WorldWideScience

Sample records for technology project fy90

  1. Expedited technology demonstration project (Revised mixed waste management facility project) Project baseline revision 4.0 and FY98 plan

    International Nuclear Information System (INIS)

    Adamson, M. G.

    1997-01-01

    The re-baseline of the Expedited Technology Demonstration Project (Revised Mixed Waste Facility Project) is designated as Project Baseline Revision 4.0. The last approved baseline was identified as Project Baseline Revision 3.0 and was issued in October 1996. Project Baseline Revision 4.0 does not depart from the formal DOE guidance followed by, and contained in, Revision 3.0. This revised baseline document describes the MSO and Final Forms testing activities that will occur during FY98, the final year of the ETD Project. The cost estimate for work during FY98 continues to be $2.OM as published in Revision 3.0. However, the funds will be all CENRTC rather than the OPEX/CENTRC split previously anticipated. LLNL has waived overhead charges on ETD Project CENRTC funds since the beginning of project activities. By requesting the $2.OM as all CENTRC a more aggressive approach to staffing and testing can be taken. Due to a cost under- run condition during FY97 procurements were made and work was accomplished, with the knowledge of DOE, in the Feed Preparation and Final Forms areas that were not in the scope of Revision 3.0. Feed preparation activities for FY98 have been expanded to include the drum opening station/enclosure previously deleted

  2. Laboratory technology research: Abstracts of FY 1998 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  3. NATURAL BARRIERS TARGETED THRUST FY 2004 PROJECTS

    International Nuclear Information System (INIS)

    NA

    2005-01-01

    This booklet contains project descriptions of work performed by the Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), Office of Science and Technology and International's (OSTandI) Natural Barriers Targeted Thrust during Fiscal Year (FY) 2004. The Natural Barriers Targeted Thrust is part of OSTandI's Science and Technology Program which supports the OCRWM mission to manage and dispose of high-level radioactive waste and spent nuclear fuel in a manner that protects health, safety, and the environment; enhances national and energy security; and merits public confidence. In general, the projects described will continue beyond FY 2004 assuming that the technical work remains relevant to the proposed Yucca Mountain Repository and sufficient funding is made available to the Science and Technology Program

  4. NATURAL BARRIERS TARGETED THRUST FY 2004 PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2005-07-27

    This booklet contains project descriptions of work performed by the Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), Office of Science and Technology and International's (OST&I) Natural Barriers Targeted Thrust during Fiscal Year (FY) 2004. The Natural Barriers Targeted Thrust is part of OST&I's Science and Technology Program which supports the OCRWM mission to manage and dispose of high-level radioactive waste and spent nuclear fuel in a manner that protects health, safety, and the environment; enhances national and energy security; and merits public confidence. In general, the projects described will continue beyond FY 2004 assuming that the technical work remains relevant to the proposed Yucca Mountain Repository and sufficient funding is made available to the Science and Technology Program.

  5. NREL Energy Storage Projects. FY2014 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ban, Chunmei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burton, Evan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gonder, Jeff [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Grad, Peter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jun, Myungsoo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matt [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kim, Gi-Heon [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Neubauer, Jeremy [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Shi, Ying [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Kandler [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sprague, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tenent, Robert [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Chuanbo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Chao [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Han, Taeyoung [General Motors, Detroit, MI (United States); Hartridge, Steve [CD-adapco, Detroit, MI (United States); Shaffer, Christian E. [EC Power, Aurora, CO (United States)

    2015-03-01

    The National Renewable Energy Laboratory supports energy storage R&D under the Office of Vehicle Technologies at the U.S. Department of Energy. The DOE Energy Storage Program’s charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation’s goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are; Advanced Battery Development through the United States Advanced Battery Consortium (USABC); Battery Testing, Analysis, and Design; Applied Battery Research (ABR); and Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT) In FY14, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL’s R&D projects in FY14 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY14 projects under NREL’s Energy Storage R&D program are briefly described below. Each of these is discussed in depth in this report.

  6. Exploratory research and development FY90

    International Nuclear Information System (INIS)

    Struble, G.L.; Middleton, C.; Baldwin, G.; Cherniak, J.; Clements, W.; Donohue, M.L.; Francke, A.; Kirvel, R.D.; MacGregor, P.; Shaw, G.

    1990-01-01

    In general, the Exploratory Research and Development (ER ampersand D) Program supports research projects considered too basic or long-range to be funded by other Lawrence Livermore National Laboratory (LLNL) programs. This Program is managed for the Laboratory Director by a special assistant who chairs the LLNL's IR ampersand D Review Committee. Membership in the Review Committee comprises senior LLNL scientists, engineers, and managers whose areas of expertise span the range of scientific disciplines pursued at the Laboratory. The research supported by the Program falls into three categories: Exploratory Research in the Disciplines, Director's Initiatives, and Laboratory-Wide Competition. The first two, Exploratory Research and Director's Initiatives, promote pioneering work in the various scientific disciplines and programmatic areas. Laboratory departments and divisions propose and manage projects in the Exploratory Research category. The Laboratory Director, with the advice of the Review Committee, selects several larger projects to fund as Director's Initiative. These projects, which are proposed and managed by the responsible associate director, are intended to enhance the scope of existing programs or establish new technical directions and programs for the Laboratory. All FY90 projects are described in detail in this report. Other publications on ER ampersand D projects are included in the Publications List at the back of this report

  7. Advanced Energy Projects: FY 1993, Research summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  8. Advanced Energy Projects: FY 1993, Research summaries

    International Nuclear Information System (INIS)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included

  9. Exploratory research and development FY90

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Middleton, C.; Baldwin, G.; Cherniak, J.; Clements, W.; Donohue, M.L.; Francke, A.; Kirvel, R.D.; MacGregor, P.; Shaw, G. (eds.)

    1990-01-01

    In general, the Exploratory Research and Development (ER D) Program supports research projects considered too basic or long-range to be funded by other Lawrence Livermore National Laboratory (LLNL) programs. This Program is managed for the Laboratory Director by a special assistant who chairs the LLNL's IR D Review Committee. Membership in the Review Committee comprises senior LLNL scientists, engineers, and managers whose areas of expertise span the range of scientific disciplines pursued at the Laboratory. The research supported by the Program falls into three categories: Exploratory Research in the Disciplines, Director's Initiatives, and Laboratory-Wide Competition. The first two, Exploratory Research and Director's Initiatives, promote pioneering work in the various scientific disciplines and programmatic areas. Laboratory departments and divisions propose and manage projects in the Exploratory Research category. The Laboratory Director, with the advice of the Review Committee, selects several larger projects to fund as Director's Initiative. These projects, which are proposed and managed by the responsible associate director, are intended to enhance the scope of existing programs or establish new technical directions and programs for the Laboratory. All FY90 projects are described in detail in this report. Other publications on ER D projects are included in the Publications List at the back of this report.

  10. FY2011 Annual Report for NREL Energy Storage Projects

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.; Ban, C.; Dillon, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Lee, K. J.; Long, D.; Neubauer, J.; Santhangopalan, S.; Smith, K.

    2012-04-01

    This report describes the work of NREL's Energy Storage group for FY2011. The National Renewable Energy Laboratory (NREL) supports energy storage R&D under the Vehicle Technologies Program at the U.S. Department of Energy (DOE). The DOE Energy Storage program's charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are: (1) Advanced Battery Development [through the United States Advanced Battery Consortium (USABC)]; (2) Testing, Design and Analysis (TDA); (3) Applied Battery Research (ABR); and (4) Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT). In FY11, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL's R&D projects in FY11 in support of the USABC, TDA, ABR, and BATT program elements. In addition, we continued the enhancement of NREL's battery testing facilities funded through the American Reinvestment and Recovery Act (ARRA) of 2009. The FY11 projects under NREL's Energy Storage R&D program are briefly described below. Each of these is discussed in depth in the main sections of this report.

  11. Activities of research-reactor-technology project in FNCA from FY2005 to FY2007. Sharing neutronics calculation technique for core management and utilization of research reactors

    International Nuclear Information System (INIS)

    2010-07-01

    RRT project (Research-Reactor-Technology Project) was carried out with the theme of 'sharing neutronics calculation technique for core management and utilization of research reactors' in the framework of FNCA (Forum for Nuclear Cooperation in Asia) from FY2005 to FY2007. The objective of the project was to improve and equalize the level of neutronics calculation technique for the reactor core management among participating countries to assure the safe and stable operation of research reactors and the promotion of the effective utilization. Neutronics calculation codes, namely SRAC code system and MVP code, were adopted as common codes. Participating countries succeeded in applying the common codes to analyzing the core of each domestic research reactor. Some participating countries succeeded in applying the common codes to analyzing for utilization of own research reactors. Activities of RRT project have improved and equalized the level of neutronics calculation technique among participating countries. (author)

  12. Research and development project report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report summarizes results of research and development projects administered by NEDO for FY 1996. Overview of new energy projects and twelve chapters for individual projects are provided in the report. The new energy technology development projects administered by NEDO are classified into twelve categories, i.e., Development of technologies for solar energy utilization, Development of geothermal resources, Development of technologies for exploration and utilization of geothermal energy, Development of coal energy utilization technologies, Development of coal resources, Development of energy conversion and storage technologies, Development of hydrogen, alcohol and biomass technologies, Development of other oil-alternative energy technologies, Introduction and promotion of new energy sources, International energy-promotion activities, Promotion of development and introduction, and Activities of the NEDO Information Center. To ensure energy security and actively cope with environmental problems such as by taking carbon dioxide emission control measures, NEDO has stepped up its efforts to develop new energy- and energy saving-related technologies and introduce and diffuse them. 79 figs., 37 tabs.

  13. Technology development, evaluation, and application (TDEA) FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, L.G.

    1998-05-01

    The public expects that the Los Alamos National Laboratory (LANL) will operate in a manner that prevents negative impacts to the environment and protects the safety and health of its employees and the public. To achieve this goal within budget, the Department of Energy (DOE) and LANL must develop new and improved environment, safety, and health (ES and H) technologies and implement innovative, more cost-effective ES and H approaches to operations. In FY95, the Environment, Safety, and Health (ESH) Division initiated a Technology Development, Evaluation, and Application (TDEA) program. The purpose of this unique program is to test and develop technologies that solve LANL ES and H problems and improve the safety of LANL operations. This progress report presents the results of 10 projects funded in FY97 by the TDEA Committee of the Environment, Safety, and Health Division. Products generated from the projects funded in FY97 included implementation of radiation worker dosimetric monitoring systems (two); evaluation and validation of cost-effective animal-tracking systems for environmental studies (two); evaluation of personal protective equipment (two); and development of a method for optimal placement of continuous air monitors in the workplace.

  14. Technology development, evaluation, and application (TDEA) FY 1997 progress report

    International Nuclear Information System (INIS)

    Hoffman, L.G.

    1998-05-01

    The public expects that the Los Alamos National Laboratory (LANL) will operate in a manner that prevents negative impacts to the environment and protects the safety and health of its employees and the public. To achieve this goal within budget, the Department of Energy (DOE) and LANL must develop new and improved environment, safety, and health (ES and H) technologies and implement innovative, more cost-effective ES and H approaches to operations. In FY95, the Environment, Safety, and Health (ESH) Division initiated a Technology Development, Evaluation, and Application (TDEA) program. The purpose of this unique program is to test and develop technologies that solve LANL ES and H problems and improve the safety of LANL operations. This progress report presents the results of 10 projects funded in FY97 by the TDEA Committee of the Environment, Safety, and Health Division. Products generated from the projects funded in FY97 included implementation of radiation worker dosimetric monitoring systems (two); evaluation and validation of cost-effective animal-tracking systems for environmental studies (two); evaluation of personal protective equipment (two); and development of a method for optimal placement of continuous air monitors in the workplace

  15. FY 1997 Report on New Sunshine Project. International co-operative projects (Australia-Japan solar energy technology cooperation, etc); 1997 nendo kokusai kyoryoku jigyo. Nichigonado taiyo energy gijutsu kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Described herein are the progresses, memorandum concluded for the new project, NEDO/MUERI project activities, among others, for, e.g., Australia-Japan solar energy technology co-operative project. The photovoltaic cell outdoor exposure test project has been progressing as expected in Australia since FY 1996. The test data have been collected for one year and analyzed successively. The second information exchange workshop is scheduled in June 1998 in Sydney for the thin-film, polycrystalline photovoltaic cell manufacturing technologies. The new type photovoltaic cell long-term exposure test project has been started in FY 1997 as the new project in Oman. The weather conditions of the test site are very severe, very high both in temperature and humidity. The new type photovoltaic cell modules, centered by the amorphous silicon, will be exposure-tested in the severe atmospheres, to verify long-term reliability of the photovoltaic cells. A total of 5 types of the modules are to be exposure-tested; 3 types of 6 amorphous silicon cells, one type of 2 CdS/CdTe cells, and one type of 2 thin-film polycrystalline cells. (NEDO)

  16. NREL Energy Storage Projects: FY2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.; Ban, C.; Brooker, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Long, D.; Neubauer, J.; Santhanagopalan, S.; Smith, K.; Tenent, R.; Wood, E.; Han, T.; Hartridge, S.; Shaffer, C. E.

    2014-07-01

    In FY13, DOE funded NREL to make technical contributions to various R&D activities. This report summarizes NREL's R&D projects in FY13 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY13 projects under NREL's Energy Storage R&D program are discussed in depth in this report.

  17. Research and development project plans for FY 1995; 1995 nendo kenkyu kaihatsu jigyo keikaku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The present research and development project plans for FY 1995 administrated by NEDO consist of research and development of new energy, and research and development of industrial technology. Are illustrated further enhancement of new energy introduction promotion measures, new stage of international projects, promotion of new energy and new energy technology development, further enhancement of industrial and scientific technology research and development, integrated measures against global and urban environment problems, and budget of NEDO projects in FY 1995. The research and development of new energy includes coal conversion technology, solar energy technology, geothermal energy technology, energy conversion and storage technology, hydrogen, alcohol and biomass energy technology, geothermal energy resources, coal resources development, new energy promotion department activities, NEDO information center activities, and so on. On the other hand, the research and development of industrial technology includes research and development of industrial technology, and global environment technology. The research and development of industrial technology consists of superconductivity, new materials, biotechnology, electronics, information and communications, machinery and aerospace, natural resources, humanity, life and society, and various leading researches.

  18. Advanced energy projects FY 1994 research summaries

    International Nuclear Information System (INIS)

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation's energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects

  19. Environmental management compliance reengineering project, FY 1997 report

    International Nuclear Information System (INIS)

    VanVliet, J.A.; Davis, J.N.

    1997-09-01

    Through an integrated reengineering effort, the Idaho National Engineering and Environmental Laboratory (INEEL) is successfully implementing process improvements that will permit safe and compliant operations to continue during the next 5 years, even though $80 million was removed from the Environmental Management (EM) program budget. A 2-year analysis, design, and implementation project will reengineer compliance-related activities and reduce operating costs by approximately $17 million per year from Fiscal Year (FY) 1998 through 2002, while continuing to meet the INEEL''s environment, safety, and health requirements and milestone commitments. Compliance reengineer''s focus is improving processes, not avoiding full compliance with environmental, safety, and health laws. In FY 1997, compliance reengineering used a three-phase approach to analyze, design, and implement the changes that would decrease operating costs. Implementation for seven specific improvement projects was completed in FY 1997, while five projects will complete implementation in FY 1998. During FY 1998, the three-phase process will be repeated to continue reengineering the INEEL

  20. Environmental management compliance reengineering project, FY 1997 report

    Energy Technology Data Exchange (ETDEWEB)

    VanVliet, J.A.; Davis, J.N.

    1997-09-01

    Through an integrated reengineering effort, the Idaho National Engineering and Environmental Laboratory (INEEL) is successfully implementing process improvements that will permit safe and compliant operations to continue during the next 5 years, even though $80 million was removed from the Environmental Management (EM) program budget. A 2-year analysis, design, and implementation project will reengineer compliance-related activities and reduce operating costs by approximately $17 million per year from Fiscal Year (FY) 1998 through 2002, while continuing to meet the INEEL`s environment, safety, and health requirements and milestone commitments. Compliance reengineer`s focus is improving processes, not avoiding full compliance with environmental, safety, and health laws. In FY 1997, compliance reengineering used a three-phase approach to analyze, design, and implement the changes that would decrease operating costs. Implementation for seven specific improvement projects was completed in FY 1997, while five projects will complete implementation in FY 1998. During FY 1998, the three-phase process will be repeated to continue reengineering the INEEL.

  1. FY 2000 report on the research cooperation project on the research cooperative follow-up for development of the manufacturing technology supported by advanced and integrated information system through cooperation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The manufacturing technology supported by advanced and integrated information system through cooperation (MATIC), that is, a project supporting the production technology including the international information system and CAD/CAM system, etc. was carried out from FY 1994 to FY 1998. From FY 1999, the follow-up project is being implemented for the spread of the MATIC results, support for the independent R and D and the technical guidance. China, Indonesia, Malaysia and Singapore participated in this project, by which the support and technical guidance were given in three fields: automobiles/the parts; household electric appliances/the parts; fiber/apparel. At present, each country is continuing its own activity for using the system developed in the MATIC project in its country. In this fiscal year, researchers were sent to each country for supporting the activities. Further, the MATIC follow-up committee was established to conduct the drawing-up of a business plan, grasp of the state of the spread/R and D, discussion about problems/subjects, comprehensive evaluation of the MATIC project, etc. (NEDO)

  2. Force Projection Technology Overview

    Science.gov (United States)

    2011-08-12

    Technologies • Fuel Efficient Powertrain Lubricant • Nanotechnology for Fuels and Lubes • Water from Air • Water Reuse • In-line Water Monitoring...purification systems with new pretreatment, desalination and post treatment technologies. Payoff: • Reduces the logistical footprint associated with water...FY11 FY12 FY13 FY14 FY15 FY16 FY17 •Water From Air •Water Quality Monitoring •Water Reuse •Pre and Post Treatment • Desalination 6 5 5

  3. Advanced energy projects FY 1997 research summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  4. FY-95 technology catalog. Technology development for buried waste remediation

    International Nuclear Information System (INIS)

    1995-01-01

    The US Department of Energy's (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described

  5. FY-95 technology catalog. Technology development for buried waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  6. FY 2000 report on the results of the project for the promotion of industrial technology development for the global environment. Project on the investigational research of high technology; 2000 nendo NEDO seika hokokusho. Chikyu kankyo sangyo gijutsu kaihatsu suishin jigyo - Sentan gijutsu chosa kenkyu jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    High-tech study was conducted for fields of CO2 fixation/effective utilization, technical development of low environmental load substances and technical development of environmentally friendly type production process, and the FY 2000 results were summarized. Out of the proposals for research projects collected in FY 1999, 25 projects that were recognized to be excellent were consigned to contract research. Research Institute of Innovative Technology for the Earth also selected 4 projects for research. Through research activities, 179 projects were made public, and 2 patents were applied for. The number of research themes was 29 including the following themes: development of food resource resistant to the future global environment, study on new circulation type polymer chemical recycling by bio-process, development of dioxin decomposition technology using artificial enzyme and absorption resin, design of rare metal free cathode substance for large lithium ion secondary battery, and reforming of carbon circulation system in the Australian desert by natural humus supply. (NEDO)

  7. Advanced Energy Projects FY 1990 research summaries

    International Nuclear Information System (INIS)

    1990-09-01

    This report serves as a guide to prepare proposals and provides summaries of the research projects active in FY 1990, sponsored by the Office of Basic Energy Sciences Division of Advanced Energy Projects, Department of Energy. (JF)

  8. Assessment report of research and development activities in FY2006 activity. 'Fast reactor cycle technology development project' (Interim report)

    International Nuclear Information System (INIS)

    2007-08-01

    Japan Atomic Energy Agency (hereinafter referred to as 'JAEA') asked the advisory committee 'evaluation Committee of Research and Development (R and D) Activities for Advanced Nuclear System/Nuclear Fuel Cycle Technology' (hereinafter referred to as 'Committee') to assess the interim report on Fast Reactor Cycle Technology Development Project ' (former 'Feasibility Study on Commercialized Fast Reactor Cycle Systems') in FY2006, in accordance with 'General Guideline for the Evaluation of Government R and D Activities' by Japanese Cabinet Office, 'Guideline for Evaluation of R and D in Ministry of Education, Culture Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by JAEA. In response to JAEA's request, the Committee assessed the R and D program over five years, the criteria for adoption judgment on innovative technologies at the end of 2010 (Project Review), and the organization structure for R and D. etc. (Management Review). As a result of review, the Committee concluded that this R and D program and its organization structure are almost reasonable. (author)

  9. FY-1981 project status for the Transuranic Waste Treatment Facility

    International Nuclear Information System (INIS)

    Benedetti, R.L.; Tait, T.D.

    1981-11-01

    The primary objective of the Transuranic Waste Treatment Facility (TWTF) Project is to provide a facility to process low-level transuranic waste stored at the Idaho National Engineering Laboratory (INEL) into a form acceptable for disposal at the Waste Isolation Pilot Plant. This report provides brief summary descriptions of the project objectives and background, project status through FY-1981, planned activities for FY-1982, and the EG and G TWTF Project office position on processing INEL transuranic waste

  10. Results of single borehole hydraulic tests in the Mizunami Underground Research Laboratory project. FY 2012 - FY 2015

    International Nuclear Information System (INIS)

    Onoe, Hironori; Takeuchi, Ryuji

    2016-11-01

    This report summarize the results of the single borehole hydraulic tests of 151 sections carried out at the -300 m Stage and the -500 m Stage of the Mizunami Underground Research Laboratory from FY 2012 to FY 2015. The details of each test (test interval depth, geology, etc.) as well as the interpreted hydraulic parameters and analytical methods used are presented in this report. Furthermore, the previous results of the single borehole hydraulic tests carried out in the Regional Hydrogeological Study Project and the Mizunami Underground Research Laboratory Project before FY 2012 are also summarized in this report. (author)

  11. Safeguards and Security Technology Development Directory. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The Safeguards and Security Technology Development Directory is published annually by the Office of Safeguards and Security (OSS) of the US Department of Energy (DOE), and is Intended to inform recipients of the full scope of the OSS R&D program. It is distributed for use by DOE headquarters personnel, DOE program offices, DOE field offices, DOE operating contractors, national laboratories, other federal agencies, and foreign governments. Chapters 1 through 7 of the Directory provide general information regarding the Technology Development Program, including the mission, program description, organizational roles and responsibilities, technology development lifecycle, requirements analysis, program formulation, the task selection process, technology development infrastructure, technology transfer activities, and current research and development tasks. These chapters are followed by a series of appendices which contain more specific information on aspects of the Program. Appendix A is a summary of major technology development accomplishments made during FY 1992. Appendix B lists S&S technology development reports issued during FY 1992 which reflect work accomplished through the OSS Technology Development Program and other relevant activities outside the Program. Finally, Appendix C summarizes the individual task statements which comprise the FY 1993 Technology Development Program.

  12. Sludge Treatment and Extraction Technology Development: Results of FY 1993 studies

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Wagner, M.J.; Barrington, R.J.; Rapko, B.M.; Carlson, C.D.

    1994-03-01

    This report describes experimental results from work conducted in FY 1993 under the Sludge Treatment and Extraction Technology Development Task of the Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project at Pacific Northwest Laboratory (PNL). Experiments were conducted in the following six general areas: (1) sludge washing, (2) sludge leaching, (3) sludge dissolution, (4) actinide separation by solvent extraction and extraction chromatography, (5) Sr separation by solvent extraction, and (6) extraction of Cs from acidic solution

  13. FY 2000 research cooperation project on plastic processing technology/quality inspection technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of improving the production technology of plastic products in Saudi Arabia, the joint development was made of the formation technology/quality inspection technology of agricultural use and food packaging use polyolefin film optimum to environmental conditions of the site, in the light of the needs there, and the FY 2000 results were reported. In the field survey/joint study, for the xenon type weather resistant testing machine and the extruder of the inflation film forming machine which were transported from Japan, the following were carried out: confirmation of the situation of accepting them on the site, functional test of computer of the extruder, installation of the machine testing weather resistance, and the trial operation. In the domestic support study, the extrusion test at laboratory was conducted using the polyethylene resin produced on the site to acquire the basic data for formation stability. Further, the film formation test was made using the equipment with the same specifications as those of the equipment introduced to the site to study the performance of screw extrusion and the formation stability of film. Also conducted were the analytical test/quality evaluation of resin materials/film. (NEDO)

  14. Summary of NREL's FY13-FY15 Photovoltaic Subprogram

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-31

    In this report, you will find summaries of the completed FY13-FY15 Photovoltaic projects that were funded within NREL. The summaries describe the initial motivation for the project; significant achievements, including publications, intellectual property, and collaborations; and remaining challenges. Among the NREL projects, you will find research of almost every major PV technology - from the next generation of silicon PV to relatively new organic PVs - as well as projects advancing PV module durability and characterization. Each of these projects was designed to support SunShot's goals, putting the United States one step closer to widespread use of low-cost, clean electricity.

  15. Live from Space Station Learning Technologies Project

    Science.gov (United States)

    2001-01-01

    This is the Final Report for the Live From Space Station (LFSS) project under the Learning Technologies Project FY 2001 of the MSFC Education Programs Department. AZ Technology, Inc. (AZTek) has developed and implemented science education software tools to support tasks under the LTP program. Initial audience consisted of 26 TreK in the Classroom schools and thousands of museum visitors to the International Space Station: The Earth Tour exhibit sponsored by Discovery Place museum.

  16. LANL C10.2 Projects in FY13

    International Nuclear Information System (INIS)

    Batha, Steven H.; Fincke, James R.; Schmitt, Mark J.

    2012-01-01

    LANL has two projects in C10.2: Defect-Induced Mix Experiment (DIME) (ongoing, several runs at Omega; NIF shots this summer); and Shock/Shear (tested at Omega for two years; NIF shots in second half of FY13). Each project is jointly funded by C10.2, other C10 MTEs, and Science Campaigns. DIME is investigating 4π and feature-induced mix in spherically convergent ICF implosions by using imaging of the mix layer. DIME prepared for NIF by demonstrating its PDD mix platform on Omega including imaging mid-Z doped layers and defects. DIME in FY13 will focus on PDD symmetry-dependent mix and moving burn into the mix region for validation of mix/burn models. Re-Shock and Shear are two laser-driven experiments designed to study the turbulent mixing of materials. In FY-2012 43 shear and re-shock experimental shots were executed on the OMEGA laser and a complete time history obtained for both. The FY-2013 goal is to transition the experiment to NIF where the larger scale will provide a longer time period for mix layer growth.

  17. Repository Technology Program activities, FY 1988

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.; Wijesinghe, A.M.; Thorpe, R.K.; Knapp, R.B.

    1989-07-01

    Our technical activities in FY 1988 included instrument selection and evaluation, calculational work, and simulator development. Near the end of the fiscal year, we began preparing several topical reports to document our results. This fiscal year, we continued developing three-dimensional numerical simulators to model coupled hydrologic-and mechanical-rock mass responses and, thus, to provide representative numerical tools for understanding and calculating these in situ processes. We also began scoping calculations in the second half of FY 1988 to evaluate ERE design criteria, but this work was redirected late in the year when the DOE/AECL Subsidiary Agreement was set aside. Our work in developing and evaluating experimental techniques focused on total pressure measurements, moisture content measurement, and tracer detection instrumentation for sealing experiments and for rock-mass-response field tests. At the end of the fiscal year, we completed a review of measurement technology for instrumenting migration/sorption tests to help define the technological requirements in these areas. By the end of FY 1988, we had completed a review of the existing codes for simulating reactive transport; we are using the results of this review to help formulate plans for future activities in this area. The following sections describe the major RTP tasks and activities at LLNL in more detail, and they include our FY 1988 accomplishments in these areas. 8 refs., 22 figs

  18. FY 1991 project plan for the Hanford Environmental Dose Reconstruction Project, Phase 2

    International Nuclear Information System (INIS)

    1991-02-01

    Phase 1 of the Hanford Environmental Dose Reconstruction Project was designed to develop and demonstrate a method for estimating radiation doses people may have received from Hanford Site operations since 1944. The method researchers developed relied on a variety of measured and reconstructed data as input to a modular computer model that generates dose estimates and their uncertainties. As part of Phase 1, researchers used the reconstructed data and computer model to calculate preliminary dose estimates for populations in a limited geographical area and time period. Phase 2, now under way, is designed to evaluate the Phase 1 data and model and improve them to calculate more accurate and precise dose estimates. Phase 2 will also be used to obtain preliminary estimates of two categories of doses: for Native American tribes and for individuals included in the pilot phase of the Hanford Thyroid Disease Study (HTDS). TSP Directive 90-1 required HEDR staff to develop Phase 2 task plans for TSP approval. Draft task plans for Phase 2 were submitted to the TSP at the October 11--12, 1990 public meeting, and, after discussions of each activity and associated budget needs, the TSP directed HEDR staff to proceed with a slate of specific project activities for FY 1991 of Phase 2. This project plan contains detailed information about those activities. Phase 2 is expected to last 15--18 months. In mid-FY 1991, project activities and budget will be reevaluated to determine whether technical needs or priorities have changed. Separate from, but related to, this project plan, will be an integrated plan for the remainder of the project. HEDR staff will work with the TSP to map out a strategy that clearly describes ''end products'' for the project and the work necessary to complete them. This level of planning will provide a framework within which project decisions in Phases 2, 3, and 4 can be made

  19. Nevada nuclear waste storage investigations: FY 1980 Project Plan and FY 1981 forecast

    International Nuclear Information System (INIS)

    1980-02-01

    The DOE is responsible for developing or improving the technology for safely and permanently isolating radioactive wastes from the biosphere. The National Waste Terminal Storage Program, which is a part of the US Nuclear Waste Management Program, is concerned with disposing of the high-level wastes associated with DOE and commercial nuclear reactor fuel cycles. The DOE/NV has been delegated the responsibility to evaluate the geohydrologic setting and underground rock masses of the Nevada Test Site (NTS) area to determine whether a suitable site exists for constructing a repository for isolating highly radioactive solid wastes. Accordingly, the Nevada Nuclear Waste Storage Investigations (NNWSI) were established by NV to conduct these evaluations. The NNWSI are managed by the DOE/NV, but the field and laboratory investigations are being performed by scientific investigators from several organizations. The four primary organizations involved are: Los Alamos Scientific Laboratory (LASL), Lawrence Livermore Laboratory (LLL), Sandia Laboratories (SL), and the US Geological Survey (USGS). DOE/NV is responsible for coordinating these investigations. This document presents the Project Plan for the NNWSI for FY 1980 and forecasts activities for FY 1981. Each task is divided into subtasks and described. This Plan is subject ot periodic review and revision by the DOE/NV. Changes will be addressed as they occur in NNWSI Quarterly Reports. This document also presents information on the Project's technical approach as well as its history, organization, and management

  20. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy's (DOE's) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID's technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID

  1. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  2. FY 1998 New Sunshine Project. International co-operative project (Summary); 1998 nendo new sunshine keikaku. Kokusai kyoryoku jigyo (sogoban)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Described herein are the basic plans for the international co-operative projects for development of technologies for commercialization of photovoltaic power systems (e.g., IEA co-operative programme on Photovoltaic Power Systems), and the minutes of the FY 1997 and 1998 meetings of the Solar Energy Technology International Research Co-operative Committee. Japan is responsible for implementing the following projects for promoting international cooperation for, e.g., IEA Photovoltaic Power Systems (PVPS): research and development, demonstration, analysis, information exchange, introduction promotion, etc. for IEA/PVPS Programme; and research and development, demonstration, analysis, information exchange, introduction promotion, etc. for IEA/Solar Heating and Cooling Programme. Japan is also implementing the co-operative projects for the photovoltaic power systems with the Summit participants, based on Science and Technology Working Group established by the Versailles Summit, technology cooperation with, e.g., Australia, and bilateral information exchange and technological survey projects with those countries which have already developed solar energy systems, e.g., USA, France, Spain and Italy. (NEDO)

  3. Projected Benefits of Federal Energy Efficiency and Renewable Energy Programs. FY 2005 - FY 2050

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2004-05-01

    This report describes a benefits analysis undertaken by EERE to better understand the extent to which the technologies and market improvements funded by its FY 2005 budget request will make energy more affordable, cleaner, and more reliable. It summarizes the results of the analysis, which focused on economic, environmental, and security benefits related to energy. The report identifies specific measures or indicators of estimated benefits for FY 2005.

  4. Advanced energy projects FY 1992 research summaries

    International Nuclear Information System (INIS)

    1992-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are beyond the scope of ongoing applied research or technology development programs. The Division provides a mechanism for converting basic research findings to applications that eventually could impact the Nation's energy economy. Technical topics include physical, chemical, materials, engineering, and biotechnologies. Projects can involve interdisciplinary approaches to solve energy-related problems. Projects are supported for a finite period of time, which is typically three years. Annual funding levels for projects are usually about $300,000 but can vary from approximately $50,000 to $500,000. It is expected that, following AEP support, each concept will be sufficiently developed and promising to attract further funding from other sources in order to realize its full potential. There were 39 research projects in the Division of Advanced Energy Projects during Fiscal Year 1992 (October 1, 1991 -- September 30, 1992). The abstracts of those projects are provided to introduce the overall program in Advanced Energy Projects. Further information on a specific project may be obtained by contacting the principal investigator, who is listed below the project title. Projects completed during FY 1992 are indicated

  5. FY2011 Budget Proposals and Projections

    Science.gov (United States)

    2010-03-29

    and FY2009, and corporate income tax receipts fell even more sharply. Federal deficits, according to OMB and CBO projections, will likely be high...gains receipts can be especially sensitive to cyclical economic conditions. Asset values and corporate profits—and thus federal corporate income tax and

  6. FY 1992 revised task plans for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Shipler, D.B.

    1992-04-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to populations and individuals. The primary objectives of work to be performed in FY 1992 is to determine the appropriate scope (space, time, and radionuclides, pathways and individuals/population groups) and accuracy (level of uncertainty in dose estimates) for the project. Another objective is to use a refined computer model to estimate Native American tribal doses and individual doses for the Hanford Thyroid Disease Study (HTDS). Project scope and accuracy requirements defined in FY 1992 can translated into model and data requirements that must be satisfied during FY 1993

  7. Airspace Systems Program: Next Generation Air Transportation System Concepts and Technology Development FY2010 Project Plan Version 3.0

    Science.gov (United States)

    Kopardekar, Parimal H.

    2010-01-01

    This document describes the FY2010 plan for the management and execution of the Next Generation Air Transportation System (NextGen) Concepts and Technology Development (CTD) Project. The document was developed in response to guidance from the Airspace Systems Program (ASP), as approved by the Associate Administrator of the Aeronautics Research Mission Directorate (ARMD), and from guidelines in the Airspace Systems Program Plan. Congress established the multi-agency Joint Planning and Development Office (JPDO) in 2003 to develop a vision for the 2025 Next Generation Air Transportation System (NextGen) and to define the research required to enable it. NASA is one of seven agency partners contributing to the effort. Accordingly, NASA's ARMD realigned the Airspace Systems Program in 2007 to "directly address the fundamental research needs of the Next Generation Air Transportation System...in partnership with the member agencies of the JPDO." The Program subsequently established two new projects to meet this objective: the NextGen-Airspace Project and the NextGen-Airportal Project. Together, the projects will also focus NASA s technical expertise and world-class facilities to address the question of where, when, how and the extent to which automation can be applied to moving aircraft safely and efficiently through the NAS and technologies that address optimal allocation of ground and air technologies necessary for NextGen. Additionally, the roles and responsibilities of humans and automation influence in the NAS will be addressed by both projects. Foundational concept and technology research and development begun under the NextGen-Airspace and NextGen-Airportal projects will continue. There will be no change in NASA Research Announcement (NRA) strategy, nor will there be any change to NASA interfaces with the JPDO, Federal Aviation Administration (FAA), Research Transition Teams (RTTs), or other stakeholders

  8. FY08 Engineering Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C; McNichols, D

    2009-02-24

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technology development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

  9. Biological and chemical technologies research. FY 1995 annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-03-01

    The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

  10. Technology Development, Evaluation, and Application (TDEA) FY 1998 Progress Report Environment, Safety, and Health (ESH) Division

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Hoffman; Kenneth Alvar; Thomas Buhl; Bruce Erdal; Philip Fresquez; Elizabeth Foltyn; Wayne Hansen; Bruce Reinert

    1999-06-01

    This progress report presents the results of 10 projects funded ($504K) in FY98 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Nine projects are new for this year; two projects were completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published 19 papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space were also provided to the TDEA-funded projects by organizations external to ESH Division. Products generated from the projects funded in FY98 included a new extremity dosimeter that replaced the previously used finger-ring dosimeters, a light and easy-to-use detector to measure energy deposited by neutron interactions, and a device that will allow workers to determine the severity of a hazard.

  11. Photovoltaic Subcontract Program, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    Summers, K.A. (ed.)

    1991-03-01

    This report summarizes the progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaics Program at the Solar Energy Research Institute (SERI). The SERI subcontracted PV research and development represents most of the subcontracted R D that is funded by the US Department of Energy (DOE) National Photovoltaics Program. This report covers fiscal year (FY) 1990: October 1, 1989 through September 30, 1990. During FY 1990, the SERI PV program started to implement a new DOE subcontract initiative, entitled the Photovoltaic Manufacturing Technology (PVMaT) Project.'' Excluding (PVMaT) because it was in a start-up phase, in FY 1990 there were 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of those subcontracts were with universities, at a total funding of over $3.3 million. Cost sharing by industry added another $4.3 million to that $11.9 million of SERI PV subcontracted R D. The six technical sections of this report cover the previously ongoing areas of the subcontracted program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs discuss approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports the progress since its inception in FY 1990. Highlights of technology transfer activities are also reported.

  12. Waste Generation Forecast for DOE-ORO's Environmental Restoration OR-1 Project: FY 1994--FY 2001

    International Nuclear Information System (INIS)

    1993-12-01

    This Waste Generation Forecast for DOE-ORO's Environmental Restoration OR-1 Project. FY 1994--FY 2001 is the third in a series of documents that report current estimates of the waste volumes expected to be generated as a result of Environmental Restoration activities at Department of Energy, Oak Ridge Operations Office (DOE-ORO), sites. Considered in the scope of this document are volumes of waste expected to be generated as a result of remedial action and decontamination and decommissioning activities taking place at these sites. Sites contributing to the total estimates make up the DOE-ORO Environmental Restoration OR-1 Project: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, the Y-12 Plant, the Paducah Gaseous Diffusion Plant, the Portsmouth Gaseous Diffusion Plant, and the off-site contaminated areas adjacent to the Oak Ridge facilities (collectively referred to as the Oak Ridge Reservation Off-Site area). Estimates are available for the entire fife of all waste generating activities. This document summarizes waste estimates forecasted for the 8-year period of FY 1994-FY 2001. Updates with varying degrees of change are expected throughout the refinement of restoration strategies currently in progress at each of the sites. Waste forecast data are relatively fluid, and this document represents remediation plans only as reported through September 1993

  13. FY 2000 Project of international clean energy network using hydrogen conversion (WE-NET)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the research and development project aimed at construction of the international clean energy network using hydrogen conversion (WE-NET). The projects include 12 tasks; system evaluation for, e.g., optimum scenario for introduction of hydrogen energy; experiments for hydrogen safety; study on the international cooperation for WE-NET; development of power generation technology using a 100kW cogeneration system including hydrogen-firing diesel engine; developmental research on vehicles driven by a hydrogen fuel cell system; developmental research on the basic technologies for PEFC utilizing pure hydrogen; developmental research on a 30Nm{sup 3}/hour hydrogen refueling station for vehicles; developmental research on hydrogen production technology; developmental research on hydrogen transportation and storage technology, e.g., liquid hydrogen pump; research and development of the databases of and processing technology for cryogenic materials exposed to liquid hydrogen; developmental research on hydrogen absorbing alloys for small-scale hydrogen transportation and storage systems; and study on innovative and leading technologies. (NEDO)

  14. Final Report Sustained Spheromak Physics Project FY 1997 - FY 1999

    International Nuclear Information System (INIS)

    Hooper, E.B.; Hill, D.N.

    2000-01-01

    This is the final report on the LDRD SI-funded Sustained Spheromak Physics Project for the years FY1997-FY1999, during which the SSPX spheromak was designed, built, and commissioned for operation at LLNL. The specific LDRD project covered in this report concerns the development, installation, and operation of specialized hardware and diagnostics for use on the SSPX facility in order to study energy confinement in a sustained spheromak plasma configuration. The USDOE Office of Fusion Energy Science funded the construction and routine operation of the SSPX facility. The main distinctive feature of the spheromak is that currents in the plasma itself produce the confining toroidal magnetic field, rather than external coils, which necessarily thread the vacuum vessel. There main objective of the Sustained Spheromak Physics Project was to test whether sufficient energy confinement could be maintained in a spheromak plasma sustained by DC helicity injection. Achieving central electron temperatures of several hundred eV would indicate this. In addition, we set out to determine how the energy confinement scales with T c and to relate the confinement time to the level of internal magnetic turbulence. Energy confinement and its scaling are the central technical issues for the spheromak as a fusion reactor concept. Pending the outcome of energy confinement studies now under way, the spheromak could be the basis for an attractive fusion reactor because of its compact size, simply-connected magnetic geometry, and potential for steady-state current drive

  15. Salt Repository Project: FY 85 technical project plan

    International Nuclear Information System (INIS)

    1985-07-01

    The FY 85 technical plan for the Salt Repository Project is briefly presented. The objectives of the project in relation to the Civilian Radioactive Waste Management Program are discussed, and the technical activities directed toward accomplishing these objectives are detailed. A budget is presented for each of the Level 2 work breakdown structure tasks (Systems, Waste Package, Site, Repository, Regulatory and Institutional, Exploratory Shaft, Test Facilities, Land Acquisition, and Project Management) in the various sections. An overall description, current status, and planned activities are presented for each of the subtasks which make up the above-mentioned Level 2 tasks. A strategy diagram and a master schedule are included and each of the milestones is also listed chronologically in the sections

  16. Photovoltaic Subcontract Program. Annual report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  17. Photovoltaic Subcontract Program, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  18. Nevada Test Site-Directed Research and Development: FY 2006 Report

    International Nuclear Information System (INIS)

    Wil Lewis, editor

    2007-01-01

    The Nevada Test Site Directed Research and Development (SDRD) program completed its fifth successful year of research and development activities in FY 2006. Forty new projects were selected for funding this year, and ten FY 2005 projects were brought to conclusion. The total funds expended by the SDRD program were $6 million, for an average per-project cost of $120 thousand. Beginning in May, 2006 programmatic burden rates were applied to SDRD project costs. An external audit conducted in September 2006 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: the filing of 27 invention disclosures for intellectual property generated by FY 2006 projects; programmatic adoption of four FY 2005 SDRD-developed technologies; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2006 projects; and the successful completion of 50 R and D projects, as presented in this report

  19. Nevada Test Site-Directed Research and Development: FY 2006 Report

    Energy Technology Data Exchange (ETDEWEB)

    Wil Lewis, editor

    2007-08-01

    The Nevada Test Site–Directed Research and Development (SDRD) program completed its fifth successful year of research and development activities in FY 2006. Forty new projects were selected for funding this year, and ten FY 2005 projects were brought to conclusion. The total funds expended by the SDRD program were $6 million, for an average per-project cost of $120 thousand. Beginning in May, 2006 programmatic burden rates were applied to SDRD project costs. An external audit conducted in September 2006 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: the filing of 27 invention disclosures for intellectual property generated by FY 2006 projects; programmatic adoption of four FY 2005 SDRD-developed technologies; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2006 projects; and the successful completion of 50 R&D projects, as presented in this report.

  20. Advanced energy projects: FY 1987 research summaries

    International Nuclear Information System (INIS)

    1987-09-01

    This report contains brief summaries of all projects active in the Division of Advanced Energy Projects during Fiscal Year 1987 (October 1, 1986-September 30, 1987). The intent of this compilation is to provide a convenient means for quickly acquainting an interested reader with the program in Advanced Energy Projects. More detailed information on research activities in a particular project may be obtained by contacting directly the principal investigator. Some projects will have reached the end of their contract periods by the time this book appears, and will, therefore, no longer be active. Those cases in which work was completed in FY '87 are indicated by the footnote: Project completed. The annual funding level of each project is shown

  1. Nevada Test Site-Directed Research and Development, FY 2007 Report

    International Nuclear Information System (INIS)

    Wil Lewis, editor

    2008-01-01

    The Nevada Test Site-Directed Research and Development (SDRD) program completed a very successful year of research and development activities in FY 2007. Twenty-nine new projects were selected for funding this year, and eight projects started in FY 2006 were brought to conclusion. The total funds expended by the SDRD program were $5.67 million, for an average per-project cost of $153 thousand. An external audit conducted in September 2007 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: programmatic adoption of 8 SDRD-developed technologies; the filing of 9 invention disclosures for innovation evolving from SDRD projects; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD Symposium that was broadly attended by Nevada Test Site (NTS), National Nuclear Security Administration (NNSA), LDRD, U.S. Department of Homeland Security (DHS), and U.S. Department of Defense (DoD) representatives; peer reviews of all FY 2007 projects; and the successful completion of 37 R and D projects, as presented in this report. In response to a company-wide call, authors throughout the NTS complex submitted 182 proposals for FY 2007 SDRD projects. The SDRD program has seen a dramatic increase in the yearly total of submitted proposals--from 69 in FY 2002 to 182 this year--while the number of projects funded has actually decreased from a program high of 57 in FY 2004. The overall effect of this trend has helped ensure an increasingly competitive program that benefited from a broader set of innovative ideas, making project selection both challenging and rewarding. Proposals were evaluated for technical merit, including such factors as innovation, probability of success, potential benefit, and mission applicability. Authors and reviewers benefited from the use of a shortfalls list entitled the 'NTS Technology Needs Assessment' that was compiled from NTS, National Weapons Laboratory (NWL

  2. Nevada Test Site-Directed Research and Development, FY 2007 Report

    Energy Technology Data Exchange (ETDEWEB)

    Wil Lewis, editor

    2008-02-20

    The Nevada Test Site-Directed Research and Development (SDRD) program completed a very successful year of research and development activities in FY 2007. Twenty-nine new projects were selected for funding this year, and eight projects started in FY 2006 were brought to conclusion. The total funds expended by the SDRD program were $5.67 million, for an average per-project cost of $153 thousand. An external audit conducted in September 2007 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: programmatic adoption of 8 SDRD-developed technologies; the filing of 9 invention disclosures for innovation evolving from SDRD projects; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD Symposium that was broadly attended by Nevada Test Site (NTS), National Nuclear Security Administration (NNSA), LDRD, U.S. Department of Homeland Security (DHS), and U.S. Department of Defense (DoD) representatives; peer reviews of all FY 2007 projects; and the successful completion of 37 R&D projects, as presented in this report. In response to a company-wide call, authors throughout the NTS complex submitted 182 proposals for FY 2007 SDRD projects. The SDRD program has seen a dramatic increase in the yearly total of submitted proposals--from 69 in FY 2002 to 182 this year--while the number of projects funded has actually decreased from a program high of 57 in FY 2004. The overall effect of this trend has helped ensure an increasingly competitive program that benefited from a broader set of innovative ideas, making project selection both challenging and rewarding. Proposals were evaluated for technical merit, including such factors as innovation, probability of success, potential benefit, and mission applicability. Authors and reviewers benefited from the use of a shortfalls list entitled the 'NTS Technology Needs Assessment' that was compiled from NTS, National Weapons Laboratory

  3. FY95 software project management plan: TMACS, CASS computer systems

    International Nuclear Information System (INIS)

    Spurling, D.G.

    1994-01-01

    The FY95 Work Plan for TMACS and CASS Software Projects describes the activities planned for the current fiscal year. This plan replaces WHC-SD-WM-SDP-008. The TMACS project schedule is included in the TWRS Integrated Schedule

  4. FY05 Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-11-01

    , the PTTC from the start has captured and reported data that document the myriad ways its programs impact industry. Of 119 workshops in FY05 where repeat attendance was reported, 59 percent of attendees on average had attended a PTTC event previously, indicating that a majority felt they were receiving enough value to come back. It also is encouraging that, after 11 years, PTTC events continue to attract new people. The form used at workshops to get participants feedback asks for a ''yes'' or ''no'' response to the question: ''Have you used any new technologies based on knowledge gained through PTTC?'' With data now available from 611 workshops, 41 percent of respondents said, ''yes'', confirming that people are applying the information they receive at PTTC workshops. PTTC in FY04 asked RLO directors, oilfield service companies and producers in 11 areas with significant technological barriers to adding new reserves to estimate the ''PTTC Impact Factor''--that is, the percentage of the total reserves added in their areas that logically could be attributed to PTTC's efforts. Of the estimated 1,266 million barrels of oil equivalent (BOE) added in the 11 areas, participants estimated that roughly 88 million BOE had been added as a result of PTTC's techtransfer efforts. PTTC's 10 regions are the primary delivery mechanism for technology transfer. Attendance at PTTC regional activities set a record in FY05, with 8,900 individuals attending 154 workshops, lunch-and-learn events, or student training and internships. When appropriate, regional workshops incorporate R&D findings from DOE-funded projects. This year HQ began a ''Microhole Technology Integration'' Initiative with DOE to more clearly present their microhole program to producers. Often events are held cooperatively with other national organizations, regional producer associations and

  5. Fiscal Year (FY) 2017 Activities for the Spent Fuel Nondestructive Assay Project

    Energy Technology Data Exchange (ETDEWEB)

    Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trahan, Alexis Chanel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McMath, Garrett Earl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Grogan, Brandon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-11

    The main focus of research in the NA-241 spent fuel nondestructive assay (NDA) project in FY17 has been completing the fabrication and testing of two prototype instruments for upcoming spent fuel measurements at the Clab interim storage facility in Sweden. One is a passive instrument: Differential Die-away Self Interrogation-Passive Neutron Albedo Reactivity (DDSI), and one is an active instrument: Differential Die-Away-Californium Interrogation with Prompt Neutron (DDA). DDSI was fabricated and tested with fresh fuel at Los Alamos National Laboratory in FY15 and FY16, then shipped to Sweden at the beginning of FY17. Research was performed in FY17 to simplify results from the data acquisition system, which is complex because signals from 56 different 3He detectors must be processed using list mode data. The DDA instrument was fabricated at the end of FY16. New high count rate electronics better suited for a spent fuel environment (i.e., KM-200 preamplifiers) were built specifically for this instrument in FY17, and new Tygon tubing to house electrical cables was purchased and installed. Fresh fuel tests using the DDA instrument with numerous configurations of fuel rods containing depleted uranium (DU), low enriched uranium (LEU), and LEU with burnable poisons (Gd) were successfully performed and compared to simulations.1 Additionally, members of the spent fuel NDA project team travelled to Sweden for a “spent fuel characterization and decay heat” workshop involving simulations of spent fuel and analysis of uncertainties in decay heat calculations.

  6. FY 2000 report on the promotion projects by Research Institute of Innovative Technology for the Earth. Projects for international research exchanges and international seminars; 2000 nendo chikyu kankyo sangyo gijutsu kaihatsu suishin jigyo chosa hokokusho. Kokusai kenkyu koryu jigyo / kokusai seminar kaisai jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the results of the international research exchange projects promoted by Research Institute of Innovative Technology for the Earth (RITE) in FY 2000. The international research exchanges are important for creation of new research areas and technological systems for solving the global environmental problems. In order to promote these activities, RITE invites and dispatches researchers to international conferences and symposiums, promotes research exchanges with major foreign research institutes and academic organizations, and invites and dispatches researchers for medium to long periods. These projects promote exchanges of the latest researches with various institutes, both domestic and foreign, and confirm that the research and development projects now RITE is promoting are closely related to those promoted by various organizations. In the FY 2000, RITE invites 5 foreign researchers for joint researches, and invites 3 foreign researchers to international conferences. RITE also dispatches 3 Japanese researchers to American and European universities, and 12 Japanese researchers to international conferences and the like, to effectively promote the domestic researches and grasp development tendencies at institutes of various countries. RITE holds 5 international seminars for exchanging and discussing broad topics over advanced researches related to global environmental technologies by researchers, both domestic and foreign. (NEDO)

  7. Laboratory technology research - abstracts of FY 1997 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  8. FY2000 Hanford Technology Deployment Accomplishments Fact Sheets

    International Nuclear Information System (INIS)

    WIBLE, R.A.

    2001-01-01

    Cleaning up the Hanford Site is one of the top priorities for the U. S. Department of Energy. The department is continually looking for ways to expedite cleanup and reduce costs. During Fiscal Year (FY) 2000. Hanford Site staff deployed 24 new technologies, which produced an estimated lifecycle cost savings of 479 million dollars. This is a clear indicator of the impacts new technology has had and will have on the cleanup efforts. The Hanford Site cleanup is focused on the following: Restoring the Columbia River Corridor; Building and operating the tank waste treatment complex to complete the cleanup of highly radioactive tank waste at Hanford; and Transitioning the Central Plateau. Applying innovative science and technology from national laboratories, universities, and private industry is critical to our complex cleanup mission. The 24 new technologies deployed in FY 2000 are significantly higher than our goal of 14 technological deployments. Eleven of these technologies supported restoring the Columbia River Corridor, and seven were involved with the remediation of radioactive tank waste. These deployments produced valuable information to determine the effectiveness of the new technologies in the field and the efficiencies gained over existing cleanup methods. In several cases, the technology deployed presented a solution to a problem where a clear path of remediation had not yet been determined. New and innovative technologies will play a significant role in the cleanup of the Hanford Site and enable remediation to be done more efficiently. Technology is being developed at a staggering pace. This requires excellent communication throughout the scientific and industry arenas. To effect this communication, we have implemented a technology needs process in conjunction with the multi-year work planning process. Through the combination of these two processes, technology developments and deployments address the near-term technology needs and enable us to plan for the

  9. Salt Repository Project. FY-84 technical project plan

    International Nuclear Information System (INIS)

    1984-08-01

    The FY 84 technical plans for the Salt Repository Project (SRP) are briefly presented. The objectives of the project in relation to the Civilian Radioactive Waste Management (CRWM) program are discused and the technical activities directed toward accomplishing these objectives are detailed. A budget is presented for each of the Level 2 Work Breakdown Structure Tasks (Systems, Waste Package, Site, Repository, Regulatory and Institutional, Test Facilities, Exploratory Shaft, Land Acquisition, and Program Management) in an appendix. An overall description, current status, and planned activities are presented for each of the subtasks which make up the above-mentioned Level 2 tasks. Milestones and their definitions for the plan year, as well as milestones for the outyears are also presented at this same subtask level for each subtask

  10. Hearth monitoring project annual report for FY-1981

    International Nuclear Information System (INIS)

    Nieschmidt, E.B.; Lawrence, R.S.

    1981-08-01

    Progress during FY 1981 in the Hearth Monitoring project for the Idaho National Engineering Laboratory Transuranic Waste Treatment Facility is reported. Results of calculational, experimental and instrumental phases of the program are presented. Recommendations and plans for continuation of the program are displayed. Schedules for future efforts are included

  11. Oak Ridge National Laboratory Institutional Plan FY 1984-FY 1989

    International Nuclear Information System (INIS)

    1983-11-01

    In this plan, Oak Ridge National Laboratory (ORNL) continues to be committed to scientific and technological research that is based on technical excellence and innovation and that provides a foundation for and a stimulus to broader and more sustained economic growth. DOE is being asked to assist in establishing a new program for Laboratory cooperation with industry, beginning with an initial focus on materials science. The current Institutional Plan thus projects growth in the materials science area as well as in other basic physical science areas and suggests a new initiative designed to extend the various technology transfer activities and to make them more effective by using ORNL as the trial Laboratory for some of these different approaches. This Institutional Plan projects a stable future for ORNL, with only modest amounts of growth in selected areas of research for the FY 1984-FY 1989 planning cycle. Summaries of the overall picture of the proposed budget and personnel levels for the current planning cycle are included. Scientific programs, laboratory resource development, and private sector interactions are discussed

  12. Biodiesel from aquatic species. Project report: FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.M.; Sprague, S.; Jarvis, E.E.; Dunahay, T.G.; Roessler, P.G.; Zeiler, K.G.

    1994-01-01

    Researchers in the Biodiesel/Aquatic Species Project focus on the use of microalgae as a feedstock for producing renewable, high-energy liquid fuels. The program`s basic premise is that microalgae, which have been called the most productive biochemical factories in the world, can produce up to 30 times more oil per unit of growth area than land plants. It is estimated that 150 to 400 barrels of oil per acre per year (0.06 to 0.16 million liters/hectar) could be produced with microalgal oil technology. Initial commercialization of this technology is envisioned for the desert Southwest because this area provides high solar radiation and offers flat land that has few competing uses (hence low land costs). Similarly, there are large saline aquifers with few competing uses in the region. This water source could provide a suitable, low-cost medium for the growth of many microalgae. The primary area of research during FY 1993 was the effort to genetically improve microalgae in order to control the timing and magnitude of lipid accumulation. Increased lipid content will have a direct effect on fuel price, and the control of lipid content is a major project goal. The paper describes progress on the following: culture collection; molecular biology of lipid biosynthesis; microalgal transformation; and environmental, safety, and health and quality assurance.

  13. Biological and Chemical Technologies Research at OIT: Annual Summary Report, FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1998-03-01

    The annual summary report presents the fiscal year (FY) 1 997 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1997 (ASR 97) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization; selected technical and programmatic highlights for 1 997; detailed descriptions of individual projects; and a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by the program.

  14. Technology Development, Evaluation, and Application (TDEA) FY 2001 Progress Report Environment, Safety, and Health (ESH) Division

    Energy Technology Data Exchange (ETDEWEB)

    L.G. Hoffman; K. Alvar; T. Buhl; E. Foltyn; W. Hansen; B. Erdal; P. Fresquez; D. Lee; B. Reinert

    2002-05-01

    This progress report presents the results of 11 projects funded ($500K) in FY01 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division (ESH). Five projects fit into the Health Physics discipline, 5 projects are environmental science and one is industrial hygiene/safety. As a result of their TDEA-funded projects, investigators have published sixteen papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplement funds and in-kind contributions, such as staff time, instrument use, and workspace, were also provided to TDEA-funded projects by organizations external to ESH Divisions.

  15. Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division

    International Nuclear Information System (INIS)

    Hoffman, Larry G.

    2000-01-01

    This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division

  16. Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Hoffman

    2000-12-01

    This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division.

  17. Nevada Test Site-Directed Research, Development, and Demonstration. FY2005 report

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Will [comp.

    2006-09-01

    The Nevada Test Site-Directed Research, Development, and Demonstration (SDRD) program completed a very successful year of research and development activities in FY 2005. Fifty new projects were selected for funding this year, and five FY 2004 projects were brought to conclusion. The total funds expended by the SDRD program were $5.4 million, for an average per project cost of just under $100,000. Two external audits of SDRD accounting practices were conducted in FY 2005. Both audits found the program's accounting practices consistent with the requirements of DOE Order 413.2A, and one included the observation that the NTS contractor ''did an exceptional job in planning and executing year-start activities.'' Highlights for the year included: the filing of 18 invention disclosures for intellectual property generated by FY 2005 projects; programmatic adoption of 17 FY 2004 SDRD-developed technologies; participation in the tri-lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2005 projects; and the successful completion of 55 R&D projects, as presented in this report.

  18. FY2011 Engineering Innovations, Research, and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Kip [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, Harry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Poyneer, Lisa A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shusteff, Maxim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spadaccini, Christopher M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hopkins, Jonathan B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bernier, Joel V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); King, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Puso, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, Todd H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Goldstein, Noah C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sales, Ana Paula De Oliveira [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dehlinger, Dietrich A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kotovsky, Jack [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kuntz, Joshua D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Voss, Lars F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wheeler, Elizabeth K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chang, John T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lehman, Sean K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vernon, Stephen P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tang, Vincent [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-04-24

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory’s Engineering Directorate for FY2011. These efforts exemplify Engineering’s nearly 60-year history of developing and applying the technology innovations needed for the Laboratory’s national security missions, and embody Engineering’s mission to “Enable program success today and ensure the Laboratory’s vitality tomorrow.

  19. Final Report to the National Energy Technology Laboratory on FY14- FY15 Cooperative Research with the Consortium for Electric Reliability Technology Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vittal, Vijay [Arizona State Univ., Tempe, AZ (United States); Lampis, Anna Rosa [Arizona State Univ., Tempe, AZ (United States)

    2018-01-16

    The Power System Engineering Research Center (PSERC) engages in technological, market, and policy research for an efficient, secure, resilient, adaptable, and economic U.S. electric power system. PSERC, as a founding partner of the Consortium for Electric Reliability Technology Solutions (CERTS), conducted a multi-year program of research for U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) to develop new methods, tools, and technologies to protect and enhance the reliability and efficiency of the U.S. electric power system as competitive electricity market structures evolve, and as the grid moves toward wide-scale use of decentralized generation (such as renewable energy sources) and demand-response programs. Phase I of OE’s funding for PSERC, under cooperative agreement DE-FC26-09NT43321, started in fiscal year (FY) 2009 and ended in FY2013. It was administered by DOE’s National Energy Technology Laboratory (NETL) through a cooperative agreement with Arizona State University (ASU). ASU provided sub-awards to the participating PSERC universities. This document is PSERC’s final report to NETL on the activities for OE, conducted through CERTS, from September 2015 through September 2017 utilizing FY 2014 to FY 2015 funding under cooperative agreement DE-OE0000670. PSERC is a thirteen-university consortium with over 30 industry members. Since 1996, PSERC has been engaged in research and education efforts with the mission of “empowering minds to engineer the future electric energy system.” Its work is focused on achieving: • An efficient, secure, resilient, adaptable, and economic electric power infrastructure serving society • A new generation of educated technical professionals in electric power • Knowledgeable decision-makers on critical energy policy issues • Sustained, quality university programs in electric power engineering. PSERC core research is funded by industry, with a budget supporting

  20. Annual Report: Photovoltaic Subcontract Program FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Summers, K. A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  1. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This report contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Subject areas covered are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  2. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2014-03-01

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program proves its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.

  3. FY 1993 task plans for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Shipler, D.B.

    1991-10-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to individuals and populations. The primary objective of work to be performed in FY 1993 is to complete the source term estimates and dose estimates for key radionuclides for the air and river pathways. At the end of FY 1993, the capability will be in place to estimate doses for individuals in the extended (32-county) study area, 1944--1991. Native American research will continue to provide input for tribal dose estimates. In FY 1993, the Technical Steering Panel (TSP) will decide whether demographic and river pathways data collection should be extended beyond FY 1993 levels. The FY 1993 work scopes and milestones in this document are based on the work plan discussed at the TSP Budget/Fiscal Subcommittee meeting on August 19--20, 1991. Table 1 shows the FY 1993 milestones; Table 2 shows estimated costs. The subsequent work scope descriptions are based on the milestones. This document and the FY 1992 task plans will form the basis for a contract with Battelle and the Centers for Disease Control (CDC). The 2-year dose reconstruction contract is expected to begin in February 1992. This contract will replace the current arrangement, whereby the US Department of Energy directly funds the Pacific Northwest Laboratory to conduct dose reconstruction work. In late FY 1992, the FY 1993 task plans will be more fully developed with detailed technical approaches, data quality objectives, and budgeted labor hours. The task plans will be updated again in July 1993 to reflect any scope, milestone, or cost changes directed during the year by the TSP. 2 tabs

  4. FY 1998 report on the result of the R and D of human sense measurement application technology. II. Main issue (1); 1998 nendo ningen kankaku keisoku oyo gijutsu no kenkyu kaihatsu itaku kenkyu seika hokokusho. 2. Honronhen (1)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper reported the results of the FY 1998 R and D on human sense measurement application technology. Term I of this project is FY 1990-1994, when the interim evaluation was made. The project entered Term II of FY 1995-1998. In Term II, developments were made of the human sense measuring technology to make a 'measure' for health/safety and amenity/convenience which are important to human life, study of application examples for studying effectiveness by concretely applying this measuring technology to examples of products and working place/residential environment, evaluation simulation technology to qualitatively/objectively measure/evaluate amenity and adaptability in stead of humans, human sense database models which collected various human sense data obtained in measuring, etc. Through these technology development, the systematization of human sense indexes is attempted, and finally the following are conducted: development of measuring technology of kindness and evaluation equipment, environment/product design support, manual making for human sense measurement, construction of human sense database, etc. In FY 1998, the results of the measuring technology were mainly obtained. (NEDO)

  5. FY 1992 work plan and technical progress reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-11-01

    The Desert Research Institute (DRI) is a division of the University of Nevada System devoted to multidisciplinary scientific research. For more than 25 years, DRI has conducted research for the US Department of Energy`s Nevada Field Office (DOE/NV) in support of operations at the Nevada Test Site (NTS). During that time, the research program has grown from an early focus on hydrologic studies to include the areas of geology, archaeology, environmental compliance and monitoring, statistics, database management, public education, and community relations. The range of DRI`s activities has also expanded to include a considerable amount of management and administrative support in addition to scientific investigations. DRI`s work plan for FY 1992 reflects a changing emphasis in DOE/NV activities from nuclear weapons testing to environmental restoration and monitoring. Most of the environmental projects from FY 1991 are continuing, and several new projects have been added to the Environmental Compliance Program. The Office of Technology Development Program, created during FY 1991, also includes a number of environmental projects. This document contains the FY 1992 work plan and quarterly technical progress reports for each DRI project.

  6. KEK Engineering Department -activity report FY 2003

    International Nuclear Information System (INIS)

    2005-03-01

    This report includes all kinds of activities of the Engineering Department of KEK from 2002 to 2003 FY. There are fourteen chapters, which contain KEK Prize for engineering, KEK meeting of engineering technologies, Engineering Seminar, COACK (Component Oriented Advanced Control Kernel) for cooperation R and D project, Forum on engineering technologies from 1998 to 2003 FY, Engineering Department Symposium, service trainings, Engineering Department research study, English training, training for professional worker, training for technical expert, report on joint training for technical expert, training for middle school students, and the Engineering Department system and the main events from 1971 to 2003. (S.Y. )

  7. FY 1991 Task plans for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    1991-04-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to populations and individuals. The objectives of work in Fiscal Year (FY) 1991 are to analyze data and models used in Phase 1 and restructure the models to increase accuracy and reduce uncertainty in dose estimation capability. Databases will be expanded and efforts will begin to determine the appropriate scope (space, time, radionuclides, pathways and individuals/population groups) and accuracy (level of uncertainty in dose estimates) for the project. Project scope and accuracy requirements, once defined, can be translated into additional model and data requirements later in the project. Task plans for FY 1991 have been prepared based on activities approved by the Technical Steering Panel (TSP) in October 1990 and mid-year revisions discussed at the TSP planning/budget workshop in February 1991. The activities can be divided into two broad categories: (1) model and data development and evaluation, (2) project, technical and communication support. 3 figs., 1 tab

  8. FY 2000 research cooperation project on the research cooperation for the commercialization of the waste water treatment technology for global warming prevention. Final report on subsidy work; NEDO kenkyu kyoryoku jigyo. Chikyu ondanka boshi haisui shori gijutsu no jitsuyoka ni kansuru kenkyu kyoryoku jose gyomu (Saishu hokokusho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    As to the commercialization of the waste water treatment technology for food plant, the research cooperation with Thailand was carried out from FY 1998 to FY 2000, and the results were summed up. In this project, the R and D were made for the following purposes: treatment of organic matters in waste water for reduction in water pollutants, recovery of the methane gas emitted in the atmosphere for the effective use, reduction in sludge generation in the anaerobic + aerobic treatment system, simplification of operation/maintenance of the system, reduction in running cost. In FY 1998, conducted were the design of the total process and the manufacture/construction of a part of the anaerobic treatment process. In FY 1999, conducted was the manufacture/construction of the total process including the aerobic treatment process. After the completion of the construction work, operational study was made. In FY 2000, the demonstrative operation was conducted at the demonstrative plant, and the technology transfer was made in terms of analysis of operational data, maintenance of equipment, operational management, etc. Further, the technical explanatory meeting such as seminar was held as activities for the spread of this technology. (NEDO)

  9. Technology '90

    International Nuclear Information System (INIS)

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report

  10. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sutula, Raymond A. [DOE Solar Energy Technologies Program, Washington, D.C. (United States)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the program for fiscal year 2005. In particular, the report describes R&D performed by the Program’s national laboratories and university and industry partners.

  11. FY 2000 report on the research cooperation project on the research cooperative follow-up for development of the manufacturing technology supported by advanced and integrated information system through cooperation; 2000 nendo kenkyu kyoryoku jigyo. 2000 nendo kan'i sosagata denshi sekkei seisan shien system no kaihatsu ni kansuru kenkyu kyoryoku follow up jigyo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The manufacturing technology supported by advanced and integrated information system through cooperation (MATIC), that is, a project supporting the production technology including the international information system and CAD/CAM system, etc. was carried out from FY 1994 to FY 1998. From FY 1999, the follow-up project is being implemented for the spread of the MATIC results, support for the independent R and D and the technical guidance. China, Indonesia, Malaysia and Singapore participated in this project, by which the support and technical guidance were given in three fields: automobiles/the parts; household electric appliances/the parts; fiber/apparel. At present, each country is continuing its own activity for using the system developed in the MATIC project in its country. In this fiscal year, researchers were sent to each country for supporting the activities. Further, the MATIC follow-up committee was established to conduct the drawing-up of a business plan, grasp of the state of the spread/R and D, discussion about problems/subjects, comprehensive evaluation of the MATIC project, etc. (NEDO)

  12. FY 2000 report on the research cooperation project on the research cooperative follow-up for development of the manufacturing technology supported by advanced and integrated information system through cooperation; 2000 nendo kenkyu kyoryoku jigyo. 2000 nendo kan'i sosagata denshi sekkei seisan shien system no kaihatsu ni kansuru kenkyu kyoryoku follow up jigyo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The manufacturing technology supported by advanced and integrated information system through cooperation (MATIC), that is, a project supporting the production technology including the international information system and CAD/CAM system, etc. was carried out from FY 1994 to FY 1998. From FY 1999, the follow-up project is being implemented for the spread of the MATIC results, support for the independent R and D and the technical guidance. China, Indonesia, Malaysia and Singapore participated in this project, by which the support and technical guidance were given in three fields: automobiles/the parts; household electric appliances/the parts; fiber/apparel. At present, each country is continuing its own activity for using the system developed in the MATIC project in its country. In this fiscal year, researchers were sent to each country for supporting the activities. Further, the MATIC follow-up committee was established to conduct the drawing-up of a business plan, grasp of the state of the spread/R and D, discussion about problems/subjects, comprehensive evaluation of the MATIC project, etc. (NEDO)

  13. 2020 Vision Project Summary, FY98

    Energy Technology Data Exchange (ETDEWEB)

    A Munoz; J. C. Clausen; K. P. Scott; K. W. Gordon

    1998-11-01

    The 2020 Vision project began in 1996 with two participating teachers and four classes. It has since grown to comprise more than a dozen participating teachers and hundreds of students across the country. Much of this growth took place in FY98, thanks to the accomplishment of several major goals: implementation of a mentor program, enhanced teacher training, a mid-year conference for students, recruitment of distant schools, and the development of an interactive Web site. The first part of this report describes these accomplishments, as well as future directions for 2020 Vision. The second part summarized the scenarios students wrote during the 1997-98 school year. it identifies recurrent themes in the students' scenarios and compares/contrasts them with scenarios written in the first two years of the project.

  14. Laboratory Technology Research: Abstracts of FY 1996 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  15. DOE Solar Energy Technologies Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  16. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  17. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  18. Nevada Nuclear Waste Storage Investigations. FY 1979 project plan

    International Nuclear Information System (INIS)

    1979-03-01

    This document presents the management and cost for the Nevada Nuclear Waste Storage Investigations (disposal of high-level wastes at Nevada Test Site) and provides a complete description of the overall project, management structure, technical approach, and work breakdown structure. The document is organized into five major sections. Section I summarizes the history of the project and indicates a potential future course of action. FY 1979 project work is briefly described in Section II. Section III outlines the delegated responsibilities of all project management functions. A list of critical questions that guide the technical approach of the project are presented in Section IV. Section V contains subtask work plans which outline the work in detail for this fiscal year

  19. Advanced Neutron Source (ANS) Project progress report, FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H.; King-Jones, K.H. [eds.; Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Central Engineering Services

    1995-01-01

    The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

  20. Advanced Neutron Source (ANS) Project progress report, FY 1994

    International Nuclear Information System (INIS)

    Campbell, J.H.; King-Jones, K.H.; Thompson, P.B.

    1995-01-01

    The President's budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met

  1. FY 1992 task plans for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    1991-10-01

    Phase 1 of the HEDR Project was designed to develop and demonstrate a method for estimating radiation doses people may have received from Hanford Site operations since 1944. The method researchers developed relied on a variety of measured and reconstructed data as input to a modular computer model that generates dose estimates and their uncertainties. As part of Phase 1, researchers used the reconstructed data and computer model to calculate preliminary dose estimates for populations from limited radionuclides, in a limited geographical area and time period. Phase 1 ended in FY 1990. In February 1991, the TSP decided to shift the project planning approach away from phases--which were centered around completion of major portions of technical activities--to individual fiscal years (FYs), which span October of one year through September of the next. Therefore, activities that were previously designated to occur in phases are now designated in an integrated schedule to occur in one or more of the next fiscal years into FY 1995. Task plans are updated every 6 months. In FY 1992, scientists will continue to improve Phase 1 data and models to calculate more accurate and precise dose estimates. The plan for FY 1992 has been prepared based on activities and budgets approved by the Technical Steering Panel (TSP) at its meeting on August 19--20, 1991. The activities can be divided into four categories: (1) model and data evaluation activities, (2) additional dose estimates, (3) model and data development activities, and (4) technical and communication support. 3 figs., 2 tabs

  2. The global unified parallel file system (GUPFS) project: FY 2002 activities and results

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Gregory F.; Lee, Rei Chi; Welcome, Michael L.

    2003-04-07

    The Global Unified Parallel File System (GUPFS) project is a multiple-phase, five-year project at the National Energy Research Scientific Computing (NERSC) Center to provide a scalable, high performance, high bandwidth, shared file system for all the NERSC production computing and support systems. The primary purpose of the GUPFS project is to make it easier to conduct advanced scientific research using the NERSC systems. This is to be accomplished through the use of a shared file system providing a unified file namespace, operating on consolidated shared storage that is directly accessed by all the NERSC production computing and support systems. During its first year, FY 2002, the GUPFS project focused on identifying, testing, and evaluating existing and emerging shared/cluster file system, SAN fabric, and storage technologies; identifying NERSC user input/output (I/O) requirements, methods, and mechanisms; and developing appropriate benchmarking methodologies and benchmark codes for a parallel environment. This report presents the activities and progress of the GUPFS project during its first year, the results of the evaluations conducted, and plans for near-term and longer-term investigations.

  3. FY 1994 Annual Work Plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This is the third Office of Inspector General (OIG)Annual Work Plan. Its purpose is to summarize work completed in Fiscal Year (FY) 1993, identify ongoing projects from previous fiscal years which the OIG intends to continue into FY 1994, and announce planned projects which the OIG intends to begin in FY 19994.

  4. Tank Focus Area Pretreatment Program. FY 1995 Program Management Plan

    International Nuclear Information System (INIS)

    Morrison, M.I.; McGinnis, C.P.; Wilkenson, W.T.; Hunt, R.D.

    1995-02-01

    This program management plan (PMP) describes the FY 1995 project plans for the Pretreatment Program of the Tank Focus Area. The Tank Focus Area is one of five areas of environmental concerns originally identified by the Deputy Assistant Secretary for Technology Development (EM-50). Projects in the Tank Focus Area relate to the remediation of liquid waste stored in underground storage tanks at various US Department of Energy sites. The Pretreatment Program is an organizational unit performing work within the Tank Focus Area. The function of the Pretreatment Program is to develop, test, evaluate, and demonstrate new technologies, with emphasis on separations. The 11 Pretreatment Program projects for FY 1995 are (1) Cesium Extraction Testing, (2) Comprehensive Supernate Treatment, (3) Hot Cell Studies, (4) Cesium Removal Demonstration, (5) Out-of-Tank Evaporator Demonstration, (6) Crossflow Filtration, (7) Technical Interchange with CEA, (8) TRUEX Applications, (9) NAC/NAG Process Studies (conducted at Oak Ridge National Laboratory), (10) NAC/NAG Process and Waste Form Studies (conducted at Florida International University), and (11) Program Management. Section 2 of this PMP contains a separate subsection for each FY 1995 project. A brief description of the project, a schedule of major milestones, and a breakdown of costs are provided for each project. The PMP also contains sections that describe the project controls that are in place. Quality assurance, document control, the project management system, and the management organization are described in these sections

  5. Space Transportation Technology Workshop: Propulsion Research and Technology

    Science.gov (United States)

    2000-01-01

    This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.

  6. Plutonium stabilization and disposition focus area, FY 1999 and FY 2000 multi-year program plan

    International Nuclear Information System (INIS)

    1998-03-01

    Consistent with the Environmental Management's (EM's) plan titled, ''Accelerating Cleanup: Paths to Closure'', and ongoing efforts within the Executive Branch and Congress, this Multi-Year Program Plan (MYPP) for the Plutonium Focus Area was written to ensure that technical gap projects are effectively managed and measured. The Plutonium Focus Area (PFA) defines and manages technology development programs that contribute to the effective stabilization of nuclear materials and their subsequent safe storage and final disposition. The scope of PFA activities includes the complete spectrum of plutonium materials, special isotopes, and other fissile materials. The PFA enables solutions to site-specific and complex-wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. The report describes the current technical activities, namely: Plutonium stabilization (9 studies); Highly enriched uranium stabilization (2 studies); Russian collaboration program (2 studies); Packaging and storage technologies (6 studies); and PFA management work package/product line (3 studies). Budget information for FY 1999 and FY 2000 is provided

  7. Plutonium stabilization and disposition focus area, FY 1999 and FY 2000 multi-year program plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Consistent with the Environmental Management`s (EM`s) plan titled, ``Accelerating Cleanup: Paths to Closure``, and ongoing efforts within the Executive Branch and Congress, this Multi-Year Program Plan (MYPP) for the Plutonium Focus Area was written to ensure that technical gap projects are effectively managed and measured. The Plutonium Focus Area (PFA) defines and manages technology development programs that contribute to the effective stabilization of nuclear materials and their subsequent safe storage and final disposition. The scope of PFA activities includes the complete spectrum of plutonium materials, special isotopes, and other fissile materials. The PFA enables solutions to site-specific and complex-wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. The report describes the current technical activities, namely: Plutonium stabilization (9 studies); Highly enriched uranium stabilization (2 studies); Russian collaboration program (2 studies); Packaging and storage technologies (6 studies); and PFA management work package/product line (3 studies). Budget information for FY 1999 and FY 2000 is provided.

  8. Strategic Environmental Research and Development Project FY 1994: Assessing national remote sensing technologies for use in US Department of Energy Environmental Restoration Activities, Oak Ridge Solid Waste Storage Area 4 case study

    International Nuclear Information System (INIS)

    King, A.L.; Smyre, J.L.; Evers, T.K.

    1995-02-01

    During FY 1994, the Oak Ridge Environmental Restoration (ER) Remote Sensing Program teamed with members of the Oak Ridge National Security Program Office (NSPO), the Environmental Research Institute of Michigan (ERIM) under contract to the National Exploitation Laboratory (NEL), the Oak Ridge Waste Area Group 4 (WAG 4) ER Program, and the US Department of Energy (DOE), Offices of Technology Development, Nonproliferation and National Security, and Environmental Restoration, to conduct a test and demonstration of the uses of national remote sensing technologies at DOE hazardous waste sites located in Oak Ridge, Tennessee. Objectives of the Oak Ridge study were to determine if national remote sensing technologies are useful in conducting prescreening, characterization, and/or monitoring activities to expedite the clean-up process at hazardous waste sites and to cut clean-up costs wherever possible. This project was sponsored by the Strategic Environmental Research and Development Project (SERDP)

  9. Technology '90

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  10. Bangladesh Agro-Climatic Environmental Monitoring Project

    Science.gov (United States)

    Vermillion, C.; Maurer, H.; Williams, M.; Kamowski, J.; Moore, T.; Maksimovich, W.; Obler, H.; Gilbert, E.

    1988-01-01

    The Agro-Climatic Environmental Monitoring Project (ACEMP) is based on a Participating Agency Service Agreement (PASA) between the Agency for International Development (AID) and the National Oceanic and Atmospheric Administration (NOAA). In FY80, the Asia Bureau and Office of Federal Disaster Assistance (OFDA), worked closely to develop a funding mechanism which would meet Bangladesh's needs both for flood and cyclone warning capability and for application of remote sensing data to development problems. In FY90, OFDA provided for a High Resolution Picture Transmission (HRPT) receiving capability to improve their forecasting accuracy for cyclones, flooding and storm surges. That equipment is primarily intended as a disaster prediction and preparedness measure. The ACEM Project was designed to focus on the development applications of remote sensing technology. Through this Project, AID provided to the Bangladesh Government (BDG) the equipment, technical assistance, and training necessary to collect and employ remote sensing data made available by satellites as well as hydrological data obtained from data collection platforms placed in major rivers. The data collected will enable the BDG to improve the management of its natural resources.

  11. Hanford isotope project strategic business analysis yttrium-90 (Y-90)

    International Nuclear Information System (INIS)

    1995-10-01

    The purpose of this analysis is to address the short-term direction for the Hanford yttrium-90 (Y-90) project. Hanford is the sole DOE producer of Y-90, and is the largest repository for its source in this country. The production of Y-90 is part of the DOE Isotope Production and Distribution (IP and D) mission. The Y-90 is ''milked'' from strontium-90 (Sr-90), a byproduct of the previous Hanford missions. The use of Sr-90 to produce Y-90 could help reduce the amount of waste material processed and the related costs incurred by the clean-up mission, while providing medical and economic benefits. The cost of producing Y-90 is being subsidized by DOE-IP and D due to its use for research, and resultant low production level. It is possible that the sales of Y-90 could produce full cost recovery within two to three years, at two curies per week. Preliminary projections place the demand at between 20,000 and 50,000 curies per year within the next ten years, assuming FDA approval of one or more of the current therapies now in clinical trials. This level of production would incentivize private firms to commercialize the operation, and allow the government to recover some of its sunk costs. There are a number of potential barriers to the success of the Y-90 project, outside the control of the Hanford Site. The key issues include: efficacy, Food and Drug Administration (FDA) approval and medical community acceptance. There are at least three other sources for Y-90 available to the US users, but they appear to have limited resources to produce the isotope. Several companies have communicated interest in entering into agreements with Hanford for the processing and distribution of Y-90, including some of the major pharmaceutical firms in this country

  12. Hanford isotope project strategic business analysis yttrium-90 (Y-90)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The purpose of this analysis is to address the short-term direction for the Hanford yttrium-90 (Y-90) project. Hanford is the sole DOE producer of Y-90, and is the largest repository for its source in this country. The production of Y-90 is part of the DOE Isotope Production and Distribution (IP and D) mission. The Y-90 is ``milked`` from strontium-90 (Sr-90), a byproduct of the previous Hanford missions. The use of Sr-90 to produce Y-90 could help reduce the amount of waste material processed and the related costs incurred by the clean-up mission, while providing medical and economic benefits. The cost of producing Y-90 is being subsidized by DOE-IP and D due to its use for research, and resultant low production level. It is possible that the sales of Y-90 could produce full cost recovery within two to three years, at two curies per week. Preliminary projections place the demand at between 20,000 and 50,000 curies per year within the next ten years, assuming FDA approval of one or more of the current therapies now in clinical trials. This level of production would incentivize private firms to commercialize the operation, and allow the government to recover some of its sunk costs. There are a number of potential barriers to the success of the Y-90 project, outside the control of the Hanford Site. The key issues include: efficacy, Food and Drug Administration (FDA) approval and medical community acceptance. There are at least three other sources for Y-90 available to the US users, but they appear to have limited resources to produce the isotope. Several companies have communicated interest in entering into agreements with Hanford for the processing and distribution of Y-90, including some of the major pharmaceutical firms in this country.

  13. Fire-Protection Research for Energy-Technology Projects: FY 1981 year-end report

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Foote, K.L.; Priante, S.J.

    1982-07-20

    This report summarizes research conducted in fiscal year 1981 for the DOE-supported project, Fire Protection Research for Energy Technology Projects. Initiated in 1977, this ongoing research program was conceived to advance fire protection strategies for Energy Technology Projects to keep abreast of the unique fire problems that are developing with the complexity of energy technology research. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Employing these facilities as models for methodology development, we are simultaneously advancing three major task areas: (1) determination of unique fire hazards of current fusion energy facilities; (2) evaluation of the ability of accepted fire management measures to meet and negate hazards; and (3) performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models.

  14. Fire-Protection Research for Energy-Technology Projects: FY 1981 year-end report

    International Nuclear Information System (INIS)

    Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Foote, K.L.; Priante, S.J.

    1982-01-01

    This report summarizes research conducted in fiscal year 1981 for the DOE-supported project, Fire Protection Research for Energy Technology Projects. Initiated in 1977, this ongoing research program was conceived to advance fire protection strategies for Energy Technology Projects to keep abreast of the unique fire problems that are developing with the complexity of energy technology research. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Employing these facilities as models for methodology development, we are simultaneously advancing three major task areas: (1) determination of unique fire hazards of current fusion energy facilities; (2) evaluation of the ability of accepted fire management measures to meet and negate hazards; and (3) performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models

  15. Buried Waste Integrated Demonstration FY-95 Deployment Plan

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, D.E.

    1995-03-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The FY-95 effort will fund 24 technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. Ten of these technologies will take part in the integrated field demonstration that will take place at the Idaho National Engineering Laboratory (INEL) facilities in the summer of 1995. This document is the basic operational planning document for deployment of all BWID projects funded in FY-95. Discussed in this document are the BWID preparations for the INEL integrated field demonstration, INEL research and development (R&D) demonstrations, non-INEL R&D demonstrations, and office research and technical review meetings. Each project will have a test plan detailing the specific procedures, objectives, and tasks of the test. Therefore, information that is specific to testing each technology is intentionally limited in this document.

  16. Buried Waste Integrated Demonstration FY-95 Deployment Plan

    International Nuclear Information System (INIS)

    Stacey, D.E.

    1995-03-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The FY-95 effort will fund 24 technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. Ten of these technologies will take part in the integrated field demonstration that will take place at the Idaho National Engineering Laboratory (INEL) facilities in the summer of 1995. This document is the basic operational planning document for deployment of all BWID projects funded in FY-95. Discussed in this document are the BWID preparations for the INEL integrated field demonstration, INEL research and development (R ampersand D) demonstrations, non-INEL R ampersand D demonstrations, and office research and technical review meetings. Each project will have a test plan detailing the specific procedures, objectives, and tasks of the test. Therefore, information that is specific to testing each technology is intentionally limited in this document

  17. Salt Repository Project: Waste Package Program (WPP) modeling activiteis: FY 1984 annual report

    International Nuclear Information System (INIS)

    Kuhn, W.L.; Simonson, S.A.; Pulsipher, B.A.

    1987-03-01

    The Pacific Northwest Laboratory (PNL) is supporting the US Department of Energy's (DOE) Salt Repository Project (SRP) through its Waste Package Program (WPP). During FY 1984, the WPP continued its program of waste package component development and interactions testing and application of the resulting data base to develop predictive models describing waste package degradation and radionuclide release. Within the WPP, the Modeling Task (Task 04 during FY 1984) was conducted to interpret the tests in such a way that scientifically defensible models can be developed for use in qualification of the waste package

  18. Fiscal year 1996 decontamination and decommissioning activities photobriefing book for the Argonne National Laboratory-East Site, Technology Development Division, Waste Management Program, Decontamination and Decommissioning Projects Department

    International Nuclear Information System (INIS)

    1996-01-01

    The Photobriefing Book describes the Decontamination and Decommissioning (D and D) Program at the Argonne National Laboratory-East Site (ANL-E) near Lemont, Illinois. This book summarizes current D and D projects, reviews fiscal year (FY) 1996 accomplishments, and outlines FY 1997 goals. A section on D and D Technology Development provides insight on new technologies for D and D developed or demonstrated at ANL-E. Past projects are recapped and upcoming projects are described as Argonne works to accomplish its commitment to, ''Close the Circle on the Splitting of the Atom.'' Finally, a comprehensive review of the status and goals of the D and D Program is provided to give a snap-shot view of the program and the direction it's taking as it moves into FY 1997. The D and D projects completed to date include: Plutonium Fuel Fabrication Facility; East Area Surplus Facilities; Experimental Boiling Water Reactor; M-Wing Hot Cell Facilities; Plutonium Gloveboxes; and Fast Neutron Generator

  19. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  20. FY 1990 Report on the results of the research and development project for the industrial base technologies of the next generation. Research and development of nonlinear optoelectronic materials; 1990 nendo hisenkei hikari denshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    Described herein are the FY 1990 results of the research and development project for the optoelectronic materials, implemented to cope with the highly information-oriented societies. The FY 1990 is the second year for the phase-I project of the basic plan, and the R and D efforts are directed to elucidation of the mechanisms involved in the nonlinear phenomena, exploration and designs of various materials, and investigations of the technologies for, e.g., the material synthesis and evaluation. The themes to be investigated by the long-term project include exploration and preparation of the superfine particles and base materials for the organic materials; and crystal growth, dispersion of the fine particles and development of the superlattices for development of the materials. The comprehensive investigation and research program investigates the trends of the related technologies, both domestic and foreign. A total of 9 research themes are recommissioned to 9 enterprises. They include organic, low-molecular-weight materials, growth of orientation-controlled crystals, films of high-molecular-weight organic conjugated compounds, glass-dispersed materials (prepared by the vapor-phase, impregnation of porous glass, sol-gel, superlow-melting glass and super-cooling methods), organic dispersed materials, development of the organic superlattices, and development of the three-dimensional superstructures. (NEDO)

  1. FY 1992 Research and development project for industrial science and technology. Part 1/2. Report on results of the R and D project for atomic/molecular level extreme manipulation technologies; 1992 nendo genshi bunshi kyokugen sosa gijutsu no kenkyu kaihatsu seika hokokusho. 1/2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-01

    Described herein are the FY 1992 results of the survey, research and development project aimed at establishment of the technologies for observing/manipulating atoms and molecules as the common basic technologies for various industrial areas, e.g., new materials, electronics, biotechnology and chemistry. The R and D program for the technologies for observing/manipulating atoms/molecules on solid surfaces involve studies on possibility of surface process controlling aided by, e.g., various mechanical probing techniques and electron beams, and on device structures and analytical procedures for measurement/analysis of the dynamic steps of atomic/molecular processes, producing the basic findings. Observation of hydrogen atoms adsorbed on Si surfaces is started anew, using a newly introduced superhigh-precision surface analysis/controlling device. Knowledge is obtained for research and development of the technologies for observing/manipulating a group of atoms within a space, observing/manipulating structures of organic compounds or the like, and atomic/molecular process theories , among others, through surveys of overseas situations, invitation of researchers, international workshops, technological information exchanges, etc. (NEDO)

  2. Advanced evaporator technology progress report FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

  3. Advanced evaporator technology progress report FY 1992

    International Nuclear Information System (INIS)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A.

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program open-quotes Technology Development for Concentrating Process Streams.close quotes The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report

  4. ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Koncinski, W.S. [ed.; Hawsey, R.A. [comp.

    1997-05-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1996 Annual Program Review held July 31 and August 1, 1996. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

  5. ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1995

    International Nuclear Information System (INIS)

    Hawsey, R.A.; Turner, J.W.

    1996-05-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1995 Annual Program Review held August 1-2, 1995. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems

  6. Fossil Energy Research and Development Program of the U. S. Department of Energy, FY 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-03-01

    The U.S. Department of Energy (DOE) focuses energy Research and Development efforts on new and promising ways to provide for our future energy needs. This document focuses on DOE's programs and projects related to the nation's Fossil Energy resources: coal, oil, natural gas and oil shale. Fossil Energy programs have grown rapidly from about $58 million in FY 1973 to the $802 million requested for FY 1979. As those programs have matured, there have been significant shifts in emphasis. For example, by FY 1979, gasification technologies will have matured sufficiently to enter the demonstration phase. Then we will have to make critical decisions as to which candidate processes to pursue and to encourage industry's active participation as early as possible. We will present the rationale for those changes and others at the beginning of each section describing a particular grouping of similar projects, e.g., coal liquefaction. We will then discuss each project and present its current status along with past and future milestones. Emphasis is on projects with early payoff potential, particularly the direct utilization of coal. However, this near-term emphasis will not overshadow the need for a stong technological base for development of longer-term promising technologies and the need for a strong environmental concern.

  7. [Shippingport Station Decommissioning Project]: FY 1987 annual progress report, October 1, 1986-September 30, 1987

    International Nuclear Information System (INIS)

    1988-01-01

    This report presents progress on the Shippingport Station Decommissioning Project for FY 1987. There are two main topics: Project Management and Decommissioning Project Activities. Changes from technical and managerial concepts developed in the original Decommissioning Plan are presented with the related technical, economic, or schedule considerations. 3 refs., 9 figs., 4 tabs

  8. Shippingport Station Decommissioning Project: FY 1988 annual progress report, October 1, 1987--September 30, 1988

    International Nuclear Information System (INIS)

    1989-01-01

    This report presents progress on the Shippingport Station Decommissioning Project for FY 1988. There are two main topics: Project Management and Decommissioning Project Activities. Changes from technical and managerial concepts developed in the original Decommissioning Plan are presented with the related technical, economic, or schedular considerations. 4 refs., 17 figs., 2 tabs

  9. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project FY17 Annual Review

    Science.gov (United States)

    Sakahara, Robert; Hackenberg, Davis; Johnson, William

    2017-01-01

    This presentation was presented to the Integrated Aviation Systems Program at the FY17 Annual Review of the UAS-NAS project. The presentation captures the overview of the work completed by the UAS-NAS project and its subprojects.

  10. Photovoltaic Subcontract Program, FY 1991. Annual report, [October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  11. The global unified parallel file system (GUPFS) project: FY 2003 activities and results

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Gregory F.; Baird William P.; Lee, Rei C.; Tull, Craig E.; Welcome, Michael L.; Whitney Cary L.

    2004-04-30

    The Global Unified Parallel File System (GUPFS) project is a multiple-phase project at the National Energy Research Scientific Computing (NERSC) Center whose goal is to provide a scalable, high-performance, high-bandwidth, shared file system for all of the NERSC production computing and support systems. The primary purpose of the GUPFS project is to make the scientific users more productive as they conduct advanced scientific research at NERSC by simplifying the scientists' data management tasks and maximizing storage and data availability. This is to be accomplished through the use of a shared file system providing a unified file namespace, operating on consolidated shared storage that is accessible by all the NERSC production computing and support systems. In order to successfully deploy a scalable high-performance shared file system with consolidated disk storage, three major emerging technologies must be brought together: (1) shared/cluster file systems software, (2) cost-effective, high-performance storage area network (SAN) fabrics, and (3) high-performance storage devices. Although they are evolving rapidly, these emerging technologies individually are not targeted towards the needs of scientific high-performance computing (HPC). The GUPFS project is in the process of assessing these emerging technologies to determine the best combination of solutions for a center-wide shared file system, to encourage the development of these technologies in directions needed for HPC, particularly at NERSC, and to then put them into service. With the development of an evaluation methodology and benchmark suites, and with the updating of the GUPFS testbed system, the project did a substantial number of investigations and evaluations during FY 2003. The investigations and evaluations involved many vendors and products. From our evaluation of these products, we have found that most vendors and many of the products are more focused on the commercial market. Most vendors

  12. FY 1996 report on the results of the development of superconductor power application technology. Study of a total system, etc. (Investigational study of the introductory effect); 1996 nendo chodendo denryoku oyo gijutsu kaihatsu seika hokokusho. Total system nado no kenkyu (donyu koka no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Under the secondary interim assessment made in FY 1995 between the assessment committee of the energy/environment technology development sectional meeting of the Industrial Technology Deliberation Council and NEDO, in this project, the following were conducted in FY 1996: study of trial manufacture of superconductor motor model machine and R and D of element technology (conductor technology/refrigerator technology). The study was proceeded mainly with Super-GM, and as to the motor, the preparation for test on a part of the model machines was finished. Considering FY 1998 which is the final year of this project, the investigational study in FY 1996 aims at accumulating/arranging/analyzing the data which help judge how to proceed with the future R and D of superconductor power application technology continuously based on the secondary interim assessment. For superconductor motor and various superconductor power appliance, economical/technical feasibilities and methods of R and D and surveys of trends in Japan and abroad for the R and D were made important items. Further, 'R and D of the basement of superconductor power application' proposed in the secondary interim assessment (R and D of the combination of elements which become the basement of equipment technology over a stage of parallel R and D of element technology of conductor, etc.) targeted the presentation of concrete details. (NEDO)

  13. FY 1996 report on the results of the development of superconductor power application technology. Study of a total system, etc. (Investigational study of the introductory effect); 1996 nendo chodendo denryoku oyo gijutsu kaihatsu seika hokokusho. Total system nado no kenkyu (donyu koka no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Under the secondary interim assessment made in FY 1995 between the assessment committee of the energy/environment technology development sectional meeting of the Industrial Technology Deliberation Council and NEDO, in this project, the following were conducted in FY 1996: study of trial manufacture of superconductor motor model machine and R and D of element technology (conductor technology/refrigerator technology). The study was proceeded mainly with Super-GM, and as to the motor, the preparation for test on a part of the model machines was finished. Considering FY 1998 which is the final year of this project, the investigational study in FY 1996 aims at accumulating/arranging/analyzing the data which help judge how to proceed with the future R and D of superconductor power application technology continuously based on the secondary interim assessment. For superconductor motor and various superconductor power appliance, economical/technical feasibilities and methods of R and D and surveys of trends in Japan and abroad for the R and D were made important items. Further, 'R and D of the basement of superconductor power application' proposed in the secondary interim assessment (R and D of the combination of elements which become the basement of equipment technology over a stage of parallel R and D of element technology of conductor, etc.) targeted the presentation of concrete details. (NEDO)

  14. Shippingport Station Decommissioning Project: FY 1986 annual progress report, October 1, 1985 through September 30, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This report presents progress on the Shippingport Station Decommissioning Project for FY 1986. There are two main topics: Project Management and Decommissioning Project Activities. Changes from technical and managerial concepts developed in the original Decommissioning Plan are presented with the related technical, economic, or schedule considerations. 9 refs., 4 figs., 3 tabs

  15. FY 1998 R and D project on industrial science technology; 1998 nendo ryoshi kino soshi no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The R and D on quantum functional devices (QFDs) were conducted, and the FY 1998 results were summed up. In the comprehensive survey on QFDs, the following were carried out for the efficient R and D promotion: R and D progress state survey/problem extraction/analytical study, technical trend survey, overseas survey ordered from overseas supplier, common basement technology study, etc. In the R and D on technology for QFDs, integration of multivalued logical devices using tunneling control functional devices, integration of logical memory devices using quantum levels, integration of quantum band combination-type multi-functional devices, silicon insulating film tunnel memory devices, assembly quantum dot functional memory, quantum wave switching functional devices, integration of single electron logical devices, integration of CMOS combination-type single electron devices, etc. Moreover, in the development of the basement technology of single electron devices, technology to construct element devices using quantum functions, basement technology of single electron device integration devices, architecture of single electron device information processing circuit system, etc. (NEDO)

  16. Small Business Innovation Research (SBIR) Program. Program Solicitation 90.2 FY-1990

    Science.gov (United States)

    1990-07-02

    A90-255 Biogeneration of Obscurants A90-256 Urease -Linked Immunoassay Reagent Stability Studies A90-257 Advanced Technology Microphone for NBC...Multispectral Smoke Model A90.311 Atmospheric Boundary Layer Stability Estimators For Urban Areas ELECTRONICS ThCHOLOGY AND DEVICES LABORATORY A90-312...Wideband Army Radars A90-329 GPS Frequency Translator Integrated Circuits A90-330 Surface-Mounted Multi- Layer Chip Varistors A90-331 Over-the-Ground

  17. FY 1991 Research and development project for large-scale industrial technologies. Report on results of R and D of superhigh technological machining systems; 1991 nendo chosentan kako system no kenkyu kaihatsu seika hokokusho. Chosentan kako system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    Described herein are the FY 1991 results of the R and D project aimed at establishment of superprecision machining technologies for developing machining technologies and nano-technologies aided by excited beams. The researches on the superprecision machining technologies involve design and development, on a trial basis, of the totally static pressure type positioning device, for which automatically controlling drawing is adopted to improve its rigidity. The researches on the surface modification technologies aided by ion beams involve scanning the ion beams onto the metallic plate to be provided around the glass substrate. The results indicate that the secondary electrons generated can be used to control charge-up. In addition, part of a 30cm square glass substrate is modified by implantation of the spot type ions of high current density, and the modified portion is used to produce a thin-film silicon transistor. The researches on superhigh-technological machining standard measurement involve improvement of precision of the system aided by a dye laser, which attains a precision of 0 to 30nm in a 0.1m measurement range. (NEDO)

  18. Hangman Restoration Project Year-End Report FY2008.

    Energy Technology Data Exchange (ETDEWEB)

    Coeur d' Alene Tribe Department of Natural Resources.

    2008-11-12

    This report covers the main goals of FY2008 from which the Work Elements were derived. The goals and products are listed by heading and the associated work elements are referenced in the text. A list of the FY2008 Work Elements is included as Appendix A. FY2008 witnessed the completion of the hntkwipn Management Plan and the first substantive efforts to restore the important habitats encompassed by the mitigation properties in the Upper Hangman Watershed. Native grasses were planted and germination was evaluated. Also, drain tiles that greatly altered the hydrologic function of the Sheep and Hangman Creek Flood Plains were removed and/or disrupted. Preparation for future restoration efforts were also made in FY2008. Designs were produced for the realignment of Sheep Creek and the decommissioning of seven drainage ditches within hntkwipn. A prioritization plan was drafted that greatly expands the area of focus for restoring native fish population in Hangman Creek.

  19. FY 1992 research and development project for large-scale industrial technologies. Report on results of R and D of superhigh technological machining systems; 1992 nendo chosentan kako system no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    Described herein are the FY 1992 results of the R and D project aimed at establishment of the technologies for development of, e.g., machine and electronic device members of superhigh precision and high functions by processing and superhigh-precision machining aided by excited beams. The elementary researches on superhigh-precision machining achieve the given targets for precision stability of the feed positioning device. The researches on development of high-precision rotating devices, on a trial basis, are directed to improvement of rotational precision of pneumatic static pressure bearings and magnetism correction/controlling circuits, increasing speed and precision of 3-point type rotational precision measurement methods, and development of rotation-driving motors, achieving rotational precision of 0.015{mu}m at 2000rpm. The researches on the surface modification technologies aided by ion beams involve experiments for production of crystalline Si films and thin-film transistors of the Si films, using the surface-modified portion of a large-size glass substrate. The researches on superhigh-technological machining standard measurement involve development of length-measuring systems aided by a dye laser, achieving a precision of {+-} 10nm or less in a 100mm measurement range. (NEDO)

  20. FY 1999 report on the results of the research and development project for the photon-aided instrumentation and processing technologies. R and D of the photon-aided instrumentation and processing technologies; 1999 nendo photon keisoku kako gijutsu seika hokokusho. Photon keisoku kako gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 1999 results of development of the photon-aided instrumentation and processing technologies. The photon technologies will be widely applicable to various industrial areas, e.g., medical, diagnostic, communication, transmission and chemical areas, in addition to instrumentation and processing, and the FY 1999 project is directed to the survey and analysis of the information, and prediction of their effects. The high-sensitivity light-receiving elements enlarged up to 5mm diameter (effective area) are developed, based on the technologies to grow the thin films using an MOVPE (metal-organic vapor-phase epitaxy) device and the results of development of the infrared ray-receiving InGaAs photodiode sensitive in a 2.5 to 2.7{mu}m wavelength range. The surface roughness of 0.4nmRMS is achieved by the bowl feed liquid polishing method, to develop the processing technologies for high-precision substrates for optical mirrors. The results are used to develop the prototype X-ray mirrors with surface accuracy of {lambda}/10 to {lambda}/20 and roughness of 0.3 to 0.5nmRMS. In the development of the technologies for the light sources which can sufficiently supply photons for exciting semiconductor lasers, the technologies are developed to efficiently converge the laser beams. Also developed are the apparatus which can converge the beams to a diameter of around 0.6mm, and the apparatus which uses optical fibers to evaluate the beam diameter. (NEDO)

  1. Institutional Plan, FY 1993--1998, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-01-01

    This document presents the plans and goals of the Idaho National Engineering Laboratory for FY 1993--1998. Areas discussed in this document include: INEL strategic view; initiatives; scientific and technical programs; environmental, safety, and health management, technology transfer, science and math education, and community affairs; human resources; site and facilities; and resource projections

  2. Studies on engineering technologies in the Mizunami Underground Research Laboratory. FY 2007 (Contract research)

    International Nuclear Information System (INIS)

    Noda, Masaru; Suyama, Yasuhiro; Nobuto, Jun; Ijiri, Yuji; Mikake, Shinichiro; Matsui, Hiroya

    2009-07-01

    The Mizunami Underground Research Laboratory (MIU) of the Japan Atomic Energy Agency is a major site for geoscientific research to advance the scientific and technological basis for geological disposal of high-level radioactive waste in crystalline rock. Studies on relevant engineering technologies in the MIU consist of a) research on design and construction technology for very deep underground applications, and b) research on engineering technology as a basis of geological disposal. In the Second Phase of the MIU project (the construction phase), engineering studies have focused on research into design and construction technologies for deep underground. The main subjects in the study of very deep underground structures consist of the following: 'Demonstration of the design methodology', 'Demonstration of existing and supplementary excavation methods', 'Demonstration of countermeasures during excavation' and 'Demonstration of safe construction'. In the FY 2007 studies, identification and evaluation of the subjects for study of engineering technologies in the construction phase were carried out to optimize future research work. Specific studies included: validation of the existing design methodology based on data obtained during construction; validation of existing and supplementary rock excavation methods for very deep shafts; estimation of rock stability under high differential water pressures, methodology on long-term maintenance of underground excavations and risk management systems for construction of underground structures have been performed. Based on these studies, future research focused on the four subject areas, which are 'Demonstration of the design methodology', 'Demonstration of existing and supplementary excavation methods', 'Demonstration of countermeasures during excavation' and 'Demonstration of safe construction', has been identified. The design methodology in the first phase of the MIU Project (surface-based investigation phase) was verified to

  3. FY 2001 report on the coal engineer training project. Advanced course; 2001 nendo sekitan gijutsusha yose jigyo. Jokyu kosu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    The paper summed up the details of the training in the coal engineer training project (advanced course) carried out in FY 2001. The term of training was from June 1 to November 14, 2001. In the business training, lectures were given on coal geology, coal exploration technology, coal mining technology, draft survey, coal sampling and analysis method, maritime freight transport mainly of coal, coal utilization technology, environmental protection technology related to coal utilization, projects on overseas coal development, physical properties/chemical characteristics and usage of coal, and coal situation in China. In the inspection training, inspectional visits were paid to Taiheiyo Coal Mining Co., Noshiro Power Plant of the Tohoku Electric Power Co., Kumagaya Plant of Taiheiyo Cement Corp. and Keihin Steelworks of NKK Corp. In the training overseas, inspectional visits were paid to the following in Australia: coal mines of Moonee, Rix's Creek, West Wallsend, Bloomfield, Beltana, Bulga, South Bulga, Mt. Thorley, Warkworth, Liddell, Wambo, Mount Owen, Camberwell, etc. and harbors of Port Newcastle, Port Kembla Coal Terminal, etc. (NEDO)

  4. Fire protection research for energy technology projects; FY 79 year-end report

    International Nuclear Information System (INIS)

    Hasegawa, H.K.; Alvares, N.J.; Lipska, A.E.; Ford, H.; Beason, D.G.

    1981-01-01

    This report describes work performed in fiscal year 1979, on a DOE funded study entitled Fire Protection Research for Energy Technology Projects. The primary goal of this program is to ensure that fire protection measures for Fusion Energy Experiments (FEE) evolve concurrently with the complexity of FEE. Ultimately, it is planned that the detailed study of fusion experiments will provide an analytical methodology which can be applied to the full range of energy technology projects. We attempt to achieve this objective by coordinately advancing 3 (three) major task areas; (a) determine the fire hazards of current FEE facilities (b) assess the ability of accepted fire management strategies to meet and negate the hazard, (c) perform unique research into problem areas we have identified to provide input into analytical fire growth and damage assessment models

  5. LSTA Allotments (FY 2003-2016)

    Data.gov (United States)

    Institute of Museum and Library Services — Review Library Services and Technology Act (LSTA) allotments by state from FY 2003 to FY 2016. The Grants to States program is the largest source of federal funding...

  6. Study on engineering technologies in the Mizunami Underground Research Laboratory (FY 2015). Development of design and construction planning and countermeasure technologies (Contract research)

    International Nuclear Information System (INIS)

    Toguri, Satohito; Kobayashi, Shinji; Tsuji, Masakuni; Yahagi, Ryoji; Yamada, Toshiko; Matsui, Hiroya; Mikake, Shinichiro; Aoyagi, Yoshiaki; Sato, Toshinori

    2017-03-01

    The study on engineering technology in the Mizunami Underground Research Laboratory (MIU) project roughly consists of (1)development of design and construction planning technologies, (2)development of construction technology, (3)development of countermeasure technology, (4)development of technology for security, and (5) development of technologies regarding restoration and mitigating of the excavation effect. So far, the verification of the initial design based on the data obtained during excavation was mainly conducted as a research in the Construction Phase, also the countermeasure technologies to control groundwater inflow were examined as a research in the Operation Phase. In FY2015, as a part of the important issues on the research program, “Development of countermeasure technologies for reducing groundwater inflow” in the Japan Atomic Energy Agency 3rd Midterm Plan, water-tight grouting method has been developed. Grouting methods utilized in the MIU were evaluated and the post-excavation grouting at the -500m Access/Research Gallery-South was planned based on these evaluation results. Also, technology development from the viewpoint of geological disposal was summarized, and information on the alternative method to the grouting method was collected and organized. (author)

  7. Verification of wet blasting decontamination technology

    International Nuclear Information System (INIS)

    Matsubara, Sachito; Murayama, Kazunari; Yoshida, Hirohisa; Igei, Shigemitsu; Izumida, Tatsuo

    2013-01-01

    Macoho Co., Ltd. participated in the projects of 'Decontamination Verification Test FY 2011 by the Ministry of the Environment' and 'Decontamination Verification Test FY 2011 by the Cabinet Office.' And we tested verification to use a wet blasting technology for decontamination of rubble and roads contaminated by the accident of Fukushima Daiichi Nuclear Power Plant of the Tokyo Electric Power Company. As a results of the verification test, the wet blasting decontamination technology showed that a decontamination rate became 60-80% for concrete paving, interlocking, dense-grated asphalt pavement when applied to the decontamination of the road. When it was applied to rubble decontamination, a decontamination rate was 50-60% for gravel and approximately 90% for concrete and wood. It was thought that Cs-134 and Cs-137 attached to the fine sludge scraped off from a decontamination object and the sludge was found to be separated from abrasives by wet cyclene classification: the activity concentration of the abrasives is 1/30 or less than the sludge. The result shows that the abrasives can be reused without problems when the wet blasting decontamination technology is used. (author)

  8. ORNL Superconducting Technology Program for Electric Power Systems: Annual Report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A.

    2000-06-13

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26-28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  9. ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A.; Murphy, A.W

    2000-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26--28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  10. Waste-isolation projects, FY 1978

    International Nuclear Information System (INIS)

    Ramspott, L.D.

    1979-01-01

    This report describes Lawrence Livermore Laboratory (LLL) activities during FY 1978 in support of the National Waste Terminal Storage Program. Current projects at LLL fall into three categories: (1) field testing, (2) laboratory rock mechanics measurements, and (3) laboratory studies of sorption and leaching. Field test activities conducted in the Climax granite at the Nevada Test Site included electrical heater tests, preparation for a spent-fuel-storage test, and planning for a series of rock mechanics tests. The heater tests determined the in situ thermal properties of Climax granite and its in situ permeability as a function of rock temperature. The two main laboratory rock mechanics projects involved (1) measurement of the permeability, electrical conductivity, and acoustic velocity of 15-cm-diam cores of granitic rocks over a range of confining pressure, pore (water) pressure, and deviatoric stress, and (2) measurement of rock thermal properties as a function of temperature and confining pressure in the presence of pore fluids to 770 0 K and 200 Mpa. The leaching studies made use of an LLL-designed, single-pass leaching apparatus with three solutions, two leach temperatures, and three flow rates. The material evaluated was Np--Pu-doped simulated waste glass from Battelle Pacific Northwest Laboratories. The sorption studies involved standard static measurements of the equilibrium distribution coefficient (K/sub d/) for various radionuclides on a variety of rocks, and flow-through-core studies of dynamic sorption

  11. FY 1992 report on the Coal Liquefaction Committee; 1992 nendo sekitan ekika iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    The paper reported activities of the Coal Liquefaction Committee in FY 1992. In the 1st committee meeting, report/discussion were made of the summary of the FY 1992 R and D plan on the bituminous coal liquefaction, brown coal liquefaction and the common/basic technology. Further, the following were reported as topics: results of the operation by bituminous coal liquefaction PSU and small equipment, state of arrangement of the results of the brown coal liquefaction project, making of the basic policy for development of the common/basic technology, construction of package of coal liquefaction technology. In the 2nd committee meeting, the summary of the results of the FY 1992 R and D was reported/discussed. As to the development of bituminous coal liquefaction technology, study using pilot plant and support study were reported. Concerning the development of brown coal liquefaction technology, study using a 50t/d pilot plant and complementary study of operation. Relating to the development of the common/basic technology, trial manufacture/development of plant equipment/materials, survey of selection of coal kind, etc. The paper also reported a scheme on the evaluation of efficiency of the brown coal liquefaction process. (NEDO)

  12. Geothermal direct-heat utilization assistance: Federal assistance program. Quarterly project progress report, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-96. It describes 90 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, development of a webpage, and progress monitor reports on geothermal resources and utilization.

  13. Project Morpheus: Lean Development of a Terrestrial Flight Testbed for Maturing NASA Lander Technologies

    Science.gov (United States)

    Devolites, Jennifer L.; Olansen, Jon B.

    2015-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a Liquid Oxygen (LOX)/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. In 2012, Morpheus began integrating the Autonomous Landing and Hazard Avoidance Technology (ALHAT) sensors and software onto the vehicle in order to demonstrate safe, autonomous landing and hazard avoidance. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. This paper describes the tailored project life cycle and systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in fiscal year (FY) 2011.

  14. Research on deep electromagnetic induction methods (Fy 1985)

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Hiroshi; Uchida, Toshihiro; Tanaka, Shin' ichi

    1987-06-01

    Geological Survey of Japan started from FY 1984 a research of deep electomagnetic induction methods as a part of the research on deep geothermal resources prospecting technology, the Sunshine Project. This article is the report of its second fiscal year. These methods are a generic term of the methods to survey specific resistance structure in the deep part of the earth by utilizing the technique of the electromagnetic induction method and the time domain CSMT method aiming to survey about estimated depth of 5Km as well as the CA method to estimate the general structure of the earth of the depth of 5Km or more are now being developed. This article reports the respective methods separately. Concerning the former, the reception of useful signals were successfully made during the FY 1984 field experiment and based on this, field experiments in a geothermal area were conducted in FY 1985 verifying its effectivenss. With regard to the latter, following FY 1984, CA observations were conducted in the northern part of Tohoku Region and the deep specific resistance structure in a wide area was surveyed. (43 figs, 1 tab, 11 refs)

  15. River Protection Project FY 2000 Multi Year Work Plan Summary

    International Nuclear Information System (INIS)

    LENSEIGNE, D.L.

    1999-01-01

    The River Protection Project (RPP), formerly the Tank Waste Remediation System (TWRS), is a major part of the U.S. Department of Energy's (DOE) Office of River Protection (ORP). The ORP was established as directed by Congress in Section 3139 of the Strom Thurmond National Defense Authorization Act for Fiscal Year (FY) 1999. The ORP was established to elevate the reporting and accountability for the RPP to the DOE-Headquarters level. This was done to gain Congressional visibility and obtain support for a major $10 billion high-level liquid waste vitrification effort

  16. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    Fix, Anne

    2007-01-01

    The U.S. Department of Energy (DOE) has conducted interim groundwater remedial activities on the Hanford Site since the mid-1990s for several groundwater contamination plumes. DOE established the Columbia River Protection Supplemental Technologies Project (Technologies Project) in 2006 to evaluate alternative treatment technologies. The objectives for the technology project are as follows: develop a 300 Area polyphosphate treatability test to immobilize uranium, design and test infiltration of a phosphate/apatite technology for Sr-90 at 100-N, perform carbon tetrachloride and chloroform attenuation parameter studies, perform vadose zone chromium characterization and geochemistry studies, perform in situ biostimulation of chromium studies for a reducing barrier at 100-D, and perform a treatability test for phytoremediation for Sr-90 at 100-N. This document provides the quality assurance guidelines that will be followed by the Technologies Project. This Quality Assurance Project Plan is based on the quality assurance requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--Quality Assurance Requirements as delineated in Pacific Northwest National Laboratory?s Standards-Based Management System. In addition, the technology project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan.

  17. Integrated Data Collection Analysis (IDCA) Program: FY2011 Project Descriptions

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC-IHD), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (NSWC-IHD), Indian Head, MD (United States). Indian Head Division; Whinnery, LeRoy L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shelley, Timothy J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reyes, Jose A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-02-03

    This document provides brief descriptions of research topics for consideration by the IDCA for potential funding in funding in FY 2011. The topics include the utilization of the results from the Proficiency Test developed during FY 2010 to start populating the small-scale safety and thermal testing (SSST) Testing Compendium and revising results from methods modifications. Other research topics were also developed for FY 2011 from issues that arose in the Proficiency Test.

  18. Los Alamos Waste Management FY96 and FY97 Tactical Plan, March 1, 1996

    International Nuclear Information System (INIS)

    1996-01-01

    The Los Alamos National Laboratory (LANL) Waste Management Program (WMP) began a transition to become a open-quotes best of classclose quotes waste management program during fiscal year 1995 (FY95). A best of class waste management program means that LANL will provide cost-effective and compliant management of the minimum amount of waste. In FY94, the WMP could be characterized as a level of effort program requiring several new facilities and new LANL-developed technologies to carry out its waste management responsibilities. By the end of FY95, significant progress had been made in the transition to best of class. The FY96 WMP is realigned and reorganized. Its budget and scope of work are built upon discrete work packages. It is committed to achieving improved cost-effectiveness, providing significant tangible technical results, and to having its performance measured. During FY95, over $11,000,000 in facility and operational costs were avoided. The need for three new major facilities was reexamined and lower cost solutions, not requiring the development of new facilities, were agreed to. Technology development activities were terminated and replaced with the use of commercial facilities to achieve aggressive reductions in the Low-Level Mixed Waste legacy inventory. In addition, over $14,000,000 in improved cost-effectiveness has been included in the FY96 Baseline. An overall WMP vision, specific milestones, performance measures, and commitments are in place for FY96 to ensure that LANL continues the transition to a best of class waste management program. The following table identifies the overall vision and success indicators for FY96

  19. Physics of the Cosmos Program Annual Technology Report

    Science.gov (United States)

    Pham, Bruce Thai; Cardiff, Ann H.

    2015-01-01

    What's in this Report? What's New? This fifth Program Annual Technology Report (PATR) summarizes the Programs technology development activities for fiscal year (FY) 2015. The PATR serves four purposes.1. Summarize the technology gaps identified by the astrophysics community;2. Present the results of this years technology gap prioritization by the PCOS Technology Management Board (TMB);3. Report on newly funded PCOS Strategic Astrophysics Technology (SAT) projects; and4. Detail progress, current status, and activities planned for the coming year for all technologies supported by PCOS Supporting Research and Technology (SRT) funding in FY 2015. .

  20. ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project

    Science.gov (United States)

    Baresi, Larry

    1989-03-01

    The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.

  1. Mixed Waste Management Facility, revised FY94 Plan

    International Nuclear Information System (INIS)

    Streit, R.

    1994-01-01

    This revision of the FY94 Plan incorporates changes to work during FY94 in response to the DOE request in the DOE KD-1 decision letter of June 28,1994. This letter provided guidance of both scope and budget profile in response to the Conceptual Design Report (CDR) issued by the MWMF Project in April, 1994. This work plan only addresses work for the remainder of FY94. A revised plan for the complete project is in development and will be issued separately. Since February, 1994, the MWMF Project has been operating on DOE guidance directing that work on the CDR be completed, that only other essential work be continued to maintain the project, and that costs be maintained at approximately the January, 1994 spending levels until a KD-1 decision was made. This has formed the basis for monthly reports through June, 1994. The baseline contained in this report will become the basis for reports during the remainder of FY94

  2. Laboratory-directed research and development: FY 1996 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  3. Laboratory-directed research and development: FY 1996 progress report

    International Nuclear Information System (INIS)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects' principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences

  4. FY 1997 basic survey project (database construction project) for enhancing energy consumption efficiency in developing countries; 1997 nendo hatten tojokoku energy shohi koritsuka kiso chosa jigyo. Database kochiku jigyo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    NEDO is promoting a database construction project to collect and supply various technical/systematical information on energy related data and energy effective utilization. In FY 1997, about the Philippines, Indonesia and China, the data collected in a year were renewed, and seminar/workshop were held as a part of the promotion activities. About Thailand, Malaysia, Korea, Taiwan and Japan, Japan has independently been collecting the data. Also in FY 1997, Japan arranged the existing data and arranged/collected the data. About Vietnam, India, Myanmer and Pakistan, which became the objects for the project newly in FY 1996, the state of data arrangement was confirmed and the data were collected. Moreover, functional improvement of the system was made so that each country can use the database more easily and maintain the data independently. (NEDO)

  5. Laboratory directed research and development program FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd

    2004-03-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  6. Hanford analytical sample projections FY 1998 - FY 2002

    International Nuclear Information System (INIS)

    Joyce, S.M.

    1998-01-01

    Analytical Services projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Projections are categorized by radiation level, protocol, sample matrix and program. Analyses requirements are also presented. This document summarizes the Hanford sample projections for fiscal years 1998 to 2002. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition, details on laboratory scale technology (development) work, Sample Management, and Data Management activities are included. This information will be used by Hanford Analytical Services (HAS) and the Sample Management Working Group (SMWG) to assure that laboratories and resources are available and effectively utilized to meet these documented needs

  7. Hanford analytical sample projections FY 1998--FY 2002

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, S.M.

    1998-02-12

    Analytical Services projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Projections are categorized by radiation level, protocol, sample matrix and program. Analyses requirements are also presented. This document summarizes the Hanford sample projections for fiscal years 1998 to 2002. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition, details on laboratory scale technology (development) work, Sample Management, and Data Management activities are included. This information will be used by Hanford Analytical Services (HAS) and the Sample Management Working Group (SMWG) to assure that laboratories and resources are available and effectively utilized to meet these documented needs.

  8. FY 2005 Supplement to the President`s Budget

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — The Supplement to the President`s FY 2005 Budget reports on the FY 2004 research and development R and D activities and FY 2005 plans of the multiagency Networking...

  9. Decontamination and decommissioning activities photobriefing book FY 1998

    International Nuclear Information System (INIS)

    1999-01-01

    Fiscal Year (FY) 1998 was very successful in terms of Decontamination and Decommissioning (D and D) project completions. This photobriefing book highlights these projects and activities in one ongoing project. Brief descriptions of projects planned for the future are also provided. Two D and D projects funded by the US DOE Office of Environmental Management (EM-40) were completed safely and on schedule in FY 1998: (1) Argonne Thermal Source Reactor (ATSR) was a low-power research reactor that operated from 1950 to 1989; and (2) The Building 594 (a.k.a. 579) Waste Ion-Exchange Facility was an obsolete facility constructed in the 1950s to process waste fluids from a collecting lagoon. Field work at one project was ongoing during FY 1998: (1) Chicago Pile 5 (CP-5) was a 5-megawatt, heavy water-moderated, enriched uranium-fueled reactor used to produce neutrons for scientific research from 1954-79. The reactor was shut down and defueled in 1979. D and D is scheduled to be completed in FY 2000. Project experience has lent itself to developing unique staff capabilities. The D and D group was chosen as lead organization for a project supported with operating funds provided by Argonne's Plant Facilities and Services (PFS) Division. This project was also completed safely and on schedule in FY 1998: (1) The Building 200/205 Pneumatic Transfer Tube was constructed in the late 1960s between Hot Cell M-4 in Building 200 and a glove box in Room F-131, Building 205, and used to transfer irradiated fuel specimens and other samples between the two buildings

  10. Fiscal Year 1986 Technical Objective Document (TOD).

    Science.gov (United States)

    1986-03-01

    abilties superior to other IR and manual turrets. - START DATE: FY 88 END DATE: FY 90" PROJECT TITLE: COMPOSITE METAL FIRES EE 62:06 JON: 2673XXXX...TECHNOLOGY: FIRE ELEMENT: INTERACTION DESCRIPTION (TECHNICAL OBJECTIVE) Evaluate a new series of agents "BORALONS" capable of extinguishing metal fires and...PROJECT TITLE: COMPOSITE METAL FIRES PE: 63723 JON: 2104XXXX

  11. Hydrothermal processing of Hanford tank waste. Organic destruction technology development task annual report -- FY 1993

    International Nuclear Information System (INIS)

    Orth, R.J.; Schmidt, A.J.; Zacher, A.H.

    1993-09-01

    Low-temperature hydrothermal processing (HTP) is a thermal-chemical autogenous processing method that can be used to destroy organics and ferrocyanide in Hanford tank waste at temperatures from 250 C to 400 C. With HTP, organics react with oxidants, such as nitrite and nitrate, already present in the waste. Ferrocyanides and free cyanide will hydrolyze at similar temperatures and may also react with nitrates or other oxidants in the waste. No air or oxygen or additional chemicals need to be added to the autogenous HTP system. However, enhanced kinetics may be realized by air addition, and, if desired, chemical reductants can be added to the system to facilitate complete nitrate/nitrate destruction. Tank waste can be processed in a plug-flow, tubular reactor, or a continuous-stirred tank reactor system designed to accommodate the temperature, pressure, gas generation, and heat release associated with decomposition of the reactive species. The work described in this annual report was conducted in FY 1993 for the Organic Destruction Technology Development Task of Hanford's Tank Waste Remediation System (TWRS). This task is part of an overall program to develop organic destruction technologies originally funded by TWRS to meet tank safety and waste form disposal criteria and condition the feed for further pretreatment. During FY 1993 the project completed seven experimental test plans, a 30-hr pilot-scale continuous run, over 200 hr of continuous bench-scale HTP testing, and 20 batch HTP tests; two contracts were established with commercial vendors, and a commercial laboratory reactor was procured and installed in a glovebox for HTP testing with actual Hanford tank waste

  12. Thermal Power Systems, Point-Focusing Distributed Receiver Technology Project. Annual technical report, Fiscal Year 1978. Volume II. Detailed report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-15

    Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver technology is the goal of this Project. The energy thus produced must be economically competitive with other sources. This Project supports the industrial development of technology and hardware for extracting energy from solar power to achieve the stated goal. Present studies are working to concentrate the solar energy through mirrors or lenses, to a working fluid or gas, and through a power converter change it to an energy source useful to man. Rankine-cycle and Brayton-cycle engines are currently being developed as the most promising energy converters for our near future needs. Accomplishments on point-focusing technology in FY 1978 are detailed.

  13. Retrieval process development and enhancements project Fiscal year 1995: Simulant development technology task progress report

    International Nuclear Information System (INIS)

    Golcar, G.R.; Bontha, J.R.; Darab, J.G.

    1997-01-01

    The mission of the Retrieval Process Development and Enhancements (RPD ampersand E) project is to develop an understanding of retrieval processes, including emerging and existing technologies, gather data on these technologies, and relate the data to specific tank problems such that end-users have the requisite technical bases to make retrieval and closure decisions. The development of waste simulants is an integral part of this effort. The work of the RPD ampersand E simulant-development task is described in this document. The key FY95 accomplishments of the RPD ampersand E simulant-development task are summarized below

  14. FY16 Safeguards Technology Cart-Portable Mass Spectrometer Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Cyril V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Whitten, William B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    The Oak Ridge National Laboratory project for the Next Generation Safeguards Initiative Safeguards Technology Development Subprogram has been involved in the development of a cart portable mass spectrometer based on a Thermo ITQ ion trap mass spectrometer (referred to simply as the ITQ) for the field analysis of 235U/238U ratios in UF6. A recent discovery of the project was that combining CO2 with UF6 and introducing the mixture to the mass spectrometer (MS) appeared to increase the ionization efficiency and, thus, reduce the amount of UF6 needed for an analysis while also reducing the corrosive effects of the sample. However, initial experimentation indicated that mixing parameters should be closely controlled to ensure reproducible results. To this end, a sample manifold (SM) that would ensure the precise mixing of UF6 and CO2 was designed and constructed. A number of experiments were outlined and conducted to determine optimum MS and SM conditions which would provide the most stable isotope ratio analysis. The principal objective of the project was to provide a retrofit ITQ mass spectrometer operating with a SM capable of achieving a variation in precision of less than 1% over 1 hour of sampling. This goal was achieved by project end with a variation in precision of 0.5 to 0.8% over 1 hour of sampling.

  15. 2014 Annual Report, Geothermal Technologies Office

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-03-01

    In 2014, the Geothermal Technologies Office (GTO) made significant gains—increased budgets, new projects, key technology successes, and new staff. The Fiscal Year (FY) 2015 budget is at $55 million—roughly a 20% increase over FY 2014, and a strong vote of confidence in what the sector is doing to advance economically competitive renewable energy. GTO also remains committed to a balanced portfolio, which includes new hydrothermal development, EGS, and targeted opportunities in the low-temperature sector.

  16. Projected Benefits of Federal Energy Efficiency and Renewable Energy Programs: FY 2005 Budget Request

    Energy Technology Data Exchange (ETDEWEB)

    National Renewable Energy Laboratory

    2004-05-01

    The Office of Energy Efficiency and Renewable Energy (EERE) of the U.S. Department of Energy (DOE) leads the Federal Government's efforts to provide reliable, affordable, and environmentally sound energy for America, through its 11 research, development, demonstration, and deployment (RDD&D) programs. EERE invests in high-risk, high-value research and development (R&D) that, conducted in partnership with the private sector and other government agencies, accelerates the development and facilitates the deployment of advanced clean energy technologies and practices. This document summarizes the results of the benefits analysis of EERE's programs, as described in the FY 2005 Budget Request. EERE has adopted a benefits framework developed by the National Research Council (NRC) to represent the various types of benefits resulting from the energy efficiency technology improvements and renewable energy technology development prompted by EERE programs. EERE's benefits analysis focuses on three main categories of energy-linked benefits-economic, environmental, and security. These metrics are not a complete representation of the benefits or market roles of efficiency and renewable technologies, but provide an indication of the range of benefits provided. EERE has taken steps to more fully represent the NRC framework, including two key improvements to the FY 2005 analysis-adding an electricity security metric and extending the analysis through the year 2050.

  17. Benefits from the U.S. photovoltaic manufacturing technology project

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.L.; Witt, C.E.; Thomas, H.P. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    This paper examines the goals of the Photovoltaic Manufacturing Technology (PVMaT) project and its achievements in recapturing the investment by the photovoltaic (PV) industry and the public in this research. The PVMaT project was initiated in 1990 with the goal of enhancing the world-wide competitiveness of the U.S. PV industry. Based on the authors analysis, PVMaT has contributed to PV module manufacturing process improvements, increased product value, and reductions in the price of today`s PV products. An evaluation of success in this project was conducted using data collected from 10 of the PVMaT industrial participants in late fiscal year (FY) 1995. These data indicate a reduction of 56% in the weighted average module manufacturing costs from 1992 to 1996. During this same period, U.S. module manufacturing capacity has increased by more than a factor of 6. Finally, the analysis indicates that both the public and the manufacturers will recapture the funds expended in R&D manufacturing improvements well before the year 2000.

  18. DOE FY 2010 Budget Request and Recovery Act Funding for Energy Research, Development, Demonstration, and Deployment: Analysis and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Anadon, Laura Diaz; Gallagher, Kelly Sims; Bunn, Matthew

    2009-06-01

    The combination of the FY 2010 budget request for the Department of Energy (DOE) and the portion of the American Recovery and Reinvestment Act of 2009 (ARRA) funds likely to be available in 2010 would (assuming that they would be split evenly between FY 2010 and FY 2011) result in a doubling in funding available for energy research, development, and deployment (ERD and D) from $3.6 billion in FY 2009 to $7.2 billion in FY 2010. Without the stimulus funds, DOE ERD and D investments in FY 2010 would decrease very slightly when compared to FY 2009. Excluding the $7.5 billion for the Advanced Technology Vehicles Manufacturing Loans in FY 2009, the FY 2010 budget request for deployment represents a 33 percent decrease from the FY 2009 levels from $520 million to $350 million. This decrease is largely due to the large amounts of funds appropriated in ARRA for DOE deployment programs, or $23.6 billion, which are three times greater than those appropriated in the FY 2009 budget. These very substantial funding amounts, coupled with the broad range of institutional innovations the administration is putting in place and movement toward putting a price on carbon emissions, will help accelerate innovation for a broad range of energy technologies. DOE's Advanced Research Projects Agency-Energy (ARPA-E) and the Energy Innovation Hubs are important initiatives that could contribute to two weak points of the government's energy innovation effort, namely funding high-risk projects in transformational technologies and in companies that have not traditionally worked with the government and strengthening the integration of basic and applied research in priority areas. Increasing the funding for different types of energy storage research, providing some support for exploring opportunities in coal-to-liquids with carbon capture and storage (CCS) and coal-and-biomass-to-liquids with CCS, and reducing funding for fission RD and D are other actions that Congress could take in the

  19. Office of Technology Development FY 1993 program summary: Office of Research and Development, Office of Demonstration, Testing and Evaluation. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report summarizes significant FY93 programmatic information and accomplishments relevant to the individual activities within the Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation (RDDT&E). A brief discussion of the mission of the Office of Environmental Restoration and Waste Management (EM) and the Office of Technology Development is presented. An overview is presented of the major problem areas confronting DOE. These problem areas include: groundwater and soils cleanup; waste retrieval and processing; and pollution prevention. The organizational elements within EM are highlighted. An EM-50 Funding Summary for FY92 and FY93 is also provided. RDDT&E programs are discussed and their key problem areas are summarized. Three salient program-formulating concepts are explained. They are: Integrated Demonstrations, Integrated Programs, and the technology window of opportunity. Detailed information for each of the programs within RDDT&E is presented and includes a fact sheet, a list of technical task plans and an accomplishments and objectives section.

  20. Office of Technology Development FY 1993 program summary: Office of Research and Development, Office of Demonstration, Testing and Evaluation. Revision 1

    International Nuclear Information System (INIS)

    1994-02-01

    This report summarizes significant FY93 programmatic information and accomplishments relevant to the individual activities within the Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E). A brief discussion of the mission of the Office of Environmental Restoration and Waste Management (EM) and the Office of Technology Development is presented. An overview is presented of the major problem areas confronting DOE. These problem areas include: groundwater and soils cleanup; waste retrieval and processing; and pollution prevention. The organizational elements within EM are highlighted. An EM-50 Funding Summary for FY92 and FY93 is also provided. RDDT ampersand E programs are discussed and their key problem areas are summarized. Three salient program-formulating concepts are explained. They are: Integrated Demonstrations, Integrated Programs, and the technology window of opportunity. Detailed information for each of the programs within RDDT ampersand E is presented and includes a fact sheet, a list of technical task plans and an accomplishments and objectives section

  1. Report on the results of the FY 1998 hydrogen utilization international clean energy system technology (WE-NET). Subtask 7. Survey/study on hydrogen utilization technology; 1998 nendo suiso riyo kokusai clean energy system (WE-NET). 7. Suiso riyo gijutsu ni kansuru chosa kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper described the results of survey/study of the FY 1998 WE-NET project. In Subtask 7, survey/study have been made on the main hydrogen utilization technologies except the hydrogen combustion gas turbine since FY 1993. Based on the survey results having been obtained, study was made on conditions for introducing promising technology, future prospects, etc. in FY 1998. As to the power generation, the basic combustion test and test on hydrogen injection equipment as element test, and test on ignition equipment were carried out using rapid compression/expansion equipment. A scenario for introducing hydrogen vehicle was made, and at the same time environmental LCA was conducted by which environmental influences can be assessed. The survey of the market of pure hydrogen polymer electrolyte fuel cells were made in terms of the electric utility use, industrial use, residential/commercial use, and movement/vehicle use. Study was conducted on the combined process of oxygen production equipment and He Brayton cycle in the subzero fractionation/low-temperature VSA method. Various methods including performance, price, etc. were surveyed/studied, making it a precondition that hydrogen supply stations are installed in stand-alone distribution near places of consumption. (NEDO)

  2. FY11 Facility Assessment Study for Aeronautics Test Program

    Science.gov (United States)

    Loboda, John A.; Sydnor, George H.

    2013-01-01

    This paper presents the approach and results for the Aeronautics Test Program (ATP) FY11 Facility Assessment Project. ATP commissioned assessments in FY07 and FY11 to aid in the understanding of the current condition and reliability of its facilities and their ability to meet current and future (five year horizon) test requirements. The principle output of the assessment was a database of facility unique, prioritized investments projects with budgetary cost estimates. This database was also used to identify trends for the condition of facility systems.

  3. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Charles V Park

    2011-01-01

    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  4. Expedited technology demonstration project. Project baseline revision 2.2 and FY96 plan

    International Nuclear Information System (INIS)

    1996-07-01

    The Expedited Technology Demonstration Project Plan, Mixed Waste Management Facility (MWMF) current baseline. The revised plan will focus efforts specifically on the demonstration of an integrated Molten Salt Oxidation (MSO) system. In addition to the MSO primary unit, offgas, and salt recycle subsystems, the demonstrations will include feed preparation and feed delivery systems, and the generation of robust final forms from process mineral residues. A simplified process flow chart for the expedited demonstration is provided. To minimize costs and to accelerate the schedule for deployment, the integrated system will be staged in an existing facility at LLNL equipped to handle hazardous and radioactive materials. The MSO systems will be activated in fiscal year 97, followed by the activation of feed preparation and final forms in fiscal year 98

  5. Student Research Projects

    Science.gov (United States)

    Yeske, Lanny A.

    1998-01-01

    Numerous FY1998 student research projects were sponsored by the Mississippi State University Center for Air Sea Technology. This technical note describes these projects which include research on: (1) Graphical User Interfaces, (2) Master Environmental Library, (3) Database Management Systems, (4) Naval Interactive Data Analysis System, (5) Relocatable Modeling Environment, (6) Tidal Models, (7) Book Inventories, (8) System Analysis, (9) World Wide Web Development, (10) Virtual Data Warehouse, (11) Enterprise Information Explorer, (12) Equipment Inventories, (13) COADS, and (14) JavaScript Technology.

  6. FY 1992 Report on the results of the research and development project for the industrial base technologies of the next generation. Research and development of nonlinear optoelectronic materials; 1992 nendo hisenkei hikari denshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    Described herein are the FY 1992 results of the research and development project for the optoelectronic materials. The FY 1992 is the last year for the phase-I project of the basic plan, and the results are evaluated mainly viewed from extent of attainment of the interim targets. For the organic materials, the highly unique chiral nonlinear compounds are further developed, and direction for the investigations of the conjugated low-molecular-weight compounds is established. The excellent high-molecular-weight films are developed. For the dispersed materials, those developed include CuCl-dispersed glass, CdTe laminated glass developed by the laser evaporation method, glass dispersed with semiconductors at high concentrations, and dispersed materials with high-molecular-weight materials as the matrices. For the material development, those technologies investigated are orientation controlling of the crystals for thin organic films, and development of superlattices. A total of 9 research themes are recommissioned to 9 enterprises. They include organic, low-molecular-weight materials, growth of orientation-controlled crystals, films of high-molecular-weight organic conjugated compounds, glass-dispersed materials (prepared by the vapor-phase, impregnation of porous glass, sol-gel, superlow-melting glass and super-cooling methods), organic dispersed materials, development of the organic superlattices, and development of the three-dimensional superstructures. (NEDO)

  7. Advanced Engineering Environment FY09/10 pilot project.

    Energy Technology Data Exchange (ETDEWEB)

    Lamph, Jane Ann; Kiba, Grant W.; Pomplun, Alan R.; Dutra, Edward G.; Sego, Abraham L.

    2010-06-01

    The Advanced Engineering Environment (AEE) project identifies emerging engineering environment tools and assesses their value to Sandia National Laboratories and our partners in the Nuclear Security Enterprise (NSE) by testing them in our design environment. This project accomplished several pilot activities, including: the preliminary definition of an engineering bill of materials (BOM) based product structure in the Windchill PDMLink 9.0 application; an evaluation of Mentor Graphics Data Management System (DMS) application for electrical computer-aided design (ECAD) library administration; and implementation and documentation of a Windchill 9.1 application upgrade. The project also supported the migration of legacy data from existing corporate product lifecycle management systems into new classified and unclassified Windchill PDMLink 9.0 systems. The project included two infrastructure modernization efforts: the replacement of two aging AEE development servers for reliable platforms for ongoing AEE project work; and the replacement of four critical application and license servers that support design and engineering work at the Sandia National Laboratories/California site.

  8. Collaborative Systemwide Monitoring and Evaluation Project (CSMEP) - Year 5 : Annual Report for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Marmorek, David R.; Porter, Marc; Pickard, Darcy; Wieckowski, Katherine

    2008-11-19

    The Collaborative Systemwide Monitoring and Evaluation Project (CSMEP) is a coordinated effort to improve the quality, consistency, and focus of fish population and habitat data to answer key monitoring and evaluation questions relevant to major decisions in the Columbia River Basin. CSMEP was initiated by the Columbia Basin Fish and Wildlife Authority (CBFWA) in October 2003. The project is funded by the Bonneville Power Administration (BPA) through the Northwest Power and Conservation Council's Fish and Wildlife Program (NPCC). CSMEP is a major effort of the federal state and Tribal fish and wildlife managers to develop regionally integrated monitoring and evaluation (M&E) across the Columbia River Basin. CSMEP has focused its work on five monitoring domains: status and trends monitoring of populations and action effectiveness monitoring of habitat, harvest, hatcheries, and the hydrosystem. CSMEP's specific goals are to: (1) interact with federal, state and tribal programmatic and technical entities responsible for M&E of fish and wildlife, to ensure that work plans developed and executed under this project are well integrated with ongoing work by these entities; (2) document, integrate, and make available existing monitoring data on listed salmon, steelhead, bull trout and other fish species of concern; (3) critically assess strengths and weaknesses of these data for answering key monitoring questions; and (4) collaboratively design, implement and evaluate improved M&E methods with other programmatic entities in the Pacific Northwest. During FY2008 CSMEP biologists continued their reviews of the strengths and weaknesses (S&W) of existing subbasin inventory data for addressing monitoring questions about population status and trends at different spatial and temporal scales. Work was focused on Lower Columbia Chinook and steelhead, Snake River fall Chinook, Upper Columbia Spring Chinook and steelhead, and Middle Columbia River Chinook and steelhead. These

  9. Optimal imaging for treaty verification FY2014 annual report

    International Nuclear Information System (INIS)

    Hilton, Nathan R.; Johnson, William C.; Brubaker, Erik M.; Kupinski, Matthew Alan; MacGahan, Christopher Jonathan

    2014-01-01

    FY2014 technical report of our project funded by DNN R&D that leverages advanced inference methods developed for medical and adaptive imaging to address arms control applications. We seek a method to acquire and analyze imaging data of declared treaty-accountable items without creating an image of those objects or otherwise storing or revealing any classified information. Such a method would avoid the use of classified-information barriers. We present our progress on FY2014 tasks defined in our life-cycle plan. We also describe some future work that is part of the continuation of this project in FY2015 and beyond as part of a venture that joins ours with a related PNNL project.

  10. Optimal imaging for treaty verification FY2014 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hilton, Nathan R. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Johnson, William C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brubaker, Erik M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Kupinski, Matthew Alan [Univ. of Arizona, Tucson, AZ (United States); MacGahan, Christopher Jonathan [Univ. of Arizona, Tucson, AZ (United States)

    2014-10-01

    FY2014 technical report of our project funded by DNN R&D that leverages advanced inference methods developed for medical and adaptive imaging to address arms control applications. We seek a method to acquire and analyze imaging data of declared treaty-accountable items without creating an image of those objects or otherwise storing or revealing any classified information. Such a method would avoid the use of classified-information barriers. We present our progress on FY2014 tasks defined in our life-cycle plan. We also describe some future work that is part of the continuation of this project in FY2015 and beyond as part of a venture that joins ours with a related PNNL project.

  11. FY 1998 survey report on the project on field tests for high-efficient industrial furnace introduction. Manual; 1998 nendo koseino kogyoro donyu field test jigyo mannual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The high-efficient industrial furnace is a technology with the use of ultra-high temperature air over 1,000 degrees C, which has been impossible. It has been developed since FY 1993. The technology can reduce the energy consumption amount by 30%, and there is a possibility of reducing not only CO2, but NOx by approximately 50% over the conventional method. The main technique of the technology is to preheat the air blown into the incinerator at much higher temperatures of 1,000 degrees C or more than those in the existing combustion and to blow fuel into that high-speed air flow using the short-time-change/heat-storage type heat exchanger. It was predicted that the target value set first can almost be reached, and there can be seen a possibility of its industrial application. Industrial furnaces are used in many industrial fields such as metal production industry, petrochemical industry and electric machinery industry. The energy conservation in these fields brings extremely marked effects, and therefore it is an urgent task to introduce the industrial furnace into the fields quickly. The concentrated R and D were finished in FY 1998, and the field test project for the introduction was actually started. (NEDO)

  12. SKI Project-90: Chemical data

    International Nuclear Information System (INIS)

    Andersson, Karin

    1988-11-01

    In this report a set of parameter values for transport calculations is given for the safety assessment of a deep geological repository in crystalline rock. The selected data are intended for use in the performance assessment exercise of SKI, Project 90. Thus, they are primarily to be used for testing of transport models and evaluation of model performance, and the listed data must not be regarded as a set recommended for licensing purposes. 'Best estimates' are given for solubilities and sorption (distribution) data. Ranges of data are also provided that should be used to evaluate, e.g. by means of variational analysis, the need for more efforts in areas such as site characterization, geochemical modelling or review of thermodynamical data bases. Since the Project 90 performance assessment calculations are based on a synthetic site, without the possibility of correlation of hydraulic and geochemical parameters, the data given are generic for a typical Swedish crystalline rock. This also means that the ranges given are much broader than would be the case for a data set founded on site specific information (40 refs.) (au)

  13. Defense Small Business Innovation Research (SBIR) Program. Program Solicitation 90.1. FY-1990

    Science.gov (United States)

    1989-10-01

    MATERIALS TECHNOLOGY LABOATORY A90-130 Non-Destructive Evaluation of Bond Quality A90-131 Novel Surface Treatments for Improved Adhesive Bonds A90-132...produce a high energy per unit volume. Consequently, there is considerable interest in use of consolidated, bonded and unified charges of various fluid...provide P31 recommendations to improve these existing and emerging Army DF systems. Establish a library of callable functions to include ionospheric

  14. Electronics Engineering Research. Final report, FY 1979

    International Nuclear Information System (INIS)

    Weissenberger, S.

    1980-01-01

    Accomplishments in Electronics Engineering Research (EER) during FY79 spanned a broad range of technologies, from high-speed microelectronics to digital image enhancement; from underground probing with electromagnetic waves to detecting neutrons with a small solid-state device; and from computer systems to aid engineers, to software tools to aid programmers. This report describes the overall EER program and its objectives, summarizes progress made in FY79, and outlines plans for FY80

  15. Office of Crystalline Repository Development FY 83 technical project plan

    International Nuclear Information System (INIS)

    1983-03-01

    The technical plan for FY 83 activities of the Office of Crystalline Repository Development is presented in detail. Crystalline Rock Project objectives are discussed in relation to the National Waste Terminal storage (NWTS) program. The plan is in full compliance with requirements mandated by the Nuclear Waste Policy Act of 1982. Implementation will comply with the requirements and criteria set forth in the Nuclear Regulatory Commission regulations (10 CFR 60) and the Environmental Protection Agency standard (40 CFR 191). Technical approaches and the related milestones and schedules are presented for each of the Level 3 NWTS work Breakdown Structure Tasks. These are: Systems, Waste Package, Site, Repository, Regulatory and Institutional, Test Facilities and Excavations, Land Acquisition, and Program Management

  16. Environmental Systems Research and Analysis FY 2000 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    David L. Miller; Castle, Peter Myer; Steven J. Piet

    2001-01-01

    The Environmental Systems Research (ESR) Program, a part of the Environmental Systems Research and Analysis (ESRA) Program, was implemented to enhance and augment the technical capabilities of the INEEL. Strengthening the Technical capabilities of the INEEL will provide the technical base to serve effectively as the Environmental Management Laboratory for the Office of Environmental Management (EM). This is a progress report for the third year of the ESR Program (FY 2000). A report of activities is presented for the five ESR research investment areas: (1) Transport Aspects of Selective Mass Transport Agents, (2) Chemistry of Environmental Surfaces, (3) Materials Dynamics, (4) Characterization Science, and (5) Computational Simulation of Mechanical and Chemical Systems. In addition to the five technical areas, the report describes activities in the Science and Technology Foundations element of the program, e.g., interfaces between ESR and the EM Science Program (EMSP) and the EM Focus Areas. The five research areas are subdivided into 18 research projects. FY 2000 research in these 18 projects has resulted in more than 50 technical papers that are in print, in press, in review, or in preparation. Additionally, more than 100 presentations were made at professional society meetings nationally and internationally. Work supported by this program was in part responsible for one of our researchers, Dr. Mason Harrup, receiving the Department of Energy’s “Bright Light” and “Energy at 23” awards. Significant accomplishments were achieved. Non-Destructive Assay hardware and software was deployed at the INEEL, enhancing the quality and efficiency of TRU waste characterization for shipment. The advanced tensiometer has been employed at numerous sites around the complex to determine hydrologic gradients in variably saturated vadose zones. An ion trap, secondary ion mass spectrometer (IT-SIMS) was designed and fabricated to deploy at the INEEL site to measure the

  17. FY2012 CoC Competition Grants (New and Renewal)

    Data.gov (United States)

    Department of Housing and Urban Development — This report displays the FY2012 renewal and new homeless assistance projects awarded by HUD for the FY2012 Continuum of Care (CoC) Program competition. Approximately...

  18. FY 2000 research cooperation project on plastic processing technology/quality inspection technology; 2000 nendo kenkyu kyoryoku jigyo. Plastic kako gijutsu hinshitsukensa gijutsu ni kansuru kenkyu kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of improving the production technology of plastic products in Saudi Arabia, the joint development was made of the formation technology/quality inspection technology of agricultural use and food packaging use polyolefin film optimum to environmental conditions of the site, in the light of the needs there, and the FY 2000 results were reported. In the field survey/joint study, for the xenon type weather resistant testing machine and the extruder of the inflation film forming machine which were transported from Japan, the following were carried out: confirmation of the situation of accepting them on the site, functional test of computer of the extruder, installation of the machine testing weather resistance, and the trial operation. In the domestic support study, the extrusion test at laboratory was conducted using the polyethylene resin produced on the site to acquire the basic data for formation stability. Further, the film formation test was made using the equipment with the same specifications as those of the equipment introduced to the site to study the performance of screw extrusion and the formation stability of film. Also conducted were the analytical test/quality evaluation of resin materials/film. (NEDO)

  19. FY 2004 Supplement to the President`s Budget

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — ...This Supplement to the Presidents Budget for Fiscal Year (FY) 2004 summarizes the NITRD agencies coordinated research activities and FY 2004 plans, as required by...

  20. Decision Analysis Modeling for Application and Fielding Selection Applied to Concrete Decontamination Technologies

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Boudreaux, J.F.

    1998-01-01

    The purpose of this two-year investigation is to field test innovative technologies for coating and surface removal on concrete floors and compare the compiled data to baseline technologies, thereby ensuring that the best and most cost-effective options are developed and subsequently used during the decontamination and decommissioning (D and D) of U.S. Department of Energy Environmental Management (DOE-EM) sites. Comprehensive and comparable data will be collected in the areas of health and safety, operations, and secondary waste management. The technologies tested will include DOE-EM funded technologies and commercial non-nuclear technologies that have the potential to meet the environmental restoration objectives. This report summarizes the activities performed during Fiscal Year 1996 (FY96) and describes the planned activities for Fiscal Year 1997 (FY97). Accomplishments for FY96 include the completion of preparatory work to begin field testing of innovative technologies. A total of seven technologies will be tested during FY97. As a part of this project, interactive computer software will be developed during FY97, allowing site-specific parameters and technology performance data to be considered when determining the best option given site-specific conditions

  1. 77 FR 69601 - Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration Projects

    Science.gov (United States)

    2012-11-20

    ...) Personnel Management Demonstration Projects AGENCY: Office of the Deputy Assistant Secretary of Defense... to demonstration project plans. SUMMARY: Section 342(b) of the National Defense Authorization Act... the NDAA for FY 2001, authorizes the Secretary of Defense to conduct personnel demonstration projects...

  2. ORNL Superconducting Technology Program for Electric Power Systems--Annual Report for FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, RA

    2002-02-18

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. A new part of the wire research effort was the Accelerated Coated Conductor Initiative. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 2001 Annual Program Review held August 1-3, 2001. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference/Cryogenic Engineering Conference (July 2001) are included in this report as well. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  3. Pinellas Plant FY1990 site specific implementation plan

    International Nuclear Information System (INIS)

    Klein, R.D.

    1990-02-01

    This Site Specific Implementation Plan describes the Corrective Action, Environmental Restoration, and Waste Management activities to be performed at the Pinellas Plant in FY1990 (October 1, 1989 to September 30, 1989). These FY1990 activities are described in the Pinellas Plant FY1991--95 Five-Year Plan. The information used to prepare this plan reflects the best estimate of the project scope, schedules, regulatory, and funding requirements at the time of plan preparation. The Environmental Restoration/Waste Management Five-Year Plan is a dynamic document and will be modified each year; the Site Specific Implementation Plan will, in turn, be modified each year to reflect new findings, information, and knowledge of the various projects. 4 figs., 11 tabs

  4. Assessment Report Sandia National Laboratories Fuel Cycle Technologies Quality Assurance Evaluation of FY15 SNL FCT M2 Milestone Deliverables

    International Nuclear Information System (INIS)

    Appel, Gordon John

    2016-01-01

    Sandia National Laboratories (SNL) Fuel Cycle Technologies (FCT) program activities are conducted in accordance with FCT Quality Assurance Program Document (FCT-QAPD) requirements. The FCT-QAPD interfaces with SNL approved Quality Assurance Program Description (SNL-QAPD) as explained in the Sandia National Laboratories QA Program Interface Document for FCT Activities (Interface Document). This plan describes SNL's FY16 assessment of SNL's FY15 FCT M2 milestone deliverable's compliance with program QA requirements, including SNL R&A requirements. The assessment is intended to confirm that SNL's FY15 milestone deliverables contain the appropriate authenticated review documentation and that there is a copy marked with SNL R&A numbers.

  5. Assessment Report Sandia National Laboratories Fuel Cycle Technologies Quality Assurance Evaluation of FY15 SNL FCT M2 Milestone Deliverables

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Gordon John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    Sandia National Laboratories (SNL) Fuel Cycle Technologies (FCT) program activities are conducted in accordance with FCT Quality Assurance Program Document (FCT-QAPD) requirements. The FCT-QAPD interfaces with SNL approved Quality Assurance Program Description (SNL-QAPD) as explained in the Sandia National Laboratories QA Program Interface Document for FCT Activities (Interface Document). This plan describes SNL's FY16 assessment of SNL's FY15 FCT M2 milestone deliverable's compliance with program QA requirements, including SNL R&A requirements. The assessment is intended to confirm that SNL's FY15 milestone deliverables contain the appropriate authenticated review documentation and that there is a copy marked with SNL R&A numbers.

  6. Hanford analytical sample projections FY 1996 - FY 2001. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, S.M.

    1997-07-02

    This document summarizes the biannual Hanford sample projections for fiscal year 1997-2001. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Wastes Remediation Systems, Solid Wastes, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition to this revision, details on Laboratory scale technology (development), Sample management, and Data management activities were requested. This information will be used by the Hanford Analytical Services program and the Sample Management Working Group to assure that laboratories and resources are available and effectively utilized to meet these documented needs.

  7. FY1983 HTGR summary level program plan

    International Nuclear Information System (INIS)

    1983-01-01

    The major focus and priority of the FY1983 HTGR Program is the development of the HTGR-SC/C Lead Project through one of the candidate lead utilities. Accordingly, high priority will be given to work described in WBS 04 for site and user specific studies toward the development of the Lead Project. Asessment of advanced HTGR systems will continue during FY1983 in accordance with the High Temperature Process Heat (HTPH) Concept Evaluation Plan. Within the context of that plan, the assessment of the monolithic HTPH concepts has been essentially completed in FY1982 and FY1983 activities and will be limited to documentation only. the major advanced HTGR systems efforts in FY1983 will be focused on the further definition of the Modular Reactor Systems concepts in both the reforming (MRS-R) and Steam Cycle/Cogeneration 9MRS-SC/C) configurations in WBS 41. The effort will concentrate upon key technical issues and trade studies oriented to reduction in expected cost and schedule duration. With regard to the latter, the most significant will be trade study addressing the degree of modularization of reactor plant structures. particular attention will be given to the confinement building which currently defines the critical path for construction

  8. Laboratory Directed Research and Development FY2008 Annual Report

    International Nuclear Information System (INIS)

    Kammeraad, J.E.; Jackson, K.J.; Sketchley, J.A.; Kotta, P.R.

    2009-01-01

    , industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission. The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2008 (FY08) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: A broad description of the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY08, and a list of publications that resulted from the research in FY08. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year

  9. New Mexico State University Arrowhead Center PROSPER Project

    Energy Technology Data Exchange (ETDEWEB)

    Peach, James

    2012-12-31

    This document is the final technical report of the Arrowhead Center Prosper Project at New Mexico State University. The Prosper Project was a research and public policy initiative funded by the National Energy Technology Laboratory (NETL) of the U.S. Department of Energy (DOE). The Prosper project (DOE Grant Number DE-NT0004397) began on October 1, 2008 (FY2009, Quarter 1) and ended on December 31, 2012 (FY2013, Quarter 1). All project milestones were completed on time and within the budget. This report contains a summary of ten technical reports resulting from research conducted during the project. This report also contains a detailed description of the research dissemination and outreach activities of the project including a description of the policy impacts of the project. The report also describes project activities that will be maintained after the end of the project.

  10. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-30

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  11. Summary of FY 17 Assessments Sandia National Laboratories: Evaluation of FY16 SNL FCT M2 Milestone Deliverables

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Gordon John

    2017-03-01

    This report is the milestone deliverable M4FT-17SN111102091 “Summary of Assessments Performed FY17 by SNL QA POC” for work package FT-17SN11110209 titled “Quality Assurance – SNL”. This report summarizes the FY17 assessment performed on Fuel Cycle Technologies / Spent Fuel and Waste Disposition efforts.

  12. Aquatic Species Project report, FY 1989--1990

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.M.; Sprague, S.

    1992-01-01

    This report summarizes the progress and research accomplishments of the Aquatic Species Project. The four articles included are summaries of individual research projects and are entered into the EDB as such. The goal of the Aquatic Species Project is to develop the technology base for large-scale production of oil-rich microalgae. The project is also developing methods to convert the microalgal lipids into liquid fuels needed for industry and transportation. Researchers in the Aquatics Species Project focus on the use of microalgae as a feedstock for producing renewable, high-energy liquid fuels such as diesel. It is important for the United States to develop alternative renewable oil sources because 42% of the current energy market in the United States is for liquid fuels, and 38% of these fuels are imported. In 1979, the US Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) initiated the Aquatic Species Project as part of the overall effort in biofuels. The project began to focus exclusively on fuels from microalgae in 1982. Estimates show that the technology being developed by the project can provide as much as 7% of the total current energy demand. The program`s basic premise is that microalgae, which have been called the most productive biochemical factories in the world, can produce up to 30 times more oil per unit of growth area than land plants. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  13. FY10 Engineering Innovations, Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

    2011-01-11

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but

  14. Development of a cryogenic EOS capability for the Z Pulsed Radiation Source: Goals and accomplishments of FY97 LDRD project

    International Nuclear Information System (INIS)

    Hanson, D.L.; Johnston, R.R.; Asay, J.R.

    1998-03-01

    Experimental cryogenic capabilities are essential for the study of ICF high-gain target and weapons effects issues involving dynamic materials response at low temperatures. This report describes progress during the period 2/97-11/97 on the FY97 LDRD project ''Cryogenic EOS Capabilities on Pulsed Radiation Sources (Z Pinch)''. The goal of this project is the development of a general purpose cryogenic target system for precision EOS and shock physics measurements at liquid helium temperatures on the Z accelerator Z-pinch pulsed radiation source. Activity during the FY97 LDRD phase of this project has focused on development of a conceptual design for the cryogenic target system based on consideration of physics, operational, and safety issues, design and fabrication of principal system components, construction and instrumentation of a cryogenic test facility for off-line thermal and optical testing at liquid helium temperatures, initial thermal testing of a cryogenic target assembly, and the design of a cryogenic system interface to the Z pulsed radiation source facility. The authors discuss these accomplishments as well as elements of the project that require further work

  15. The America COMPETES Act and the FY2009 Budget

    National Research Council Canada - National Science Library

    Stine, Deborah D

    2008-01-01

    .... An issue for Congress is whether FY2009 appropriations will. The Presidents s Office of Science and Technology Policy reports that the FY2009 budget request includes funding for America COMPETES Act initiatives at 88...

  16. Country report: Thailand. Development of Sr-90/ Y-90 Generator and Development of Radiopharmaceuticals Using Y-90

    International Nuclear Information System (INIS)

    Nipavan, Poramatikul

    2010-01-01

    The research project has been conducted at Thailand Institute of Nuclear Technology in accordance to the 1st RCM plan during the IAEA meeting in Warsaw. The objectives of the project include the following 5 specific aims: 1. Development of Sr-90/Y-90 ion-exchange chromatography generator 2. Development of Sr-90/Y-90 extraction chromatography generator 3. Development of quality control technique 4. Development of herapeutic radiopharmaceuticals Y-90 particulates/colloids 5. Development of Re-188 DMSA–bis-phosphonates Currently we have achieved specific aims 1 to 3. The specific aims 4 and 5 are during investigation. For specific aim 4, we are during the process to extract high purity 90 Y from 90 Sr/ 90 Y generator that will yield the starting 90 Y for the production of Y-90 particulates and colloids. For the 5 th specific aim, we are on hold to receive the starting agent, bis- Phosphonates, from Dr. Blower group. Therefore, this progress report will cover our work focusing on specific aims 1 to 3

  17. Country report: Thailand. Development of Sr-90/ Y-90 Generator and Development of Radiopharmaceuticals Using Y-90

    Energy Technology Data Exchange (ETDEWEB)

    Nipavan, Poramatikul [Nuclear Research and Development Group, Thailand Institute of Nuclear Technology (Public Organization), Bangkok (Thailand)

    2010-07-01

    The research project has been conducted at Thailand Institute of Nuclear Technology in accordance to the 1st RCM plan during the IAEA meeting in Warsaw. The objectives of the project include the following 5 specific aims: 1. Development of Sr-90/Y-90 ion-exchange chromatography generator 2. Development of Sr-90/Y-90 extraction chromatography generator 3. Development of quality control technique 4. Development of herapeutic radiopharmaceuticals Y-90 particulates/colloids 5. Development of Re-188 DMSA–bis-phosphonates Currently we have achieved specific aims 1 to 3. The specific aims 4 and 5 are during investigation. For specific aim 4, we are during the process to extract high purity {sup 90}Y from {sup 90}Sr/{sup 90}Y generator that will yield the starting {sup 90}Y for the production of Y-90 particulates and colloids. For the 5{sup th} specific aim, we are on hold to receive the starting agent, bis- Phosphonates, from Dr. Blower group. Therefore, this progress report will cover our work focusing on specific aims 1 to 3.

  18. Abiotic Degradation Rates for Carbon Tetrachloride and Chloroform: Progress in FY2009

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, James E.; Jeffers, Peter M.; Qafoku, Odeta; Russell, Colleen K.; Wietsma, Thomas W.; Truex, Michael J.

    2010-03-31

    This report documents the progress made through FY 2009 on a project initiated in FY 2006 to help address uncertainties related to the rates of hydrolysis in groundwater for carbon tetrachloride (CT) and chloroform (CF). The study seeks also to explore the possible effects of contact with minerals and sediment (i.e., heterogeneous hydrolysis) on these rates. In previous years the work was funded as two separate projects by various sponsors, all of whom received their funding from the U.S. Department of Energy (DOE). In FY2009, the projects were combined and funded by CH2MHill Plateau Remediation Corporation (CHPRC). Work in FY2009 was performed by staff at the Pacific Northwest National Laboratory (PNNL). Staff from the State University of New York at Cortland (SUNY–Cortland) contributed in previous years.

  19. 90Sr-90Y radionuclide generator based on ionex chromatography. Part 1 - project

    International Nuclear Information System (INIS)

    Miler, V.; Budsky, F.; Malek, Z.

    2003-09-01

    This part contains a proposal for the generator column design, materials to be used (chemicals, ionexes) and technological procedures. The proposal was inspired by the 90 Sr- 90 Y generator operated by Zfk Rossendorf. The aim was to develop and launch a generator for the preparation of carrier-free 90 Y in the form of [ 90 Y] chloride solution in dilute hydrochloric acid. The separation of Y from Sr is based on ionex chromatography by sorbing the two radionuclides on a catex. While Sr remains sorbed, 90 Y is eluted with lithium citrate. During this process, 90 Y is bonded in a citrate complex which, having a negative charge, is subsequently trapped by an anex. A guard column is inserted before the anex column to trap any traces of 90 Sr. 90 Y is eluted from the anex in the yttrium chloride form by using dilute hydrochloric acid. The product from the generator can be used for the preparation of [ 90 Y] - Fe colloid injection or [ 90 Y] - yttrium citrate injection for intra-articular application or for the development of monoclonal antibodies and peptides

  20. FY2007 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W W; Sketchley, J A; Kotta, P R

    2008-03-20

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  1. FY 1999 report on the results of the research and development project for new industry creating type industrial science and technology. Innovated casting simulation technology; 1999 nendo kakushinteki chuzo simulation gijutsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Described herein are the results of the FY1999 research and development project, implemented for development of the casting process simulation technologies, with the objectives to improve productivity, reduce cost, reduce the development periods, and so on for casting. For development of the mold filling and solidification process simulation programs, the fundamental algorithm and basic designs of the three-dimensional programs are developed, and the two-dimensional programs are made on a trial basis. For the analysis of the two-dimensional mold filling models, it is found that gas entrapment may occur even in the case of sand mold casting with low permeability. For development of the solidification structure and defect formation simulation programs, the basic investigations are done for the fundamental algorithms to simulate the solidification structures and porosity defects, and for the mechanisms involved in formation of these defects. These efforts lead to adoption of the CA method, and development of the algorithms for reducing CPU time and computational memory requirements by the active block method. For development of the related measurement techniques, the construction plans and specifications of an electromagnetic levitation furnace are investigated for the underground microgravity test center. (NEDO)

  2. The Sandia MEMS Passive Shock Sensor : FY08 testing for functionality, model validation, and technology readiness.

    Energy Technology Data Exchange (ETDEWEB)

    Walraven, Jeremy Allen; Blecke, Jill; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell, John Anthony; Brake, Matthew Robert; Epp, David S.; Wittwer, Jonathan W.

    2008-10-01

    This report summarizes the functional, model validation, and technology readiness testing of the Sandia MEMS Passive Shock Sensor in FY08. Functional testing of a large number of revision 4 parts showed robust and consistent performance. Model validation testing helped tune the models to match data well and identified several areas for future investigation related to high frequency sensitivity and thermal effects. Finally, technology readiness testing demonstrated the integrated elements of the sensor under realistic environments.

  3. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo

    2002-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.

  4. FY 1996 Report on the industrial science and technology research and development project. R and D of brain type computer architecture; 1996 nendo nogata computer architecture no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    It is an object of this project to develop an information processing device based on a completely new architecture, in order to technologically realize human-oriented information processing mechanisms, e.g., memory, learning, association of ideas, perception, intuition and value judgement. Described herein are the FY 1996 results. For development of an LSI based on a neural network in the primary visual cortex, it is confirmed that the basic circuit structure comprising the position-signal generators, memories, signal selectors and adders is suitable for development of the LSI circuit for a neural network function (Hough transform). For development of realtime parallel distributed processor (RPDP), the basic specifications are established for, e.g., local memory capacity of RPDP, functions incorporated in RPDP and number of RPDPs incorporated in the RPDP chip, operating frequency and clock supply method, and estimated power consumption and package, in order to realize the RPDP chip. For development and advanced evaluation of large-scale neural network silicon chip, the chip developed by the advanced research project is incorporated with learning rules, cell models and failure-detection circuits, to design the evaluation substrate incorporated with the above chip. The evaluation methods and implementation procedures are drawn. (NEDO)

  5. FY 2000 International energy use rationalization project. International technology dissemination project for improving energy consumption efficiency (Green helmet project for steel heating furnaces in Thailand); 2000 nendo kokusai energy shiyo gorika nado taisaku jigyo chosa hokokusho. Kokusai energy shohi koritsuka nado gijutsu fukyu jigyo (Green helmet jigyo (Tai: kozai kanetsuro))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The project for energy saving dissemination activities and technological assistance for Thailand is carried out, and the FY 2000 results are reported. For Siam Iron and Steel (SISCO), the experts are dispatched for reviewing the operating conditions of the facilities constructed by the model project, their maintenance and examination, time series diagnosis of the recuperator performance, and providing technical assistance for fuel consumption and high-load combustion of the downstream unit. Furthermore, the site survey and technical assistance are provided for two newly selected Thai steel enterprises, Sahaviriya Steel Industries Public Co. (SSI) and the Bangkok Iron and Steel Works Co. (BISW). For SSI, it is predicted that energy of approximately 50Mcal/ton can be saved by, e.g., enhancement of waste heat recovery, enhancement of heat insulation of skid pipes, introduction of steel discharging temperature prediction system, and combustion control. For BISW, it is predicted that energy of approximately 25Mcal/ton can be saved by, e.g., enhancement of waste heat recovery and reduction of heat loss in the waste gas. (NEDO)

  6. Buried waste integrated demonstration FY 94 deployment plan

    International Nuclear Information System (INIS)

    Hyde, R.A.; Walker, S.; Garcia, M.M.

    1994-05-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year (FY) 1994 effort will fund thirty-eight technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. This document is the basic operational planning document for deployment of all BWID projects. Discussed in this document are the BWID preparations for INEL field demonstrations, INEL laboratory demonstrations, non-INEL demonstrations, and paper studies. Each technology performing tests will prepare a test plan to detail the specific procedures, objectives, and tasks of each test. Therefore, information specific to testing each technology is intentionally omitted from this document

  7. Progress of technological innovation on electric power in FY2014

    International Nuclear Information System (INIS)

    Nishikawa, Yoshikazu; Fujii, Yutaka; Sasagawa, Toshiro

    2015-01-01

    This paper overviews the technological development in FY2014 at Tokyo Electric Power Company, Chubu Electric Power Company, Hokuriku Electric Power Company, Shikoku Electric Power Company, and Electric Power Development Company. In this overview, further breakdown was made for the following departments of each company: nuclear power generation, thermal power generation, hydraulic power generation, power transmission, power distribution, transformation, research and development and technological development, and information and communication. In addition, this paper outlines the achievement of technological development at Japan Atomic Power Company, such as the technological development related to the existing power station, development of new technology, and the development of future reactor. Fukushima Daiichi Nuclear Power Station has developed an investigative system using a high altitude survey robot and a movable monitoring system. Hamaoka Nuclear Power Station examined the feasibility of state diagnostic technique based on multi-point analysis, and studied stress corrosion cracking at the newly established Nuclear Safety Research Laboratory. Shika Nuclear Power Station (Unit 1) applied a pipe stress improvement process by means of high frequency induction heating as a stress corrosion cracking countermeasure. Ikata Nuclear Power Station newly adopted high degree cross-linking cation resin, and high cracking strength anion resin as the primary resins. Oma Nuclear Power Station worked on the all reactor core utilization technology of MOX fuel. (A.O.)

  8. Laboratory Directed Research and Development FY2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24

    universities, industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission. The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2008 (FY08) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: A broad description of the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY08, and a list of publications that resulted from the research in FY08. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  9. FY 1999 report on the results of the research and development project for new industry creating type industrial science and technology. Innovated casting simulation technology (Development project for commercialization of technologies related to rational use of energy); 1999 nendo kakushinteki chuzo simulation gijutsu seika hokokusho. Energy shiyo gorika kankei gijutsu jitsuyoka kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Described herein are the results of the FY1999 research and development project, implemented for development of the casting process simulation technologies, with the objectives to improve efficiency and energy-saving for the various industrial areas, e.g., industrial machines, aircraft, automobiles and vehicles, and power generation plants. For development of the mold filling and solidification process simulation programs, the efforts are directed to development of the fundamental algorithms for simulation of unidirectional solidification casting used for, e.g., turbine blades, and also to the basic works for validation of the programs. For development of the solidification structures and defect formation simulation programs, the fundamental works are done for simulation of solidification structures and channel-type segregation, which are the main problems for columnar blades, to predict the defects formed in, e.g., turbines. For development of the related measurement techniques, investigations are made for evaluation of the levitation characteristics of nickel alloys by the electromagnetically levitated droplet method and problems involved therein, prior to the tests in the the underground microgravity test center. (NEDO)

  10. FY 1998 industrial technology R and D project. Report on the results of the development of utilization technology of biological resource such bioconsortia system (Development of production technology of biological use petroleum substituting fuels); 1998 nendo sangyo gijutsu kenkyu kaihatsu jigyo. Fukugo seibutsukeinado seibutsu shigen riyo gijutsu kaihatsu (seibutsu riyo sekiyu daitai nenryo seizo gijutsu no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Technology development was conducted for production of useful substances using the bioconsortia system. In FY 1998, the development of element technology was studied. As to the utilization technology of gut symbiotic microorganisms such as termite and longhorn beetle, clone types of gut microorganism complex system were analyzed to find out the diversification. In the decay of wood, co-culture of two species of mold fungus was increased in efficiency than single culture. More than 90% was classified/identified of the mold fungi accumulated (in wood piece)/separated for the utilization of plant symbiotic microorganisms. For the production of petroleum substituting useful resource, conditions were established of callus induction from immature embryos of tropical oil crops, especially oil palm, and of regeneration of a lot of small plants from the callus. To establish the Agrobacterium-mediated transformation system of oil palm, the binary vector harboring the reporter gene and selectable marker gene was constructed. Using the vector, oil palm tissues are inoculated and infected with agrobacteria. To heighten the function of palm oil, 10 particular clones were selected from the complementary DNA library obtained from oil palm fruit tissues. The genetic study of germs was also made. (NEDO)

  11. Audit and Evaluation Plan FY 2002

    National Research Council Canada - National Science Library

    2002-01-01

    .... These projects also have been coordinated in the joint audit and inspection planning groups that address coverage in each major functional area. The plan also includes audit policy and oversight projects planned to start in FY 2002; however, intelligence coverage will be addressed separately.

  12. FY 1999 report on the results of the R and D of femtosecond technology. Development of ultra-short pulse optoelectronics technology; 1999 nendo femutobyo technology no kenkyu kaihatsu seika hokokusho. Chotan pulse hikari electronics gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper described the FY 1999 results of the R and D of femtosecond technology. For the purpose of creating new industrial basement technology which supports the highly information-oriented society in the 21st century, the ultra-high speed electronics technology is indispensable which is beyond speed limits of the existing electronics technology and has new functionality. The ultra-high speed electronics basement technology is established through the R and D of the technology to control the state of light and electronics in the femtosecond time domain (10{sup -15} - 10{sup -12} second). Themes of the R and D are technology to generate/transmit femtosecond optical pulse, technology for control/distribution, and ultra-short pulse optoelectronics common basement technology. In FY 1999, a lot of results were obtained in the following: generation of the pulse train highly repeated at 500GHz in semiconductor laser; 139km transmission of 250fs optical pulse; switching movement at ultra-high speed of 150fs-1.2ps in transition among subbands of GaN base and Sb base materials; DEMUXA movement toward 160-10Gb/s in Mach-Zehnder type optical switch. (NEDO)

  13. Report of interim evaluation of Horonobe Underground Research Project Plan in FY2004

    International Nuclear Information System (INIS)

    2005-09-01

    The research results on the ground in the first step, until 2004 FY, and the research program of drift work in the second step are evaluated. On the first step, development of the geological environment research technologies, the monitoring technologies and the basic engineering technologies in the deep underground, long period stability of geological environment, and improvement of the geological disposal technologies, and the stability evaluation methods are investigated and these research results were high in estimation. The research program in the second step contains to obtain the geological environment data at sinking shaft, the effects of sinking on the geological environment, validity of the geological environment model in the first step and around the shaft are estimated. Validity of monitoring technologies of geological environment on the ground, engineering technologies of work, maintenance and management of shaft are evaluated. The fault, upheaval, submergence, change of sea level and climate are determined by earthquakes measurements, GPS and time-stratigraphic classification. The geological disposal technologies are improved by storage of data, better model and verification of engineering element techniques. Test program of materials transition in the geological disposal system is work out. (S.Y.)

  14. W-519 Sagebrush Mitigation Project FY-2004 Final Review and Status

    Energy Technology Data Exchange (ETDEWEB)

    Durham, Robin E.; Sackschewsky, Michael R.

    2004-09-30

    This report summarizes activities conducted as mitigation for loss of sagebrush-steppe habitats due to Project W-519, the construction of the infrastructure for the Tank Waste Remediation System Vitrification Plant. The focus of this report is to provide a review and final status of mitigation actions performed through FY2004. Data collected since FY1999 have been included where appropriate. The Mitigation Action Plan (MAP) for Project W-519 prescribed three general actions to be performed as mitigation for the disturbance of approximately 40 ha (100 acres) of mature sagebrush-steppe habitat. These actions included: (1) transplanting approximately 130,000 sagebrush seedlings on the Fitzner-Eberhardt Arid Lands Ecology Reserve (ALE); (2) rectification of the new transmission line corridor via seeding with native grasses and sagebrush; and (3) research on native plant species with a goal of increasing species diversity in future mitigation or restoration actions. Nearly 130,000 Wyoming big sagebrush seedlings where planted on ALE during FY2000 and FY2001. About 39,000 of those seedlings were burned during the 24-Command Fire of June 2000. The surviving and subsequent replanting has resulted in about 91,000 seedlings that were planted across four general areas on ALE. A 50% survival rate at any monitoring period was defined as the performance standard in the MAP for this project. Data collected in 2004 indicate that of the over 5000 monitored plants, 51.1% are still alive, and of those the majority are thriving and blooming. These results support the potential for natural recruitment and the ultimate goal of wildlife habitat replacement. Thus, the basic performance standard for sagebrush survival within the habitat compensation planting has been met. Monitoring activities conducted in 2004 indicate considerable variation in seedling survival depending on the type of plant material, site conditions, and to a lesser extent, treatments performed at the time of planting

  15. W-519 Sagebrush Mitigation Project FY-2004 Final Review and Status

    International Nuclear Information System (INIS)

    Durham, Robin E.; Sackschewsky, Michael R.

    2004-01-01

    This report/SUMmarizes activities conducted as mitigation for loss of sagebrush-steppe habitats due to Project W-519, the construction of the infrastructure for the Tank Waste Remediation System Vitrification Plant. The focus of this report is to provide a review and final status of mitigation actions performed through FY2004. Data collected since FY1999 have been included where appropriate. The Mitigation Action Plan (MAP) for Project W-519 prescribed three general actions to be performed as mitigation for the disturbance of approximately 40 ha (100 acres) of mature sagebrush-steppe habitat. These actions included: (1) transplanting approximately 130,000 sagebrush seedlings on the Fitzner-Eberhardt Arid Lands Ecology Reserve (ALE); (2) rectification of the new transmission line corridor via seeding with native grasses and sagebrush; and (3) research on native plant species with a goal of increasing species diversity in future mitigation or restoration actions. Nearly 130,000 Wyoming big sagebrush seedlings where planted on ALE during FY2000 and FY2001. About 39,000 of those seedlings were burned during the 24-Command Fire of June 2000. The surviving and subsequent replanting has resulted in about 91,000 seedlings that were planted across four general areas on ALE. A 50% survival rate at any monitoring period was defined as the performance standard in the MAP for this project. Data collected in 2004 indicate that of the over 5000 monitored plants, 51.1% are still alive, and of those the majority are thriving and blooming. These results support the potential for natural recruitment and the ultimate goal of wildlife habitat replacement. Thus, the basic performance standard for sagebrush survival within the habitat compensation planting has been met. Monitoring activities conducted in 2004 indicate considerable variation in seedling survival depending on the type of plant material, site conditions, and to a lesser extent, treatments performed at the time of planting

  16. Worldwide clean energy system technology using hydrogen (WE-NET). subtask 9. Investigation of innovative and leading technologies; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 9. Kakushinteki sendoteki gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The WE-NET Project is a long-term project designed to ensure that an energy network technology using hydrogen becomes a reality not later than 2020. So the project cannot remain effective unless constant efforts are made to foresee future trends of technology and optimize it as the making of entire system for the project. In this project, new technologies which are not up for development are also investigated. Their feasibility should be studied, if necessary. From the foregoing point of view, new technologies are studied, collected and evaluated. Thus, useful suggestions and proposals may be made as to the course for the project to follow, as well as its research and development. Proposals highly evaluated up to FY 1995 are the hydrogen-oxygen internal-combustion Stirling`s engine, hydrogen production by solid oxide electrolysis, magnetic refrigeration technology for liquefaction of hydrogen, solar thermal hydrogen production with iron sponge technology, and hydrogen producing technology with photocatalyst. Conceptual investigation themes in FY 1996 are the hydrogen internal-combustion Stirling engine, solar thermal hydrogen production, phototransformation process, and high-temperature steam electrolysis. 9 figs., 54 tabs.

  17. LDRD Annual Report FY2006

    International Nuclear Information System (INIS)

    Sketchley, J A; Kotta, P; De Yoreo, J; Jackson, K; van Bibber, K

    2007-01-01

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Laboratory Science and Technology Office, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration in national security, energy security, environmental management, bioscience and technology to improve human health, and breakthroughs in fundamental science and technology. The accomplishments described in this Annual Report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $92 million for FY2006 sponsored 188 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest

  18. FY 1999 Report on research and development project results of industrial science and technology. Research and development of quantum functional devices; 1999 nendo ryoshika kino soshi no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Described herein are the FY 1999 research and development results of quantum functional devices. This project is aimed at establishment of the basic technologies related to quantum functional devices, which utilize various quantum mechanical effects appearing in superfine regions, for development of the microelectronics technologies serving as the bases for superhigh-speed, superhigh-function information processing. The technologies are developed for advancing the elementary devices by quantum functions and development of integrated devices. The results include development, on a trial basis, of the world smallest MOS transistor with a gate length of 10 nm or less and analysis of its behavior, improved characteristics of the tunnel devices, and development, on a trial basis, of a semiconductor memory working based on the principle of single electron capturing/releasing and evaluation thereof. The device-building techniques are developed. The results include demonstration of the logic circuit which controls a small number of electrons, and development of an opto-electronic device on a trial basis, which are the world first results. Progresses are noted in confirmation of behavior of the 3-value basic logic circuit which uses an InGaAs-based tunnel device, demonstration of behavior of the SRAM circuit which uses ME-RHET device, confirmation of possibility of terabit-size memory integration, advancing performance of the quantum MMIC, and designs of the single electron-CMOS integrated circuit. (NEDO)

  19. HWVP NCAW melter feed rheology FY 1993 testing and analyses: Letter report

    International Nuclear Information System (INIS)

    Smith, P.A.

    1996-03-01

    The Hanford Waste Vitrification Plant (HWVP) program has been established to immobilize selected Hanford nuclear wastes before shipment to a geologic repository. The HWVP program is directed by the U.S. Department of Energy (DOE). The Pacific Northwest Laboratory (PNL) provides waste processing and vitrification technology to assist the design effort. The focus of this letter report is melter feed rheology, Process/Product Development, which is part of the Task in the PNL HWVP Technology Development (PHTD) Project. Specifically, the melter feed must be transported to the liquid fed ceramic melter (LFCM) to ensure HWVP operability and the manufacture of an immobilized waste form. The objective of the PHTD Project slurry flow technology development is to understand and correlate dilute and concentrated waste, formatted waste, waste with recycle addition, and melter feed transport properties. The objectives of the work described in this document were to examine frit effects and several processing conditions on melter feed rheology. The investigated conditions included boiling time, pH, noble metal containing melter feed, solids loading, and aging time. The results of these experiments contribute to the understanding of melter feed rheology. This document is organized in eight sections. This section provides the introductory remarks, followed by Section 2.0 that contains conclusions and recommendations. Section 3.0 reviews the scientific principles, and Section 4.0 details the experimental methods. The results and discussion and the review of related rheology data are in Sections 5.0 and 6.0, respectively. Section 7.0, an analysis of NCAW melter feed rheology data, provides an overall review of melter feed with FY 91 frit. References are included in Section 8.0. This letter report satisfies contractor milestone PHTD C93-03.02E, as described in the FY 1993 Pacific Northwest Hanford Laboratory Waste Plant Technology Development (PHTD) Project Work Plan

  20. USDA Section 9006 Program: Status and Energy Benefits of Grant Awards in FY 2003-2005

    Energy Technology Data Exchange (ETDEWEB)

    Walters, T.; Savage, S.; Brown, J.

    2006-08-01

    At the request of the U. S. Department of Agriculture (USDA) Rural Development, the National Renewable Energy Laboratory reviewed projects awarded in the Section 9006 Program: Renewable Energy Systems and Energy Efficiency Improvements Program. This report quantifies federal and private investment, outlines project status based on recent field updates, and calculates the effects on energy and emissions of energy efficiency and renewable energy projects awarded grants in FY 2003, FY 2004, and FY 2005. An overview of the program challenges and modifications in the first three years of operation is also included.

  1. Report on the FY 1999 survey for making a data book related to new energy technology development. Trends of solar energy utilization, waste power generation, clean energy vehicle, geothermal power generation, clean coal technology, other new energy technology and new energy technology development; 1999 nendo shin energy gijutsu kaihatsu kankei data shu sakusei chosa hokokusho. Taiyonetsu riyo, haikibutsu hatsuden, clean energy jidosha, chinetsu hatsuden, clean coal technology, sonota no shin energy gijutsu, shin energy gijutsu kaihatsu kanren doko

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper collected/arranged the most up-to-date data made public in the new energy technology field. As to the solar energy utilization, the utilization is on the decrease with the beginning of the 1980s as a peak, and the solar systems introduced in FY 1998 totaled 15,000 and the water heaters 56,000. The waste power generation is showing a steady growth both in the general use and in the industrial use, and the introduction of 5 million KW is expected for FY 2010. The sale of the hybrid car started at the end of 1997, and the subjects are the price/performance/fuel supply system. Concerning the geothermal power generation, 497,000 KW and 36,000 KW were introduced for business use and non-utility use, respectively. Japan ranks sixth among nations of the world. Relating to the coal liquefaction, the pilot plant (PP) of Japan's original bituminous coal liquefaction NEDOL process finished operation in 1998, and the construction of technology package, international cooperation, etc. are being conducted. About the coal gasification, the construction of demonstrative equipment and operation are planned during FY 2002 - FY 2007, making use of the PP achievements of IGCC. In regard to the biomass-based waste power generation, the lignocellulose system is large in potential quantity. As to the hydrogen energy, the WE-NET project entered Period II. With respect to the ocean thermal energy conversion, the demonstrative study started. In relation to the wave power generation, a small size of approximately several hundred W was commercialized. (NEDO)

  2. Hydrogen Energy Coordinating Committee annual report: Summary of DOE hydrogen programs for FY 1991

    International Nuclear Information System (INIS)

    1991-07-01

    The HECC was established over 13 years ago to ensure that the many varied aspects of hydrogen technology within the Department are coordinated. Each year the committee brings together technical representative within the Department to coordinate activities, share research results and discuss future priorities and directions. This FY 1990 summary is the thirteenth consecutive yearly report. It provides an overview of the hydrogen-related programs of the DOE offices represented in the HECC for the fiscal year. For the purposes of this report, the research projects within each division have been organized into two categories: Fuels-related Research and Non-fuels-related Research. An historical summary of the hydrogen budgets of the several divisions is given. Total DOE funding in FY 1990 was $6.8 million for fuels-related research and $32.9 million for non-fuels-related research. The individual program elements are described in the body of this report, and more specific program information can be found in the Technology Summary Forms in Appendix A

  3. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2015

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-08

    This FY 2015 report updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

  4. Federal Research and Development Funding: FY2011

    Science.gov (United States)

    2011-03-25

    NSF’s offices in 54 Arden L. Bement, Jr., Transformative Research: The Artistry and Alchemy of the 21st... financing for the Technology Innovation Program (TIP) increases 14.3% over FY2010 funding to $79.9 million. The construction budget declines 15.1% to $124.8...Extension Partnership Program received $124.7 million, 13.4% more than FY2009, while financing for TIP increased 7.5% to $69.9 million. Construction

  5. FY 1991 Research and development project for large-scale industrial technologies. Report on results of R and D of superhigh technological machining systems (Development of advanced machining devices for power-generating members); 1991 nendo chosentan kako system no kenkyu kaihatsu seika hokokusho. Hatsuden shisetsuyo buzai kodo kako sochi kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    Described herein are the FY 1991 results of the R and D project aimed at establishment of superprecision machining technologies for developing machining technologies and nano-technologies aided by excited beams. For increasing the excimer laser output, the discharge-exciting technologies necessary for designing the 2kW laser as the final target are established. The service life tests are started to demonstrate the member service life of 10{sup 9} shots or more. For development of the technologies for large-current composite ion beams, the plant is constructed to attain the final targets (100keV, 2A, width: 500mm or more). The currents reaching the substrate are developed to have 2.8mA with the Ar ion and 2.9mA with the Ca ion by, e.g., developing the ion sources and improving functions of the ion beam controlling systems. Researches on the surface modification technologies for producing the superhigh-quality metallic surfaces involve composite ion implantation and providing the modified layer of Ti-B-based hard compound. Corrosion rate of the modified titanium surface in a boiling sulfuric acid solution is reduced from 300mm/year to around 0.13mm/year. (NEDO)

  6. Notification: EPA Investments in Information Technology Products and Services

    Science.gov (United States)

    Project #OA-FY14-0307, June 10, 2014. The U.S. Environmental Protection Agency (EPA) Office oflnspector General (OIG) plans to begin preliminary research on the EPA's management of information technology (IT) investments.

  7. Inventory of Federal energy-related environment and safety research for FY 1979. Volume II. Project listings and indexes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-12-01

    This volume contains summaries of FY 1979 government-sponsored environment and safety research related to energy arranged by log number, which groups the projects by reporting agency. The log number is a unique number assigned to each project from a block of numbers set aside for each contributing agency. Information elements included in the summary listings are project title, principal investigators, research organization, project number, contract number, supporting organization, funding level, related energy sources with numbers indicating percentages of effort devoted to each, and R and D categories. A brief description of each project is given, and this is followed by subject index terms that were assigned for computer searching and for generating the printed subject index in the back of this volume.

  8. Inventory of Federal energy-related environment and safety research for FY 1979. Volume II. Project listings and indexes

    International Nuclear Information System (INIS)

    1980-12-01

    This volume contains summaries of FY 1979 government-sponsored environment and safety research related to energy arranged by log number, which groups the projects by reporting agency. The log number is a unique number assigned to each project from a block of numbers set aside for each contributing agency. Information elements included in the summary listings are project title, principal investigators, research organization, project number, contract number, supporting organization, funding level, related energy sources with numbers indicating percentages of effort devoted to each, and R and D categories. A brief description of each project is given, and this is followed by subject index terms that were assigned for computer searching and for generating the printed subject index in the back of this volume

  9. Tanks Focus Area retrieval process development and enhancements FY96 technology development summary report

    International Nuclear Information System (INIS)

    Rinker, M.W.; Bamberger, J.A.; Hatchell, B.K.

    1996-09-01

    The Retrieval Process Development and Enhancements (RPD ampersand E) activities are part of the Retrieval and Closure Program of the U.S. Department of Energy (DOE) EM-50 Tanks Focus Area. The purposes of RPD ampersand E are to understand retrieval processes, including emerging and existing technologies, and to gather data on those processes, so that end users have the requisite technical basis to make retrieval decisions. Work has been initiated to support the need for multiple retrieval technologies across the DOE complex. Technologies addressed during FY96 focused on enhancements to sluicing, borehole mining, confined sluicing retrieval end effectors, the lightweight scarifier, and pulsed air mixing. Furthermore, a decision tool and database have been initiated to link retrieval processes with tank closure to assist end users in making retrieval decisions

  10. Energy Storage and Distributed Energy Generation Project, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  11. FY 1998 annual report on the environmental technology working group. 19th R and D activity report; 1998 nendo kankyo gijutsu bunkakai. Dai 19 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    Summarized herein are the FY 1998 activities by the environmental technology working group, extracted from the 19th R and D activity report by NEDO. Mr. Mitsukawa, a NEDO's director, outlines the measures for diversifying environmental problems, prevention of global warming, waste disposal/recycling, and toxic chemical substances in the report entitled (Outlines of environmental technology development projects). The report entitled (Eco-cement production techniques for comprehensive utilization of urban type wastes (For efforts for construction of Ichihara eco-cement production facilities)) outlines characteristics of eco-cement production techniques, recyclability of eco-cement, and the facilities. The report entitled (Techniques for reutilization of plastics present in wastes as the blast furnace stocks) outlines the system, R and D project and commercialization, and vinyl chloride recycling system, to be developed by the financial support by NEDO. The other reports include (Development of universal controllers for coping with environmental problems) and (R and D of techniques of simplified dioxine analysis). (NEDO)

  12. Laboratory Directed Research and Development Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  13. Laboratory Directed Research and Development Program FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  14. Integrated Task Plans for the Hanford Environmental Dose Reconstruction Project, FY 1992 through May 1994

    International Nuclear Information System (INIS)

    Shipler, D.B.

    1992-09-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to populations and individuals. The primary objective of work to be performed through May 1994 is to (1) determine the project's appropriate scope (space, time, radionuclides, pathways and individuals/population groups), (2) determine the project's appropriate level of accuracy (level of uncertainty in dose estimates) for the project, (3) complete model and data development, and (4) estimate doses for the Hanford Thyroid Disease Study (HTDS), representative individuals, and special populations as described herein. The plan for FY 1992 through May 1994 has been prepared based on activities and budgets approved by the Technical Steering Panel (TSP) at its meetings on August 19--20, 1991, and April 23--25, 1992. The activities can be divided into four broad categories: (1) model and data evaluation activities, (2)additional dose estimates, (3) model and data development activities, and (4)technical and communication support

  15. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-01-31

    FIU-HCET participated in an ICT meeting at Mound during the second week of December and presented a brief videotape of the testing of the Robotic Climber technology. During this meeting, FIU-HCET proposed the TechXtract technology for possible testing at Mound and agreed to develop a five-page proposal for review by team members. FIU-HCET provided assistance to Bartlett Inc. and General Lasertronics Corporation in developing a proposal for a Program Opportunity Notice (PON). The proposal was submitted by these companies on January 5, 1999. The search for new equipment dismantlement technologies is continuing. The following vendors have responded to requests for demonstration: LUMONICS, Laser Solutions technology; CRYO-BEAM, Cryogenic cutting technology; Waterjet Technology Association, Waterjet Cutting technology; and DIAJET, Waterjet Cutting technology. Based on the tasks done in FY98, FIU-HCET is working closely with Numatec Hanford Corporation (NHC) and Pacific Northwest National Laboratory (PNNL) to revise the plan and scope of work of the pipeline plugging project in FY99, which involves activities of lab-scale flow loop experiments and a large-scale demonstration test bed.

  16. Accelerator Technology Division annual report, FY 1991

    International Nuclear Information System (INIS)

    1992-04-01

    This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; Φ Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations

  17. Accelerator Technology Division annual report, FY 1989

    International Nuclear Information System (INIS)

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects

  18. Global Change Research: Summaries of research in FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This document describes the activities and products of the Global Research Program in FY 1993. This publication describes all of the projects funded by the Environmental Sciences Division of DOE under annual contracts, grants, and interagency agreements in FY 1993. Each description contains the project`s title; its 3-year funding history (in thousands of dollars); the period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date (for most projects older than 1 year). Project descriptions are categorized within the report according to program areas: climate modeling, quantitative links, global carbon cycle, vegetation research, ocean research, economics of global climate change, education, information and integration, and NIGEC. Within these categories, the descriptions are grouped alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states its goals and objectives, lists principal research questions, and identifies program managers.

  19. Biofuels: Project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

  20. Advanced Industrial Materials (AIM) program. Annual progress report. FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 or 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.` Though AIM remains essentially a National Laboratory Program, it is necessary that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains healthy and productive, thanks to the superb investigators and Laboratory Program Managers. Separate abstracts have been indexed into the energy database for articles from this report.

  1. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  2. Oil program implementation plan FY 1996--2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document reaffirms the US Department of Energy (DOE) Office of Fossil Energy commitment to implement the National Oil Research Program in a way to maximize assurance of energy security, economic growth, environmental protection, jobs, improved economic competitiveness, and improved US balance of trade. There are two sections and an appendix in this document. Section 1 is background information that guided its formulation and a summary of the Oil Program Implementation Plan. This summary includes mission statements, major program drivers, oil issues and trends, budget issues, customers/stakeholders, technology transfer, measures of program effectiveness, and benefits. Section 2 contains more detailed program descriptions for the eight technical areas and the NIPER infrastructure. The eight technical areas are reservoir characterization; extraction research; exploration, drilling, and risk-based decision management; analysis and planning; technology transfer; field demonstration projects; oil downstream operations; and environmental research. Each description contains an overview of the program, descriptions on main areas, a discussion of stakeholders, impacts, planned budget projections, projected schedules with Gantt charts, and measures of effectiveness. The appendix is a summary of comments from industry on an earlier draft of the plan. Although changes were made in response to the comments, many of the suggestions will be used as guidance for the FY 1997--2001 plan.

  3. Environmental control technology activities of the Department of Energy in FY 1977

    International Nuclear Information System (INIS)

    1977-11-01

    The Department of Energy is responsible for the research, development, and demonstration of emerging energy technologies and the promotion of energy conservation. An integral and significant part of that responsibility includes the balancing of energy goals with environmental requirements to protect and enhance the general health, safety, and welfare of the nation. This requires that environmental effects be considered and mitigating measures be taken in all energy processes through incorporation of environmental and safety controls which are developed as an integral part of energy system design. This inventory of environmental control technology activities was initiated by the Administrator, ERDA, prior to the incorporation of that administration within the Department of Energy. This compilation of total Energy Research and Development Administration (ERDA) environmental control technology activities, and associated funding, related to environmental control technology identifies the resources committed by ERDA to demonstrate its objective to protect and enhance the general health, safety, and welfare of the nation in the research, development, and demonstration of energy systems. Only ERDA research, development, and demonstration activities are covered in this report. The compilation for FY 1978 will encompass all of the DOE activities

  4. Removal of strontium and transuranics from Hanford waste via hydrothermal processing -- FY 1994/95 test results

    International Nuclear Information System (INIS)

    Orth, R.J.; Schmidt, A.J.; Elmore, M.R.; Hart, T.R.; Neuenschwander, G.G.; Gano, S.R.; Lehmann, R.W.; Momont, J.A.

    1995-09-01

    Under the Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project, Pacific Northwest Laboratory (PNL) is evaluating and developing organic destruction technologies that may be incorporated into the Initial Pretreatment Module (IPM) to treat Hanford tank waste. Organic (and ferrocyanide) destruction removes the compounds responsible for waste safety issues, and conditions the supernatant for low-level waste disposal by removing compounds that may be responsible for promoting strontium and transuranic (TRU) components solubility. Destruction or defunctionalization of complexing organics in tank wastes eliminates organic species that can reduce the efficiency of radionuclide (E.g., 90 Sr) separation processes, such as ion exchange, solvent extraction, and precipitation. The technologies being evaluated and tested for organic destruction are low-temperature hydrothermal processing (HTP) and wet air oxidation (WAO). Four activities are described: Batch HTP/WAO testing with Actual Tank Waste (Section 3.0), Batch HTP Testing with Simulant (Section 4.0), Batch WAO testing with Simulant (Section 5.0), and Continuous Bench-scale WAO Testing with Simulant (Section 6.0). For each of these activities, the objectives, test approach, results, status, and direction of future investigations are discussed. The background and history of the HTP/WAO technology is summarized below. Conclusions and Recommendations are provided in Section 2.0. A continuous HTP off-gas safety evaluation conducted in FY 1994 is included as Appendix A

  5. Preparation of the FY 1998 photovoltaic power system related technology information; 1998 nendo taiyoko hatsuden system kanren gijutsu joho no seibi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper outlined the FY 1998 data preparation project on the photovoltaic power generation. In the field of solar cells and photovoltaic power system, a part of the 13th EUPVSEC data and the 25th IEEEPVSEC data are made database. As to the NEDO related papers, the papers made public in FY 1998 are made database. The number of the object papers totaled 982 including 943 in international conference relation and 39 in NEDO relation. The number of the papers included in 'photovoltaic power generation database (literature)' totaled 4010. Steps of database preparation are collection of the research papers/various reports made public in Japan and overseas, abstract making, preparation of the result data/experimental data, keyword supply, classification/adjustment, and description items. The FY 1998 is the fifth year from the start of this database, and the collected/adjusted technical information on solar cells is classified for analysis according to international conference, research institute, used material, research field, etc. (NEDO)

  6. Preparation of the FY 1998 photovoltaic power system related technology information; 1998 nendo taiyoko hatsuden system kanren gijutsu joho no seibi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper outlined the FY 1998 data preparation project on the photovoltaic power generation. In the field of solar cells and photovoltaic power system, a part of the 13th EUPVSEC data and the 25th IEEEPVSEC data are made database. As to the NEDO related papers, the papers made public in FY 1998 are made database. The number of the object papers totaled 982 including 943 in international conference relation and 39 in NEDO relation. The number of the papers included in 'photovoltaic power generation database (literature)' totaled 4010. Steps of database preparation are collection of the research papers/various reports made public in Japan and overseas, abstract making, preparation of the result data/experimental data, keyword supply, classification/adjustment, and description items. The FY 1998 is the fifth year from the start of this database, and the collected/adjusted technical information on solar cells is classified for analysis according to international conference, research institute, used material, research field, etc. (NEDO)

  7. Lawrence Livermore National Laboratory FY 2016 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ayat, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gard, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sketchley, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Watkins, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    The LDRD annual report for FY2016 consists of two parts: The Overview. This section contains a broad description of the LDRD Program, highlights of recent accomplishments and awards, Program statistics, and the LDRD portfolio-management processes. Project Reports. Project reports are submitted by all principal investigators at the end of the fiscal year. The length and depth of the report depends on the project’s lifecycle. For projects that will be continuing the following year, the principal investigator submits a continuing project report, which is a brief update containing descriptions of the goals, scope, motivation, relevance (to DOE/NNSA and Livermore mission areas), and technical progress achieved in FY16, as well as a list of selected publications and presentations that resulted from the research. For projects that concluded in FY16, a more detailed final report is provided that is technical in nature and includes the background, objectives, scientific approach, accomplishments, and impacts on the Laboratory missions, as well as a list of publications and presentations that resulted from the research. Project reports are listed under their research topics and organized by year and type, such as exploratory research (ER), feasibility study (FS), laboratory-wide competition (LW), and strategic initiative (SI). Each project is assigned a unique tracking code, an identifier that consists of three elements. The first is the fiscal year in which the project began, the second represents the project type, and the third identifies the serial number of the project for that fiscal year. For example, 16-ERD-100 means the project is an exploratory research project that began in FY16. The three-digit number (100) represents the serial number for the project.

  8. Accelerator Technology Division progress report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  9. Accelerator Technology Division progress report, FY 1992

    International Nuclear Information System (INIS)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations

  10. NREL Photovoltaic Program FY 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    1997-08-01

    This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

  11. DOE Hydropower Program Annual Report for FY 2002

    Energy Technology Data Exchange (ETDEWEB)

    Garold L. Sommers; R. T. Hunt

    2003-07-01

    The U.S. Department of Energy (DOE) conducts research on advanced hydropower technology through its hydropower program, which is organized under the Office of Wind and Hydropower Technologies within the Office of Energy Efficiency and Renewable Energy. This annual report describes the various projects supported by the hydropower program in FY 2002. The program=s current focus is on improving the environmental performance of hydropower projects by addressing problems such as fish mortality during passage through turbines, alteration of instream habitat, and water quality in tailwaters. A primary goal of this research is to develop new, environmentally friendly technology. DOE-funded projects have produced new conceptual designs for turbine systems, and these are now being tested in pilot-scale laboratory tests and in the field. New design approaches range from totally new turbine runners to modifications of existing designs. Biological design criteria for these new turbines have also been developed in controlled laboratory tests of fish response to physical stresses, such as hydraulic shear and pressure changes. These biocriteria are being combined with computational tools to locate and eliminate areas inside turbine systems that are damaging to fish. Through the combination of laboratory, field, and computational studies, new solutions are being found to environmental problems at hydropower projects. The diverse program activities continue to make unique contributions to clean energy production in the U.S. By working toward technology improvements that can reduce environmental problems, the program is helping to reposition hydropower as an acceptable, renewable, domestic energy choice.

  12. Technology Development, Evaluation, and Application (TDEA) FY 1995 progress report - Environmental, Safety, and Health (ESH) division

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, L.L.

    1996-09-01

    This report covers six months of effort, including startup time. Five projects were supported by the division: Pilot Program for the Risk-Based Surveillance of Lung Cancer in Los Alamos National Laboratory Workers, Optimization of Placement of Workplace Continuous Air Monitoring Instrumentation, A Polymeric Barrier Monitor to Protect Workers, Evaluation of a Real-Time Beryllium Detection Instrument and the Implications of Its Use, and High-Energy Dosimetry. A project summary for each is provided. An appendix to the report includes the 1995 Request for Proposals, Committee Members, Priority Technical Areas of Interest for FY95, Relative Prioritization and Weighting Factors, Format for Proposals, and Charter.

  13. Technology Development, Evaluation, and Application (TDEA) FY 1995 progress report - Environmental, Safety, and Health (ESH) division

    International Nuclear Information System (INIS)

    Andrews, L.L.

    1996-09-01

    This report covers six months of effort, including startup time. Five projects were supported by the division: Pilot Program for the Risk-Based Surveillance of Lung Cancer in Los Alamos National Laboratory Workers, Optimization of Placement of Workplace Continuous Air Monitoring Instrumentation, A Polymeric Barrier Monitor to Protect Workers, Evaluation of a Real-Time Beryllium Detection Instrument and the Implications of Its Use, and High-Energy Dosimetry. A project summary for each is provided. An appendix to the report includes the 1995 Request for Proposals, Committee Members, Priority Technical Areas of Interest for FY95, Relative Prioritization and Weighting Factors, Format for Proposals, and Charter

  14. EST Table: FY739999 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FY739999 E_FL_famL_10I12_F_0 11/11/04 100 %/104 aa ref|NP_001091753.1| ribosomal pr...6#protein_id:CAA90 434.1 11/11/04 68 %/104 aa AGAP003538-PA Protein|2R:39333999:39334678:1|gene:AGAP003538 1

  15. Material Recovery and Waste Form Development FY 2015 Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    Todd, Terry Allen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Braase, Lori Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The FY 2015 Accomplishments Report provides a highlight of the results of the research and development (R&D) efforts performed within the MRWFD Campaign in FY-14. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during the fiscal year. This report briefly outlines campaign management and integration activities, but primarily focuses on the many technical accomplishments made during FY-15. The campaign continued to utilize an engineering driven-science-based approach to maintain relevance and focus. There was increased emphasis on development of technologies that support near-term applications that are relevant to the current once-through fuel cycle.

  16. The Veteran Population Projection 2014

    Data.gov (United States)

    Department of Veterans Affairs — VetPop2014 is an actuarial projection model developed by the Office of the Actuary (OACT) for Veteran population projection from Fiscal Year FY2014 to FY2043. Using...

  17. 17th Business Report Meeting of New Energy Industrial Technology Development Organization (NEDO). Outline of business; Dai 17 kai NEDO jigyo hokokukai. Gyomu gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-25

    This is a report on the 17th Business Report Meeting of NEDO held in September, 1997. In Chapter 1, NEDO's business activities were outlined in terms of new energy, industrial technology, coal policy, compensation for coal mine pollution, alcohol production, etc. In Chapter 2, described were NEDO's budget and account settlement. In Chapter 3, reported were the FY 1996 results of the development of new energy, that is, the development of solar energy utilization technology, geothermal resource development, development of geothermal energy utilization technology, development of coal energy utilization technology, development of coal resource, development of fuel/storage technology, development of hydrogen/alcohol/biomass technology, development of other petroleum substituting energy technology, project for promotion of new energy introduction, project on international energy policy, project on development/introduction survey, and project on information service by NEDO Information Center. In Chapter 4, as the FY 1996 results of the R and D of industrial technology, etc., described were R and D projects, medical/welfare equipment related project, R and D projects on environmental technology, and international industry technology related projects. In Chapters 5 and 6, stated was the coal related project. In Chapter 7, mentioned was the alcohol production project. (NEDO)

  18. 17th Business Report Meeting of New Energy Industrial Technology Development Organization (NEDO). Outline of business; Dai 17 kai NEDO jigyo hokokukai. Gyomu gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-25

    This is a report on the 17th Business Report Meeting of NEDO held in September, 1997. In Chapter 1, NEDO's business activities were outlined in terms of new energy, industrial technology, coal policy, compensation for coal mine pollution, alcohol production, etc. In Chapter 2, described were NEDO's budget and account settlement. In Chapter 3, reported were the FY 1996 results of the development of new energy, that is, the development of solar energy utilization technology, geothermal resource development, development of geothermal energy utilization technology, development of coal energy utilization technology, development of coal resource, development of fuel/storage technology, development of hydrogen/alcohol/biomass technology, development of other petroleum substituting energy technology, project for promotion of new energy introduction, project on international energy policy, project on development/introduction survey, and project on information service by NEDO Information Center. In Chapter 4, as the FY 1996 results of the R and D of industrial technology, etc., described were R and D projects, medical/welfare equipment related project, R and D projects on environmental technology, and international industry technology related projects. In Chapters 5 and 6, stated was the coal related project. In Chapter 7, mentioned was the alcohol production project. (NEDO)

  19. LDRD FY2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kotta, P. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kline, K. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2005-02-28

    The Laboratory Directed Research and Development (LDRD) Program is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the missions of the Laboratory, the Department of Energy, and the National Nuclear Security Administration in national security, homeland security, energy security, environmental management, bioscience and healthcare technology, and breakthroughs in fundamental science and technology. The LDRD Program was authorized by Congress in 1991 and is administered by the Laboratory Science and Technology Office. The accomplishments described in this Annual Report demonstrate how the LDRD portfolio is strongly aligned with these missions and contributes to the Laboratory’s success in meeting its goals. The LDRD budget of $69.8 million for FY2004 sponsored 220 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific and technical quality and mission relevance. Each year, the number of meritorious proposals far exceeds the funding available, making the selection a challenging one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the Nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory’s multidisciplinary team approach to science and technology. Safeguarding the Nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle

  20. Characterization, Monitoring and Sensor Technology Integrated Program

    International Nuclear Information System (INIS)

    1993-01-01

    This booklet contains summary sheets that describe FY 1993 characterization, monitoring, and sensor technology (CMST) development projects. Currently, 32 projects are funded, 22 through the OTD Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP), 8 through the OTD Program Research and Development Announcement (PRDA) activity managed by the Morgantown Energy Technology Center (METC), and 2 through Interagency Agreements (IAGs). This booklet is not inclusive of those CMST projects which are funded through Integrated Demonstrations (IDs) and other Integrated Programs (IPs). The projects are in six areas: Expedited Site Characterization; Contaminants in Soils and Groundwater; Geophysical and Hydrogeological Measurements; Mixed Wastes in Drums, Burial Grounds, and USTs; Remediation, D ampersand D, and Waste Process Monitoring; and Performance Specifications and Program Support. A task description, technology needs, accomplishments and technology transfer information is given for each project

  1. FY 2010 Supplement to the President`s Budget

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This Supplement to the President`s Fiscal Year FY 2010 Budget provides a technical summary of the budget request for the Networking and Information Technology...

  2. FY 2007 Supplement to the President`s Budget

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This Supplement to the President`s Fiscal Year FY 2007 Budget provides a technical summary of the budget request for the Networking and Information Technology...

  3. FY 2008 Supplement to the President`s Budget

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This Supplement to the President`s Fiscal Year FY 2008 Budget provides a technical summary of the budget request for the Networking and Information Technology...

  4. FY 2011 Supplement to the President`s Budget

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This Supplement to the President`s Fiscal Year FY 2011 Budget provides a technical summary of the budget request for the Networking and Information Technology...

  5. Inventory of Federal energy-related environment and safety research for FY 1978. Volume 1. Executive summary

    International Nuclear Information System (INIS)

    1979-12-01

    The FY 1978 Federal Inventory is a compilation of 3225 federally funded energy-related environmental and safety reserch projects. It consists of three volumes: an executive summary providing an overview of the data (Volume I), a catalog listing each Inventory project followed by series of indexes (Volume II), and an interactive terminal guide giving instructions for on-line data retrieval (Volume III). Volume I reviews the inventory data as a whole and also within each of three major categories: biomedical and environmental research, environmental control technology research, and operational safety research

  6. FY08 Annual Report for Nuclear Resonance Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Glen A.; Caggiano, Joseph A.

    2009-01-06

    FY08 annual report for project the "Nuclear Resonance Fluorescence Imaging" project. Reviews accomplishments of last 3 years, including U-235 signature search, comparison of different photon sources, and examination of NRF measurements using monochromatic photon source.

  7. Oak Ridge TNS Program: summary of FY 1978 activities

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Brown, T.G.

    1979-07-01

    The Next Step (TNS) represents the stage of fusion energy development in which the major emphasis is on engineering testing and demonstration. In this document, the activities of the Oak Ridge TNS Program for FY 1978 are described and summarized. The Reference Design that has evolved from these activities is described, its operating characteristics are examined, and project planning issues are considered. Major conclusions from the FY 1978 effort are stated

  8. Projection display technology and product trends

    Science.gov (United States)

    Kahn, Frederic J.

    1999-05-01

    Major technology and market trends that could generate a 20 billion dollar electronic projector market by 2010 are reviewed in the perspective of recent product introductions. A log linear analysis shows that the light outputs of benchmark transportable data video projectors have increased at a rate of almost 90 percent per year since 1993. The list prices of these same projectors have decreased at a rate of over 40 percent per year. The tradeoffs of light output vs. resolution and weight are illustrated. Recent trends in projector efficacy vs. year are discussed. Lumen output per dollar of list price is shown to be a useful market metric. Continued technical advances and innovations including higher throughput light valve technologies with integrated drivers, brighter light source, field sequential color, integrated- and micro-optical components, and aerospace materials are likely to sustain these trends. The new technologies will enable projection displays for entertainment and computer applications with unprecedented levels of performance, compactness, and cost-effectiveness.

  9. FY 1991--FY 1995 Information Technology Resources Long-Range Plan

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    The Department of Energy has consolidated its plans for Information Systems, Computing Resources, and Telecommunications into a single document, the Information Technology Resources Long-Range Plan. The consolidation was done as a joint effort by the Office of ADP Management and the Office of Computer Services and Telecommunications Management under the Deputy Assistant Secretary for Administration, Information, and Facilities Management. This Plan is the product of a long-range planning process used to project both future information technology requirements and the resources necessary to meet those requirements. It encompasses the plans of the various organizational components within the Department and its management and operating contractors over the next 5 fiscal years, 1991 through 1995.

  10. Advanced Reactor Technology/Energy Conversion Project FY17 Accomplishments.

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    The purpose of the ART Energy Conversion (EC) Project is to provide solutions to convert the heat from an advanced reactor to useful products that support commercial application of the reactor designs.

  11. Final Project Report Project 10749-4.2.2.1 2007-2009

    Energy Technology Data Exchange (ETDEWEB)

    Zacher, Alan H.; Holladay, Johnathan E.; Frye, J. G.; Brown, Heather M.; Santosa, Daniel M.; Oberg, Aaron A.

    2009-05-11

    This is the final report for the DOE Project 10749-4.2.2.1 for the FY2007 - FY2009 period. This report is non-proprietary, and will be submitted to DOE as a final project report. The report covers activities under the DOE Project inside CRADA 269 (Project 53231) as well as project activites outside of that CRADA (Project 56662). This is the final report that is summarized from the non-proprietary quarterlies submitted to DOE over the past 2.5 years, which in turn are summaries from the proprietary technical reporting to UOP.

  12. Inventory of Federal energy-related environment and safety research for FY 1978. Volume II. Project listings and indexes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    This volume contains summaries of FY-1978 government-sponsored environment and safety research related to energy. Project summaries were collected by Aerospace Corporation under contract with the Department of Energy, Office of Program Coordination, under the Assistant Secretary for Environment. Summaries are arranged by log number, which groups the projects by reporting agency. The log number is a unique number assigned to each project from a block of numbers set aside for each agency. Information about the projects is included in the summary listings. This includes the project title, principal investigators, research organization, project number, contract number, supporting organization, funding level if known, related energy sources with numbers indicating percentages of effort devoted to each, and R and D categories. A brief description of each project is given, and this is followed by subject index terms that were assigned for computer searching and for generating the printed subject index in Volume IV.

  13. Inventory of Federal energy-related environment and safety research for FY 1978. Volume II. Project listings and indexes

    International Nuclear Information System (INIS)

    1979-12-01

    This volume contains summaries of FY-1978 government-sponsored environment and safety research related to energy. Project summaries were collected by Aerospace Corporation under contract with the Department of Energy, Office of Program Coordination, under the Assistant Secretary for Environment. Summaries are arranged by log number, which groups the projects by reporting agency. The log number is a unique number assigned to each project from a block of numbers set aside for each agency. Information about the projects is included in the summary listings. This includes the project title, principal investigators, research organization, project number, contract number, supporting organization, funding level if known, related energy sources with numbers indicating percentages of effort devoted to each, and R and D categories. A brief description of each project is given, and this is followed by subject index terms that were assigned for computer searching and for generating the printed subject index in Volume IV

  14. ISV technology development plan for buried waste

    International Nuclear Information System (INIS)

    Nickelson, D.F.; Callow, R.A.; Luey, J.K.

    1992-07-01

    This report identifies the main technical issues facing the in situ vitrification (ISV) application to buried waste, and presents a plan showing the top-level schedule and projected resources needed to develop and demonstrate the technology for meeting Environmental Restoration Department (ERD) needs. The plan also proposes a model strategy for the technology transfer from the Department of Energy's Office of Technology Development (DOE-OTD) to the Office of Environmental Restoration (DOE-ER) as the technology proceeds from issues resolution (development) to demonstration and remedial readiness. Implementation of the plan would require $34,91 1K in total funding to be spread in the years FY-93 through FY-98. Of this amount, $10,183K is planned to be funded by DOE-OTD through the ISV Integrated Program. The remaining amount, $24,728K, is recommended to be split between the Department of Energy (DOE) Office of Technology Development ($6,670K) and DOE Office of Environmental Restoration ($18,058K)

  15. Q-Thruster Breadboard Campaign Project

    Science.gov (United States)

    White, Harold

    2014-01-01

    Dr. Harold "Sonny" White has developed the physics theory basis for utilizing the quantum vacuum to produce thrust. The engineering implementation of the theory is known as Q-thrusters. During FY13, three test campaigns were conducted that conclusively demonstrated tangible evidence of Q-thruster physics with measurable thrust bringing the TRL up from TRL 2 to early TRL 3. This project will continue with the development of the technology to a breadboard level by leveraging the most recent NASA/industry test hardware. This project will replace the manual tuning process used in the 2013 test campaign with an automated Radio Frequency (RF) Phase Lock Loop system (precursor to flight-like implementation), and will redesign the signal ports to minimize RF leakage (improves efficiency). This project will build on the 2013 test campaign using the above improvements on the test implementation to get ready for subsequent Independent Verification and Validation testing at Glenn Research Center (GRC) and Jet Propulsion Laboratory (JPL) in FY 2015. Q-thruster technology has a much higher thrust to power than current forms of electric propulsion (7x Hall thrusters), and can significantly reduce the total power required for either Solar Electric Propulsion (SEP) or Nuclear Electric Propulsion (NEP). Also, due to the high thrust and high specific impulse, Q-thruster technology will greatly relax the specific mass requirements for in-space nuclear reactor systems. Q-thrusters can reduce transit times for a power-constrained architecture.

  16. Report on the FY 1999 research cooperation follow-up project on the development of manufacturing technology supported by advanced and integrated information system through cooperation; 1999 nendo kan'i sosagata denshi sekkei seisan shien system no kaihatsu ni kansuru kenkyu kyoryoku follow up jigyo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In FY 1999, the follow-up project was conducted on the development of manufacturing technology supported by advanced and integrated information system through cooperation (MATIC). The project included the grasp of the state of activity, announcement of the achievement, field survey, etc. of China, Indonesia, Malaysia, Singapore and Thailand. China carried out the system development and demonstrative tests in the fiber/apparel field, trying to spread the MATIC system. Indonesia is planning to spread the use of electronic catalog of automotive parts/electronic parts toward small/medium companies through internet. Malaysia was in charge of the development in the field of home electric appliances and demonstrative tests. They use the results so as to meet the demand in the domestic industry, aiming at spreading it in the country. Singapore uses the electronic catalog system to make it apply to the informatization project of the country. Thailand is making efforts for the spread of the MATIC results through the prototype model. (NEDO)

  17. FY 1999 report on the results of the R and D on high performance industrial furnace, etc.; 1999 nendo koseino kogyoro no kaihatsu ni kansuru kenkyu seika hokokusho. Koseino kogyoro nado ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In the development of high performance industrial furnace, initial targets were achieved such as energy saving of 30%, downsizing of 20%, and a remarkable NOx reduction. To verify the achievement, the test field project is being worked on by NEDO. In FY 1998, 23 heating furnaces, 29 heat treat furnaces and 6 melting furnaces were under the project at energy saving effect of 52,000 kl converted to crude oil. In FY 1999, 18 heating furnaces, 26 heat treat furnaces and 7 melting furnaces are now under the project at energy saving effect of 57,000 kl. The project was awarded 'The 9th Nikkei Global Environmental Technology Prize.' The themes for the R and D are as follows: high efficiency exhaust heat utilization system, self-completion type high temperature/high radiation heating technology, technology to make heat transfer in steel heating suitable under non-stationary state, high efficiency heat transfer technology, technology to optimize the shape of heating furnace, high performance atmosphere heat treat furnace, high efficiency heat transfer technology by high temperature jet flame heating, technology of high efficiency aluminum melting furnace, technology to improve soaking degree in steel heating, high performance tubular heating furnace in oil refining, optimum combustion control technology of regenerative burner furnace, and laser measuring method inside industrial furnace. (NEDO)

  18. Accelerator Technology Division progress report, FY 1993

    International Nuclear Information System (INIS)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-01-01

    This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation

  19. FY 2014 LDRD Annual Report Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Tomchak, Dena [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    The FY 2014 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support future DOE missions and national research priorities. LDRD is essential to INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enahnces technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  20. Laboratory Directed Research and Development Program FY98

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  1. Geosciences projects FY 1985 listing

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    This report, which updates the previous working group publication issued in February 1982, contains independent sections: (A) Summary Outline of DOE Geoscience and Related Studies, and (B) Crosscut of DOE Geoscience and Geoscience Related Studies. The FY 1985 funding levels for geoscience and related activities in each of the 11 programs within DOE are presented. The 11 programs fall under six DOE organizations: Energy Research Conservation and Renewable Energy; Fossil Energy; Defense Programs; Environmental, Safety, and Health; and Civilian radioactive Waste. From time to time, there is particular need for special interprogrammatic coordination within certain topical areas. section B of the report is intended to fill this need for a topical categorization of the Department's geoscience and related activities. These topical areas in Solid Earth Geosciences, Atmospheric Geosciences, Ocean Geosciences, Space and Solar/Terrestrial Geosciences, and Hydrological Geosciences are presented in this report.

  2. Development of Reconstitution Technology for Surveillance Specimens

    International Nuclear Information System (INIS)

    Yasushi Atago; Shunichi Hatano; Eiichiro Otsuka

    2002-01-01

    The Japan Power Engineering and Inspection Corporation (JAPEIC) has been carrying out the project titled 'Nuclear Power Plant Integrated Management Technology (PLIM)' consigned by Japanese Ministry of Economy, Trade and Industry (METI) since 1996FY as a 10-years project. As one of the project themes, development of reconstitution technology for reactor pressure vessel (RPV/RV) surveillance specimens, which are installed in RPVs to monitor the neutron irradiation embrittlement on RPV/RV materials, is now on being carried out to deal with the long-term operation of nuclear power plants. The target of this theme is to establish the technical standard for applicability of reconstituted surveillance specimens including the reconstitution of the Charpy specimens and Compact Tension (CT) specimens. With the Charpy specimen reconstitution, application of 10 mm length inserts is used, which enables the conversion of tests from the LT-direction to the TL-direction. This paper presents the basic data from Charpy and CT specimens of RPV materials using the surveillance specimens obtained for un-irradiated materials including the following. 1) Reconstitution Technology of Charpy Specimens. a) The interaction between plastic zone and Heat Affected Zone (HAZ). b) The effects of the possible deviations from the standard specimens for the reconstituted specimens. 2) Reconstitution Technology of CT specimens. a) The correlation between fracture toughness and plastic zone width. Because the project is now in progress, this paper describes the outline of the results obtained as of the end of 2000 FY. (authors)

  3. HANFORD SCIENCE & TECHNOLOGY NEEDS STATEMENTS 2002

    Energy Technology Data Exchange (ETDEWEB)

    WIBLE, R.A.

    2002-04-01

    This document: (a) provides a comprehensive listing of the Hanford sites science and technology needs for fiscal year (FY) 2002; and (b) identifies partnering and commercialization opportunities within industry, other federal and state agencies, and the academic community. These needs were prepared by the Hanford projects (within the Project Hanford Management Contract, the Environmental Restoration Contract and the River Protection Project) and subsequently reviewed and endorsed by the Hanford Site Technology Coordination Group (STCG). The STCG reviews included participation of DOE-RL and DOE-ORP Management, site stakeholders, state and federal regulators, and Tribal Nations. These needs are reviewed and updated on an annual basis and given a broad distribution.

  4. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 2005.0 VOLUME 2

    Energy Technology Data Exchange (ETDEWEB)

    BARCOT, R.A.

    2005-08-17

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources. The focus of this report is low-level waste (LLW), mixed low-level waste (MLLW), and transuranic waste, both non-mixed and mixed (TRU(M)). Some details on hazardous waste are also provided, however, this information is not considered comprehensive. This report includes data requested in December, 2004 with updates through March 31,2005. The data represent a life cycle forecast covering all reported activities from FY2005 through the end of each program's life cycle and are an update of the previous FY2004.1 data version.

  5. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  6. Ethanol annual report FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    Texeira, R.H.; Goodman, B.J. (eds.)

    1991-01-01

    This report summarizes the research progress and accomplishments of the US Department of Energy (DOE) Ethanol from Biomass Program, field managed by the Solar Energy Research Institute, during FY 1990. The report includes an overview of the entire program and summaries of individual research projects. These projects are grouped into the following subject areas: technoeconomic analysis; pretreatment; cellulose conversion; xylose fermentation; and lignin conversion. Individual papers have been indexed separately for inclusion on the data base.

  7. Source term modelling parameters for Project-90

    International Nuclear Information System (INIS)

    Shaw, W.; Smith, G.; Worgan, K.; Hodgkinson, D.; Andersson, K.

    1992-04-01

    This document summarises the input parameters for the source term modelling within Project-90. In the first place, the parameters relate to the CALIBRE near-field code which was developed for the Swedish Nuclear Power Inspectorate's (SKI) Project-90 reference repository safety assessment exercise. An attempt has been made to give best estimate values and, where appropriate, a range which is related to variations around base cases. It should be noted that the data sets contain amendments to those considered by KBS-3. In particular, a completely new set of inventory data has been incorporated. The information given here does not constitute a complete set of parameter values for all parts of the CALIBRE code. Rather, it gives the key parameter values which are used in the constituent models within CALIBRE and the associated studies. For example, the inventory data acts as an input to the calculation of the oxidant production rates, which influence the generation of a redox front. The same data is also an initial value data set for the radionuclide migration component of CALIBRE. Similarly, the geometrical parameters of the near-field are common to both sub-models. The principal common parameters are gathered here for ease of reference and avoidance of unnecessary duplication and transcription errors. (au)

  8. Laboratory Directed Research and Development FY2011 Annual Report

    International Nuclear Information System (INIS)

    Craig, W.; Sketchley, J.; Kotta, P.

    2012-01-01

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial

  9. The New Mexico Technology Deployment Pilot Project: A technology reinvestment project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The New Mexico Technology Deployment Project (NMTDP) has been in operation for slightly more than two years. As one of the original TRP projects, NMTDP had the charter to develop and validate a new model for technology extraction which emphasized focused technology collaboration, early industry involvement, and a strong dual use commercialization and productization emphasis. Taken in total, the first two years of the NMTDP have been exceptionally successful, surpassing the goals of the project. This report describes the accomplishments and evolution of the NMTDP to date and discusses the future potential of the project. Despite the end of federal funding, and a subsequent reduction in level of effort, the project partners are committed to continuation of the project.

  10. Projected Benefits of Federal Energy Efficiency and Renewable Energy Programs: FY 2006 Budget Request

    Energy Technology Data Exchange (ETDEWEB)

    Norland, D.; Jenkin, T.

    2005-05-01

    The Office of Energy Efficiency and Renewable Energy (EERE) of the U.S. Department of Energy (DOE) leads the Federal Government's efforts to provide reliable, affordable, and environmentally sound energy for America, through its 11 research, development, demonstration, and deployment (RDD&D) programs. EERE invests in high-risk, high-value research and development (R&D) that, conducted in partnership with the private sector and other government agencies, accelerates the development and facilitates the deployment of advanced clean energy technologies and practices. EERE designs its RDD&D activities to improve the Nation's readiness for addressing current and future energy needs. This document summarizes the results of the benefits analysis of EERE's programs, as described in the FY 2006 Budget Request. EERE has adopted a benefits framework developed by the National Research Council (NRC) to represent the various types of benefits resulting from the energy efficiency technology improvements and renewable energy technology development supported by EERE programs. Specifically, EERE's benefits analysis focuses on three main categories of energy-linked benefits--economic, environmental, and security.

  11. Tanks Focus Area Site Needs Assessment - FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Robert W.; Josephson, Gary B.; Westsik, Joseph H.; Nickola, Cheryl L.

    2001-04-30

    The TFA uses a systematic process for developing its annual program that draws from the tanks science and technology development needs expressed by the five DOE tank waste sites. TFA's annual program development process is iterative and involves the following steps: Collection of site needs; Needs analysis; Development of technical responses and initial prioritization; Refinement of the program for the next fiscal year; Formulation of the Corporate Review Budget (CRB); Preparation of Program Execution Guidance (PEG) for the next FY Revision of the Multiyear Program Plan (MYPP). This document describes the outcomes of the first phase of this process, from collection of site needs to the initial prioritization of technical activities. The TFA received site needs in October - December 2000. A total of 170 site needs were received, an increase of 30 over the previous year. The needs were analyzed and integrated, where appropriate. Sixty-six distinct technical responses were drafted and prioritized. In addition, seven strategic tasks were approved to compete for available funding in FY 2002 and FY 2003. Draft technical responses were prepared and provided to the TFA Site Representatives and the TFA User Steering Group (USG) for their review and comment. These responses were discussed at a March 15, 2001, meeting where the TFA Management Team established the priority listing in preparation for input to the DOE Office of Science and Technology (OST) budget process. At the time of publication of this document, the TFA continues to finalize technical responses as directed by the TFA Management Team and clarify the intended work scopes for FY 2002 and FY 2003.

  12. Projected Benefits of Federal Energy Efficiency and Renewable Energy Programs - FY 2008 Budget Request

    Energy Technology Data Exchange (ETDEWEB)

    2007-03-01

    This document summarizes the results of the benefits analysis of EERE's programs, as described in the FY 2008 Budget Request. EERE estimates benefits for its overall portfolio and for each of its nine Research, Development, Demonstration, and Deployment (RD3) programs. Benefits for the FY 2008 budget request are estimated for the midterm (2008-2030) and long term (2030-2050).

  13. Hanford, diversification, and the Tri-Cities Economy FY 1998

    International Nuclear Information System (INIS)

    SCOTT, M.J.

    1999-01-01

    The missions of the U.S. Department of Energy's Richland Operations Office (DOE/RL) are to safely manage the Hanford Site, to manage and clean up its legacy wastes, and to develop and deploy new science and technology in the environmental and energy fields. Collectively, DOE/RL and its contractors are the most important single entity in the Tri-Cities local economy (Pasco, Kennewick, and Richland, Washington, and the surrounding area). Although the relevant economic region affected by DOE/RL and its contractors actually embraces a geographic area reaching from Yakima in the west to Walla Walla in the east and from Moses Lake in the north to Pendleton, Oregon, in the south, over 90% of economic impacts likely occur in Benton and Franklin Counties. These two counties are defined as the ''local'' Tri-Cities economy for purposes of this study (see Figure 1). In the federal fiscal year (IV) 1998 (October 1, 1997 through September 30, 1998), the total impact of DOEs local $1.6 billion budget was felt through payrolls of $519 million and local purchases of goods and services of $246 million. The total local spending of $765 million was down slightly from the FY 1997 total of $774 million. Taking into account the slightly greater multiplier effects of this spending due to changes in its mix, the DOE/RL budget sustained an estimated 36% of all local employment (31,200 out of 86,000 jobs) and up to 64% of local wage income ($1.55 billion out of $2.40 billion). This was up slightly from the year before (29,500 jobs, $1.49 billion income). DOE budget increases in FY 1999 are expected to result in a net increase of about 200 local DOE contractor jobs over the September 30, 1998 level, or about equal to the FY 1998 average. In addition, economic diversification more than offset the impact of the local DOE losses in FY 1998 and, together with an initial economic boost from privatization of Hanford's tank waste cleanup, is expected to play a significant expansive role in FY 1999

  14. Governing Nanotechnology in a Globalized World: Cross-National Dimensions and Strategic Assessments of a Disruptive Technology

    OpenAIRE

    Center on Contemporary Conflict

    2013-01-01

    FY 2013-2014. Project Lead: Anne Clunan & Kirsten Rodine Hardy While those in the nanotechnology field emphasize the benefits for medicine, travel, and manufacturing, it is a dual-use technology that could lead to a disruptive and expensive arms race for technology dominance. Nanotechnology has significant implications for globalization, technological governance, and national sovereignty. Through a cross-national and strategic lens, the project will analyze the potential threats to nati...

  15. FY 1996 report on the cooperative research on the development of environmentally friendly high efficiency mineral resource extraction/treatment technology. Basic design of pilot plant and a part of the detailed design; 1996 nendo kankyo chowagata kokoritsu kobutsu shigen chushutsu shori gijutsu no kaihatsu ni kansuru kenkyu kyoryoku. Pilot plant no kihon sekkei oyobi ichibu shosai sekkei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This project is a cooperative research on the development of environmental harmony type high efficiency mineral resource extraction/treatment technology. It aims to study/develop a system to recover valuable metals from unused resources in the Republic of Kazakhstan using the environmental harmony type technology which is easy to operate/maintain and is environmentally friendly with no mine pollution caused. In the project, which started in FY 1994, a pilot plant is finally constructed in Kazakhstan, a recovery system to be applied is demonstrated, and the comprehensive assessment of the system is made. Concretely, the recovery of Cu, Au, Ag, etc. is tried from the Nikolayevska low grade ore and Zhezkent tailings. This is a system into which the following techniques are integrated: treatment before dressing such as flotation, leaching of Cu, etc. by acid including bacteria, solvent leaching, electrowinning, cyanogen leaching activated carbon treatment and wastewater treatment of Au and Ag. As to the design/fabrication of pilot plant, conducted was the conceptual design in FY 1995, and the basic design, a part of the detailed design (crushing/grinding/leaching/dewatering facilities of the process of the acid (bacteria) leaching of Cu, etc.), and the fabrication in FY 1996. (NEDO).

  16. FY 1999 research report on the evaluation/analysis of the data collected in the field test project for the photovoltaic power system for public facility use; 1999 nendo kokyo shisetsu nadoyo taiyoko hatsuden field test jigyo ni okeru shushu data hyoka kaiseki kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In this research, the photovoltaic power system is experimentally installed at various facilities (public facilities such as public hall, school and museum), and operated on a long term basis under the actual loads. Various kinds of data are collected/analyzed and used as the data useful for the full-scale introduction and spread. The photovoltaic power generation field test project for public facilities using the photovoltaic power system was started in FY 1992 by NEDO. Systems at 116 sites started operation by FY 1996, and in FY 1997 systems were installed at a total of 70 sites. The paper outlined the project and described the results of the collection/analyses of the operational data obtained at 145 sites where systems were installed from FY 1995 to FY 1997. The term of analysis in FY 1999 was made from April 1999 to December 1999, being different from usual, to avoid the Y2K problem on data collecting software, measuring use personal computer, etc. Further, since there are no sites where no systems were newly installed in and after FY 1998, there are no analyses of economical efficiency in and after FY 1999. The paper indicated a list of all the sites with system installation in FY 1995-1997 including the main items. (NEDO)

  17. FY 2000 report on the results of development of technology for commercializing high-efficiency fuel cell systems. Development of technology for commercializing high-efficiency fuel cell systems (Development of technology for effective utilization of power produced by polymer electrolyte fuel cell systems); 2000 nendo kokoritsu nenryo denchi system jitsuyoka gijutsu kaihatsu seika hokokusho. Kotai kobunshigata nenryo denchi no shutsuryoku yuko riyo gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This project is aimed at development of technologies for effective utilization of power produced by polymer electrolyte fuel cell (PEFC) systems and waste heat, to spread cogeneration systems incorporating PEFC systems for residential purposes. Described herein are the FY 2000 results. The program for high-efficiency peripherals for residential PFEC systems attempts use of GaN-FET as the semiconductor device of wide band gap and high breakdown voltage to realize conversion efficiency over 90% by improving inverter efficiency. Two types of the prototype heat recovery systems are developed for the PEFC, one incorporating a latent heat cooling system and the other a water cooling system, to improve heat recovery efficiency and increase heat recovery temperature. The program for technology to fit PEFC output to energy demand develops hot water supply systems provided with a hot water storage function for stable supply of hot water irrespective of the heat recovery conditions, and also with a back-up function with burners. The program also develops the PEFC system of fine load following characteristics, for which pure hydrogen is used as the fuel to allow the system to instantaneously follow fluctuating loads. The program for high-efficiency partial load operation technology studies a 1kW-class residential PEFC cogeneration system incorporating a power storage device for high-efficiency operation at partial loads, where the former operates in a high output mode while the latter absorbs fluctuating loads. (NEDO)

  18. FY 2000 report on the results of the research and development project for new industry creation type industrial science technologies. Cluster ion beam process technology; 2000 nendo shinki sangyo soshutsugata sangyo kagaku gijutsu kenkyu kaihatsu seido seika hokokusho. Cluster ion beam process technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of development of cluster ion beams. This technology generates the strong ion beams of atom and molecule clusters, and irradiate them onto the solid surfaces, to create new materials or treat materials. It allows the nano-level treatment. The program for high-current cluster ion beam generation/irradiation technology for industrial purposes attains the target high-current beam of 500{mu}m. It is necessary to establish the optimum cluster size, irradiated energy and ion species for the highly functional surface treatment, for which applicable technologies, e.g., those related to time of flight and molecular dynamics, are developed. Studies on high-current, large-area irradiation technologies are started. The program for material processing technologies involves evaluation of crystalline defects formed during the beam implantation by photoluminescence spectroscopy, and studies on semiconductor surface processing technologies. The surface smoothening technology is investigated to reduce crystalline defects and stress-induced strains for difficult-to-process materials, e.g., SiC and diamond, and the good results are produced. The program for development of superflat/superhard thin film formation technology involves irradiation of the Ar ion beams during the deposition of C{sub 60}(fullerene), to produce the superhard thin film. (NEDO)

  19. Tanks focus area multiyear program plan - FY96-FY98

    International Nuclear Information System (INIS)

    1995-07-01

    The Tanks Focus Area (TFA) Multiyear Program Plan (MYPP) presents the recommended TFA technical program. The recommendation covers a 3-year funding outlook (FY96-FY98), with an emphasis on FY96 and FY97. In addition to defining the recommended program, this document also describes the processes used to develop the program, the implementation strategy for the program, the references used to write this report, data on the U.S. Department of Energy (DOE) tank site baselines, details on baseline assumptions and the technical elements, and a glossary

  20. LDRD FY 2014 Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Anita Gianotto; Dena Tomchak

    2013-08-01

    As required by DOE Order 413.2B the FY 2014 Program Plan is written to communicate ares of investment and approximate amounts being requested for the upcoming fiscal year. The program plan also includes brief highlights of current or previous LDRD projects that have an opportunity to impact our Nation's current and future energy challenges.

  1. FY 1999 research and development results. Technological development of superconducting power storage systems; Chodendo denryoku chozo system gijutsu kaihatsu 1999 nendo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The research and development project is implemented for technological surveys on the superconducting power storage system (SMES) for cost reduction and high-temperature SMES, and the FY 1999 results are reported. The SMES cost analysis/evaluation program establishes the (basic flow for cost analysis/evaluation) for cost evaluation. The program for the SMES systems for system stabilization sets the specifications of 100MW as output and 15kWh as storage capacity at the generator end and intermediate switching station. The program for SMES systems for load fluctuation compensation and frequency control sets the specifications of 100MW as output and 500kWh as storage capacity at the installation site as the load end, and the investigation of high-temperature SMES technology is conducted on the conceptual designs of the SMES for system stabilization application (100MW, 15kWh) of toroidal coil type. The optimization designs are made for these systems. The investigation of the technology for high-temperature superconducting wires involves fabrication on a trial basis and evaluation for the characteristic evaluation coils, and characteristic measurement and applicability investigation for the large-current short conductor. (NEDO)

  2. In Situ Remediation Integrated Program: FY 1994 program summary

    International Nuclear Information System (INIS)

    1995-04-01

    The US Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of the Office of Environmental Management (EM) in November 1989. In an effort to focus resources and address priority needs, EM-50 introduced the concept of integrated programs (IPs) and integrated demonstrations (IDs). The In Situ Remediation Integrated Program (ISR IP) focuses research and development on the in-place treatment of contaminated environmental media, such as soil and groundwater, and the containment of contaminants to prevent the contaminants from spreading through the environment. Using in situ remediation technologies to clean up DOE sites minimizes adverse health effects on workers and the public by reducing contact exposure. The technologies also reduce cleanup costs by orders of magnitude. This report summarizes project work conducted in FY 1994 under the ISR IP in three major areas: treatment (bioremediation), treatment (physical/chemical), and containment technologies. Buried waste, contaminated soils and groundwater, and containerized waste are all candidates for in situ remediation. Contaminants include radioactive waste, volatile and nonvolatile organics, heavy metals, nitrates, and explosive materials

  3. In Situ Remediation Integrated Program: FY 1994 program summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The US Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of the Office of Environmental Management (EM) in November 1989. In an effort to focus resources and address priority needs, EM-50 introduced the concept of integrated programs (IPs) and integrated demonstrations (IDs). The In Situ Remediation Integrated Program (ISR IP) focuses research and development on the in-place treatment of contaminated environmental media, such as soil and groundwater, and the containment of contaminants to prevent the contaminants from spreading through the environment. Using in situ remediation technologies to clean up DOE sites minimizes adverse health effects on workers and the public by reducing contact exposure. The technologies also reduce cleanup costs by orders of magnitude. This report summarizes project work conducted in FY 1994 under the ISR IP in three major areas: treatment (bioremediation), treatment (physical/chemical), and containment technologies. Buried waste, contaminated soils and groundwater, and containerized waste are all candidates for in situ remediation. Contaminants include radioactive waste, volatile and nonvolatile organics, heavy metals, nitrates, and explosive materials.

  4. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  5. Supporting Data FY 1991 Amended Budget Estimate Submitted to Congress - January 1990: Descriptive Summaries of the Research Development Test and Evaluation Army Appropriation

    Science.gov (United States)

    1990-01-01

    Cont D492 Space Technology Integration - 0 - 3941 4101 Cont Cont PE TOTAL 6871 7878 9334 *FY 1989 work accomplished under PE #0602784A/AH71 and PE... D492 - Space Technology Integiation: Restructured and aggregated previously separate space program activities into D492 beginning in FY 1990. FY 1988

  6. FY 1998 annual summary report on International Clean Energy Network Using Hydrogen Conversion (WE-NET) system technology. Subtask 9. Research and evaluation of innovative and leading technologies; 1998 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 9 (kakushinteki, sendoteki gijutsu ni kansuru chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In order to make useful suggestions and proposals for the International Clean Energy Network Using Hydrogen Conversion (WE-NET) project and thereby to promote the research and development activities, the innovative and leading technologies have been studied, investigated and evaluated. In FY 1998, a total of 6 proposals were collected, and evaluated to prioritize for the conceptual studies. These are related to methanol-fueled power generation turbine system, conceptual design of high-efficiency production system for high-efficiency solar cell by the 10 GW/y scale production process, investigation of potential of wind power, CO2 recycling methanol fuel cell, investigation of catalysis materials for hydrogen combustion and catalytic combustion systems, development of reversible high-temperature steam electrolysis cell/solid oxide fuel cell by the synthesis from aqueous solutions, and mobile heat recovery hydrogen production system. Promising technologies to be reflected on the WE-NET project were examined, based on the new technologies acquired from the research and investigation so far. As a result, two candidates were selected; hydrogen liquefaction by magnetic refrigeration technology, and catalytic combustion gas turbine. (NEDO)

  7. Research and development project reports for FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The paper reported NEDO`s research and development project in fiscal 1995. As for the development of solar energy utilization technology, conducted were R and D of solar cells and development of the photovoltaic power generation. As to the solar heat utilization technology, R and D were carried out on the chemical energy conversion technology and high efficient solar heat space heating and cooling technology. About the geothermal energy utilization technology, developments were made of exploration techniques for fracture-type geothermal reservoirs and the binary cycle geothermal power generation technology. Concerning the coal energy utilization technology, conducted were R and D of coal liquefaction and coal gasification. Relating to the NEDOL process, a 150t/d pilot plant is under construction. As to environmental issues on coal utilization, made was a research on the basic technology of clean coal. In addition, technical developments on the following were done: efficient power generation using fuel cells, hydrogen, alcohol, biomass, wind power generation, etc. 73 figs., 56 tabs.

  8. Science-Driven Candidate Search for New Scintillator Materials: FY 2014 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kerisit, Sebastien N.; Gao, Fei; Xie, YuLong; Campbell, Luke W.; Wu, Dangxin; Prange, Micah P.

    2014-10-01

    This annual reports presents work carried out during Fiscal Year (FY) 2014 at Pacific Northwest National Laboratory (PNNL) under the project entitled “Science-Driven Candidate Search for New Scintillator Materials” (Project number: PL13-SciDriScintMat-PD05) and led by Drs. Fei Gao and Sebastien N. Kerisit. This project is divided into three tasks: 1) Ab initio calculations of electronic properties, electronic response functions and secondary particle spectra; 2) Intrinsic response properties, theoretical light yield, and microscopic description of ionization tracks; and 3) Kinetics and efficiency of scintillation: nonproportionality, intrinsic energy resolution, and pulse shape discrimination. Detailed information on the results obtained in each of the three tasks is provided in this Annual Report. Furthermore, peer-reviewed articles published this FY or currently under review and presentations given this FY are included in Appendix. This work was supported by the National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Development (DNN R&D/NA-22), of the U.S. Department of Energy (DOE).

  9. Projects at the component development and integration facility. Quarterly technical progress report, April 1, 1994--June 30, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the third quarter of FY94. The CDIF is a major Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; and Spray Casting Project

  10. Institutional research and development, FY 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The Laboratory's Institutional Research and Development (IR and D) Program was established in 1984 to foster exploratory work to advance science and technology, disciplinary research to develop innovative solutions to support our national defense and energy missions. In FY 1988, the IR and D Program was funded by a 2% assessment on the Laboratory's operating budget. Our policy is to use these funds for researching innovative ideas in LLNL's areas of expertise and for developing new areas of expertise that we perceive to be in the national interest. The technical and scientific accomplishments of each project and of each institute funded this year are presented in this report. The projects were selected because they are expected to advance research in important areas that are too basic or too time consuming to be funded by the developmental programs or because they are somewhat risky projects that have the promise of high payoff. We are continually reappraising the IR and D Program. In particular, we seek new candidates for the Director's Initiatives, and we constantly reassess the work in progress. Each year, we make adjustments to further the Laboratory's policy of using the IR and D Program to fund innovative ideas with high potential for enhancing programmatic activities of national importance

  11. Nevada Nuclear Waste Storage Investigations. FY 1979 peer review summaries and related documentation

    International Nuclear Information System (INIS)

    1980-06-01

    The NNWSI FY 1979 Project Plan (NVO-196-9) describes the accomplishment plan and objectives of the FY 1979 investigations. Three critical tasks and one critical subtask were selected by Project management for in-depth external peer review at meetings held at the DOE/NV in Las Vegas. The four technical peer review meetings held during FY 1979 were conducted to obtain an external assessment of the sufficiency and quality of the four selected critical investigative segments of the NNWSI. Peer reviewers representing appropriate fields of expertise were invited to attend each meeting. Within about two weeks of each meeting, the invited reviewers summarized their impressions of the technical activities presented to them and transmitted their summaries and recommendations to DOE/NV by letter. This document is a compilation, according to the individual meetings, of all correspondence between reviewers and Project personnel that is relevant to the technical activities of the NNWSI. The section for each meeting briefly summarizes the major activities of the NNWSI being reviewed and the effects of the reviewers comments and recommendations on Project planning. Each section also includes a list of the invited peer reviewers, a meeting agenda, and a copy of all technical correspondence relating to the review meeting. General impressions of the overall peer review process and improvements to be incorporated into future peer review activities are discussed in the next section as an introduction to the four subsequent sections which are devoted to the individual FY 1979 peer reviews

  12. Idaho National Laboratory Directed Research and Development FY-2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-01

    appropriately handled. The LDRD Program is assessed annually for both output and process efficiency to ensure the investment is providing expected returns on technical capability enhancement. The call for proposals and project selection process for the INL LDRD program begins typically in April, with preliminary budget allocations, and submittal of the technical requests for preproposals. A call for preproposals is made at this time as well, and the preparation of full proposals follows in June and closes in July. The technical and management review follows this, and the portfolio is submitted for DOE-ID concurrence in early September. Project initiation is in early October. The technical review process is independent of, and in addition to the management review. These review processes are very stringent and comprehensive, ensuring technical viability and suitable technical risk are encompassed within each project that is selected for funding. Each proposal is reviewed by two or three anonymous technical peers, and the reviews are consolidated into a cohesive commentary of the overall research based on criteria published in the call for proposals. A grade is assigned to the technical review and the review comments and grade are released back to the principal investigators and the managers interested in funding the proposals. Management criteria are published in the call for proposals, and management comments and selection results are available for principal investigator and other interested management as appropriate. The DOE Idaho Operations Office performs a final review and concurs on each project prior to project authorization, and on major scope/budget changes should they occur during the project's implementation. This report begins with several research highlights that exemplify the diversity of scientific and engineering research performed at the INL in FY 2009. Progress summaries for all projects are organized into sections reflecting the major areas of research

  13. FY 1981 Report on the results of Sunshine Project. Coal energy; 1981 nendo sunshine keikaku seika hokokusho. Sekitan energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-07-01

    This report presents the results of (researches on solvolysis liquefaction mechanisms and reaction promotion with oil- and coal-based solvents), conducted as part of the research and development project for coal liquefaction techniques. The FY 1981 program includes researches on (1) the effects of liquefaction reaction conditions on liquefaction yield and production of light products for coal species of low degree of carbonization, including brown coal, (2) the effects of pretreatment of coal on its liquefaction reactivity, and (3) up-grading of the solvolysis coal liquid (SCL). For the item (1), HA240 (hydrogenated Ashland's A240) is used to investigate its liquefaction capacity for various coal species of low degree of carbonization, including brown coal. For the item (2), the effects of pretreatment in a hot water bath with reflux was investigated for sub-bituminous coal in the FY 1980. In the FY 1981, various pretreatment methods are attempted for enhancing liquefaction reactivity of brown coal. As a result, it is found that ash content of brown coal is decreased to one-third of the initial level, when it is treated in a diluted hydrochloric acid bath with reflux. For the item (3), SCL hydrogenated by Birch reduction (B-SCL, 1) is compared with H-SCL with respect to properties, structures and thermal crackability, to discuss the items required for the catalyst to be used in the second stage by clarifying effectiveness of the catalyst. (NEDO)

  14. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  15. Analytical Chemistry Laboratory progress report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Green, D. W.; Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.

    2000-06-15

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1999 (October 1998 through September 1999). This annual progress report, which is the sixteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  16. Analytical Chemistry Laboratory progress report for FY 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-03-29

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  17. Analytical Chemistry Laboratory progress report for FY 1998

    International Nuclear Information System (INIS)

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-01-01

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL

  18. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2009

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace; Julie B. Braun

    2009-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2009 (FY 2009). Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-two prehistoric archaeological sites, six historic homesteads, two historic stage stations, two historic trails, and two nuclear resources, including Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2009 to assess project compliance with cultural resource recommendations and monitor the effects of ongoing project activities. Although impacts were documented at a few locations and trespassing citations were issued in one instance, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

  19. Federal Geothermal Research Program Update, FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  20. Laboratory Directed Research and Development Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  1. The NITRD Program: FY2004 Interagency Coordination Report

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This Interagency Coordination Report ICR provides a comprehensive description of the FY 2004 activities of the multi-agency $2 billion Federal Networking and...

  2. Decontamination and decommissioning activities photobriefing book FY 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The Chicago Pile 5 (CP-5) Reactor, the first reactor built on the Argonne National Laboratory-East site, followed a rich history that had begun in 1942 with Enrico Fermi's original pile built under the west stands at the Stagg Field Stadium of The University of Chicago. CP-5 was a 5-megawatt, heavy water-moderated, enriched uranium-fueled reactor used to produce neutrons for scientific research from 1954--79. The reactor was shut down and defueled in 1979, and placed into a lay-up condition pending funding for decontamination and decommissioning (D and D). In 1990, work was initiated on the D and D of the facility in order to alleviate safety and environmental concerns associated with the site due to the deterioration of the building and its associated support systems. A decision was made in early Fiscal Year (FY) 1999 to direct focus and resources to the completion of the CP-5 Reactor D and D Project. An award of contract was made in December 1998 to Duke Engineering and Services (Marlborough, MA), and a D and D crew was on site in March 1999 to begin work, The project is scheduled to be completed in July 2000. The Laboratory has determined that the building housing the CP-5 facility is surplus to the Laboratory's needs and will be a candidate for demolition. In addition to a photographic chronology of FY 1999 activities at the CP-5 Reactor D and D Project, brief descriptions of other FY 1999 activities and of projects planned for the future are provided in this photobriefing book

  3. Space Missions for Automation and Robotics Technologies (SMART) Program

    Science.gov (United States)

    Cliffone, D. L.; Lum, H., Jr.

    1985-01-01

    NASA is currently considering the establishment of a Space Mission for Automation and Robotics Technologies (SMART) Program to define, develop, integrate, test, and operate a spaceborne national research facility for the validation of advanced automation and robotics technologies. Initially, the concept is envisioned to be implemented through a series of shuttle based flight experiments which will utilize telepresence technologies and real time operation concepts. However, eventually the facility will be capable of a more autonomous role and will be supported by either the shuttle or the space station. To ensure incorporation of leading edge technology in the facility, performance capability will periodically and systematically be upgraded by the solicitation of recommendations from a user advisory group. The facility will be managed by NASA, but will be available to all potential investigators. Experiments for each flight will be selected by a peer review group. Detailed definition and design is proposed to take place during FY 86, with the first SMART flight projected for FY 89.

  4. [Earth Science Technology Office's Computational Technologies Project

    Science.gov (United States)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  5. Summaries of research and development activities by using supercomputer system of JAEA in FY2015. April 1, 2015 - March 31, 2016

    International Nuclear Information System (INIS)

    2017-01-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R and D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2015, the system was used for R and D aiming to restore Fukushima (nuclear plant decommissioning and environmental restoration) as a priority issue, as well as for JAEA's major projects such as Fast Reactor Cycle System, Fusion R and D and Quantum Beam Science. This report presents a great number of R and D results accomplished by using the system in FY2015, as well as user support, operational records and overviews of the system, and so on. (author)

  6. Summaries of research and development activities by using supercomputer system of JAEA in FY2014. April 1, 2014 - March 31, 2015

    International Nuclear Information System (INIS)

    2016-02-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R and D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2014, the system was used for R and D aiming to restore Fukushima (nuclear plant decommissioning and environmental restoration) as a priority issue, as well as for JAEA's major projects such as Fast Reactor Cycle System, Fusion R and D and Quantum Beam Science. This report presents a great number of R and D results accomplished by using the system in FY2014, as well as user support, operational records and overviews of the system, and so on. (author)

  7. Summaries of research and development activities by using supercomputer system of JAEA in FY2013. April 1, 2013 - March 31, 2014

    International Nuclear Information System (INIS)

    2015-02-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. About 20 percent of papers published by JAEA are concerned with R and D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology utilization. In FY2013, the system was used not only for JAEA's major projects such as Fast Reactor Cycle System, Fusion R and D and Quantum Beam Science, but also for R and D aiming to restore Fukushima (nuclear plant decommissioning and environmental restoration) as a priority issue. This report presents a great amount of R and D results accomplished by using the system in FY2013, as well as user support, operational records and overviews of the system, and so on. (author)

  8. Summaries of research and development activities by using supercomputer system of JAEA in FY2012. April 1, 2012 - March 31, 2013

    International Nuclear Information System (INIS)

    2014-01-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. As more than 20 percent of papers published by JAEA are concerned with R and D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology utilization. In FY2012, the system was used not only for JAEA's major projects such as Fast Reactor Cycle System, Fusion R and D and Quantum Beam Science, but also for R and D aiming to restore Fukushima (nuclear plant decommissioning and environmental restoration) as apriority issue. This report presents a great amount of R and D results accomplished by using the system in FY2012, as well as user support, operational records and overviews of the system, and so on. (author)

  9. Summaries of research and development activities by using supercomputer system of JAEA in FY2011. April 1, 2011 - March 31, 2012

    International Nuclear Information System (INIS)

    2013-01-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. As more than 20 percent of papers published by JAEA are concerned with R and D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology utilization. In FY2011, the system was used for analyses of the accident at the Fukushima Daiichi Nuclear Power Station and establishment of radioactive decontamination plan, as well as the JAEA's major projects such as Fast Reactor Cycle System, Fusion R and D and Quantum Beam Science. This report presents a great amount of R and D results accomplished by using the system in FY2011, as well as user support structure, operational records and overviews of the system, and so on. (author)

  10. Inventory of Federal energy-related environment and safety research for FY 1979. Volume 1. Executive summary

    International Nuclear Information System (INIS)

    1980-12-01

    The FY 1979 Federal Inventory contains information on 3506 federally funded energy-related environmental and safety research projects. The Inventory is published in two volumes: Volume I, an executive summary and overview of the data and Volume II, project listings, summaries, and indexes. Research and development (R and D) categories were reorganized into three main areas; environmental and safety control technology, technology impacts overview and assessments, and biological and environmental R and D and assessments. Federal offices submitting project data were: Council on Environmental Quality; Department of Agriculture; Department of Commerce; Department of Defense; Department of Energy; Department of Health, Education, and Welfare; Department of Housing and Urban Development; Department of the Interior; Department of Transportation; Environmental Protection Agency; National Aeronautics and Space Administration; Nuclear Regulatory Commission; National Science Foundation; Office of Technology Assessment; and Tennessee Valley Authority. The inventory also breaks out research sponsored by various federal agencies and the amount of funding provided by each in various research categories. The format and index system allows efficient access to information compiled. Users are able to identify projects by log agency, performing organization, principal investigator and subject

  11. FY 2012 Lightweight Materials Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-15

    The FY 2012 Annual Progress Report for Lightweight Materials provides a detailed description of the activities and technical accomplishments which focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  12. Disability Compensation and Patient Expenditures: FY2000 to FY2013

    Data.gov (United States)

    Department of Veterans Affairs — This report contains FY2000 through FY2013 data on disability compensation expenditures and recipients and on VA healthcare system patients and patient expenditures.

  13. Laboratory Directed Research and Development FY2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High

  14. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  15. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  16. ARIES Oxide Production Program Annual Report - FY14

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Evelyn A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dinehart, Steven Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-01

    A summary of the major accomplishments (September), milestones, financial summary, project performance and issues facing the ARIES Oxide Production Program at the close of FY14 is presented in this Executive Summary. Annual accomplishments are summarized in the body of the report.

  17. Analytical chemistry laboratory. Progress report for FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

    1997-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1997 (October 1996 through September 1997). This annual progress report is the fourteenth in this series for the ACL, and it describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  18. FY 2009 Supplement to the President`s Budget

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — Published: February 2008 Pages: 37 This Supplement to the President`s Fiscal Year FY 2009 Budget provides a technical summary of the budget request for the...

  19. Education and Training Report. Performance Report, FY 1997

    Science.gov (United States)

    1997-01-01

    During FY 97, 152 MUREP education and training projects were conducted at OMU institutions. The institutions conducted precollege and bridge programs, education partnerships with other universities and industry, NRTS, teacher training, and graduate and/or PI undergraduate programs. These programs reached a total of 23,748 participants, with the predominant number at the precollege level and achieved major goals of heightening students' interest and awareness of career opportunities in MSET fields, and exposing students to the NASA mission, research and advanced technology through role models, mentors, and participation in research and other educational activities. Also in FY 1997, NASA continued a very meaningful relationship with the Hispanic Association of Colleges students and Universities (HACU) through Proyecto Access, a consortium through which HACU links seven HSI's together to conduct 8-week summer programs. OMU Institutions reported 4,334 high school student in NASA programs and 3,404 of those students selected college preparatory MSET courses. Three hundred and forty-nine (349) graduated from high school, 343 enrolled in college, and 199 selected MSET majors. There were 130 high school graduates (bridge students) in NASA programs, 57 of whom successfully completed their freshman year. There were 307 teachers in teacher programs and 48 teachers received certificates. Of the 389 undergraduate students, 75 received under graduate degrees, and eight students are employed in a NASA-related field.

  20. Solid waste integrated forecast technical (SWIFT) report: FY1997 to FY 2070, Revision 1

    International Nuclear Information System (INIS)

    Valero, O.J.

    1997-01-01

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons with previous forecasts and with other national data sources. This web site does not include: liquid waste (current or future generation); waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); or waste that has been received by the WM Project to date (i.e., inventory waste). The focus of this web site is on low-level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this web site is reporting data that was requested on 10/14/96 and submitted on 10/25/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program's life cycle. Therefore, these data represent revisions from the previous FY97.0 Data Version, due primarily to revised estimates from PNNL. There is some useful information about the structure of this report in the SWIFT Report Web Site Overview

  1. Institutional research and development, FY 1987

    International Nuclear Information System (INIS)

    Struble, G.L.; Lawler, G.M.; Crawford, R.B.; Kirvel, R.D.; Peck, T.M.; Prono, J.K.; Strack, B.S.

    1987-01-01

    The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87

  2. FY 2003 Supplement to the President`s Budget

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — The Supplement to the President?s Budget, also known as the Blue Book, reports on the coordinated research priorities and activities of the NITRD agencies for FY...

  3. Smart Gun Technology project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D.R.

    1996-05-01

    The goal of the Smart Gun Technology project is to eliminate the capability of an unauthorized user form firing a law officer`s firearm by implementing user-recognizing-and-authorizing (or {open_quotes}smart{close_quotes}) surety technologies. This project was funded by the National Institute of Justice. This report lists the findings and results of the project`s three primary objectives. First, to find and document the requirements for a smart firearm technology that law enforcement officers will value. Second, to investigate, evaluate, and prioritize technologies that meet the requirements for a law enforcement officer`s smart firearm. Third, to demonstrate and document the most promising technology`s usefulness in models of a smart firearm.

  4. Integral Fast Reactor Program annual progress report, FY 1994

    International Nuclear Information System (INIS)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, J.J.

    1994-12-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1994. Technical accomplishments are presented in the following areas of the IFR technology development activities: metal fuel performance; pyroprocess development; safety experiments and analyses; core design development; fuel cycle demonstration; and LMR technology R ampersand D

  5. Ferrocyanide Safety Project Task 3 Ferrocyanide Aging Studies FY 1993 annual report

    International Nuclear Information System (INIS)

    Lilga, M.A.; Lumetta, M.R.; Schiefelbein, G.F.

    1993-10-01

    The Hanford Ferrocyanide Task Team is addressing issues involving ferrocyanide precipitates in single-shell waste storage tanks (SSTs), in particular the storage of waste in a safe manner. This Task Team, composed of researchers from Westinghouse Hanford Company (WHC), Pacific Northwest Laboratory (PNL), and outside consultants, was formed in response to the need for an updated analysis of safety questions about the Hanford ferrocyanide tanks. The Ferrocyanides Safety Project at PNL is part of the Waste Tank Safety Program led by WHC. The overall purpose of the WHC program, sponsored by the US Department of Energy's Tank Farm Project Office, is to (1) maintain the ferrocyanide tanks with minimal risk of an accident, (2) select one or more strategies to assure safe storage, and (3) close out the unreviewed safety question (USQ). This annual report gives the results of the work conducted by PNL in FY 1993 on Task 3, Ferrocyanides Aging Studies, which deals with the aging behavior of simulated ferrocyanide wastes. Aging processes include the dissolution and hydrolysis of nickel ferrocyanides in high pH aqueous solutions. Investigated were the effects of pH variation; ionic strength and sodium ion concentration; the presence of anions such as phosphate, carbonate, and nitrate; temperature; and gamma radiation on solubility of ferrocyanide materials including In-Farm-lA, Rev. 4 flowsheet-prepared Na 2 NiFe(CN) 6

  6. Appendix E: Wind Technologies Program inputs for FY 2008 benefits estimates

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    Document summarizes the results of the benefits analysis of EERE’s programs, as described in the FY 2008 Budget Request. EERE estimates benefits for its overall portfolio and nine Research, Development, Demonstration, and Deployment (RD3) programs.

  7. Appendix G: Building Technologies Program inputs for FY 2008 benefits estimates

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    Document summarizes the results of the benefits analysis of EERE’s programs, as described in the FY 2008 Budget Request. EERE estimates benefits for its overall portfolio and nine Research, Development, Demonstration, and Deployment (RD3) programs.

  8. Hanford Site Environment Safety and Health (ES and H) FY 1999 and FY 2000 Execution Commitment Summary

    Energy Technology Data Exchange (ETDEWEB)

    REEP, I.E.

    1999-12-01

    All sites in the U.S. Department of Energy (DOE) Complex prepare this report annually for the DOE Office of Environment, Safety and Health (EH). The purpose of this report is to provide a summary of the previous and current year's Environment, Safety and Health (ES&H) execution commitments and the S&H resources that support these activities. The fiscal year (FY) 1999 and 2000 information (Sieracki 1999) and data contained in the ''Hanford Site Environment, Safety and Health Fiscal Year 2001 Budget-Risk Management Summary'' (RL 1999) were the basis for preparing this report. Fiscal year 2000 finding of Office of Environmental Management (EM) and Office of Nuclear Energy, Science and Technology (NE) activities is based on the President's budget of $1,065.1 million and $28.0 million, plus $2.7 million carryover finding, respectively, as of October 31, 1999. Any funding changes as a result of the Congressional appropriation process will be reflected in the Fiscal Year 2002 ES&H Budget-Risk Management Summary to be issued in May 2000. This report provides the end-of-year status of FY 1999 ES&H execution commitments, including actual S&H expenditures, and describes planned FY 2000 ES&H execution commitments and the S&H resources needed to support those activities. This requirement is included in the ES&H ''Guidance for FY200l Budget Formulations and Execution'' (DOE 1999).

  9. Institutional research and development, FY 1987

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Lawler, G.M.; Crawford, R.B.; Kirvel, R.D.; Peck, T.M.; Prono, J.K.; Strack, B.S. (eds.)

    1987-01-01

    The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87. (DWL)

  10. Westinghouse Hanford Company FY 1995 Materials Management Plan (MMP)

    International Nuclear Information System (INIS)

    Higginson, M.C.

    1994-10-01

    The safe and sound operation of facilities and storage of nuclear material are top priorities within Hanford's environmental management, site restoration mission. The projected materials estimates, based on the Materials Management Plan (MMP) assumptions outlined below, were prepared for Department of Energy (DOE) use in long-range planning. The Hanford MMP covers the period FY 1995 through FY 2005, as directed by DOE. All DOE Richland Operations (RL) Office facilities are essentially funded by the Office of Transition and Facilities Management, Environmental Restoration and Waste Management (EM). These facilities include PUREX, the UO 3 plant, N-Reactor, T-Plant, K-Basins, FFTF, PFP and the 300 Area Fuel Fabrication facilities. Currently DP provides partial funding for the latter two facilities. Beginning in FY 1996 (in accordance with DOE-HQ MMP assumptions), EM will fund expenses related to the storage, monitoring, and safeguarding of all Special Nuclear Material (SNM) in the PFP. Ownership and costs related to movement and/or stabilization of that material will belong to EM programs (excluding NE material). It is also assumed that IAEA will take over inventory validation and surveillance of EM owned SNM at this time (FY 1996)

  11. LBNL Laboratory Directed Research and Development Program FY2016

    Energy Technology Data Exchange (ETDEWEB)

    Ho, D.

    2017-03-01

    The Berkeley Lab Laboratory Directed Research and Development Program FY2016 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation and review.

  12. How does technological regime affect performance of technology development projects?

    NARCIS (Netherlands)

    Song, Michael; Hooshangi, Soheil; Zhao, Y. Lisa; Halman, Johannes I.M.

    2014-01-01

    In this study, we examine how technological regime affects the performance of technology development projects (i.e., project quality, sales, and profit). Technological regime is defined as the set of attributes of a technological environment where the innovative activities of firms take place.

  13. Technology and the Future of Mental Health Treatment

    Science.gov (United States)

    ... Health Intervention Technology? Join a Study Learn More Technology and the Future of Mental Health Treatment Introduction ... What is NIMH’s Role in Mental Health Intervention Technology? Between FY2009 and FY2015, NIMH awarded 404 grants ...

  14. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    International Nuclear Information System (INIS)

    Clark, J.S.; Mcdaniel, P.; Howe, S.; Helms, I.; Stanley, M.

    1993-04-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies

  15. NEDO project reports. High performance industrial furnace development project - High temperature air combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-21

    For the purpose of reducing energy consumption, a NEDO project 'Developmental research on high efficiency industrial furnaces' was carried out from FY 1993 to FY 1999 by The Japan Industrial Furnaces Manufacturers Association, and the paper outlined the details of the project. Industrial furnaces handled in this R and D can bring 30% reduction of the energy consumption and approximately 50% NOx reduction, and were given the 9th Nikkei global environmental technology prize. In the study of combustion phenomena of high temperature air combustion, the paper arranged characteristics of flame, the base of gaseous fuel flame, the base of liquid fuel flame, the base of solid fuel flame, etc. Concerning high temperature air combustion models for simulation, fluid dynamics and heat transfer models, and reaction and NOx models, etc. As to impacts of high temperature air combustion on performance of industrial furnaces, energy conservation, lowering of pollution, etc. In relation to a guide for the design of high efficiency industrial furnaces, flow charts, conceptual design, evaluation method for heat balance and efficiency using charts, combustion control system, applicability of high efficiency industrial furnaces, etc. (NEDO)

  16. NEDO project reports. High performance industrial furnace development project - High temperature air combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-21

    For the purpose of reducing energy consumption, a NEDO project 'Developmental research on high efficiency industrial furnaces' was carried out from FY 1993 to FY 1999 by The Japan Industrial Furnaces Manufacturers Association, and the paper outlined the details of the project. Industrial furnaces handled in this R and D can bring 30% reduction of the energy consumption and approximately 50% NOx reduction, and were given the 9th Nikkei global environmental technology prize. In the study of combustion phenomena of high temperature air combustion, the paper arranged characteristics of flame, the base of gaseous fuel flame, the base of liquid fuel flame, the base of solid fuel flame, etc. Concerning high temperature air combustion models for simulation, fluid dynamics and heat transfer models, and reaction and NOx models, etc. As to impacts of high temperature air combustion on performance of industrial furnaces, energy conservation, lowering of pollution, etc. In relation to a guide for the design of high efficiency industrial furnaces, flow charts, conceptual design, evaluation method for heat balance and efficiency using charts, combustion control system, applicability of high efficiency industrial furnaces, etc. (NEDO)

  17. INL Control System Situational Awareness Technology Annual Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gordon Rueff; Bryce Wheeler; Todd Vollmer; Tim McJunkin; Robert Erbes

    2012-10-01

    The overall goal of this project is to develop an interoperable set of tools to provide a comprehensive, consistent implementation of cyber security and overall situational awareness of control and sensor network implementations. The operation and interoperability of these tools will fill voids in current technological offerings and address issues that remain an impediment to the security of control systems. This report provides an FY 2012 update on the Sophia, Mesh Mapper, Intelligent Cyber Sensor, and Data Fusion projects with respect to the year-two tasks and annual reporting requirements of the INL Control System Situational Awareness Technology report (July 2010).

  18. The review of separation technology for fission nuclides 90Sr and 137Cs

    International Nuclear Information System (INIS)

    Zhang Huaming; Li Xingliang; Luo Shunzhong; Peng Shuming; Lei Jiarong

    2010-01-01

    The progress of separation technologies for fission nuclides 90 Sr and 137 Cs, including precipitation method, liquid-liquid extraction process and ion exchanging operation, are mainly reviewed. Crown ether (DtBuCH18C6) and calixarene-crown ether (BOBCalixC6) can be highly selective for 90 Sr and 137 Cs respectively in acidic waste; Ionic liquids extraction and supercritical fluid extraction can be applied for separation 90 Sr and 137 Cs from high level waste. Crystalline silicotitiate (CST) and metal sulfide (KMS-1) have highly selectivity for 90 Sr and 137 Cs separately in basic condition. The prospects of disposal technology for high level waste are also discussed in this review. (authors)

  19. Evaluation of improved technologies for the removal of 90Sr and 137Cs from process wastewater and groundwater: FY 1995 status

    International Nuclear Information System (INIS)

    Bostick, D.T.; Arnold, W.D. Jr.; Burgess, M.W.; McTaggart, D.R.; Taylor, P.A.; Guo, B.

    1996-03-01

    A number of new sorbents are currently being developed for the removal of 90 Sr and 137 Cs from contaminated, caustic low-level liquid waste (LLLW). These sorbents are potentially promising for use in the cleanup of contaminated groundwater and process wastewater containing the two radionuclides. The goal of this subtask is to evaluate the new sorbents to determine whether their associated treatment technology is more selective for the decontamination of wastewater streams than that of currently available processes. Activities during fiscal year 1995 have included completing the characterization of the standard treatment technology, ion exchange on chabazite zeolite. Strontium and cesium sorption on sodium-modified zeolite was observed in the presence of elevated concentrations of wastewater components: sodium, potassium, magnesium, and calcium. The most significant loss of nuclide sorption was noted in the first 0- to 4-meq/L addition of the cations to a wastewater simulant. Radionuclide sorption on the pretreated zeolite was also determined under dynamic flow conditions. Resorcinol-formaldehyde (R-F) resin, which was developed at the Savannah River Site, was selected as the first new sorbent to be evaluated for wastewater treatment. Nuclide sorption on this resin was greater when the resin had been washed with ultrapure water and air dried prior to use

  20. FY 1989 report on the section meeting of gasification technology of the Coal Gasification Committee; 1989 nendo sekitan gasuka iinkai gasuka gijutsu bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    The paper reported activities of the Coal Gasification Committee in FY 1989. The 1st Coal Gasification Committee Meeting was held on July 21,1989, and report/discussion were made about an outline of the FY 1989 research plan. In the 2nd Meeting, report/discussion were made about activities of each of the section meetings and the progress of the development of coal gasification technology. In FY 1998, as the 4th design/construction of pilot plant, manufacture/installation were conducted of a part (equipment of coal supply system/char recycle system) of the gasification process equipment/facilities. As to recycle gas facilities, manufacture of equipment/facilities was conducted. Concerning a part of the pipe rack/central control panel/electric panel, manufacture/installation of equipment were made. In the support study of a pilot plant (trial development of materials for plant use equipment), refractory was studied in terms of the evaluation of durability of furnace materials against liquefaction residue slag, study of furnace materials responsive to liquefaction residue and gasification of high ash melting point coal, etc. (NEDO)

  1. Integral Fast Reactor Program. Annual progress report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1993-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R&D.

  2. Institutional research and development, FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    The Laboratory's Institutional Research and Development (IR and D) Program was established in 1984 to foster exploratory work to advance science and technology, disciplinary research to develop innovative solutions to support our national defense and energy missions. In FY 1988, the IR and D Program was funded by a 2% assessment on the Laboratory's operating budget. Our policy is to use these funds for researching innovative ideas in LLNL's areas of expertise and for developing new areas of expertise that we perceive to be in the national interest. The technical and scientific accomplishments of each project and of each institute funded this year are presented in this report. The projects were selected because they are expected to advance research in important areas that are too basic or too time consuming to be funded by the developmental programs or because they are somewhat risky projects that have the promise of high payoff. We are continually reappraising the IR and D Program. In particular, we seek new candidates for the Director's Initiatives, and we constantly reassess the work in progress. Each year, we make adjustments to further the Laboratory's policy of using the IR and D Program to fund innovative ideas with high potential for enhancing programmatic activities of national importance.

  3. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace

    2009-01-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2008 (FY 2008). Throughout the year, 45 cultural resource localities were revisited including: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, one butte, twenty-eight prehistoric archaeological sites, three historic homesteads, two historic stage stations, one historic canal construction camp, three historic trails, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2008 to assess project compliance with cultural resource recommendations, confirm the locations of previously recorded cultural resources in relation to project activities, to assess the damage caused by fire-fighting efforts, and to watch for cultural materials during ground disturbing activities. Although impacts were documented at a few locations, no significant adverse effects that would threaten the National Register eligibility of any resource were observed. Monitoring also demonstrated that INL projects generally remain in compliance with recommendations to protect cultural resources

  4. Benchmark Imagery FY11 Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pope, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-06-14

    This report details the work performed in FY11 under project LL11-GS-PD06, “Benchmark Imagery for Assessing Geospatial Semantic Extraction Algorithms.” The original LCP for the Benchmark Imagery project called for creating a set of benchmark imagery for verifying and validating algorithms that extract semantic content from imagery. More specifically, the first year was slated to deliver real imagery that had been annotated, the second year to deliver real imagery that had composited features, and the final year was to deliver synthetic imagery modeled after the real imagery.

  5. Development of Technology for the Preparation of 90Sr/90Y Generators at the Radiopharmacy Directory of IPEN/CNEN-SP

    International Nuclear Information System (INIS)

    Barrio, Graciela

    2010-01-01

    90 Y (T /2 = 2,67 d; Eβmax = 2,28 MeV) is a radionuclide with efficacy established for various cancer therapies, labeling biomolecules and treating of radiosinovectomy. Due to its nuclear properties, is obtained through the decay of 90 Sr T /2 = 28 y in the form of a generator. Several types of 90 Sr/ 90 Y generators were developed, and the most employed are the cation exchange resins, where Sr and Y are adsorbed and 90 Y is selectively eluted with acetate or EDTA. The disadvantage of this type of generator is the radiolysis, which degrades its use. The electrochemical generator is a proposed solution because there is no significant effect of radiation. In this concept, the difference between the electrochemical potentials of the elements Sr and Y is used to obtain a rapid separation of 90 Y from 90 Sr. The production of 90 Y via colloid formation is the simplest method for the separation, based on the colloid formation of Y in high alkaline pH, which can be filtered and separated from Sr, and subsequently dissolved in HCl. The objective of this work was the development of technologies for the preparation of 90 Sr/ 90 Y generators, and three technologies were developed: generators using cation resins columns, generators through colloid formation and electrochemical generators. Radionuclidic quality control of 90 Y was also evaluated by liquid scintillation, radionuclide identity, extraction paper chromatography (EPC) using complexing agents for 90 Y and by Optical Emission Spectrometry with Inductively Coupled Plasma (ICP-OES). The results showed that generators using cation resins have the best results related to the elution efficiency (∼83%), the reproducibility and radionuclidic purity. The electrochemical generator showed a potential for development, having the advantage of not suffering the effects of radiolysis of the pair 90 Sr/ 90 Y as the resin. A comparison and evaluation of the methods of the radionuclidic quality control showed that the EPC is very

  6. Alternative Electrochemical Salt Waste Forms, Summary of FY11-FY12 Results

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mccloy, John S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lepry, William C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rodriguez, Carmen P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Windisch, Charles F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Matyas, Josef [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westman, Matthew P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rieck, Bennett T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lang, Jesse B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olszta, Matthew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pierce, David A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-01-17

    The Fuel Cycle Research and Development Program, sponsored by the U.S. Department of Energy Office of Nuclear Energy, is currently investigating alternative waste forms for wastes generated from nuclear fuel processing. One such waste results from an electrochemical separations process, called the “Echem” process. The Echem process utilizes a molten KCl-LiCl salt to dissolve the fuel. This process results in a spent salt containing alkali, alkaline earth, lanthanide halides and small quantities of actinide halides, where the primary halide is chloride with a minor iodide fraction. Pacific Northwest National Laboratory (PNNL) is concurrently investigating two candidate waste forms for the Echem spent-salt: high-halide minerals (i.e., sodalite and cancrinite) and tellurite (TeO2)-based glasses. Both of these candidates showed promise in fiscal year (FY) 2009 and FY2010 with a simplified nonradioactive simulant of the Echem waste. Further testing was performed on these waste forms in FY2011 and FY2012 to assess the possibility of their use in a sustainable fuel cycle. This report summarizes the combined results from FY2011 and FY2012 efforts.

  7. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    Science.gov (United States)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  8. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1989-01-01

    The US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decontaminated and dismantled the world's first nuclear-fueled, commercial-size electric power plant. The SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. The objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper sets out access and availability directions for SSDP technology acquisition. Discusses are technology transfer definition; technology transfer products including topical and other project reports, professional-technical society presentations, other project liaison and media relations, visual documentation, and technology transfer data base; and retrieving SSDP information

  9. Report on the FY 1999 leading R and D of technology of the MGC (melt-growth composites) ultra-high efficiency turbine system; 1999 nendo MGC chokokoritsu turbine system gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of using MGC which maintain the strength even at high temperature and also have plastic deformability as power generation use gas turbine system structural member, a leading research is conducted from FY 1998 to FY 2000. Based on the results of the FY 1998 research, the following were conducted in FY 1999: study through the trial manufacturing test to obtain the material design guide related to the heightening of efficiency of MGC and improvement of production process technology of MGC; evaluation from various angles of the data needed to elucidate the mechanism to manifest high-temperature characteristics of MGC. Further, through the following, a draft was drawn up for the developmental plan on the MGC ultra-high efficiency turbine system technology: establishment of gas turbine cycle (secondary draft); definition of developmental targets in the full-scale R and D after the leading research; extraction of technical subjects and study of contents of the R and D. The 5-year R and D plan was able to be worked out by setting up an R and D target that the generating end efficiency is 38% at turbine inlet temperature of 1,700 degrees C. (NEDO)

  10. Hydrologic resources management program, FY 1998 progress report; FINAL

    International Nuclear Information System (INIS)

    Benedict, F.C.; Criss, R.E.; Davisson, M.L.; Eaton, G.F.; Hudson, G.B.; Kenneally, J.M.; Rose, T.P.; Smith, D.

    1999-01-01

    This report presents the results from FY 1998 technical studies conducted by Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area (UGTA) project. The HRMP is sponsored by Defense Programs (DP) of the U.S. Department of Energy, Nevada Operations Office (DOE/NV), and supports DP operations at the Nevada Test Site (NTS) through studies of radiochemistry and resource management related to the defense programs mission. Other participating organizations include the Los Alamos National Laboratory (LANL), the United States Geological Survey (USGS), the Desert Research Institute (DRI) of the University of Nevada, the United States Environmental Protection Agency (EPA), and Bechtel-Nevada (BN). The UGTA project is an Environmental Management (EM) activity of DOE/NV that supports a Federal Facilities Agreement and Consent Order between the Department of Energy, the Department of Defense, and the State of Nevada. UGTA's primary function is to address the legacy release of hazardous constituents at the Nevada Test Site, the Tonopah Test Range, and off-Nevada Test Site underground nuclear testing areas. Participating contractors include LLNL (Earth and Environmental Sciences Directorate, Analytical and Nuclear Chemistry Division), LANL, DRI, USGS, BN, HSI-GeoTrans, and IT Corporation. The FY 1998 HRMP and UGTA annual progress report follows the organization and contents of our FY 1997 report (Smith et al., 1998), and includes our results from CY 1997-1998 technical studies of radionuclide migration and isotope hydrology at the Nevada Test Site. During FY 1998, LLNL continued its efforts under the HRMP to pursue a technical agenda relevant to the science-based stockpile stewardship program at DOE/NV. Support to UGTA in FY 1998 included efforts to quantitatively define the radionuclide source term residual from underground nuclear weapons testing and the derivative solution, or hydrologic source

  11. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    Energy Technology Data Exchange (ETDEWEB)

    Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

    2009-10-12

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

  12. Research cooperation project on manufacturing technology supported by advanced and integrated information system through international cooperation (MATIC); Kan`i sosagata denshi sekkei seisan shien system no kaihatsu ni kansuru kenkyu kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    To support the advancement of basic industries including machine industry in Asian countries, research cooperation has been conducted for developing the manufacturing technology supported by advanced and integrated information system suitable for actual circumstances of individual countries. For the automotive and the parts industries, it is significant for the preparation works of manufacturing in overseas factories to possess common information between Japan and overseas factories. In this project, a system is constructed, which can be used in industries surrounding automotive industry, such as parts and facility industries, as well as in the automotive industry. In FY 1996, a primary system has been developed, and the demonstration tests were carried out. For the home electric machine and the parts industries, the technology applicable to the design of printed board circuit was developed, and the catalog of electronic parts was constructed. In FY 1996, a preliminary prototype system of the electronic parts catalog system was designed and developed. For the textile and apparel industries, the EDI, exchange system of CAD/CAM data, and construction of data bank were investigated. 87 figs., 19 tabs.

  13. FY 1998 annual report on the survey on overseas geological structures. Project for exchanging engineers (coal mining technology area) (Vietnam); 1998 nendo kaigai chishitsu kozo nado chosaa. Gijutsusha koryu jigyo (tanko gijutsu bun'ya) (Vietnam)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The project for exchanging engineers has been implemented, in order to improve production and managemental techniques of coal mining engineers in the Asia-Pacific region, promote smooth and efficient projects for surveying overseas geological structures, and facilitate stable supply of overseas coal to Japan. The FY 1998 project was concentrated on Vietnam, to which Japanese coal mining engineers were sent, and from which production management engineers were invited to Japan as trainees. The Japanese engineers sent to Vietnam educated the underground coal mining techniques. The Vietnamese management engineers invited were trained for, e.g., production management techniques (e.g., those for workplaces and organizations) in the Japanese mines, administrative management techniques, and techniques to improve safety and productivity in the mines. Coal Energy Center and Taiheiyo Mining's Kushiro Mine provided training facilities. (NEDO)

  14. Fire protection research for DOE facilities: FY 83 year-end report

    International Nuclear Information System (INIS)

    Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Foote, K.L.; Priante, S.J.; Stagge, K.

    1984-01-01

    We summarize our research in FY 83 for the DOE-sponsored project, Fire Protection Research for DOE Facilities. This research program was initiated in 1977 to advance fire-protection strategies of energy technology facilities in order to keep abreast of the unique fire problems that develop along with energy technology research. Since 1977, the program has broadened its original scope, as reflected in previous year-end reports. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Using these experiments as models for methodology development, we are currently advancing three major task areas: (1) the identification of fire hazards unique to fusion energy facilities, (2) the evaluation of accepted fire-management measures to meet the negate hazards, and (3) the performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models

  15. Fire-protection research for DOE facilities: FY 82 year-end report

    International Nuclear Information System (INIS)

    Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Priante, S.J.; Foote, K.L.

    1983-01-01

    We summarize our research in FY 82 for the DOE-sponsored project, Fire Protection Research for DOE Facilities. This research program was initiated in 1977 to advance fire-protection strategies for energy technology facilities to keep abreast of the unique fire problems that develop along with energy technology research. Since 1977, the program has broadened its original scope, as reflected in previous year-end reports. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Using these experiments as models for methodology development, we are concurrently advancing three major task areas: (1) the identification of fire hazards unique to current fusion energy facilities; (2) the evaluation of accepted fire-management measures to meet and negate hazards; and (3) the performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models

  16. Geospace Plasma Dynamics Laboratory Annual Task Report (FY11)

    Science.gov (United States)

    2012-03-01

    Site Contractors: Nagendra Singh, Ph.D., Physicist , 0.5 MY Neil Grossbard, M.S., Mathematician , 0.7 MY Visitors: Publications: Articles in...PhD Project Manager Division Chief, RVB This report is published in the interest of scientific and technical...Annual Task Report (FY11) 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) 5d. PROJECT NUMBER 2311 Daniel Ober 5e. TASK NUMBER

  17. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  18. Laboratory Directed Research and Development Program FY 2008 Annual Report

    International Nuclear Information System (INIS)

    Hansen, Todd C.

    2009-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  19. Final report for SNL/NM environmental drilling project

    International Nuclear Information System (INIS)

    Wemple, R.P.; Meyer, R.D.; Staller, G.E.; Layne, R.R.

    1994-11-01

    Concern for the environment and cost reduction are driving forces for a broad effort in government and the private sector to develop new, more cost-effective technologies for characterizing, monitoring and remediating environmental sites. Secondary goals of the characterization, monitoring and remediation (CMR) activity are: minimize secondary waste generation, minimize site impact, protect water tables, and develop methods/strategies to apply new technologies. The Sandia National Laboratories (SNL) project in directional boring for CMR of waste sites with enhanced machinery from the underground utility installation industry was initiated in 1990. The project has tested a variety of prototype machinery and hardware built by the industrial partner, Charles Machine Works (CMW), and SNL at several sites (Savannah River Site (SRS), Hanford, SNL, Kirtland AFB (KAFB), CMW), successfully installed usable horizontal environmental test wells at SRS and SNL/KAFB, and functioned as a clearing house for information regarding application of existing commercial machinery to a variety of governmental and commercial sites. The project has continued to test and develop machinery in FY 94. The original goal of cost-effectiveness is being met through innovation, adaptation, and application of fundamental concepts. Secondary goals are being met via a basic philosophy of open-quotes cut/thrust and compact cuttings without adding large quantities of fluidclose quotes to an environmental problem site. This technology will be very cost-effective where applicable. Technology transfer and commercialization by CMW is ongoing and will continue into FY 95. Technology transfer to the private sector is ongoing and reflected in increasing machinery sales to environmental contractors. Education of regulatory agencies resulting in restructuring of appropriate regulatory standards for specification of the horizontal drilling techniques continues to be a long-range goal

  20. Final report for SNL/NM environmental drilling project

    Energy Technology Data Exchange (ETDEWEB)

    Wemple, R.P.; Meyer, R.D.; Staller, G.E. [Sandia National Labs., Albuquerque, NM (United States); Layne, R.R. [Charles Machine Works, Inc., Perry, OK (United States)

    1994-11-01

    Concern for the environment and cost reduction are driving forces for a broad effort in government and the private sector to develop new, more cost-effective technologies for characterizing, monitoring and remediating environmental sites. Secondary goals of the characterization, monitoring and remediation (CMR) activity are: minimize secondary waste generation, minimize site impact, protect water tables, and develop methods/strategies to apply new technologies. The Sandia National Laboratories (SNL) project in directional boring for CMR of waste sites with enhanced machinery from the underground utility installation industry was initiated in 1990. The project has tested a variety of prototype machinery and hardware built by the industrial partner, Charles Machine Works (CMW), and SNL at several sites (Savannah River Site (SRS), Hanford, SNL, Kirtland AFB (KAFB), CMW), successfully installed usable horizontal environmental test wells at SRS and SNL/KAFB, and functioned as a clearing house for information regarding application of existing commercial machinery to a variety of governmental and commercial sites. The project has continued to test and develop machinery in FY 94. The original goal of cost-effectiveness is being met through innovation, adaptation, and application of fundamental concepts. Secondary goals are being met via a basic philosophy of {open_quotes}cut/thrust and compact cuttings without adding large quantities of fluid{close_quotes} to an environmental problem site. This technology will be very cost-effective where applicable. Technology transfer and commercialization by CMW is ongoing and will continue into FY 95. Technology transfer to the private sector is ongoing and reflected in increasing machinery sales to environmental contractors. Education of regulatory agencies resulting in restructuring of appropriate regulatory standards for specification of the horizontal drilling techniques continues to be a long-range goal.

  1. Hanford Diversification and the Tri-Cities Economy FY 1999

    International Nuclear Information System (INIS)

    SCOTT, M.J.

    2000-01-01

    The missions of the U.S. Department of Energy's Richland Operations Office (DOE/RL) are to safely manage the Hanford Site, to manage and clean up its legacy wastes, and to develop and deploy new science and technology in the environmental and energy fields. Collectively, DOE/RL and its contractors are the most important single entity in the Tri-Cities local economy (Pasco, Kennewick, and Richland, Washington, and the surrounding area). Although the relevant economic region affected by DOE/RL and its contractors actually embraces a geographic area reaching from Yakima in the west to Walla Walla in the east and from Moses Lake in the north to Pendleton, Oregon, in the south, over 90% of economic impacts likely occur in Benton and Franklin Counties. These two counties are defined as the ''local'' Tri-Cities economy for purposes of this study. In the federal fiscal year (FY) 1999 (October 1, 1998 through September 30, 1999), the total impact of DOE'S local $1.59 billion budget was felt through payrolls of $542 million and local purchases of goods and services of $226 million. The total local spending of $768 million was up slightly from the FY 1998 total of $765 million. Taking into account the multiplier effects of this spending, the DOE/RL budget sustained an estimated 32% of all local employment (28,250 out of 88,100 jobs) and about 35% of local earned income (almost $1.08 billion out of $3.08 billion). The decrease in these percentages from last year's report reflects an update of the model's economic structure based on the 1997 economic census year, a correction of a programming error in the model found during the update, and a broader definition of earnings that includes proprietor income, not just wages (see the Appendix for revisions to the previous forecasts). DOE budget increases in FY 2000 are expected to result in no change to the number of local DOE contractor jobs and about a $29 million increase in direct local spending

  2. Laboratory Directed Research and Development Program FY2011

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  3. Country report: Syria. Development of 90Y/90Sr Generator and 90Y Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Yassine, Taufik; Mukhallalati, Ch. Heyam

    2010-01-01

    The aim of this project is to develop a technique for preparation of 90 Sr- 90 Y generator, we have developed a separation technique for isolation of 90 Y from 90 Sr based on using Sr – Spec resin packed in three columns for separation and purification of 90 Sr- 90 Y .The resulting Y90 is used for therapeutic applications. The first part of this project describe a prototype design for the 90 Sr- 90 Y generator in order to get a very accurate method to obtain the minimum possible 90 Sr Breakthrough. 25 mci of 90 Sr was used in the generator 90 Sr- 90 Y and we obtained the elution yield of 90 Y higher than 88%, Also the eluate was used for preparation of several 90 Y radiopharmaceuticals such as 90 YEDTMP and 90 Y-DOTA-HR 3 . And the work is continues to investigate more radiopharmaceuticals applications in the second part of this project such as 90 Y– FHMA. In this part of the co-coordination research programmer, A protocol based on results of this studies was developed to prepare and operate a higher activity generator (50-100mci), the resulting elution yield was approximately 94% of 90 Y . The elute was used in preparation of new 90 Y radiopharmaceuticals. The monoclonal antibodies is still evolving by conjugate Rituximab to The macrocyclic bifunctional chelating agent,(p-SCN-Bn-DOTA)S-2-(4-Isothiocyanatobenzyle)-1,4,7,10- tetraazacyclododecane-tetraaceticacid to obtain the inmunoconjugate DOTA-Rituximub in simple way and then investigating the radio labeling conditions with 90 Y. (author)

  4. SKI Project-90. Geosphere calculations using CRYSTAL: Stand-alone and CALIBRE-CRYSTAL-biosphere integrated results

    International Nuclear Information System (INIS)

    Worgan, K.; Shaw, W.

    1992-02-01

    In Project-90, the far-field transport of nuclides is assumed to take place in a 200 m long section of rock mass, which starts at the outer boundary of the near-field and ends in a fracture zone. The nuclides are eventually discharged to the biosphere. This document provides an overview of the results obtained with the far-field model CRYSTAL developed by Intera Environmental Division for the Swedish Nuclear Power Inspectorate (SKI). It reports on the results of a series of calculation that have been performed within the SKIs Project-90, and provides some indication of the key parameters for the far field. A more thorough discussion of the implications for performance assessment is given in the Project-90 reports. (au)

  5. FY 1998 annual summary report on International Clean Energy Network Using Hydrogen Conversion (WE-NET) system technology. Subtask 2. Examination and promotion of measures to obtain international understanding and cooperation; 1998 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 2 (kokusai kyoryoku shuishin no tame no chosa kento)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Described herein are the results of examination and promotion of measures to obtain international understanding and cooperation, and examination and development of measures to promote international exchange of technical information, conducted in the FY 1998 continuously from the previous year, with the object to realize the International Clean Energy Network Using Hydrogen Conversion (WE-NET) project. In the FY 1998, the English version of the 1997 annual summary report was distributed to a total of about 150 overseas organizations. The WE-NET project activities were presented to the 12th World Hydrogen Energy Conference, International Joint Power Generation Conference held in 1998 by American Society of Mechanical Engineers, and 2nd International Symposium on Advanced Energy Conversion Systems and Related Technologies. For the examination and development of measures to promote international exchange of technical information, the contracting party of Japan for the Hydrogen Implementation Agreement with IEA has been shifted from the government of Japan to NEDO. NEDO has been representing Japan for various workshops on the tasks. The hydrogen projects conducted by Germany and USA were also surveyed. The WE-NET project homepage was opened in June, 1998. (NEDO)

  6. FY 1998 basic survey for coal resource development. Data collection of the joint research of new technology in the geophysical exploration of coal resources (land area shallow seam survey); 1998 nendo sekitan shigen kaihatsu kiso chosa shiryoshu. Shintansa gijutsu chosa kaihatsu (rikuiki senso tansa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This is a compilation of the data on the coal resource land area shallow seam survey conducted in FY 1998 as the basic survey for coal resource development. The trend survey was made from July 26 to August 6, 1998. The purposes of the survey are to study the image analysis method, examples of application of the reflection seismic survey to coal, and inversion technology. The data compilation includes the following: 1. Minutes of the proceedings of the FY 1998 Japan-Australia steering committee (in English). 2. Data/proceedings of the FY 1998 Japan-Australia technical study committee (in English). 3. Results of the GPS measurement of reflection seismic survey traverse lines in Caroona district. 4. List of parameters in the FY 1998 reflection seismic survey data processing. 5. Report on the work of inspection/repair of seismic pulse generator. 6. List of the data on diameter of the test boring conducted in FY 1998. 7. NEDO-DMR CAROONA DDH borehole core pictures. 8. Estimated curves. 9. Report on the trend survey of the FY 1998 coal resource development basic survey (land area shallow seam survey). 10. Pictures. 11. Data on the 1st (FY 1998) new exploration technology study committee. (NEDO)

  7. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Schatzinger, Viola [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Chapman, Kathy [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Lovendahl, Kristi [Petroleum Tech. Transfer Council, Tulsa, OK (United States)

    2014-09-30

    The Petroleum Technology Transfer Council (PTTC) is a unique not-for-profit network that focuses on transferring Exploration and Production (E&P) technology to the domestic oil and natural gas producing industry. PTTC connects producers, technology providers and innovators, academia, research and development (R&D) consortiums and governments. Local affordable workshops delivered by Regional Lead Organizations (RLOs), which are typically a university or geological survey, are a primary tool. PTTC also maintains a website network, issues a national newsletter, provides a column in a major trade publication, and exhibits at major industry events. It also encourages industry to ask technology-related questions, striving to find relevant answers that will save questioners significant time. Working since late 1993, the PTTC network has a proven track record of providing industry with technology insights they can apply. Volunteers at the regional and national level provide key guidance regarding where to focus technical effort and help connect PTTC with industry. At historical funding levels, PTTC had been able to hold well more than 100 workshops per year, drawing 6,000+ attendees. As funding decreased in the early 2000s, the level of activity decreased and PTTC sought a merger with the American Association of Petroleum Geologists (AAPG), becoming an AAPG-managed organization at the start of FY08. This relationship with AAPG was terminated by mutual consent in May 2011 and PTTC once again operates independently. Chris Hall, California continued to serve as Chairman of the Board of Directors until December 2013. At the time PTTC reorganized into a RLO led organization with Mary Carr and Jeremy Viscomi as co-Executive Directors. Jerry Anderson became the Chairman of the PTTC Board of Directors and Chris Hall continues to serve on the Board. Workshop activity stabilized at 55-65 workshops per year averaging 3,100 attendees. FY14 represented the fifth year in a multi

  8. Active Sites Environmental Monitoring Program. FY 1993: Annual report

    International Nuclear Information System (INIS)

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.; Marsh, J.D.

    1994-08-01

    This report continues a series of annual and semiannual reports that present the results of the Active Sites Environmental Monitoring Program (ASEMP) monitoring activities. The report details monitoring data for fiscal year (FY) 1993 and is divided into three major areas: SWSA 6 [including tumulus pads, Interim Waste Management Facility (IWMF), and other sites], the low-level Liquid-Waste Solidification Project (LWSP), and TRU-waste storage facilities in SWSA 5 N. The detailed monitoring methodology is described in the second revision of the ASEMP program plan. This report also presents a summary of the methodology used to gather data for each major area along with the results obtained during FY 1993

  9. NREL/SCE High Penetration PV Integration Project: FY13 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Mather, B. A.; Shah, S.; Norris, B. L.; Dise, J. H.; Yu, L.; Paradis, D.; Katiraei, F.; Seguin, R.; Costyk, D.; Woyak, J.; Jung, J.; Russell, K.; Broadwater, R.

    2014-06-01

    In 2010, the National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed to analyze the impacts of high penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to benefit from the experience that SCE and the project team would gain during the installation of 500 megawatts (MW) of utility-scale PV systems (with 1-5 MW typical ratings) starting in 2010 and completing in 2015 within SCE's service territory through a program approved by the California Public Utility Commission (CPUC). This report provides the findings of the research completed under the project to date.

  10. DOE Hydropower Program Annual Report for FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hunt, Richard T. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sommers, Garold L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL)

    2004-02-01

    This report describes the progress of the R&D conducted in FY 2003 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Testing of the Alden/NREC pilot scale runner, and Improved Mitigation Practices); (2) Supporting Research and Testing (Biological Design Criteria, Computer and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Wind/Hydro Integration Studies and Technical Support and Outreach); and (4) Engineering and Analysis (Innovative Technology Characterization).

  11. FY 2000 report on the results of the R and D of 'frontier carbon technology.' Development of the technology to rationalize energy utilization; 2000 nendo 'tansokei kokino zairyo gijutsu' no kenkyu kaihatsu seika hokokusho. Energy shiyo gorika gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    This report summarized the FY 2000 results. In Chapter 1, development of electrically high functional diamond process technology, electric characteristics which frontier carbon materials have were made clear by the following four subjects, and the development was executed of original production process technology for realizing energy saving by heightening efficiency of electric devices, displays, etc. 1) development of morphology control; 2) development of technology to control electron emission characteristics; 3) development of technology to control oriented growth; 4) development of technology to enlarge single crystals. In Chapter 2, the basement technology of electron emission control was studied. Namely, conditions for film formation were investigated to elucidate the formation mechanism of carbon nano structure films by Dual RF CVD method, IPC CVD method and thermal CVD method. As to the electron emission mechanism of diamond, electron emission characteristics were outlined of the boron dope diamond thin film formed by micro wave plasma CVD method in FY 1999. In Chapter 3, investigational study of original production process technology of electrically high function materials, test study was made of the element technology needed to make high quality/large area diamond substrates. (NEDO)

  12. Integral Fast Reactor Program annual progress report, FY 1991

    International Nuclear Information System (INIS)

    1992-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D

  13. Integral Fast Reactor Program. Annual progress report, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1994-10-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1993. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R and D.

  14. Integral Fast Reactor Program. Annual progress report, FY 1993

    International Nuclear Information System (INIS)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1994-10-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1993. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R and D

  15. U1/U2 crib groundwater biological treatment demonstration project

    International Nuclear Information System (INIS)

    Koegler, S.S.; Brouns, T.M.; Heath, W.O.

    1989-11-01

    The primary objective of the biological treatment project is to develop and demonstrate a process for Hanford groundwater remediation. Biodenitrification using facultative anaerobic microorganisms is a promising technology for the simultaneous removal of nitrates and organics from contaminated aqueous streams. During FY 1988, a consortium of Hanford groundwater microorganisms was shown to degrade both nitrates and carbon tetrachloride (CC1 4 ). A pilot-scale treatment system was designed and constructed based on the results of laboratory-and-bench-scale testing. This report summarizes the results of biological groundwater treatment studies performed during FY 1989 at the pilot-scale. These tests were conducted using a simulated Hanford groundwater with a continuous stirred-tank bioreactor, and a fluidized-bed bioreactor that was added to the pilot-scale treatment system in FY 1989. The pilot-scale system demonstrated continuous degradation of nitrates and CC1 4 in a simulated groundwater. 4 refs., 7 figs., 1 tab

  16. Project of Atomic Energy Technology Record

    International Nuclear Information System (INIS)

    Song, K. C.; Ko, Y. C.; Kwon, K. C.

    2012-12-01

    Project of the Atomic Energy Technology Record is the project that summarizes and records whole process, from the background to the performance, of each category in all fields of nuclear science technology which have been researched and developed at KAERI. This project includes development of Data And Documents Advanced at KAERI. This project includes development of Data And Documents Advanced Management System(DADAMS) to collect, organize and preserve various records occurred in each research and development process. In addition, it means the whole records related to nuclear science technology for the past, present and future. This report summarizes research contents and results of 'Project of Atomic Energy Technology Record'. Section 2 summarizes the theoretical background, the current status of records management in KAERI and the overview of this project. And Section 3 to 6 summarize contents and results performed in this project. Section 3 is about the process of sectoral technology record, Section 4 summarizes the process of Information Strategy Master Plan(ISMP), Section 5 summarizes the development of Data And Documents Advanced Management System(DADAMS) and Section 6 summarizes the process of collecting, organizing and digitalizing of records

  17. Summary of LLNL's accomplishments for the FY93 Waste Processing Operations Program

    International Nuclear Information System (INIS)

    Grasz, E.; Domning, E.; Heggins, D.; Huber, L.; Hurd, R.; Martz, H.; Roberson, P.; Wilhelmsen, K.

    1994-04-01

    Under the US Department of Energy's (DOE's) Office of Technology Development (OTD)-Robotic Technology Development Program (RTDP), the Waste Processing Operations (WPO) Program was initiated in FY92 to address the development of automated material handling and automated chemical and physical processing systems for mixed wastes. The Program's mission was to develop a strategy for the treatment of all DOE mixed, low-level, and transuranic wastes. As part of this mission, DOE's Mixed Waste Integrated Program (MWIP) was charged with the development of innovative waste treatment technologies to surmount shortcomings of existing baseline systems. Current technology advancements and applications results from cooperation of private industry, educational institutions, and several national laboratories operated for DOE. This summary document presents the LLNL Environmental Restoration and Waste Management (ER and WM) Automation and Robotics Section's contributions in support of DOE's FY93 WPO Program. This document further describes the technological developments that were integrated in the 1993 Mixed Waste Operations (MWO) Demonstration held at SRTC in November 1993

  18. FY 1991 Report on the results of the research and development of the processing technologies for creating advanced functions. Development of the technologies for preventing corrosion of oil production systems; 1991 nendo senshin kino soshutsu kako gijutsu no kenkyu kaihatsu seika hokokusho. Sekiyu seisan system fushoku boshi gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    The research and development project has been started to develop the technologies for superhigh-purity separation/processing; controlling ultrafine crystal particles, including creating composites by the aid of a plasma laser; synthesizing highly functional organic materials; and supporting these technologies, for creating functions, e.g., advanced sensing functions, highly functional electromagnetic characteristics, and corrosion resistance, heat resistance and high strength. The R and D program for the technologies for superhigh-purity separation/processing covers development of highly corrosion-resistant, high-sensitivity gas sensors and highly functional thin oxide film sensors. The R and D program for controlling ultrafine crystal particles covers the researches on the technologies for creating inclined structures by the ion composite vapor-phase process, and the technologies for producing composites by the aid of a plasma laser. The R and D program for the organic material synthesis technologies includes researches on the technologies for controlling higher structures in a molecular beam composite reaction field, and on the technologies for synthesizing materials in a photon composite reaction field and in an interfacial composite reaction field. The R and D program for the supporting technologies includes the researches on the technologies for diagnosing a composite reaction field by the laser-aided ionization method. In the FY 1991, which is essentially the first year for the project, the efforts are directed to designs and construction of the required facilities, and preliminary tests. (NEDO)

  19. Characterization, monitoring, and sensor technology crosscutting program: Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented

  20. Characterization, monitoring, and sensor technology crosscutting program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.

  1. Projecting technology change to improve space technology planning and systems management

    Science.gov (United States)

    Walk, Steven Robert

    2011-04-01

    Projecting technology performance evolution has been improving over the years. Reliable quantitative forecasting methods have been developed that project the growth, diffusion, and performance of technology in time, including projecting technology substitutions, saturation levels, and performance improvements. These forecasts can be applied at the early stages of space technology planning to better predict available future technology performance, assure the successful selection of technology, and improve technology systems management strategy. Often what is published as a technology forecast is simply scenario planning, usually made by extrapolating current trends into the future, with perhaps some subjective insight added. Typically, the accuracy of such predictions falls rapidly with distance in time. Quantitative technology forecasting (QTF), on the other hand, includes the study of historic data to identify one of or a combination of several recognized universal technology diffusion or substitution patterns. In the same manner that quantitative models of physical phenomena provide excellent predictions of system behavior, so do QTF models provide reliable technological performance trajectories. In practice, a quantitative technology forecast is completed to ascertain with confidence when the projected performance of a technology or system of technologies will occur. Such projections provide reliable time-referenced information when considering cost and performance trade-offs in maintaining, replacing, or migrating a technology, component, or system. This paper introduces various quantitative technology forecasting techniques and illustrates their practical application in space technology and technology systems management.

  2. FY97 ICCS prototype specification

    International Nuclear Information System (INIS)

    Woodruff, J.

    1997-01-01

    The ICCS software team will implement and test two iterations of their software product during FY97. This document specifies the products to be delivered in that first prototype and projects the direction that the second prototype will take. Detailed specification of the later iteration will be written when the results of the first iteration are complete. The selection of frameworks to be implemented early is made on a basis of risk analysis from the point of view of future development in the ICCS project. The prototype will address risks in integration of object- oriented components, in refining our development process, and in emulation testing for FEP devices. This document is a specification that identifies products and processes to undertake for resolving these risks. The goals of this activity are to exercise our development process at a modest scale and to probe our architecture plan for fundamental limits and failure modes. The product of the iterations will be the framework software which will be useful in future ICCS code. Thus the FY97 products are intended for internal usage by the ICCS team and for demonstration to the FEP software developers of the strategy for integrating supervisory software with FEP computers. This will be the first of several expected iterations of the software development process and the performance measurements that ICCS will demonstrate, intended to support confidence in our ability to meet project RAM goals. The design of the application software is being carried out in a separate WBS 1.5.2 activity. The design activity has as its FY97 product a series of Software Design Documents that will specify the functionality of the controls software of ICCS. During the testing of this year''s prototypes, the application functionality needed for test will be provided by sample maintenance controls. These are early precursors of controls that can be used for low level device control. Since the devices under test will be represented by

  3. FY 1998 'The New Sunshine Project' leading R and D. Report on the results of the leading R and D of supercritical fluid utilization technology; 1998 nendo 'New Sunshine Keikaku' sendo kenkyu kaihatsu. Chorinkai ryutai riyo gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper reported the FY 1998 achievement of the supercritical fluid utilization leading R and D which started in FY 1997 on a 3-year plan. In the R and D, solvolysis reaction, oxidation reaction and hydrogenation reaction were taken up in the chemical process using supercritical fluid. In the study of solvolysis reaction, the basic data were obtained on decomposition conditions of thermoplastic and thermosetting plastics in supercritical water. Further, concerning the synthesis of environmental friendly type carbonate using CO2, a conversion rate of almost 100% was obtained. About the oxidation reaction, conditions were found out for burning low grade coal in supercritical water without emitting acid gas. This is considered to lead to a possibility of the supercritical water power generation. Relating to the hydrogenation reaction, a study was made on lightening technology of heavy distillate using supercritical water, and the conditions for effective emission of methane and hydrogen were found out. As to the base technology, a study was made of metal materials with high corrosion resistance against supercritical water. (NEDO)

  4. FY16 Strategic Themes White Paper.

    Energy Technology Data Exchange (ETDEWEB)

    Leland, Robert W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    The Science and Technology (S&T) Division 1000 Strategic Plan includes the Themes, Goals, and Actions for FY16. S&T will continue to support the Labs Strategic plan, Mission Areas and Program Management Units by focusing on four strategic themes that align with the targeted needs of the Labs. The themes presented in this plan are Mission Engagement, Bold Outcomes, Collaborative Environment, and the Safety Imperative. Collectively they emphasize diverse, collaborative teams and a self-reliant culture of safety that will deliver on our promise of exceptional service in the national interest like never before. Mission Engagement focuses on increasing collaboration at all levels but with emphasis at the strategic level with mission efforts across the labs. Bold Outcomes seeks to increase the ability to take thoughtful risks with the goal of achieving transformative breakthroughs more frequently. Collaborative environment strives for a self-aware, collaborative working environment that bridges the many cultures of Sandia. Finally, Safety Imperative aims to minimize the risk of serious injury and to continuously strengthen the safety culture. Each of these themes is accompanied by a brief vision statement, several goals, and planned actions to support those goals throughout FY16 and leading into FY17.

  5. FY 1999 Report on research and development of energy utilization rationalization superhigh-technological liquid crystal technologies. Superhigh-technological electronic technology development promotion project for new functional electronic material design, control and analysis technologies; 1999 nendo energy shiyo gorika chosentan ekisho gijutsu kaihatsu seika hokokusho. Chosentan denshi gijutsu kaihatsu sokushin jigyo shinkino denshi zairyo sekkei seigyo bunseki nado gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-01

    Described herein are the FY 1999 results of the liquid crystal technology development project. For the researches on multi-layer reflection, composite panels of flattened resins of different refractive index are developed to improve 2-layer monochromic contrast ratio. The guest/host liquid crystal compositions of high orientation order are investigated as the those useful for high contrast. Compounds are pursued for superanisotropic light absorption, and modification with a substituent is found to be effective. Molecular orientation controlling is also studied. For researches on memory-sustaining type liquid crystals, the studied items include formation of thin ferroelectric films on glass substrates, improvement of voltage-sustaining characteristics by composites (including compounds), and doping of trace quantities of ionic impurities. For development of image element colors, the studied items include multi-lattice-structured, oriented HPDLC devices, composites of high birefringence (high order light scattering), and light interference, high order light scattering type light control devices. The multi-dimensionally anisotropic structure of configuration divided into 3 parts of R, G and B is developed to create directive reflection which improves brightness of the reflection type color liquid crystal. A group of compounds are pursued to develop liquid crystal compositions of high refractive index anisotropy, and promising ones are found. The results of the comprehensive investigations are also described. (NEDO)

  6. Separations and Waste Forms Research and Development FY 2013 Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-12-01

    The Separations and Waste Form Campaign (SWFC) under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Program (FCRD) is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year (FY) 2013 accomplishments report provides a highlight of the results of the research and development (R&D) efforts performed within SWFC in FY 2013. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during the fiscal year. This report briefly outlines campaign management and integration activities, but the intent of the report is to highlight the many technical accomplishments made during FY 2013.

  7. DOE Hydropower Program Annual Report for FY 2004

    Energy Technology Data Exchange (ETDEWEB)

    Sommers, Garold L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hunt, Richard T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, Thomas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ahlgrimm, James [U.S. Dept. of Energy, Washington, D.C. (United States); Acker, Tomas L. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2005-02-01

    This report describes the progress of the R&D conducted in FY 2004 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices); (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications); and (4) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology).

  8. FY 2000 study report on the study on technological development of the chemical processes of the next generation; 2000 nendo jisedai kagaku process gijutsu kaihatsu ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The technological development of the innovative chemical reaction processes is studied, in order to accomplish further energy saving, and reduction of resource consumption and environmental loads. Described herein are the FY 2000 study results. The program for systematization of the next-generation chemical processes systematically pigeonholes the undergoing projects and subjects to be studied, based on the principles of simplification, and sets the study fields of organic bulk chemicals, organic fine chemicals, highpolymer materials and inorganic materials. The program for investigation on next-generation chemical processes reviews creation and technological use of tailor-made biocatalysts, polymer materials which utilize wood resources, tailor-made reaction process engineering for handling fine particles in high-temperature reaction fields, production and processing of materials for high-performance polymer batteries, and extreme energy saving process for polyolefins, and proposes the revisions. The newly proposed study themes include novel C1 catalytic processes toward minimal wastes, and high utilization of biotechnology for novel processes to create materials. (NEDO)

  9. Integrated Engineering Information Technology, FY93 accommplishments

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.N.; Miller, D.K.; Neugebauer, G.L.; Orona, J.R.; Partridge, R.A.; Herman, J.D.

    1994-03-01

    The Integrated Engineering Information Technology (IEIT) project is providing a comprehensive, easy-to-use computer network solution or communicating with coworkers both inside and outside Sandia National Laboratories. IEIT capabilities include computer networking, electronic mail, mechanical design, and data management. These network-based tools have one fundamental purpose: to help create a concurrent engineering environment that will enable Sandia organizations to excel in today`s increasingly competitive business environment.

  10. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present

  11. Technological economics: innovation, project management, and technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, F R

    1981-06-01

    The relationship between economics and technology, as well as their interaction in production, productivity, project management, and in technology transfer processes are reviewed. Over the last two decades there has been an increasing interest by economists in the technologist's view of technical change and its mechanisms. The author looks at the zone between technology and economics, the technological economics, and discusses the theory of innovation recently sketched out by Nelson and Winter. The relevance to project management and technology transfer of contemporary writing by economists leads to the view that there are welcome signs of a convergence of the conceptual models now emerging and the practical problems of technology management and movement. Economists now seem more willing to come to terms with technology than technologists with economics. The economic significance of the multitudes of technically unglamorous activities in development work is seriously neglected as a result of over-emphasis on the spectacular technological break. If economic elegance were to be admitted to the criteria of success, one might get a significant improvement in the engineering of technological change. 29 references, 4 figure.

  12. The Iodine Satellite (iSat) Project Development Towards Critical Design Review (CDR)

    Science.gov (United States)

    Dankanich, John W.; Selby, Michael; Polzin, Kurt A.; Kamhawi, Hani; Hickman, Tyler; Byrne, Larry

    2016-01-01

    Despite the prevalence of Small Satellites in recent years, the systems flown to date have very limited propulsion capability. SmallSats are typically secondary payloads and have significant constraints for volume, mass, and power in addition to limitations on the use of hazardous propellants or stored energy (i.e. high pressure vessels). These constraints limit the options for SmallSat maneuverability. NASA's Space Technology Mission Directorate approved the iodine Satellite flight project for a rapid demonstration of iodine Hall thruster technology in a 12U configuration under the Small Spacecraft Technology Program. The project formally began in FY15 as a partnership between NASA MSFC, NASA GRC, and Busek Co, Inc., with the Air Force supporting the propulsion technology maturation. The team is in final preparation of the Critical Design Review prior to initiating the fabrication and integration phase of the project. The iSat project is on schedule for a launch opportunity in November 2017.

  13. Richland Operations (DOE-RL) Environmental Safety Health (ES and H) FY 2000 and FY 2001 Execution Commitment Summary

    Energy Technology Data Exchange (ETDEWEB)

    REEP, I.E.

    2000-12-01

    All sites in the U.S. Department of Energy (DOE) Complex prepare this report annually for the DOE Office of Environment, Safety and Health (EH). The purpose of this report is to provide a summary of the previous and current year's Environment, Safety and Health (ES&H) execution commitments and the Safety and Health (S&H) resources that support these activities. The fiscal year (FY) 2000 and 2001 information and data contained in the Richland Operations Environment, Safefy and Health Fiscal Year 2002 Budget-Risk Management Summary (RL 2000a) were the basis for preparing this report. Fiscal year 2001 activities are based on the President's Amended Congressional Budget Request of $689.6 million for funding Ofice of Environmental Management (EM) $44.0 million for Fast Flux Test Facility standby less $7.0 million in anticipated DOE, Headquarters holdbacks for Office of Nuclear Energy, Science and Technology (NE); and $55.3 million for Safeguards and Security (SAS). Any funding changes as a result of the Congressional appropriation process will be reflected in the Fiscal Year 2003 ES&H Budget-Risk Management Summary to be issued in May 2001. This report provides the end-of-year status of FY 2000 ES&H execution commitments, including actual S&H expenditures, and describes planned FY 2001 ES&H execution commitments and the S&H resources needed to support those activities. This requirement is included in the ES&H guidance contained in the FY 2002 Field Budget Call (DOE 2000).

  14. FY 1990 scientific and technical reports, articles, papers, and presentations

    Science.gov (United States)

    Turner, Joyce E. (Compiler)

    1990-01-01

    Formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY 90 are presented. Also included are papers of MSFC contractors. After being announced in STAR, all of the NASA series reports may be obtained from NTIS. The information may be of value to the scientific and engineering community in determining what information has been published and what is available.

  15. Hydrogen Energy Coordinating Committee annual report: Summary of DOE hydrogen programs for FY 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The FY 1988 Summary is the eleventh consecutive yearly report providing an overview of the hydrogen-related programs of the DOE offices represented on the HECC. A historical summary of the hydrogen budgets of these offices is given. The distribution by mission-related program element for FY 1988, and the non-mission-related activities are given. Total DOE funding in FY 1988 for mission-related hydrogen research was $5.2 million; DOE non-mission-related hydrogen research funding totaled $30.0 million. The individual program elements are described in the body of this report, and more specific program information is given in the Technology Summary Forms in Appendix A. 2 tabs

  16. FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation

    International Nuclear Information System (INIS)

    1994-10-01

    The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE's goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT and E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD's RDDT and E

  17. Pilot project of atomic energy technology record

    International Nuclear Information System (INIS)

    Song, K. C.; Kim, Y. I.; Kim, Y. G.

    2011-12-01

    Project of the Atomic Energy Technology Record is the project that summarizes and records in each category as a whole summary from the background to the performance at all fields of nuclear science technology which researched and developed at KAERI. This project includes Data and Document Management System(DDMS) that will be the system to collect, organize and preserve various records occurred in each research and development process. To achieve these goals, many problems should be solved to establish technology records process, such as issues about investigation status of technology records in KAERI, understanding and collection records, set-up project system and selection target field, definition standards and range of target records. This is a research report on the arrangement of research contents and results about pilot project which records whole nuclear technology researched and developed at KAERI in each category. Section 2 summarizes the overview of this pilot project and the current status of technology records in domestic and overseas, and from Section 3 to Section 6 summarize contents and results which performed in this project. Section 3 summarizes making TOC(Table of Content) and technology records, Section 4 summarizes sectoral templates, Section 5 summarizes writing detailed plan of technology records, and Section 6 summarizes Standard Document Numbering System(SDNS). Conclusions of this report are described in Section 7

  18. Hanford Permanent Isolation Barrier Program: Asphalt technology data and status report - FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Romine, R.A.; Zacher, A.H.

    1994-09-01

    The asphalt layer within the Hanford Permanent Isolation Barrier (HPIB) is an important component of the overall design. This layer provides a RCRA equivalent backup to the overlying earthen layers in the unlikely event that these layers are not able to reduce the infiltration rate to less than 0.05 cm/yr. There is only limited amount of information on using asphalt for a moisture infiltration barrier over the long times required by the HPIB. Therefore, a number of activities are under way, as part of the Barrier Development Program, to obtain data on the performance of asphalt as a moisture barrier in a buried environment over a 1000-year period. These activities include (1) determining RCRA equivalency, (2) measurement of physical properties, (3) measurement of aging characteristics, and (4) relationship to ancient asphalt analogs. During FY 1994 progress was made on all of these activities. Studies were conducted both in the laboratory and on the prototype barrier constructed over the 216-B-57 crib in the 200 East Area on the Hanford Site. This report presents results obtained from the asphalt technology tasks during FY 1994. Also included are updates to planned activities for asphalt analogs and monitoring the asphalt test pad near the prototype barrier. Measurements of hydraulic conductivity on the HMAC portion of the prototype barrier show that the asphalt layers easily meet the RCRA standard of 1 {times} 10{sup -7} cm/s. In-place measurements using a new field falling head technique show an average of 3.66 {times} 10{sup -8} cm/s, while cores taken from the north end of the prototype and measured in a laboratory setup averaged 1.29 {times} 10{sup -9} cm/s. Measurements made on the fluid applied asphalt membrane (polymer-modified asphalt) show an extremely low permeability of less than 1 {times} 10{sup -11} cm/s.

  19. Hanford Permanent Isolation Barrier Program: Asphalt technology data and status report - FY 1994

    International Nuclear Information System (INIS)

    Freeman, H.D.; Romine, R.A.; Zacher, A.H.

    1994-09-01

    The asphalt layer within the Hanford Permanent Isolation Barrier (HPIB) is an important component of the overall design. This layer provides a RCRA equivalent backup to the overlying earthen layers in the unlikely event that these layers are not able to reduce the infiltration rate to less than 0.05 cm/yr. There is only limited amount of information on using asphalt for a moisture infiltration barrier over the long times required by the HPIB. Therefore, a number of activities are under way, as part of the Barrier Development Program, to obtain data on the performance of asphalt as a moisture barrier in a buried environment over a 1000-year period. These activities include (1) determining RCRA equivalency, (2) measurement of physical properties, (3) measurement of aging characteristics, and (4) relationship to ancient asphalt analogs. During FY 1994 progress was made on all of these activities. Studies were conducted both in the laboratory and on the prototype barrier constructed over the 216-B-57 crib in the 200 East Area on the Hanford Site. This report presents results obtained from the asphalt technology tasks during FY 1994. Also included are updates to planned activities for asphalt analogs and monitoring the asphalt test pad near the prototype barrier. Measurements of hydraulic conductivity on the HMAC portion of the prototype barrier show that the asphalt layers easily meet the RCRA standard of 1 x 10 -7 cm/s. In-place measurements using a new field falling head technique show an average of 3.66 x 10 -8 cm/s, while cores taken from the north end of the prototype and measured in a laboratory setup averaged 1.29 x 10 -9 cm/s. Measurements made on the fluid applied asphalt membrane (polymer-modified asphalt) show an extremely low permeability of less than 1 x 10 -11 cm/s

  20. Photovoltaic Program Branch annual report, FY 1989

    Energy Technology Data Exchange (ETDEWEB)

    Summers, K A [ed.

    1990-03-01

    This report summarizes the progress of the Photovoltaic (PV) Program Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30, 1989. The branch is responsible for managing the subcontracted portion of SERI's PV Advanced Research and Development Project. In fiscal year (FY) 1989, this included nearly 50 subcontracts, with a total annualized funding of approximately $13.1 million. Approximately two-thirds of the subcontracts were with universities, at a total funding of nearly $4 million. The six technical sections of the report cover the main areas of the subcontracted program: Amorphous Silicon Research, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, New Ideas, and University Participation. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1989, and future research directions. Each report will be cataloged individually.

  1. FY 2000 report on the results of the research and development project for new industry creation type industrial science technologies. R and D of the intellectual material and structural systems (Development of technologies for rational use of energy); 2000 nendo shinki sangyo soshutsugata sangyo kagaku gijutsu kenkyu kaihatsu seika hokokusho. Chiteki zairyo kozo system no kenkyu kaihatsu (energy shiyo gorika gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the R and D project for development of intellectual materials and structural systems, as part of development of technologies for rational use of energy. The program for development of health monitoring technologies produces the bright prospects for commercialization of the fine FBG (Fiber Bragg Grating) sensor which can be embedded in a CFRP prepreg, and establishes the crack detecting method. The program for development of smart manufacturing technologies describes the dielectric constant sensor capable of monitoring the curing process, detection of the cured conditions by the optical fiber sensor, and development of the performs by RTM (Resin Transfer Molding). The program for technological development of the active-adaptive structures conducts the vibration- and noise-controlling tests for the small-size structural elements, confirming that the damping coefficient is improved by at least 20% and acoustic power is reduced by at least 30%. The program for developing the actuator materials and elements improves the piezoelectric characteristics of the PZT-based materials by hybrid sintering, and develops the actuators of high-durability FGM (Function-Gradient Materials). It also develops the foil- and belt-shaped shape memory alloys by arc-aided dissolution and rapid solidification of Ti-Ni-Cu-based alloys. (NEDO)

  2. NITRD Program Supplement to the President`s Budget - FY 2017

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This document is a supplement to the President`s 2017 Budget Request to Congress. It describes the activities planned for FY2017 by the Federal agencies...

  3. NITRD Program Supplement to the President`s Budget - FY 2018

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This document is a supplement to the President`s 2018 Budget Request to Congress. It describes the activities planned for FY2018 by the Federal agencies...

  4. BWR 90 and BWR 90+: Two advanced BWR design generations from ABB

    International Nuclear Information System (INIS)

    Haukeland, S.; Ivung, B.; Pedersen, T.

    1999-01-01

    ABB has two evolutionary advanced light water reactors available today - the BWR 90 boiling water reactor and the System 80+ pressurised water reactor. The BWR 90 is based on the design, construction, commissioning and operation of the BWR 75 plants. The operation experience of the six plants of this advanced design has been very good. The average annual energy availability is above 90%, and total power generation costs have been low. When developing the BWR 90 specific changes were introduced to a reference design, to adapt to technological progress, new safety requirements and to achieve cost savings. The thermal power rating of BWR 90 is 3800 MWth (providing a nominal 1374 MWe net), slightly higher than that of the reference plant ABB Atom has taken advantage of margins gained using a new generation of its SVEA fuel to attain this power rating without major design modifications. The BWR 90 design was completed and offered to the TVO utility in Finland in 1991, as one of the contenders for the fifth Finnish nuclear power plant project. Hence, the design is available today for deployment in new plant projects. Utility views were incorporated through co-operation with the Finnish utility TVO, owner and operator of the two Olkiluoto plants of BWR 75 design. A review against the European Utility Requirement (EUR) set of requirements has been performed, since the design, in 1997, was selected by the EUR Steering Committee to be the first BWR to be evaluated against the EUR documents. The review work was completed in 1998. It will be the subject of an 'EUR Volume 3 Subset for BWR 90' document. ABB is continuing its BWR development work with an 'evolutionary' design called BWR 90+, which aims at developing the BWR as a competitive option for the anticipated revival of the market for new nuclear plants beyond the turn of the century, as well as feeding ideas and inputs to the continuous modernisation efforts at operating plants. The development is performed by ABB Atom

  5. Technology Integration Division FY 1992 Public Participation Program Management and Implementation Plan

    International Nuclear Information System (INIS)

    1991-12-01

    The mission of the Office of Technology Development (OTD), to develop and apply existing and innovative environmental restoration and waste management technologies to the cleanup to Department of Energy (DOE) sites and facilities in accordance with applicable regulations, is to be carried out through the central mechanisms of the Integrated Demonstration (ID) and Integrated Program (IP). Regulations include provisions for public participation in DOE decision making regarding IDs. Beyond these requirements, DOE seeks to foster a more open culture in which public participation, based on two-way communication between DOE and the public, is not only welcomed, but actively encouraged. The public to which the Program is addressed actually consists of several distinct ''publics:'' state and local government officials; Indian tribes; citizen groups and individuals concerned about specific issues; citizen groups or individuals who are opinion leaders in their communities; other federal agencies; private industry; and academia involved in IDs. Participation of these publics in decision making means that their concerns, needs, objectives, and other input are identified by two-way communication between them and DOE, and that these factors are considered when decisions made about OTD activities. This plan outlines the TIPs Public Participation Program goals, objectives, and steps to be taken during Fiscal Year (FY) 1992 to move toward those goals and objectives, based on the challenges and opportunities currently recognized or assumed

  6. Electronics Engineering Department Thrust Area report FY'84

    International Nuclear Information System (INIS)

    Minichino, C.; Phelps, P.L.

    1984-01-01

    This report describes the work of the Electronics Engineering Department Thrust Areas for FY'84: diagnostics and microelectronic engineering; signal and control engineering; microwave and pulsed power engineering; computer-aided engineering; engineering modeling and simulation; and systems engineering. For each Thrust Area, an overview and a description of the goals and achievements of each project is provided

  7. FY 2000 report on the results of the research and development project for the photon-aided instrumentation and processing technologies. R and D of the photon-aided instrumentation and processing technologies; 2000 nendo photon keisoku kako gijutsu seika hokokusho. Photon keisoku kako gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of development of the photon-aided instrumentation and processing technologies. The technological and R and D trends of the photon-aided instrumentation and processing technologies are surveyed, in order to clarify the directions of their impacts and ripple effects on creation of new industries and development of the existing industries. The survey committee is organized, for exchanging opinions and information, and collection of information. For the trends of the photon-aided processing technologies, information on the elementary and peripheral technologies is collected by literature survey and academic meetings for processing, applied instrumentation and analysis, and photon generation/controlling, to grasp, analyze and study the latest trends. For the photon-utilizing technologies, information is collected viewed from their application to wide industrial areas, e.g., medical, diagnostic, communication/transmission, multimedia and chemical areas, other than those for instrumentation and processing. Also surveyed and analyzed/studied are the technologies for environmental protection, sensing, information, and the new areas, e.g., terahertz photonics and agriculture. (NEDO)

  8. Hanford analytical sample projections FY 1998 - FY 2002

    International Nuclear Information System (INIS)

    Joyce, S.M.

    1997-01-01

    Sample projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Sample projections are categorized by radiation level, protocol, sample matrix and Program. Analyses requirements are also presented

  9. Oak Ridge National Laboratory institutional plan, FY 1992--FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    In operation for fifty years, the Oak Ridge National Laboratory (ORNL) is managed by Martin Marietta Energy Systems, Inc., for the US Department of Energy (DOE). ORNL is one of DOE's major multiprogram national laboratories. Activities at the Laboratory are focused on basic and applied research, on technology development, and on other technological challenges that are important to DOE and to the nation. The Laboratory also performs research and development (R D) for non-DOE sponsors when such activities complement DOE missions and address important national or international issues. The Laboratory is committed to the pursuit of excellence in all its activities, including the commitment to carry out its missions in compliance with environmental, safety, and health laws and regulations. The principal elements of the Laboratory's missions in support of DOE include activities in each of the following areas: (1) Energy production and conservation technologies; (2) physical and life sciences; (3) scientific and technical user facilities; (4) environmental protection and waste management; (5) science technology transfer; and, (6) education. This institutional plan for ORNL activities is for the next five years: FY 1992--1997.

  10. High efficiency environmental sampling with UV-cured peelable coatings (aka NuGoo project)

    Energy Technology Data Exchange (ETDEWEB)

    Henzl, Vladimir [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Junghans, Sylvia Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lakis, Rollin Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-21

    This report presents slides on CA Related Project (FY13-17); Environmental sampling by IAEA (not only) during CA; Decontamination gels; Cotton swipes vs. decon gel (FY15); Contamination removal study; The origins of the NuGoo; NuGoo – proof of concept; NuGoo – FY17 project ($250K); LED lamp – which one works and why; Selecting photoinitiator; Monomers and oligomers; Results.

  11. FY2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    FY 2013 annual report focuses on the following areas: vehicle modeling and simulation, component and systems evaluations, laboratory and field evaluations, codes and standards, industry projects, and vehicle systems optimization.

  12. FY 1997 basic survey for coal resource development. Data collection of the joint research of new technology in the geophysical exploration of coal resources (water area medium depth seam survey); 1997 nendo sekitan shigen kaihatsu kiso chosa shiryoshu. Shintansa gijutsu chosa kaihatsu (suiiki chushindoso tansa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In 'the new exploration technology test on coal resource' (water area medium depth seam exploration) jointly conducted between Japan and China, tests have been carried out for 5 years on the BDR-5 test boring measurement monitoring system and the diamond bit which are items of the technology development of high resolution seismic survey system and high efficiency test boring system. As a result, the new technology test was successful, and technical economic effects were obtained. The situation of the test was summarized. The following data were compiled as shown in Data No.1-12. 1. The proceedings of the FY 1997 Japan-China steering committee (No.9). 2. Report on the survey of China verification field South Sihu water level situation. 3. The proceedings of the FY 1997 Japan-China steering committee (final). 4. Report on the FY 1997 reflection seismic exploration survey. 5. Report on the FY 1997 No.2 test boring survey. 6. Summarization of the test on 'the new exploration technology of coal source' conducted between Japan and China. 7. Report on the drilling data measurement. 8. Various sections of the reflection seismic survey data processing. 9. Traverse line chart. 10. T3 isochrone chart. 11. T3 depth structural chart. 12. Report on the new exploration technology survey development (water area medium depth seam exploration) geological model making. (NEDO)

  13. CAES Annual Report FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Kortny Rolston

    2011-10-01

    The Center for Advanced Energy Studies was created to lead research programs important to the nation, attract students and faculty to the Idaho universities and act as a catalyst for technology-based economic development. CAES is striving to meet those goals by continuing to develop its infrastructure and equipment capabilities, expand its research portfolio and bolster Idaho's energy workforce. This Annual Report details the progress CAES made in FY 2011 toward fulfilling its research, education and economic development missions.

  14. Site Maintenance Plan: Part 2, Site Maintenance Action Plan for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, E.L.

    1994-06-01

    This Fiscal Year (FY) 1994 Site Maintenance Action Plan (SMAP) is Part II of the Site Maintenance Plan, and has been written by Westinghouse Hanford Company (WHC) to outline the requirements stated in DOE Order 4330.4B, Maintenance Management Program, Chapter 1, Paragraph 3.3.1. The SMAP provides an annual status of maintenance initiatives completed and planned, a summary of performance indicators, a summary of maintenance backlog, a listing of real property and capital equipment maintenance cost estimates that were used to create the FY 1996 infrastructure and maintenance budget input, and a listing of proposed line item and general plant projects. Additionally, assumptions for various Site programs are listed to bring the Site Maintenance Plan into focus with overall Site activities. The primary mission at Hanford is to clean up the Site. In this cleanup process WHC will provide scientific and technological expertise to meet global needs, and partnership with stakeholders in the region to develop regional economic diversification. Other missions at the Hanford Site include energy research and development, and waste management and disposal activities. Their primary mission has a 30-year projected life span and will direct the shutting down and cleanup of defense production facilities and the Fast Flux Test Facility. This long-term mission requires continuous maintenance and in many instances, replacement of existing basic infrastructure, support facilities, and utilities. Without adequate maintenance and capital funding these infrastructure, support facilities, and utilities will continue to deteriorate causing an increase in backlogged work.

  15. Site Maintenance Plan: Part 2, Site Maintenance Action Plan for FY 1994

    International Nuclear Information System (INIS)

    Fisk, E.L.

    1994-06-01

    This Fiscal Year (FY) 1994 Site Maintenance Action Plan (SMAP) is Part II of the Site Maintenance Plan, and has been written by Westinghouse Hanford Company (WHC) to outline the requirements stated in DOE Order 4330.4B, Maintenance Management Program, Chapter 1, Paragraph 3.3.1. The SMAP provides an annual status of maintenance initiatives completed and planned, a summary of performance indicators, a summary of maintenance backlog, a listing of real property and capital equipment maintenance cost estimates that were used to create the FY 1996 infrastructure and maintenance budget input, and a listing of proposed line item and general plant projects. Additionally, assumptions for various Site programs are listed to bring the Site Maintenance Plan into focus with overall Site activities. The primary mission at Hanford is to clean up the Site. In this cleanup process WHC will provide scientific and technological expertise to meet global needs, and partnership with stakeholders in the region to develop regional economic diversification. Other missions at the Hanford Site include energy research and development, and waste management and disposal activities. Their primary mission has a 30-year projected life span and will direct the shutting down and cleanup of defense production facilities and the Fast Flux Test Facility. This long-term mission requires continuous maintenance and in many instances, replacement of existing basic infrastructure, support facilities, and utilities. Without adequate maintenance and capital funding these infrastructure, support facilities, and utilities will continue to deteriorate causing an increase in backlogged work

  16. Milliken Clean Coal Technology Demonstration Project. Environmental monitoring report, July--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    New York State Electric and Gas Corporation (NYSEG) has installed and is presently operating a high-efficiency flue gas desulfurization (FGD) system to demonstrate innovative emissions control technology and comply with the Clean Air Act Amendments of 1990. The host facility for this demonstration project is NYSEG`s Milliken Station, in the Town of Lansing, New York. The primary objective of this project is to demonstrate a retrofit of energy-efficient SO{sub 2} and NO{sub x} control systems with minimal impact on overall plant efficiency. The demonstration project has added a forced oxidation, formic acid-enhanced wet limestone FGD system, which is expected to reduce SO{sub 2} emissions by at least 90 percent. NYSEG also made combustion modifications to each boiler and plans to demonstrate selective non-catalytic reduction (SNCR) technology on unit 1, which will reduce NO{sub x} emissions. Goals of the proposed demonstration include up to 98 percent SO{sub 2} removal efficiency while burning high-sulfur coal, 30 percent NO{sub x} reductions through combustion modifications, additional NO{sub x} reductions using SNCR technology, production of marketable commercial-grade gypsum and calcium chloride by-products to minimize solid waste disposal, and zero wastewater discharge.

  17. Savannah River Site FY 2001 Spent Nuclear Fuel Integrated Management Plan

    International Nuclear Information System (INIS)

    Dunsmuir, M.D.

    2000-01-01

    This document presents the SRS integrated near and long-term plans (FY 2001 through 2035) for the safe life cycle management of SNF inventories and other SFSD legacy material programs/projects that impact this mission until final disposition has been implemented

  18. Technology and Risk Sciences Program. FY99 Annual Report

    International Nuclear Information System (INIS)

    Regens, James L.

    2000-01-01

    In making the transition from weapons production to environmental restoration, DOE has found that it needs to develop reliable means of defining and understanding health and environmental risks and of selecting cost-efficient environmental management technologies so that cleanup activities can be appropriately directed. Through the Technology and Risk Sciences Project, the Entergy Spatial Analysis Research Laboratory attempts to provide DOE with products that incorporate spatial analysis techniques in the risk assessment, communication, and management processes; design and evaluate methods for evaluating innovative environmental technologies; and collaborate and access technical information on risk assessment methodologies, including multimedia modeling and environmental technologies in Russia and the Ukraine, while in addition training and developing the skills of the next generation of scientists and environmental professionals

  19. Technology and Risk Sciences Program. FY99 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Regens, James L.

    2000-01-01

    In making the transition from weapons production to environmental restoration, DOE has found that it needs to develop reliable means of defining and understanding health and environmental risks and of selecting cost-efficient environmental management technologies so that cleanup activities can be appropriately directed. Through the Technology and Risk Sciences Project, the Entergy Spatial Analysis Research Laboratory attempts to provide DOE with products that incorporate spatial analysis techniques in the risk assessment, communication, and management processes; design and evaluate methods for evaluating innovative environmental technologies; and collaborate and access technical information on risk assessment methodologies, including multimedia modeling and environmental technologies in Russia and the Ukraine, while in addition training and developing the skills of the next generation of scientists and environmental professionals.

  20. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1988-01-01

    US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decommissioned, decontaminated, and dismantled the world's first, nuclear fueled, commercial size, electric power plant. SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. Objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper presents a working definition for technology transfer. Direction is provided for access and availability for SSDP technology acquisition

  1. FY 2000 report on the results of the R and D of fundamental technologies for semi conductivity applications; 2000 nendo chodendo oyo kiban gijutsu kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    In relation to the project on the R and D of fundamental technologies for semi conductivity applications, the FY 2000 results were summed up. As to the study of the high temperature superconductivity mechanism, it was found out that a theoretical model of the strong scattering limit in d-wave superconductor can be used for the breaking of superconductivity due to Zn impurities. Concerning the study of the critical current mechanism, the elucidation was proceeded with of the magnetic flux pinning and grain-boundary conduction mechanism. Relating to the development of element technology of bulks with great electromagnetic force, the mechanical strength of superconducting bulk materials was raised to 100MPa or more by the epoxy resin impregnation method. As to the development of the basic technology for fabrication of high next-generation current conductors, the expansion was confirmed of conditions for growing single grains in the zone-melt process for very fine filaments. About the development of technology of single crystal substrates, in the development of the pseudo single crystalline film growth process by LPE method, a yield ratio of high quality crystal of 63% was achieved. Concerning the development of technology of thin film/multi-layer, the area of uniform composition/thickness of NdBa{sub 2}Cu{sub 3}O{sub 7-x} MOCVD films was enlarged up to 20mm square. (NEDO)

  2. Annotated bibliography of human factors applications literature

    International Nuclear Information System (INIS)

    McCafferty, D.B.

    1984-01-01

    This bibliography was prepared as part of the Human Factors Technology Project, FY 1984, sponsored by the Office of Nuclear Safety, US Department of Energy. The project was conducted by Lawrence Livermore National Laboratory, with Essex Corporation as a subcontractor. The material presented here is a revision and expansion of the bibliographic material developed in FY 1982 as part of a previous Human Factors Technology Project. The previous bibliography was published September 30, 1982, as Attachment 1 to the FY 1982 Project Status Report

  3. Annotated bibliography of human factors applications literature

    Energy Technology Data Exchange (ETDEWEB)

    McCafferty, D.B.

    1984-09-30

    This bibliography was prepared as part of the Human Factors Technology Project, FY 1984, sponsored by the Office of Nuclear Safety, US Department of Energy. The project was conducted by Lawrence Livermore National Laboratory, with Essex Corporation as a subcontractor. The material presented here is a revision and expansion of the bibliographic material developed in FY 1982 as part of a previous Human Factors Technology Project. The previous bibliography was published September 30, 1982, as Attachment 1 to the FY 1982 Project Status Report.

  4. 10-bit segmented current steering DAC in 90nm CMOS technology

    International Nuclear Information System (INIS)

    Bringas, R Jr; Dy, F; Gerasta, O J

    2015-01-01

    This special project presents a 10-Bit 1Gs/s 1.2V/3.3V Digital-to-Analog Converter using1 Poly 9 Metal SAED 90-nm CMOS Technology intended for mixed-signal and power IC applications. To achieve maximum performance with minimum area, the DAC has been implemented in 6+4 Segmentation. The simulation results show a static performance of ±0.56 LSB INL and ±0.79 LSB DNL with a total layout chip area of 0.683 mm 2 .The segmented architecture is implemented using two sub DAC's, which are the LSB and MSB section with certain number bits. The DAC is designed using 4-BitBinary Weighted DAC for the LSB section and 6-BitThermometer-coded DAC for the MSB section. The thermometer-coded architecture provides the most optimized results in terms of linearity through reducing the clock feed-through effect especially in hot switching between multiple transistors. The binary- weighted architecture gives better linearity output in higher frequencies with better saturation in current sources. (paper)

  5. Contaminated Materials Treatment Program annual report for FY 1989

    International Nuclear Information System (INIS)

    Ross, W.A.; Powell, J.A.

    1990-08-01

    The Western New York Nuclear Services Center reprocessed nuclear fuel for five years until operations were terminated in 1972. Underground tanks at the site contain high-level waste (HLW) generated during the reprocessing operations. Based on original agreements, the state of New York has assumed responsibility for the wastes and the site. The Department of Energy (DOE) is assisting New York State, through the West Valley Demonstration Project (WVDP), in processing and solidifying the HLW. The site contractor for the WVDP is West Valley Nuclear Services Co., Inc. (WVNS). The Pacific Northwest Laboratory (PNL), through the West Valley Support Project, has been supporting WVNS and DOE in establishing vitrification and waste processing technology and capability at the West Valley Site. The specific objective of the West Valley Support Project during FY 1989 were to complete designs of remote equipment, assist in characterizing the WVNS feed, sampling, ceramic melter and off-gas systems, provide chemical analysis of the radioactive wastes and testing of future processes with actual radioactive wastes, provide testing and modeling studies of the reference WV waste product, and conduct special studies, such as evaluating corrosion of the waste tanks and supporting operation of the supernatant treatment system. 13 refs., 13 figs., 5 tabs

  6. FY 1999 Report on research and development results of photon-applied instrumentation/processing technologies. Research and development of advanced measuring/processing technologies for oil production systems; 1999 nendo foton keisoku kako gijutsu seika hokokusho. Sekiyu seisan system kodo keisoku kako gijutsu kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Described herein are the FY 1999 results of the research and development of photon (laser) beam utilization as part of the R and D project of the advanced measuring/processing technologies for oil production systems. For the high-reliability laser welding technology, the tests are conducted for welding 15 mm thick steel plates and 5 mm thick aluminum alloy plates by synthesized iodine/YAG laser beams, producing high-quality welding results. For the microscopic processing technology, attempts have been made for development of quantum functional optoelectronic devices which have nanometer-sized ultrafine dots. For the non-destructive composition measuring technology, the internal transmission measurement program produces the target light quantity by increasing brightness of the short-wavelength light source. The three-dimensional digital tomography (DT) images with a space resolution of several micrometers are obtained. For the tightly-focusing all-solid-state laser technology, a fiber-structured fiber laser is developed, on a trial basis, to attain a power of 15 W. A high-power, high-brightness laser diode, required for exciting the fiber laser is developed, and a power of 30 W or more is obtained by an InGa(As)P device. The comprehensive investigation results are also presented. (NEDO)

  7. Systems Studies Department FY 78 activity report. Volume 2. Systems analysis

    International Nuclear Information System (INIS)

    Gold, T.S.

    1979-02-01

    The Systems Studies Department at Sandia Laboratories Livermore (SLL) has two primary responsibilities: to provide computational and mathematical services and to perform systems analysis studies. This document (Volume 2) describes the FY Systems Analysis highlights. The description is an unclassified overview of activities and is not complete or exhaustive. The objective of the systems analysis activities is to evaluate the relative value of alternative concepts and systems. SLL systems analysis activities reflect Sandia Laboratory programs and in 1978 consisted of study efforts in three areas: national security: evaluations of strategic, theater, and navy nuclear weapons issues; energy technology: particularly in support of Sandia's solar thermal programs; and nuclear fuel cycle physical security: a special project conducted for the Nuclear Regulatory Commission. Highlights of these activities are described in the following sections. 7 figures

  8. DOE Hydropower Program Biennial Report for FY 2005-2006

    Energy Technology Data Exchange (ETDEWEB)

    Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Acker, Thomas L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Northern Arizona State Univ., Flagstaff, AZ (United States); Carlson, Thomas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2006-07-01

    This report describes the progress of the R&D conducted in FY 2005-2006 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices); (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications); and (4) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology).

  9. FY 1999 Report on research and development project. Research and development of high-temperature air combustion technology; 1999 nendo koon kuki nensho seigyo gijutsu kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The high-temperature air combustion technology recently developed greatly advances combustion technology. The technology, when applied to the other areas, may expand its applicable areas and contribute to environmental preservation, e.g., abatement of CO2 emissions. This is the motivation for promotion of this project. The combustion technology, developed by improving functions of industrial furnaces, cannot be directly applied to the other combustion heaters. This project is aimed at extraction of the problems involved, finding out the solutions, and thereby smoothly transferring the technology to commercialization. This project covers boilers firing finely pulverized coal, waste incineration processes and high-temperature chemical reaction processes, to which the new technology is applied. It is also aimed at establishment of advanced combustion control basic technology, required when the high-temperature air combustion technology is applied to these processes. In addition to application R and D efforts for each area, the basic phenomena characteristic of each combustion heater type are elucidated using microgravity and the like, to support the application R and D efforts from the basic side. This project also surveys reduction of environmental pollutants, e.g., NOx and dioxins. This report presents the results obtained in the first year. (NEDO)

  10. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of

  11. FY 1999 report on the results on analysis of protein functions; 1999 nendo tanpakushitsu kino kaiseki seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This project is aimed at construction of the intellectual infrastructures for biotechnologies, in order to accelerate development of the Japanese technologies and activate their application to industries. Described herein are the FY 1999 results. These infrastructures are for functional analysis of protein which will be one of the key issues in genome analysis, and collection and analysis of biological information. This project includes a total of 9 research and development themes for four research categories: frequency analysis of gene expression (development of the gene expression profile database system for functional analysis of human genome, and analysis of the gene expression and protein functions by the ECA chip technology), function analysis by the biological model (high-performance analysis by the bio-project, database system for drug metabolizing enzymes, analysis of gene functions using mutant mice, and simple genome function analysis of murine individuals using the RNAi effect), protein expression (function validation of unknown human genes based on the useful biological model, and protein function analysis using multi-purpose destination vectors), and protein function prediction by the information science method. (NEDO)

  12. Information Technology Resources Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The Information Technology Resources Assessment (ITRA) is being published as a companion document to the Department of Energy (DOE) FY 1994--FY 1998 Information Resources Management Long-Range Plan. This document represents a collaborative effort between the Office of Information Resources Management and the Office of Energy Research that was undertaken to achieve, in part, the Technology Strategic Objective of IRM Vision 21. An integral part of this objective, technology forecasting provides an understanding of the information technology horizon and presents a perspective and focus on technologies of particular interest to DOE program activities. Specifically, this document provides site planners with an overview of the status and use of new information technology for their planning consideration.

  13. FY 2000 report on the results of the R and D of fundamental technologies of superconductivity applications. Development of technology to process low consumption power ultra high speed signals; 2000 nendo chodendo oyo kiban gijutsu kenkyu kaihatsu seika hokokusho. Teishohi denryoku chokosoku shingo shori gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    In relation to the project on the R and D of fundamental technologies of superconductivity applications, the FY 2000 results of the design/fabrication of superconducting circuits were summarized. As to the development of technology to design superconducting circuits, an increase in circuit scale was tried targeting AD converter use modulator and decimation filter. As a result, operation was confirmed in element circuits of flux quantum multiplier circuit, feed back driver, DC isolator, etc. Concerning the development of technology for standard junction and integration, RHEED observations on the thin film surface before/after etching and YBa{sub 2}Cu{sub 3}O{sub 7-x} re-deposition were tried to be made, and the potentiality as monitoring technology was indicated. With respect to the fabrication of small scale circuits for demonstration, the design/trial fabrication were made of the basic pattern of SFQ circuit elements such as DC-SFQ, T-FF and SQUID for inductance rating. In regard to the development of technology to measure characteristics of superconducting circuits, a system was fabricated for processing and measuring output signals from {sigma}-{delta} modulators by semiconductor circuits, and it made the evaluation of AD converter performance possible. (NEDO)

  14. FY 1998 annual report on the hydrogen, alcohol and biomass technology working group. 19th R and D activity report; 1998 nendo suiso alcohol biomass gijutsu bunkakai. Dai 19 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    Summarized herein are the FY 1998 R and D activities by the hydrogen, alcohol and biomass technology working group, extracted from the 19th R and D activity report by NEDO. Mr. Murase, a NEDO's director, outlines R and D of techniques for hydrogen-utilizing international clean energy systems, high-efficiency power generation by wastes, reutilization of combustible wastes as fuels, high-efficiency clean energy vehicles and pioneer techniques for utilization of supercritical fluids, and commercialization of waste water treatment techniques for prevention of global warming, in the report entitled (General situations of the hydrogen, alcohol and biomass technology development group). The researchers presented the R and D results of development of externally circulating type fluidized bed, demonstration tests therefor by a pilot plant, phase 1 WE-NET project, phase 1 hydrogen-fueled turbine, phase 1 closed type high-efficiency gas turbine system equipped with a CO2 recovery system, and simple systems for cleaning up industrial wastes. (NEDO)

  15. Tank Vapor Characterization Project: Annual status report for FY 1996

    International Nuclear Information System (INIS)

    Silvers, K.L.; Fruchter, J.S.; Huckaby, J.L.; Almeida, T.L.; Evans, J.C. Jr.; Pool, K.H.; Simonen, C.A.; Thornton, B.M.

    1997-01-01

    In Fiscal Year 1996, staff at the Vapor Analytical Laboratory at Pacific Northwest National Laboratory performed work in support of characterizing the vapor composition of the headspaces of radioactive waste tanks at the Hanford Site. Work performed included support for technical issues and sampling methodologies, upgrades for analytical equipment, analytical method development, preparation of unexposed samples, analyses of tank headspaces samples, preparation of data reports, and operation of the tank vapor database. Progress made in FY 1996 included completion and issuance of 50 analytical data reports. A sampling system comparison study was initiated and completed during the fiscal year. The comparison study involved the vapor sampling system (VSS), a truck-based system, and the in situ vapor sampling system (ISVS), a cart-based system. Samples collected during the study were characterized for inorganic, permanent gases, total non-methane organic compounds and organic speciation by SUMMA trademark and TST methods. The study showed comparable sampling results between the systems resulting in the program switching from the VSS to the less expensive ISVS methodology in late May 1996. A temporal study was initiated in January 1996 in order to understand the influences seasonal temperatures changes have on the vapors in the headspace of Hanford waste tanks. A holding time study was initiated in the fourth quarter of FY 1996. Samples were collected from tank S-102 and rushed to the laboratory for time zero analysis. Additional samples will be analyzed at 1, 2, 4, 8, 16, and 32 weeks

  16. Overview of the NASA Environmentally Responsible Aviation Project's Propulsion Technology Portfolio

    Science.gov (United States)

    Suder, Kenneth L.

    2012-01-01

    The NASA Environmentally Responsible Aviation (ERA) Project is focused on developing and demonstrating integrated systems technologies to TRL 4-6 by 2020 that enable reduced fuel burn, emissions, and noise for futuristic air vehicles. The specific goals aim to simultaneously reduce fuel burn by 50%, reduce Landing and Take-off Nitrous Oxides emissions by 75% relative to the CAEP 6 guidelines, and reduce cumulative noise by 42 Decibels relative to the Stage 4 guidelines. These goals apply to the integrated vehicle and propulsion system and are based on a reference mission of 3000nm flight of a Boeing 777-200 with GE90 engines. This paper will focus primarily on the ERA propulsion technology portfolio, which consists of advanced combustion, propulsor, and core technologies to enable these integrated air vehicle systems goals. An overview of the ERA propulsion technologies will be described and the status and results to date will be presented.

  17. Exploratory Research and Development Fund, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiation biophysics.

  18. Security Engineering FY17 Systems Aware Cybersecurity

    Science.gov (United States)

    2017-12-07

    Security Engineering – FY17 Systems Aware Cybersecurity Technical Report SERC-2017-TR-114 December 7 2017 Principal Investigator: Dr...December 7, 2017 Copyright © 2017 Stevens Institute of Technology, Systems Engineering Research Center The Systems Engineering Research Center (SERC...supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD

  19. Transformational Tools and Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Transformational Tools and Technologies (TTT) Project advances state-of-the-art computational and experimental tools and technologies that are vital to aviation...

  20. ANL site response for the DOE FY1994 information resources management long-range plan

    Energy Technology Data Exchange (ETDEWEB)

    Boxberger, L.M.

    1992-03-01

    Argonne National Laboratory's ANL Site Response for the DOE FY1994 Information Resources Management (IRM) Long-Range Plan (ANL/TM 500) is one of many contributions to the DOE information resources management long-range planning process and, as such, is an integral part of the DOE policy and program planning system. The Laboratory has constructed this response according to instructions in a Call issued in September 1991 by the DOE Office of IRM Policy, Plans and Oversight. As one of a continuing series, this Site Response is an update and extension of the Laboratory's previous submissions. The response contains both narrative and tabular material. It covers an eight-year period consisting of the base year (FY1991), the current year (FY1992), the budget year (FY1993), the plan year (FY1994), and the out years (FY1995-FY1998). This Site Response was compiled by Argonne National Laboratory's Computing and Telecommunications Division (CTD), which has the responsibility to provide leadership in optimizing computing and information services and disseminating computer-related technologies throughout the Laboratory. The Site Response consists of 5 parts: (1) a site overview, describes the ANL mission, overall organization structure, the strategic approach to meet information resource needs, the planning process, major issues and points of contact. (2) a software plan for DOE contractors, Part 2B, Software Plan FMS plan for DOE organizations, (3) computing resources telecommunications, (4) telecommunications, (5) printing and publishing.

  1. ANL site response for the DOE FY1994 information resources management long-range plan

    Energy Technology Data Exchange (ETDEWEB)

    Boxberger, L.M.

    1992-03-01

    Argonne National Laboratory`s ANL Site Response for the DOE FY1994 Information Resources Management (IRM) Long-Range Plan (ANL/TM 500) is one of many contributions to the DOE information resources management long-range planning process and, as such, is an integral part of the DOE policy and program planning system. The Laboratory has constructed this response according to instructions in a Call issued in September 1991 by the DOE Office of IRM Policy, Plans and Oversight. As one of a continuing series, this Site Response is an update and extension of the Laboratory`s previous submissions. The response contains both narrative and tabular material. It covers an eight-year period consisting of the base year (FY1991), the current year (FY1992), the budget year (FY1993), the plan year (FY1994), and the out years (FY1995-FY1998). This Site Response was compiled by Argonne National Laboratory`s Computing and Telecommunications Division (CTD), which has the responsibility to provide leadership in optimizing computing and information services and disseminating computer-related technologies throughout the Laboratory. The Site Response consists of 5 parts: (1) a site overview, describes the ANL mission, overall organization structure, the strategic approach to meet information resource needs, the planning process, major issues and points of contact. (2) a software plan for DOE contractors, Part 2B, ``Software Plan FMS plan for DOE organizations, (3) computing resources telecommunications, (4) telecommunications, (5) printing and publishing.

  2. FY 1998 report on the results of R and D projects by local consortiums for immediate effects. Effective industrial utilization of livestock and fish waste containing keratin and collagen using bio-recycling technology; 1998 nendo Bio recycling gijutsu ni yoru shigen junkangata sangyo no sozo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The R and D project has been implemented for the bio-recycling technology, in order to produce the extracts and enzymatically hydrolyzed products from unutilized protein-containing resources, e.g., pig skin and fish scale. This paper summarizes the FY 1998 results. This project uses fish scale and pig skin containing collagen protein, and feather meal containing keratin protein, as the major feedstocks. High-molecular-weight collagen is extracted from the pig skin, and applied to production of cosmetics. It is concluded that the extract is safe to the human skin, and can be commercialized as a stock for cosmetics. A low-molecular-weight oligopeptide is produced from fish scale by enzymatic hydrolysis. It is concluded that the oligopeptide can be commercialized as a stock for health foods, because of its anti-radical activity and function of decreasing blood pressure. The R and D efforts are also directed to development of calcium apatite, recovered from the de-ashed liquid, as the Ca source for health foods, and development of peptide, recovered from feather meal by enzymatic hydrolysis, as a stock for foaming agent. (NEDO)

  3. Analytical Chemistry Laboratory, progress report for FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

  4. Hanford Diversification and the Tri-Cities Economy FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    SCOTT, M.J.

    2000-06-05

    The missions of the U.S. Department of Energy's Richland Operations Office (DOE/RL) are to safely manage the Hanford Site, to manage and clean up its legacy wastes, and to develop and deploy new science and technology in the environmental and energy fields. Collectively, DOE/RL and its contractors are the most important single entity in the Tri-Cities local economy (Pasco, Kennewick, and Richland, Washington, and the surrounding area). Although the relevant economic region affected by DOE/RL and its contractors actually embraces a geographic area reaching from Yakima in the west to Walla Walla in the east and from Moses Lake in the north to Pendleton, Oregon, in the south, over 90% of economic impacts likely occur in Benton and Franklin Counties. These two counties are defined as the ''local'' Tri-Cities economy for purposes of this study. In the federal fiscal year (FY) 1999 (October 1, 1998 through September 30, 1999), the total impact of DOE'S local $1.59 billion budget was felt through payrolls of $542 million and local purchases of goods and services of $226 million. The total local spending of $768 million was up slightly from the FY 1998 total of $765 million. Taking into account the multiplier effects of this spending, the DOE/RL budget sustained an estimated 32% of all local employment (28,250 out of 88,100 jobs) and about 35% of local earned income (almost $1.08 billion out of $3.08 billion). The decrease in these percentages from last year's report reflects an update of the model's economic structure based on the 1997 economic census year, a correction of a programming error in the model found during the update, and a broader definition of earnings that includes proprietor income, not just wages (see the Appendix for revisions to the previous forecasts). DOE budget increases in FY 2000 are expected to result in no change to the number of local DOE contractor jobs and about a $29 million increase in direct local

  5. FY 1990/FY 1991 Biennial Budget Descriptive Summaries for the Strategic Defense Initiative Organization

    Science.gov (United States)

    1989-01-01

    reduction in cryccooler size. o (U) Develop the first diamond ME_2 with monocrystalline , semiconductor quality thin-film diamcnd. o (U) Develop Atomic Layer...stiffness and dynamic response. A lightweight thermal radiator panel will also be fabricated and tested. Fabrication of tubes and sheets in gauges...FY 91 o Precision Gimbal Test IQ FY 91 C Cx:mlete Deveic..ent of Integrated Structures Model 2Q FY 91 c Light’weight Ccmpcsitas Radiator Panel Demo 2Q

  6. Technology Education Professional Enhancement Project

    Science.gov (United States)

    Hughes, Thomas A., Jr.

    1996-01-01

    The two goals of this project are: the use of integrative field of aerospace technology to enhance the content and instruction delivered by math, science, and technology teachers through the development of a new publication entitled NASA Technology Today, and to develop a rationale and structure for the study of technology, which establishes the foundation for developing technology education standards and programs of the future.

  7. Country report: Syria. Development of {sup 90}Y/{sup 90}Sr Generator and {sup 90}Y Radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Yassine, Taufik; Mukhallalati, Ch. Heyam, E-mail: atomic@aec.org.sy [Atomic Energy Commission of Syria, Damascus (Syrian Arab Republic)

    2010-07-01

    The aim of this project is to develop a technique for preparation of {sup 90}Sr-{sup 90}Y generator, we have developed a separation technique for isolation of {sup 90}Y from {sup 90}Sr based on using Sr – Spec resin packed in three columns for separation and purification of {sup 90}Sr-{sup 90}Y .The resulting Y90 is used for therapeutic applications. The first part of this project describe a prototype design for the {sup 90}Sr- {sup 90}Y generator in order to get a very accurate method to obtain the minimum possible {sup 90}Sr Breakthrough. 25 mci of {sup 90}Sr was used in the generator {sup 90}Sr-{sup 90}Y and we obtained the elution yield of {sup 90}Y higher than 88%, Also the eluate was used for preparation of several {sup 90}Y radiopharmaceuticals such as {sup 90}YEDTMP and {sup 90}Y-DOTA-HR{sub 3}. And the work is continues to investigate more radiopharmaceuticals applications in the second part of this project such as {sup 90}Y– FHMA. In this part of the co-coordination research programmer, A protocol based on results of this studies was developed to prepare and operate a higher activity generator (50-100mci), the resulting elution yield was approximately 94% of {sup 90}Y . The elute was used in preparation of new {sup 90}Y radiopharmaceuticals. The monoclonal antibodies is still evolving by conjugate Rituximab to The macrocyclic bifunctional chelating agent,(p-SCN-Bn-DOTA)S-2-(4-Isothiocyanatobenzyle)-1,4,7,10- tetraazacyclododecane-tetraaceticacid to obtain the inmunoconjugate DOTA-Rituximub in simple way and then investigating the radio labeling conditions with {sup 90}Y. (author)

  8. FY 1992 report on the results of the commissioned research and development project. R and D of SOFC (solid oxide fuel cells); 1992 nendo nenryo denchi hatsuden gijutsu kaihatsu seika hokokusho. SOFC kotai denkaishitsugata nenryo denchi no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-05-01

    The research and development project is carried out for fuel cell power generation technologies and solid electrolyte type fuel cells, and the reports on the FY 1992 results issued by the participant organizations are summarized. For R and D of the modules, Fuji Electric conducted the R and D for the large-area, cell-stacked type, and Sanyo Electric for the composite cell-stacked type. For R and D of the materials and fundamental technologies, Fine Ceramics Center is conducted the R and D for microscopic structures of the electrode, Fujikura for electrode structures produced by spraying or the like, Mitsubishi Heavy Industries for multi-functional fuel electrodes, Murata Seisakusho for co-sintering technologies, and Mitsui Shipbuilding for current collecting technologies. For R and D of the systems, Central Research Institute of Electric Power Industry conducted the R and D for the systems, Electric Power Development and Mitsubishi Heavy Industries jointly for designs of the cell peripheries, and the Japan Research and Development Center for Metals for elementary technologies for the peripheral devices. (NEDO)

  9. FY 1993 report on the results of the commissioned research and development project. R and D of SOFC (solid oxide fuel cells); 1983 nendo nenryo denchi hatsuden gijutsu kaihatsu seika hokokusho. SOFC kotai denkaishitsugata nenryo denchi no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-01

    The research and development project is carried out for fuel cell power generation technologies and solid electrolyte type fuel cells, and the reports on the FY 1993 results issued by the participant organizations are summarized. For R and D of the modules, Fuji Electric conducted the R and D for the large-area, cell-stacked type, and Sanyo Electric for the composite cell-stacked type. For R and D of the materials and fundamental technologies, Fine Ceramics Center conducted the R and D for microscopic structures of the electrode, Fujikura for electrode structures produced by spraying or the like, Mitsubishi Heavy Industries for multi-functional fuel electrodes, Murata Seisakusho for co-sintering technologies, and Mitsui Shipbuilding for current collecting technologies. For R and D of the systems, Central Research Institute of Electric Power Industry conducted the R and D for the systems, Electric Power Development and Mitsubishi Heavy Industries jointly for designs of the cell peripheries, and the Japan Research and Development Center for Metals for elementary technologies for the peripheral devices. (NEDO)

  10. International Collaboration on Spent Fuel Disposition in Crystalline Media: FY17 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kainina, Elena [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jove-Colon, Carlos [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Active participation in international R&D is crucial for achieving the Spent Fuel Waste Science & Technology (SFWST) long-term goals of conducting “experiments to fill data needs and confirm advanced modeling approaches” and of having a “robust modeling and experimental basis for evaluation of multiple disposal system options” (by 2020). DOE’s Office of Nuclear Energy (NE) has developed a strategic plan to advance cooperation with international partners. The international collaboration on the evaluation of crystalline disposal media at Sandia National Laboratories (SNL) in FY17 focused on the collaboration through the Development of Coupled Models and their Validation against Experiments (DECOVALEX-2019) project. The DECOVALEX project is an international research and model comparison collaboration, initiated in 1992, for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. SNL has been participating in three tasks of the DECOVALEX project: Task A. Modeling gas injection experiments (ENGINEER), Task C. Modeling groundwater recovery experiment in tunnel (GREET), and Task F. Fluid inclusion and movement in the tight rock (FINITO).

  11. Mississippi State University Center for Air Sea Technology FY95 Research Program

    Science.gov (United States)

    Yeske, Lanny; Corbin, James H.

    1995-01-01

    The Mississippi State University (MSU) Center for Air Sea Technology (CAST) evolved from the Institute for Naval Oceanography's (INO) Experimental Center for Mesoscale Ocean Prediction (ECMOP) which was started in 1989. MSU CAST subsequently began operation on 1 October 1992 under an Office of Naval Research (ONR) two-year grant which ended on 30 September 1994. In FY95 MSU CAST was successful in obtaining five additional research grants from ONR, as well as several other research contracts from the Naval Oceanographic Office via NASA, the Naval Research Laboratory, the Army Corps of Engineers, and private industry. In the past, MSU CAST technical research and development has produced tools, systems, techniques, and procedures that improve efficiency and overcome deficiency for both the operational and research communities residing with the Department of Defense, private industry, and university ocean modeling community. We continued this effort with the following thrust areas: to develop advanced methodologies and tools for model evaluation, validation and visualization, both oceanographic and atmospheric; to develop a system-level capability for conducting temporally and ; spatially scaled ocean simulations driven by or are responsive to ocean models, and take into consideration coupling to atmospheric models; to continue the existing oceanographic/atmospheric data management task with emphasis on distributed databases in a network environment, with database optimization and standardization, including use of Mosaic and World Wide Web (WWW) access; and to implement a high performance parallel computing technology for CAST ocean models

  12. DOE Hazardous Waste Remedial Actions Program: Annual report, FY 1986

    International Nuclear Information System (INIS)

    Eyman, L.D.

    1987-05-01

    The activities of HAZWRAP for the past fiscal year were organized into seven principal areas: technical analysis and technology transfer; regulatory analysis; strategic planning;information systems; program administration; technology adaptation; and technology demonstration. The scope, major FY 1986 accomplishments, and future directions for each of these areas are described in the following sections of this report. Listings of reports produced through the SCO are given in Appendixes A and B for the current year and since the program started, respectively

  13. FY12 St Johns River Water Management LiDAR Survey: Putnam (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of the FY12 St Johns River Water Management LiDAR Survey, project area in north-central Florida and...

  14. FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT and E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.

  15. Waste Tank Organic Safety Project organic concentration mechanisms task. FY 1994 progress report

    International Nuclear Information System (INIS)

    Gerber, M.A.

    1994-09-01

    The Pacific Northwest Laboratory (PNL), Waste Tank Organic Safety Project is conducting research to support Westinghouse Hanford Company's (WHC) Waste Tank Safety Program, sponsored by the U.S. Department of Energy's Tank Farm Project Office. The goal of PNL's program is to provide a scientific basis for analyzing organics in Hanford's underground storage tanks (USTs) and for determining whether they are at concentrations that pose a potentially unsafe condition. Part of this research is directed toward determining what organic concentrations are safe by conducting research on organic aging mechanisms and waste energetics to assess the conditions necessary to produce an uncontrolled energy release in tanks due to reactions between the organics and the nitrate and nitrate salts in the tank wastes. The objective of the Organic Concentration Mechanisms Task is to assess the degree of localized enrichment of organics to be expected in the USTs due to concentration mechanisms. This report describes the progress of research conducted in FY 1994 on two concentration mechanisms of interest to the tank safety project: (1) permeation of a separate organic liquid phase into the interstitial spaces of the tank solids during the draining of free liquid from the tanks; and (2) concentration of organics on the surfaces of the solids due to adsorption. Three experiments were conducted to investigate permeation of air and solvent into a sludge simulant that is representative of single-shell tank sludge. The permeation behavior of air and solvent into the sludge simulant can be explained by the properties of the fluid pairs (air/supernate and solvent supernate) and the sludge. One important fluid property is the interfacial tension between the supernate and either the solvent or air. In general, the greater the interfacial tension between two fluids, the more difficult it will be for the air or solvent to displace the supernate during dewatering of the sludge

  16. FY 1999 report on the results of the project on the industrial science technology R and D. Development of utilization technology of biological resources such as bioconsortium system (Development of the bioconsortium system utilization/production technology); 1999 nendo sangyo gijutsu kenkyu kaihatsu jigyo. Fukugou seibutsukei tou seibutsu shigen riyo gijutsu kaihatsu (Fukugou seibutsukei riyo seisan gijutsu no kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of developing the functional substance production technology, petroleum degrading/cleaning technology and high-grade utilization technology of the unused petroleum fraction, study was conducted of the culture control technology in substance production and substance decomposition by bioconsortia, and the FY 1999 results were reported. As to the functional material production technology, study was made of the separation/culture technology, functional substance production technology using bioconsortia (control substance searching method in the ocean microbial consortia system, isolation of control substance/structure determination/separation of production bacteria, elucidation of the inter-species communication substance function, heightening of function of the production microbial consortia), etc. Concerning the effective degrading/cleaning technology of petroleum compounds, study was made of the molecular genetic analysis technology, histochemical analysis technology, analysis technology of the solvent resistance mechanism, bioconsortia analysis system technology, global environmental purification technology such as the effective decomposition of environmental pollutants, etc. Relating to the high-grade utilization technology of the unused petroleum fraction, study was made of the chemical analysis of the photolysis crude oil, selection of the decomposition microbial consortia, etc. (NEDO)

  17. FY 1998 'The New Sunshine Project' leading R and D. Report on the results of the leading R and D of supercritical fluid utilization technology; 1998 nendo 'New Sunshine Keikaku' sendo kenkyu kaihatsu. Chorinkai ryutai riyo gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper reported the FY 1998 achievement of the supercritical fluid utilization leading R and D which started in FY 1997 on a 3-year plan. In the R and D, solvolysis reaction, oxidation reaction and hydrogenation reaction were taken up in the chemical process using supercritical fluid. In the study of solvolysis reaction, the basic data were obtained on decomposition conditions of thermoplastic and thermosetting plastics in supercritical water. Further, concerning the synthesis of environmental friendly type carbonate using CO2, a conversion rate of almost 100% was obtained. About the oxidation reaction, conditions were found out for burning low grade coal in supercritical water without emitting acid gas. This is considered to lead to a possibility of the supercritical water power generation. Relating to the hydrogenation reaction, a study was made on lightening technology of heavy distillate using supercritical water, and the conditions for effective emission of methane and hydrogen were found out. As to the base technology, a study was made of metal materials with high corrosion resistance against supercritical water. (NEDO)

  18. In-Space Manufacturing Project (prior to FY15: Additive Manufacturing Technology Development)

    Data.gov (United States)

    National Aeronautics and Space Administration — The In-Space Manufacturing (ISM) project is responsible for developing the manufacturing capabilities that will provide on-demand, sustainable operations during NASA...

  19. Quality Control Review of the PricewaterhouseCoopers LLP FY 2014 Single Audit of Carnegie Mellon University

    Science.gov (United States)

    2015-12-17

    No. DODIG-2016-034 D E C E M B E R 1 7 , 2 0 1 5 Quality Control Review of the PricewaterhouseCoopers LLP FY 2014 Single Audit of Carnegie ...ALEXANDRIA, VIRGINIA 22350-1500 December 17, 2015 Audit Partner PricewaterhouseCoopers LLP Board of Trustees Carnegie Mellon University Director, Sponsored...Projects Accounting Carnegie Mellon University SUBJECT: Quality Control Review of the PricewaterhouseCoopers LLP FY 2014 Single Audit of Carnegie

  20. Program Direction FY 2017 Budget At-A-Glance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    Program Direction enables EERE to maintain and support a world-class federal workforce to accomplish its mission of creating and sustaining American leadership in the sustainable transportation, renewable power, and energy efficiency sectors. The FY 2017 Program Direction budget request provides resources for program and project management, administrative support, contract administration, human capital management, headquarters and field site non-laboratory facilities and infrastructure, and contractor support.