat moves to a fishery location, the station can receive the satellite data to cover the fishery areas. One satellite remote sensing system was once installed in a fishing boat and served fishing in the North Pacific fishery areas when the boat stayed there. The system can provide some oceanic environmental charts such as sea surface temperature (SST) and relevant derived products which are in most popular use in fishery industry. The accuracy of SST is the most important and affects the performance of the operational system, which is found to be dissatisfactory. Many factors affect the accuracy of SST and it is difficult to increase the accuracy by SST retrieval algorithms and clouds detection technology. A new technology of temperature error control is developed to detect the abnormity of satellite-measured SST. The performance of the technology is evaluated to change the temperature bias from-3.04 to 0.05 ℃ and the root mean square (RMS) from 5.71 to 1.75 ℃. It is suitable for employing in an operational satellite-measured SST system and improves the performance of the system in fishery applications. The system has been running for 3 a and proved to be very useful in fishing. It can help to locate the candidates of the fishery areas and monitor the typhoon which is very dangerous to the safety of fishing boats.

  17. Research Progress on Urban Heat Island Based on Remote Sensing Technology%城市热岛遥感研究进展

    Institute of Scientific and Technical Information of China (English)

    周志民

    2011-01-01

    The research status of the urban heat island at home and abroad was summarized. The causes and the harm of urban heat island, urban heat island remote sensing satellite information source status and information processing methods, urban heat island effect and urbanization relations were introduced. The existent problems about the existing data sources, land surface temperature retrieval accuracy and the relationship between the urban heat island research and geography were pointed out and these were analyzed and prospected.%对国内外城市热岛研究现状进行了总结,介绍了城市热岛产生的原因与危害、城市热岛遥感卫星信息源现状及信息处理方法和城市热岛效应与城市化关系研究,指出了目前数据源、陆地表面温度反演精度和城市热岛效应的地学关系研究等问题,并进行了分析与展望.

  18. Monitoring Coastline Change Using Remote Sensing and GIS Technology: A case study of Acıgöl Lake, Turkey

    Science.gov (United States)

    Temiz, Fatih; Savaş Durduran, S.

    2016-10-01

    Acıgöl is a lake in Turkey's inner Aegean Region, in an endorheic basin at the junction between Denizli Province, Afyonkarahisar Province and Burdur Province. The lake is notable for its sodium sulphate reserves extensively used in the industry and Turkey's largest commercial sodium sulphate production operations are based here. Coastline changes caused by sediment erosion and accretion have important consequences for coastal ecosystems and coastal communities. Coastlines are the natural borders which separate the water and land. Change of coastline has great importance, therefore it is needed to detect this change and take precautions. In this study, for the purpose of detecting the coastline change of Acıgöl Lake, multispectral Landsat images from the years of 1985, 2000, 2015 were used. Coastline belonging to these years is drawn numerically and coastline change belonging to these years in Acıgöl Lake is provided with the help of Geographic Information Systems and Remote Sensing method and software. After the analysis of the changes, it was determined that there was a significant decline in Acıgöl lake. At the end of the study, significant coastline movements (in some parts more than 200 m) were detected for a 30-year period.

  19. Digital methods and remote sensing in archaeology archaeology in the age of sensing

    CERN Document Server

    Campana, Stefano

    2016-01-01

    This volume debuts the new scope of Remote Sensing, which was first defined as the analysis of data collected by sensors that were not in physical contact with the objects under investigation (using cameras, scanners, and radar systems operating from spaceborne or airborne platforms). A wider characterization is now possible: Remote Sensing can be any non-destructive approach to viewing the buried and nominally invisible evidence of past activity. Spaceborne and airborne sensors, now supplemented by laser scanning, are united using ground-based geophysical instruments and undersea remote sensing, as well as other non-invasive techniques such as surface collection or field-walking survey. Now, any method that enables observation of evidence on or beneath the surface of the earth, without impact on the surviving stratigraphy, is legitimately within the realm of Remote Sensing. The new interfaces and senses engaged in Remote Sensing appear throughout the book. On a philosophical level, this is about the landscap...

  20. Making Sense of Mobile Technology

    OpenAIRE

    David Pauleen; John Campbell; Brian Harmer; Ali Intezari

    2015-01-01

    Mobile technologies have facilitated a radical shift in work and private life. In this article, we seek to better understand how individual mobile technology users have made sense of these changes and adapted to them. We have used narrative enquiry and sensemaking to collect and analyze the data. The findings show that mobile technology use blurs the boundaries between work and private life, making traditional time and...

  1. Linking global water demand and supply using remote sensing products

    Science.gov (United States)

    Poortinga, A.; Thanh Ha, L.; Phuong Vu, N.; Saah, D. S.; Cutter, P. G.; Troy, A.; Ganz, D.

    2016-12-01

    Due to increasing pressures on water resources and changing population dynamics, there is a need to monitor regional water resource availability in a spatially and temporally explicit manner. However, for many parts of the world, there is insufficient data to quantify stream flow in river basins or potential ground water infiltration rates. Often water resource managers use sophistic hydrology models that require complex data sets to generate estimations, but the results of these efforts lack confidence due to the absence of accurate input data or validation methods. Global open access remote sensing derived data products offer exciting new opportunities to study spatial-temporal water dynamics in a way directly relevant to managers. We present the results of an elegant pixel-based water balance formulation to partition rainfall into evapotranspiration, surface water runoff and potential ground water. The method provides a rapid, accurate, and cost-effective solution to mapping water resource availability in basins with no gauges or monitoring infrastructure. The presented method provides important new insights into the spatial and temporal water supply and demand dynamics. The preliminary result of an application of the model build for the Mekong region will be presented, where quantitative water supply estimations are linked with demand patterns. It will be demonstrated that global freely available remote sensing products can be used to produce significant and operational results for water resource managers. We demonstrate that space based technologies and their applications play a key role to optimize the planning, implementation, and monitoring of projects.

  2. Study and Application of the Technology of Remote Sensing Image Recognition and Detection Based on Machine Learning%基于机器学习的遥感图像识别检测技术研究及应用

    Institute of Scientific and Technical Information of China (English)

    刘建闽; 黄帆; 戴军

    2015-01-01

    基于统计的传统无监督机器学习识别分类技术虽经持续改进对于高分遥感图像效果仍不佳,深度学习具备仿人类神经网络多层抽象能力和无监督自学习特点,具有从大量无标签高光谱遥感数据中自主学习和构建其特征的能力,再结合常用分类算法进行识别分类,比传统方法具有相对更高的准确率。%Although the traditional unsupervised machine learning recognition classification technology based on statistics has been improved continuously, the effect is still poor for high resolution remote sensing images, deep learning has the ability to imitate the multi-level ab-straction and unsupervised self-learning features of the human neural network, and has the abil-ity of autonomous learning and constructing its characteristics from a large number of non-label hyper-spectral remote sensing data. Combined with common classification algorithm for classifi-cation, it has a relatively higher accuracy than that of the traditional method.

  3. Next-generation pushbroom filter radiometers for remote sensing

    Science.gov (United States)

    Tarde, Richard W.; Dittman, Michael G.; Kvaran, Geir E.

    2012-09-01

    Individual focal plane size, yield, and quality continue to improve, as does the technology required to combine these into large tiled formats. As a result, next-generation pushbroom imagers are replacing traditional scanning technologies in remote sensing applications. Pushbroom architecture has inherently better radiometric sensitivity and significantly reduced payload mass, power, and volume than previous generation scanning technologies. However, the architecture creates challenges achieving the required radiometric accuracy performance. Achieving good radiometric accuracy, including image spectral and spatial uniformity, requires creative optical design, high quality focal planes and filters, careful consideration of on-board calibration sources, and state-of-the-art ground test facilities. Ball Aerospace built the Landsat Data Continuity Mission (LDCM) next-generation Operational Landsat Imager (OLI) payload. Scheduled to launch in 2013, OLI provides imagery consistent with the historical Landsat spectral, spatial, radiometric, and geometric data record and completes the generational technology upgrade from the Enhanced Thematic Mapper (ETM+) whiskbroom technology to modern pushbroom technology afforded by advanced focal planes. We explain how Ball's capabilities allowed producing the innovative next-generational OLI pushbroom filter radiometer that meets challenging radiometric accuracy or calibration requirements. OLI will improve the multi-decadal land surface observation dataset dating back to the 1972 launch of ERTS-1 or Landsat 1.

  4. Gully Erosion Mapping Using Remote Sensing Techniques in the ...

    African Journals Online (AJOL)

    NdifelaniM

    Gully Features Extraction Using Remote Sensing Techniques. Ndifelani .... catchment area and NDVI as threshold and the accuracy indicated a negligible over estimation. In SA, the use of ..... data and software used in this research. We also ...

  5. Remote sensing in forestry: Application to the Amazon region

    Science.gov (United States)

    Dejesusparada, N. (Principal Investigator); Tardin, A. T.; Dossantos, A.; Filho, P. H.; Shimabukuro, Y. E.

    1981-01-01

    The utilization of satellite remote sensing in forestry is reviewed with emphasis on studies performed for the Brazilian Amazon Region. Timber identification, deforestation, and pasture degradation after deforestation are discussed.

  6. Models for estimation of land remote sensing satellites operational efficiency

    Science.gov (United States)

    Kurenkov, Vladimir I.; Kucherov, Alexander S.

    2017-01-01

    The paper deals with the problem of estimation of land remote sensing satellites operational efficiency. Appropriate mathematical models have been developed. Some results obtained with the help of the software worked out in Delphi programming support environment are presented.

  7. REMOTE SENSING APPLICATIONS FOR SUSTAINABLE WATERSHED MANAGEMENT AND FOOD SECURITY

    Science.gov (United States)

    The integration of IKONOS satellite data, airborne color infrared remote sensing, visualization, and decision support tools is discussed, within the contexts of management techniques for minimizing non-point source pollution in inland waterways, such s riparian buffer restoration...

  8. Remote sensing and geochemistry techniques for the assessment of ...

    African Journals Online (AJOL)

    Chiedza

    in winter because of thermal inversion. High levels of ... land characterised by vents which as conduit for oxygen and spontaneous combustion ... remote sensing data to map heavy metal enrichment and accumulation near the Emalahleni.

  9. Lidar Remote Sensing for Forest Canopy Studies 2014

    Science.gov (United States)

    Remote sensing has facilitated extraordinary advances in modeling, mapping, and the understanding of ecosystems. Conventional sensors have significant limitations for ecological and forest applications. The sensitivity and accuracy of these devices have repeatedly been shown to fall with increasing ...

  10. REMOTE SENSING APPLICATIONS FOR SUSTAINABLE WATERSHED MANAGEMENT AND FOOD SECURITY

    Science.gov (United States)

    The integration of IKONOS satellite data, airborne color infrared remote sensing, visualization, and decision support tools is discussed, within the contexts of management techniques for minimizing non-point source pollution in inland waterways, such s riparian buffer restoration...

  11. Remote sensing application for delineating coastal vegetation - A case study

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Wagle, B.G.

    Remote sensing data has been used for mapping coastal vegetation along the Goa Coast, India. The study envisages the use of digital image processing techniques for delineating geomorphic features and associated vegetation, including mangrove, along...

  12. Remote sensing application system for water environments developed for Environment Satellite 1

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Remote sensing data collected by the Environment Satellite I are characterized by high temporal resolution,high spectral resolution and mid-high spatial resolution.We designed the Remote Sensing Application System for Water Environments(RSASWE) to create an integrated platform for remote sensing data processing,parameter information extraction and thematic mapping using both remote sensing and GIS technologies.This system provides support for regional water environmental monitoring,and prediction and warning of water pollution.Developed to process and apply data collected by Environment Satellite I,this system has automated procedures including clipping,observation geometry computation,radiometric calibration,6S atmospheric correction and water quality parameter inversion.RSASWE consists of six subsystems:remote sensing image processing,basic parameter inversion,water environment remote sensing thematic outputs,application outputs,automated water environment outputs and a non-point source pollution monitoring subsystem.At present RSASWE plays an important role in operations at the Satellite Environment Center.

  13. Research Status and Development Trend of Remote Sensing in China Using Bibliometric Analysis

    Science.gov (United States)

    Zeng, Y.; Zhang, J.; Niu, R.

    2015-06-01

    Remote sensing was introduced into China in 1970s and then began to flourish. At present, China has developed into a big remote sensing country, and remote sensing is increasingly playing an important role in various fields of national economic construction and social development. Based on China Academic Journals Full-text Database and China Citation Database published by China National Knowledge Infrastructure, this paper analyzed academic characteristics of 963 highly cited papers published by 16 professional and academic journals in the field of surveying and mapping from January 2010 to December 2014 in China, which include hot topics, literature authors, research institutions, and fundations. At the same time, it studied a total of 51,149 keywords published by these 16 journals during the same period. Firstly by keyword selection, keyword normalization, keyword consistency and keyword incorporation, and then by analysis of high frequency keywords, the progress and prospect of China's remote sensing technology in data acquisition, data processing and applications during the past five years were further explored and revealed. It can be seen that: highly cited paper analysis and word frequency analysis is complementary on subject progress analysis; in data acquisition phase, research focus is new civilian remote sensing satellite systems and UAV remote sensing system; research focus of data processing and analysis is multi-source information extraction and classification, laser point cloud data processing, objectoriented high resolution image analysis, SAR data and hyper-spectral image processing, etc.; development trend of remote sensing data processing is quantitative, intelligent, automated, and real-time, and the breadth and depth of remote sensing application is gradually increased; parallel computing, cloud computing and geographic conditions monitoring and census are the new research focuses to be paid attention to.

  14. Geographic Information System and Remote Sensing Applications in Flood Hazards Management: A Review

    Directory of Open Access Journals (Sweden)

    Dano Umar Lawal

    2011-09-01

    Full Text Available The purpose of this study is to examine and review the various applications of GIS and remote sensing tools in flood disaster management as opposed to the conventional means of recording the hydrological parameters, which in many cases failed to capture an extreme event. In the recent years, GIS along with remote sensing has become the key tools in flood disaster monitoring and management. Advancement particularly in the area of remote sensing application has developed gradually from optical remote sensing to microwave or radar remote sensing, which has proved a profound capability of penetrating a clouded sky and provided all weather capabilities compared to the later (optical remote sensing in flood monitoring, mapping, and management. The main concern here is delineation of flood prone areas and development of flood hazard maps indicating the risk areas likely to be inundated by significant flooding along with the damageable objects maps for the flood susceptible areas. Actually, flood depth is always considered to be the basic aspect in flood hazard mapping, and therefore in determining or estimating the flood depth, a Digital Elevation Model data (DEM is considered to be the most appropriate means of determining the flood depth from a remotely sensed data or hydrological data. Accuracy of flood depth estimation depends mainly on the resolution of the DEM data in a flat terrain and in the regions that experiences monsoon seasons such as the developing countries of Asia where there is a high dependence on agriculture, which made any effort for flood estimation or flood hazard mapping difficult due to poor availability of high resolution DEM. More so the idea of Web-based GIS is gradually becoming a reality, which plays an important role in the flood hazard management. Therefore, this paper provides a review of applications of GIS and remote sensing technology in flood disaster monitoring and management.

  15. Remote Sensing Information Sciences Research Group, year four

    Science.gov (United States)

    Estes, John E.; Smith, Terence; Star, Jeffrey L.

    1987-01-01

    The needs of the remote sensing research and application community which will be served by the Earth Observing System (EOS) and space station, including associated polar and co-orbiting platforms are examined. Research conducted was used to extend and expand existing remote sensing research activities in the areas of georeferenced information systems, machine assisted information extraction from image data, artificial intelligence, and vegetation analysis and modeling. Projects are discussed in detail.

  16. Using remotely-sensed data for optimal field sampling

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-09-01

    Full Text Available to carry out a fieldwork sample is an important issue as it avoids subjective judgement and can save on time and costs in the field. STATISTICAL SAMPLING, USING DATA OBTAINED FROM REMOTE SENSING, FINDS APPLICATION IN A VARIETY OF FIELDS... M B E R 2 0 0 8 15 USING REMOTELY- SENSED DATA FOR OPTIMAL FIELD SAMPLING BY DR PRAVESH DEBBA STATISTICS IS THE SCIENCE pertaining to the collection, summary, analysis, interpretation and presentation of data. It is often impractical...

  17. Laser And Nonlinear Optical Materials For Laser Remote Sensing

    Science.gov (United States)

    Barnes, Norman P.

    2005-01-01

    NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.

  18. Validating firn compaction model with remote sensing data

    OpenAIRE

    2011-01-01

    A comprehensive understanding of firn processes is of outmost importance, when estimating present and future changes of the Greenland Ice Sheet. Especially, when remote sensing altimetry is used to assess the state of ice sheets and their contribution to global sea level rise, firn compaction models have been shown to be a key component. Now, remote sensing data can also be used to validate the firn models. Radar penetrating the upper part of the firn column in the interior part of Greenland ...

  19. Can remote sensing help citizen-science based phenological studies?

    Science.gov (United States)

    Delbart, Nicolas; Elisabeth, Beaubien; Laurent, Kergoat; Thuy, Le Toan

    2017-04-01

    Citizen science networks and remote sensing are both efficient to collect massive data related to phenology. However both differ in their advantages and drawbacks for this purpose. Contrarily to remote sensing, citizen science allows distinguishing species-specific phenological responses to climate variability. On the other hand, large portions of territory of a country like Canada are not covered by citizen science networks, and the time series are often incomplete. The main mode of interaction between both types of data consists in validating the maps showing the ecosystem foliage transition times, such as the green-up date, obtained from remote sensing data with field observations, and in particular those collected by citizen scientists. Thus the citizen science phenology data bring confidence to remote sensing based studies. However, one can merely find studies in which remote sensing is used to improve in any way citizen science based study. Here we present bi-directional interactions between both types of data. We first use phenological data from the PlantWatch citizen science network to show that one remote sensing method green-up date relates to the leaf-out date of woody species but also to the whole plant community phenology at the regional level, including flowering phenology. Second we use a remote sensing time series to constrain the analysis of citizen data to overcome the main drawbacks that is the incompleteness of time series. In particular we analyze the interspecies differences in phenology at the scale of so-called "pheno-regions" delineated using remote sensing green-up maps.

  20. NASA Remote Sensing Data for Epidemiological Studies

    Science.gov (United States)

    Maynard, Nancy G.; Vicente, G. A.

    2002-01-01

    In response to the need for improved observations of environmental factors to better understand the links between human health and the environment, NASA has established a new program to significantly improve the utilization of NASA's diverse array of data, information, and observations of the Earth for health applications. This initiative, lead by Goddard Space Flight Center (GSFC) has the following goals: (1) To encourage interdisciplinary research on the relationships between environmental parameters (e.g., rainfall, vegetation) and health, (2) Develop practical early warning systems, (3) Create a unique system for the exchange of Earth science and health data, (4) Provide an investigator field support system for customers and partners, (5) Facilitate a system for observation, identification, and surveillance of parameters relevant to environment and health issues. The NASA Environment and Health Program is conducting several interdisciplinary projects to examine applications of remote sensing data and information to a variety of health issues, including studies on malaria, Rift Valley Fever, St. Louis Encephalitis, Dengue Fever, Ebola, African Dust and health, meningitis, asthma, and filariasis. In addition, the NASA program is creating a user-friendly data system to help provide the public health community with easy and timely access to space-based environmental data for epidemiological studies. This NASA data system is being designed to bring land, atmosphere, water and ocean satellite data/products to users not familiar with satellite data/products, but who are knowledgeable in the Geographic Information Systems (GIS) environment. This paper discusses the most recent results of the interdisciplinary environment-health research projects and provides an analysis of the usefulness of the satellite data to epidemiological studies. In addition, there will be a summary of presently-available NASA Earth science data and a description of how it may be obtained.

  1. Satellite remote sensing of hailstorms in France

    Science.gov (United States)

    Melcón, Pablo; Merino, Andrés; Sánchez, José Luis; López, Laura; Hermida, Lucía

    2016-12-01

    Hailstorms are meteorological phenomena of great interest to the scientific community, owing to their socioeconomic impact, which is mainly on agricultural production. With its global coverage and high spatial and temporal resolution, satellite remote sensing can contribute to monitoring of such events through the development of appropriate techniques. This paper presents an extensive validation in the south of France of a hail detection tool (HDT) developed for the Middle Ebro Valley (MEV). The HDT is based on consecutive application of two filters, a convection mask (CM) and hail mask (HM), using spectral channels of the Meteosat Second Generation (MSG) satellite. The south of France is an ideal area for studying hailstorms, because there is a robust database of hail falls recorded by an extensive network of hailpads managed by the Association Nationale d'Etude et de Lutte contre les Fleáux Atmosphériques (ANELFA). The results show noticeably poorer performance of the HDT in France relative to that in the MEV, with probability of detection (POD) 60.4% and false alarm rate (FAR) 26.6%. For this reason, a new tool to suit the characteristics of hailstorms in France has been developed. The France Hail Detection Tool (FHDT) was developed using logistic regression from channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor of the MSG. The FHDT was validated, resulting in POD 69.3% and FAR 15.4%, thus improving hail detection in the study area as compared with the previous tool. The new tool was tested in a case study with satisfactory results, supporting its future practical application.

  2. 卫星遥感技术在农业非点源污染评价中的应用分析%Analysis of Satellite Remote Sensing Technology in the Evaluation of Agricultural Non- point Source Pollution

    Institute of Scientific and Technical Information of China (English)

    陈强; 胡勇; 巩彩兰

    2011-01-01

    Non - point source pollution is an important source of water pollution, thus constituting one of the decisive factors affecting water environment. The commonly used agricultural non - point source pollution evaluation methods include statistical models and physical models of the computer. No matter what kind of modeling the researchers adopt, a variety of data acquisition types and the evaluation of the accuracy of the verification results make up the main bottleneck. In order to make people aware of the importance of satellite remote sensing technology in agricultural non - point source pollution evaluation, this paper made an application analysis of the access capability and feasibility of the satellite remote sensing technology from the angle of data types required by the study of the non - point source pollution, and also forecast the application potential of the satellite remote sensing technology in the precision verification of the agricultural non - point source pollution evaluation results.%非点源污染物是水污染的重要来源,已成为影响水环境状况的决定性因素之一.目前常用的农业非点源污染评价模型包括统计模型和机理模型两大类,而无论采用哪种建模方法,多类型数据的获取和评价结果的精度验证都是研究的主要瓶颈.为了使人们对卫星遥感技术在农业非点源污染评价中的应用有所了解,从非点源污染研究所需数据种类的角度,对卫星遥感技术的获取能力和可行性进行了应用分析,并对卫星遥感技术在农业非点源污染评价结果的精度验证中的应用潜力进行了展望.

  3. Multiple classifier system for remote sensing image classification: a review.

    Science.gov (United States)

    Du, Peijun; Xia, Junshi; Zhang, Wei; Tan, Kun; Liu, Yi; Liu, Sicong

    2012-01-01

    Over the last two decades, multiple classifier system (MCS) or classifier ensemble has shown great potential to improve the accuracy and reliability of remote sensing image classification. Although there are lots of literatures covering the MCS approaches, there is a lack of a comprehensive literature review which presents an overall architecture of the basic principles and trends behind the design of remote sensing classifier ensemble. Therefore, in order to give a reference point for MCS approaches, this paper attempts to explicitly review the remote sensing implementations of MCS and proposes some modified approaches. The effectiveness of existing and improved algorithms are analyzed and evaluated by multi-source remotely sensed images, including high spatial resolution image (QuickBird), hyperspectral image (OMISII) and multi-spectral image (Landsat ETM+). Experimental results demonstrate that MCS can effectively improve the accuracy and stability of remote sensing image classification, and diversity measures play an active role for the combination of multiple classifiers. Furthermore, this survey provides a roadmap to guide future research, algorithm enhancement and facilitate knowledge accumulation of MCS in remote sensing community.

  4. Multiple Classifier System for Remote Sensing Image Classification: A Review

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2012-04-01

    Full Text Available Over the last two decades, multiple classifier system (MCS or classifier ensemble has shown great potential to improve the accuracy and reliability of remote sensing image classification. Although there are lots of literatures covering the MCS approaches, there is a lack of a comprehensive literature review which presents an overall architecture of the basic principles and trends behind the design of remote sensing classifier ensemble. Therefore, in order to give a reference point for MCS approaches, this paper attempts to explicitly review the remote sensing implementations of MCS and proposes some modified approaches. The effectiveness of existing and improved algorithms are analyzed and evaluated by multi-source remotely sensed images, including high spatial resolution image (QuickBird, hyperspectral image (OMISII and multi-spectral image (Landsat ETM+.Experimental results demonstrate that MCS can effectively improve the accuracy and stability of remote sensing image classification, and diversity measures play an active role for the combination of multiple classifiers. Furthermore, this survey provides a roadmap to guide future research, algorithm enhancement and facilitate knowledge accumulation of MCS in remote sensing community.

  5. KW-SIFT descriptor for remote-sensing image registration

    Institute of Scientific and Technical Information of China (English)

    Xiangzeng Liu; Zheng Tian; Weidong Yan; Xifa Duan

    2011-01-01

    A technique to construct an affine invariant descriptor for remote-sensing image registration based on the scale invariant features transform (SIFT) in a kernel space is proposed.Affine invariant SIFT descriptor is first developed in an elliptical region determined by the Hessian matrix of the feature points.Thereafter,the descriptor is mapped to a feature space induced by a kernel, and a new descriptor is constructed by whitening the mapped descriptor in the feature space, with the transform called KW-SIFT.In a final step, the new descriptor is used to register remote-sensing images.Experimental results for remote-sensing image registration indicate that the proposed method improves the registration performance as compared with other related methods.%@@ A technique to construct an affine invariant descriptor for remote-sensing image registration based on the scale invariant features transform (SIFT) in a kernel space is proposed.Affine invariant SIFT descriptor is first developed in an elliptical region determined by the Hessian matrix of the feature points.Thereafter,the descriptor is mapped to a feature space induced by a kernel, and a new descriptor is constructed by whitening the mapped descriptor in the feature space, with the transform called KW-SIFT.In a final step, the new descriptor is used to register remote-sensing images.Experimental results for remote-sensing image registration indicate that the proposed method improves the registration performance as compared with other related methods.

  6. The Federal Oil Spill Team for Emergency Response Remote Sensing (FOSTERRS)

    Science.gov (United States)

    Stough, T.; Jones, C. E.; Leifer, I.; Lindsay, F. E.; Murray, J. J.; Ramirez, E. M.; Salemi, A.; Streett, D.

    2014-12-01

    Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, for which remote sensing plays a critical role in detection and monitoring of oil spills. The FOSTERRS interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft) and analysis techniques are quickly, effectively and seamlessly available to oil spills responders. FOSTERRS enables cooperation between agencies with core environmental remote sensing assets and capabilities and academic and industry experts to act as an oil spill remote sensing information clearinghouse. The US government and its collaborators have a broad variety of aircraft and satellite sensors, imagery interrogation techniques and other technology that can provide indispensable remote sensing information to agencies, emergency responders and the public during an oil spill. Specifically, FOSTERRS will work to ensure that (1) suitable aircraft and satellite imagery and radar observations are quickly made available in a manner that can be integrated into oil spill detection and mitigation efforts, (2) existing imagery interrogation techniques are in the hands of those who will provide the 24 x 7 operational support and (3) efforts are made to develop new technology where the existing techniques do not provide oil spills responders with important information they need. The FOSTERRS mission goal places it in an ideal place for identification of critical technological needs, and identifying bottlenecks in technology acceptance. The core FOSTERRS team incorporates representation for operations and science for agencies with relevant instrumental and platform assets (NASA, NOAA, USGS, NRL). FOSTERRS membership will open to a wide range of end-user agencies and planned observer status from industry and academic experts, and eventually international partners. Through these collaborations, FOSTERRS facilitates interagency

  7. Suitability Evaluation for Products Generation from Multisource Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Jining Yan

    2016-12-01

    Full Text Available With the arrival of the big data era in Earth observation, the remote sensing communities have accumulated a large amount of invaluable and irreplaceable data for global monitoring. These massive remote sensing data have enabled large-area and long-term series Earth observation, and have, in particular, made standard, automated product generation more popular. However, there is more than one type of data selection for producing a certain remote sensing product; no single remote sensor can cover such a large area at one time. Therefore, we should automatically select the best data source from redundant multisource remote sensing data, or select substitute data if data is lacking, during the generation of remote sensing products. However, the current data selection strategy mainly adopts the empirical model, and has a lack of theoretical support and quantitative analysis. Hence, comprehensively considering the spectral characteristics of ground objects and spectra differences of each remote sensor, by means of spectrum simulation and correlation analysis, we propose a suitability evaluation model for product generation. The model will enable us to obtain the Production Suitability Index (PSI of each remote sensing data. In order to validate the proposed model, two typical value-added information products, NDVI and NDWI, and two similar or complementary remote sensors, Landsat-OLI and HJ1A-CCD1, were chosen, and the verification experiments were performed. Through qualitative and quantitative analysis, the experimental results were consistent with our model calculation results, and strongly proved the validity of the suitability evaluation model. The proposed production suitability evaluation model could assist with standard, automated, serialized product generation. It will play an important role in one-station, value-added information services during the big data era of Earth observation.

  8. .A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing

    Science.gov (United States)

    Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying...

  9. Remote Sensing of Water Resources During the California Drought

    Science.gov (United States)

    David, Cedric; Reager, John; Das, Narendra; Famiglietti, James; Farr, Thomas; Painter, Thomas

    2016-07-01

    The combination of human population growth and changes in water availability increasingly raises global awareness on the importance of sustainable water usage and management. While the traditional in situ measurements provide a detailed description of local water availability, space science and technology can depict a broader perspective that has great potential for securing our global water future. We use the severe drought that the State of California has been experiencing since the beginning of 2011 as an example of a comprehensive water resources characterization and monitoring allowed by satellites. We focus here on observations of water availability on and underneath the land surface, and provide a summary of the findings from the following remote sensing assets: the Soil Moisture Active Passive (SMAP) mission, the Gravity Recovery And Climate Experiment (GRACE) mission, the Airborne Snow Observatory (ASO), and Synthetic Aperture Radars (SAR) missions such as PALSAR, Radarsat-2, and UAVSAR.

  10. Evaluation of Crops Moisture Provision by Space Remote Sensing Data

    Science.gov (United States)

    Ilienko, Tetiana

    2016-08-01

    The article is focused on theoretical and experimental rationale for the use of space data to determine the moisture provision of agricultural landscapes and agricultural plants. The improvement of space remote sensing methods to evaluate plant moisture availability is the aim of this research.It was proved the possibility of replacement of satellite imagery of high spatial resolution on medium spatial resolution which are freely available to determine crop moisture content at the local level. The mathematical models to determine the moisture content of winter wheat plants by spectral indices were developed based on the results of experimental field research and satellite (Landsat, MODIS/Terra, RapidEye, SICH-2) data. The maps of the moisture content in winter wheat plants in test sites by obtained models were constructed using modern GIS technology.

  11. Review of methods for remote sensing of atmospheric emissions from stationary sources. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Saeger, M.L.; Sokol, C.K.; Coffey, S.J.; Wright, R.S.; Farthing, W.E.

    1988-03-01

    This report reviews the commercially available and developing technologies for the application of remote sensing to the measurement of source emissions. The term remote sensing technology, as applied in the report, means the detection or concentration measurement of trace atmospheric species by sensing the interaction of propagating electromagnetic energy and the specific constituent along the path of propagation. Many remote-monitoring techniques are applicable to source measurements. The source of the energy can be natural or designed as part of the system. In general, passive techniques are easier to use and less expensive to purchase and operate than are the active systems. Active systems are, in general, more specific and more sensitive than the passive systems. Some active techniques provide the added advantage of range resolution, which is preferred for some types of measurement applications.

  12. High resolution remote sensing information identification for characterizing uranium mineralization setting in Namibia

    Science.gov (United States)

    Zhang, Jie-Lin; Wang, Jun-hu; Zhou, Mi; Huang, Yan-ju; Xuan, Yan-xiu; Wu, Ding

    2011-11-01

    The modern Earth Observation System (EOS) technology takes important role in the uranium geological exploration, and high resolution remote sensing as one of key parts of EOS is vital to characterize spectral and spatial information of uranium mineralization factors. Utilizing satellite high spatial resolution and hyperspectral remote sensing data (QuickBird, Radarsat2, ASTER), field spectral measurement (ASD data) and geological survey, this paper established the spectral identification characteristics of uranium mineralization factors including six different types of alaskite, lower and upper marble of Rössing formation, dolerite, alkali metasomatism, hematization and chloritization in the central zone of Damara Orogen, Namibia. Moreover, adopted the texture information identification technology, the geographical distribution zones of ore-controlling faults and boundaries between the different strata were delineated. Based on above approaches, the remote sensing geological anomaly information and image interpretation signs of uranium mineralization factors were extracted, the metallogenic conditions were evaluated, and the prospective areas have been predicted.

  13. System and method for evaluating wind flow fields using remote sensing devices

    Science.gov (United States)

    Schroeder, John; Hirth, Brian; Guynes, Jerry

    2016-12-13

    The present invention provides a system and method for obtaining data to determine one or more characteristics of a wind field using a first remote sensing device and a second remote sensing device. Coordinated data is collected from the first and second remote sensing devices and analyzed to determine the one or more characteristics of the wind field. The first remote sensing device is positioned to have a portion of the wind field within a first scanning sector of the first remote sensing device. The second remote sensing device is positioned to have the portion of the wind field disposed within a second scanning sector of the second remote sensing device.

  14. System and method for evaluating wind flow fields using remote sensing devices

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John; Hirth, Brian; Guynes, Jerry

    2016-12-13

    The present invention provides a system and method for obtaining data to determine one or more characteristics of a wind field using a first remote sensing device and a second remote sensing device. Coordinated data is collected from the first and second remote sensing devices and analyzed to determine the one or more characteristics of the wind field. The first remote sensing device is positioned to have a portion of the wind field within a first scanning sector of the first remote sensing device. The second remote sensing device is positioned to have the portion of the wind field disposed within a second scanning sector of the second remote sensing device.

  15. Remote sensing place : Satellite images as visual spatial imaginaries

    NARCIS (Netherlands)

    Shim, David

    How do people come to know the world? How do they get a sense of place and space? Arguably, one of the ways in which they do this is through the practice of remote sensing, among which satellite imagery is one of the most widespread and potent tools of engaging, representing and constructing space.

  16. Remote Sensing: The View from Above. Know Your Environment.

    Science.gov (United States)

    Academy of Natural Sciences, Philadelphia, PA.

    This publication identifies some of the general concepts of remote sensing and explains the image collection process and computer-generated reconstruction of the data. Monitoring the ecological collapse in coral reefs, weather phenomena like El Nino/La Nina, and U.S. Space Shuttle-based sensing projects are some of the areas for which remote…

  17. Recent Advances in Maya Studies Using Remotely Sensed Data

    Science.gov (United States)

    Sever, Tom; Irwin, Daniel; Arnold, James E. (Technical Monitor)

    2001-01-01

    The Peten region of northern Guatemala is one of the last places on earth where major archeological sites remain to be discovered. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper and IKONOS satellite and airborne Star3i radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as cities, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the baJos, which are seasonally flooded swamps that cover over 40% of the land surface. The use of bajos for farming has been a source of debate within the professional community for many years. But the recent detection and verification of cultural features within the bajo system by our research team are providing conclusive evidence that the ancient Maya had adapted well to wetland environments from the earliest times and utilized them until the time of the Maya collapse. The combination of water management and bajo farming is an important resource for the future of the current inhabitants who are experiencing rapid population growth. Remote sensing imagery is also demonstrating that in the Preclassic period (600 BC- AD 250), the Maya had already achieved a high organizational level as evidenced by the construction of massive temples and an elaborate inter-connecting roadway system. Although they experienced several setbacks such as droughts and hurricanes, the Maya nevertheless managed the delicate forest ecosystem successfully for several centuries. However, around AD 800, something happened to the Maya to cause their rapid decline and eventual disappearance from the region. The evidence indicates that at this time there was increased climatic dryness, extensive deforestation, overpopulation, and widespread warfare. This raises a

  18. FrankenRaven: A New Platform for Remote Sensing

    Science.gov (United States)

    Dahlgren, R. P.; Fladeland, M. M.; Pinsker, E. A.; Jasionowicz, J. P.; Jones, L. L.; Mosser, C. D.; Pscheid, M. J.; Weidow, N. L.; Kelly, P. J.; Kern, C.; Werner, C. A.; Johnson, M. S.

    2016-12-01

    Small, modular aircraft are an emerging technology with a goal to maximize flexibility and enable multi-mission support. This reports the progress of an unmanned aerial system (UAS) project conducted at the NASA Ames Research Center (ARC) in 2016. This interdisciplinary effort builds upon the success of the 2014 FrankenEye project to apply rapid prototyping techniques to UAS, to develop a variety of platforms to host remote sensing instruments. In 2016, ARC received AeroVironment RQ-11A and RQ-11B Raven UAS from the US Department of the Interior, Office of Aviation Services. These aircraft have electric propulsion, a wingspan of roughly 1.3m, and have demonstrated reliability in challenging environments. The Raven airframe is an ideal foundation to construct more complex aircraft, and student interns using 3D printing were able to graft multiple Raven wings and fuselages into "FrankenRaven" aircraft. Aeronautical analysis shows that the new configuration has enhanced flight time, payload capacity, and distance compared to the original Raven. The FrankenRaven avionics architecture replaces the mil-spec avionics with COTS technology based upon the 3DR Pixhawk PX4 autopilot with a safety multiplexer for failsafe handoff to 2.4 GHz RC control and 915 MHz telemetry. This project demonstrates how design reuse, rapid prototyping, and modular subcomponents can be leveraged into flexible airborne platforms that can host a variety of remote sensing payloads and even multiple payloads. Modularity advances a new paradigm: mass-customization of aircraft around given payload(s). Multi-fuselage designs are currently under development to host a wide variety of payloads including a zenith-pointing spectrometer, a magnetometer, a multi-spectral camera, and a RGB camera. After airworthiness certification, flight readiness review, and test flights are performed at Crows Landing airfield in central California, field data will be taken at Kilauea volcano in Hawaii and other locations.

  19. International Conference on Remote Sensing Applications for Archaeological Research and World Heritage Conservation

    Science.gov (United States)

    2002-01-01

    Contents include the following: Monitoring the Ancient Countryside: Remote Sensing and GIS at the Chora of Chersonesos (Crimea, Ukraine). Integration of Remote Sensing and GIS for Management Decision Support in the Pendjari Biosphere Reserve (Republic of Benin). Monitoring of deforestation invasion in natural reserves of northern Madagascar based on space imagery. Cartography of Kahuzi-Biega National Park. Cartography and Land Use Change of World Heritage Areas and the Benefits of Remote Sensing and GIS for Conservation. Assessing and Monitoring Vegetation in Nabq Protected Area, South Sinai, Egypt, using combine approach of Satellite Imagery and Land Surveys. Evaluation of forage resources in semi-arid savannah environments with satellite imagery: contribution to the management of a protected area (Nakuru National Park) in Kenya. SOGHA, the Surveillance of Gorilla Habitat in World Heritage sites using Space Technologies. Application of Remote Sensing to monitor the Mont-Saint-Michel Bay (France). Application of Remote Sensing & GIS for the Conservation of Natural and Cultural Heritage Sites of the Southern Province of Sri Lanka. Social and Environmental monitoring of a UNESCO Biosphere Reserve: Case Study over the Vosges du Nord and Pfalzerwald Parks using Corona and Spot Imagery. Satellite Remote Sensing as tool to Monitor Indian Reservation in the Brazilian Amazonia. Remote Sensing and GIS Technology for Monitoring UNESCO World Heritage Sites - A Pilot Project. Urban Green Spaces: Modern Heritage. Monitoring of the technical condition of the St. Sophia Cathedral and related monastic buildings in Kiev with Space Applications, geo-positioning systems and GIS tools. The Murghab delta palaeochannel Reconstruction on the Basis of Remote Sensing from Space. Acquisition, Registration and Application of IKONOS Space Imagery for the cultural World Heritage site at Mew, Turkmenistan. Remote Sensing and VR applications for the reconstruction of archaeological landscapes

  20. Dynamic monitoring land-cover change in Hubei province using object-oriented technology and remote sensing imagery%面向对象的湖北省土地覆被变化遥感快速监测

    Institute of Scientific and Technical Information of China (English)

    罗开盛; 李仁东; 常变蓉; 邱娟

    2013-01-01

    为了快速监测湖北省土地覆被变化,以HJ-CCD、TM以及ETM影像为数据源,探索出了集成面向对象技术与“3S”技术的中尺度土地覆被变化遥感流程和方法。该方法首先基于HJ-CCD影像和面向对象技术进行2010年湖北省土地覆被信息的提取,并用野外采样点对结果进行验证。在保证高精度的情况下利用向量相似性函数对湖北省2000-2005年以及2005-2010年进行变化检测,从而获得2个变化时期影像的变化区域,然后利用面向对象技术中的最邻近分类器对变化区进行自动化分类。最后分别将2期的变化结果与未变化结果融合后获得湖北省2000年、2005年和2010年的土地覆被图,在GIS中处理后建成县、市、省3级行政级别的湖北省土地覆被变化本底数据库。试验表明分类结果的总体精度为93.24%,Kappa系数为0.914;2000-2005年与2005-2010年变化检测的总体精度分别为90.88%和90.75%。同时研究发现景观破碎的地区应用面向对象技术有一定的局限性。%The rapid development of RS、GIS, and GPS technology provide a fast and effective means for the dynamic monitoring of land-cover change detection. Many scholars have researched constructing a land-cover change dynamic database with various remote sensing imageries. In conclusion, the main sources to date are abroad remote sensing imagery, while the Chinese HJ-CCD imageries rarely are used in cover-wetlands information extraction. More important, the traditional pixel-based methods which have been universally applied in land-cover/land-use information extraction for many years cannot meet the application need of land-cover/land-use information extraction because it only uses the spectral features of imagery, ignoring other information that the remote sensing imagery carries. The object-oriented technology not only uses spectral features, but also makes full use of texture features、spatial features

  1. TCR backscattering characterization for microwave remote sensing

    Science.gov (United States)

    Riccio, Giovanni; Gennarelli, Claudio

    2014-05-01

    A Trihedral Corner Reflector (TCR) is formed by three mutually orthogonal metal plates of various shapes and is a very important scattering structure since it exhibits a high monostatic Radar Cross Section (RCS) over a wide angular range. Moreover it is a handy passive device with low manufacturing costs and robust geometric construction, the maintenance of its efficiency is not difficult and expensive, and it can be used in all weather conditions (i.e., fog, rain, smoke, and dusty environment). These characteristics make it suitable as reference target and radar enhancement device for satellite- and ground-based microwave remote sensing techniques. For instance, TCRs have been recently employed to improve the signal-to-noise ratio of the backscattered signal in the case of urban ground deformation monitoring [1] and dynamic survey of civil infrastructures without natural corners as the Musmeci bridge in Basilicata, Italy [2]. The region of interest for the calculation of TCR's monostatic RCS is here confined to the first quadrant containing the boresight direction. The backscattering term is presented in closed form by evaluating the far-field scattering integral involving the contributions related to the direct illumination and the internal bouncing mechanisms. The Geometrical Optics (GO) laws allow one to determine the field incident on each TCR plate and the patch (integration domain) illuminated by it, thus enabling the use of a Physical Optics (PO) approximation for the corresponding surface current densities to consider for integration on each patch. Accordingly, five contributions are associated to each TCR plate: one contribution is due to the direct illumination of the whole internal surface; two contributions originate by the impinging rays that are simply reflected by the other two internal surfaces; and two contributions are related to the impinging rays that undergo two internal reflections. It is useful to note that the six contributions due to the

  2. Parameter selection and model research on remote sensing evaluation for nearshore water quality

    Institute of Scientific and Technical Information of China (English)

    LEI Guibin; ZHANG Ying; PAN Delu; WANG Difeng; FU Dongyang

    2016-01-01

    Using remote sensing technology for water quality evaluation is an inevitable trend in marine environmental monitoring. However, fewer categories of water quality parameters can be monitored by remote sensing technology than the 35 specified in GB3097-1997 Marine Water Quality Standard. Therefore, we considered which parameters must be selected by remote sensing and how to model for water quality evaluation using the finite parameters. In this paper, focused on Leizhou Peninsula nearshore waters, we found N, P, COD, PH and DO to be the dominant parameters of water quality by analyzing measured data. Then, mathematical statistics was used to determine that the relationship among the five parameters was COD>DO>P>N>pH. Finally, five-parameter, four-parameter and three-parameter water quality evaluation models were established and compared. The results showed that COD, DO, P and N were the necessary parameters for remote sensing evaluation of the Leizhou Peninsula nearshore water quality, and the optimal comprehensive water quality evaluation model was the four-parameter model. This work may serve as a reference for monitoring the quality of other marine waters by remote sensing.

  3. Water Quality Assessment using Satellite Remote Sensing

    Science.gov (United States)

    Haque, Saad Ul

    2016-07-01

    The two main global issues related to water are its declining quality and quantity. Population growth, industrialization, increase in agriculture land and urbanization are the main causes upon which the inland water bodies are confronted with the increasing water demand. The quality of surface water has also been degraded in many countries over the past few decades due to the inputs of nutrients and sediments especially in the lakes and reservoirs. Since water is essential for not only meeting the human needs but also to maintain natural ecosystem health and integrity, there are efforts worldwide to assess and restore quality of surface waters. Remote sensing techniques provide a tool for continuous water quality information in order to identify and minimize sources of pollutants that are harmful for human and aquatic life. The proposed methodology is focused on assessing quality of water at selected lakes in Pakistan (Sindh); namely, HUBDAM, KEENJHAR LAKE, HALEEJI and HADEERO. These lakes are drinking water sources for several major cities of Pakistan including Karachi. Satellite imagery of Landsat 7 (ETM+) is used to identify the variation in water quality of these lakes in terms of their optical properties. All bands of Landsat 7 (ETM+) image are analyzed to select only those that may be correlated with some water quality parameters (e.g. suspended solids, chlorophyll a). The Optimum Index Factor (OIF) developed by Chavez et al. (1982) is used for selection of the optimum combination of bands. The OIF is calculated by dividing the sum of standard deviations of any three bands with the sum of their respective correlation coefficients (absolute values). It is assumed that the band with the higher standard deviation contains the higher amount of 'information' than other bands. Therefore, OIF values are ranked and three bands with the highest OIF are selected for the visual interpretation. A color composite image is created using these three bands. The water quality

  4. Remote sensing of essential ecosystem functional variables

    Science.gov (United States)

    Alcaraz-Segura, D.; Bagnato, C. E.; Paruelo, J. M.; Berbery, E. H.; Cabello, J.; Castro, A.; Cazorla, B. P.; Epstein, H. E.; Fernández, N.; Jobbagy, E. G.; Oyonarte, C.; Pacheco, M.; Peñas, J.; Vallejos, M.

    2016-12-01

    Essential Biodiversity Variables should inform on the status of the three dimensions recognised for biodiversity: composition, structure and function. Whereas composition and structure (from genes to ecosystems) have been traditionally used to assess biodiversity status, functional components of biodiversity, particularly at the ecosystem level, have been scarcely included. Satellite remote sensing can provide multiple descriptors of ecosystem function, though their relevance as essential biodiversity variables still needs to be assessed. Time-series of spectral data derived from satellite images can inform on key attributes of the dynamics of carbon, water, energy balance, disturbance regime or nutrient cycling. These ecosystem functional attributes can be integrated to identify Ecosystem Functional Types (EFTs), defined as groups of ecosystems with similar dynamics of matter and energy exchanges between the biota and the physical environment. Most popular EFTs used the three most informative metrics of the seasonal curves of spectral vegetation indices as surrogates of the most integrative descriptor of ecosystem functioning, the primary production dynamics: annual mean (estimator of primary production), seasonal coefficient of variation (descriptor of seasonality), and date of maximum (indicator of phenology). To search for simple metrics that could be used as a set of highly informative ecosystem functional attributes, we extended the analysis to the global scale across all terrestrial biomes and to other key dimensions of ecosystem functioning, i.e., albedo and surface temperature (related to the energy balance) and evapotranspiration (related to the water cycle and the energy balance). The three first axes of a Principal Component Analysis run on the average seasonal dynamics of each variable and biome explained from 85% to 97% of variance. From more than 20 summary metrics analysed, the annual mean was highly correlated to the first axis (r2>0.9). The second

  5. Footprint Representation of Planetary Remote Sensing Data

    Science.gov (United States)

    Walter, S. H. G.; Gasselt, S. V.; Michael, G.; Neukum, G.

    The geometric outline of remote sensing image data, the so called footprint, can be represented as a number of coordinate tuples. These polygons are associated with according attribute information such as orbit name, ground- and image resolution, solar longitude and illumination conditions to generate a powerful base for classification of planetary experiment data. Speed, handling and extended capabilites are the reasons for using geodatabases to store and access these data types. Techniques for such a spatial database of footprint data are demonstrated using the Relational Database Management System (RDBMS) PostgreSQL, spatially enabled by the PostGIS extension. Exemplary, footprints of the HRSC and OMEGA instruments, both onboard ESA's Mars Express Orbiter, are generated and connected to attribute information. The aim is to provide high-resolution footprints of the OMEGA instrument to the science community for the first time and make them available for web-based mapping applications like the "Planetary Interactive GIS-on-the-Web Analyzable Database" (PIG- WAD), produced by the USGS. Map overlays with HRSC or other instruments like MOC and THEMIS (footprint maps are already available for these instruments and can be integrated into the database) allow on-the-fly intersection and comparison as well as extended statistics of the data. Footprint polygons are generated one by one using standard software provided by the instrument teams. Attribute data is calculated and stored together with the geometric information. In the case of HRSC, the coordinates of the footprints are already available in the VICAR label of each image file. Using the VICAR RTL and PostgreSQL's libpq C library they are loaded into the database using the Well-Known Text (WKT) notation by the Open Geospatial Consortium, Inc. (OGC). For the OMEGA instrument, image data is read using IDL routines developed and distributed by the OMEGA team. Image outlines are exported together with relevant attribute

  6. Research on compressive fusion for remote sensing images

    Science.gov (United States)

    Yang, Senlin; Wan, Guobin; Li, Yuanyuan; Zhao, Xiaoxia; Chong, Xin

    2014-02-01

    A compressive fusion of remote sensing images is presented based on the block compressed sensing (BCS) and non-subsampled contourlet transform (NSCT). Since the BCS requires small memory space and enables fast computation, firstly, the images with large amounts of data can be compressively sampled into block images with structured random matrix. Further, the compressive measurements are decomposed with NSCT and their coefficients are fused by a rule of linear weighting. And finally, the fused image is reconstructed by the gradient projection sparse reconstruction algorithm, together with consideration of blocking artifacts. The field test of remote sensing images fusion shows the validity of the proposed method.

  7. Remote sensing applications in evaluation of cadmium pollution effects

    Science.gov (United States)

    Kozma-Bognar, Veronika; Martin, Gizella; Berke, Jozsef

    2013-04-01

    According to the 21st century developments in information technology the remote sensing applications open new perspectives to the data collection of our environment. Using the images in different spectral bands we get more reliable and accurate information about the condition, process and phenomena of the earth surface compared to the traditional aircraft image technologies (RGB images). The effects of particulate pollution originated from road traffic were analysed by the research team of Department of Meteorology and Water Management (University of Pannonia, Georgikon Faculty) with the application of visible, near infrared and thermal infrared remote sensing aircraft images. In the scope of our research was to detect and monitor the effects of heavy metal contamination in plant-atmosphere system under field experiments. The testing area was situated at Agro-meteorological Research Station in Keszthely (Hungary), where maize crops were polluted once a week (0,5 M concentration) by cadmium. In our study we simulated the effects of cadmium pollution because this element is one of the most common toxic heavy metals in our environment. During two growing seasons (2011, 2012) time-series analyses were carried out based on the remote sensing data and parallel collected variables of field measurement. In each phenological phases of plant we took aerial images, in order to follow the changes of the structure and intensity values of plots images. The spatial resolution of these images were under 10x10 cm, which allowed to use a plot-level evaluation. The structural and intensity based measurement evaluation methods were applied to examine cadmium polluted and control maize canopy after data pre-processing. Research activities also focused on the examination of the influence of the irrigation and the comparison of aerial and terrain parameters. As conclusion, it could be determined the quantification of cadmium pollution effects is possible on maize plants by using remote

  8. A Prototype Network for Remote Sensing Validation in China

    Directory of Open Access Journals (Sweden)

    Mingguo Ma

    2015-04-01

    Full Text Available Validation is an essential and important step before the application of remote sensing products. This paper introduces a prototype of the validation network for remote sensing products in China (VRPC. The VRPC aims to improve remote sensing products at a regional scale in China. These improvements will enhance the applicability of the key remote sensing products in understanding and interpretation of typical land surface processes in China. The framework of the VRPC is introduced first, including its four basic components. Then, the basic selection principles of the observation sites are described, and the principles for the validation of the remote sensing products are established. The VRPC will be realized in stages. In the first stage, four stations that have improved remote sensing observation facilities have been incorporated according to the selection principles. Certain core observation sites have been constructed at these stations. Next the Heihe Station is introduced in detail as an example. The three levels of observation (the research base, pixel-scale validation sites, and regional coverage adopted by the Heihe Station are carefully explained. The pixel-scale validation sites with nested multi-scale observation systems in this station are the most unique feature, and these sites aim to solve some key scientific problems associated with remote sensing product validation (e.g., the scale effect and scale transformation. Multi-year of in situ measurements will ensure the high accuracy and inter-annual validity of the land products, which will provide dynamic regional monitoring and simulation capabilities in China. The observation sites of the VRPC are open, with the goal of increasing cooperation and exchange with global programs.

  9. Green Tide Monitoring Using Remote Sensing Technology%绿潮卫星遥感监测技术应用研究

    Institute of Scientific and Technical Information of China (English)

    唐泽艳; 魏永亮

    2013-01-01

    大量绿潮漂浮聚集到岸边,阻塞航道,同时破坏海洋生态系统,严重威胁沿海渔业、旅游业发展.为了实现绿潮的漂移距离、漂移方向和覆盖面积遥感研究,首先对MODIS数据进行分析研究,再对目标海域绿潮采用拉格朗日追踪法和校正归一化植被指数法,最终计算得出绿潮未来24小时漂移方向和漂移距离,绿潮爆发时的覆盖面积.此外,通过绿潮光谱特征还可辨别是否是浒苔绿潮.比较漂移距离和漂移路径,初步得出绿潮的漂移距离和漂移路径与风和流密切相关.%Large green tides that gather to shores can block the waterway,destroy the marine ecosystem,and threat coastal fisheries and tourisms.In order to study the drift distance,drift direction and cover area of the green tide using remote sensing data,we first analyze the MODIS data,next the Lagrangian tracking method and the normalized difference vegetation index (NDVI) method are applied to the target area,then,the drift distance and drift direction of green tide in 24 hours and the cover area of tide burst are calculated.In addition,the green tide can be identified as Enteromorpha Prolifra or not through the analysis of its spectral features.After comparing the drift distance and drift trajectory,a preliminary conclusion can be derived that the above two factors of green tide have close relation to wind and currents.

  10. Sensing technologies for precision irrigation

    CERN Document Server

    Ćulibrk, Dubravko; Minic, Vladan; Alonso Fernandez, Marta; Alvarez Osuna, Javier; Crnojevic, Vladimir

    2014-01-01

    This brief provides an overview of state-of-the-art sensing technologies relevant to the problem of precision irrigation, an emerging field within the domain of precision agriculture. Applications of wireless sensor networks, satellite data and geographic information systems in the domain are covered. This brief presents the basic concepts of the technologies and emphasizes the practical aspects that enable the implementation of intelligent irrigation systems. The authors target a broad audience interested in this theme and organize the content in five chapters, each concerned with a specific technology needed to address the problem of optimal crop irrigation. Professionals and researchers will find the text a thorough survey with practical applications.

  11. The remote sensing image enhancement technology application research of forestry resource survey%森林资源二类调查中遥感图像增强技术应用研究

    Institute of Scientific and Technical Information of China (English)

    王得印; 栾忠平

    2015-01-01

    为提高森林资源二类调查中目视判读的质量,以蛟河林业试验区管理局的精校正后的SPOT-5全色遥感图像和SPOT-5多光谱遥感图像为数据源,利用ERDAS9.2遥感处理软件,进行融合处理后,对不同的融合结果进行辐射增强和光谱增强处理后进行目视判读,再利用ENVI5.0遥感软件和MATLAB7.0软件进行定量分析,结果表明:对于SPOT-5遥感图像,先经高通滤波融合处理,再进行直方图均衡化增强处理,是得到高质量遥感图像的最佳选择。%In order to improve the quality of visual interpretation of forest resource survey, the refined adjusted SPOT-5 panchromatic remote sensing image and SPOT-5 multispectral remote sensing images of the administration of Jiaohe forest-ry experiment area were taken as data resource.The visual interpretation was carried after the treatment of radiation en-hancement and spectral enhancement for different fusion result by using the ERDAS9.2 remote sensing treatment software. Then the quantitative analysis was made by applying ENVI5.0 remote sensing software and MATLAB7.0 remote sensing software.The result showed that the best choice to obtain the high quality remote sensing image was made by the treatment of high pass filtering fusion and histogram equalization enhancement for SPOT-5 remote sensing image.

  12. Acoustic remote sensing of ocean flows

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, E.

    Acoustic techniques have become powerful tools for measurement of ocean circulation mainly because of the ability of acoustic signals to travel long distances in water, and the inherently non-invasive nature of measurement. The satellite remote...

  13. Mineralogy and astrobiology detection using laser remote sensing instrument.

    Science.gov (United States)

    Abedin, M Nurul; Bradley, Arthur T; Sharma, Shiv K; Misra, Anupam K; Lucey, Paul G; McKay, Christopher P; Ismail, Syed; Sandford, Stephen P

    2015-09-01

    A multispectral instrument based on Raman, laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), and a lidar system provides high-fidelity scientific investigations, scientific input, and science operation constraints in the context of planetary field campaigns with the Jupiter Europa Robotic Lander and Mars Sample Return mission opportunities. This instrument conducts scientific investigations analogous to investigations anticipated for missions to Mars and Jupiter's icy moons. This combined multispectral instrument is capable of performing Raman and fluorescence spectroscopy out to a >100  m target distance from the rover system and provides single-wavelength atmospheric profiling over long ranges (>20  km). In this article, we will reveal integrated remote Raman, LIF, and lidar technologies for use in robotic and lander-based planetary remote sensing applications. Discussions are focused on recently developed Raman, LIF, and lidar systems in addition to emphasizing surface water ice, surface and subsurface minerals, organics, biogenic, biomarker identification, atmospheric aerosols and clouds distributions, i.e., near-field atmospheric thin layers detection for next robotic-lander based instruments to measure all the above-mentioned parameters.

  14. Development and Experimental Verification of Key Techniques to Validate Remote Sensing Products

    Science.gov (United States)

    Li, X.; Wang, S. G.; Ge, Y.; Jin, R.; Liu, S. M.; Ma, M. G.; Shi, W. Z.; Li, R. X.; Liu, Q. H.

    2013-05-01

    Validation of remote sensing land products is a fundamental issue for Earth observation. Ministry of Science and Technology of the People's Republic of China (MOST) has launched a high-tech R&D Program named `Development and experimental verification of key techniques to validate remote sensing products' in 2011. This paper introduces the background, scientific objectives, research contents of this project and research result already achieved. The objectives of this project include (1) to build a technical specification for the validation of remote sensing products; (2) to investigate the performance, we will carry out a comprehensive remote sensing experiment on satellite - aircraft - ground truth and then modify Step 1 until reach the predefined requirement; (3) to establish a validation network of China for remote sensing products. In summer 2012, with support of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER), field observations have been successfully conducted in the central stream of the Heihe River Basin, a typical inland river basin in northwest China. A flux observation matrix composed of eddy covariance (EC) and large aperture scintillometer (LAS), in addition to a densely distributed eco-hydrological wireless sensor network have been established to capture multi-scale heterogeneities of evapotranspiration (ET), leaf area index (LAI), soil moisture and temperature. Airborne missions have been flown with the payloads of imaging spectrometer, light detection and ranging (LiDAR), infrared thermal imager and microwave radiometer that provide various scales of aerial remote sensing observations. Satellite images with high resolution have been collected and pre-processed, e.g. PROBA-CHRIS and TerraSAR-X. Simultaneously, ground measurements have been conducted over specific sampling plots and transects to obtain validation data sets. With this setup complex problems are addressed, e.g. heterogeneity, scaling, uncertainty, and eventually to

  15. User requirements for hydrological models with remote sensing input

    Energy Technology Data Exchange (ETDEWEB)

    Kolberg, Sjur

    1997-10-01

    Monitoring the seasonal snow cover is important for several purposes. This report describes user requirements for hydrological models utilizing remotely sensed snow data. The information is mainly provided by operational users through a questionnaire. The report is primarily intended as a basis for other work packages within the Snow Tools project which aim at developing new remote sensing products for use in hydrological models. The HBV model is the only model mentioned by users in the questionnaire. It is widely used in Northern Scandinavia and Finland, in the fields of hydroelectric power production, flood forecasting and general monitoring of water resources. The current implementation of HBV is not based on remotely sensed data. Even the presently used HBV implementation may benefit from remotely sensed data. However, several improvements can be made to hydrological models to include remotely sensed snow data. Among these the most important are a distributed version, a more physical approach to the snow depletion curve, and a way to combine data from several sources. 1 ref.

  16. [Analysis of related factors of slope plant hyperspectral remote sensing].

    Science.gov (United States)

    Sun, Wei-Qi; Zhao, Yun-Sheng; Tu, Lin-Ling

    2014-09-01

    In the present paper, the slope gradient, aspect, detection zenith angle and plant types were analyzed. In order to strengthen the theoretical discussion, the research was under laboratory condition, and modeled uniform slope for slope plant. Through experiments we found that these factors indeed have influence on plant hyperspectral remote sensing. When choosing slope gradient as the variate, the blade reflection first increases and then decreases as the slope gradient changes from 0° to 36°; When keeping other factors constant, and only detection zenith angle increasing from 0° to 60°, the spectral characteristic of slope plants do not change significantly in visible light band, but decreases gradually in near infrared band; With only slope aspect changing, when the dome meets the light direction, the blade reflectance gets maximum, and when the dome meets the backlit direction, the blade reflectance gets minimum, furthermore, setting the line of vertical intersection of incidence plane and the dome as an axis, the reflectance on the axis's both sides shows symmetric distribution; In addition, spectral curves of different plant types have a lot differences between each other, which means that the plant types also affect hyperspectral remote sensing results of slope plants. This research breaks through the limitations of the traditional vertical remote sensing data collection and uses the multi-angle and hyperspectral information to analyze spectral characteristics of slope plants. So this research has theoretical significance to the development of quantitative remote sensing, and has application value to the plant remote sensing monitoring.

  17. Water column correction for coral reef studies by remote sensing.

    Science.gov (United States)

    Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton

    2014-09-11

    Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application.

  18. Combining Citizen Science Phenological Observations with Remote Sensing Data

    Science.gov (United States)

    Delbart, Nicolas; Beaubien, Elisabeth; Kergoat, Laurent; Deront, Lise; Le Toan, Thuy

    2016-08-01

    Citizen science is efficient to collect data about plant phenology across large areas such as Canada and independently for each species. However, such time series are often discontinuous and observations are not evenly distributed. On the other hand, remote sensing provides a synoptic view on phenology but does not inform about inter-species differences in phenological response to climate variability.Existing interactions between the two types of data are so far essentially limited to the evaluation of remote sensing methods by citizen science data, which proved quite efficient. Here we first use such an approach to show that one remote sensing method green-up date relates to the leaf-out date of woody species but also to the whole plant community phenology at the regional level, including flowering phenology. Second we use a remote sensing time series to constrain the analysis of citizen data to overcome the main drawbacks that is the incompleteness of time series. We analyze the interspecies differences in phenology at the scale of so- called "pheno-regions" delineated using remote sensing green-up maps.

  19. Polarization Remote Sensing Physical Mechanism, Key Methods and Application

    Science.gov (United States)

    Yang, B.; Wu, T.; Chen, W.; Li, Y.; Knjazihhin, J.; Asundi, A.; Yan, L.

    2017-09-01

    China's long-term planning major projects "high-resolution earth observation system" has been invested nearly 100 billion and the satellites will reach 100 to 2020. As to 2/3 of China's area covered by mountains it has a higher demand for remote sensing. In addition to light intensity, frequency, phase, polarization is also the main physical characteristics of remote sensing electromagnetic waves. Polarization is an important component of the reflected information from the surface and the atmospheric information, and the polarization effect of the ground object reflection is the basis of the observation of polarization remote sensing. Therefore, the effect of eliminating the polarization effect is very important for remote sensing applications. The main innovations of this paper is as follows: (1) Remote sensing observation method. It is theoretically deduced and verified that the polarization can weaken the light in the strong light region, and then provide the polarization effective information. In turn, the polarization in the low light region can strengthen the weak light, the same can be obtained polarization effective information. (2) Polarization effect of vegetation. By analyzing the structure characteristics of vegetation, polarization information is obtained, then the vegetation structure information directly affects the absorption of biochemical components of leaves. (3) Atmospheric polarization neutral point observation method. It is proved to be effective to achieve the ground-gas separation, which can achieve the effect of eliminating the atmospheric polarization effect and enhancing the polarization effect of the object.

  20. Allometric equations for integrating remote sensing imagery into forest monitoring programmes

    NARCIS (Netherlands)

    Jucker, T.; Caspersen, John; Chave, J.; Antin, C.; Barbier, N.; Bongers, F.; Dalponte, M.; Ewijk van, K.Y.; Poorter, L.; Sterck, F.J.

    2016-01-01

    Remote sensing is revolutionizing the way we study forests, and recent technological advances mean we are now able – for the first time – to identify and measure the crown dimensions of individual trees from airborne imagery. Yet to make full use of these data for quantifying forest carbon stocks an

  1. The application of remote sensing to the development and formulation of hydrologic planning models

    Science.gov (United States)

    Fowler, T. R.; Castruccio, P. A.; Loats, H. L., Jr.

    1977-01-01

    The development of a remote sensing model and its efficiency in determining parameters of hydrologic models are reviewed. Procedures for extracting hydrologic data from LANDSAT imagery, and the visual analysis of composite imagery are presented. A hydrologic planning model is developed and applied to determine seasonal variations in watershed conditions. The transfer of this technology to a user community and contract arrangements are discussed.

  2. A high-Tc superconductor bolometer for remote sensing of atmospheric OH

    NARCIS (Netherlands)

    Nivelle, de M.J.M.E.; Bruijn, M.P.; Vries, de R.; Wijnbergen, J.J.; Korte, de P.A.J.; Sanchez, S.; Elwenspoek, M.; Heidenblut, T.; Schwierzi, B.; Michalke, W.; Steinbeiss, E.; Frericks, M.

    1996-01-01

    The technological feasibility is being investigated of a high-Tc superconductor transition edge bolometer for far-infrared detection, which can meet the requirements of a Fabry-Perot based satellite instrument designed for remote sensing of atmospheric OH. These include a time constant τ<0.3 s, an o

  3. New Directions in Land Remote Sensing Policy and International Cooperation

    Science.gov (United States)

    Stryker, Timothy

    2010-12-01

    Recent changes to land remote sensing satellite data policies in Brazil and the United States have led to the phenomenal growth in the delivery of land imagery to users worldwide. These new policies, which provide free and unrestricted access to land remote sensing data over a standard electronic interface, are expected to provide significant benefits to scientific and operational users, and open up new areas of Earth system science research and environmental monitoring. Freely-available data sets from the China-Brazil Earth Resources Satellites (CBERS), the U.S. Landsat satellites, and other satellite missions provide essential information for land surface monitoring, ecosystems management, disaster mitigation, and climate change research. These missions are making important contributions to the goals and objectives of regional and global terrestrial research and monitoring programs. These programs are in turn providing significant support to the goals and objectives of the United Nations Framework Convention on Climate Change (UN FCCC), the Global Earth Observation System of Systems (GEOSS), and the UN Reduction in Emissions from Deforestation and Degradation (REDD) program. These data policies are well-aligned with the "Data Democracy" initiative undertaken by the international Committee on Earth Observation Satellites (CEOS), through its current Chair, Brazil's National Institute for Space Research (Instituto Nacional de Pesquisas Espaciais, or INPE), and its former chairs, South Africa's Council for Scientific and Industrial Research (CSIR) and Thailand's Geo Informatics and Space Technology Development Agency (GISTDA). Comparable policies for land imaging data are under consideration within Europe and Canada. Collectively, these initiatives have the potential to accelerate and improve international mission collaboration, and greatly enhance the access, use, and application of land surface imagery for environmental monitoring and societal adaption to changing

  4. On validating remote sensing simulations using coincident real data

    Science.gov (United States)

    Wang, Mingming; Yao, Wei; Brown, Scott; Goodenough, Adam; van Aardt, Jan

    2016-05-01

    The remote sensing community often requires data simulation, either via spectral/spatial downsampling or through virtual, physics-based models, to assess systems and algorithms. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is one such first-principles, physics-based model for simulating imagery for a range of modalities. Complex simulation of vegetation environments subsequently has become possible, as scene rendering technology and software advanced. This in turn has created questions related to the validity of such complex models, with potential multiple scattering, bidirectional distribution function (BRDF), etc. phenomena that could impact results in the case of complex vegetation scenes. We selected three sites, located in the Pacific Southwest domain (Fresno, CA) of the National Ecological Observatory Network (NEON). These sites represent oak savanna, hardwood forests, and conifer-manzanita-mixed forests. We constructed corresponding virtual scenes, using airborne LiDAR and imaging spectroscopy data from NEON, ground-based LiDAR data, and field-collected spectra to characterize the scenes. Imaging spectroscopy data for these virtual sites then were generated using the DIRSIG simulation environment. This simulated imagery was compared to real AVIRIS imagery (15m spatial resolution; 12 pixels/scene) and NEON Airborne Observation Platform (AOP) data (1m spatial resolution; 180 pixels/scene). These tests were performed using a distribution-comparison approach for select spectral statistics, e.g., established the spectra's shape, for each simulated versus real distribution pair. The initial comparison results of the spectral distributions indicated that the shapes of spectra between the virtual and real sites were closely matched.

  5. The role of satellite remote sensing in REDD/MRV

    Science.gov (United States)

    Jonckheere, Inge; Sandoval, Alberto

    2010-05-01

    REDD, which stands for 'Reducing Emissions from Deforestation and Forest Degradation in Developing Countries' - is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. The UN-REDD Programme, a collaborative partnership between FAO, UNDP and UNEP launched in September 2008, supports countries to develop capacity to REDD and to implement a future REDD mechanism in a post- 2012 climate regime. The programme works at both the national and global scale, through support mechanisms for country-driven REDD strategies and international consensus-building on REDD processes. The UN-REDD Programme gathers technical teams from around the world to develop common approaches, analyses and guidelines on issues such as measurement, reporting and verification (MRV) of carbon emissions and flows, remote sensing, and greenhouse gas inventories. Within the partnership, FAO supports countries on technical issues related to forestry and the development of cost effective and credible MRV processes for emission reductions. While at the international level, it fosters improved guidance on MRV approaches, including consensus on principles and guidelines for MRV and training programmes.It provides guidance on how best to design and implement REDD, to ensure that forests continue to provide multiple benefits for livelihoods and biodiversity to societies while storing carbon at the same time. Other areas of work include national forest assessments and monitoring of in-country policy and institutional change. The outcomes about the role of satellite remote sensing technologies as a tool for monitoring, assessment, reporting and verification of carbon credits and co-benefits under the REDD mechanism are here presented.

  6. Polarization Invariants and Retrieval of Surface Parameters Using Polarization Measurements in Remote Sensing Applications

    CERN Document Server

    Shestopaloff, Yu K

    2012-01-01

    Using polarization measurements in remote sensing and optical studies allows retrieving more information. We consider relationship between the reflection coefficients of plane and rough surfaces for linearly polarized waves. Certain polarization properties of reflected waves and polarization invariants, in particular at incident angle of forty five degrees, allow finding amplitude and phase characteristics of reflected waves. Based on this study, we introduce methods for finding dielectric permittivity, temperature and geometrical characteristics of observed surfaces. Experimental results prove that these methods can be used for different practical purposes in technological and remote sensing applications, in a broad range of electromagnetic spectrum.

  7. Geospatial-temporal semantic graph representations of trajectories from remote sensing and geolocation data

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, David Nikolaus; Brost, Randolph; Ray, Lawrence P.

    2017-08-08

    Various technologies for facilitating analysis of large remote sensing and geolocation datasets to identify features of interest are described herein. A search query can be submitted to a computing system that executes searches over a geospatial temporal semantic (GTS) graph to identify features of interest. The GTS graph comprises nodes corresponding to objects described in the remote sensing and geolocation datasets, and edges that indicate geospatial or temporal relationships between pairs of nodes in the nodes. Trajectory information is encoded in the GTS graph by the inclusion of movable nodes to facilitate searches for features of interest in the datasets relative to moving objects such as vehicles.

  8. Satellite remote sensing outputs of the certain glaciers on the territory of East Georgia

    Directory of Open Access Journals (Sweden)

    G. Kordzakhia

    2015-10-01

    With the launch of the Earth’s satellites it was determined that satellite remote sensing is the best technology allowing to receive data with needed regularity in terms of both time and space resolution. Some uncertainties remain in the data as the observational tool is too far away from the Earth’s surface. So, the necessity for the strong quality assessment/quality control (QA/QC remains. A lot of studies showed that the best method for investigation of glaciers is application of satellite remote sensing combined with terrestrial observations and expert knowledge of separate glaciers.

  9. Considerations and techniques for incorporating remotely sensed imagery into the land resource management process.

    Science.gov (United States)

    Brooner, W. G.; Nichols, D. A.

    1972-01-01

    Development of a scheme for utilizing remote sensing technology in an operational program for regional land use planning and land resource management program applications. The scheme utilizes remote sensing imagery as one of several potential inputs to derive desired and necessary data, and considers several alternative approaches to the expansion and/or reduction and analysis of data, using automated data handling techniques. Within this scheme is a five-stage program development which includes: (1) preliminary coordination, (2) interpretation and encoding, (3) creation of data base files, (4) data analysis and generation of desired products, and (5) applications.

  10. Landfill monitoring using remote sensing: a case study of Glina, Romania.

    Science.gov (United States)

    Iacoboaea, Cristina; Petrescu, Florian

    2013-10-01

    Landfill monitoring is one of the most important components of waste management. This article presents a case study on landfill monitoring using remote sensing technology. The study area was the Glina landfill, one of the largest municipal waste disposal sites in Romania. The methodology consisted of monitoring the differences of temperature computed for several distinct waste disposal zones with respect to a ground reference area, all of them located within the landfill site. The remote sensing data used were Landsat satellite multi-temporal data. The differences of temperature were computed using Landsat thermal infrared data. The study confirmed the use of multi-temporal Landsat imagery as a complementary data source.

  11. Technology Advancement for Active Remote Sensing of Carbon Dioxide from Space Using the ASCENDS CarbonHawk Experiment Simulator: First Results

    Science.gov (United States)

    Obland, Michael D.; Nehrir, Amin R.; Lin, Bing; Harrison, F. Wallace; Kooi, Susan; Choi, Yonghoon; Plant, James; Yang, Melissa; Antill, Charles; Campbell, Joel; hide

    2015-01-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is a newly developed lidar developed at NASA Langley Research Center and funded by NASA's Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The technology advancements targeted include: (1) increasing the power-aperture product to approach ASCENDS mission requirements by implementing multi-aperture telescopes and multiple co-aligned laser transmitters; (2) incorporating high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) developing and incorporating a high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration autonomous operation on Global Hawk aircraft, and (4) advancing algorithms for cloud and aerosol discrimination. The ACES instrument architecture is being developed for operation on high-altitude aircraft and will be directly scalable to meet the ASCENDS mission requirements. These technologies are critical towards developing not only spaceborne instruments but also their airborne simulators, with lower platform requirements for size, mass, and power, and with improved instrument performance for the ASCENDS mission. ACES transmits five laser beams: three from commercial EDFAs operating near 1.57 microns, and two from the Exelis oxygen (O2) Raman fiber laser amplifier system operating near 1.26 microns. The three EDFAs are capable of transmitting up to 10 watts average optical output power each and are seeded by compact, low noise, stable, narrow-linewidth laser sources stabilized with respect to a CO2 absorption line using a multi-pass gas absorption cell. The Integrated-Path Differential Absorption (IPDA) lidar approach is used at both wavelengths to independently measure the CO2 and O2 column number

  12. Inroads of remote sensing into hydrologic science during the WRR era

    Science.gov (United States)

    Lettenmaier, Dennis P.; Alsdorf, Doug; Dozier, Jeff; Huffman, George J.; Pan, Ming; Wood, Eric F.

    2015-09-01

    The first issue of WRR appeared eight years after the launch of Sputnik, but by WRR's 25th anniversary, only seven papers that used remote sensing had appeared. Over the journal's second 25 years, that changed remarkably, and remote sensing is now widely used in hydrology and other geophysical sciences. We attribute this evolution to production of data sets that scientists not well versed in remote sensing can use, and to educational initiatives like NASA's Earth System Science Fellowship program that has supported over a thousand scientists, many in hydrology. We review progress in remote sensing in hydrology from a water balance perspective. We argue that progress is primarily attributable to a creative use of existing and past satellite sensors to estimate such variables as evapotranspiration rates or water storage in lakes and reservoirs and to new and planned missions. Recent transforming technologies include the Gravity Recovery and Climate Experiment (GRACE), the European Soil Moisture and Ocean Salinity (SMOS) and U.S. Soil Moisture Active Passive (SMAP) missions, and the Global Precipitation Measurement (GPM) mission. Future missions include Surface Water and Ocean Topography (SWOT) to measure river discharge and lake, reservoir, and wetland storage. Measurement of some important hydrologic variables remains problematic: retrieval of snow water equivalent (SWE) from space remains elusive especially in mountain areas, even though snow cover extent is well observed, and was the topic of 4 of the first 5 remote sensing papers published in WRR. We argue that this area deserves more strategic thinking from the hydrology community.

  13. Famine Early Warning Systems and Their Use of Satellite Remote Sensing Data

    Science.gov (United States)

    Brown, Molly E.; Essam, Timothy; Leonard, Kenneth

    2011-01-01

    Famine early warning organizations have experience that has much to contribute to efforts to incorporate climate and weather information into economic and political systems. Food security crises are now caused almost exclusively by problems of food access, not absolute food availability, but the role of monitoring agricultural production both locally and globally remains central. The price of food important to the understanding of food security in any region, but it needs to be understood in the context of local production. Thus remote sensing is still at the center of much food security analysis, along with an examination of markets, trade and economic policies during food security analyses. Technology including satellite remote sensing, earth science models, databases of food production and yield, and modem telecommunication systems contributed to improved food production information. Here we present an econometric approach focused on bringing together satellite remote sensing and market analysis into food security assessment in the context of early warning.

  14. FRAME DESIGN OF REMOTE SENSING MONITORING FOR VOLCANIC ACTIVITIES IN CHANGBAI MOUNTAINS

    Institute of Scientific and Technical Information of China (English)

    BO Li-qun; ZHAO Yun-ping; HUA Ren-kui

    2003-01-01

    Volcanic eruption is one of the most serious geological disasters, however, a host of facts have proven that the Changbai Mountains volcano is a modem dormant one and has ever erupted disastrously. With the rapid development of remote sensing technology, space monitoring of volcanic activities has already become possible, particularly in the application of thermal infrared remote sensing. The paper, through the detailed analysis of geothermal anomaly factors such as heat radiation, heat conduction and convection, depicts the monitoring principles by which volcano activities would be monitored efficiently and effectively. Reasons for abrupt geothermal anomaly are mainly analyzed, and transmission mechanism of geothermal anomaly in the volcanic regions is explained. Also, a variety of noises disturbing the transmission of normal geothermal anomaly are presented. Finally, some clues are given based on discussing thermal infrared remote sensing monitoring mechanism toward the volcanic areas.

  15. The potential and prospects of proximal remote sensing of arthropod pests.

    Science.gov (United States)

    Nansen, Christian

    2016-04-01

    Bench-top or proximal remote sensing applications are widely used as part of quality control and machine vision systems in commercial operations. In addition, these technologies are becoming increasingly important in insect systematics and studies of insect physiology and pest management. This paper provides a review and discussion of how proximal remote sensing may contribute valuable quantitative information regarding identification of species, assessment of insect responses to insecticides, insect host responses to parasitoids and performance of biological control agents. The future role of proximal remote sensing is discussed as an exciting path for novel paths of multidisciplinary research among entomologists and scientists from a wide range of other disciplines, including image processing engineers, medical engineers, research pharmacists and computer scientists. © 2015 Society of Chemical Industry.

  16. Satellite remote sensing applications for surface soil moisture monitoring: A review

    Institute of Scientific and Technical Information of China (English)

    Lingli WANG; John J.QU

    2009-01-01

    Surface soil moisture is one of the crucial variables in hydrological processes, which influences the exchange of water and energy fluxes at the land surface/ atmosphere interface. Accurate estimate of the spatial and temporal variations of soil moisture is critical for numerous environmental studies. Recent technological advances in satellite remote sensing have shown that soil moisture can be measured by a variety of remote sensing techniques,each with its own strengths and weaknesses. This paper presents a comprehensive review of the progress in remote sensing of soil moisture, with focus on technique approaches for soil moisture estimation from optical,thermal, passive microwave, and active microwave measurements. The physical principles and the status of current retrieval methods are summarized. Limitations existing in current soil moisture estimation algorithms and key issues that have to be addressed in the near future are also discussed.

  17. Remote Sensing of CO2 Absorption by Saline-Alkali Soils: Potentials and Constraints

    Directory of Open Access Journals (Sweden)

    Wenfeng Wang

    2014-01-01

    Full Text Available CO2 absorption by saline-alkali soils was recently demonstrated in the measurements of soil respiration fluxes in arid and semiarid ecosystems and hypothetically contributed to the long-thought “missing carbon sink.” This paper is aimed to develop the preliminary theory and methodology for the quantitative analysis of CO2 absorption by saline-alkali soils on regional and global scales. Both the technological progress of multispectral remote sensing over the past decades and the conjectures of mechanisms and controls of CO2 absorption by saline-alkali soils are advantageous for remote sensing of such absorption. At the end of this paper, the scheme for remote sensing is presented and some unresolved issues related to the scheme are also proposed for further investigations.

  18. Tasseled cap transformation for HJ multispectral remote sensing data

    Science.gov (United States)

    Han, Ling; Han, Xiaoyong

    2015-12-01

    The tasseled cap transformation of remote sensing data has been widely used in environment, agriculture, forest and ecology. Tasseled cap transformation coefficients matrix of HJ multi-spectrum data has been established through Givens rotation matrix to rotate principal component transform vector to whiteness, greenness and blueness direction of ground object basing on 24 scenes year-round HJ multispectral remote sensing data. The whiteness component enhances the brightness difference of ground object, and the greenness component preserves more detailed information of vegetation change while enhances the vegetation characteristic, and the blueness component significantly enhances factory with blue plastic house roof around the town and also can enhance brightness of water. Tasseled cap transformation coefficients matrix of HJ will enhance the application effect of HJ multispectral remote sensing data in their application fields.

  19. Scientific Programming Using Java: A Remote Sensing Example

    Science.gov (United States)

    Prados, Don; Mohamed, Mohamed A.; Johnson, Michael; Cao, Changyong; Gasser, Jerry

    1999-01-01

    This paper presents results of a project to port remote sensing code from the C programming language to Java. The advantages and disadvantages of using Java versus C as a scientific programming language in remote sensing applications are discussed. Remote sensing applications deal with voluminous data that require effective memory management, such as buffering operations, when processed. Some of these applications also implement complex computational algorithms, such as Fast Fourier Transformation analysis, that are very performance intensive. Factors considered include performance, precision, complexity, rapidity of development, ease of code reuse, ease of maintenance, memory management, and platform independence. Performance of radiometric calibration code written in Java for the graphical user interface and of using C for the domain model are also presented.

  20. Scientific Programming Using Java: A Remote Sensing Example

    Science.gov (United States)

    Prados, Don; Mohamed, Mohamed A.; Johnson, Michael; Cao, Changyong; Gasser, Jerry

    1999-01-01

    This paper presents results of a project to port remote sensing code from the C programming language to Java. The advantages and disadvantages of using Java versus C as a scientific programming language in remote sensing applications are discussed. Remote sensing applications deal with voluminous data that require effective memory management, such as buffering operations, when processed. Some of these applications also implement complex computational algorithms, such as Fast Fourier Transformation analysis, that are very performance intensive. Factors considered include performance, precision, complexity, rapidity of development, ease of code reuse, ease of maintenance, memory management, and platform independence. Performance of radiometric calibration code written in Java for the graphical user interface and of using C for the domain model are also presented.