WorldWideScience

Sample records for technology power technology

  1. Power Technologies Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.

    2002-09-01

    This report, prepared by NREL's Energy Analysis Office, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts and comparisons, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, conversion factors, and selected congressional questions and answers.

  2. Power generation technologies

    CERN Document Server

    Breeze, Paul

    2014-01-01

    The new edition of Power Generation Technologies is a concise and readable guide that provides an introduction to the full spectrum of currently available power generation options, from traditional fossil fuels and the better established alternatives such as wind and solar power, to emerging renewables such as biomass and geothermal energy. Technology solutions such as combined heat and power and distributed generation are also explored. However, this book is more than just an account of the technologies - for each method the author explores the economic and environmental costs and risk factor

  3. Power conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Newton, M. A.

    1997-02-01

    The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

  4. Technology and power plants

    International Nuclear Information System (INIS)

    Milora, S.

    2001-01-01

    In this paper the contributions presented at the 18 th IAEA Fusion Energy Conference in the field of technology and power plants are summarised with reference to the following distinct issues: ITER EDA Design, ITER Technology R and D, Progress Towards Advanced Performance and Steady State, Compact Cu Burning Plasma Experiments and Neutron Sources, Advanced Materials Research, Power Plant Design and Economic Forecasts, and Conclusions

  5. Power plant chemical technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    17 contributions covering topies of fossil fuel combustion, flue gas cleaning, power plant materials, corrosion, water/steam cycle chemistry, monitoring and control were presented at the annual meeting devoted to Power Plant Chemical Technology 1996 at Kolding (Denmark) 4-6 September 1996. (EG)

  6. Geothermal Power Technologies

    DEFF Research Database (Denmark)

    Montagud, Maria E. Mondejar; Chamorro, C.R.

    2017-01-01

    Although geothermal energy has been widely deployed for direct use in locations with especial geologic manifestations, its potential for power generation has been traditionally underestimated. Recent technology developments in drilling techniques and power conversion technologies from low......-temperature heat resources are bringing geothermal energy to the spotlight as a renewable baseload energy option for a sustainable energy mix. Although the environmental impact and economic viability of geothermal exploitation must be carefully evaluated for each case, the use of deep low-temperature geothermal...

  7. Church - Technology - Nuclear Power

    International Nuclear Information System (INIS)

    May, H.

    1982-01-01

    In order to cope with the problems causing a great deal of trouble today, i.e. with fear and with the ethical substantiation of technology, the author considers an integration model necessary which is to link science and technology and religion and philosophy. (RW) [de

  8. Space technology needs nuclear power

    International Nuclear Information System (INIS)

    Leidinger, B.J.G.

    1993-01-01

    Space technology needs nuclear power to solve its future problems. Manned space flight to Mars is hardly feasible without nuclear propulsion, and orbital nuclear power lants will be necessary to supply power to large satellites or large space stations. Nuclear power also needs space technology. A nuclear power plant sited on the moon is not going to upset anybody, because of the high natural background radiation level existing there, and could contribute to terrestrial power supply. (orig./HP) [de

  9. Progress in space power technology

    Science.gov (United States)

    Mullin, J. P.; Randolph, L. P.; Hudson, W. R.

    1980-01-01

    The National Aeronautics and Space Administration's Space Power Research and Technology Program has the objective of providing the technology base for future space power systems. The current technology program which consists of photovoltaic energy conversion, chemical energy conversion and storage, thermal-to-electric conversion, power systems management and distribution, and advanced energetics is discussed. In each area highlights, current programs, and near-term directions will be presented.

  10. Foundations of pulsed power technology

    CERN Document Server

    Lehr, Janet

    2018-01-01

    Pulsed power technologies could be an answer to many cutting-edge applications. The challenge is in how to develop this high-power/high-energy technology to fit current market demands of low-energy consuming applications. This book provides a comprehensive look at pulsed power technology and shows how it can be improved upon for the world of today and tomorrow. Foundations of Pulsed Power Technology focuses on the design and construction of the building blocks as well as their optimum assembly for synergetic high performance of the overall pulsed power system. Filled with numerous design examples throughout, the book offers chapter coverage on various subjects such as: Marx generators and Marx-like circuits; pulse transformers; pulse-forming lines; closing switches; opening switches; multi-gigawatt to multi-terawatt systems; energy storage in capacitor banks; electrical breakdown in gases; electrical breakdown in solids, liquids and vacuum; pulsed voltage and current measurements; electromagnetic interferen...

  11. Technological inductive power transfer systems

    Science.gov (United States)

    Madzharov, Nikolay D.; Nemkov, Valentin S.

    2017-05-01

    Inductive power transfer is a very fast expanding technology with multiple design principles and practical implementations ranging from charging phones and computers to bionic systems, car chargers and continuous power transfer in technological lines. Only a group of devices working in near magnetic field is considered. This article is devoted to overview of different inductive power transfer (IPT) devices. The review of literature in this area showed that industrial IPT are not much discussed and examined. The authors have experience in design and implementation of several types of IPTs belonging to wireless automotive chargers and to industrial application group. Main attention in the article is paid to principles and design of technological IPTs

  12. Radioisotope Power Systems Technology Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the RPS's technology portfolio is to advance performance of radioisotope power systems through new and novel innovations being developed and transitioned...

  13. Automation technology in power plants

    International Nuclear Information System (INIS)

    Essen, E.R.

    1995-01-01

    In this article a summery of the current architecture of modern process control systems in power plants and future trends have been explained. The further development of process control systems for power plants is influenced both by the developments in component and software technologies as well as the increased requirements of the power plants. The convenient and low cost configuration facilities of new process control systems have now reached a significance which makes it easy for customers to decide to purchase. (A.B.)

  14. Concentrating Solar Power. Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    Concentrating solar power can contribute significantly to the world's energy supply. As shown in this roadmap, this decade is a critical window of opportunity during which CSP could become a competitive source of electrical power to meet peak and intermediate loads in the sunniest parts of the world. This roadmap identifies technology, economy and policy goals and milestones needed to support the development and deployment of CSP, as well as ongoing advanced research in CSF. It also sets out the need for governments to implement strong, balanced policies that favour rapid technological progress, cost reductions and expanded industrial manufacturing of CSP equipment to enable mass deployment. Importantly, this roadmap also establishes a foundation for greater international collaboration. The overall aim of this roadmap is to identify actions required - on the part of all stakeholders - to accelerate CSP deployment globally. Many countries, particularly in emerging regions, are only just beginning to develop CSP. Accordingly, milestone dates should be considered as indicative of urgency, rather than as absolutes. This roadmap is a work in progress. As global CSP efforts advance and an increasing number of CSP applications are developed, new data will provide the basis for updated analysis. The IEA will continue to track the evolution of CSP technology and its impacts on markets, the power sector and regulatory environments, and will update its analysis and set additional tasks and milestones as new learning comes to light.

  15. Microturbine Power Conversion Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.

    2003-07-21

    In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to

  16. Harness the Power of Technology

    Science.gov (United States)

    Duncan, Arne

    2011-01-01

    Today, U.S. educators are teaching in the midst of a technological revolution. Technology promises to provide innovative solutions in the nation's classrooms, just as it has transformed the way people communicate, socialize, and conduct business. In this article, the author argues that now is the time to harness technology to revolutionize the way…

  17. Power Technologies Energy Data Book - Third Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2005-04-01

    This report, prepared by NREL's Energy Analysis Office, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  18. Power Technologies Data Book 2003 Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2004-06-01

    The 2003 edition of this report, prepared by NREL's Energy Analysis Office, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts and comparisons, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, conversion factors, and selected congressional questions and answers.

  19. Power Technologies Energy Data Book - Fourth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2006-08-01

    This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  20. Technological advances in powered wheelchairs.

    Science.gov (United States)

    Edlich, Richard F; Nelson, Kenneth P; Foley, Marni L; Buschbacher, Ralph M; Long, William B; Ma, Eva K

    2004-01-01

    During the last 40 years, there have been revolutionary advances in power wheelchairs. These unique wheelchair systems, designed for the physically immobile patient, have become extremely diversified, allowing the user to achieve different positions, including tilt, recline, and, more recently, passive standing. Because of this wide diversity of powered wheelchair products, there is a growing realization of the need for certification of wheeled mobility suppliers. Legislation in Tennessee (Consumer Protection Act for Wheeled Mobility) passed in 2003 will ensure that wheeled mobility suppliers must have Assistive Technology Supplier certification and maintain their continuing education credits when fitting individuals in wheelchairs for long-term use. Fifteen other legislative efforts are currently underway in general assemblies throughout the US. Manufacturers, dealers, hospitals, and legislators are working toward the ultimate goal of passing federal legislation delineating the certification process of wheeled mobility suppliers. The most recent advance in the design of powered wheelchairs is the development of passive standing positions. The beneficial effects of passive standing have been documented by comprehensive scientific studies. These benefits include reduction of seating pressure, decreased bone demineralization, increased bladder pressure, enhanced orthostatic circulatory regulation, reduction in muscular tone, decrease in upper extremity muscle stress, and enhanced functional status in general. In February 2003, Permobil, Inc., introduced the powered Permobil Chairman 2K Stander wheelchair, which can tilt, recline, and stand. Other companies are now manufacturing powered wheelchairs that can achieve a passive standing position. These wheelchairs include the Chief SR Powerchair, VERTRAN, and LifeStand Compact. Another new addition to the wheelchair industry is the iBOT, which can elevate the user to reach cupboards and climb stairs but has no passive

  1. EPRI nuclear power plant decommissioning technology program

    International Nuclear Information System (INIS)

    Kim, Karen S.; Bushart, Sean P.; Naughton, Michael; McGrath, Richard

    2011-01-01

    The Electric Power Research Institute (EPRI) is a non-profit research organization that supports the energy industry. The Nuclear Power Plant Decommissioning Technology Program conducts research and develops technology for the safe and efficient decommissioning of nuclear power plants. (author)

  2. Technology Roadmaps: Concentrating Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The emerging technology known as concentrating solar power, or CSP, holds much promise for countries with plenty of sunshine and clear skies. Its electrical output matches well the shifting daily demand for electricity in places where airconditioning systems are spreading. When backed up by thermal storage facilities and combustible fuel, it offers utilities electricity that can be dispatched when required, enabling it to be used for base, shoulder and peak loads. Within about one to two decades, it will be able to compete with coal plants that emit high levels of CO2. The sunniest regions, such as North Africa, may be able to export surplus solar electricity to neighbouring regions, such as Europe, where demand for electricity from renewable sources is strong. In the medium-to-longer term, concentrating solar facilities can also produce hydrogen, which can be blended with natural gas, and provide low-carbon liquid fuels for transport and other end-use sectors. For CSP to claim its share of the coming energy revolution, concerted action is required over the next ten years by scientists, industry, governments, financing institutions and the public. This roadmap is intended to help drive these indispensable developments.

  3. HVDC power transmission technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hauth, R.L.; Tatro, P.J.; Railing, B.D. [New England Power Service Co., Westborough, MA (United States); Johnson, B.K.; Stewart, J.R. [Power Technologies, Inc., Schenectady, NY (United States); Fink, J.L.

    1997-04-01

    The purpose of this study was to develop an assessment of the national utility system`s needs for electric transmission during the period 1995-2020 that could be met by future reduced-cost HVDC systems. The assessment was to include an economic evaluation of HVDC as a means for meeting those needs as well as a comparison with competing technologies such as ac transmission with and without Flexible AC Transmission System (FACTS) controllers. The role of force commutated dc converters was to be assumed where appropriate. The assessment begins by identifying the general needs for transmission in the U.S. in the context of a future deregulated power industry. The possible roles for direct current transmission are then postulated in terms of representative scenarios. A few of the scenarios are illustrated with the help of actual U.S. system examples. non-traditional applications as well as traditional applications such as long lines and asynchronous interconnections are discussed. The classical ``break-even distance`` concept for comparing HVDC and ac lines is used to assess the selected scenarios. The impact of reduced-cost converters is reflected in terms of the break-even distance. This report presents a comprehensive review of the functional benefits of HVDC transmission and updated cost data for both ac and dc system components. It also provides some provocative thoughts on how direct current transmission might be applied to better utilize and expand our nation`s increasingly stressed transmission assets.

  4. Technology: the imbalance of power

    International Nuclear Information System (INIS)

    Teller, E.

    1980-01-01

    Dr. Teller writes that modern warfare is increasingly dominated by technology; here again, the United States is in danger of losing its lead over the Soviets. As we have failed to take advantage of our technical superiority, the Russians have moved ahead of us in rocketry, nuclear submarines, and anti-satellite technology. We ignore chemical and biological warfare: the Soviets do not. Teller feels the US should push ahead on producing the neutron bomb and the cruise missile - although, to inhibit escalation, we should announce that we would never be the first to use atomic weapons except within an invaded area - and we should spend more on civil defense and research and development. But in our dealings with other nations, the USSR, for example, we should shun treaties that are based on prohibition and seek those that promote cooperation. In the free world, the elimination of secrecy should be a constant goal. The only effective antidote to military technology is a technology for peace. We cannot afford to give up the hope for a peaceful world order

  5. Land 125 - Power Technologies Review

    Science.gov (United States)

    2012-11-01

    technology is a Canadian product, the “ Bionic Energy Harvester”, which is a knee brace that harvests energy from the motion of the knee joint. It is...Needs of Future Warriors. Washington D.C., USA: The National Academies Press, 2004. [2] Task Force Devil Combined Arms Assessment Team. The Modern

  6. Technology.

    Science.gov (United States)

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  7. Fission Surface Power Technology Development Status

    Science.gov (United States)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2010-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited in availability or intensity. NASA is maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for an affordable fission surface power system. Because affordability drove the determination of the system concept that this technology will make possible, low development and recurring costs result, while required safety standards are maintained. However, an affordable approach to fission surface power also provides the benefits of simplicity, robustness, and conservatism in design. This paper will illuminate the multiplicity of benefits to an affordable approach to fission surface power, and will describe how the foundation for these benefits is being developed and demonstrated in the Exploration Technology Development Program s Fission Surface Power Project.

  8. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  9. Commercialization of nuclear power plant decommissioning technology

    International Nuclear Information System (INIS)

    Williams, D.H.

    1983-01-01

    The commercialization of nuclear power plant decommissioning is presented as a step in the commercialization of nuclear energy. Opportunities for technology application advances are identified. Utility planning needs are presented

  10. Molecularly Imprinted Polymer Technology: A Powerful, Generic ...

    African Journals Online (AJOL)

    Molecularly Imprinted Polymer Technology: A Powerful, Generic, Facile and Cost Effective Alternative for Enantio-recognition and Separation: A Glance at Advances and Applications. JYN Philip, DMS Mosha ...

  11. Low Power Analog Design in Scaled Technologies

    CERN Document Server

    Baschirotto, A; Cocciolo, G; D’Amico, S; De Matteis, M; Delizia, P

    2009-01-01

    In this paper an overview on the main issues in analog IC design in scaled CMOS technology is presented. Decreasing the length of MOS channel and the gate oxide has led to undoubted advantages in terms of chip area, speed and power consumption (mainly exploited in the digital parts). Besides, some drawbacks are introduced in term of power leakage and reliability. Moreover, the scaled technology lower supply voltage requirement has led analog designers to find new circuital solution to guarantee the required performance.

  12. Korean experiences on nuclear power technology

    International Nuclear Information System (INIS)

    Kim, H.; Yang, H.

    1994-01-01

    This paper describes the outstanding performance of the indigenous development program of nuclear power technology such as the design and fabrication of both CANDU and PWR fuel and in the design and construction of nuclear steam supply system in Korea. The success has been accomplished through the successful technology transfer from foreign suppliers and efficient utilization of R and D manpower in the design and engineering of nuclear power projects. In order to implement the technology transfer successfully, the joint design concept has been introduced along with effective on-the-job training and the transfer of design documents and computer codes. Korea's successful development of nuclear power program has resulted in rapid expansion of nuclear power generation capacity in a short time, and the nuclear power has contributed to the national economy through lowering electricity price by about 50 % as well as stabilizing electricity supply in 1980s. The nuclear power is expected to play a key role in the future electricity supply in Korea. Now Korea is under way of taking a step toward advanced nuclear technology. The national electricity system expansion plan includes 18 more units of NPPs to be constructed by the year 2006. In this circumstance, the country has fixed the national long-term nuclear R and D program (lgg2-2001) to enhance the national capability of nuclear technology. This paper also briefly describes future prospects of nuclear technology development program in Korea

  13. Small Power Technology for Tetrahedral Rovers

    Science.gov (United States)

    Clark, P. E.; Floyd, S. R.; Butler, C. D.; Flom, Y.

    2006-01-01

    The Small Power Technology (SPOT) being studied at GSFC has the potential to be an efficient and compact radioisotope based electrical power system. Such a system would provide power for innovative tetrahedral robotic arms and walkers to support the lunar exploration initiative within the next decade. Presently, NASA has designated two flight qualified Radioisotope Power Supplies (RPS): the Multi-Mission RTG (MMRTG) which uses thermocouple technology and the more efficient but more massive Stirling RTG (SRTG) which uses a mechanical heat (Stirling) engine technology. With SPOT, thermal output from a radioisotope source is converted to electrical power using a combination of shape memory material and piezoelectric crystals. The SPOT combined energy conversion technologies are potentially more efficient than thermocouples and do not require moving parts, thus keeping efficiency high with an excellent mass to power ratio. Applications of particular interest are highly modular, addressable, reconfigurable arrays of tetrahedral structural components designed to be arms or rovers with high mobility in rough terrain. Such prototypes are currently being built at GSFC. Missions requiring long-lived operation in unilluminated environments preclude the use of solar cells as the main power source and must rely on the use of RPS technology. The design concept calls for a small motor and battery assembly for each strut, and thus a distributed power system. We estimate, based on performance of our current tetrahedral prototypes and power scaling for small motors, that such devices require tens of watts of power output per kilogram of power supply. For these reasons, SPOT is a good candidate for the ART (addressable Reconfigurable Technology) baseline power system.

  14. Effective Methods of Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Shave, D. F.; Kent, G. F.; Giambusso, A.

    1987-01-01

    An effective technology transfer program is a necessary and significant step towards independence in nuclear power technology. Attaining success in the conduct of such a program is a result of a) the donor and recipient jointly understanding the fundamental concepts of the learning process, b) sharing a mutual philosophy involving a partnership relationship, c) joint and careful planning, d) rigorous adherence to proven project management techniques, and e) presence of adequate feedback to assure continuing success as the program proceeds. Several years ago, KEPCO President Park, Jung-KI presented a paper on technology in which he stated, 'Nuclear technology is an integration of many unit disciplines, and thus requires extensive investment and training in order to establish the base for efficient absorption of transferred technology.' This paper addresses President Park's observations by discussing the philosophy, approach, and mechanisms that are necessary to support an efficient and effective process of nuclear power technology transfer. All technical content and presentation methods discussed are based on a technology transfer program developed by Stone and Webster, as an Engineer/Constructor for nuclear power plants, and are designed and implemented to promote the primary program goal - the ability of the trainees and the organization to perform specific nuclear power related multi-discipline function independently and competitively

  15. Maintenance welding technology in nuclear power plant

    International Nuclear Information System (INIS)

    Matsuda, Fukuhisa

    1999-01-01

    Welding technology used for a nuclear power plant greatly differs depending on either when the plant is being constructed or when the plant is in operation. Welding used in plant construction does not much differ, in method and technology, from that used in ordinary thermal power, chemical or other plants. On the other hand, repair welding technology for the reactor section of a nuclear power plant in operation greatly differs from that used for those plants. The recent requests for the prolongation of the life of nuclear power plants have remarkably improved welding technology for maintenance and repair in the nuclear field. Thus, the existing welding technology has been improved and new advanced welding technologies have been created one after another. Problems with the reactor section and welding technology for its maintenance and repair are presented. The temper bead method and the laser beam cladding and modification method for reactor pressure vessels, SCC and irradiation-assisted SCC measures for vessel structures, and SCC measures for heat-exchange tubes and the overall replacement of a steam generator are presented. (N.H.)

  16. Deconstruction of Discourse Technology of Power

    Directory of Open Access Journals (Sweden)

    Irina Aleksandrovna Yakoba

    2015-12-01

    Full Text Available The article considers a vital issue of struggling for human consciousness via language being a tool, subject, and result of power implementation mechanisms. Different discourse technologies, revealed by Russian and foreign linguists, are characterized. The author introduces and gives proof to a phenomenon discourse technology of power'. Discourse structures of smart, soft and hard powers, which are the base of discourse technology of power, are described. Examples of such technologies from mass media texts, constructed with the help of lingua-cognitive mechanisms of spindoctoring, focusing, defocusing etc., are given. They allow to manipulate the content, misinterpret, distort or hide it, replacing concepts. It is proved that any semantic variation contributes to a change in evaluation and emotions, "imposes" a certain attitude to the situation, shifts the focus of modalities in perception. With the help of critical discourse analysis methods, specially designed technological discourse of power, domination and control are identified and deconstructed as the dominative means of a mass consciousness control. An important practical task facing modern linguistics is framed. It is to uncover the mechanisms of discourse manipulative technologies and share them with a concerned addressee to resist the attraction of manipulative content generated by professionals and do not fall under its influence.

  17. Fission Surface Power Technology Development Update

    Science.gov (United States)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power

  18. Canadian Experience in Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Boulton, J.

    1987-01-01

    Technology transfer has and will continue to play a major role in the development of nuclear power programs. From the early beginnings of the development of the peaceful uses of nuclear power by just a few nations in the mid-1940s there has been a considerable transfer of technology and today 34 countries have nuclear programs in various stages of development. Indeed, some of the major nuclear vendors achieves their present position through a process of technology transfer and subsequent development. Canada, one of the early leaders in the development of nuclear power, has experience with a wide range of programs bout within its own borders and with other countries. This paper briefly describes this experience and the lessons learned from Canada's involvement in the transfer of nuclear power technology. Nuclear technology is complex and diverse and yet it can be assimilated by a nation given a fire commitment of both suppliers and recipients of technology to achieve success. Canada has reaped large benefits from its nuclear program and we believe this has been instrumentally linked to the sharing of goals and opportunity for participation over extended periods of time by many interests within the Canadian infrastructure. While Canada has accumulated considerable expertise in nuclear technology transfer, we believe there is still much for US to learn. Achieving proficiency in any of the many kinds of nuclear related technologies will place a heavy burden on the financial and human resources of a nation. Care must be taken to plan carefully the total criteria which will assure national benefits in industrial and economic development. Above all, effective transfer of nuclear technology requires a long term commitment by both parties

  19. Fission Surface Power Technology Development Status

    Science.gov (United States)

    Palac, Donald T.; Mason, Lee S.; Harlow, Scott

    2009-01-01

    With the potential future deployment of a lunar outpost there is expected to be a clear need for a high-power, lunar surface power source to support lunar surface operations independent of the day-night cycle, and Fission Surface Power (FSP) is a very effective solution for power levels above a couple 10 s of kWe. FSP is similarly enabling for the poorly illuminated surface of Mars. The power levels/requirements for a lunar outpost option are currently being studied, but it is known that cost is clearly a predominant concern to decision makers. This paper describes the plans of NASA and the DOE to execute an affordable fission surface power system technology development project to demonstrate sufficient technology readiness of an affordable FSP system so viable and cost-effective FSP system options will be available when high power lunar surface system choices are expected to be made in the early 2010s.

  20. Biomass combustion technologies for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.A. Jr. [Appel Consultants, Inc., Stevenson Ranch, CA (United States); McGowin, C.R.; Hughes, E.E. [Electric Power Research Institute, Palo Alto, CA (United States)

    1993-12-31

    Technology in power production from biomass has been advancing rapidly. Industry has responded to government incentives such as the PURPA legislation in the US and has recognized that there are environmental advantages to using waste biomass as fuel. During the 1980s many new biomass power plants were built. The relatively mature stoker boiler technology was improved by the introduction of water-cooled grates, staged combustion air, larger boiler sizes up to 60 MW, higher steam conditions, and advanced sootblowing systems. Circulating fluidized-bed (CFB) technology achieved full commercial status, and now is the leading process for most utility-scale power applications, with more complete combustion, lower emissions, and better fuel flexibility than stoker technology. Bubbling fluidized-bed (BFB) technology has an important market niche as the best process for difficult fuels such as agricultural wastes, typically in smaller plants. Other biomass power generation technologies are being developed for possible commercial introduction in the 1990s. Key components of Whole Tree Energy{trademark} technology have been tested, conceptual design studies have been completed with favorable results, and plans are being made for the first integrated process demonstration. Fluidized-bed gasification processes have advanced from pilot to demonstration status, and the world`s first integrated wood gasification/combined cycle utility power plant is starting operation in Sweden in early 1993. Several European vendors offer biomass gasification processes commercially. US electric utilities are evaluating the cofiring of biomass with fossil fuels in both existing and new plants. Retrofitting existing coal-fired plants gives better overall cost and performance results than any biomass technologies;but retrofit cofiring is {open_quotes}fuel-switching{close_quotes} that provides no new capacity and is attractive only with economic incentives.

  1. Gas-fired electric power generating technologies

    International Nuclear Information System (INIS)

    1994-09-01

    The workshop that was held in Madrid 25-27 May 1994 included participation by experts from 16 countries. They represented such diverse fields and disciplines as technology, governmental regulation, economics, and environment. Thus, the participants provided an excellent cross section of key areas and a diversity of viewpoints. At the workshop, a broad range of topics regarding gas-fired electric power generation was discussed. These included political, regulatory and financial issues as well as more specific technical questions regarding the environment, energy efficiency, advanced generation technologies and the status of competitive developments. Important technological advances in gas-based power and CHP technologies have already been achieved including higher energy efficiency and lower emissions, with further improvements expected in the near future. Advanced technology trends include: (a) The use of gas technology to reduce emissions from existing coal-fired power plants. (b) The wide-spread application of combined-cycle gas turbines in new power plants and the growing use of aero-derivative gas turbines in CHP applications. (c) Phosphoric acid fuel cells that are being introduced commercially. Their market penetration will grow over the next 10 years. The next generation of fuel cells (solid oxide and molten carbonate) is expected to enter the market around the year 2000. (EG)

  2. Photovoltaics: A Solar Technology for Powering Tomorrow.

    Science.gov (United States)

    Flavin, Christopher

    1983-01-01

    Photovoltaics, the technology that converts sunlight directly into electricity, may soon be a reliable power source for the world's poor. The one major challenge is cost reduction. Many topics are discussed, including solar powering the Third World, designing the solar building, investing in the sun, and the future of photovoltaics. (NW)

  3. Wireless Technology Application to Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Jeong Kweon; Jeong, See Chae; Jeong, Ki Hoon; Oh, Do Young; Kim, Jae Hack

    2009-01-01

    Wireless technologies are getting widely used in various industrial processes for equipment condition monitoring, process measurement and other applications. In case of Nuclear Power Plant (NPP), it is required to review applicability of the wireless technologies for maintaining plant reliability, preventing equipment failure, and reducing operation and maintenance costs. Remote sensors, mobile technology and two-way radio communication may satisfy these needs. The application of the state of the art wireless technologies in NPPs has been restricted because of the vulnerability for the Electromagnetic Interference and Radio Frequency Interference (EMI/RFI) and cyber security. It is expected that the wireless technologies can be applied to the nuclear industry after resolving these issues which most of the developers and vendors are aware of. This paper presents an overview and information on general wireless deployment in nuclear facilities for future application. It also introduces typical wireless plant monitoring system application in the existing NPPs

  4. Simulation technology for power plants

    International Nuclear Information System (INIS)

    Kuwabara, Kazuo; Yanai, Katsuya.

    1988-01-01

    In the simulation of nuclear power stations, there are the simulation for the training of plant operation, the plant simulation for analyzing the operation of an electric power system, the simulation for controlling a core, the simulation for the safety analysis of reactors, the simulation for the design analysis of plants and so on as the typical ones. The outline and the technical features of these simulations are described. With the increase of capacity and complexity of thermal power plants, recently the automation of operation has advanced rapidly. The chance of starting up and stopping plants by operators themselves is few, and the chance of actually experiencing troubles also is few as the reliability of plants improved. In order to maintain the ability of coping with plant abnormality, an operation supporting system is strongly demanded. Operation training simulators and used widely now, and there are the simulators for analysis, those of replica type, those of versatile compact type and so on. The system configuration, modeling techniques, training function and others of the replica type are explained. In hydroelectric plants, the behavior of water in penstocks, the characteristics of water turbines, the speed control system for water turbines and the characteristics of generators become the main subjects of simulation. These are described. (Kako, I.)

  5. Space power technology 21: Photovoltaics

    Science.gov (United States)

    Wise, Joseph

    1989-01-01

    The Space Power needs for the 21st Century and the program in photovoltaics needed to achieve it are discussed. Workshops were conducted in eight different power disciplines involving industry and other government agencies. The Photovoltaics Workshop was conducted at Aerospace Corporation in June 1987. The major findings and recommended program from this workshop are discussed. The major finding is that a survivable solar power capability is needed in photovoltaics for critical Department of Defense missions including Air Force and Strategic Defense Initiative. The tasks needed to realize this capability are described in technical, not financial, terms. The second finding is the need for lightweight, moderately survivable planar solar arrays. High efficiency thin III-V solar cells can meet some of these requirements. Higher efficiency, longer life solar cells are needed for application to both future planar and concentrator arrays with usable life up to 10 years. Increasing threats are also anticipated and means for avoiding prolonged exposure, retraction, maneuvering and autonomous operation are discussed.

  6. Nuclear power economics and technology: an overview

    International Nuclear Information System (INIS)

    1992-01-01

    Intended for the non-specialist reader interested in energy and environmental policy matters, this report presents an overview of the current expert consensus on the status of nuclear power technology and its economic position. It covers the potential demand for nuclear energy, its economic competitivity, and the relevant aspects of reactor performance and future technological developments. The report provides an objective contribution to the ongoing scientific and political debate about what nuclear power can offer, now and in the future, in meeting the world's growing demand for energy and in achieving sustainable economic development. 24 refs., 18 figs;, 12 tabs., 5 photos

  7. Emission Control Technologies for Thermal Power Plants

    Science.gov (United States)

    Nihalani, S. A.; Mishra, Y.; Juremalani, J.

    2018-03-01

    Coal thermal power plants are one of the primary sources of artificial air emissions, particularly in a country like India. Ministry of Environment and Forests has proposed draft regulation for emission standards in coal-fired power plants. This includes significant reduction in sulphur-dioxide, oxides of nitrogen, particulate matter and mercury emissions. The first step is to evaluate the technologies which represent the best selection for each power plant based on its configuration, fuel properties, performance requirements, and other site-specific factors. This paper will describe various technology options including: Flue Gas Desulfurization System, Spray Dryer Absorber (SDA), Circulating Dry Scrubber (CDS), Limestone-based Wet FGD, Low NOX burners, Selective Non Catalytic Reduction, Electrostatic Precipitator, Bag House Dust Collector, all of which have been evaluated and installed extensively to reduce SO2, NOx, PM and other emissions. Each control technology has its advantages and disadvantages. For each of the technologies considered, major features, potential operating and maintenance cost impacts, as well as key factors that contribute to the selection of one technology over another are discussed here.

  8. Advanced power plant materials, design and technology

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  9. Generator technology for HTGR power plants

    International Nuclear Information System (INIS)

    Lomba, D.; Thiot, D.

    1997-01-01

    Approximately 15% of the worlds installed capacity in electric energy production is from generators developed and manufactured by GEC Alsthom. GEC Alsthom is now working on the application of generators for HTGR power conversion systems. The main generator characteristics induced by the different HTGR power conversion technology include helium immersion, high helium pressure, brushless excitation system, magnetic bearings, vertical lineshaft, high reliability and long periods between maintenance. (author)

  10. Maturing Technologies for Stirling Space Power Generation

    Science.gov (United States)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  11. Localization of nuclear power plant technology

    International Nuclear Information System (INIS)

    Stiteler, F.Z.; Rudek, T.G.

    1998-01-01

    Asia, and particularly China, has an enormous need for power and must deal with the practicalities of building large base load units. In China, as in other countries, there are limitations on the use of large quantities of fossil fuel. This raises the possibility of turning to nuclear power to satisfy their energy needs. Other issues tend to point to the nuclear option for these growing economies, including economic considerations, environmental concerns, energy independence and raising the technological capabilities of the country. When a country embarks on a nuclear power program with the intention of localizing the technology, a long-term commitment is necessary to achieve this objective. Localization of nuclear technology is not a new phenomenon. The nature of the industry from the early beginnings has always involved transfer of technology when a new country initiated a nuclear power construction program. In fact, most previous experiences with this localization process involved heavy governmental, political and financial support to drive the success of the program. Because of this strong governmental support, only the receiving nation's companies were generally allowed to participate in the local business operations of the technology recipient. What is new and different today is the retreat from heavy financial support by the receiving country's government. This change has created a strong emphasis on cost-effectiveness in the technology transfer process and opportunities for foreign companies to participate in local business activities. ABB is a world-wide company with two parent companies that have been very active over many years in establishing cost-justified local operations throughout the world. Today, ABB has become the largest electrical engineering company in the world with respected local operations in nearly every country. Lessons learned by ABB in their world-wide localization initiatives are being applied to the challenge of cost

  12. The status of nuclear power technology

    International Nuclear Information System (INIS)

    Calori, F.

    1976-01-01

    A survey is presented of the present state of development concerning nuclear power technology, and the prospects of a modified future development of nuclear energy in the world are dealt with, modification being necessary on account of altered conditions in the development of the energy economy. Projections are made for the development of the fuel market taking into account the quantities and costs for the various steps of the fuel cycle. (UA) [de

  13. Innovation in electric power technologies in 2009

    International Nuclear Information System (INIS)

    Ohfusa, Takahiro; Hayasaka, Eiji; Ino, Hiroyuki

    2010-01-01

    This is a report of the title by Tokyo Electric Power Company, Kansai Electric Power Co., Inc, Tohoku Electric Power and other nine enterprises in Japan. The outline is as follows. Tokyo Electric Power Company stated pipe thinning by the hot water based two-phase flow testing device, development of technologies for corrosion protection of nuclear reactor using titanium oxide, evaluation of fatigue damage by EBSD, and study of duty on the nuclear power plant. Japan Atomic Power Company (JAPC) stated the mechanism of decrease in exposure dose of the primary coolant system by zinc infusion, outline of Air Operated Valve Intelligent Diagnostic Analysis System (AVIDAS) and the grand packing system, development of SAPLS, the automatic search program of fuel position for design of PWR related core, development of compact containment water reactor (CCR) and FBR cycle system, investigation of the chain destruction of active fault under consideration of dynamic interaction of active faults and decommissioning of Tokai Nuclear Power Plant. Electric Power Development Company reported construction of the Oma Nuclear Power Plant, a future nuclear plant in Oma, Aomori. The reactor will be capable of using 100% MOX fuel core (MOX-ABWR). The operation will start November 2014. (S.Y.)

  14. Wilberforce Power Technology in Education Program

    Science.gov (United States)

    Gordon, Edward M.; Buffinger, D. R.; Hehemann, D. G.; Breen, M. L.; Raffaelle, R. P.

    1999-01-01

    The Wilberforce Power Technology in Education Program is a multipart program. Three key parts of this program will be described. They are: (1) WISE-The Wilberforce Summer Intensive Experience. This annual offering is an educational program which is designed to provide both background reinforcement and a focus on study skills to give the participants a boost in their academic performance throughout their academic careers. It is offered to entering Wilberforce students. Those students who take advantage of WISE learn to improve important skills which enable them to work at higher levels in mathematics, science and engineering courses throughout their college careers, but most notably in the first year of college study. (2) Apply technology to reaming. This is being done in several ways including creating an electronic chemistry text with hypertext links to a glossary to help the students deal with the large new vocabulary required to describe and understand chemistry. It is also being done by converting lecture materials for the Biochemistry class to PowerPoint format. Technology is also being applied to learning by exploring simulation software of scientific instrumentation. (3) Wilberforce participation in collaborative research with NASA's John H. Glenn Research Center at Lewis Field. This research has focused on two areas in the past year. The first of these is the deposition of solar cell materials. A second area involves the development of polymeric materials for incorporation into thin film batteries.

  15. Technology Roadmaps: Bioenergy for Heat and Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-01

    The Technology Roadmap Bioenergy for Heat and Power highlights the importance of bioenergy in providing heat in the buildings sector and in industry, and shows what contribution it could make to meeting steadlily growing world electricity demand. The critical role of sustainability as well as the importance of international trade in meeting the projected demand for bioenergy, are highlighted in the roadmap, as well as the need for large-scale biomass plants in providing The roadmap identifies key actions by different stakeholders in the bioenergy sector, and sets out milestones for technology development in order to achieve a doubling of global bioenergy supply by 2050. It addresses the need for further R&D efforts, highlights measures to ensure sustainability of biomass production, and underlines the need for international collaboration to enhance the production and use of sustainable, modern bioenergy in different world regions.

  16. Technology Roadmaps: Bioenergy for Heat and Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The Technology Roadmap Bioenergy for Heat and Power highlights the importance of bioenergy in providing heat in the buildings sector and in industry, and shows what contribution it could make to meeting steadlily growing world electricity demand. The critical role of sustainability as well as the importance of international trade in meeting the projected demand for bioenergy, are highlighted in the roadmap, as well as the need for large-scale biomass plants in providing The roadmap identifies key actions by different stakeholders in the bioenergy sector, and sets out milestones for technology development in order to achieve a doubling of global bioenergy supply by 2050. It addresses the need for further R&D efforts, highlights measures to ensure sustainability of biomass production, and underlines the need for international collaboration to enhance the production and use of sustainable, modern bioenergy in different world regions.

  17. The technology transfer and the Laguna Verde power plants

    International Nuclear Information System (INIS)

    Garza, R.F. de La

    1991-01-01

    The process of technology transfer to the construction of Laguna Verde Nuclear Power Plants, Mexico, is described. The options and the efforts for absorbing the technology of Nuclear Power Plant design and construction by the mexican engineers are emphasized. (author)

  18. Capacity choice, technology mix and market power

    International Nuclear Information System (INIS)

    Meunier, Guy

    2010-01-01

    This paper investigates strategic capacity choices in electricity markets comprised of heterogeneous firms. Long term strategic investments are analyzed assuming that the wholesale market is competitive. There are two technologies available to produce electricity; both are efficient and used at a first best optimum. When not all firms can invest in both technologies, there can be over investment in either of these technologies. It is shown that if the number of firms that can invest in a particular technology is limited, the development of competition solely using the other technology can decrease welfare. (author)

  19. Smart Technology Brings Power to the People

    Energy Technology Data Exchange (ETDEWEB)

    Hammerstrom, Donald J.; Gephart, Julie M.

    2006-12-01

    Imagine you’re at home one Saturday morning on the computer, as your son takes a shower, your daughter is watching TV, and a load of laundry is in your washer and dryer. Meanwhile, the fragrance of fresh-brewed coffee fills the house. You hear a momentary beep from the dryer that tells you that if you were to look, a high-energy price indicator would be displayed on the front panels of some of your favorite appliances. This tells you that you could save money right now by using less energy. (You’ve agreed to this arrangement to help your utility avoid a substation upgrade. In return, you get a lower rate most of the time.) So you turn off some of the unneeded lights in your home and opt to wait until evening to run the dishwasher. Meanwhile, some of your largest appliances have automatically responded to this signal and have already reduced your home’s energy consumption, saving you money. On January 11, 2006, demonstration projects were launched in 200 homes in the Pacific Northwest region of the United States to test and speed adoption of new smart grid technologies that can make the power grid more resilient and efficient. Pacific Northwest National Laboratory, a U.S. Department of Energy national laboratory in Richland, Washington, is managing the yearlong study called the Pacific Northwest GridWise™ Testbed Demonstration, a project funded primarily by DOE. Through the GridWise™ Demonstration projects, researchers are gaining insight into energy consumers’ behavior while testing new technologies designed to bring the electric transmission system into the information age. Northwest utilities, appliance manufacturers and technology companies are also supporting this effort to demonstrate the devices and assess the resulting consumer response. A combination of devices, software and advanced analytical tools will give homeowners more information about their energy use and cost, and we want to know if this will modify their behavior. Approximately 100

  20. An overview of advanced power generation technologies

    International Nuclear Information System (INIS)

    Gardner, D.; Shaw, P.

    1993-01-01

    This paper is intended as a brief review of the technologies currently applied in Australian electricity generation and the technologies which are likely to be employed in the future. The paper opens with a review of the primary energy resources available for the generation of electricity in Australia, and the technologies currently employed. The development of advanced generation technologies around the world is reviewed, and the most likely technologies to be employed in Australia are described. There are a number of renewable and alternative technologies, such as generation from sewage digester, landfill or mine gases. Their impact would, however, be disproportionate because of the strong climate forcing effect of methane. Of the wide range of other emerging renewable technologies examined, solar thermal offers the best prospect of maturing into a financially-competitive technology for large scale generation in the next 20 years. However, will remain unable to compete with non-renewable technologies in normal financial terms, at least until 2005 and probably well beyond that date. Generation using the fission of nuclear fuels is a mature, proven technology. Based on the most likely fuel and other assumptions made in this study, the costs of nuclear generation are only moderately higher than conventional coal-fired options. Nuclear generation is thus a relatively low cost route to reductions in carbon dioxide emission for new plant, at $19/tonne CO 2 saved, in comparison with conventional black coal technology, and $13/tonne CO 2 compared with conventional brown coal firing. While major considerations of societal acceptance clearly exist, nuclear generation has the necessary technical and financial qualifications for serious consideration as an element in any greenhouse strategy. 5 tab., 2 figs

  1. Characterization of Unipolar Power Devices Technology

    Directory of Open Access Journals (Sweden)

    Ladislav Harmatha

    2004-01-01

    Full Text Available The quality of momentus technological steps in unipolar power devices manufactoring was examine by means of capacitance and current measurements using a metal-oxide-semiconductor capacitors (MOS-C. From the low- (If and high-frequency (hf capacitance-voltage (C-V curves, the effective defect charge and energy distribution of Si-SiO2 interface trap density were extracted, respectively. performin non-steady capacitance-time (C-t and the time domain constant-capacitance (cC-t at well as deep level transient spectroscopy (DLTS techniques we have analysed electrically active that generation parameters are mostly influenced by traps at the Si-SiO2 interface. Moreover, breakdown voltage measurement confirms high quality and homogeneity of thermal oxide. Low density of carrier traps was achieved by intrinsic gettering technique.

  2. Against the tyranny of PowerPoint: Technology-in-use and technology abuse

    OpenAIRE

    Gabriel, Yiannis

    2008-01-01

    Over the past five years, PowerPoint has emerged as a powerful piece of communication technology, having profound consequences on presentations (business and educational), classroom communication and, possibly, on the nature of lecturing itself. An analysis of the ways in which PowerPoint is used offers considerable insights into, first, the nature of educational technologies and their organizational implementations, second, the effect of these technologies on the construction and disseminati...

  3. Applications of aerospace technology in the electric power industry

    Science.gov (United States)

    1973-01-01

    An overview of the electric power industry, selected NASA contributions to progress in the industry, linkages affecting the transfer and diffusion of technology, and, finally, a perspective on technology transfer issues are presented.

  4. Siting technology of underground nuclear power station

    International Nuclear Information System (INIS)

    Motojima, M.; Hibino, S.

    1989-01-01

    For the site of a nuclear power station, it may be possible to select a seaside mountain area, if the condition is suitable to excavate large rock caverns in which a reactor and other equipments are installed. As the case study on the siting technology for an underground nuclear power station, the following example was investigated. The site is a seaside steep mountain area, and almost all the equipments are installed in plural tunnel type caverns. The depth from the ground surface to the top of the reactor cavern is about 150 m, and the thickness of the rock pillar between the reactor cavern of 33 m W x 82 mH x 79 mD and the neighboring turbine cavern is 60 m. In this paper, the stability of rock caverns in this example, evaluated by numerical analysis, is described. The numerical analysis was carried out on the central cross section of the reactor cavern, taking the turbine cavern, geostress, the mechanical properties of rock mass and the process of excavation works in consideration. By the analysis, the underground caverns in this example were evaluated as stable, if the rock quality is equivalent to C H class or better according to the CRIEPI rock classification. (K.I.)

  5. Energy - Resources, technologies and power issues

    International Nuclear Information System (INIS)

    Mazzucchi, Nicolas

    2017-01-01

    For a better understanding of complex relationships between States, enterprises and international bodies, the author proposes a detailed analysis of power issues which structure the energy sector at the world level. He first considers the energy policy of a country as a result of an arbitration between three main concerns (access to energy, energy security, and struggle against climate change) which are differently addressed depending on consumption and production profiles of the country, and on its geographic and political characteristics. The author then proposes a synthetic overview of this landscape by analysing the history of exploitation of different energy sources (oil, coal, gas, uranium) and by proposing a regional analysis of resources. In the next part, he addresses various aspects of energy transports (bottlenecks of sea transport, trans-national grids, geopolitical restructuring of pipelines in front of the development of new LNG terminals). Then, for different regions, he describes the various modes of energy consumption, and challenges related to the transformation of this consumption due to the emergence of renewable energies. He analyses and discusses international mechanisms which underlie energy markets, and power issues which govern them. He shows that nuclear and renewable energies in fact strengthen the dependence on strategic materials and on technological companies. A chapter proposes an analysis of relationships between three prevailing actors in the elaboration of energy policies (enterprises, State and civil society) with their reciprocal influences, moments of collaboration, and information exchange or withholding. The last chapter addresses the study of power rivalries in the elaboration of policies for the struggle against climate change, and proposes a critical review of international organisations which square them

  6. Development of technology for next generation reactor - Research of evaluation technology for nuclear power plant -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

    1993-09-01

    For development of next generation reactor, a project for evaluation technology for nuclear power plant is performed. Evaluation technology is essential to next generation reactor for reactor safety and system analysis. For design concept, detailed evaluation technologies are studied as follows: evaluation of safety margin, evaluation of safety facilities, evaluation of measurement and control technology; man-machine interface. Especially for thermal efficiency, thermal properties and chemical composition of inconel 690 tube, instead of inconel 600 tube, are measured for steam generator. (Author).

  7. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...... suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications....

  8. Progress of technological innovation on electric power in FY2014

    International Nuclear Information System (INIS)

    Nishikawa, Yoshikazu; Fujii, Yutaka; Sasagawa, Toshiro

    2015-01-01

    This paper overviews the technological development in FY2014 at Tokyo Electric Power Company, Chubu Electric Power Company, Hokuriku Electric Power Company, Shikoku Electric Power Company, and Electric Power Development Company. In this overview, further breakdown was made for the following departments of each company: nuclear power generation, thermal power generation, hydraulic power generation, power transmission, power distribution, transformation, research and development and technological development, and information and communication. In addition, this paper outlines the achievement of technological development at Japan Atomic Power Company, such as the technological development related to the existing power station, development of new technology, and the development of future reactor. Fukushima Daiichi Nuclear Power Station has developed an investigative system using a high altitude survey robot and a movable monitoring system. Hamaoka Nuclear Power Station examined the feasibility of state diagnostic technique based on multi-point analysis, and studied stress corrosion cracking at the newly established Nuclear Safety Research Laboratory. Shika Nuclear Power Station (Unit 1) applied a pipe stress improvement process by means of high frequency induction heating as a stress corrosion cracking countermeasure. Ikata Nuclear Power Station newly adopted high degree cross-linking cation resin, and high cracking strength anion resin as the primary resins. Oma Nuclear Power Station worked on the all reactor core utilization technology of MOX fuel. (A.O.)

  9. Thoughts on Documentation of Atomic Power Technology

    International Nuclear Information System (INIS)

    Oh, Jeong Hoon; Lee, Hee Won; Song, Ki Chan

    2012-01-01

    Korean Atomic Energy Research Institute (KAERI) has accumulated a number of technology development and research outcomes, including its representative achievements such as atomic energy technology independence and the first export of atomic energy system, since it was established in 1959. With its long history of over 50 years, KAERI has produced a large amount of information and explicit knowledge such as experiment data, database, design data, report, instructions, and operation data at each stage of its research and development process as it has performed various researches since its establishment. Also, a lot of tacit knowledge has been produced both knowingly and not unknowingly based on the experience of researchers who have participated in many projects. However, in the research environment in Korea where they focus overly on the output, tacit knowledge has not been managed properly compared to explicit knowledge. This tacit knowledge is as an important asset as explicit knowledge for an effective research and development. Moreover, as the first generation of atomic energy independence and research manpower retire, their accumulated experience and knowledge are in danger of disappearing. Therefore, in this study, we sought how to take a whole view and to document atomic energy technology researched and developed by KAERI, from the background to achievement of each field of the technology. Comprehensive and systematic documentation of atomic energy technology will establish a comprehensive management system of national atomic energy technology record to make a foundation of technical advancement and development of atomic energy technology. Also, it is expected to be used as an important knowledge and information resource of atomic energy knowledge management system

  10. Thoughts on Documentation of Atomic Power Technology

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jeong Hoon; Lee, Hee Won; Song, Ki Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Korean Atomic Energy Research Institute (KAERI) has accumulated a number of technology development and research outcomes, including its representative achievements such as atomic energy technology independence and the first export of atomic energy system, since it was established in 1959. With its long history of over 50 years, KAERI has produced a large amount of information and explicit knowledge such as experiment data, database, design data, report, instructions, and operation data at each stage of its research and development process as it has performed various researches since its establishment. Also, a lot of tacit knowledge has been produced both knowingly and not unknowingly based on the experience of researchers who have participated in many projects. However, in the research environment in Korea where they focus overly on the output, tacit knowledge has not been managed properly compared to explicit knowledge. This tacit knowledge is as an important asset as explicit knowledge for an effective research and development. Moreover, as the first generation of atomic energy independence and research manpower retire, their accumulated experience and knowledge are in danger of disappearing. Therefore, in this study, we sought how to take a whole view and to document atomic energy technology researched and developed by KAERI, from the background to achievement of each field of the technology. Comprehensive and systematic documentation of atomic energy technology will establish a comprehensive management system of national atomic energy technology record to make a foundation of technical advancement and development of atomic energy technology. Also, it is expected to be used as an important knowledge and information resource of atomic energy knowledge management system

  11. Commercialization of terrestrial applications of aerospace power technology

    International Nuclear Information System (INIS)

    Landsberg, D.R.

    1992-01-01

    The potential for commercialization of terrestrial energy systems based upon aerospace power technology's explored. Threats to the aerospace power technology industry, caused by the end of the cold war and weak world economy are described. There are also new opportunities caused by increasing terrestrial energy needs and world-wide concern for the environment. In this paper, the strengths and weaknesses of the aerospace power industry in commercializing terrestrial energy technologies are reviewed. Finally, actions which will enable the aerospace power technology industry to commercialize products into terrestrial energy markets are described

  12. Advanced Power Technology Development Activities for Small Satellite Applications

    Science.gov (United States)

    Piszczor, Michael F.; Landis, Geoffrey A.; Miller, Thomas B.; Taylor, Linda M.; Hernandez-Lugo, Dionne; Raffaelle, Ryne; Landi, Brian; Hubbard, Seth; Schauerman, Christopher; Ganter, Mathew; hide

    2017-01-01

    NASA Glenn Research Center (GRC) has a long history related to the development of advanced power technology for space applications. This expertise covers the breadth of energy generation (photovoltaics, thermal energy conversion, etc.), energy storage (batteries, fuel cell technology, etc.), power management and distribution, and power systems architecture and analysis. Such advanced technology is now being developed for small satellite and cubesat applications and could have a significant impact on the longevity and capabilities of these missions. A presentation during the Pre-Conference Workshop will focus on various advanced power technologies being developed and demonstrated by NASA, and their possible application within the small satellite community.

  13. Safety improvement technologies for nuclear power generation

    International Nuclear Information System (INIS)

    Nishida, Koji; Adachi, Hirokazu; Kinoshita, Hirofumi; Takeshi, Noriaki; Yoshikawa, Kazuhiro; Itou, Kanta; Kurihara, Takao; Hino, Tetsushi

    2015-01-01

    As the Hitachi Group's efforts in nuclear power generation, this paper explains the safety improvement technologies that are currently under development or promotion. As efforts for the decommissioning of Fukushima Daiichi Nuclear Power Station, the following items have been developed. (1) As for the spent fuel removal of Unit 4, the following items have mainly been conducted: removal of the debris piled up on the top surface of existing reactor building (R/B), removal of the debris deposited in spent fuel pool (SFP), and fuel transfer operation by means of remote underwater work. The removal of all spent fuels was completed in 2014. (2) The survey robots inside R/B, which are composed of a basement survey robot to check leaking spots at upper pressure suppression chamber and a floor running robot to check leaking spots in water, were verified with a field demonstration test at Unit 1. These robots were able to find the leaking spots at midair pipe expansion joint. (3) As the survey robot for reactor containment shells, robots of I-letter posture and horizontal U-letter posture were developed, and the survey on the upper part of first-floor grating inside the containment shells was performed. (4) As the facilities for contaminated water measures, sub-drain purification equipment, Advanced Liquid Processing System, etc. were developed and supplied, which are now showing good performance. On the other hand, an advanced boiling water reactor with high safety of the United Kingdom (UK ABWR) is under procedure of approval for introduction. In addition, a next-generation light-water reactor of transuranic element combustion type is under development. (A.O.)

  14. Competitiveness through cooperation between electricity and information technology. TESLA - Information technology and electric power systems technology programme 1998-2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The electricity markets are being opened up to competition all round the world. To succeed in competition electricity sellers want new information technology tools to use in managing the sale of electricity. The network companies are aiming to step up utilization of their distribution capacity and to optimize power quality and the reliability of supply. Consumers need solutions with which they can manage their own power consumption and tendering sellers. The Nordic countries have been the first to deregulate their electricity markets. This head start in time is being made use of to generate a head start in technology. Tekes has initiated a technology programme for the years 1998 to 2002, named TESLA - Information Technology and Electric Power Systems, to promote the competitiveness of the Finnish electricity industry in changing conditions. The objective of the programme is to adapt information technology extensively to power distribution and thus develop the potential for Finland`s electricity industry to succeed on world markets. At the moment power distribution technology forms about one third of Finland`s energy technology exports. The programme is also aimed at developing new data transfer and data processing applications for companies in information technology clusters. For Finnish parties in the electricity markets the programme will produce ways and means of (1) improving management and use of distribution networks, (2) implementing competition in electricity sales, and (3) increasing the efficiency of electricity use

  15. Strategy of nuclear power technology: learn from Korea experience

    International Nuclear Information System (INIS)

    Sriyana; Nurlaila

    2003-01-01

    Technology is one of the economic and social elements which play an important role in modernization process. When modernity ideas come into society, technology will become fundamental prerequisite for the shake of its form of modem economic social system of the society. Therefore, various effort modernize society involve program of transfer technology in main agenda. Purpose of this study is to choose a process of technology transfer and according to be able to reach for technological ability of nuclear power self-reliance. This research is conducted by study of existing literature, namely learn from experience of Korea which have succeeded to develop nuclear energy technology with self-reliance. While this research scope is to describe the process of technology transfer and according to be able to reach for technological ability of nuclear energy self-reliance. This study conclude that program of technology transfer have to start since nuclear power development pre-project period, project construction of NPP period and also in operation period. To reach for technological ability of self-reliance require to be done by long-term program and require to be build by several units which last for a transfer of technology. Government Commitment to have important role also have to be strong to push the happening of technology transfer. Institutions in concerned should have to be clear and hold responsible according to its interest. National industries as executor of technology transfer require to be given by larger ones opportunity in course of transfer this technology. (author)

  16. Power from Pellets Technology and Applications

    CERN Document Server

    Döring, Stefan

    2013-01-01

    This book provides a practical description of the technology of pellet production on the basis of renewable sources as well as the utilization of pellets. The author explains what kinds of biomass are usable in addition to wood, how to produce pellets and how to use pellets to produce energy. Starting with the basics of combustion, gasification and the pelletizing process, several different technologies are described. The design, planning, construction and economic efficiency are discussed as well. The appendix gives useful advice about plant concepts, calculations, addresses, conversion tables and formulas.

  17. Quadrennial Technology Review 2015: Technology Assessments--Wind Power

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-10-07

    Wind power has become a mainstream power source in the U.S. electricity portfolio, supplying 4.9% of the nation’s electricity demand in 2014. With more than 65 GW installed across 39 states at the end of 2014, utility-scale wind power is a cost-effective source of low-emissions power generation throughout much of the nation. The United States has significant sustainable land-based and offshore wind resource potential, greater than 10 times current total U.S. electricity consumption. A technical wind resource assessment conducted by the Department of Energy (DOE) in 2009 estimated that the land-based wind energy potential for the contiguous United States is equivalent to 10,500 GW capacity at 80 meters (m) hub and 12,000 GW capacity at 100 meters (m) hub heights, assuming a capacity factor of at least 30%. A subsequent 2010 DOE report estimated the technical offshore wind energy potential to be 4,150 GW. The estimate was calculated from the total offshore area within 50 nautical miles of shore in areas where average annual wind speeds are at least 7 m per second at a hub height of 90 m.

  18. Thermal Management of Power Semiconductor Packages - Matching Cooling Technologies with Packaging Technologies (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, K.; Moreno, G.

    2010-04-27

    Heat removal for power semiconductor devices is critical for robust operation. Because there are different packaging options, different thermal management technologies, and a range of applications, there is a need for a methodology to match cooling technologies and package configurations to target applications. To meet this need, a methodology was developed to compare the sensitivity of cooling technologies on the overall package thermal performance over a range of power semiconductor packaging configurations. The results provide insight into the trade-offs associated with cooling technologies and package configurations. The approach provides a method for comparing new developments in power semiconductor packages and identifying potential thermal control technologies for the package. The results can help users select the appropriate combination of packaging configuration and cooling technology for the desired application.

  19. The Electric Power Research Institute and global environmental technology prospects

    Energy Technology Data Exchange (ETDEWEB)

    Andes, G.M.; Maybach, G.B. [Electric Power Research Inst., Palo Alto, CA (United States); Rosica, A.E. III [Reilly, Rosica and Associates, Arlington, VA (United States)

    1997-09-01

    The need for new environmental control technologies will continue to be an important part of the growth of the electric power industry in developing countries. Accordingly, R and D centers like the Environmental Control Technology Center (ECTC) will be needed to ensure technology transfers can occur effectively and personnel are properly trained to use them. The paper describes EPRI`s role in developing environmental technologies and the future for EPRI`s ECTC.

  20. Harnessing the Power of Wind Technology

    Science.gov (United States)

    Dotson, Tawny M.

    2009-01-01

    "Where the wind comes sweepin' down the plain" is more than just a song lyric for Oklahoma's career and technical education community. It's the acknowledgement of an untapped natural resource that has the potential to translate into both energy independence for the country and jobs for the state. Statewide, technology center instructors…

  1. Technology, gender, and power in Africa

    International Development Research Centre (IDRC) Digital Library (Canada)

    The interactive relationship between technology transfer and gender factors is explored using case studies and examples from the development literature on ...... The support of the United Nations Fund for Population Activities (UNFPA) and CIDA for a special issue of Development: Seeds of Change (SID 1984) is an ...

  2. Water Power Technologies FY 2017 Budget At-A-Glance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    The Water Power Program is committed to developing and deploying a portfolio of innovative technologies and market solutions for clean, domestic power generation from water resources across the U.S. (hydropower, marine and hydrokinetics).

  3. Nuclear power technologies for application in developing countries

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.

    2000-01-01

    The tremendous social and political changes which have occurred during the recent decade in the former USSR made it possible to launch the process of commercialization of defense-related technologies in Russia. The so-called dual-use technologies are meant to be initially developed by the state for defense needs, but having a high commercial potential as well. To date, the process of such technology transfer from the state sector to a private one has been limited primarily by insufficient progress of the national private sector. Essentially, the main economic problem still remains the attraction of private capital for the promotion of dual-use technologies to the point at where they acquire commercially viable. A large number of advanced technologies are waiting to be commercialized. The report presented considers the prospects of civil use of some technologies related to the nuclear power area: space nuclear power systems, nuclear powered submarines and rector-pumped lasers. (author)

  4. Economy and technology roles played by nuclear power

    International Nuclear Information System (INIS)

    Yamada, Eiji

    1985-01-01

    On the basis of the survey analysis made by Atomic Energy Commission on the roles in economy and technology played in the nuclear energy development and utilization, the following are described: economic roles in nuclear energy development and utilization (the present state of nuclear power industry in Japan and the economy effects); technological roles in the same (the present state of nuclear power technology in Japan and the technology effects). The economy effects in other areas are on higher level than in other industries etc. Then, in the technology effects, system technology and quality control in the nuclear power possess significant effects in other areas. While the nuclear energy development and utilization is important in Japan's energy security, it is contributing largely to the economy and society in Japan. (Mori, K.)

  5. Integrated construction management technology for power plants

    International Nuclear Information System (INIS)

    Okada, Hisako; Miura, Jun; Nishitani, Yasuhiko

    2003-01-01

    The improvement and rationalization of the plant construction technology has been promoted in order to shorten the construction period, to improve the quality and reliability, and especially to reduce construction costs. With the recent remarkable advances of computer technology, it is necessary to introduce an electronic information technology (IT) into the construction field, and to develop a business process. In such a situation, Hitachi has developed and applied integrated construction support system, which is consistent among design, production and construction. This system has design information and schedule information made electronically as a basic database, and characterizes with project management function based on that information. By introduction of this system, electronic processing of information and reduction of paperwork has enabled high efficiency and standardization of on-site indirect work. Furthermore, by collaboration with the civil company, electrical data exchange has been carried out and developed techniques to improve the interface between mechanical and civil work. High accuracy of construction planning and unification of schedule data have been achieved, and consequently, rework and adjustment at the job site have been greatly reduced. (author)

  6. Current status of Chinese nuclear power industry and technology

    International Nuclear Information System (INIS)

    Kim, Hyun Min; Kim, Min; Jeong, Hee Jong; Hwang, Jeong Ki; Cho, Chung Hee

    1996-10-01

    China has been carrying out active international cooperation aiming to be a country where is to be an economical super power and an advanced country in nuclear power technology by the year early 2000, and China also has begun to be recognized as the largest potential market for the construction of nuclear power plants(NPPs) expecting to construct more than thirty nuclear power units by the year 2020. China has advanced technology in the basic nuclear science including liquid metal breeder reactor technology, nuclear material, medium and small size power plants, and isotope production technology, and also China has complete nuclear fuel cycle technology. However, China still has low NPP technology. Therefore, it is expected that China may have complementary cooperative relationship with China, it is expected that Korea may have an access to the advanced Chinese nuclear science technology, and may have a good opportunity to explore the Chinese market actively exporting excellent Korean NPP technology, and further may have a good position to the neighboring Asian countries' NPP markets. From this perspective, general Chinese social status, major nuclear R and D activity status, and correct NPP and technology status have been analyzed in this report, and this report is expected to be a useful resource for cooperating with China in future. 10 tabs., 6 figs., 16 refs. (Author)

  7. Assessment of a satellite power system and six alternative technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wolsko, T.; Whitfield, R.; Samsa, M.; Habegger, L.S.; Levine, E.; Tanzman, E.

    1981-04-01

    The satellite power system is assessed in comparison to six alternative technologies. The alternatives are: central-station terrestrial photovoltaic systems, conventional coal-fired power plants, coal-gasification/combined-cycle power plants, light water reactor power plants, liquid-metal fast-breeder reactors, and fusion. The comparison is made regarding issues of cost and performance, health and safety, environmental effects, resources, socio-economic factors, and insitutional issues. The criteria for selecting the issues and the alternative technologies are given, and the methodology of the comparison is discussed. Brief descriptions of each of the technologies considered are included. (LEW)

  8. A Novel Frequency Communication Technology in Power Distribution Communication Network

    Directory of Open Access Journals (Sweden)

    Li Ying-Jun

    2017-01-01

    Full Text Available With the expansion of the power terminal access network scale, the main road corridor resources, branch line cable Laying difficulties has become an important factor restricting the construction of the network. In this paper, we focus on the frequency communication technology in power distribution communication network, and design a novel technology in communication mode, error correcting coding and data transfer frame format. We also discuss the influence of voltage phase difference on power frequency communication. Meanwhile, we present the application scenario Electricity information collection, electricity remote control and other power business in smart grid with the novel frequency communication technology.

  9. The Power Sandwich : A Three-Dimensional Power Electronics Assembly Technology

    NARCIS (Netherlands)

    Josifovic, I.

    2014-01-01

    Current PCB power converter construction technologies are based on the utilization of nonstandardized building blocks. Utilization of passive components with various shapes, poor thermal properties and mixed technology mounting (THT and SMT) represents fundamental limit for reaching high power

  10. Revolution of Nuclear Power Plant Design Through Digital Technology

    International Nuclear Information System (INIS)

    Zhang, L.; Shi, J.; Chen, W.

    2015-01-01

    In the digital times, digital technology has penetrated into every industry. As the highest safety requirement standard, nuclear power industry needs digital technology more to breed high quality and efficiency. Digital power plant is derived from digital design and the digitisation of power plant transfer is an inevitable trend. This paper introduces the technical solutions and features of digital nuclear power plant construction by Shanghai Nuclear Engineering Research & Design Institute, points out the key points and technical difficulties that exist in the process of construction and can serve as references for further promoting construction of digital nuclear power plant. Digital technology is still flourishing. Although many problems will be encountered in construction, it is believed that digital technology will make nuclear power industry more safe, cost-effective and efficient. (author)

  11. Physics and application of plasmas based on pulsed power technology

    International Nuclear Information System (INIS)

    Hotta, Eiki; Ozaki, Tetsuo

    2012-04-01

    The papers presented at the symposium on 'Physics and Application of Plasmas Based on Pulsed Power Technology' held on December 21-22, 2010 at National Institute of Fusion Science are collected. The papers in this proceeding reflect the current status and progress in the experimental and theoretical researches on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  12. Planning a revolution in nuclear power technology

    International Nuclear Information System (INIS)

    Egan, J.R.

    1987-01-01

    Approaching the marketing and deployment of small, inherently safe reactors from the standpoint of the legal and financial community, the author suggests various ideal planning criteria that should be adhered to by designers and suppliers in order for the new plants to achieve political and financial acceptability. Although new nuclear technology based on those criteria promise to rekindle the prospects for nuclear fission, neither governments nor suppliers are likely to undertake the requisite investments. Rather, the author proposes a private development initiative between the political community, private investors, and would-be suppliers. (author)

  13. Space nuclear power, propulsion, and related technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government

  14. Power Tower Technology Roadmap and cost reduction plan.

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Thomas R.; Gary, Jesse A. (U.S. Department of Energy); Kolb, Gregory J.; Ho, Clifford Kuofei

    2011-04-01

    Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

  15. Sustainability assessment of renewable power and heat generation technologies

    International Nuclear Information System (INIS)

    Dombi, Mihály; Kuti, István; Balogh, Péter

    2014-01-01

    Rationalisation of consumption, more efficient energy usage and a new energy structure are needed to be achieved in order to shift the structure of energy system towards sustainability. The required energy system is among others characterised by intensive utilisation of renewable energy sources (RES). RES technologies have their own advantages and disadvantages. Nevertheless, for the strategic planning there is a great demand for the comparison of RES technologies. Furthermore, there are additional functions of RES utilisation expected beyond climate change mitigation, e.g. increment of employment, economic growth and rural development. The aim of the study was to reveal the most beneficial RES technologies with special respect to sustainability. Ten technologies of power generation and seven technologies of heat supply were examined in a multi-criteria sustainability assessment frame of seven attributes which were evaluated based on a choice experiment (CE) survey. According to experts the most important characteristics of RES utilisation technologies are land demand and social impacts i.e. increase in employment and local income generation. Concentrated solar power (CSP), hydropower and geothermal power plants are favourable technologies for power generation, while geothermal district heating, pellet-based non-grid heating and solar thermal heating can offer significant advantages in case of heat supply. - highlights: • We used choice experiment to estimate the weights of criteria for the sustainability assessment of RES technologies. • The most important attributes of RES technologies according to experts are land demand and social impacts. • Concentrated solar power (CSP), hydropower and geothermal power plants are advantageous technologies for power generation. • Geothermal district heating, pellet-based non-grid heating and solar thermal heating are favourable in case of heat supply

  16. Defining the "proven technology" technical criterion in the reactor technology assessment for Malaysia's nuclear power program

    Science.gov (United States)

    Anuar, Nuraslinda; Kahar, Wan Shakirah Wan Abdul; Manan, Jamal Abdul Nasir Abd

    2015-04-01

    Developing countries that are considering the deployment of nuclear power plants (NPPs) in the near future need to perform reactor technology assessment (RTA) in order to select the most suitable reactor design. The International Atomic Energy Agency (IAEA) reported in the Common User Considerations (CUC) document that "proven technology" is one of the most important technical criteria for newcomer countries in performing the RTA. The qualitative description of five desired features for "proven technology" is relatively broad and only provides a general guideline to its characterization. This paper proposes a methodology to define the "proven technology" term according to a specific country's requirements using a three-stage evaluation process. The first evaluation stage screens the available technologies in the market against a predefined minimum Technology Readiness Level (TRL) derived as a condition based on national needs and policy objectives. The result is a list of technology options, which are then assessed in the second evaluation stage against quantitative definitions of CUC desired features for proven technology. The potential technology candidates produced from this evaluation is further narrowed down to obtain a list of proven technology candidates by assessing them against selected risk criteria and the established maximum allowable total score using a scoring matrix. The outcome of this methodology is the proven technology candidates selected using an accurate definition of "proven technology" that fulfills the policy objectives, national needs and risk, and country-specific CUC desired features of the country that performs this assessment. A simplified assessment for Malaysia is carried out to demonstrate and suggest the use of the proposed methodology. In this exercise, ABWR, AP1000, APR1400 and EPR designs assumed the top-ranks of proven technology candidates according to Malaysia's definition of "proven technology".

  17. Technological implications of fusion power: requirements and status

    International Nuclear Information System (INIS)

    Steiner, D.

    1978-01-01

    The major technological requirements for fusion power, as implied by current conceptual designs of fusion power plants, are identified and assessed relative to the goals of existing technology programs. The focus of the discussion is on the tokamak magnetic confinement concept; however, key technological requirements of mirror magnetic confinement systems and of inertial confinement concepts will also be addressed. The required technology is examined on the basis of three general areas of concern: (a) the power balance, that is, the unique power handling requirements associated with the production of electrical power by fusion; (b) reactor design, focusing primarily on the requirements imposed by a tritium-based fuel cycle, thermal hydraulic considerations, and magnet systems; and (c) materials considerations, including radiation damage effects, neutron-induced activation, and resource limitations

  18. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Hudson, C.R. II.

    1986-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies

  19. The Indian nuclear power programme: Challenges in PHWR technology

    International Nuclear Information System (INIS)

    Prasad, Y.S.R.

    1997-01-01

    The long-term strategy for development of nuclear power generation in India is based on a three-stage programme, formulated by Dr. H.J. Bhabha. This strategy takes into account and is optimally suited for achieving self reliance in nuclear technology; India's technological infrastructure; limited resources of Natural Uranium and abundant availability of Thorium within the country

  20. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs

  1. Constraints to utilization of draft animal power technology at farm ...

    African Journals Online (AJOL)

    Mo

    Constraints to utilization of draft animal power technology at farm level in. Uganda. S.Okurut, W.R.Odogola ., A. Candia . and A.R. Saasa . Agricultural Engineering and Appropriate Technology Research Institute, AEATRI. P. O. Box 7144, Kampala, Uganda. Abstract. Animal traction utilisation in Uganda dates back to 1909 ...

  2. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Hudson, C.R. II.

    1987-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies

  3. Study of LANs access technologies in wind power system

    DEFF Research Database (Denmark)

    Wei, Mu; Chen, Zhe

    2010-01-01

    Due to the energy challenges in the world, new types of generation technologies, such as renewable energy based generators, attract great attention and are being quickly developed, which results in the dramatic developments and changes in modern power systems, the communication technologies play...... a increasingly important role in guaranteeing the power system’s stability, reliability, and security. In this paper the necessity of communication technologies employed in wind power system are introduced. According the International Standards Organization (ISO) reference 7-layered model, the communication...... power environment are explained and discussed. Furthermore the simulation of application of Ethernet in an offshore wind farm communication network by a software, OPNET, is elaborated. With the investigation of the communication technologies in this paper, the offshore wind farm SCADA system can...

  4. Technology Status of Thermionic Fuel Elements for Space Nuclear Power

    Science.gov (United States)

    Holland, J. W.; Yang, L.

    1984-01-01

    Thermionic reactor power systems are discussed with respect to their suitability for space missions. The technology status of thermionic emitters and sheath insulator assemblies is described along with testing of the thermionic fuel elements.

  5. History of electric power technological innovation in 2017

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Okabe, Kazuhiko; Ichimura, Yasunori

    2017-01-01

    This is an overview of the electric power technology innovation of 12 electric power companies in 2016. Among them, this paper outlines the technological contents related to nuclear power of three major companies. TEPCO group applied a sealant from the outside to the back-up seal of reactor containment vessel that had deteriorated. It developed a good sealing system by combining with an improved sealant, and confirmed the effect at an experimental level. Regarding environmental restoration in Fukushima, TEPCO developed a personal dosimetry technology, environmental monitoring technology, and a technology to simulate radiation reduction amount after decontamination. Chubu Electric Power Company conducted researches on the applicability of the start-up range neutron monitor count rate prediction method related to fuel loading after a long-term shut-down of nuclear power generation, basic examination for practical use of laser decontamination, and possibility of tsunami prediction using satellite positioning information. With regard to the decommissioning measures of nuclear power plants, Japan Nuclear Power Electric Generation Co., Ltd. conducted studies on the decommissioning work of the Tokai Power Station, the safe dismantling method of the Tsuruga Power Station Unit 1 as decommissioning measures and fuel management, and the disposal method of radioactive contaminants. In the development of future reactor, this company conducted research on the development of fast breeder reactor system, etc. (A.O.)

  6. Comparative analysis of the application of different Low Power Wide Area Network technologies in power grid

    Science.gov (United States)

    Wang, Hao; Sui, Hong; Liao, Xing; Li, Junhao

    2018-03-01

    Low Power Wide Area Network (LPWAN) technologies developed rapidly in recent years, but the application principle of different LPWAN technologies in power grid is still not clear. This paper gives a comparative analysis of two mainstream LPWAN technologies including NB-IoT and LoRa, and gives an application suggestion of these two LPWAN technologies, which can guide the planning and construction of LPWAN in power grid.

  7. Advance of technological innovations of electric power in 2012

    International Nuclear Information System (INIS)

    Mayumi, Akihiko; Tanaka, Masanori; Takebe, Toshiro

    2013-01-01

    Twelve companies in Japan reported on the technological innovations in 2012. The Japan Atomic Power Company mainly studied five projects; (1) control of wall thinning of the secondary system in PWR by injection of molybdic acid, (2) application of pipe test method using electromagnetic acoustic resonance to existing equipment, (3) developed high performance Co-60 crud removal resin for Tsuruga Power Station Unit 2, (4) improvement of technology for safety of core in FBR, and (5) improvement of technology for coolant of FBR by dispersing nano-particles in liquid sodium metal. Tokyo Electric Power Company developed mainly three projects; (1) the support for the mental health care activities by industry protection staff at the Fukushima Daiichi and Daini Nuclear Power Plant, (2) laboratory test method using non-radioactive cesium for performance of decontamination reagent, and (3) decontamination effects estimation code (DeConEP). Hokuriku Electric Power Company reported the operations management measures in accordance with the safety enhancement measures to Shika nuclear power station. Other nine reports are published by Hokkaido Electric Power Co., Inc. Tohoku Electric Power Co., Inc. Chubu Electric Power Co., Inc., The Kansai Electric Power Co., Inc., The Chugoku Electric Power Co., Inc., Shikoku Electric Power Co., Inc., Kyushu Electric Power Co., Inc., Okinawa Electric Power Company Inc. and J-Power. (S.Y.)

  8. Control technology for nuclear power system of next generation

    International Nuclear Information System (INIS)

    1995-01-01

    This report is the summary of the results obtained by the investigation activities for two years carried out by the expert committee on investigation of control technology for nuclear power system of next generation. The course of investigation is outlined, and as the results, as advanced control technologies, adaptive control. H sub (infinite) control, fuzzy control and the application of autonomous distributed system and genetic algorithm to control; as operation support technology, the operation and monitoring system for nuclear power plants and safety support system; as interface technology which is the basic technology of them, virtual reality, multimedia and so on; further, various problems due to human factors, computer technology, artificial intelligence and others were taken up, and the grasp of the present status and the future subjects was carried out, including the information in international conferences. The items of the investigation are roughly divided into measurement and control technologies, interface technology and operation support, human factors, computer technology and artificial intelligence, and the trend in foreign countries, and the results of investigation for respective items are reported. (K.I.)

  9. Water Power Technologies Office 2017 Marine Energy Accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Water Power Technologies Office

    2018-04-01

    The U.S. Department of Energy's Water Power Technologies Office's marine and hydrokinetic portfolio has numerous projects that support industry advancement in wave, tidal, and ocean and river current technologies. In order to strengthen state-of-the-art technologies in these fields and bring them closer to commercialization, the Water Power Technologies Office funds industry, academia, and the national laboratories. A U.S. chapter on marine and hydrokinetic energy research and development was included in the Ocean Energy Systems' Technology Programme—an intergovernmental collaboration between countries, which operates under a framework established by the International Energy Agency. This brochure is an overview of the U.S. accomplishments and updates from that report.

  10. New technologies in nuclear power plant monitoring and diagnosis

    International Nuclear Information System (INIS)

    Turkcan, E.; Verhoef, J.P.; Ciftcioglu, O.

    1996-01-01

    Several representative new technologies being introduce for monitoring and diagnosis in nuclear power plants (NPP) are presented in this paper. In Sec. 2, the Kalman filtering is briefly described and it relevance to conventional time series analysis methods are emphasized. In this respect, its NPP monitoring and fault diagnosis implementations are given and the important features are pointed out. In Sec. 3, the NN technology is briefly described and the scope is focused on the NPP monitoring and fault diagnosis implementations. In Sec. 4, the wavelet technology is briefly described and the utilization of this technology in Nuclear Technology is exemplified. In this respect, also the prospective role of this technology for real-time monitoring and fault diagnosis is revealed. (author). 33 refs, 6 figs

  11. Application of Autonomous Spacecraft Power Control Technology to Terrestrial Microgrids

    Science.gov (United States)

    Dever, Timothy P.; Trase, Larry M.; Soeder, James F.

    2014-01-01

    This paper describes the potential of the power campus located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio for microgrid development. First, the benefits provided by microgrids to the terrestrial power grid are described, and an overview of Technology Needs for microgrid development is presented. Next, GRC's work on development of autonomous control for manned deep space vehicles, which are essentially islanded microgrids, is covered, and contribution of each of these developments to the microgrid Technology Needs is detailed. Finally, a description is provided of GRC's existing physical assets which can be applied to microgrid technology development, and a phased plan for development of a microgrid test facility is presented.

  12. Impact of Storage Technologies upon Power System Losses

    Directory of Open Access Journals (Sweden)

    DULAU Lucian Ioan

    2015-05-01

    Full Text Available The paper describes the main characteristics of storage technologies. The most important storage technologies are the batteries, hydrogen, pumped hydro, flywheels, compressed air, super-capacitors and superconducting magnetic devices. The storage technologies can be classified based on the function principle into electrochemical, mechanical and electromagnetic devices. The storage systems can also be classified based on their capacity to store power into short and long term devices. A power flow analysis is performed for the situation with and without a storage unit. The storage unit is inserted into the IEEE 14 bus test system.

  13. Technology assessment Jordan Nuclear Power Plant Project

    International Nuclear Information System (INIS)

    2010-01-01

    Preliminary regional analysis was carried out for identification of potential sites for NPP, followed by screening of these sites and selecting candidate sites. Aqaba sites are proposed, where it can use the sea water for cooling: i.Site 1; at the sea where it can use the sea water for direct cooling. ii.Site 2; 10 km to the east of Gulf of Aqaba shoreline at the Saudi Arabia borders. iii.Site 3, 4 km to the east of Gulf of Aqaba shoreline. Only the granitic basement in the east of the 6 km²site should be considered as a potential site for a NPP. Preliminary probabilistic seismic hazard assessment gives: Operating-Basis Earthquake-OBE (475 years return period) found to be in the range of 0.163-0.182 g; Safe Shutdown Earthquake-SSE (10,000 years return period) found to be in the range of 0.333-0.502g. The process include also setting up of nuclear company and other organizational matters. Regulations in development are: Site approval; Construction permitting; Overall licensing; Safety (design, construction, training, operations, QA); Emergency planning; Decommissioning; Spent fuel and RW management. JAEC's technology assessment strategy and evaluation methodology are presented

  14. Industrial Applications of Pulsed Power Technology

    Science.gov (United States)

    Takaki, Koichi; Katsuki, Sunao

    Recent progress of the industrial applications of pulsed power is reviewed in this paper. Repetitively operated pulsed power generators with a moderate peak power have been developed for industrial applications. These generators are reliable and low maintenance. Development of the pulsed power generators helps promote industrial applications of pulsed power for such things as food processing, medical treatment, water treatment, exhaust gas treatment, ozone generation, engine ignition, ion implantation and others. Here, industrial applications of pulsed power are classified by application for biological effects, for pulsed streamer discharges in gases, for pulsed discharges in liquid or liquid-mixture, and for bright radiation sources.

  15. Innovative waste treatment and conditioning technologies at nuclear power plants

    International Nuclear Information System (INIS)

    2006-05-01

    The objective of this publication is to provide Member States with information on the most innovative technologies and strategies used in waste treatment and conditioning. At present, some of those technologies and strategies might not be widely implemented at nuclear power plants (NPP), but they have an important potential for their use as part of the long range NPP, utility, or national strategy. Thus, the target audience is those decision makers at the national and organizational level responsible for selecting waste processing technologies and strategies over a period of three to ten years. Countries and individual nuclear plants have limited financial resources which can be applied toward radioactive waste processing (treatment and conditioning). They are challenged to determine which of the many available technologies and strategies are best suited to meet national or local needs. This publication reduces the selection of processes for wastes generated by nuclear power plants to those technologies and strategies which are considered innovative. The report further identifies the key benefits which may derive from the adoption of those technologies, the different waste streams to which each technology is relevant, and the limitations of the technologies. The technologies and strategies identified have been evaluated to differentiate between (1) predominant technologies (those that are widely practiced in multiple countries or a large number of nuclear plants), and (2) innovative technologies (those which are not so widely used but are considered to offer benefits which make them suitable for broader application across the industry). Those which fall into the second category are the primary focus of this report. Many IAEA publications address the technical aspects of treatment and conditioning for radioactive wastes, covering research, technological advances, and safety issues. These studies and reports primarily target the research and technical staff of a

  16. Technology, power and the political economy of inequality

    DEFF Research Database (Denmark)

    Guy, Frederick; Skott, Peter

    2015-01-01

    Technology can affect the distribution of income directly via its influence on both the bargaining power of different parties and the marginal product of different factors of production. This paper focuses mainly on the first route. The role of power is transparent in the case of medieval choke...... points but modern network technologies have similar features. There is also substantial evidence --from truckers and retail clerks to CEOs -- that power affects the determination of wages. But power relations inevitably have institutional dimensions; regulatory frameworks influence industry structures...... and the market power of large companies as well as the parameters that determine the earnings of different groups of workers. The institutional framework is arrived at through complex social and political processes; technology, however, may exert some influence on the course of those processes....

  17. Nuclear power plant safety improvement based on hydrogen technologies

    OpenAIRE

    Aminov, R.Z.; Yurin, V.E.

    2015-01-01

    An effective application for hydrogen technologies at nuclear power plants is proposed, which improves the plant maneuverability during normal operation, and provides for in-house power supply during the plant blackout. The reliability of the NPP's emergency power supply was assessed probabilistically for the plant blackout conditions with the simultaneous use of an auxiliary full-time operating steam turbine and the emergency power supply system channels with diesel generators. The proposed ...

  18. Fuel cycle comparison of distributed power generation technologies

    International Nuclear Information System (INIS)

    Elgowainy, A.; Wang, M.Q.

    2008-01-01

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions

  19. Taming Technology

    Science.gov (United States)

    Branscomb, Lewis M.

    1971-01-01

    Reviews aspects of technology in our society: technology as a force for social change; reasons for the frustration and dissatisfaction with technology; how technology decentralizes power; the individual's influence; resolving conflicts in the ionized" society; regulation of technology; corporate responsibility; and the potential pitfalls for the…

  20. Workshop on power conditioning for alternative energy technologies. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. R.

    1979-01-01

    As various alternative energy technologies such as photovoltaics, wind, fuel cells, and batteries are emerging as potential sources of energy for the future, the need arises for development of suitable power-conditioning systems to interface these sources to their respective loads. Since most of these sources produce dc electricity and most electrical loads require ac, an important component of the required power-conditioning units is a dc-to-ac inverter. The discussions deal with the development of power conditioners for each alternative energy technology. Discussion topics include assessments of current technology, identification of operational requirements with a comparison of requirements for each source technology, the identification of future technology trends, the determination of mass production and marketing requirements, and recommendations for program direction. Specifically, one working group dealt with source technology: photovoltaics, fuel cells and batteries, and wind followed by sessions discussing system size and application: large grid-connected systems, small grid-connected systems, and stand alone and dc applications. A combined group session provided an opportunity to discuss problems common to power conditioning development.

  1. Technology in the policy process - controlling nuclear power

    International Nuclear Information System (INIS)

    Collingridge, D.

    1983-01-01

    The discussion in this book is built around nuclear power. The technology of nuclear power is shown to have features which make it inflexible in the sense that, once built, it is difficult and expensive to control. If inflexible technology is to be avoided, it is crucially important to be able to identify this failing at an early stage in the technology's development, before it has acquired an immunity to political control. Again, this problem is approached through the example of nuclear power, in particular the breeder reactor. The breeder is shown to be even less flexible than today's nuclear technology, because it will have higher capital costs, be of greater capital intensity, longer lead time, larger unit size, and will require more infrastructure for its operation. If this is developed, the breeder will be even less open to political control than the nuclear plant of the present. To put it another way, its planning will be even more open to errors and whatever errors are made will be even more costly than for existing nuclear technology. It is therefore even less of a socially and economically acceptable technology than today's nuclear power. (author)

  2. PowerSat: A technology demonstration of a solar power satellite

    Science.gov (United States)

    Sigler, Douglas L. (Editor); Riedman, John; Duracinski, Jon; Edwards, Joe; Brown, Garry; Webb, Ron; Platzke, Mike; Yuan, Xiaolin; Rogers, Pete; Khan, Afsar

    1994-01-01

    PowerSat is a preliminary design strategy for microwave wireless power transfer of solar energy. Solar power satellites convert solar power into microwave energy and use wireless power transmission to transfer the power to the Earth's surface. The PowerSat project will show how new developments in inflatable technology can be used to deploy solar panels and phased array antennas.

  3. Physics and applications of plasmas produced by pulsed power technology

    International Nuclear Information System (INIS)

    Ozaki, Tetsuo; Katsuki, Sunao

    2013-10-01

    The papers presented at the symposium on 'Physics and Applications of Plasmas Produced by Pulsed Power Technology' held on March 27-28, 2012 at the National Institute for Fusion Science are collected in these proceedings. The papers in these proceedings reflect the current status and progress in the experimental and theoretical research on high power particle beams and high energy density plasmas produced by pulsed power technology. This issue is the collection of 22 papers presented at the entitled meeting. Ten of the presented papers are indexed individually. (J.P.N.)

  4. New developments of plasma science with pulsed power technology

    International Nuclear Information System (INIS)

    Kamada, Keiichi; Ozaki, Tetsuo

    2010-03-01

    In this proceedings, the papers presented at the symposium on “New developments of Plasma Science with Pulsed Power Technology” held at National Institute for Fusion Science on March 5-6, 2009 are collected. The papers reflect the present status and recent progress in the experimental and theoretical works on plasma science using pulsed power technology. (author)

  5. Power Electronics as key technology in wind turbines

    DEFF Research Database (Denmark)

    Blaabjerg, Frede

    2005-01-01

    This paper discuss the development in wind turbines in a two-decade perspective looking at the technology based on track records. Different power electronic topologies for interfacing the wind turbine to the grid are discussed and related to the possibility for the wind turbine to act as a power...

  6. High Power Betavoltaic Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation will dramatically improve the performance of tritium-powered betavoltaic batteries through the development of a high-aspect ratio, expanded...

  7. Local power production at the end consumer - appropriate technologies

    International Nuclear Information System (INIS)

    Grinden, Bjoern; Morch, Andrei Z.; Braanaas, Marit; Stang, Jacob; Berner, Monica

    2002-11-01

    The report describes and evaluates a selection of technologies which may be adequate for a local power production at the end consumer. Contrary to may other technology surveys it is focused on small-scale production units that also may be of interest to small consumers. For the various technologies the particular technology is described and an evaluation of the suitability to Norwegian conditions is carried out. For each technology the following is described: 1) The technology in general. 2) Construction and technology trends. 3) Environmental conditions, operation and maintenance. 4) Experiences. 5) Key facts/data. It has to be emphasised that all the technologies are in development and this report describes them as they are in 2002 except for general conditions which always will exist. It has not been possible to obtain exact facts regarding the investment costs and the costs for each produced kWh e lectricity or kWh h eat for many of the technologies because they are new and mass production has not yet started. In an appendix a form is presented for use in obtaining information from equipment suppliers. Later in the project there will be developed a model for calculating the profitability of such investments as well. Technologies such as small-scale wind and hydropower units are the technologies most suited for Norway in a short perspective. In the years to come it is probable that technologies which use biologic fuel/waste of some kind would be used to some extent. In a longer perspective technologies as the Stirling engine and fuel cells may be of interest. The micro gas turbines and combustion engines may be current technologies if the distribution network for natural gas is developed. For these technologies the utilisation of waste heat would approximately double the efficiency and halve the operation costs. Various external conditions will play a major part in the spreading of the local power production. The political, legal and economical external

  8. Sustainable Data Evolution Technology for Power Grid Optimization

    Energy Technology Data Exchange (ETDEWEB)

    2017-10-09

    The SDET Tool is used to create open-access power grid data sets and facilitate updates of these data sets by the community. Pacific Northwest National Laboratory (PNNL) and its power industry and software vendor partners are developing an innovative sustainable data evolution technology (SDET) to create open-access power grid datasets and facilitate updates to these datasets by the power grid community. The objective is to make this a sustained effort within and beyond the ARPA-E GRID DATA program so that the datasets can evolve over time and meet the current and future needs for power grid optimization and potentially other applications in power grid operation and planning.

  9. Ultra-Low Power Memory Design in Scaled Technology Nodes

    DEFF Research Database (Denmark)

    Zeinali, Behzad

    technology nodes, this thesis also investigates emerging non-volatile spintronics memories. In this respect, STT-MRAMs and SOT-MRAMs are studied and their design challenges are explored. To improve the read performance of STT-MRAMs, a novel non-destructive self-reference sensing scheme is proposed enabling...... technology nodes i.e. sub-50 nm. The 6T-SRAM designed based on the proposed device shows 18% leakage reduction and 54%, 6.6% and 3.1X improvement in read margin, write margin and write time, respectively, compared to the conventional 6T-SRAM cell. To address the standby power issue of SRAMs in scaled......In today’s chip design, robust memory design is one of the key challenges of process technology scaling. The steady pace of process technology scaling allows doubling memory array sizes approximately every 2 years. However, further scaling emerges undesirable effects which threaten the power...

  10. Civil engineering in power plant technology

    International Nuclear Information System (INIS)

    Krolewski, H.

    1982-01-01

    Guaranteeing our power supplies requires increasingly large, bold or novel construction works (for example, 200 m chimney with installation of stays over a wide area for a wind power plant in Spain; up to 400 m structure height on floating drill rigs). The layman admires the impressiveness with which these demand great ability and responsibility on the part of the civil engineer. The inland power station builder has to concentrate on few spectacular methods of construction or dimensions. The success of the total undertaking is however no less attributable to structural prerequisites. Civil engineering problems have to be displaced by means of static and dynamic problems in order to meet licensing requirements (planning of construction supervision, fire prevention, structure of supply and disposal). (orig.) [de

  11. Basic radiation effects in nuclear power electronics technology

    International Nuclear Information System (INIS)

    Gover, J.E.; Srour, J.R.

    1985-05-01

    An overview is presented of the effects of radiation in microelectronics technology. The approach taken throughout these notes is to review microscopic phenomena associated with radiation effects and to show how these lead to macroscopic effects in semiconductor devices and integrated circuits. Bipolar integrated circuits technology is reviewed in Appendix A. Appendix B gives present and future applications of radiation-tolerant microelectronics in nuclear power applications as well as the radiation tolerance requirements of these applications

  12. Image processing technologies in nuclear power plant monitoring

    International Nuclear Information System (INIS)

    Kubo, Katsumi; Kanemoto, Shigeru; Shimada, Hideo.

    1995-01-01

    Various monitoring activities are carried out in nuclear power plants to ensure that the high reliability requirements of such plants are met. Inspection patrols by operators are important for detecting small anomalies in equipment. Vibration, temperature, and visual images are major forms of information used in equipment inspections. We are developing remote automatic inspection technologies comprising image sensing of equipment conditions and automatic recognition of the images. This paper shows examples of image processing technologies, such as equipment monitoring using three-dimensional graphic plant models and vibration/temperature image data, and intelligent image recognition technology for detecting steam leakage. (author)

  13. The power of design product innovation in sustainable energy technologies

    CERN Document Server

    Reinders, Angele H; Brezet, Han

    2012-01-01

    The Power of Design offers an introduction and a practical guide to product innovation, integrating the key topics that are necessary for the design of sustainable and energy-efficient products using sustainable energy technologies. Product innovation in sustainable energy technologies is an interdisciplinary field. In response to its growing importance and the need for an integrated view on the development of solutions, this text addresses the functional principles of various energy technologies next to the latest design processes and innovation methods. From the perspec

  14. Trend on High-speed Power Line Communication Technology

    Science.gov (United States)

    Ogawa, Osamu

    High-speed power line communication (PLC) is useful technology to easily build the communication networks, because construction of new infrastructure is not necessary. In Europe and America, PLC has been used for broadband networks since the beginning of 21th century. In Japan, high-speed PLC was deregulated only indoor usage in 2006. Afterward it has been widely used for home area network, LAN in hotels and school buildings and so on. And recently, PLC is greatly concerned as communication technology for smart grid network. In this paper, the author surveys the high-speed PLC technology and its current status.

  15. Power electronics - key technology for renewable energy systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas

    2011-01-01

    are changing and challenging the future electrical infrastructure but also contributes steadily more to non-carbon based electricity production. Most focus in the paper is on the power electronics technologies used. In the case of photovoltaics transformer-less systems are discussed as they have the potential...... as efficient as possible. Further, the emerging climate changes is arguing to find sustainable future solutions. Of many options, two major technologies will play important roles to solve parts of those future problems. One is to change the electrical power production from conventional, fossil based energy...... sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss trends of the most emerging renewable energy sources, wind energy and photovoltaics, which by means of power electronics...

  16. Recent Trends in Hydroelectric Power Technology

    OpenAIRE

    Belqasem Aljafari

    2016-01-01

    The needed for renewable energy sources is growing day by day because of the severe energy crisis in the world today. Several renewable energy sources like hydroelectric, wind, solar, and biomass can be used for generation of electricity and for meeting our daily energy demands. Hydroelectric energy is essential for a sustainable energy future, and it is a renewable energy source depending on the natural water. As a matter of fact, hydroelectric is a primary source of sustainable power supply...

  17. The Photovolatic Power Converter: A Technology Readiness Assessment

    Science.gov (United States)

    2005-06-01

    PVPC incorporates two critical technologies – Maximum Power Point Tracking ( MPPT ) and Switch Mode Power Conversion (SMPC). Panel Voltage (V) 12 33...a load that exceeds its voltage window, such as an 18V battery. Below in Figure 3 is a schematic of a standard MPPT circuit...to optimize the power output of a 9V solar panel and can increase that Voltage up to about 16V. Therefore, as currently produced, one size does not

  18. Power Nuclear Reactors: technology and innovation for development in future

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2009-01-01

    The conference is about some historicals task of the fission technology as well as many types of Nuclear Reactors. Enrichment of fuel, wastes, research reactors and power reactors, a brief advertisment about Uruguay electric siystem and power generation, energetic worldwide, proliferation, safety reactors, incidents, accidents, Three-Mile Island accident, Chernobil accident, damages, risks, classification and description of Power reactors steam generation, nuclear reactor cooling systems, future view

  19. Software and codes for analysis of concentrating solar power technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Clifford Kuofei

    2008-12-01

    This report presents a review and evaluation of software and codes that have been used to support Sandia National Laboratories concentrating solar power (CSP) program. Additional software packages developed by other institutions and companies that can potentially improve Sandia's analysis capabilities in the CSP program are also evaluated. The software and codes are grouped according to specific CSP technologies: power tower systems, linear concentrator systems, and dish/engine systems. A description of each code is presented with regard to each specific CSP technology, along with details regarding availability, maintenance, and references. A summary of all the codes is then presented with recommendations regarding the use and retention of the codes. A description of probabilistic methods for uncertainty and sensitivity analyses of concentrating solar power technologies is also provided.

  20. Satellite dialysis nursing: technology, caring and power.

    Science.gov (United States)

    Bennett, Paul N

    2011-01-01

    This paper is a report of an exploration of nurses' perceptions of the quality of satellite dialysis care and how aspects of power that influenced quality nursing care. In Australia, the majority of people living with established kidney failure undertake haemodialysis in nurse-run satellite dialysis units. Haemodialysis nurses provide the majority of care, and their perceptions of what constitutes quality nursing care may influence their care of the person receiving haemodialysis. A critical ethnographic study was conducted where data were collected from one metropolitan satellite dialysis unit in Australia over a 12-month period throughout 2005. The methods included non-participant observation, interviews, document analysis, reflective field notes and participant feedback. Three theoretical constructs were identified: 'What is quality?', 'What is not quality?' and What influences quality?' Nurses considered technical knowledge, technical skills and personal respect as characteristics of quality. Long-term blood pressure management and arranging transport for people receiving dialysis treatment were not seen to be priorities for quality care. The person receiving dialysis treatment, management, nurse and environment were considered major factors determining quality dialysis nursing care. Aspects of power and oppression operated for nurses and people receiving dialysis treatment within the satellite dialysis context, and this environment was perceived by the nurses as very different from hospital dialysis units. © 2010 The Author. Journal of Advanced Nursing © 2010 Blackwell Publishing Ltd.

  1. Space power technology into the 21st century

    International Nuclear Information System (INIS)

    Faymon, K.A.; Fordyce, J.S.

    1984-01-01

    This paper discusses the space power systems of the early 21st century. The focus is on those capabilities which are anticipated to evolve from today's state-of-the-art and the technology development programs presently in place or planned for the remainder of the century. The power system technologies considered include solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include nickel-hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state-of-the-art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and earth to space and space to space transportation systems. The various space power/energy system technologies anticipated to be operational by the early 21st century are matched to these missions. 18 references

  2. NASA Radioisotope Power System Program - Technology and Flight Systems

    Science.gov (United States)

    Sutliff, Thomas J.; Dudzinski, Leonard A.

    2009-01-01

    NASA sometimes conducts robotic science missions to solar system destinations for which the most appropriate power source is derived from thermal-to-electrical energy conversion of nuclear decay of radioactive isotopes. Typically the use of a radioisotope power system (RPS) has been limited to medium and large-scale missions, with 26 U,S, missions having used radioisotope power since 1961. A research portfolio of ten selected technologies selected in 2003 has progressed to a point of maturity, such that one particular technology may he considered for future mission use: the Advanced Stirling Converter. The Advanced Stirling Radioisotope Generator is a new power system in development based on this Stirling cycle dynamic power conversion technology. This system may be made available for smaller, Discovery-class NASA science missions. To assess possible uses of this new capability, NASA solicited and funded nine study teams to investigate unique opportunities for exploration of potential destinations for small Discovery-class missions. The influence of the results of these studies and the ongoing development of the Advanced Stirling Radioisotope Generator system are discussed in the context of an integrated Radioisotope Power System program. Discussion of other and future technology investments and program opportunities are provided.

  3. High Power Electronics - Key Technology for Wind Turbines

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2014-01-01

    In this chapter the developments of technology and market trends in wind power application are discussed. Different wind turbine concepts as well as some dominant and promising power converter solutions are reviewed respectively. Furthermore the control methods, grid demands as well as the emerging...... reliability challenges for the future wind turbines are explained. It is concluded that the wind turbine behavior/performance can be significantly improved by introducing power electronics, and there will be higher requirements for the power electronics performances in wind power application....

  4. Trends of DC Power Technologies and their Applications

    Science.gov (United States)

    Hirose, Keiichi

    Renewable energy resources such as photovoltaic panels and wind turbines have been increasing rapidly to prevent global warming. The number of energy storage systems and many types of batteries is also growing to keep supply and demand balance in local areas. Interfaces of these facilities are direct current (DC). Most of modern electrical appliances also use DC power inside them. Therefore, DC power technologies with some features are expected to meet requirements for new electrical power systems, for example smartgrids, microgrids, and other electrical applications. In recent years, DC power applications in data centers, commercial buildings, and dwellings have been developed in Japan, the U.S. European countries, and so on. At the same time, international standardization activities had started. This paper describes trends of DC power technologies and their applications.

  5. A methodology for evaluating ''new'' technologies in nuclear power plants

    International Nuclear Information System (INIS)

    Korsah, K.; Clark, R.L.; Holcomb, D.E.

    1994-01-01

    As obsolescence and spare parts issues drive nuclear power plants to upgrade with new technology (such as optical fiber communication systems), the ability of the new technology to withstand stressors present where it is installed needs to be determined. In particular, new standards may be required to address qualification criteria and their application to the nuclear power plants of tomorrow. This paper discusses the failure modes and age-related degradation mechanisms of fiber optic communication systems, and suggests a methodology for identifying when accelerated aging should be performed during qualification testing

  6. High power LEDs - technology status and market applications

    International Nuclear Information System (INIS)

    Steranka, F.M.; Bhat, J.; Collins, D.; Cook, L.; Craford, M.G.; Fletcher, R.; Gardner, N.; Grillot, P.; Goetz, W.; Keuper, M.; Khare, R.; Kim, A.; Krames, M.; Harbers, G.; Ludowise, M.; Martin, P.S.; Misra, M.; Mueller, G.; Mueller-Mach, R.; Rudaz, S.; Shen, Y.C.; Steigerwald, D.; Subramanya, S.; Trottier, T.; Wierer, J.J.

    2002-01-01

    High power light emitting diodes (LEDs) continue to increase in output flux with the best III-nitride based devices today emitting over 150 lm of white, cyan, or green light. The key design features of such products will be covered with special emphasis on power packaging, flip-chip device design, and phosphor coating technology. The high-flux performance of these devices is enabling many new applications for LEDs. Two of the most interesting of these applications are LCD display backlighting and vehicle forward lighting. The advantages of LEDs over competing lighting technologies will be covered in detail. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  7. Technology success: Integration of power plant reliability and effective maintenance

    International Nuclear Information System (INIS)

    Ferguson, K.

    2008-01-01

    The nuclear power generation sector has a tradition of utilizing technology as a key attribute for advancement. Companies that own, manage, and operate nuclear power plants can be expected to continue to rely on technology as a vital element of success. Inherent with the operations of the nuclear power industry in many parts of the world is the close connection between efficiency of power plant operations and successful business survival. The relationship among power plant availability, reliability of systems and components, and viability of the enterprise is more evident than ever. Technology decisions need to be accomplished that reflect business strategies, work processes, as well as needs of stakeholders and authorities. Such rigor is needed to address overarching concerns such as power plant life extension and license renewal, new plant orders, outage management, plant safety, inventory management etc. Particular to power plant reliability, the prudent leveraging of technology as a key to future success is vital. A dominant concern is effective asset management as physical plant assets age. Many plants are in, or are entering in, a situation in which systems and component design life and margins are converging such that failure threats can come into play with increasing frequency. Wisely selected technologies can be vital to the identification of emerging threats to reliable performance of key plant features and initiating effective maintenance actions and investments that can sustain or enhance current reliability in a cost effective manner. This attention to detail is vital to investment in new plants as well This paper and presentation will address (1) specific technology success in place at power plants, including nuclear, that integrates attention to attaining high plant reliability and effective maintenance actions as well as (2) complimentary actions that maximize technology success. In addition, the range of benefits that accrue as a result of

  8. A Study of KHNP Nuclear Power Plant Technology Level Evaluation

    International Nuclear Information System (INIS)

    Yang, Seung Han; Lee, Sung Jin; Kim, Yo Han

    2016-01-01

    KHNP's 2030 mid and long term plan goal in technology field is securing global No. 1 NPP technology level. Quantifying technology level for this purpose, technology level at present should be surveyed. Technology level of South Korea has been surveyed by KISTEP (Korea Institute of S and T Evaluation and Planning) every two year but the technology level of KHNP has not been surveyed by any organization including KHNP itself. Also the size of technology surveyed by KISTEP was too broad to quantifying technology level of KHNP. In this paper, technology level of KHNP and South Korea are presented. In this study, NPP related technologies were divided into Level I and Level II technologies and conducted a survey for each Level II technologies using Delphi questionnaire survey that is widely used in technology level evaluation. The results of technology level and gap will be used from strategic point of view and also as a reference data for technology improvement planning

  9. Advanced electrical power system technology for the all electric aircraft

    Science.gov (United States)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764

  10. Implications of using clean technologies to power selected ASEAN countries

    International Nuclear Information System (INIS)

    Das, Anjana; Ahlgren, Erik O.

    2010-01-01

    This paper focuses on energy system development of the three largest Association of South East Asian Nations (ASEAN) countries: Indonesia, Philippines and Vietnam. The energy infrastructures in these counties are in the process of rapid development and, therefore, technology choices are critical. Applying the energy system model MARKAL and scenario analysis, this paper examines and quantifies the role of clean and advanced energy technologies for efficient local resource exploitation and improving energy security and environmental conditions. The main focus is on the power sector and the paper also addresses the potential ASEAN markets for European energy technologies. The paper concludes that there is a large potential market for clean and advanced energy technologies in the studied countries. If adopted, these technologies will bring several benefits like reduction in primary energy requirement, reduced investments requirement in the power sector and other parts of the energy infrastructure, reduced import of primary energy, reduced CO 2 emissions and local pollution, reduced energy system costs and marginal cost of electricity supply. Finally, barriers for transfer and diffusion of advanced energy technologies are discussed.

  11. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    Science.gov (United States)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  12. Progress of innovation of electrical power technology in FY2013

    International Nuclear Information System (INIS)

    Mayumi, Akihiko; Tanaka, Masanori; Yamaguchi, Hiroshi

    2014-01-01

    The following is the description of technical innovations at 12 companies including Tokyo Electric Power Company, Chubu Electric Power Company, and Japan Atomic Power Company. Tokyo Electric Power Company presented (1) the developments of a wet-type air decontaminating apparatus for inside/outside of power plant, (2) a robot to be used for field investigation at the Fukushima Daiichi nuclear power plant, (3) a visualization technology using laser for detection, and (4) removal of debris at the power plant. Chubu Electric Power Company presented application of a flap gate to the opening on exterior wall of building as a countermeasure against tsunami at the Hamaoka nuclear power plant. Hokuriku Electric Power Company presented a nuclear reactor operation training simulator for full-scope operation training for the Shika nuclear power station. Chugoku Electric Power Company presented their efforts in implementing a predictive monitoring system at the Shimane Nuclear Power Station. Shikoku Electric Power Company presented the installation of a weir with a flap gate to the interior of seawater pit as a countermeasure against tsunami. Japan Atomic Power Company presented an impact assessment method of fallout during transportation of materials caused by nuclear reactor accident, design and development of a square-type shielding container for radioactive wastes, a strength test on concrete materials for the safety design of Tsuruga Power Station Units 3 and 4, decommissioning of nuclear power plant, and research and development of the fast breeder reactor. (S.Y.)

  13. New technology for BWR power plant control and instrumentation

    International Nuclear Information System (INIS)

    Takano, Yoshiyuki; Nakamura, Makoto; Murata, Fumio.

    1992-01-01

    Nuclear power plants are facing strong demands for higher reliability and cost-performance in their control and instrumentation systems. To meet these needs, Hitachi is developing advanced control and instrumentation technology by rationalizing the conventional technology in that field. The rationalization is done through the utilization of reliable digital technology and optical transmission technology, and others, which are now commonly used in computer applications. The goal of the development work is to ensure safe, stable operation of the plant facilities and to secure harmony between man and machine. To alleviate the burdens of the operators, the latest electronic devices are being employed to create an advanced man-machine interface, and to promote automatic operation of the plant based upon the automatic operation of individual systems. In addition, the control and instrumentation system, including the safety system, incorporates more and more digital components in order to further enhance the reliability and maintainability of the plant. (author)

  14. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  15. Integration of Pneumatic Technology in Powered Mobility Devices.

    Science.gov (United States)

    Daveler, Brandon; Wang, Hongwu; Gebrosky, Benjamin; Grindle, Garrett G; Schneider, Urs; Cooper, Rory A

    2017-01-01

    Advances in electric motors, electronics, and control systems have enhanced the capability and drivability of electric power mobility devices over the last 60 years. Yet, battery technologies used in powered mobility devices (PMDs) have not kept pace. Recent advances in pneumatic technology, primarily the high torque, low speed design of rotary piston air motors, directly align with the needs of PMD. Pneumatic technology has advantages over battery-powered technology, including lighter weight, lower operating costs, decreased environmental impact, better reliability, and increased safety. Two prototypes were created that incorporated rotary piston air motors, high-pressure air tanks, and air-pressure regulators. Prototype 1 was created by modifying an existing electric PMD. Range tests were performed to determine the feasibility of pneumatic technology and the optimal combination of components to allow the longest range possible at acceptable speeds over ideal conditions. Using a 1.44 L air tank for feasibility testing, prototype 1 was capable of traveling 800 m, which confirmed the feasibility of pneumatic technology usage in PMDs. Prototype 2 was designed based on the testing results from prototype 1. After further optimization of prototype 2, the average maximum range was 3,150 m. Prototype 2 is up to 28.3% lighter than an equivalent size electric PMD and can be fully recharged in approximately 2 minutes. It decreases the cost of PMDs by approximately $1,500, because batteries do not need to be replaced over the lifetime of the device. The results provide justification for the use of pneumatic technology in PMDs.

  16. Guidelines for wireless technology in nuclear power plants

    International Nuclear Information System (INIS)

    Shankar, Ramesh

    2003-01-01

    As a result of technological breakthroughs, increased demand for the use of wireless technology is common in all industries today, and the electric power industry is no exception. Already, wireless technology has many applications in our industry, including - but not limited to - cellular phone systems, paging systems, two-way radio communication systems, dose management and tracking systems, and operator logs. EPRI has prepared a comprehensive guidelines document to support evaluation of wireless technologies in power plants for integrated (voice/data/video) communication, remote equipment and system monitoring, and to complement an electronic procedures support system (EPSS). The guidelines effort focuses on the development of a rules structure to support the deployment of wireless devices in a plant without compromising continuous, safe, and reliable operation. The guidelines document consists of two volumes. The first volume is introductory in nature and lays out the business case for applying wireless technologies. The intended audience is senior plant management personnel and utility industry executives. This volume contains background information, templates, worksheets, processes, and presentations that will allow internal sponsors to create business cases for piloting wireless projects. The second volume includes guidance on implementation and regulatory issues relevant to plant implementation. It covers the following application areas: implementation of integrated communication capability, equipment monitoring, work quality control, time and knowledge management, and business process automation. It details regulatory issues relevant to the adoption of wireless technology within nuclear power plants and offers guidance on preparing for and executing pilot and implementations of wireless technologies. The paper will cover important aspects on the guidelines. (author)

  17. A Study on Test Technology to Diagnose the Power Apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. H.; Kang, Y. S.; Jeon, Y. K.; Lee, W. Y.; Kang, D. S.; Kyu, H. S.; Sun, J. H.; Jo, K. H. [Korea Electrotechnology Research Institute (Korea, Republic of); Jung, J. S.; Mun, Y. T.; Lee, K. H.; Jung, E. H.; Kim, J. H. [Korea Water Resources Corporation (Korea, Republic of)

    1997-02-01

    In this study, we have educated KOWACO(Korea Water Resources Corporation) specialists about the insulation diagnostic technology and trained them the insulation diagnostic test and estimation method of power apparatus. The main results of this study are as follows; A. Education of basic high-voltage engineering. B. Research of insulation characteristic and deterioration mechanism in power apparatus C. Discussion on high-voltage test standard specifications. D. Study on insulation deterioration diagnostics in power apparatus. E. Field testing of insulation diagnosis in power apparatus. F. Engineering of insulation diagnostic testing apparatus to diagnose power apparatus. KOWACO specialists are able to diagnose insulation diagnostic test of power apparatus through this study. As they have instruments to diagnose power apparatus, they can do the test and estimation of the power apparatus insulation diagnosis. (author). refs., figs., tabs.

  18. High Thrust-to-Power Annular Engine Technology

    Science.gov (United States)

    Patterson, Michael J.; Thomas, Robert E.; Crofton, Mark W.; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground/in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  19. Overview on the high power excimer laser technology

    Science.gov (United States)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  20. Power amplifier automatic test system based on LXI bus technology

    Science.gov (United States)

    Li, Yushuang; Chen, Libing; Men, Tao; Yang, Qingfeng; Li, Ning; Nie, Tao

    2017-10-01

    The power amplifier is an important part of the high power digital transceiver module, because of its great demand and diverse measurement indicators, an automatic test system is designed to meet the production requirements of the power amplifiers as the manual test cannot meet the demand of consistency. This paper puts forward the plan of the automatic test system based on LXI bus technology, introduces the hardware and software architecture of the system. The test system has been used for debugging and testing the power amplifiers stably and efficiently, which greatly saves work force and effectively improves productivity.

  1. Utilizing Solar Power Technologies for On-Orbit Propellant Production

    Science.gov (United States)

    Fikes, John C.; Howell, Joe T.; Henley, Mark W.

    2006-01-01

    The cost of access to space beyond low Earth orbit may be reduced if vehicles can refuel in orbit. The cost of access to low Earth orbit may also be reduced by launching oxygen and hydrogen propellants in the form of water. To achieve this reduction in costs of access to low Earth orbit and beyond, a propellant depot is considered that electrolyzes water in orbit, then condenses and stores cryogenic oxygen and hydrogen. Power requirements for such a depot require Solar Power Satellite technologies. A propellant depot utilizing solar power technologies is discussed in this paper. The depot will be deployed in a 400 km circular equatorial orbit. It receives tanks of water launched into a lower orbit from Earth, converts the water to liquid hydrogen and oxygen, and stores up to 500 metric tons of cryogenic propellants. This requires a power system that is comparable to a large Solar Power Satellite capable of several 100 kW of energy. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotates once per orbit to track the Sun. The majority of the power is used to run the electrolysis system. Thermal control is maintained by body-mounted radiators; these also provide some shielding against orbital debris. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. Emphasis is placed on the Water-Ice to Cryogen propellant production facility. A very high power system is required for cracking (electrolyzing) the water and condensing and refrigerating the resulting oxygen and hydrogen. For a propellant production rate of 500 metric tons (1,100,000 pounds) per year, an average electrical power supply of 100 s of kW is required. To make the most efficient use of space solar power, electrolysis is performed only during the portion of the orbit that the Depot is in sunlight, so roughly twice this power level is needed for operations in sunlight

  2. Artificial intelligence technologies for power system operations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, S.N.; Cardozo, E.

    1986-01-01

    Researchers in this study examined the potential of artificial intelligence (AI) technologies for improving problem-solving strategies in 16 power system operations. To demonstrate the use of AI in the area they considered most promising, contingency selection-security assessment, they also developed two programs - one to simulate network protection schemes, the other to diagnose faults.

  3. Information Technology for Nuclear Power Plant Configuration Management

    International Nuclear Information System (INIS)

    2010-07-01

    Configuration management (CM) is an essential component of nuclear power plant design, construction and operation. The application of information technology (IT) offers a method to automate and ensure the timely and effective capture, processing and distribution of key nuclear power plant information to support CM principles and practical processes and procedures for implementation of CM at nuclear power plants. This publication reviews some of the principles established in IAEA-TECDOC-1335, 'Configuration Management in Nuclear Power Plants.' It also recaps tenets laid out in IAEA- TECDOC-1284, 'Information Technology Impact on Nuclear Power Plant Documentation' that supports CM programmes. This publication has been developed in conjunction with and designed to support these other two publications. These three publications combined provide a comprehensive discussion on configuration management, information technology and the relationship between them. An extensive discussion is also provided in this publication on the role of the design basis of the facility and its control through the CM process throughout the facility's lifetime. While this report was developed specifically for nuclear power plants, the principles discussed can be usefully applied to any high hazard nuclear facility

  4. Wireless Power Transmission Technology State-Of-The-Art

    Science.gov (United States)

    Dickinson, R. M. T.

    2002-01-01

    This first Bill Brown SSP La Crescenta, CA 91214 technology , including microwave and laser systems for the transfer of electric , as related to eventually developing Space Solar Power (SSP) systems. Current and past technology accomplishments in ground based and air and space applied energy conversion devices, systems and modeling performance and cost information is presented, where such data are known to the author. The purpose of the presentation is to discuss and present data to encourage documenting and breaking the current technology records, so as to advance the SOA in WPT for SSP . For example, regarding DC to RF and laser converters, 83% efficient 2.45 GHz cooker-tube magnetrons with 800W CW output have been jointly developed by Russia and US. Over 50% wa11-plug efficient 1.5 kW/cm2 CW, water cooled, multibeam, solid state laser diode bar-arrays have been developed by LLNL at 808 nm wavelength. The Gennans have developed a 36% efficient, kW level, sing1e coherent beam, lateral pumped semiconductor laser. The record for end-to-end DC input to DC output power overall WPT link conversion efficiency is 54% during the Raytheon-JPL experiments in 1975 for 495.6 W recovered at 1.7-mrange at 2.4469 GAz. The record for usefully recovered electric power output ( as contrasted with thennally induced power in structures) is 34 kW OC output at a range of 1.55 km, using 2.388 GHz microwaves, during the JPL- Raytheon experiments by Bill Brown and the author at Goldstone, CA in 1975. The GaAs-diode rectenna array had an average collection-conversion efficiency of 82.5%. A single rectenna element operating a 6W RF input, developed by Bill Brown demonstrated 91.4% efficiency. The comparable record for laser light to OC output power conversion efficiency of photovoltaics is 590/0. for AlGaAs at 1.7 Wand 826nm wavelength. Russian cyclotron-wave converters have demonstrated 80% rectification efficiency at S-band. Concerning WPT technology equipment costs, magnetron conversion

  5. Powered by technology or powering technology?---Belief-based decision-making in nuclear power and synthetic fuel

    Science.gov (United States)

    Yang, Chi-Jen

    The overarching question in this study is how and why technical-fixes in energy policy failed. In the post-WWII era, civilian nuclear power and synthetic fuel had both been top priorities on the U.S. national policy agenda during certain periods of time. Nuclear power was promoted and pursued persistently with great urgency for over two decades. In contrast, synthetic fuel policy suffered from boom-and-bust cycles. The juxtaposition of policy histories of nuclear power and synthetic fuel highlights many peculiarities in policymaking. The U.S. government forcefully and consistently endorsed the development of civilian nuclear power for two decades. It adopted policies to establish the competitiveness of civilian nuclear power far beyond what would have occurred under free-market conditions. Even though synthetic fuel was characterized by a similar level of economic potential and technical feasibility, the policy approach toward synthetic fuel was almost the opposite of nuclear power. Political support usually stopped when the development of synthetic fuel technology encountered economic difficulties. The contrast between the unfaltering faith in nuclear power and the indeterminate attitude toward synthetic fuel raises many important questions. I argue that these diverging paths of development can be explained by exploring the dominant government ideology of the time or "ideology of the state" as the sociology literature describes it. The price-determining approach was a result of government preoccupied with fighting the Cold War. The U.S. intentionally idealized and deified nuclear power to serve its Cold War psychological strategy. These psychological maneuverings attached important symbolic meaning to nuclear power. The society-wide enthusiasm and resulting bandwagon market are better understood by taking the role of symbolism in the political arena into account. On the other hand, a "welfare state" ideology that stood behind synthetic fuel was confused

  6. Millimeter-Wave Wireless Power Transfer Technology for Space Applications

    Science.gov (United States)

    Chattopadhyay, Goutam; Manohara, Harish; Mojarradi, Mohammad M.; Vo, Tuan A.; Mojarradi, Hadi; Bae, Sam Y.; Marzwell, Neville

    2008-01-01

    In this paper we present a new compact, scalable, and low cost technology for efficient receiving of power using RF waves at 94 GHz. This technology employs a highly innovative array of slot antennas that is integrated on substrate composed of gold (Au), silicon (Si), and silicon dioxide (SiO2) layers. The length of the slots and spacing between them are optimized for a highly efficient beam through a 3-D electromagnetic simulation process. Antenna simulation results shows a good beam profile with very low side lobe levels and better than 93% antenna efficiency.

  7. New Pulsed Power Technology for High Current Accelerators

    International Nuclear Information System (INIS)

    Caporaso, G J

    2002-01-01

    Recent advances in solid-state modulators now permit the design of a new class of high current accelerators. These new accelerators will be able to operate in burst mode at frequencies of several MHz with unprecedented flexibility and precision in pulse format. These new modulators can drive accelerators to high average powers that far exceed those of any other technology and can be used to enable precision beam manipulations. New insulator technology combined with novel pulse forming lines and switching may enable the construction of a new type of high gradient, high current accelerator. Recent developments in these areas will be reviewed

  8. Understanding wind power technology theory, deployment and optimisation

    CERN Document Server

    Schaffarczyk, Alois

    2014-01-01

    Wind energy technology has progressed enormously over the last decade. In coming years it will continue to develop in terms of power ratings, performance and installed capacity of large wind turbines worldwide, with exciting developments in offshore installations. Designed to meet the training needs of wind engineers, this introductory text puts wind energy in context, from the natural resource to the assessment of cost effectiveness and bridges the gap between theory and practice. The thorough coverage spans the scientific basics, practical implementations and the modern state of technology

  9. The application of welding technology in power plant manufacture

    International Nuclear Information System (INIS)

    Price, A.T.; Chew, B.

    1989-02-01

    A strategy is presented for the application of welding technology in the manufacture of power plant. A flow chart description is adopted in the present paper to provide a general framework outlining the sequence of activities leading to manufacture. The broad chronological order of events is treated under the three headings, Component Design, Welding Development, and Implementation. Important factors that have to be considered at each of these stages are shown in subsidiary flow charts together with short notes to provide context and an aide memoire for those involved in welding technology. (author)

  10. Fission Power System Technology for NASA Exploration Missions

    Science.gov (United States)

    Mason, Lee; Houts, Michael

    2011-01-01

    Under the NASA Exploration Technology Development Program, and in partnership with the Department of Energy (DOE), NASA is conducting a project to mature Fission Power System (FPS) technology. A primary project goal is to develop viable system options to support future NASA mission needs for nuclear power. The main FPS project objectives are as follows: 1) Develop FPS concepts that meet expected NASA mission power requirements at reasonable cost with added benefits over other options. 2) Establish a hardware-based technical foundation for FPS design concepts and reduce overall development risk. 3) Reduce the cost uncertainties for FPS and establish greater credibility for flight system cost estimates. 4) Generate the key products to allow NASA decisionmakers to consider FPS as a preferred option for flight development. In order to achieve these goals, the FPS project has two main thrusts: concept definition and risk reduction. Under concept definition, NASA and DOE are performing trade studies, defining requirements, developing analytical tools, and formulating system concepts. A typical FPS consists of the reactor, shield, power conversion, heat rejection, and power management and distribution (PMAD). Studies are performed to identify the desired design parameters for each subsystem that allow the system to meet the requirements with reasonable cost and development risk. Risk reduction provides the means to evaluate technologies in a laboratory test environment. Non-nuclear hardware prototypes are built and tested to verify performance expectations, gain operating experience, and resolve design uncertainties.

  11. Thermionic integrated circuit technology for high power space applications

    International Nuclear Information System (INIS)

    Yadavalli, S.R.

    1984-01-01

    Thermionic triode and integrated circuit technology is in its infancy and it is emerging. The Thermionic triode can operate at relatively high voltages (up to 2000V) and at least tens of amperes. These devices, including their use in integrated circuitry, operate at high temperatures (800 0 C) and are very tolerant to nuclear and other radiations. These properties can be very useful in large space power applications such as that represented by the SP-100 system which uses a nuclear reactor. This paper presents an assessment of the application of thermionic integrated circuitry with space nuclear power system technology. A comparison is made with conventional semiconductor circuitry considering a dissipative shunt regulator for SP-100 type nuclear power system rated at 100 kW. The particular advantages of thermionic circuitry are significant reductions in size and mass of heat dissipation and radiation shield subsystems

  12. Free-piston Stirling technology for space power

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1994-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed in this paper is the completion of the Space Power Demonstrator Engine (SPDE) testing - culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engines (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding. The success of the SPDE at 650 K has resulted in a more ambitious Stirling endeavor - the design, fabrication, test and evaluation of a designed-for-space 25 kW per cylinder Stirling Space Engine (SSE). The SSE will operate at a hot metal temperature of 1050 K using superalloy materials. This design is a low temperature confirmation of the 1300 K design. It is the 1300 K free-piston Stirling power conversion system that is the ultimate goal; to be used in conjunction with the SP-100 reactor. The approach to this goal is in three temperature steps. However, this paper concentrates on the first two phases of this program - the 650 K SPDE and the 1050 K SSE

  13. A cooperative power trading system based on satisfaction space technology

    International Nuclear Information System (INIS)

    Matsumoto, K.; Maruo, T.; Mori, N.

    2006-01-01

    This paper proposed a new power trading system model designed to ensure customer cooperation with power suppliers. Designed as an Internet application, the cooperative power trading system modelled power markets using a satisfaction space technology A network model of electric power trading systems was developed to create a communication network system that consisted of suppliers, customers, and auctioneers. When demand exceeded supply, the auctioneer in the trading system requested power reductions from customers. Rewards were paid to maintain the degree of satisfaction of the customers. The supplier's evaluation function was defined as a function of market price and power supply. A power reducing method was developed using a combinatorial optimization technique. Suppliers and customers submitted bids for initial power trading quantities, while the auctioneer decided a market price based on bidding values. After receiving the market price, suppliers and customers submitted a second set of bids for expected power trading quantities. A power reduction plan was then developed by the auctioneer to balance the amount of power supply and demand. The system can be applied to customers whose evaluation functions cannot be estimated beforehand, as the auctioneer was able to choose the most efficient power reduction point selected by consumers using a maximum steep slope method. Simulations conducted to validate the trading system demonstrated that the system is capable of choosing efficient energy reduction plans. 6 refs., 4 tabs., 3 figs

  14. A Review of Tribomaterial Technology for Space Nuclear Power Systems

    Science.gov (United States)

    Stanford, Malcolm K.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has recently proposed a nuclear closed-cycle electric power conversion system for generation of 100-kW of electrical power for space exploration missions. A critical issue is the tribological performance of sliding components within the power conversion unit that will be exposed to neutron radiation. This paper presents a review of the main considerations that have been made in the selection of solid lubricants for similar applications in the past as well as a recommendations for continuing development of the technology.

  15. Power Generation Technology Choice in the Presence of Climate Policy

    International Nuclear Information System (INIS)

    Pettersson, Fredrik

    2005-01-01

    The overall purpose of this thesis is to analyze power generation technology choices in the presence of climate policy. Special attention is paid to the diffusion of renewable power technologies following a carbon pricing policy, and this topic is analyzed in two self-contained papers. The overall objective of paper 1 is to analyze how future investments in the Swedish power sector can be affected by carbon pricing policies following the Kyoto Protocol. In the first part we focus on the price of carbon following the Kyoto commitments and to what extent this policy will affect the relative competitiveness of the available investment alternatives. The second part pays attention to the possible impacts of technology learning - and the resulting cost decreases - on the economics of power generation in the presence of climate policy. The first part considers the majority of power generation technologies available in Sweden, while the second part focuses solely on the competition between combined cycle natural gas plants and the cheapest renewable power alternative, wind power. Methodologically, we approach the above issues from the perspective of a power generator who considers investing in new generation capacity. This implies that we first of all assess the lifetime engineering costs of different power generation technologies in Sweden, and analyze the impact of carbon pricing on the competitive cost position of these technologies under varying rate-of-return requirements. Overall the results indicate that in general it is not certain that compliance with the Kyoto commitments implies substantial increases in renewable power sources. If, therefore, renewable power sources are favored for reasons beyond climate policy additional policy instruments will be needed. The purpose of paper 2 is to analyze the costs for reducing CO 2 emissions in the power-generating sectors in Croatia, the European part of Russia, Macedonia, Serbia and the Ukraine in 2020 by using a linear

  16. Technology Development Prospects for the Indian Power Sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The Indian power sector will face numerous challenges over the next four decades. More than one third of India's population currently do not have access to electricity. Urgent action is needed to overcome this problem of energy poverty. At the same time rapid economic growth is projected to increase electricity demand by fivefold to sixfold between now and 2050. Massive investments will be needed to meet this increased demand, but this will also create unique opportunities to transform the power sector towards a low-carbon future. This Information Paper presents in more detail the analysis for India published in Energy Technology Perspectives 2010. The paper investigates the best way of achieving deep CO2 emission cuts in the Indian power system while allowing the Indian economy to continue growing and meeting the challenge of alleviating energy poverty. It does so from a techno-economic perspective - building on detailed resource and technology data for India - and identifies the key power sector technologies needed for India to realise such a transition.

  17. Digital Technology for Construction Period Reduction of Nuclear Power Plants

    International Nuclear Information System (INIS)

    You, Y. M.; Suh, K. Y.

    2009-01-01

    PHILOSOPHIA, Inc. and Seoul National University have jointly developed a first-of-a-kind engineering (FOAKE) solution. The solution lends itself to the four-plus-dimensional (4 + D) Technology TM resorting to three -dimensional (3D) computer-aided design (CAD) digital mockup (DMU). The aim is to minimize the working hours via process optimization by real-time exchange of design and process information in the ubiquitous system. The 4 + D Technology TM in the 3D virtual reality (VR) space and time plus cost coordinates, is developed to reduce the construction time as well as cost of nuclear power plants (NPPs) by optimizing the manufacturing procedure and construction process. The 4 + D Technology TM anchored to the 3D CAD DMU allows the interference of the NPP components to be checked upon early in the design stage, and the process sequences to be optimized. Moreover, its ergonomic and robotic technologies enable simulation of all the aspects of the workers, robots and machines involved in the construction process. One of the greatest advantages of the 4 + D Technology TM lies in that any change of the overall process procedures can virtually be tested. On the other hand, it shall financially be unbearable to alter the procedures consisting of plenty of structures and components, complicated detailed processes and long work hours in the physical space

  18. Acid fuel cell technologies for vehicular power plants

    Science.gov (United States)

    Lynn, D. K.; McCormick, J. B.; Bobbett, R. E.; Huff, J. R.; Srinivasan, S.

    Three fuel cell technologies were assessed specifically for application as vehicular power plants. The considered cells include the phosphoric acid fuel cell (PAFC), the trifluoromethanesulfonic acid (TFMSA) fuel cell, and the solid polymer electrolyte (SPE) fuel cell. The results of the assessments were used to calculate the performance of a consumer vehicle with a number of different fuel cell power plants. It was found that the near-term PAFC system can power the base-line vehicle with reasonable acceleration, a range of over 400 miles on 20 gallons of methanol, and a 92% improvement in energy efficiency over the gasoline internal combustion engine (ICE) version. An SPE fuel cell system provides substantially improved performance and range with a 149% higher energy efficiency than the ICE-powered version. The advanced vehicle (ETV-1) with an SPE system provides performance competitive with today's gasoline ICE-powered vehicles and a gasoline energy equivalent of 66 mpg.

  19. Low power RF circuit design in standard CMOS technology

    CERN Document Server

    Alvarado, Unai; Adín, Iñigo

    2012-01-01

    Low Power Consumption is one of the critical issues in the performance of small battery-powered handheld devices. Mobile terminals feature an ever increasing number of wireless communication alternatives including GPS, Bluetooth, GSM, 3G, WiFi or DVB-H. Considering that the total power available for each terminal is limited by the relatively slow increase in battery performance expected in the near future, the need for efficient circuits is now critical. This book presents the basic techniques available to design low power RF CMOS analogue circuits. It gives circuit designers a complete guide of alternatives to optimize power consumption and explains the application of these rules in the most common RF building blocks: LNA, mixers and PLLs. It is set out using practical examples and offers a unique perspective as it targets designers working within the standard CMOS process and all the limitations inherent in these technologies.

  20. Water chemistry technology. One of the key technologies for safe and reliable nuclear power plant operation

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Katsumura, Yosuke

    2013-01-01

    Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. Continuous and collaborative efforts of plant manufacturers and plant operator utilities have been focused on optimal water chemistry control, for which, a trio of requirements for water chemistry should be simultaneously satisfied: (1) better reliability of reactor structures and fuel rods; (2) lower occupational exposure and (3) fewer radwaste sources. Various groups in academia have carried out basic research to support the technical bases of water chemistry in plants. The Research Committee on Water Chemistry of the Atomic Energy Society of Japan (AESJ), which has now been reorganized as the Division of Water Chemistry (DWC) of AESJ, has played important roles to promote improvements in water chemistry control, to share knowledge about and experiences with water chemistry control among plant operators and manufacturers and to establish common technological bases for plant water chemistry and then to transfer them to the next generation of plant workers engaged in water chemistry. Furthermore, the DWC has tried and succeeded arranging R and D proposals for further improvement in water chemistry control through roadmap planning. In the paper, major achievements in plant technologies and in basic research studies of water chemistry in Japan are reviewed. The contributions of the DWC to the long-term safe management of the damaged reactors at the Fukushima Daiichi Nuclear Power Plant until their decommissioning are introduced. (author)

  1. Compressed Natural Gas Technology for Alternative Fuel Power Plants

    Science.gov (United States)

    Pujotomo, Isworo

    2018-02-01

    Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%), and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant) be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant) has a high electrical efficiency (45%). Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG) Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.

  2. Compressed Natural Gas Technology for Alternative Fuel Power Plants

    Directory of Open Access Journals (Sweden)

    Pujotomo Isworo

    2018-01-01

    Full Text Available Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%, and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant has a high electrical efficiency (45%. Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.

  3. Macroeconomic effects and benefits of different power generation technologies

    International Nuclear Information System (INIS)

    Maeenpaeae, I.; Tervo, H.

    1994-01-01

    The report compares the overall economic effects and benefits of different power station technologies using the FMS long-term simulation model for the Finnish economy. Special emphasis is placed on domestic fuels and new technologies that are on the average of commercialization. The overall economic benefits are compared as such and also assuming the implementation of targets for reductions in carbon dioxide emissions. Without environmental targets nuclear power, natural gas combined cycle and coal gasification combined cycle were shown to be macroeconomically the most profitable means of generating electricity. For the municipal cogeneration of heat and power, a natural gas diesel plant was the most advantageous, followed by solid fuel gasification combined cycle plants. Upon implementation of CO 2 -emission reduction targets nuclear power would remain the most beneficial alternative, but the benefits of wood and wind power rises would be nearly as great. For municipal cogeneration, the wood gasification combined cycle type power plant surpasses gas diesel and the relative benefits of the fluidized bed combustion of wood also increases. (7 refs., 9 tabs.)

  4. SIW based multilayer transition and power divider in LTCC technology

    KAUST Repository

    Abuzaid, Hattan

    2013-06-01

    A multilayer transition and balanced power divider are presented for millimeter-wave system-on-package (SoP). These two components operate at Ka-band and exploit the substrate integrate waveguide (SIW) technology with its shielding characteristics and the Low-temperature co-fired ceramics (LTCC) technology for its high density integration. A coupling slot has been used to perform vertical integration, which can be easily optimized through its length. The measured input return loss within the bandwidth of interest (32 GHz-38 GHz) is less than -15 dB and -18 dB for the multilayer transition and the power divider, respectively. The lateral dimensions of a multilayer system, such as a feed network of an array, can be greatly reduced by employing these 3D slot-coupled components. © 2013 IEEE.

  5. Advanced power flow technologies for high current ICF accelerators

    International Nuclear Information System (INIS)

    VanDevender, J.P.; McDaniel, D.H.

    1978-01-01

    Two new technologies for raising the power density in high current, inertial confinement fusion accelerators have been developed in the past two years. Magnetic flashover inhibition utilizes the self-magnetic fields around the vacuum insulator surface to inhibit surface flashover; average electric fields of 40 Mv/m at magnetic fields of 1.1 T have been achieved. Self-magnetic insulation of long, vacuum transmission lines has been used to transport power at 1.6 x 10 14 W/m 2 over six meters and up to 1.6 x 10 15 W/m 2 over short distances in a radial anode-cathode feed. The recent data relevant to these new technologies and their implications for ICF will be explored

  6. [Research progress on key technology of power and signal transmission in neuroprosthetic].

    Science.gov (United States)

    Wang, Xing; Peng, Chenglin; Liu, Tao; Wang, Rui; Hou, Wensheng; Zheng, Xiaolin; Zheng, Erxin

    2011-10-01

    The power and signal transmission technology is one of the key technologies in neuroprosthetic research. This paper proposes firstly the related theory of power and signal transmission technology in neuroprosthetic, then summarizes the three key aspects of the power and signal transmission technology in neuroprosthetic. After analyzed the development of the inductive wireless power harvesting technology, the wireless telemetry technology and the wireless power harvesting telemetry technology, the emphasis on research contents will be proposed and discussed, which will help accelerate the further research of prosthetic.

  7. Virtual reality technology in nuclear power plant operation and maintenance

    International Nuclear Information System (INIS)

    Chen Sen

    2005-01-01

    In this paper a generic virtual reality comprehensive system focusing on the operation and maintenance in Nuclear Power Plant (NPP) is proposed. Under this layout, some key topics and means of the system are discussed. As example 'Virtual Nuclear Island' comprehensive system and its typical applications in NPP are set up. In the end, it prospects the applications of virtual reality technology in NPP operation, training and maintenance. (author)

  8. Large space systems technology electronics: Data and power distribution

    Science.gov (United States)

    Dunbar, W. G.

    1980-01-01

    The development of hardware technology and manufacturing techniques required to meet space platform and antenna system needs in the 1980s is discussed. Preliminary designs for manned and automatically assembled space power system cables, connectors, and grounding and bonding materials and techniques are reviewed. Connector concepts, grounding design requirements, and bonding requirements are discussed. The problem of particulate debris contamination for large structure spacecraft is addressed.

  9. Nuclear power and the risks of new technologies

    International Nuclear Information System (INIS)

    Wilson, R.

    1993-01-01

    There is often excessive euphoria about new technologies. This can lead to disillusionment and then excessive fear. Excessive fear can arise on its own. There are many indications that those who understand nuclear power are more willing to accept it. The author will present from his own experience several occasions in which lack of understanding has led to opposition and how the lack of understanding can be modified. But once a person is already opposed it is hard to change his actions

  10. Technological implications of SNAP reactor power system development on future space nuclear power systems

    International Nuclear Information System (INIS)

    Anderson, R.V.

    1982-01-01

    Nuclear reactor systems are one method of satisfying space mission power needs. The development of such systems must proceed on a path consistent with mission needs and schedules. This path, or technology roadmap, starts from the power system technology data base available today. Much of this data base was established during the 1960s and early 1970s, when government and industry developed space nuclear reactor systems for steady-state power and propulsion. One of the largest development programs was the Systems for Nuclear Auxiliary Power (SNAP) Program. By the early 1970s, a technology base had evolved from this program at the system, subsystem, and component levels. There are many implications of this technology base on future reactor power systems. A review of this base highlights the need for performing a power system technology and mission overview study. Such a study is currently being performed by Rockwell's Energy Systems Group for the Department of Energy and will assess power system capabilities versus mission needs, considering development, schedule, and cost implications. The end product of the study will be a technology roadmap to guide reactor power system development

  11. Technology development for a Stirling radioisotope power system

    International Nuclear Information System (INIS)

    Thieme, Lanny G.; Qiu, Songgang; White, Maurice A.

    2000-01-01

    NASA Glenn Research Center and the Department of Energy are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA Glenn is addressing key technology issues through the use of two NASA Phase II SBIRs with Stirling Technology Company (STC) of Kennewick, WA. Under the first SBIR, STC demonstrated a synchronous connection of two thermodynamically independent free-piston Stirling convertors and a 40 to 50 fold reduction in vibrations compared to an unbalanced convertor. The second SBIR is for the development of an Adaptive Vibration Reduction System (AVRS) that will essentially eliminate vibrations over the mission lifetime, even in the unlikely event of a failed convertor. This paper presents the status and results for these two SBIR projects and also discusses a new NASA Glenn in-house project to provide supporting technology for the overall Stirling radioisotope power system development. Tasks for this new effort include convertor performance verification, controls development, heater head structural life assessment, magnet characterization and thermal aging tests, FEA analysis for a lightweight alternator concept, and demonstration of convertor operation under launch and orbit transfer load conditions

  12. State and development of the technology of thermal power plants

    International Nuclear Information System (INIS)

    Peter, F.; Schueller, K.H.

    1981-01-01

    Like in the past thermal power plants shall have to be designed also in the future in a way that a sufficient, low-priced and environment-preserving electricity and heat supply can be granted. The technology applied today in fossil-fuel and nuclear power plants and its further development is outlined under the aspects of a better utilization of primary energy, the substitution of petroleum and, in the long term, also of natural gas and coal, and of the extended protection of the environment against harmful influences. (orig.) [de

  13. Technology and use of low power research reactors

    International Nuclear Information System (INIS)

    1986-08-01

    The report contains a summary of discussions and 10 papers presented at the Consultants' Meeting on the Technology and Use of Low Power Research Reactors organized by the IAEA and held in Beijing (China) during 30 April - 3 May 1985. The following topics have been covered: reactor utilization in medicine and biology, in universities, for training, as a neutron source for radiography and some remarks on the safety of low power research reactors. A separate abstract was prepared for each paper presented at the meeting

  14. Environmental Technology Verification Report - Electric Power and Heat Production Using Renewable Biogas at Patterson Farms

    Science.gov (United States)

    The U.S. EPA operates the Environmental Technology Verification program to facilitate the deployment of innovative technologies through performance verification and information dissemination. A technology area of interest is distributed electrical power generation, particularly w...

  15. Market power and technological bias in electricity generation markets

    International Nuclear Information System (INIS)

    Twomey, Paul; Neuhoff, Karsten

    2005-01-01

    It is difficult or very costly to avoid all market power in electricity markets. A recurring response is that a limited amount of market power is accepted with the justification that it is necessary to produce revenues to cover some of the fixed costs. It is assumed that all market participants benefit equally from the increased prices. However, this assumption is not satisfied if different production technologies are used. We assess the case of a generation mix of conventional generation and intermittent generation with exogenously varying production levels. If all output is sold in the spot market, then intermittent generation benefits less from market power than conventional generation. If forward contracts or option contracts are signed, then market power might be reduced but the bias against returns to intermittent generators persists. Thus allowing some level of market power as a means of encouraging investment in new generation may result in a bias against intermittent technologies or increase the costs of strategic deployment to achieve renewable quotas. (Author)

  16. Distributed generation: remote power systems with advanced storage technologies

    International Nuclear Information System (INIS)

    Clark, Woodrow; Isherwood, William

    2004-01-01

    The paper discusses derived from an earlier hypothetical study of remote villiages. It considers the policy implications for communities who have their own local power resources rather than those distributed through transmission from distant sources such as dams, coal power plants or even renewables generation from wind farms, solar thermal or other resources. The issues today, post 911 and the energy crises in California, Northeast North America and Europe, signal the need for a new and different approach to energy supply(s), reliability and dissemination. Distributed generation (DG) as explored in the earlier paper appears to be one such approach that allows for local communities to become energy self-sufficient. Along with energy conservation, efficiency, and on-site generation, local power sources provide concrete definitions and understandings for heretofore ill defined concepts such as sustainability and eco-systems. The end result for any region and nation-state are 'agile energy systems' which use flexible DG, on-site generation and conservation systems meeting the needs of local communities. Now the challenge is to demonstrate and provide economic and policy structures for implementing new advanced technologies for local communities. For institutionalizing economically viable and sound environmental technologies then new finance mechanisms must be established that better reflect the true costs of clean energy distributed in local communities. For example, the aggregation of procurement contracts for on-site solar systems is far more cost effective than for each business owner, public building or household to purchase its own separate units. Thus mass purchasing contracts that are link technologies as hybrids can dramatically reduce costs. In short public-private partnerships can implement the once costly clean energy technologies into local DG systems

  17. Soviet steam generator technology: fossil fuel and nuclear power plants

    International Nuclear Information System (INIS)

    Rosengaus, J.

    1987-01-01

    In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins with a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references

  18. Estimation of the future advances of wind power technology

    International Nuclear Information System (INIS)

    Andersen, P.D.; Fuglsang, P.

    1996-03-01

    The report estimates the future advances of wind power technology. Two trajectories are considered and described: a normal (business as usual) trajectory and a technology trajectory. Two types of plants are considered: 1500 kW turbines on land (roughness class 1.5) in small groups and 2500 kW turbines in large off-shore wind farms. In both cases cost of energy (in DKK/kWh) is estimated to be approximately halved during the next 25 years. For wind turbines in flat terrain cost is estimated to decrease from an average in 1995 of 0.43 DKK/kWh to an average in 2020 of 0.26 DKK/kWh on a normal trajectory and 0.21 DKK/kWh on a technology trajectory. For large off-shore (near coast) wind farms cost is estimated to decrease from an average in 1995 of 0.51 DKK/kWh to an average in 2020 of 0.27 DKK/kWh on a normal trajectory and 0.23 DKK/kWh on a technology trajectory. Increase in the total market volume for wind turbines is estimated as the most important factor for cost reductions. The market is anticipated to follow the most conservative scenario of World Energy Council (180,000 MW by 2020). (au) 17 tabs., 7 ills. 25 refs

  19. Dysprosium, the balance problem, and wind power technology

    International Nuclear Information System (INIS)

    Elshkaki, Ayman; Graedel, T.E.

    2014-01-01

    Highlights: • We investigate the impacts of the increasing market share of wind power on the demand and supply of REE. • The analysis is carried out using a dynamic material flow and stock model and three scenarios for Dy supply. • The supply of Dy from all deposits will likely lead to an oversupply of the total REEs, Nd, La, Ce and Y. • The supply of Dy from critical REE or Dy rich deposits will likely lead to an oversupply of Ce and Y only. • Large quantities of thorium will be co-produced as a result of Dy demand that needs to be managed carefully. - Abstract: Wind power technology is one of the cleanest electricity generation technologies that are expected to have a substantial share in the future electricity mix. Nonetheless, the expected increase in the market share of wind technology has led to an increasing concern of the availability, production capacity and geographical concentration of the metals required for the technology, especially the rear earth elements (REE) neodymium (Nd) and the far less abundant dysprosium (Dy), and the impacts associated with their production. Moreover, Nd and Dy are coproduced with other rare earth metals mainly from iron, titanium, zirconium, and thorium deposits. Consequently, an increase in the demand for Nd and Dy in wind power technology and in their traditional applications may lead to an increase in the production of the host metals and other companion REE, with possible implications on their supply and demand. In this regard, we have used a dynamic material flow and stock model to study the impacts of the increasing demand for Nd and Dy on the supply and demand of the host metals and other companion REE. In one scenario, when the supply of Dy is covered by all current and expected producing deposits, the increase in the demand for Dy leads to an oversupply of 255 Gg of total REE and an oversupply of the coproduced REE Nd, La, Ce and Y. In the second and third scenarios, however, when the supply of Dy is

  20. Efficiency improvement of technological preparation of power equipment manufacturing

    Science.gov (United States)

    Milukov, I. A.; Rogalev, A. N.; Sokolov, V. P.; Shevchenko, I. V.

    2017-11-01

    Competitiveness of power equipment primarily depends on speeding-up the development and mastering of new equipment samples and technologies, enhancement of organisation and management of design, manufacturing and operation. Actual political, technological and economic conditions cause the acute need in changing the strategy and tactics of process planning. At that the issues of maintenance of equipment with simultaneous improvement of its efficiency and compatibility to domestically produced components are considering. In order to solve these problems, using the systems of computer-aided process planning for process design at all stages of power equipment life cycle is economically viable. Computer-aided process planning is developed for the purpose of improvement of process planning by using mathematical methods and optimisation of design and management processes on the basis of CALS technologies, which allows for simultaneous process design, process planning organisation and management based on mathematical and physical modelling of interrelated design objects and production system. An integration of computer-aided systems providing the interaction of informative and material processes at all stages of product life cycle is proposed as effective solution to the challenges in new equipment design and process planning.

  1. Progress of innovation of electrical power technology in 2013

    International Nuclear Information System (INIS)

    Nakaiwa, Masaru; Inumaru, Jun; Hamada, Takashi

    2014-01-01

    The following is the description of technical innovations at five companies including Central Research Institute of Electric Power Industry, Japan Atomic Energy Agency, and Japan Nuclear Fuel Ltd. Central Research Institute of Electric Power Industry presented their efforts in (1) advancement of the safety of light water reactors (2) clarification of radiological risks and improvement of radiation protection matters (3) support of backend projects and (4) countermeasures against natural disasters for electric power distribution facilities aiming at the establishment of the optimum risk management. Japan Atomic Energy Agency presented the research and development related to (1) measures taken for the Fukushima Daiichi nuclear power plant accident (2) practical use of FBR cycle (3) disposal technology of high-level radioactive wastes (4) technical system to extract fusion energy (5) particle beam technology (6) research based on the formation of the foundation and social needs of atomic study (7) nuclear hydrogen/heat application (8) atomic safety (9) backend measures; and (10) nuclear proliferation. Japan Nuclear Fuel Ltd. presented the record of 5 and half years from the start to the completion of vitrification test. In the course of the development, the active test started from March 2003 was suspended due to the Great East Japan Earthquake on March 11th, 2011 but resumed thereafter and completed. (S.Y.)

  2. Perfect Power Prototype for Illinois Institute of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Shahidehpour, Mohammad [Illinois Inst. Of Technology, Chicago, IL (United States)

    2014-09-30

    Starting in October 2008, Illinois Institute of Technology (IIT), in collaboration with over 20 participating members, led an extensive effort to develop, demonstrate, promote, and commercialize a microgrid system and offer supporting technologies that will achieve Perfect Power at the main campus of IIT. A Perfect Power system, as defined by the Galvin Electricity Initiative (GEI), is a system that cannot fail to meet the electric needs of the individual end-user. The Principle Investigator of this Perfect Power project was Dr. Mohammad Shahidehpour, Director of the Robert W. Galvin Center for Electricity Innovation at IIT. There were six overall objectives of the Perfect Power project: (1) Demonstrate the higher reliability introduced by the microgrid system at IIT; (2) Demonstrate the economics of microgrid operations; (3) Allow for a decrease of fifty percent (50%) of grid electricity load; (4) Create a permanent twenty percent (20%) decrease in peak load from 2007 level; (5) Defer planned substation through load reduction; (6) Offer a distribution system design that can be replicated in urban communities.

  3. Refractory alloy technology for space nuclear power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.H. Jr.; Hoffman, E.E. (eds.)

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  4. Synchrotron light sources: A powerful tool for science and technology

    International Nuclear Information System (INIS)

    Schlachter, F.; Robinson, A.

    1996-01-01

    A new generation of synchrotron light sources is producing extremely bright beams of vacuum-ultraviolet and x-ray radiation, powerful new tools for research in a wide variety of basic and applied sciences. Spectromicroscopy using high spectral and spatial resolution is a new way of seeing, offering many opportunities in the study of matter. Development of a new light source provides the country or region of the world in which the light source is located many new opportunities: a focal point for research in many scientific and technological areas, a means of upgrading the technology infrastructure of the country, a means of training students, and a potential service to industry. A light source for Southeast Asia would thus be a major resource for many years. Scientists and engineers from light sources around the world look forward to providing assistance to make this a reality in Southeast Asia

  5. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kim, Yun Jae; Choi, Jae Boong [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2002-03-15

    This project focuses on developing reliable life evaluation technology for nuclear power plant components, and is divided into two parts, development of a life evaluation system for nuclear pressure vessels and evaluation of applicability of emerging technology to operating plants. For the development of life evaluation system for nuclear pressure vessels, the following seven topics are covered in this project: defect assessment method for steam generator tubes, development of fatigue monitoring system, assessment of corroded pipes, domestic round robin analysis for constructing P-T limit curve for RPV, development of probabilistic integrity assessment technique, effect of aging on strength of dissimilar welds, applicability of LBB to cast stainless steel, and development of probabilistic piping fracture mechanics.

  6. Refractory alloy technology for space nuclear power applications

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys

  7. Distributed Solar Photovoltaic Power Production - Technology and Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Al [PSE& G; Stuby, Rick [Petra Solar

    2011-11-02

    As part of its nationally recognized Solar 4 All program, PSE&G has partnered with Petra Solar to deploy the world’s first and largest pole attached solar project. The project, based on Petra Solar’s distributed Smart Solar solution, will create a 40 megawatt solar “virtual power plant.” In deployment as 200,000 individual grid-connected solar power producers on utility poles in PSE&G territory, Petra Solar SunWave® solutions leverage Smart Grid communications and high-tech panel-level inverters to implement a robust system with many technical benefits over traditional solar photovoltaic solutions. The program overview, deployment model, smart grid communications and enabling inverter technology and safety features will be presented, as well the future challenges of, and solutions for, solar power intermittency as photovoltaic penetration on the electric grid increases.

  8. Progress in Low-Power Digital Microwave Radiometer Technologies

    Science.gov (United States)

    Piepmeier, Jeffrey R.; Kim, Edward J.

    2004-01-01

    Three component technologies were combined into a digital correlation microwave radiometer. The radiometer comprises a dual-channel X-band superheterodyne receiver, low-power high-speed cross-correlator (HSCC), three-level ADCs, and a correlated noise source (CNS). The HSCC dissipates 10 mW and operates at 500 MHz clock speed. The ADCs are implemented using ECL components and dissipate more power than desired. Thus, a low-power ADC development is underway. The new ADCs arc predicted to dissipated less than 200 mW and operate at 1 GSps with 1.5 GHz of input bandwidth. The CNS provides different input correlation values for calibration of the radiometer. The correlation channel had a null offset of 0.0008. Test results indicate that the correlation channel can be calibrated with 0.09% error in gain.

  9. Nuclear energy technology: theory and practice of commercial nuclear power

    International Nuclear Information System (INIS)

    Knief, R.A.

    1982-01-01

    Reviews Nuclear Energy Technology: Theory and Practice of Commercial Nuclear Power by Ronald Allen Knief, whose contents include an overview of the basic concepts of reactors and the nuclear fuel cycle; the basics of nuclear physics; reactor theory; heat removal; economics; current concerns at the front and back ends of the fuel cycle; design descriptions of domestic and foreign reactor systems; reactor safety and safeguards; Three Mile Island; and a brief overview of the basic concepts of nuclear fusion. Both magnetic and inertial confinement techniques are clearly outlined. Also reviews Nuclear Fuel Management by Harry W. Graves, Jr., consisting of introductory subjects (e.g. front end of fuel cycle); core physics methodology required for fuel depletion calculations; power capability evaluation (analyzes physical parameters that limit potential core power density); and fuel management topics (economics, loading arrangements and core operation strategies)

  10. The Importance of Cooling Technology in Propulsion and Power Systems

    National Research Council Canada - National Science Library

    Auxier, Thomas

    2003-01-01

    Turbine cooling is the breakthrough technology for gas turbine engines and although the turbine engine and cooling are considered mature technologies, to date they have only achieved about 60 to 70...

  11. Intelligent engineering and technology for nuclear power plant operation

    International Nuclear Information System (INIS)

    Wang, P.P.; Gu, X.

    1996-01-01

    The Three-Mile-Island accident has drawn considerable attention by the engineering, scientific, management, financial, and political communities as well as society at large. This paper surveys possible causes of the accident studied by various groups. Research continues in this area with many projects aimed at specifically improving the performance and operation of a nuclear power plant using the contemporary technologies available. In addition to the known cause of the accident and suggest a strategy for coping with these problems in the future. With the increased use of intelligent methodologies called computational intelligence or soft-computing, a substantially larger collection of powerful tools are now available for our designers to use in order to tackle these sensitive and difficult issues. These intelligent methodologies consists of fuzzy logic, genetic algorithms, neural networks, artificial intelligence and expert systems, pattern recognition, machine intelligence, and fuzzy constraint networks. Using the Three-Mile-Island experience, this paper offers a set of specific recommendations for future designers to take advantage of the powerful tools of intelligent technologies that we are now able to master and encourages the adoption of a novel methodology called fuzzy constraint network

  12. Estimating the power efficiency of the thermal power plant modernization by using combined-cycle technologies

    International Nuclear Information System (INIS)

    Hovhannisyan, L.S.; Harutyunyan, N.R.

    2013-01-01

    The power efficiency of the thermal power plant (TPP) modernization by using combined-cycle technologies is introduced. It is shown that it is possible to achieve the greatest decrease in the specific fuel consumption at modernizing the TPP at the expense of introducing progressive 'know-how' of the electric power generation: for TPP on gas, it is combined-cycle, gas-turbine superstructures of steam-power plants and gas-turbines with heat utilization

  13. A Historical Review of Brayton and Stirling Power Conversion Technologies for Space Applications

    Science.gov (United States)

    Mason, Lee S.; Schreiber, Jeffrey G.

    2007-01-01

    Dynamic power conversion technologies, such as closed Brayton and free-piston Stirling, offer many advantages for space power applications including high efficiency, long life, and attractive scaling characteristics. This paper presents a historical review of Brayton and Stirling power conversion technology for space and discusses on-going development activities in order to illustrate current technology readiness. The paper also presents a forecast of potential future space uses of these power technologies.

  14. Applications of Multi-Agent Technology to Power Systems

    Science.gov (United States)

    Nagata, Takeshi

    Currently, agents are focus of intense on many sub-fields of computer science and artificial intelligence. Agents are being used in an increasingly wide variety of applications. Many important computing applications such as planning, process control, communication networks and concurrent systems will benefit from using multi-agent system approach. A multi-agent system is a structure given by an environment together with a set of artificial agents capable to act on this environment. Multi-agent models are oriented towards interactions, collaborative phenomena, and autonomy. This article presents the applications of multi-agent technology to the power systems.

  15. Future cryogenic switchgear technologies for superconducting power systems

    Science.gov (United States)

    Xu, C.; Saluja, R.; Damle, T.; Graber, L.

    2017-12-01

    This paper introduces cryogenic switchgear that is needed for protection and control purposes in future multi-terminal superconducting power systems. Implementation of cryogenic switchgear is expected to improve system reliability and minimize overall volume and weight, but such switchgear is not available yet. Design of cryogenic switchgear begins by referring to conventional circuit breakers, a brief review of state-of-the-art switchgear technologies is presented. Then, promising cryogenic interruption media are identified and analysed with respect to physical and dielectric properties. Finally, we propose several cryogenic circuit breaker designs for potential aerospace, marine and terrestrial applications. Actuation mechanism for cryogenic switchgear is also investigated.

  16. Power electronics - The key technology for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Yang, Yongheng

    2014-01-01

    The energy paradigms in many countries (e.g. Germany and Denmark) have experienced a significant change from fossil-based resources to clean renewables (e.g. wind turbines and photovoltaics) in the past few decades. The scenario of highly penetrated renewables is going to be further enhanced...... solutions, can pave the way for renewable energies. In light of this, some of the most emerging renewable energies, e.g. wind energy and photovoltaic, which by means of power electronics are changing character as a major part in the electricity generation, are explored in this paper. Issues like technology...

  17. International energy technology collaboration and climate change mitigation. Case study 1. Concentrating Solar Power Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, C. [Energy and Environment Division, International Energy Agency IEA, Paris (France)

    2004-07-01

    Mitigating climate change and achieving stabilisation of greenhouse gas atmospheric concentrations will require deep reductions in global emissions of energy-related carbon dioxide emissions. Developing and disseminating new, low-carbon energy technology will thus be needed. Two previous AIXG papers have focused on possible drivers for such a profound technological change: Technology Innovation, Development and Diffusion, released in June 2003, and International Energy Technology Collaboration and Climate Change Mitigation, released in June 2004. The first of these papers assesses a broad range of technical options for reducing energy-related CO2 emissions. It examines how technologies evolve and the role of research and development efforts, alternative policies, and short-term investment decisions in making long-term options available. It considers various policy tools that may induce technological change, some very specific, and others with broader expected effects. Its overall conclusion is that policies specifically designed to promote technical change, or 'technology push', could play a critical role in making available and affordable new energy technologies. However, such policies would not be sufficient to achieve the Convention's objective in the absence of broader policies. First, because there is a large potential for cuts that could be achieved in the short run with existing technologies; and second, the development of new technologies requires a market pull as much as a technology push. The second paper considers the potential advantages and disadvantages of international energy technology collaboration and transfer for promoting technological change. Advantages of collaboration may consist of lowering R and D costs and stimulating other countries to invest in R and D; disadvantage may include free-riding and the inefficiency of reaching agreement between many actors. This paper sets the context for further discussion on the role of

  18. Contributions of welding technology to power plant performance

    International Nuclear Information System (INIS)

    Childs, W.J.

    1995-01-01

    Welding repairs can be a very major factor in the time and cost of maintenance outages of a power plant. The use of advanced equipment and procedures for welding can contribute significantly to reducing maintenance costs and increasing reliability. Plant failures have too often been caused by problems associated with welding, some due to improper choice of base materials, others due to welding defects. For example, stress corrosion cracking in weldments in BWR austenitic stainless steel piping was a major source of loss of availability in the 1980s. Examples of the use of improved welding equipment and procedures has been demonstrated to reduce outage time and improved weld integrity in several major areas. New welding techniques, such as laser welding, have the potential for addressing maintenance problems that can not be addressed at all with conventional welding technology and/or may provide a means of reducing greatly the time and cost of welding fabrications or repair. Methods of ensuring that the best available technology is applied in weld repair is a major problem today in the utility industry. Solutions need to be sought to remedy this situation. The key role of welding in minimizing plant outages is being recognized and steps taken to further the development and use of optimum technology

  19. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin [Sungkyunkwan Univ., Seoul (Korea, Republic of); Kwon, J. D. [Yeungnam Univ., Gyeongsan (Korea, Republic of); Kang, K. J. [Chonnam National Univ., Gwangju (Korea, Republic of)] (and others)

    2001-03-15

    This research focuses on development of reliable life evaluation technology for nuclear power plant (NPP) components, and is divided into two parts, development of life evaluation systems for pressurized components and evaluation of applicability of emerging technology to operating plants. For the development of life evaluation system for nuclear pressure vessels, the following seven topics are covered: development of expert systems for integrity assessment of pressurized components, development of integrity evaluation systems of steam generator tubes, prediction of failure probability for NPP components based on probabilistic fracture mechanics, development of fatigue damage evaluation technique for plant life extension, domestic round robin analysis for pressurized thermal shock of reactor vessels, domestic round robin analysis of constructing P--T limit curves for reactor vessels, and development of data base for integrity assessment. For evaluation of applicability of emerging technology to operating plants, on the other hand, the following eight topics are covered: applicability of the Leak-Before-Break analysis to Cast S/S piping, collection of aged material tensile and toughness data for aged Cast S/S piping, finite element analyses for load carrying capacity of corroded pipes, development of Risk-based ISI methodology for nuclear piping, collection of toughness data for integrity assessment of bi-metallic joints, applicability of the Master curve concept to reactor vessel integrity assessment, measurement of dynamic fracture toughness, and provision of information related to regulation and plant life extension issues.

  20. New technologies in nuclear power plant monitoring and diagnosis

    International Nuclear Information System (INIS)

    Tuerkcan, E.; Ciftcioglu, Oe.

    1996-05-01

    The content of the present paper is as follows. In Sec. 2, the Kalman filtering is briefly described and its relevance to conventional time series analysis methods has been emphasized. In this respect, its NPP monitoring and fault diagnosis implementations are given and the important features are pointed out. In Sec. 3, the NN technology is briefly described and the scope is focused on the NPP monitoring and fault diagnosis implementations. The potentialities of this technology are pointed out. In Sec. 4, the wavelet technology is briefly described and the utilization of this technology in Nuclear Technology is demonstrated. In this respect, also the prospective role of this technology for real-time monitoring and fault diagnosis is revealed. Finally, the influence of the new technologies in reliable and cost effective plant operation viewpoint is discussed. (orig./WL)

  1. Living Technology

    DEFF Research Database (Denmark)

    2010-01-01

    This book is aimed at anyone who is interested in learning more about living technology, whether coming from business, the government, policy centers, academia, or anywhere else. Its purpose is to help people to learn what living technology is, what it might develop into, and how it might impact...... our lives. The phrase 'living technology' was coined to refer to technology that is alive as well as technology that is useful because it shares the fundamental properties of living systems. In particular, the invention of this phrase was called for to describe the trend of our technology becoming...... increasingly life-like or literally alive. Still, the phrase has different interpretations depending on how one views what life is. This book presents nineteen perspectives on living technology. Taken together, the interviews convey the collective wisdom on living technology's power and promise, as well as its...

  2. Predictive Power of Prospective Physical Education Teachers' Attitudes towards Educational Technologies for Their Technological Pedagogical Content Knowledge

    Science.gov (United States)

    Varol, Yaprak Kalemoglu

    2015-01-01

    The aim of the research is to determine the predictive power of prospective physical education teachers' attitudes towards educational technologies for their technological pedagogical content knowledge. In this study, a relational research model was used on a study group that consisted of 529 (M[subscript age]=21.49, SD=1.44) prospective physical…

  3. Quadrennial Technology Review 2015: Technology Assessments--Marine and Hydrokinetic Power

    Energy Technology Data Exchange (ETDEWEB)

    Sam Baldwin, Gilbert Bindewald, Austin Brown, Charles Chen, Kerry Cheung, Corrie Clark, Joe Cresko,

    2015-10-07

    Marine and hydrokinetic (MHK) technologies convert the energy of waves, tides, and river and ocean currents into electricity. With more than 50% of the U.S. population living within 50 miles of the nation’s coasts, MHK technologies hold significant potential to supply renewable electricity to consumers in coastal load centers, particularly in the near term in areas with high costs of electricity and longer term in high resource areas in close proximity to major coastal load centers. MHK resource assessments identify a total U.S. technical resource potential of approximately 1250–1850 terawatt-hours (TWh) of generation per year from ocean wave, ocean current, ocean tidal, and river current energy. Of this, the U.S. continental technical resource potential is approximately 500–750 TWh/year. For context, roughly 90,000 homes can be powered by 1 TWh of electricity generation each year. A cost-effective MHK industry could provide a substantial amount of electricity for the nation owing in large part to its unique advantages as a source of energy, including its vast resource potential, its close proximity to major coastal load centers, and its long-term predictability and near-term forecastability.

  4. Space power distribution system technology. Volume 1: Reference EPS design

    Science.gov (United States)

    Decker, D. K.; Cannady, M. D.; Cassinelli, J. E.; Farber, B. F.; Lurie, C.; Fleck, G. W.; Lepisto, J. W.; Massner, A.; Ritterman, P. F.

    1983-01-01

    The multihundred kilowatt electrical power aspects of a mannable space platform in low Earth orbit is analyzed from a cost and technology viewpoint. At the projected orbital altitudes, Shuttle launch and servicing are technically and economically viable. Power generation is specified as photovoltaic consistent with projected planning. The cost models and trades are based upon a zero interest rate (the government taxes concurrently as required), constant dollars (1980), and costs derived in the first half of 1980. Space platform utilization of up to 30 years is evaluated to fully understand the impact of resupply and replacement as satellite missions are extended. Such lifetimes are potentially realizable with Shuttle servicing capability and are economically desirable.

  5. Fission Surface Power Technology Demonstration Unit Test Results

    Science.gov (United States)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Sanzi, James L.

    2016-01-01

    The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7 percent resulting in a net system power of 8.1 kW and a system level efficiency of 17.2 percent. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to the NASA Glenn Research Center (GRC). The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3 percent. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 percent.

  6. International energy technology collaboration: wind power integration into electricity systems

    International Nuclear Information System (INIS)

    Justus, D.

    2006-01-01

    A rapid growth of wind power since the 1990s has led to notable market shares in some electricity markets. This growth is concentrated in a few countries with effective Research, Development and Demonstration (RD and D) programmes and with policies that support its diffusion into the market place. The speed and depth of its penetration in these electricity markets have amplified the need to address grid integration concerns, so as not to impede the further penetration of wind power. Research on technologies, tools and practices for integrating large amounts of wind power into electricity supply systems is attempting to respond to this need. In recent years, existing international collaborative research efforts have expanded their focus to include grid integration of wind power and new consortia have been formed to pool knowledge and resources. Effective results benefit a few countries that already have a significant amount of wind in their electricity supply fuel mix, as well as to the potential large markets worldwide. This paper focuses on the challenge of bringing significant amounts of intermittent generating sources into grids dominated by large central generating units. It provides a brief overview of the growth of wind power, mainly since 1990, the technical and operational issues related to integration and selected collaborative programmes underway to address grid integration concerns. (author)

  7. Locally manufactured wind power technology for sustainable rural electrification

    International Nuclear Information System (INIS)

    Leary, J.; While, A.; Howell, R.

    2012-01-01

    To date, the use of wind power for rural electrification has been limited. However the fact that micro-wind turbines can be manufactured using only basic workshop tools, techniques and materials, and therefore can be produced locally is often overlooked. Local manufacture has the potential to boost the local economy, build local capacity, reduce costs and produce resilient and flexible energy systems. However, locally manufactured technology must be seen as socially embedded due to the variety of local knowledge, skills, equipment and materials needed to construct and maintain such systems, as well as the organisational structures needed to ensure their long term sustainability. Evidence from successful initiatives suggests that stable institutional support from intermediaries such as the local/national government or NGOs is necessary to foster the development of a wind power industry based on local manufacture. The roles of these intermediaries include identifying and targeting windy areas with favourable environmental conditions, conducting research and development, collecting feedback from end users, creating supply chains for new parts and materials and developing relevant knowledge and skills. In this paper, three case studies of specific initiatives are analysed to draw out the social, economic and technical factors that could facilitate wider adoption of the technology. - Highlights: ► Local manufacture of wind turbines often overlooked for rural electrification. ► Flexible to adapt to local context and benefits local economy, capacity and supply chain. ► Development of technology discussed and 3 case studies of dissemination analysed. ► Critical factors: institutional support, system level planning, continuity of supply. ► Dissemination successful in Inner Mongolia; work continues elsewhere.

  8. Overview of materials technologies for space nuclear power and propulsion

    Science.gov (United States)

    Zinkle, S. J.; Ott, L. J.; Ingersoll, D. T.; Ellis, R. J.; Grossbeck, M. L.

    2002-01-01

    A wide range of different space nuclear systems are currently being evaluated as part of the DOE Special Purpose Fission Technology program. The near-term subset of systems scheduled to be evaluated range from 50 kWe gas-, pumped liquid metal-, or liquid metal heat pipe-cooled reactors for space propulsion to 3 kWe heat pipe or pumped liquid metal systems for Mars surface power applications. The current status of the materials technologies required for the successful development of near-term space nuclear power and propulsion systems is reviewed. Materials examined in this overview include fuels (UN, UO2, UZrH), cladding and structural materials (stainless steel, superalloys, refractory alloys), neutron reflector materials (Be, BeO), and neutron shield materials (B4C,LiH). The materials technologies issues are considerably less demanding for the 3 kWe reactor systems due to lower operating temperatures, lower fuel burnup, and lower radiation damage levels. A few reactor subcomponents in the 3 kWe reactors under evaluation are being used near or above their engineering limits, which may adversely affect the 5 to 10 year lifetime design goal. It appears that most of these issues for the 3 kWe reactor systems can be accommodated by incorporating a few engineering design changes. Design limits (temperature, burnup, stress, radiation levels) for the various materials proposed for space nuclear reactors will be summarized. For example, the temperature and stress limits for Type 316 stainless steel in the 3 kWe Na-cooled heat pipe reactor (Stirling engine) concept will be controlled by thermal creep and CO2 corrosion considerations rather than radiation damage issues. Conversely, the lower operating temperature limit for the LiH shield material will likely be defined by ionizing radiation damage (radiolysis)-induced swelling, even for the relatively low radiation doses associated with the 3 kWe reactor. .

  9. Description of innovative power technologies for biomass using. High efficiency combined production of heat, cold and electricity - ORC technologies

    International Nuclear Information System (INIS)

    Mileva, D.

    2013-01-01

    The ORC - technologies (Organic Rankine Cycle) are comfortable to be used for combined heat and power production for domestic and industrial needs (local supply), mean for their height efficiency and long exploitation period. Biomass is a primary energy source. (author)

  10. Control and automation technology in United States nuclear power plants

    International Nuclear Information System (INIS)

    The need to use computers for nuclear power plant design, engineering, operation and maintenance has been growing since the inception of commercial nuclear power electricity generation in the 1960s. The needs have intensified in recent years as the demands of safety and reliability, as well as economic competition, have become stronger. The rapid advance of computer hardware and software technology in the last two decades has greatly enlarged the potential of computer applications to plant instrumentation and control of future plants, as well as those needed for operation of existing plants. The traditional role of computers for mathematical calculations and data manipulation has been expanded to automate plant control functions and to enhance human performance and productivity. The major goals of using computers for instrumentation and control of nuclear power plants are (1) to improve safety; (2) to reduce challenges to the power plant; (3) to reduce the cost of operations and maintenance; (4) to enhance power production, and (5) to increase productivity of people. Many functions in nuclear power plants are achieved by a combination of human action and automation. Increasingly, computer-based systems are used to support operations and maintenance personnel in the performance of their tasks. There are many benefits which can accrue from the use of computers but it is important to ensure that the design and implementation of the support system and the human task places the human in the correct role in relation to the machine; that is, in a management position, with the computer serving the human. In addition, consideration must be given to computer system integrity, software validation and verification, consequences of error, etc., to ensure its reliability for nuclear power plant applications. (author). 31 refs

  11. Valuation of Electric Power System Services and Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kintner-Meyer, Michael C. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Homer, Juliet S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Balducci, Patrick J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-01

    Accurate valuation of existing and new technologies and grid services has been recognized to be important to stimulate investment in grid modernization. Clear, transparent, and accepted methods for estimating the total value (i.e., total benefits minus cost) of grid technologies and services are necessary for decision makers to make informed decisions. This applies to home owners interested in distributed energy technologies, as well as to service providers offering new demand response services, and utility executives evaluating best investment strategies to meet their service obligation. However, current valuation methods lack consistency, methodological rigor, and often the capabilities to identify and quantify multiple benefits of grid assets or new and innovative services. Distributed grid assets often have multiple benefits that are difficult to quantify because of the locational context in which they operate. The value is temporally, operationally, and spatially specific. It varies widely by distribution systems, transmission network topology, and the composition of the generation mix. The Electric Power Research Institute (EPRI) recently established a benefit-cost framework that proposes a process for estimating multiple benefits of distributed energy resources (DERs) and the associated cost. This document proposes an extension of this endeavor that offers a generalizable framework for valuation that quantifies the broad set of values for a wide range of technologies (including energy efficiency options, distributed resources, transmission, and generation) as well as policy options that affect all aspects of the entire generation and delivery system of the electricity infrastructure. The extension includes a comprehensive valuation framework of monetizable and non-monetizable benefits of new technologies and services beyond the traditional reliability objectives. The benefits are characterized into the following categories: sustainability, affordability, and

  12. Atomic Information Technology Safety and Economy of Nuclear Power Plants

    CERN Document Server

    Woo, Taeho

    2012-01-01

    Atomic Information Technology revaluates current conceptions of the information technology aspects of the nuclear industry. Economic and safety research in the nuclear energy sector are explored, considering statistical methods which incorporate Monte-Carlo simulations for practical applications. Divided into three sections, Atomic Information Technology covers: • Atomic economics and management, • Atomic safety and reliability, and • Atomic safeguarding and security. Either as a standalone volume or as a companion to conventional nuclear safety and reliability books, Atomic Information Technology acts as a concise and thorough reference on statistical assessment technology in the nuclear industry. Students and industry professionals alike will find this a key tool in expanding and updating their understanding of this industry and the applications of information technology within it.

  13. Non-nuclear power application of nuclear technology in Nigeria

    International Nuclear Information System (INIS)

    Funtua, I.I.

    2008-01-01

    Nuclear Technology applications are found in Food and Agriculture, Human Health, Water Resources, Industry, Environment, Education and Research.There are more potentials for the deployment of nuclear technology in more aspects of our life with needed economic development in Nigeria.Nuclear Technology plays and would continue to play vital role in Agriculture, Human health, Water resources and industry in Nigeria.Nuclear technologies have been useful in developmental efforts worldwide and for these to take hold, capacity building programmes must be expanded and the general public must have informed opinions about the benefits and risk associated with the technologies.This presentation gives an overview of nuclear technology applications in Nigeria in the following areas: Food and Agriculture, Human Health, Water Resources, Industry, Education and Research

  14. Laser based maintenance technology for PWR power plants

    International Nuclear Information System (INIS)

    Itaru Chida; Masaki Yoda; Naruhiko Mukai; Yuji Sano; Makoto Ochiai; Takahiro Miura; Ryoichi Saeki

    2005-01-01

    Stress corrosion cracking (SCC) is the major factor to reduce the reliability of aged reactor components. Toshiba has developed various laser-based maintenance technologies and already applied them to several existing nuclear power plants. Recently, we have developed the maintenance system for the inner surface of bottom-mounted instruments (BMI) of PWR plants. This system performs nondestructive testing (NDT) and preventive maintenance against SCC by using YAG lasers. Laser ultrasonic testing (LUT) has a great potential to be applied to the remote inspection of reactor components. Laser-induced surface acoustic wave (SAW) inspection system was developed by using a compact probe with a multi-mode optical fiber and an interferometer. This system is used for both detection and depth measurement of surface-breaking cracks. It is confirmed through laboratory studies that the developed system successfully detected and sized micro slits of around 1.0 mm depth on weld metal and heat-affected zone (HAZ). SCCs produced by chemical method were also tested by the system. For the preventive maintenance treatment, laser-peening (LP) technology was developed and already applied to several reactor components in operating BWR plants. LP is a novel process to improve residual stress from tensile to compressive on material surface layer by irradiating focused high-power laser pulses in water. We have developed a fiber-delivered LP (FLP) system as a preventive maintenance against SCC. For checking the effect of FLP, we carried out FLP experiments on the inner surface of a small tube-shaped Alloy 600 by using this system. After FLP, residual stress was measured by X-ray method for radial and axial directions on the inner surface of the tube, and effectiveness of stress improvement was proved. Based on these experiences, LUT and FLP were applied to Ikata unit-1 of Shikoku Electric Power Company Inc. and successfully treated the inner surface of BMIs. (authors)

  15. Cogeneration (hydrogen and electrical power) using the Texaco Gasification Power Systems (TGPS) technology

    International Nuclear Information System (INIS)

    Gardner, J.

    1994-01-01

    The information herein presents preliminary technical and cost data for an actual case study using Texaco Gasification Power Systems (TGPS) technology, incorporated as part of an overall refinery upgrade project. This study is based on gasification of asphalt and vacuum residue (see Table 1, feedstock properties) to produce hydrogen plus carbon monoxide (synthesis gas) for the ultimate production of high purity hydrogen and power at a major refinery in Eastern Europe. A hydrogen production of 101,000 Nm 3 /hr (9.1 tons/hr) at 99.9 (wt.%) purity plus 50 MW (net) power slated to be used by the refinery was considered for this study. Figure I shows a block diagram depicting the general refinery configuration upgrade as envisioned by the owner operator; included in the configuration as shown in the shaded area is the TGPS plant. Figure II shows a block flow diagram depicting the TGPS unit and its battery limits as defined for this project. The technology best suited to meet the demand for clean and efficient electric power generation and hydrogen production is the Texaco Gasification Power Systems (TGPS) process. This technology is based upon Texaco's proprietary gasification technology which is well proven with over 40 years of gasification experience. There are currently 37 operating units in the world today which have licensed the Texaco gasification process technology, with another 12 in design/construction. Total synthesis gas (hydrogen + carbon monoxide) production capacity is over 2,8 billion standard cubic feet per day. The TGPS, which is basically the Integrated Gasification Combined Cycle (IGCC) based upon the Texaco gasification technology, was developed by combining and integrating gasification with power generation facilities. (author). 3 figs., 9 tabs., 4 refs

  16. Modern air protection technologies at thermal power plants (review)

    Science.gov (United States)

    Roslyakov, P. V.

    2016-07-01

    Realization of the ecologically safe technologies for fuel combustion in the steam boiler furnaces and the effective ways for treatment of flue gases at modern thermal power plants have been analyzed. The administrative and legal measures to stimulate introduction of the technologies for air protection at TPPs have been considered. It has been shown that both the primary intrafurnace measures for nitrogen oxide suppression and the secondary flue gas treatment methods are needed to meet the modern ecological standards. Examples of the environmentally safe methods for flame combustion of gas-oil and solid fuels in the boiler furnaces have been provided. The effective methods and units to treat flue gases from nitrogen and sulfur oxides and flue ash have been considered. It has been demonstrated that realization of the measures for air protection should be accompanied by introduction of the systems for continuous instrumentation control of the composition of combustion products in the gas path of boiler units and for monitoring of atmospheric emissions.

  17. Transferring nuclear power technology to foster Chinese self-reliance

    International Nuclear Information System (INIS)

    Levi, J-D.

    1998-01-01

    Being convinced that nuclear energy will play an important role in meeting its huge future energy demands, China considers that the development of a very strong national nuclear industry capable of covering all aspects of a major national power program is of paramount importance.In this context, China has invited its foreign partners to propose contributions to the studies for this development, in view of establishing a suitable cooperation program with the entire Chinese nuclear power industry, including design institutes, equipment manufacturers, construction companies and plant operators.One of the main objectives defined by the Chinese authorities for the further development of their nuclear industry with some international cooperation is the achievement of a very high level of self-reliance by Chinese industry in all of the following areas: project management, design and engineering, construction, equipment design and manufacturing,operation and maintenance. The major key to reaching this target of overall and long term self reliance lies in the implementation of thorough design know how transfer towards all partners of the Chinese nuclear industry, who shall acquire the necessary capabilities so as to completely master nuclear engineering. While this policy might entail fairly high front end investments by the technology receivers, in terms of industrial infrastructure nad engineering capabilities it is expected to pay off over the long term with the development of a substantial nuclear power plant construction program.(DM)

  18. Advanced on-site power plant development technology program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-09-01

    The subject contract was initiated in August 1982 and the technical effort concluded in April 1989. The purpose of the technical effort was to establish a technology base for 200-kW on-site fuel cell power plants. It was conducted in two phases: (1) Component evaluation; and (2) Full-scale system verification. This contract was supplemented by a Gas Research Institute (GRI) contract which was conducted in the 1981--1986 time period. This GRI contract concentrated on 200-kW scale component design, thermal management/water treatment system analysis and redesign and advanced DC/AC inverter development. The component evaluation phase generally included subscale component tests, scale-up to full-size 200-kW hardware and full-size hardware tests of the cell stack (in Tasks 1 and 2), the power conditioner (in Task 3), the heat exchangers and ancillary components (in Task 4), and the fuel processor (in Task 5). The full-size cell stack, fuel processor, heat exchangers, and ancillary components from the component development tasks were integrated into a dc system called the Verification Test Article (VTA). The VTA which was fabricated and tested under Task 7 allowed for system integration issues associated with the cell stack, fuel processor, thermal management, and water treatment subsystems to be explored under conditions similar to an actual fuel cell power plant. Key accomplishments of this contract are described. 193 figs., 37 tabs.

  19. GaN Technology for Power Electronic Applications: A Review

    Science.gov (United States)

    Flack, Tyler J.; Pushpakaran, Bejoy N.; Bayne, Stephen B.

    2016-06-01

    Power semiconductor devices based on silicon (Si) are quickly approaching their limits, set by fundamental material properties. In order to address these limitations, new materials for use in devices must be investigated. Wide bandgap materials, such as silicon carbide (SiC) and gallium nitride (GaN) have suitable properties for power electronic applications; however, fabrication of practical devices from these materials may be challenging. SiC technology has matured to point of commercialized devices, whereas GaN requires further research to realize full material potential. This review covers fundamental material properties of GaN as they relate to Si and SiC. This is followed by a discussion of the contemporary issues involved with bulk GaN substrates and their fabrication and a brief overview of how devices are fabricated, both on native GaN substrate material and non-native substrate material. An overview of current device structures, which are being analyzed for use in power switching applications, is then provided; both vertical and lateral device structures are considered. Finally, a brief discussion of prototypes currently employing GaN devices is given.

  20. China general nuclear power corporation--The recent research and application of the modular technology in nuclear power engineering

    International Nuclear Information System (INIS)

    Lu Qinwu

    2014-01-01

    Modular design and construction is one of the distinctive features of the 3 rd generation nuclear power technology. In order to promote the technological innovations in nuclear power engineering design and construction and develop the self-owned modular technology, China General Nuclear Power Corporation (CGN) has carried out the R and D and application of the modular technology based on the CPR1000-type nuclear power plants, and has made the national-level achievements in the establishment of modular design technology system, development of 3D modular design system and application of modular construction of containment steel liner in the demonstration projects. (author)

  1. Clean coal technology and advanced coal-based power plants

    International Nuclear Information System (INIS)

    Alpert, S.B.

    1991-01-01

    Clean Coal Technology is an arbitrary terminology that has gained increased use since the 1980s when the debate over acid raid issues intensified over emissions of sulfur dioxide and nitrogen oxides. In response to political discussions between Prime Minister Brian Mulroney of Canada and President Ronald Reagan in 1985, the US government initiated a demonstration program by the Department of Energy (DOE) on Clean Coal Technologies, which can be categorized as: 1. precombustion technologies wherein sulfur and nitrogen are removed before combustion, combustion technologies that prevent or lower emissions as coal is burned, and postcombustion technologies wherein flue gas from a boiler is treated to remove pollutants, usually transforming them into solids that are disposed of. The DOE Clean Coal Technology (CCT) program is being carried out with $2.5 billion of federal funds and additional private sector funds. By the end of 1989, 38 projects were under way or in negotiation. These projects were solicited in three rounds, known as Clean Coal I, II, and III, and two additional solicitations are planned by DOE. Worldwide about 100 clean coal demonstration projects are being carried out. This paper lists important requirements of demonstration plants based on experience with such plants. These requirements need to be met to allow a technology to proceed to commercial application with ordinary risk, and represent the principal reasons that a demonstration project is necessary when introducing new technology

  2. Thermally activated technologies: Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  3. Solid Oxide Fuel Cell Technology Stationary Power Application Project

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Pierre

    2009-03-05

    The objectives of this program were to: (1) Develop a reliable, cost-effective, and production-friendly technique to apply the power-enhancing layer at the interface of the air electrode and electrolyte of the Siemens SOFC; (2) Design, build, install, and operate in the field two 5 kWe SOFC systems fabricated with the state-of-the-art cylindrical, tubular cell and bundle technology and incorporating advanced module design features. Siemens successfully demonstrated, first in a number of single cell tests and subsequently in a 48-cell bundle test, a significant power enhancement by employing a power-enhancing composite interlayer at the interface between the air electrode and electrolyte. While successful from a cell power enhancement perspective, the interlayer application process was not suitable for mass manufacturing. The application process was of inconsistent quality, labor intensive, and did not have an acceptable yield. This program evaluated the technical feasibility of four interlayer application techniques. The candidate techniques were selected based on their potential to achieve the technical requirements of the interlayer, to minimize costs (both labor and material), and suitably for large-scale manufacturing. Preliminary screening, utilizing lessons learned in manufacturing tubular cells, narrowed the candidate processes to two, ink-roller coating (IRC) and dip coating (DC). Prototype fixtures were successfully built and utilized to further evaluate the two candidate processes for applying the interlayer to the high power density Delta8 cell geometry. The electrical performance of interlayer cells manufactured via the candidate processes was validated. Dip coating was eventually selected as the application technique of choice for applying the interlayer to the high power Delta8 cell. The technical readiness of the DC process and product quality was successfully and repeatedly demonstrated, and its throughput and cost are amenable to large scale

  4. The identification of technology regimes in banking : Implications for the market power-fragility nexus

    NARCIS (Netherlands)

    Koetter, M.; Poghosyan, T.

    Neglecting the existence of different technologies in banking can contaminate efficiency, market power, and other performance measures. By simultaneously estimating (i) technology regimes conditional on exogenous factors, (ii) efficiency conditional on risk management, and (iii) Lerner indices of

  5. Technology and costs for decommissioning of Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1994-06-01

    The decommissioning study for the Swedish nuclear power plants has been carried out during 1992 to 1994 and the work has been led by a steering group consisting of people from the nuclear utilities and SKB. The study has been focused on two reference plants, Oskarshamn 3 and Ringhals 2. Oskarshamn 3 is a boiling water reactor (BWR) and Ringhals 2 is a pressurized water reactor (PWR). Subsequently, the result from these plants have been translated to the other Swedish plants. The study gives an account of the procedures, costs, waste quantities and occupational doses associated with decommissioning of the Swedish nuclear power plants. Dismantling is assumed to start immediately after removal of the spent fuel. No attempts at optimization, in terms of technology or costs, have been made. The nuclear power plant site is restored after decommissioning so that it can be released for use without restriction for other industrial activities. The study shows that a reactor can be dismantled in about five years, with an average labour force of about 150 persons. The maximum labour force required for Oskarshamn 3 has been estimated to about 300 persons. This peak load occurred the first years but is reduced to about 50 persons during the demolishing of the buildings. The cost of decommissioning Oskarshamn 3 has been estimated to be about MSEK 940 in January 1994 prices. The decommissioning of Ringhals 2 has been estimated to be MSEK 640. The costs for the other Swedish nuclear power plants lie in the range MSEK 590-960. 17 refs, 21 figs, 15 tabs

  6. Possibilities for retrofitting of the existing thermal electric power plants using solar power technologies

    International Nuclear Information System (INIS)

    Matjanov, Erkinjon K.; Abduganieva, Farogat A.; Aminov, Zarif Z.

    2012-01-01

    Full text: Total installed electric power output of the existing thermal electric power plants in Uzbekistan is reaches 12 GW. Thermal electric power plants, working on organic fuel, produce around 88 % of the electricity in the country. The emission coefficient of CO 2 gases is 620 gram/kwph. Average electric efficiency of the thermal electric power plants is 32.1 %. The mentioned above data certifies, that the existing thermal electric power plants of Uzbekistan are physically and morally aged and they need to be retrofitted. Retrofitting of the existing thermal electric power plants can be done by several ways such as via including gas turbine toppings, by using solar technologies, etc. Solar thermal power is a relatively new technology which has already shown its enormous promise. With few environmental impacts and a massive resource, it offers a comparable opportunity to the sunniest Uzbekistan. Solar thermal power uses direct sunlight, so it must be sited in regions with high direct solar radiation. In many regions, one square km of land is enough to generate as much as 100-120 GWh of electricity per year using the solar thermal technology. This is equivalent to the annual production of a 50 MW conventional coal or gas-fired mid-load power plant. Solar thermal power plants can be designed for solar-only or for hybrid operation. Producing electricity from the energy in the sun's rays is a straightforward process: direct solar radiation can be concentrated and collected by a range of Concentrating Solar Power technologies to provide medium- to high temperature heat. This heat is then used to operate a conventional power cycle, for example through a steam turbine or a Stirling engine. Solar heat collected during the day can also be stored in liquid or solid media such as molten salts, ceramics, concrete or, in the future, phase-changing salt mixtures. At night, it can be extracted from the storage medium thereby continuing turbine operation. Currently, the

  7. Overview of space power electronic's technology under the CSTI High Capacity Power Program

    Science.gov (United States)

    Schwarze, Gene E.

    1994-01-01

    The Civilian Space Technology Initiative (CSTI) is a NASA Program targeted at the development of specific technologies in the areas of transportation, operations and science. Each of these three areas consists of major elements and one of the operation's elements is the High Capacity Power element. The goal of this element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA initiatives. The High Capacity Power element is broken down into several subelements that includes energy conversion in the areas of the free piston Stirling power converter and thermoelectrics, thermal management, power management, system diagnostics, and environmental compatibility and system's lifetime. A recent overview of the CSTI High capacity Power element and a description of each of the program's subelements is given by Winter (1989). The goals of the Power Management subelement are twofold. The first is to develop, test, and demonstrate high temperature, radiation-resistant power and control components and circuits that will be needed in the Power Conditioning, Control and Transmission (PCCT) subsystem of a space nuclear power system. The results obtained under this goal will also be applicable to the instrumentation and control subsystem of a space nuclear reactor. These components and circuits must perform reliably for lifetimes of 7-10 years. The second goal is to develop analytical models for use in computer simulations of candidate PCCT subsystems. Circuits which will be required for a specific PCCT subsystem will be designed and built to demonstrate their performance and, also, to validate the analytical models and simulations. The tasks under the Power Management subelement will now be described in terms of objectives, approach and present status of work.

  8. Technology verification phase. Dynamic isotope power system. Final report

    International Nuclear Information System (INIS)

    Halsey, D.G.

    1982-01-01

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance

  9. Technology verification phase. Dynamic isotope power system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Halsey, D.G.

    1982-03-10

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)

  10. Sensemaking technologies

    DEFF Research Database (Denmark)

    Madsen, Charlotte Øland

    Research scope: The scope of the project is to study technological implementation processes by using Weick's sensemaking concept (Weick, 1995). The purpose of using a social constructivist approach to investigate technological implementation processes is to find out how new technologies transform...... patterns of social action and interaction in organisations (Barley 1986; 1990, Orlikowski 2000). Current research in the field shows that new technologies affect organisational routines/structures/social relationships/power relations/dependencies and alter organisational roles (Barley 1986; 1990, Burkhardt......, Orlikowski 2000). Viewing the use of technology as a process of enactment opens up for investigating the social processes of interpreting new technology into the organisation (Orlikowski 2000). The scope of the PhD project will therefore be to gain a deeper understanding of how the enactment of new...

  11. Power technology complex for production of motor fuel from brown coals with power supply from NPPs

    International Nuclear Information System (INIS)

    Troyanov, M.F.; Poplavskij, V.M.; Sidorov, G.I.; Bondarenko, A.V.; Chebeskov, A.N.; Chushkin, V.N.; Karabash, A.A.; Krichko, A.A.; Maloletnev, A.S.

    1998-01-01

    With the present-day challenge of efficient use of low-grade coals and current restructuring of coal industry in the Russian Federation, it is urgent to organise the motor fuel production by the synthesis from low grade coals and heavy petroleum residues. With this objective in view, the Institute of Physics and Power Engineering of RF Minatom and Combustible Resources Institute of RF Mintopenergo proposed a project of a standard nuclear power technology complex for synthetic liquid fuel (SLF) production using fast neutron reactors for power supply. The proposed project has two main objectives: (1) Engineering and economical optimization of the nuclear power supply for SLF production; and (2) Engineering and economical optimization of the SLF production by hydrogenisation of brown coals and heavy petroleum residues with a complex development of advanced coal chemistry. As a first approach, a scheme is proposed with the use of existing reactor cooling equipment, in particular, steam generators of BN-600, limiting the effect on safety of reactor facility operation at minimum in case of deviations and abnormalities in the operation of technological complex. The possibility to exclude additional requirements to the equipment for nuclear facility cooling was also taken into account. It was proposed to use an intermediate steam-water circuit between the secondary circuit sodium and the coolant to heat the technological equipment. The only change required for the BN-600 equipment will be the replacement of sections of intermediate steam superheaters at the section of main steam superheaters. The economic aspects of synthetic motor fuel production proposed by the joint project depend on the evaluation of integral balances: thermal power engineering, chemical technology, the development of advanced large scale coal chemistry of high profitability; utilisation of ash and precious microelements in waste-free technology; production of valuable isotopes; radical solution of

  12. DESIGNING FEATURES OF POWER OPTICAL UNITS FOR TECHNOLOGICAL EQUIPMENT

    Directory of Open Access Journals (Sweden)

    M. Y. Afanasiev

    2016-03-01

    Full Text Available This paper considers the question of an optical unit designing for transmitting power laser radiation through an optical fiber. The aim of this work is designing a simple construction unit with minimized reflection losses. The source of radiation in the optical unit described below is an ultraviolet laser with diode pumping. We present the general functioning scheme and designing features for the three main parts: laser beam deflecting system, laser beam dump and optical unit control system. The described laser beam deflection system is composed of a moving flat mirror and a spherical scattering mirror. Comparative analysis of the production technology for such mirrors was carried out, and, as a result, the decision was made to produce both mirrors of 99.99 % pure molybdenum without coating. A moving mirror deflects laser emission from a source through a fiber or deflects it on a spherical mirror and into the laser beam dump, moreover, switching from one position to another occurs almost immediately. It is shown that a scattering mirror is necessary, otherwise, the absorbing surface of the beam dump is being worn out irregularly. The laser beam dump is an open conical cavity, in which the conical element with its spire turned to the emission source is placed. Special microgeometry of the internal surface of the beam dump is suggested for the better absorption effect. An optical unit control system consists of a laser beam deflection system, laser temperature sensor, deflection system solenoid temperature sensor, and deflection mirror position sensor. The signal processing algorithm for signals coming from the sensors to the controller is described. The optical unit will be used in special technological equipment.

  13. The Mercury Laser Advances Laser Technology for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, C A; Caird, J; Moses, E

    2009-01-21

    The National Ignition Facility (NIF) at Lawrence Livermore Laboratory is on target to demonstrate 'breakeven' - creating as much fusion-energy output as laser-energy input. NIF will compress a tiny sphere of hydrogen isotopes with 1.8 MJ of laser light in a 20-ns pulse, packing the isotopes so tightly that they fuse together, producing helium nuclei and releasing energy in the form of energetic particles. The achievement of breakeven will culminate an enormous effort by thousands of scientists and engineers, not only at Livermore but around the world, during the past several decades. But what about the day after NIF achieves breakeven? NIF is a world-class engineering research facility, but if laser fusion is ever to generate power for civilian consumption, the laser will have to deliver pulses nearly 100,000 times faster than NIF - a rate of perhaps 10 shots per second as opposed to NIF's several shots a day. The Mercury laser (named after the Roman messenger god) is intended to lead the way to a 10-shots-per-second, electrically-efficient, driver laser for commercial laser fusion. While the Mercury laser will generate only a small fraction of the peak power of NIF (1/30,000), Mercury operates at higher average power. The design of Mercury takes full advantage of the technology advances manifest in its behemoth cousin (Table 1). One significant difference is that, unlike the flashlamp-pumped NIF, Mercury is pumped by highly efficient laser diodes. Mercury is a prototype laser capable of scaling in aperture and energy to a NIF-like beamline, with greater electrical efficiency, while still running at a repetition rate 100,000 times greater.

  14. Distributed Electrical Power Generation: Summary of Alternative Available Technologies

    National Research Council Canada - National Science Library

    Scott, Sarah

    2003-01-01

    .... While distributed generation (DG) technologies offer many of the benefits of alternative, efficient energy sources, few DG systems can currently be commercially purchased "off the shelf", and complicated codes and standards deter potential users...

  15. Global power knowledge science and technology in international affairs

    CERN Document Server

    Barth, Kai-Henrik

    2006-01-01

    Osiris annualy examines a particular topic in the history of science, bringing together experts in the field to consider multiple aspects of the time period, episode, or theme. Volume 21, Historical Perspectives on Science, Technology, and International Affairs, explores the ways in which scientists and issues in science and technology have played significant roles in foreign policy and international relations, especially since the Second World War.

  16. Space matters: the relational power of mobile technologies

    Directory of Open Access Journals (Sweden)

    Nancy Odendaal

    2014-01-01

    Full Text Available The ubiquitous presence of mobile telephony and proliferation of digital networks imply a critical role for these technologies in overcoming the constraints of space in fragmented cities. Academic literature draws from a range of disciplines but fails to address the significance of new technologies for African and South African cities. Debates on technologies and urban spaces reflect a Northern bias and case literature that dwells on the developmental aspects of ICT do not engage with the broader significance with regards to urban change in African cities. This research addresses these gaps by examining the local transformative qualities of mobile telephony in a South African city, Durban. It focuses on the ways in which informal traders active in the city use technology. Actor-network theory was used in the analysis of the field work, uncovering material and human actors, network stabilization processes and agency in determining the transformative potential of this form of digital networking at city and local scales. Findings indicate that appropriation of technology is informed by livelihood strategies. Innovation is enabled when translation extends to appropriation. More in-depth research is needed on how technology is molded and appropriated to suit livelihoods. Throughout the research the spatial dimensions of the relationship between mobile telephony and networks were considered. The network spaces that emerge from actor relations do not correspond with the physical spaces usually considered in policy.

  17. Space power needs and forecasted technologies for the 1990s and beyond

    International Nuclear Information System (INIS)

    Buden, D.; Albert, T.

    1987-01-01

    A new generation of reactors for electric power will be available for space missions to satisfy military and civilian needs in the 1990s and beyond. To ensure a useful product, nuclear power plant development must be cognizant of other space power technologies. Major advances in solar and chemical technologies need to be considered in establishing the goals of future nuclear power plants. In addition, the mission needs are evolving into new regimes. Civilian and military power needs are forecasted to exceed anything used in space to date. Technology trend forecasts have been mapped as a function of time for solar, nuclear, chemical, and storage systems to illustrate areas where each technology provides minimum mass. Other system characteristics may dominate the usefulness of a technology on a given mission. This paper will discuss some of these factors, as well as forecast future military and civilian power needs and the status of technologies for the 1990s and 2000s. 6 references

  18. Study and Analysis on Technology and Development of Information Network of Rural Power Grid

    Science.gov (United States)

    Li, Weiying

    This paper describes the technology and transferring mode of rural power grid’s information network, analyses technology of communication system of electric power grid in rural area, chooses a new develop direction of technique based on the business needs and trend of rural power grids, and gives a route for development.

  19. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin; Kim, Young Hwan; Shin, Hyun Jae [Sungkwunkwan Univ., Seoul (Korea, Republic of); Lee, Hyang Beom [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan National Univ., Gunsan (Korea, Republic of); Chung, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of); Park, Ik Keun; Park, Eun Soo [Seoul National University of Technology, Seoul (Korea, Republic of)

    2001-03-15

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of nuclear power plant. In order to Improve reliabilities of ultrasonic testing and eddy current testing, the following five subjects were carried out in this study: development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field and evaluation of statistical reliability of PD-RR test of ultrasonic testing. As results, BEM analysis of eddy current signal, intelligent analysis of eddy current signal using neural network, and FEM analysis of remote field eddy current testing have been developed for the inspection of SG tubes. FEM analysis of ultrasonic waves in 2-dimensional media and evaluation of statistical reliability of ultrasonic testing with PD-RR test also have been carried out for the inspection of weldments. Those results can be used to Improve reliability of nondestructive testing.

  20. Development of life evaluation technology for nuclear power plant components

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Young Hwan; Shin, Hyun Jae; Lee, Hyang Beom; Shin, Young Kil; Chung, Hyun Jo; Park, Ik Keun; Park, Eun Soo

    2001-03-01

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of nuclear power plant. In order to Improve reliabilities of ultrasonic testing and eddy current testing, the following five subjects were carried out in this study: development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field and evaluation of statistical reliability of PD-RR test of ultrasonic testing. As results, BEM analysis of eddy current signal, intelligent analysis of eddy current signal using neural network, and FEM analysis of remote field eddy current testing have been developed for the inspection of SG tubes. FEM analysis of ultrasonic waves in 2-dimensional media and evaluation of statistical reliability of ultrasonic testing with PD-RR test also have been carried out for the inspection of weldments. Those results can be used to Improve reliability of nondestructive testing

  1. Advancement of safeguards inspection technology for CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Park, W. S.; Cha, H. R.; Ham, Y. S.; Lee, Y. G.; Kim, K. P.; Hong, Y. D

    1999-04-01

    The objectives of this project are to develop both inspection technology and safeguards instruments, related to CANDU safeguards inspection, through international cooperation, so that those outcomes are to be applied in field inspections of national safeguards. Furthermore, those could contribute to the improvement of verification correctness of IAEA inspections. Considering the level of national inspection technology, it looked not possible to perform national inspections without the joint use of containment and surveillance equipment conjunction with the IAEA. In this connection, basic studies for the successful implementation of national inspections was performed, optimal structure of safeguards inspection was attained, and advancement of safeguards inspection technology was forwarded. The successful implementation of this project contributed to both the improvement of inspection technology on CANDU reactors and the implementation of national inspection to be performed according to the legal framework. In addition, it would be an opportunity to improve the ability of negotiating in equal shares in relation to the IAEA on the occasion of discussing or negotiating the safeguards issues concerned. Now that the national safeguards technology for CANDU reactors was developed, the safeguards criteria, procedure and instruments as to the other item facilities and fabrication facilities should be developed for the perfection of national inspections. It would be desirable that the recommendations proposed and concreted in this study, so as to both cope with the strengthened international safeguards and detect the undeclared nuclear activities, could be applied to national safeguards scheme. (author)

  2. Determination of Technological Electric Power Consumption for Its Transportation while Using Block-Stations

    Directory of Open Access Journals (Sweden)

    V. V. Pavlovets

    2010-01-01

    Full Text Available The paper proposes a method for calculation of the technological electric power consumption for its transportation in the elements of power network while using block-stations under conditions of differently-directed electric power transfer.The calculation of technological electric power consumption for its transportation can be applied while supplying several consumers with one element of power network simultaneously with block-station operation. 

  3. Generating power at high efficiency combined cycle technology for sustainable energy production

    CERN Document Server

    Jeffs, E

    2008-01-01

    Combined cycle technology is used to generate power at one of the highest levels of efficiency of conventional power plants. It does this through primary generation from a gas turbine coupled with secondary generation from a steam turbine powered by primary exhaust heat. Generating power at high efficiency thoroughly charts the development and implementation of this technology in power plants and looks to the future of the technology, noting the advantages of the most important technical features - including gas turbines, steam generator, combined heat and power and integrated gasification com

  4. Role of advanced RF/microwave technology and high power switch technology for developing/upgrading compact/existing accelerators

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam

    2001-01-01

    With the advances in high power microwave devices as well as in microwave technologies it has become possible to go on higher frequencies at higher powers as well as to go for newer devices which are more efficient and compact and hence reducing the power needs as well as space and weight requirement for accelerators. New devices are now available in higher frequency spectrum for example at C-Band, X-band and even higher. Also new devices like klystrodes/Higher Order Mode Inductive Output Tubes (HOM IOTs) are now becoming competitors for existing tubes which are in use at present accelerator complexes. The design/planning of the accelerators used for particle physics research, medical accelerators, industrial irradiation, or even upcoming Driver Accelerators for Sub Critical Reactors for nuclear power generation are being done taking into account the newer technologies. The accelerators which use magnetrons, klystrons and similar devices at S-Band can be modified/redesigned with devices at higher frequencies like X-Band. Pulsed accelerators need high power high voltage pulsed modulators whereas CW accelerators need high voltage power supplies for functioning of RF / Microwave tubes. There had been a remarkable growth in the development and availability of solid state switches both for switching the pulsed modulators for microwave tubes as well as for making high frequency switch mode power supplies. Present paper discusses some of the advanced devices/technologies in this field as well as their capability to make advanced/compact/reliable accelerators. Microwave systems developed/under development at Centre for Advanced Technology are also discussed briefly along with some of the efforts done to make them compact. An overview of state of art vacuum tube devices and solid state switch technologies is given. (author)

  5. Laser Technology.

    Science.gov (United States)

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  6. Sensemaking technology

    DEFF Research Database (Denmark)

    Madsen, Charlotte Øland

    Research objective: The object of the LOK research project is to gain a better understanding of the technological strategic processes in organisations by using the concept/metaphor of sensemaking. The project will investigate the technological strategies in organisations in order to gain a deeper...... understanding of the cognitive competencies and barriers towards implementing new technology in organisations. The research will therefore concentrate on researching the development process in the organisation's perception of the external environmental elements of customers, suppliers, competitors, internal...... and external technology and legislation and the internal environmental elements of structure, power relations and political arenas. All of these variables have influence on which/how technologies are implemented thus creating different outcomes all depending on the social dynamics that are triggered by changes...

  7. Technical, environmental, and economic assessment of deploying advanced coal power technologies in the Chinese context

    International Nuclear Information System (INIS)

    Zhao Lifeng; Xiao Yunhan; Gallagher, Kelly Sims; Wang Bo; Xu Xiang

    2008-01-01

    The goal of this study is to evaluate the technical, environmental, and economic dimensions of deploying advanced coal-fired power technologies in China. In particular, we estimate the differences in capital cost and overall cost of electricity (COE) for a variety of advanced coal-power technologies based on the technological and economic levels in 2006 in China. This paper explores the economic gaps between Integrated Gasification Combined Cycle (IGCC) and other advanced coal power technologies, and compares 12 different power plant configurations using advanced coal power technologies. Super critical (SC) and ultra super critical (USC) pulverized coal (PC) power generation technologies coupled with pollution control technologies can meet the emission requirements. These technologies are highly efficient, technically mature, and cost-effective. From the point of view of efficiency, SC and USC units are good choices for power industry. The net plant efficiency for IGCC has reached 45%, and it has the best environmental performance overall. The cost of IGCC is much higher, however, than that of other power generation technologies, so the development of IGCC is slow throughout the world. Incentive policies are needed if IGCC is to be deployed in China

  8. NASA/MSFC Interest in Advanced Propulsion and Power Technologies

    Science.gov (United States)

    Cole, John W.

    2003-01-01

    This viewgraph representation provides an overview of research being conducted at NASA's Marshall Space Flight Center. Conventional propulsion systems are at near peak performance levels but will not enable the science and exploration deep space missions NASA envisions. Energetic propulsion technologies can make these missions possible but only if the fundamental problems of energy storage density and energy to energy thrust conversion efficiency are solved. Topics covered include: research rationale, limits of thermal propulsion systems, need for propulsion energetics research, emerging energetic propulsion technologies, and potential research opportunities.

  9. INNOVATIVE TECHNOLOGICAL SOLUTIONS IN CREATING FUNCTIONAL PRODUCTS POWER

    Directory of Open Access Journals (Sweden)

    I. V. Sergienko

    2015-01-01

    Full Text Available The article deals with a problem of functional products creation for consumers feeling need in proteins, irreplaceable amino acids, vitamins, mineral substances, food fibers, polynonsaturated fat acids. One of the possible ways to improve human nutrition is using non-traditional cultures for bread making technology containing significant amounts of fibrous substances, easily digestible protein, vitamins, unsaturated fatty acids and minerals. Taking into account the Nutrition Science requirements an expediency of the most full functional ingredients complex entering into bakery products prescription structure is proved. Replacement of the first grade wheat flour by the offered prescription composition allows to slow down a bread aging, to increase periods of products storage and to improve their physical and chemical indicators on the specific volume and porosity. The bakery products "Svyatogor" at the use of 100 g of a product allow to cover daily need in protein for 38,9%, in carbohydrates – for 3,4%, fat – for 9,2%. The power value of "Svyatogor" is 897 kJ, in control 959. Biological value, % 82,7 against 53,1 in control. Thanks to it the digestibility of bread protein (in vitro method of “Svyatogor” is higher. Thanks to unique properties of the compounding components “Svyatogor” gets functional properties by full-fledged protein increasing and its best comprehensibility (in vitro, advanced structure according to the content of vitamins, mineral substances, their balanced structure and can be recommended for mass consumption and prevention of osteoporosis, atherosclerosis, anemia, for children food, pregnant women and the feeding women.

  10. Technology, Gender, and Power in Africa | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Part III identifies issues and inter-relations that have not been addressed in previous research and suggests promising ways to frame future research on women and technology in Africa. The social, economic,and technical empowerment of women at the community level is seen as vital to effective development efforts.

  11. Gasification technologies for heat and power from biomass

    NARCIS (Netherlands)

    Beenackers, AACM; Maniatis, K; Kaltschmitt, M; Bridgwater, AV

    1997-01-01

    A critical review is presented of biomass gasifier systems presently commercially available or under development. Advantages and possible problem areas are discussed in relation to particular applications. Both large and small scale technologies are reviewed. Catalysed by the EC JOULE and AIR

  12. Development of new technologies in electric power conservation

    International Nuclear Information System (INIS)

    Geller, H.S.

    1989-01-01

    This presentation reviews overall progress in electricity conservation in the United States and describes major policies that have contributed to the development and implementation of new electricity conserving technologies. A variety of government and utility conservation programs are covered including: research and development programs, equipment and building efficiency standards, and utility incentive programs. (author)

  13. Use a renewable energy sources and latest power-saving technologies in the the Republic Kazakstan

    International Nuclear Information System (INIS)

    Gulevich, N.V.

    1996-01-01

    The subject of alternative power in Kazakstan is brought up. Wind-, hydro-, solar power, biogas installation can improve the Republic power base. The main directions of activity of A. Einstein International Power engineering Academy on involving renewable energy sources and latest power-saving technologies to Republic of Kazakstan's fuel-power balance is given. It should be noted that renewable power engineering usually handles reversible energy sources and reserved power cycles. (author)

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: RESIDENTIAL ELECTRIC POWER GENERATION USING THE PLUG POWER SU1 FUEL CELL SYSTEM

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Plug Power SU1 Fuel Cell System manufactured by Plug Power. The SU1 is a proton exchange membrane fuel cell that requires hydrogen (H2) as fuel. H2 is generally not available, so the ...

  15. Features of introduction of Smart Grid technologies in electric power industry of Ukraine

    Directory of Open Access Journals (Sweden)

    Микола Михайлович Черемісін

    2015-04-01

    Full Text Available The features of introduction of Smart Grid technologies are analysed in electric power industry of Ukraine with the purpose of "intellectualization" of electric networks and fundamental changes are presented as compared to the existent state of grid at introduction of Smart Grid technologies that will promote efficiency of functioning of industry considerably. The necessity of introduction support of Smart Grid technologies is similarly proved for electric power industry of Ukraine at legislative level

  16. Application and the key technology on high power fiber-optic laser in laser weapon

    Science.gov (United States)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  17. Space power technology for the twenty-first century (SPT21)

    International Nuclear Information System (INIS)

    Borger, W.U.; Massie, L.D.

    1988-01-01

    During the spring and summer months of 1987, the Aero Propulsion Laboratory of the Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, Ohio in cooperation with the Air Force Space Technology Center at Kirtland AFB, New Mexico, undertook an initiative to develop a Strategic Plan for Space Power Technology Development. The initiative was called SPT21, Space Power Technology for the Twenty-First Century. The planning process involved the participation of other Government organizations (U.S. Army, Navy, DOE and NASA) along with major aerospace companies and universities. Following an SPT21 kickoff meeting on 28 May 1987, detailed strategic planning was accomplished through seven (7) Space Power Technology Discipline Workshops commencing in June 1987 and concluding in August 1987. Technology Discipline Workshops were conducted in the following areas: (1) Solar Thermal Dynamic Power Systems (2) Solar Photovoltaic Cells and Arrays (3) Thermal Management Technology (4) Energy Storage Technology (5) Nuclear Power Systems Technology (6) Power Conditioning, Distribution and Control and (7) Systems Technology/Advanced Concepts. This technical paper summarizes the planning process and describes the salient findings and conclusions of the workshops

  18. Power Electronics – The Key Technology for Renewable Energy System Integration

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng; Ma, Ke

    2015-01-01

    – Denmark expects to be 100 % fossil-free by 2050. Consequently, it is required that the production, distribution and use of the energy should be as technologically efficient as possible and incentives to save energy at the end-user should also be strengthened. In order to realize the transition smoothly...... and effectively, energy conversion systems, currently based on power electronics technology, will again play an essential role in this energy paradigm shift. Using highly efficient power electronics in power generation, power transmission/distribution and end-user application, together with advanced control...... technology development, implementation, power converter technologies, control of the systems, and synchronization are addressed. Special focuses are paid on the future trends in power electronics for those systems like how to lower the cost of energy and to develop emerging power devices and better...

  19. International conference on comparative assessments of solar power technologies

    International Nuclear Information System (INIS)

    Roy, A.

    1994-02-01

    Many regions in the world which lack fossil fuel resources but possess ample sunshine seek to identify near-term solar technologies capable of gradually replacing their fuel imports in cost-effective fashion. The conference addresses the following topics: technical and economical studies specifying their underlying basic assumption, methods and rules for evaluation in order to enable meaningful comparison between different technologies and systems. Detailed delineation of numerical and graphical representations, critical analysis and comparison between simulations, and test validity. Generalized performance indicators for systems and subsystems, problems of measuring and evaluating physical parameters, of terminology and conceptual tools for comparative evaluations. Advances in research development, engineering and field performance, including implications pertaining to comparative assessments and definitions of criteria and standards helpful to comparative evaluation. Assessments of the full (and hidden) cost of fossil energies as compared to solar, including environmental costs. Cost/benefit studies for remote versus centralized systems. (ed.)

  20. Synchrotron light sources: A powerful tool for science and technology

    International Nuclear Information System (INIS)

    Schlachter, F.; Robinson, A.

    1996-01-01

    A new generation of synchrotron light sources is producing extremely bright beams of vacuum-ultraviolet and x-ray radiation, poweful new tools for research in a wide variety of basic and applied sciences. Spectromicroscopy using high spectral and spatial resolution is a new way of seeing, offering many opportunities in the study of matter. Development of a new light source provides the country or region of the world in which the light source is located many new opportunities: a focal point for research in many scientific and technological areas, a means of upgrading the technology infrastructure of the country, a means of training students, and a potential service to industry. A light source for Southeast Asia would thus be a major resource for many years. Scientists and engineers from light sources around the world look forward to providing assistance to make this a reality in Southeast Asia

  1. Non power applications of nuclear technology: The case of Belgium

    International Nuclear Information System (INIS)

    Jaumotte, A.L.

    1998-01-01

    The historical review and oversight of Belgium activities in applications of nuclear technologies has been presented. Especially attention have been paid on industrial applications as sterilization of surgical tools, medical supplies, drugs, food; radiation induced polymerization and composite materials production; nondestructive testing and application of sealed sources in industry. The detailed review has been done on nuclear medicine development in Belgium covering the range of therapeutic applications as well as diagnostic techniques

  2. The economic ascent of technological power:South Korea

    OpenAIRE

    Valli Vittorio

    2010-01-01

    The chapter contains an analysis of the long-run trend and policies of South Korea’ s economy. The main thesis is that a combination of historical events, wise industrial policies and the great effort of families, the state and enterprises to enhance the level of human capital and of technological progress, have strongly contributed to determine the Korean economic period of fast growth. Ageing of population, financial crises, the crumbling of the fordist model of development, difficulties in...

  3. Solar mirrors characterization for concentrating solar power technology

    OpenAIRE

    Contino, Alessandro Patrizio

    2012-01-01

    The increasing availability on the market of different types of solar reflectors such as: polymeric film mirrors, aluminum mirrors and thin glass mirrors, together with: the lack of available norms in this area, and a valid methodology to compare the performances of the candidate reflectors; highlights the necessity to conduct a more detailed analysis on these new technologies. The objective of the present work is to suggest a valuable method to compare the reflectance performance of mirro...

  4. Technology development for nuclear power generation for space application

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine N.F.; Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Nascimento, Jamil A.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: lamartine.guimaraes@pq.cnpq.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear; Faria, Saulo M. de [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2015-07-01

    For a few years now, the TERRA project is developing several technology pieces to foster nuclear space applications. In this way, a nuclear reactor concept has been developed as a first proposal. Together, the problem of heat to electricity conversion has been addressed. A closed Brayton cycle is being built and a Stirling machine is being worked out and perfected. In addition, two types of heat pipes are being look at. One related with high temperature made of Mo13Re, an especial alloy. And a second one made of copper, which mainly could be used as a passive heat rejection. In this way, all major areas of interest in a micro station to be used in space has been addressed. A new passive technology has been inferred and is related with Tesla turbine or its evolution, known as multi fluid passive turbine. This technology has the potential to either: improve the Brayton cycle or its efficiency. In this paper, some details are discussed and some will be shown during the presentation, as the work evolve. (author)

  5. Plasma technology

    International Nuclear Information System (INIS)

    Drouet, M.G.

    1984-03-01

    IREQ was contracted by the Canadian Electrical Association to review plasma technology and assess the potential for application of this technology in Canada. A team of experts in the various aspects of this technology was assembled and each team member was asked to contribute to this report on the applications of plasma pertinent to his or her particular field of expertise. The following areas were examined in detail: iron, steel and strategic-metals production; surface treatment by spraying; welding and cutting; chemical processing; drying; and low-temperature treatment. A large market for the penetration of electricity has been identified. To build up confidence in the technology, support should be provided for selected R and D projects, plasma torch demonstrations at full power, and large-scale plasma process testing

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION--FUELCELL ENERGY, INC.: DFC 300A MOLTEN CARBONATE FUEL CELL COMBINED HEAT AND POWER SYSTEM

    Science.gov (United States)

    The U.S. EPA operates the Environmental Technology Verification program to facilitate the deployment of innovative technologies through performance verification and information dissemination. A technology area of interest is distributed electrical power generation, particularly w...

  7. Survey and studies on the roles of nuclear power development in economy and technology

    International Nuclear Information System (INIS)

    1985-01-01

    The development and utilization of nuclear energy is principally for security of energy supplies but, on the other hand, is contributing largely to the economic activities and technology developments in Japan. In order to clarify the economic and the technological roles played by the nuclear energy development and utilization, Atomic Energy Commission has made survey and studies on the present state of nuclear power industry and of nuclear power technology and the respective effects in other areas. The nuclear power industry, through its high growth, is now a substantial portion, and so has significant influence, in Japan's whole economic activities. Then, the nuclear power technology, started with its introduction, is now on the world's leading level. Its effects in other areas include quality control, system technology, etc. (Mori, K.)

  8. Technology transfer

    International Nuclear Information System (INIS)

    Boury, C.

    1986-01-01

    This paper emphasizes in the specific areas of design, engineering and component production. This paper presents what Framatome has to offer in these areas and its export oriented philosophy. Then, a typical example of this technology transfer philosophy is the collaboration with the South Korean firm, Korea Heavy Industries Corporation (KHIC) for the supply of KNU 9 and KNU 10 power stations

  9. Energy Technology.

    Science.gov (United States)

    Eaton, William W.

    Reviewed are technological problems faced in energy production including locating, recovering, developing, storing, and distributing energy in clean, convenient, economical, and environmentally satisfactory manners. The energy resources of coal, oil, natural gas, hydroelectric power, nuclear energy, solar energy, geothermal energy, winds, tides,…

  10. Holding a candle to innovation in concentrating solar power technologies: A study drawing on patent data

    International Nuclear Information System (INIS)

    Braun, Frauke G.; Hooper, Elizabeth; Wand, Robert; Zloczysti, Petra

    2011-01-01

    Improved understanding of the innovative pathways of renewable energy technologies is vital if we are to make the transition to a low carbon economy. This study presents new evidence on innovation and industry dynamics in concentrating solar power (CSP) technologies. Though CSP is undergoing a renaissance, existing innovation studies have explored innovative activity in solar technologies in general, ignoring the major differences between solar photovoltaic and CSP technologies. This study, based on patent data, examines the level and dynamics of innovative activity in CSP between 1978 and 2004. Our unique contribution, based on engineering expertise and detailed datawork, is a classification system mapping CSP technologies to the International Patent Classification (IPC) system. The innovation performance of CSP is found to be surprisingly weak compared to the patent boom in other green technologies. Performance was strong around 1980 before falling dramatically, and has only recently begun to show signs of recovery. Innovation and R and D are concentrated in high-tech countries; the US, Germany and Japan, which do not necessarily have high domestic CSP potential. Large CSP potential is, therefore, not a sufficient condition for innovation. Innovators must possess economic and scientific capabilities. - Research highlights: → We develop a new classification system which allows us to map innovation in CSP technologies to the International Patent Classification System. → Evidence of innovation patterns in concentrating solar power technologies is presented. → Innovation performance in CSP is surprisingly weak compared to patenting in other green technologies, despite its strong potential as a low carbon power generation technology.

  11. INSTITUTIONAL AND PEDAGOGICAL CONDITIONS FOR TRAINING OF TEACHERS LABOUR TRAINING AND TECHNOLOGIES FOR POWER TOOLS

    Directory of Open Access Journals (Sweden)

    Gregory Tereshchuk

    2016-06-01

    Full Text Available Factors that indicate the feasibility depth study of power future teachers of labor studies and Technology (growth of market power, the development of new types of instrument; widespread use of power tools in home workshops and in terms of individual production, availability issues concerning the study of power programs of labor training and learning technologies, profile education high school students, students learning vocational education. Defined organizational and pedagogical conditions of formation of students' skills of power tools, self-organization; development and implementation of the educational process didactic support; implementation of training future teachers in terms of practice-based learning, making products using power tools.

  12. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Neti, Sudhakar [Lehigh Univ., Bethlehem, PA (United States). Mechanical Engineering and Mechanics; Oztekin, Alparslan [Lehigh Univ., Bethlehem, PA (United States); Chen, John [Lehigh Univ., Bethlehem, PA (United States); Tuzla, Kemal [Lehigh Univ., Bethlehem, PA (United States); Misiolek, Wojciech [Lehigh Univ., Bethlehem, PA (United States)

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300°C and 850°C using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  13. Technology Innovation of Power Transmission Gearing in Aviation

    Science.gov (United States)

    Handschuh, Robert F.

    2009-01-01

    An overview of rotary wing evolution and innovations over the last 20 years was presented. This overview is provided from a drive system perspective. Examples of technology innovations that have changed and advanced drive systems of rotary wing vehicles will be provided. These innovations include full 6-axis CNC gear manufacture, face gear development to aerospace standards, health and usage monitoring, and gear geometry and bearing improvements. Also, an overview of current state-of-the-art activities being conducted at NASA Glenn is presented with a short look to fixed and rotary wing aircraft and systems needed for the future.

  14. Satellite power systems structures: A 1980 technology status review

    Science.gov (United States)

    Greenberg, H. S.

    1980-07-01

    The classes of major structural components and constructions utilized were considered. A review of the current (SPS) structure technology status was made. The major issues considered pertinent to SPS structures are: Cost effective construction, construction materials, structural design requirements, stress and dimensional integrity of as-built structures, and predictability of strength and dynamic behavior. The feasibility of passive figure control approach to MPTS flatness, of structure stiffness compatible with MPTS pointing, of passive control through damping, and the feasibility of space fabrication of ultra-large reflector surfaces are also considered. Qualification, model verification, inspection are considered of vital concern.

  15. Technology and knowledge flow the power of networks

    CERN Document Server

    Trentin, Guglielmo

    2011-01-01

    This book outlines how network technology can support, foster and enhance the Knowledge Management, Sharing and Development (KMSD) processes in professional environments through the activation of both formal and informal knowledge flows. Understanding how ICT can be made available to such flows in the knowledge society is a factor that cannot be disregarded and is confirmed by the increasing interest of companies in new forms of software-mediated social interaction. The latter factor is in relation both to the possibility of accelerating internal communication and problem solving processes, an

  16. Considerations on technology transfer process in nuclear power industry for developing countries

    International Nuclear Information System (INIS)

    Castro, I.P.

    2000-01-01

    Nuclear know-how cannot possibly be developed globally in developing countries, so technology transfer is the only conceivable way to make nuclear power accessible to these countries. Technology transfer process accounts for three mayor steps, namely acquisition, assimilation and diffusion, so a serious nuclear power program should comprise all of them. Substantial national efforts should be made by developing countries in financial, industrial, scientific, organizational and many other aspects in order to succeed a profitable technology transfer, but developing countries cannot make it by themselves. Finance is the biggest problem for developing world nuclear power projects. Human resource qualification is another important aspect of the nuclear power technology transfer, where technology receptor countries should prepare thousands of professionals in domestic and foreign schools. Challenge for nuclear power deployment is economical, but also social and political. Developed countries should be open to cooperate with developing countries in meeting their needs for nuclear power deployment that should be stimulated and coordinated by an international body which should serve as mediator for nuclear power technology transfer. This process must be carried out on the basis of mutual benefits, in which the developed world can exploit the fast growing market of energy in the developing world, but with the necessary condition of the previous preparation of our countries for this technology transfer. (author)

  17. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Adam Schaut

    2011-12-30

    Alcoa began this program in March of 2008 with the goal of developing and validating an advanced CSP trough design to lower the levelized cost of energy (LCOE) as compared to existing glass based, space-frame trough technology. In addition to showing a pathway to a significant LCOE reduction, Alcoa also desired to create US jobs to support the emerging CSP industry. Alcoa's objective during Phase I: Concept Feasibility was to provide the DOE with a design approach that demonstrates significant overall system cost savings without sacrificing performance. Phase I consisted of two major tasks; reflector surface development and system concept development. Two specific reflective surface technologies were investigated, silver metallized lamination, and thin film deposition both applied on an aluminum substrate. Alcoa prepared samples; performed test validation internally; and provided samples to the NREL for full-spectrum reflectivity measurements. The final objective was to report reflectivity at t = 0 and the latest durability results as of the completion of Phase 1. The target criteria for reflectance and durability were as follows: (1) initial (t = 0), hemispherical reflectance >93%, (2) initial spectral reflectance >90% for 25-mrad reading and >87% for 7-mrad reading, and (3) predicted 20 year durability of less than 5% optical performance drop. While the results of the reflective development activities were promising, Alcoa was unable to down-select on a reflective technology that met the target criteria. Given the progress and potential of both silver film and thin film technologies, Alcoa continued reflector surface development activities in Phase II. The Phase I concept development activities began with acquiring baseline CSP system information from both CSP Services and the DOE. This information was used as the basis to develop conceptual designs through ideation sessions. The concepts were evaluated based on estimated cost and high-level structural

  18. The role of accelerated power generation technology development to carbon dioxide emissions

    International Nuclear Information System (INIS)

    Russ, P.

    2004-01-01

    The paper focuses on the role of advanced power generation technology in the reduction of carbon dioxide emissions. In order to quantify the importance of these technologies a scenario approach is applied comparing a 'business as usual' scenario with technology cases which assume the accelerated development and earlier availability of certain advanced technologies. The simulations with the POLES world energy model demonstrate that the availability of advanced technology for power generation alone does not lead to emission reductions needed to stabilise carbon dioxide emissions in the atmosphere at a sustainable level. To achieve that additional policy measures are necessary. It is however shown, that the availability of advanced technology has a crucial impact on the cost to meet emission reduction targets. (Author)

  19. Explaining technological change of wind power in China and the United States: Roles of energy policies, technological learning, and collaboration

    Science.gov (United States)

    Tang, Tian

    The following dissertation explains how technological change of wind power, in terms of cost reduction and performance improvement, is achieved in China and the US through energy policies, technological learning, and collaboration. The objective of this dissertation is to understand how energy policies affect key actors in the power sector to promote renewable energy and achieve cost reductions for climate change mitigation in different institutional arrangements. The dissertation consists of three essays. The first essay examines the learning processes and technological change of wind power in China. I integrate collaboration and technological learning theories to model how wind technologies are acquired and diffused among various wind project participants in China through the Clean Development Mechanism (CDM)--an international carbon trade program, and empirically test whether different learning channels lead to cost reduction of wind power. Using pooled cross-sectional data of Chinese CDM wind projects and spatial econometric models, I find that a wind project developer's previous experience (learning-by-doing) and industrywide wind project experience (spillover effect) significantly reduce the costs of wind power. The spillover effect provides justification for subsidizing users of wind technologies so as to offset wind farm investors' incentive to free-ride on knowledge spillovers from other wind energy investors. The CDM has played such a role in China. Most importantly, this essay provides the first empirical evidence of "learning-by-interacting": CDM also drives wind power cost reduction and performance improvement by facilitating technology transfer through collaboration between foreign turbine manufacturers and local wind farm developers. The second essay extends this learning framework to the US wind power sector, where I examine how state energy policies, restructuring of the electricity market, and learning among actors in wind industry lead to

  20. Proceedings of the 9. National Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities

    International Nuclear Information System (INIS)

    Antariksawan, Anhar R.; Soetrisnanto, Arnold Y; Aziz, Ferhat; Untoro, Pudji; Su'ud, Zaki; Zarkasi, Amin Santoso; Lasman, As Natio

    2003-08-01

    The ninth proceedings of seminar safety and technology of nuclear power plant and nuclear facilities held by National Nuclear Energy Agency and PLN-JTK. The aims of seminar is to exchange and disseminate information about Safety and Nuclear Power Plant Technology and Nuclear Facilities consist of Technology High Temperature Reactor and Application for National Development Sustainable and High Technology. This seminar cover all aspects Technology, Power Reactor, Research Reactor High Temperature Reactor and Nuclear Facilities. There are 20 articles have separated index

  1. A Review on the Recent Development of Capacitive Wireless Power Transfer Technology

    Directory of Open Access Journals (Sweden)

    Fei Lu

    2017-11-01

    Full Text Available Capacitive power transfer (CPT technology is an effective and important alternative to the conventional inductive power transfer (IPT. It utilizes high-frequency electric fields to transfer electric power, which has three distinguishing advantages: negligible eddy-current loss, relatively low cost and weight, and excellent misalignment performance. In recent years, the power level and efficiency of CPT systems has been significantly improved and has reached the power level suitable for electric vehicle charging applications. This paper reviews the latest developments in CPT technology, focusing on two key technologies: the compensation circuit topology and the capacitive coupler structure. The comparison with the IPT system and some critical issues in practical applications are also discussed. Based on these analyses, the future research direction can be developed and the applications of the CPT technology can be promoted.

  2. Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, K.A. [Illinois Commerce Commission, Springfield, IL (United States); Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.

    1993-08-01

    Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

  3. The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects

    OpenAIRE

    Tian Tang; David Popp

    2014-01-01

    The Clean Development Mechanism (CDM) is a project-based carbon trade mechanism that subsidizes the users of climate-friendly technologies and encourages technology transfer. The CDM has provided financial support for a large share of Chinese wind projects since 2002. Using pooled cross-sectional data of 486 registered CDM wind projects in China from 2002 to 2009, we examine the determinants of technological change in wind power from a learning perspective. We estimate the effects of differen...

  4. The role of advanced technology in the future of the power generation industry

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, T.F.

    1994-10-01

    This presentation reviews the directions that technology has given the power generation industry in the past and how advanced technology will be the key for the future of the industry. The topics of the presentation include how the industry`s history has defined its culture, how today`s economic and regulatory climate has constrained its strategy, and how certain technology options might give some of the players an unfair advantage.

  5. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.7--pulse power technology

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about nuclear electronics, nuclear detecting technology, pulse power technology, nuclear fusion and plasma

  6. Assistive Technology

    Science.gov (United States)

    ... Page Resize Text Printer Friendly Online Chat Assistive Technology Assistive technology (AT) is any service or tool that helps ... be difficult or impossible. For older adults, such technology may be a walker to improve mobility or ...

  7. Sport Technology

    CSIR Research Space (South Africa)

    Kirkbride, T

    2007-11-01

    Full Text Available Technology is transforming the games themselves and at times with dire consequences. Tony Kirkbride, Head: CSIR Technology Centre said there are a variety of sports technologies and there have been advances in material sciences and advances...

  8. 5. annual clean coal technology conference: powering the next millennium. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

  9. Overview of free-piston Stirling engine technology for space power application

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1987-01-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) free-piston Stirling engine activities directed toward space-power application. Free-piston Stirling technology is applicable for both solar and nuclear powered systems. As such, the NASA Lewis Research Center serves as the project office to manage the newly initiated SP-100 Advanced Technology program. This program provides the technology push for providing significant component and subsystem options for increased efficiency, reliability and survivability, and power output growth at reduced specific mass. One of the major elements of the program is the development of advanced power conversion of which the Stirling cycle is a viable candidate. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Included in the SPDE discussion are initial differences between predicted and experimental power outputs and power output influenced by variations in regenerators

  10. Sensitivity analysis of technological, economic and sustainability evaluation of power plants using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Chatzimouratidis, Athanasios I.; Pilavachi, Petros A.

    2009-01-01

    Technological, economic and sustainability evaluation of power plants by use of the analytic hierarchy process and nine end node criteria for a reference scenario based on subjective criteria weighting has been presented in a previous paper by authors. However, criteria weight variations may substantially modify overall evaluations and rankings of power plants. The current paper presents a sensitivity analysis with four alternative scenarios (sets of criteria weights) compared with the reference scenario. The results show that priority to 'technology and sustainability' favors renewable energy power plants, while priority to 'economic' criteria favors mainly nuclear power plants and less the four types of fossil fuel power plant

  11. Gas power plant with CO2 handling. A study of alternative technologies

    International Nuclear Information System (INIS)

    Bolland, Olav; Hagen, Roger I.; Maurstad, Ola; Tangen, Grethe; Juliussen, Olav; Svendsen, Hallvard

    2002-01-01

    The report documents a study which compares 12 different technologies for gas power plants with CO 2 handling. The additional costs in removing the CO 2 in connection with electricity production is calculated to at least 18-19 oere /kWh compared to conventional gas power production without CO 2 capture. The calculated extra costs are somewhat higher than previously published figures. The difference is mainly due to that the estimated costs for pipelines and injection system for CO 2 are higher than in other studies. The removal of CO 2 in connection with gas power production implies increased use of natural gas. The most developed technologies would lead to a procentual increase in the gas consumption per kWh electricity of 18-25%. Gas power plants based on the present technologies would have efficiencies in the size of 46-49%. The efficiency of power plants without CO 2 handling is supposed to be 58%. There is no foundation for pointing out a ''winner's' among the compared technologies in the study. The present available technologies excepted, there are no technology which stands out as better than the others from an economic viewpoint. Gas turbine with membrane based separation of oxygen from air (AZEP) has a potential for lower costs but implies challenging technological development and thence considerable technological risks. Two technologies, capture of carbon from natural gas previous to combustion and exhaust gas purification based on absorption, may be employed in 3 - 4 years. The other technologies require more development and maturing. Three of the technologies may be particularly interesting because hydrogen may be produced as a byproduct. Demonstration plant and choice of technology: 1) There is a limited need for demonstration plants with respect to technology development. 2) It is important for the technology development to be able to test various technologies in a laboratory or in a flexible pilot plant. 3) Many technologies and components may be

  12. State-of-the-art WEB -technologies and ecological safety of nuclear power engineering facilities

    International Nuclear Information System (INIS)

    Batij, V.G.; Batij, E.V.; Rud'ko, V.M.; Kotlyarov, V.T.

    2004-01-01

    Prospects of web-technologies using in the field of improvement radiation safety level of nuclear power engineering facilities is seen. It is shown that application of such technologies will enable entirely using the data of all information systems of radiation control

  13. Technology transfer of nuclear power development in developing countries: Case study of China

    International Nuclear Information System (INIS)

    He Jiachen; Shen Wenquan; Zhang Luqing

    2000-01-01

    This paper describes the specific experiences in the technology transfer of nuclear power in China, a country that both imported and developed indigenous nuclear technology. Based on this experience some recommendations are presented that should be considered particularly by the developing countries. (author)

  14. Rover Technologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop and mature rover technologies supporting robotic exploration including rover design, controlling rovers over time delay and for exploring . Technology...

  15. Nano technology

    International Nuclear Information System (INIS)

    Lee, In Sik

    2002-03-01

    This book is introduction of nano technology, which describes what nano technology is, alpha and omega of nano technology, the future of Korean nano technology and human being's future and nano technology. The contents of this book are nano period is coming, a engine of creation, what is molecular engineering, a huge nano technology, technique on making small things, nano materials with exorbitant possibility, the key of nano world the most desirable nano technology in bio industry, nano development plan of government, the direction of development for nano technology and children of heart.

  16. Progress update of NASA's free-piston Stirling space power converter technology project

    Science.gov (United States)

    Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald

    1992-01-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.

  17. An overview of power electronic converter technology for renewable energy systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    This chapter presents power electronic technology which is an enabling tool for modern wind and marine energy conversion systems. In this chapter, the main power electronic devices are described. Various power electronic converter topologies are represented, and commonly used modulation schemes...... and control methods are introduced....

  18. ENVIRONMENTAL QUALITY, ENERGY, AND POWER TECHNOLOGY Task Order 0012: Plug In Electric Vehicle, Vehicle to Grid

    Science.gov (United States)

    2017-12-05

    2017 Final 28 September 2015 – 05 December 2017 4. TITLE AND SUBTITLE ENVIRONMENTAL QUALITY, ENERGY , AND POWER TECHNOLOGY Task Order 0012: Plug-In...allows the PEV battery to be marketed as an energy resource—receiving power from and providing power to the grid on a coordinated signal from the

  19. Conceptual definition of a technology development mission for advanced solar dynamic power systems

    Science.gov (United States)

    Migra, R. P.

    1986-01-01

    An initial conceptual definition of a technology development mission for advanced solar dynamic power systems is provided, utilizing a space station to provide a dedicated test facility. The advanced power systems considered included Brayton, Stirling, and liquid metal Rankine systems operating in the temperature range of 1040 to 1400 K. The critical technologies for advanced systems were identified by reviewing the current state of the art of solar dynamic power systems. The experimental requirements were determined by planning a system test of a 20 kWe solar dynamic power system on the space station test facility. These requirements were documented via the Mission Requirements Working Group (MRWG) and Technology Development Advocacy Group (TDAG) forms. Various concepts or considerations of advanced concepts are discussed. A preliminary evolutionary plan for this technology development mission was prepared.

  20. Thermoacoustic Duplex Technology for Cooling and Powering a Venus Lander, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Sierra Lobo proposes to develop a technology that can provide both cooling and electric power generation using heat. When coupled with a radioisotope heat source,...

  1. Assessment of CO2 reduction potentials through clean coal technologies for future power plants in Indonesia

    Directory of Open Access Journals (Sweden)

    Monna Rozana

    2013-08-01

    Full Text Available This paper presents CO2 reduction potentials employing clean coal technologies for power plants in Indonesia. Whenlow ranked coal from huge reserves cannot be excluded from coal-fired power plants to meet electricity demand, it is criticalfor Indonesia to adopt the best available clean coal technologies for its future coal-fired power plants in order to minimizeCO2 emissions in a long term. Several types of coal-fired technologies are considered to be the best match with Indonesia’ssituation by assessing CO2 emissions from coal-fired power plants, levelized costs of electricity generation, and the cost ofCO2 avoidance. As a result, supercritical PC, IGCC, CFB, and PFBC technologies are presented as a consideration for policymaker in Indonesia.

  2. Study and Proposal of the Nuclear Power Plant Technology for the Ninh Thuan 2 Project

    International Nuclear Information System (INIS)

    Tran Chi Thanh; Le Van Hong; Hoang Sy Than; Nguyen Van De; Mai Dinh Trung; Nguyen Nhi Dien; Nguyen Minh Tuan; Pham Van Lam; Phan Ngoc Tuyen; Do Chi Dung; Hoang Minh Giang; Le Dai Dien

    2015-01-01

    The Ninh Thuan 1&2 Nuclear Power Plant Projects were approved on November 25th, 2009. At present, the task of NPP technology selection of these projects is an important and complex task. This report will show the acceptable method to create a set of criterion for selecting technology for Ninh Thuan 2 NPP project. The result of evaluation of three NPP technologies, such as ATMEA1, AP1000 and MPWR+ introduced in the Feasibility Study Reports of this project, will be discussed. In conclusion, the AP1000 technology is the first candidate for the Ninh Thuan 2 NPP Project. (author)

  3. Energy analysis of technological systems of integrated coal gasification combined cycle power plants

    Energy Technology Data Exchange (ETDEWEB)

    Zaporowski, B.; Roszkiewicz, J.; Sroka, K.; Szczerbowski, R. [Poznan Univ. of Technology (Poland)

    1996-11-01

    The paper presents the energy analysis of technological systems of combined cycle power plants integrated with coal gasification. The mathematical model of the coal gasification process allows to calculate the composition and physical properties of gas obtained in the process of coal gasification. The paper presents an energy analysis of various technological systems of the gas-steam power plants integrated with coal gasification, based on energy and mass balances of gas generator, gas cooler, combustion chamber of gas turbine, gas turbine, steam generator, and steam turbine. The paper contains the following results of calculations: properties of gas obtained in the process of coal gasification, energy parameters of particular devices of power plants, total electric power, and efficiency of electric energy generation in the gas-steam power plants. The conclusions compare the efficiencies of electric energy generation in various technological systems of combined gas-steam power plants integrated with coal gasification. 5 refs, 3 figs, 9 tabs

  4. Solar Power System Options for the Radiation and Technology Demonstration Spacecraft

    Science.gov (United States)

    Kerslake, Thomas W.; Haraburda, Francis M.; Riehl, John P.

    2000-01-01

    The Radiation and Technology Demonstration (RTD) Mission has the primary objective of demonstrating high-power (10 kilowatts) electric thruster technologies in Earth orbit. This paper discusses the conceptual design of the RTD spacecraft photovoltaic (PV) power system and mission performance analyses. These power system studies assessed multiple options for PV arrays, battery technologies and bus voltage levels. To quantify performance attributes of these power system options, a dedicated Fortran code was developed to predict power system performance and estimate system mass. The low-thrust mission trajectory was analyzed and important Earth orbital environments were modeled. Baseline power system design options are recommended on the basis of performance, mass and risk/complexity. Important findings from parametric studies are discussed and the resulting impacts to the spacecraft design and cost.

  5. Space Solar Power Satellite Technology Development at the Glenn Research Center: An Overview

    Science.gov (United States)

    Dudenhoefer, James E.; George, Patrick J.

    2000-01-01

    NASA Glenn Research Center (GRC). is participating in the Space Solar Power Exploratory Research and Technology program (SERT) for the development of a solar power satellite concept. The aim of the program is to provide electrical power to Earth by converting the Sun's energy and beaming it to the surface. This paper will give an overall view of the technologies being pursued at GRC including thin film photovoltaics, solar dynamic power systems, space environmental effects, power management and distribution, and electric propulsion. The developmental path not only provides solutions to gigawatt sized space power systems for the future, but provides synergistic opportunities for contemporary space power architectures. More details of Space Solar Power can be found by reading the references sited in this paper and by connecting to the web site http://moonbase.msfc.nasa.gov/ and accessing the "Space Solar Power" section "Public Access" area.

  6. Key technologies of laser point cloud data processing in power line corridor

    Science.gov (United States)

    Zhang, Changsai; Liu, Zhengjun; Yang, Shuwen; Xu, Bo

    2017-11-01

    Airborne LiDAR can quickly obtain the high precision three-dimensional information of the target object. It can be used for 3D visualization of power line and measuring distance between power line and ground object. In recent years, it has been widely used in the power industry which is one of the most successful industries for the application laser technology. This paper introduces common post-processing technique of point cloud data in the power line corridor, including the point cloud generation, point cloud filtering and power line classification, power line reconstruction, power line safety distance inspection, power lines 3D visualization. This paper provide reference for application of airborne LiDAR power line inspection technology.

  7. Recent advances in the PV-CSP hybrid solar power technology

    Science.gov (United States)

    Ju, Xing; Xu, Chao; Han, Xue; Zhang, Hui; Wei, Gaosheng; Chen, Lin

    2017-06-01

    Photovoltaic - Concentrated Solar Power (PV-CSP) hybrid technology is considered to be an important future research trend in solar energy engineering. The development of the PV-CSP hybrid technology accelerates in recent years with the rapid maturation of photovoltaics (PV) and concentrated solar power (CSP). This paper presents the recent advances on PV-CSP technology, including different technologies based on new dispatch strategies, Organic Rankine Cycles, spectral beam filters and so on. The research status and the hybrid system performance of the recent researches are summarized, aimed to provide an extended recognition on the PV-CSP hybrid technology. The advantages and limitations of the hybrid system are concluded according to the researches reviewed.

  8. Analysis of Pending Problems for a Technology Demand of Domestic Operational Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae Seo; Park, Won Seok; Wi, Myung Hwan; Ha, Jae Joo

    2008-01-15

    Eleven technology fields were chosen, which have a relation with the solution of the pending problems of domestic operational nuclear power plants to manage an efficient operation and safe regulation for domestic nuclear power plants. The progressive background, requirements, and performance on the pending problems, 34, of an operation and regulation for domestic nuclear power plants were analyzed with regard to a risk information application, severe accident, PSR of structural materials, underwater monitoring, operation inspection and a fire protection, an instrument aging, metal integrity and steam generator, human technology and a digital I and C, quality assurance, secondary system and a user reliance and mass communications. KAERI's role is to provide a solution to these pending problems of domestic nuclear power plants. KAERI's technology is to be applicable to the pending problems for domestic nuclear power plants to raise an operational efficiency and an application frequency of nuclear power plants. In the future, a technology treaty between KAERI and KHNP is to be established to solve the pending problems for domestic nuclear power plants. Operation rate of nuclear power plants will also be raised and contribute to the supply of national energy due to this technology treaty.

  9. Cutting Technology for Decommissioning of the Reactor Pressure Vessels in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jeong, Kwan Seong; Kim, Geun Ho; Moon, Jei Kwon; Choi, Byung Seon

    2012-01-01

    Lots of nuclear power plants have been decommissioned during the last 2 decades. An essential part of this work is the dismantling of the Reactor Pressure Vessel and its Internals. For this purpose a wide variety of different cutting technologies have been developed, adapted and applied. A detailed introduction to Plasma Arc cutting, Contact Arc Metal cutting and Abrasive Water Suspension Jet cutting is given, as it turned out that these cutting technologies are particularly suitable for these type of segmentation work. A comparison of these technologies including gaseous emissions, cutting power, manipulator requirements as well as selected design approaches are given. Process limits as well as actual limits of application are presented

  10. The power of disruptive technological innovation: Transcatheter aortic valve implantation.

    Science.gov (United States)

    Berlin, David B; Davidson, Michael J; Schoen, Frederick J

    2015-11-01

    We sought to evaluate the principles of disruptive innovation, defined as technology innovation that fundamentally shifts performance and utility metrics, as applied to transcatheter aortic valve implantation (TAVI). In particular, we considered implantation procedure, device design, cost, and patient population. Generally cheaper and lower performing, classical disruptive innovations are first commercialized in insignificant markets, promise lower margins, and often parasitize existing usage, representing unattractive investments for established market participants. However, despite presently high unit cost, TAVI is less invasive, treats a "new," generally high risk, patient population, and is generally done by a multidisciplinary integrated heart team. Moreover, at least in the short-term TAVI has not been lower-performing than open surgical aortic valve replacement in high-risk patients. We conclude that TAVI extends the paradigm of disruptive innovation and represents an attractive commercial opportunity space. Moreover, should the long-term performance and durability of TAVI approach that of conventional prostheses, TAVI will be an increasingly attractive commercial opportunity. © 2014 Wiley Periodicals, Inc.

  11. Army Technology

    Science.gov (United States)

    2015-02-01

    MUTT ) is a semi-autonomous robotic follower that lightens the load for Soldiers by decreasing the amount of equipment they need to carry when...dismounted in the toughest of terrains. The MUTT uses advanced, proven commercial technology that has been adapted for the rigors of the battlefield...With ultra-quiet electric motors, the MUTT gives Soldiers unmatched internal transportability options and expeditionary power that includes hands- free

  12. Information Technology

    Science.gov (United States)

    2003-01-01

    The first wave delivered a range of services to most areas of the world through a vast, carefully constructed global network. Cellular technology ...Information Technology and Services Alliance. Digital Planet 2002: The Global Information Economy. February 2002. Yegyazarian, Anush. Sales Taxes...Information Technology ABSTRACT: The information technology (IT) industry affects virtually every industry in the n economy. During the late 90

  13. Repetitive pulsed power technology for inertial-confinement fusion

    International Nuclear Information System (INIS)

    Prestwich, K.R.; Buttram, M.T.

    1983-01-01

    The pulsed power requirements for inertial-confinement fusion reactors are defined for ion-beam and laser drivers. Several megajoule beams with 100's of terrawatt peak powers must be delivered to the reactor chamber 1 to 10 times per second. Ion-beam drivers are relatively efficient requiring less energy storage in the pulsed-power system but more time compression in the power flow chain than gas lasers. These high peak powers imply very large numbers of components for conventional pulse-power systems. A new design that significantly reduces the number of components is presented

  14. New technology and organizational innovation: Niagara Mohawk Power Corporation and nuclear power

    International Nuclear Information System (INIS)

    Stacey, J.E. Jr.

    1981-01-01

    Questions with regard to organization behavior and decision theory are explored in relation to the decision-making process of a major private electric utility, Niagara Mohawk Power Corp., that chose to innovate with nuclear power. The character of the firm is such, relative to size, service area, organizational structure, and socio-political environment, that its experience is important for the further development of theories of organizational innovation. The research attempts to understand the political, economic, and social constraints that limited the set of solutions available to the utility in its search for a suitable electricity-generating mode from the early 1950's to the early 1960's. Two contrasting models of organizational decision-making behavior are used to interpret case-study findings. The initial model is from the electric-utility literature and consists essentially of an economic or benefit/cost model of organizational decision making. The second model is developed from the organizational theory literature and is more complex in the sense that factors other than economics such as organizational inertia, the corporate structure of the utility, fuel-supply history and fuel diversification, electricity-demand-growth expectations, the financial environment, and the psychological appeal of the new technology had important influences on Niagara Mohawk's decision to build Nine Mile Point One. Findings of the case study tend to support the second model in that economics was a necessary but not sufficient reason for Niagara Mohawk to have innovated with nuclear power plants

  15. Lessons learned from Fukushima. Nuclear power is a risk technology and not a bridging technology

    International Nuclear Information System (INIS)

    Mez, Lutz

    2011-01-01

    The reactor accident in Fukushima-Daiichi in 2011 as a consequence of the earth quake and tsunami has produced damage cost of 300 billions $ according to the Japanese government, - the cost for the destroyed nuclear power plant are not included. The Fukushima NPP is one of the oldest nuclear power plants worldwide and was not designed for natural disaster as occurred in 2011. The owner Tepco has not properly performed the required retrofitting and maintenance measures. The contribution discusses questions with respect to the acceptability of the consequences of reactor accidents for democratic societies.

  16. Radio frequency power sensor based on MEMS technology

    NARCIS (Netherlands)

    Fernandez, L.J.; Visser, Eelke; Sesé, J.; Wiegerink, Remco J.; Jansen, Henricus V.; Flokstra, Jan; Flokstra, Jakob; Elwenspoek, Michael Curt

    2003-01-01

    We present the first measurement results of a power sensor for radio frequency (rf) signals (50 kHz - 40 GHz) with almost no dissipation during the measurement. This sensor is, therefore, a 'through' power sensor, that means that the rf signal is available during the measurement of its power. The

  17. Primary electric power generation systems for advanced-technology engines

    Science.gov (United States)

    Cronin, M. J.

    1983-01-01

    The advantages of the all electric airplane are discussed. In the all electric airplane the generator is the sole source of electric power; it powers the primary and secondary flight controls, the environmentals, and the landing gear. Five candidates for all electric power systems are discussed and compared. Cost benefits of the all electric airplane are discussed.

  18. Electronic technology

    International Nuclear Information System (INIS)

    Kim, Jin Su

    2010-07-01

    This book is composed of five chapters, which introduces electronic technology about understanding of electronic, electronic component, radio, electronic application, communication technology, semiconductor on its basic, free electron and hole, intrinsic semiconductor and semiconductor element, Diode such as PN junction diode, characteristic of junction diode, rectifier circuit and smoothing circuit, transistor on structure of transistor, characteristic of transistor and common emitter circuit, electronic application about electronic equipment, communication technology and education, robot technology and high electronic technology.

  19. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion

    Science.gov (United States)

    Allen, Bog; Delventhal, Rex; Frye, Patrick

    2004-01-01

    Recently, there has been significant interest within the aerospace community to develop space based nuclear power conversion technologies especially for exploring the outer planets of our solar system where the solar energy density is very low. To investigate these technologies NASA awarded several contracts under Project Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC).The investigation performed included BPCS (Brayton Power Conversion System) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to be capable of operation in the generic space environment and withstand the extreme environments surrounding Jupiter. The studies defined a BPCS design traceable to NEP (Nuclear Electric Propulsion) requirements and suitable for future missions with a sound technology plan for technology readiness level (TRL) advancement identified. The studies assumed a turbine inlet temperature approx. 100 C above the current the state of the art capabilities with materials issues and related development tasks identified. Analyses and evaluations of six different HRS (heat rejection system) designs and three primary power management and distribution (PMAD) configurations will be discussed in the paper.

  20. FEATURES OF ELECTRIC MOTOR CHOICE FOR NUCLEAR POWER PLANT TECHNOLOGICAL OBJECTS

    Directory of Open Access Journals (Sweden)

    V.V. Shevchenko

    2013-06-01

    Full Text Available Nuclear power plants remain the basic power generating enterprises for Ukraine. Execution of works on their reliability control and operating conditions optimization is therefore of current importance. Trouble-free nuclear power plant operation is a vital technical, economical, and ecological problem, a solution to which is largely specified by reliable operation of electric equipment, namely, electric motors of nuclear power plant technological process drives.

  1. New Technology for Microfabrication and Testing of a Thermoelectric Device for Generating Mobile Electrical Power

    Science.gov (United States)

    Prasad, Narashimha S.; Taylor, Patrick J.; Trivedi, Sudhir B.; Kutcher, Susan

    2010-01-01

    We report the results of fabrication and testing of a thermoelectric power generation module. The module was fabricated using a new "flip-chip" module assembly technique that is scalable and modular. This technique results in a low value of contact resistivity ( surfaces. Under mild testing, a power of 22 mW/sq cm was obtained from small (electrical power of practical and usable magnitude for remote applications using thermoelectric power generation technologies.

  2. Microgrid with Solar Power and Fuel Cell Technology

    Science.gov (United States)

    2010-06-16

    fashion – Supply excess power to the grid, when appropriate – Make intelligent decisions when the PV array (and other sources) should directly...supply power to the load – Make intelligent decisions when the PV array (and other sources) should supply power to charge the battery energy storage...Supply a maximum of 50 kW output 7 Requirements - Site • Environmental and weather concerns – Lightning protection • Stand-off distances from tents and

  3. Conformal Ultracapacitor Power Source Technology for the Miniature Kill Vehicle

    National Research Council Canada - National Science Library

    2004-01-01

    .... The conformal ultracapacitor power source will be attached to the inside available surface of the individual miniature kill vehicle, The ultracapacitor will be charged through a charging system...

  4. 5. annual clean coal technology conference: powering the next millennium. Vol.1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increased demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains papers presented at the plenary session and panel sessions on; international markets for clean coal technologies (CCTs); role of CCTs in the evolving domestic electricity market; environmental issues affecting CCT deployment; and CCT deployment from today into the next millennium. In addition papers presented at the closing plenary session on powering the next millennium--CCT answers the challenge are included. Selected papers have been processed for inclusion in the Energy Science and Technology database.

  5. Applicable approach of the wireless technology for Korean nuclear power plants

    International Nuclear Information System (INIS)

    Ko, Do Young; Lee, Soo Ill

    2013-01-01

    Highlights: • To apply wireless technology for Korean NPPs, several stipulations are proposed. • WLAN is proposed as the most appropriate wireless technology for Korean NPPs. • WLAN can be applied to the specific fields except in the control system. • An attitude survey on wireless showed that 94.7% agree with the necessity of wireless. - Abstract: Recently, many nuclear power plants (NPPs) over the world use various types of wireless systems for the advantages. Unfortunately, wireless technologies are not currently installed in any Korean NPPs because it is difficult to solve the negative impact of unexpected outcomes or failures from the influence of the wireless technologies, which is electromagnetic interference and radio-frequency interference (EMI/RFI). Moreover, a lack of desire on the part of Korean nuclear industry to implement it leads to give up benefit from the wireless technologies. To install the wireless technologies with maximum benefit and minimum risk, a systematic approach, which quantify the negative impact and prevent the influence, is essential; therefore, this paper describes an applicable research result on the wireless technology for Korean NPPs based on regulatory guides and current wireless hardware and software technologies. Also, survey on the needs for the wireless technology for Korean nuclear power plants was conducted, because the level of awareness of workers in NPPs regarding wireless technologies is very important issue. In this paper, we propose an applicable system to enhance the applicability for the wireless technology for Korean NPPs. The result based on proposed applicable system shows that wireless local area network (WLAN) is the representative candidate for Korean NPPs, which can be applied to the specific fields of radiation monitoring, voice and data communication, component monitoring and instrumentation, and wireless cameras

  6. Small nuclear power AIP technology applied in modern conventional submarine

    International Nuclear Information System (INIS)

    Liu Guangya; Ling Qiu

    2008-01-01

    This paper gives a review development of air independent propulsion (AIP) system for submarine applications. The principles, configuration and suitable reactor-type about small nuclear power AIP are presented and performance status of the submarines equipped with small nuclear power AIP is given. (authors)

  7. Agricultural and Food Processing Applications of Pulsed Power Technology

    Science.gov (United States)

    Takaki, Koichi; Ihara, Satoshi

    Recent progress of agricultural and food processing applications of pulsed power is described in this paper. Repetitively operated compact pulsed power generators with a moderate peak power have been developed for the agricultural and the food processing applications. These applications are mainly based on biological effects and can be categorized as decontamination of air and liquid, germination promotion, inhabitation of saprophytes growth, extraction of juice from fruits and vegetables, and fertilization of liquid medium, etc. Types of pulsed power that have biological effects are caused with gas discharges, water discharges, and electromagnetic fields. The discharges yield free radicals, UV radiation, intense electric field, and shock waves. Biologically based applications of pulsed power are performed by selecting the type that gives the target objects the adequate result from among these agents or byproducts. For instance, intense electric fields form pores on the cell membrane, which is called electroporation, or influence the nuclei.

  8. Network communication for remote technology and NDT controls on current nuclear power plants

    International Nuclear Information System (INIS)

    Capitaine, A.

    2001-01-01

    Among the most important targets for ''UTILITIES'' are to increase nuclear power plant availability and reduce the workers dosimetry. A possible way to reach these targets is to reduce the duration of the refueling period and to limit the number of operators in the work areas It is necessary to use remote technology and to provide much equipment to support the main activities during refueling. Remote technology is a possible solution to remove operators from the maintenance area. The main activities concerned are the NDT inspection on the primary components and fuel handling system. Recent progress on remote technology made by the electronic industry and network communication has increased their capacities. It is easier now to use them, and more and more people are familiar with these technologies. Internet, manufacturing, supervision, and surgery use these technologies. Now it seems appropriate to examine these technologies for current maintenance in nuclear plants. Remote technologies and communication network can help to solve current difficulties in the maintenance field and dosimetry limits. For a long time, many people thought that the cost and the difficulty of applying new technologies would be not extremely expensive, but this is no longer the case. Now with the first feed back we can show that these technologies are a good answer for increased availability and reduction of dosimetry. (author)

  9. The power(s) of observation: Theoretical perspectives on surveillance technologies and older people.

    Science.gov (United States)

    Mortenson, W Ben; Sixsmith, Andrew; Woolrych, Ryan

    2015-03-01

    There is a long history of surveillance of older adults in institutional settings and it is becoming an increasingly common feature of modern society. New surveillance technologies that include activity monitoring, and ubiquitous computing, which are described as ambient assisted living (AAL) are being developed to provide unobtrusive monitoring and support of activities of daily living and to extend the quality and length of time older people can live in their homes. However, concerns have been raised with how these kinds of technologies may affect user's privacy and autonomy. The objectives of this paper are 1) to describe the development of home-based surveillance technologies; 2) to examine how surveillance is being restructured with the use of this technology; and 3) to explore the potential outcomes associated with the adoption of AAL as a means of surveillance by drawing upon the theoretical work of Foucault and Goffman. The discussion suggests that future research needs to consider two key areas beyond the current discourse on technology and ageing, specifically: 1) how the new technology will encroach upon the private lived space of the individual, and 2) how it will affect formal and informal caring relationships. This is critical to ensure that the introduction of AAL does not contribute to the disempowerment of residents who receive this technology.

  10. Technology Roadmap: High-Efficiency, Low-Emissions Coal-Fired Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Coal is the largest source of power globally and, given its wide availability and relatively low cost, it is likely to remain so for the foreseeable future. The High-Efficiency, Low-Emissions Coal-Fired Power Generation Roadmap describes the steps necessary to adopt and further develop technologies to improve the efficiency of the global fleet of coal. To generate the same amount of electricity, a more efficient coal-fired unit will burn less fuel, emit less carbon, release less local air pollutants, consume less water and have a smaller footprint. High-efficiency, low emissions (HELE) technologies in operation already reach a thermal efficiency of 45%, and technologies in development promise even higher values. This compares with a global average efficiency for today’s fleet of coal-fired plants of 33%, where three-quarters of operating units use less efficient technologies and more than half is over 25 years old. A successful outcome to ongoing RD&D could see units with efficiencies approaching 50% or even higher demonstrated within the next decade. Generation from older, less efficient technology must gradually be phased out. Technologies exist to make coal-fired power generation much more effective and cleaner burning. Of course, while increased efficiency has a major role to play in reducing emissions, particularly over the next 10 years, carbon capture and storage (CCS) will be essential in the longer term to make the deep cuts in carbon emissions required for a low-carbon future. Combined with CCS, HELE technologies can cut CO2 emissions from coal-fired power generation plants by as much as 90%, to less than 100 grams per kilowatt-hour. HELE technologies will be an influential factor in the deployment of CCS. For the same power output, a higher efficiency coal plant will require less CO2 to be captured; this means a smaller, less costly capture plant; lower operating costs; and less CO2 to be transported and stored.

  11. Dynamic Isotope Power System: technology verification phase, program plan, 1 October 1978

    International Nuclear Information System (INIS)

    1979-01-01

    The technology verification phase program plan of the Dynamic Isotope Power System (DIPS) project is presented. DIPS is a project to develop a 0.5 to 2.0 kW power system for spacecraft using an isotope heat source and a closed-cycle Rankine power-system with an organic working fluid. The technology verification phase's purposes are to increase the system efficiency to over 18%, to demonstrate system reliability, and to provide an estimate for flight test scheduling. Progress toward these goals is reported

  12. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers

    Energy Technology Data Exchange (ETDEWEB)

    Heather D. Medema; Ronald K. Farris

    2012-09-01

    This report is a guidance document prepared for the benefit of commercial nuclear power plants’ (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making, planning, and preparation of a business case.

  13. Seismic effects on technological equipment and systems of nuclear power plants

    International Nuclear Information System (INIS)

    Masopust, R.; Pecinka, L.; Podrouzek, J.

    1983-01-01

    A survey is given of problems related to the construction of nuclear power plants with regard to seismic resistance. Sei--smic resistance of technological equipment is evaluated by experimental trials, calculation or the combination of both. Existing and future standards are given for the given field. The Czechoslovak situation is discussed as related to the construction of the Mochovce nuclear power plant. Procedures for testing seismic resistance, types of tests and methods of simulating seismic excitation are described. Antiseismic measures together with structural elements for limiting the seismic effects on technological equipment and nuclear power plant systems are summed up on the basis of foreign experience. (E.F.)

  14. Evolution of Technology Laser Scanner. Implications for use in Nuclear Power and Radioactive Facilities

    International Nuclear Information System (INIS)

    Sarti Fernandez, F.; Bonet, J.

    2012-01-01

    The main technical factors affecting these teams their actual implementation in nuclear power plants will be analyzed: data acquisition speed, sensitivity, laser power, autonomy, contamination of equipment, radiation effect, etc. In conclusion, the real difference is displayed in the data collection in function of various technologies, embodied in field time, and costs.

  15. A survey of beam-combining technologies for laser space power transmission

    Science.gov (United States)

    Kwon, J. H.; Williams, M. D.; Lee, J. H.

    1988-01-01

    The combination of laser beams holds much promise for obtaining powerful beams. Methods are surveyed for beam combination (coherent and incoherent) and two of them are identified as the most effective means for achieving high power transmission in space. The two methods as applied to laser diode arrays are analyzed, and potentially productive work areas for the advancement of technology are delineated.

  16. Landmarks in the development of power plant technology - electric bulbs now shine even at Itaipu

    International Nuclear Information System (INIS)

    Leiste, V.

    1997-01-01

    Power plant technology was first used in stationary electric lighting plant as erected from 1878. Many detail developments and numerous inventions -together with the commitment and pioneer spirit of engineers for a period of more than 100 years - resulted in power stations capable of generating electricity reliably with an efficiency of almost 60 per cent. (orig.) [de

  17. Test-bed Assessment of Communication Technologies for a Power-Balancing Controller

    DEFF Research Database (Denmark)

    Findrik, Mislav; Pedersen, Rasmus; Hasenleithner, Eduard

    2016-01-01

    and control. In this paper, we present a Smart Grid test-bed that integrates various communication technologies and deploys a power balancing controller for LV grids. Control performance of the introduced power balancing controller is subsequently investigated and its robustness to communication network cross...

  18. Power System Electronics (PSE) Development for SmallSat Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — We develop a modular Power System Electronics (PSE) that is reliable, efficient, and flexible to meet the Goddard Modular Smallsat Architecture (GMSA) challenge....

  19. High Performance Low Cost Digitally Controlled Power Conversion Technology

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes

    2008-01-01

    Digital control of switch-mode power supplies and converters has within the last decade evolved from being an academic subject to an emerging market in the power electronics industry. This development has been pushed mainly by the computer industry that is looking towards digital power management...... the execution time of the software algorithm that realises the digital control law will constitute a considerable delay in the control loop. Digital signal controllers are powerful devices capable of performing arithmetic functions much faster than a microcontroller can. Digital signal controllers are well...... and an analogue to digital converter with a short sampling time. A digital self-oscillating modulator is proposed in the present thesis. The modulator is a free-running modulator which operates without an external carrier signal. Customised digital control solutions offers the best performance for non-isolated DC...

  20. Space power distribution system technology. Volume 3: Test facility design

    Science.gov (United States)

    Decker, D. K.; Cannady, M. D.; Cassinelli, J. E.; Farber, B. F.; Lurie, C.; Fleck, G. W.; Lepisto, J. W.; Messner, A.; Ritterman, P. F.

    1983-01-01

    The AMPS test facility is a major tool in the attainment of more economical space power. The ultimate goals of the test facility, its primary functional requirements and conceptual design, and the major equipment it contains are discussed.

  1. Roadmaps for the Development of Technologies Related to Danish Wave Power Systems

    DEFF Research Database (Denmark)

    Nielsen, Kim; Krogh, Jan; Brodersen, H. J.

    2015-01-01

    of coordinating and focus the research, development and test activities. The aim is that the resources (financial and know-how) are used appropriately and with the greatest possible progress. Within each of the 4 areas, the starting point is based on the state of the art technology, and the roadmaps outline what......The Danish Partnership for Wave Power was established in 2011 under the project "New strategy for wave power through industrial partnership" [1] funded by the Danish Energy Technology Development and Demonstration Program. The core of this partnership is nine active Danish wave energy developers...... seconded by offshore industry, and research institutions. The Danish Partnership for Wave Power has further been consolidated through the follow-on Roadmap project described in this paper. The roadmap project has in detail investigated how the four most common technology areas for wave power developers can...

  2. Progress in space nuclear reactor power systems technology development - The SP-100 program

    Science.gov (United States)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  3. Air Force electrochemical power research and technology program for space applications

    Science.gov (United States)

    Allen, Douglas

    1987-09-01

    An overview is presented of the existing Air Force electrochemical power, battery, and fuel cell programs for space application. Present thrusts are described along with anticipated technology availability dates. Critical problems to be solved before system applications occur are highlighted. Areas of needed performance improvement of batteries and fuel cells presently used are outlined including target dates for key demonstrations of advanced technology. Anticipated performance and current schedules for present technology programs are reviewed. Programs that support conventional military satellite power systems and special high power applications are reviewed. Battery types include bipolar lead-acid, nickel-cadmium, silver-zinc, nickel-hydrogen, sodium-sulfur, and some candidate advanced couples. Fuel cells for pulsed and transportation power applications are discussed as are some candidate advanced regenerative concepts.

  4. Photovoltaic technologies

    International Nuclear Information System (INIS)

    Bagnall, Darren M.; Boreland, Matt

    2008-01-01

    Photovoltaics is already a billion dollar industry. It is experiencing rapid growth as concerns over fuel supplies and carbon emissions mean that governments and individuals are increasingly prepared to ignore its current high costs. It will become truly mainstream when its costs are comparable to other energy sources. At the moment, it is around four times too expensive for competitive commercial production. Three generations of photovoltaics have been envisaged that will take solar power into the mainstream. Currently, photovoltaic production is 90% first-generation and is based on silicon wafers. These devices are reliable and durable, but half of the cost is the silicon wafer and efficiencies are limited to around 20%. A second generation of solar cells would use cheap semiconductor thin films deposited on low-cost substrates to produce devices of slightly lower efficiency. A number of thin-film device technologies account for around 5-6% of the current market. As second-generation technology reduces the cost of active material, the substrate will eventually be the cost limit and higher efficiency will be needed to maintain the cost-reduction trend. Third-generation devices will use new technologies to produce high-efficiency devices. Advances in nanotechnology, photonics, optical metamaterials, plasmonics and semiconducting polymer sciences offer the prospect of cost-competitive photovoltaics. It is reasonable to expect that cost reductions, a move to second-generation technologies and the implementation of new technologies and third-generation concepts can lead to fully cost-competitive solar energy in 10-15 years. (author)

  5. Construction technology of high-rise pile cap foundation of offshore wind power in Taiwan Strait

    Science.gov (United States)

    Li, C. Y.; Chi, Y.; Sun, X. Q.; Han, Y. P.; Chen, X.; Zhao, L. C.; Zhang, H.

    2017-11-01

    Offshore wind farms promise to become an important source of energy in the near future. The high-rise pile cap foundation is one of the typical foundation types for offshore wind turbine. This paper introduces the structural characteristics and construction technology of high-rise pile cap foundation, aiming at the characteristics of the sea area of Taiwan Strait and combining with engineering examples. The construction technology of high-rise pile cap foundation is expounded emphatically from the manufacture and transportation of steel pipe piles, pile foundation construction and bearing platform construction. Compared with the traditional construction technology, the construction technologies used in this project are safer and more reliable. The construction period of piles cap foundation is shortened by 10 ∼ 48 days. The construction technology provides reference for offshore wind power foundation construction.

  6. Direction of Technology Development for Nuclear Power Plants at the O and M Phase

    International Nuclear Information System (INIS)

    Jung, Insu; Park, Hwanpyo; Kim, Younghyun

    2014-01-01

    Recently, Korea has attempted to advance overseas markets by securing competitive power in nuclear power technology. In order to develop and operate overall construction management systems with Korea's own brand equipped with sufficient applicability and competitive power in the market abroad and to ensure equal competitive power with other foreign advanced companies of nuclear power plants, Korea has launched a project called 'Data Centric Integration/Automation Technology for NP Project Management System' since July 2011. This project is divided into two phases: the first phase from 2012 to 2016 realizes EPCS stage, and the second phase from 2017 to 2020 extends to O and M stage. Appropriate technology development planning must be established if 'Data Centric Integration/Automation Technology for NP Project Management System' conducted at the first phase would extend to O and M stage at the second phase. Therefore, this study aimed at drawing out the direction of technology development based on present analysis of process at the operational phase of nuclear power plants in Korea conducted as previous study. This study analyzed current operation and maintenance systems first, analyzing the results of differences between the operation process of nuclear plants in Korea which was suggested at the previous study and the process of the Korea Hydro and Nuclear Power Co., Ltd. (hereafter referred to as 'KHNP') and drawing out the direction of technology development for nuclear power plants at the operational phase from the viewpoint of life cycle

  7. Technology Programme

    International Nuclear Information System (INIS)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo

    2005-01-01

    The technology activities carried out by the Euratom-ENEA Association in the framework of the European Fusion Development Agreement concern the Next Step (International Thermonuclear Experimental Reactor - ITER), the Long-Term Programme (breeder blanket, materials, International Fusion Materials Irradiation Facility - IFMIF), Power Plant Conceptual Studies and Socio-Economic Studies. The Underlying Technology Programme was set up to complement the fusion activities as well to develop technologies with a wider range of interest. The Technology Programme mainly involves staff from the Frascati laboratories of the Fusion Technical and Scientific Unit and from the Brasimone laboratories of the Advanced Physics Technologies Unit. Other ENEA units also provide valuable contributions to the programme. ENEA is heavily engaged in component development/testing and in design and safety activities for the European Fusion Technology Programme. Although the work documented in the following covers a large range of topics that differ considerably because they concern the development of extremely complex systems, the high level of integration and coordination ensures the capability to cover the fusion system as a whole. In 2004 the most significant testing activities concerned the ITER primary beryllium-coated first wall. In the field of high-heat-flux components, an important achievement was the qualification of the process for depositing a copper liner on carbon fibre composite (CFC) hollow tiles. This new process, pre-brazed casting (PBC), allows the hot radial pressing (HRP) joining procedure to be used also for CFC-based armour monoblock divertor components. The PBC and HRP processes are candidates for the construction of the ITER divertor. In the materials field an important milestone was the commissioning of a new facility for chemical vapour infiltration/deposition, used for optimising silicon carbide composite (SiCf/SiC) components. Eight patents were deposited during 2004

  8. Technology Programme

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo (ed.)

    2005-07-01

    The technology activities carried out by the Euratom-ENEA Association in the framework of the European Fusion Development Agreement concern the Next Step (International Thermonuclear Experimental Reactor - ITER), the Long-Term Programme (breeder blanket, materials, International Fusion Materials Irradiation Facility - IFMIF), Power Plant Conceptual Studies and Socio-Economic Studies. The Underlying Technology Programme was set up to complement the fusion activities as well to develop technologies with a wider range of interest. The Technology Programme mainly involves staff from the Frascati laboratories of the Fusion Technical and Scientific Unit and from the Brasimone laboratories of the Advanced Physics Technologies Unit. Other ENEA units also provide valuable contributions to the programme. ENEA is heavily engaged in component development/testing and in design and safety activities for the European Fusion Technology Programme. Although the work documented in the following covers a large range of topics that differ considerably because they concern the development of extremely complex systems, the high level of integration and coordination ensures the capability to cover the fusion system as a whole. In 2004 the most significant testing activities concerned the ITER primary beryllium-coated first wall. In the field of high-heat-flux components, an important achievement was the qualification of the process for depositing a copper liner on carbon fibre composite (CFC) hollow tiles. This new process, pre-brazed casting (PBC), allows the hot radial pressing (HRP) joining procedure to be used also for CFC-based armour monoblock divertor components. The PBC and HRP processes are candidates for the construction of the ITER divertor. In the materials field an important milestone was the commissioning of a new facility for chemical vapour infiltration/deposition, used for optimising silicon carbide composite (SiCf/SiC) components. Eight patents were deposited during 2004

  9. Conceptual design and systems analysis of photovoltaic power systems. Volume III(1). Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pittman, P.F.

    1977-05-01

    Conceptual designs were made and analyses were performed on three types of solar photovoltaic power systems. Included were Residential (1 to 10 kW), Intermediate (0.1 to 10 MW), and Central (50 to 1000 MW) Power Systems to be installed in the 1985 to 2000 time period. Subsystem technology presented here includes: insolation, concentration, silicon solar cell modules, CdS solar cell module, array structure, battery energy storage, power conditioning, residential power system architectural designs, intermediate power system structural design, and central power system facilities and site survey.

  10. Review of FACTS technologies and applications for power quality in smart grids with renewable energy systems

    DEFF Research Database (Denmark)

    Gandoman, Foad H.; Ahmadi, Abdollah; Sharaf, Adel M.

    2018-01-01

    In the last two decades, emerging use of renewable and distributed energy sources in electricity grid has created new challenges for the utility regarding the power quality, voltage stabilization and efficient energy utilization. Power electronic converters are extensively utilized to interface...... the power quality. Also, distributed FACTSs play an important role in improving the power factor, energy utilization, enhancing the power quality, and ensuring efficient energy utilization and energy management in smart grids with renewable energy sources. This paper presents a literature survey of FACTS...... technology tools and applications for power quality and efficient renewable energy system utilization....

  11. Nuclear Power Technology With and Without Policies to Limit Fossil Fuel CO2 Emissions

    Science.gov (United States)

    Edmonds, J. A.; Clarke, J.

    2002-12-01

    The 21st century will see dramatic changes in the global energy system. The precise nature of those changes is impossible to see clearly. Energy supply technologies may become more diverse as the century progresses. That diversity will be driven by both energy supply challenges and by policies such as those associated with climate change. Technology deployment will depend on the outcome of developments in both economic and non-economic dimensions. This paper will explore the economic dimension of the potential nuclear power technology deployment in a future with and without policies to limit fossil fuel CO2 emissions. The analysis is predicated on the presumption that issues associated with safety, health, waste, and weapons are successfully addressed. The potential role of nuclear power will be examined against a background in which other technologies compete for markets.

  12. Present technologies and the next future in Mexico for the power generation starting from fossil fuels

    International Nuclear Information System (INIS)

    Gonzalez S, J.M.

    1999-01-01

    A brief analysis is done of the expected evolution of the world energy and electrical energy demand and a projection of the Mexican electrical demand is presented. Typical data for electric power generation technologies that currently in use or under development are presented and a discussion is made of the factors that influence technology selection, particularly for fossil fuel technologies. Taking into account the current expansion plans of the Mexican electrical sector, and proposing some reasonable hypotheses about the behavior of the factors that were identified, the evolution of the electrical demand in Mexico up to the year 2020 is presented, showing the installed capacity expected for each fuel and for each technology. At the end the needs for research and development in the area of power generation, emphasizing the Mexican R and D Programs, are discussed. (Author)

  13. Development of biomass power plant technologies in Malaysia: niche development and the formation of innovative capabilities

    DEFF Research Database (Denmark)

    Hansen, Ulrich Elmer

    The objective of this thesis is to contribute to advance further the emerging research agenda on the transfer and diffusion of low-carbon technologies in developing countries by adopting a study of the development of biomass power plant technologies in Malaysia. The main research question addresses...... the main factors influencing the transfer and diffusion of biomass power plant technologies in Malaysia. This question is explored in the four papers comprising the thesis, which are based on analyses of qualitative data, mainly in the form of interviews, documents and observations collected during...... successive periods of fieldwork in Malaysia. The thesis conceptualises the diffusion of biomass technologies in Malaysia as a niche development process and finds that the development of a palm oil biomass waste-to-energy niche in Malaysia has only made limited progress despite a period of twenty years...

  14. Evaluation of Competitiveness Power of OECD Countries in High-Technology Products

    Directory of Open Access Journals (Sweden)

    Mehmet Ozan SARAY

    2015-06-01

    Full Text Available The main purpose of this study to present the competitiveness power of OECD Countries’ in high-technology products. Within this concept, the data classified according to Foders’s (1995 high, medium and standard-technology distinction and analysed for 2004-2013 period with Revealed Comparative Advantage Index, which is developed by Balassa (1965. Also, competitiveness determinants of OECD countries in high-technology products tested with dynamic panel data estimators which are Generalized Method of Moments (GMM first difference and GMM system. According to test results, the most important competitiveness determinant of OECD countries ensues as productivity variable (only for GMM first difference. Nevertheless, there have been no relationship determined with competitiveness power, foreign direct investment and technological change level (the number of patent applications.

  15. Summary session D-3 - Nuclear based electric power technologies

    International Nuclear Information System (INIS)

    Hansen, K.

    1991-01-01

    There is a consensus among the authors in this session that nuclear power offers very great environmental benefits over conventional means of electric energy production. The papers deal largely with the key issues involved in capturing these potential benefits. The issues include: nuclear safety, nuclear power economics, and the regulation of the industry. Research and development for the future will concentrate on enhanced safety through simplified designs that reduce hardware, while taking advantage of natural processes for heat removal. Cost reductions will be achieved via simplification and imporved plant capacity. Long-duration generation cycles are anticipated for all reactor designs. An unresolved challenge for the future is the role of nuclear power in lesser developed countries. Current plants are too large and complex for use in small grids. It is unclear whether or not small, easy-to-operate, and ultrasafe systems can be made available. Until the industry regains commercial success, efforts in these directions are unlikely

  16. Impact of externalities on various power generation technologies

    International Nuclear Information System (INIS)

    Rubow, L.

    2008-01-01

    This analysis develops and compares the cost of electricity of the envisioned nuclear power plant at Belene1 (with approximately 2000 MW of installed capacity), with the cost of electricity from alternate generation sources, with a view toward the Bulgarian economy. The logical alternate generating sources are: New Lignite fueled Thermal Electric Power Plants (TEPPs) New Coal fueled TEPPs (based on imported coal), and New Natural gas fueled TEPPs. The developed economic cost of electricity considers the internalized costs such as capital, fuel and operating costs, as well as the external costs, such as health and environmental impacts, to the extent possible

  17. Pollution control technologies applied to coal-fired power plant operation

    Directory of Open Access Journals (Sweden)

    Maciej Rozpondek

    2009-09-01

    Full Text Available Burning of fossil fuels is the major source of energy in today's global economy with over one-third of the world's powergeneration derived from coal combustion. Although coal has been a reliable, abundant, and relatively inexpensive fuel source for mostof the 20th century, its future in electric power generation is under increasing pressure as environmental regulations become morestringent worldwide. Current pollution control technologies for combustion exhaust gas generally treat the release of regulatedpollutants: sulfur dioxide, nitrogen oxides and particulate matter as three separate problems instead of as parts of one problem. Newand improved technologies have greatly reduced the emissions produced per ton of burning coal. The term “Clean Coal CombustionTechnology” applies generically to a range of technologies designed to greatly reduce the emissions from coal-fired power plants.The wet methods of desulfurization at present are the widest applied technology in professional energetics. This method is economicand gives good final results but a future for clean technologies is the biomass. Power from biomass is a proven commercial optionof the electricity generation in the World. An increasing number of power marketers are starting to offer environmentally friendlyelectricity, including biomass power, in response to the consumer demand and regulatory requirements.

  18. Dictionary of electrical engineering. Power engineering, automation technology, measurement and control technology, mechatronics. English - German; Fachwoerterbuch Elektrotechnik. Energietechnik, Automatisierungstechnik, Mess-, Steuer- und Regelungstechnik, Mechatronik. Englisch - Deutsch

    Energy Technology Data Exchange (ETDEWEB)

    Heckler, H.

    2007-07-01

    The foreign-language vocabulary taught at school usually does not cover terms needed during professional life in electrical engineering. This comprehensive dictionary contains more than 60,000 electrotechnical and engineering terms - used in textbooks, manuals, data sheets, whitepapers and international standards. British English and American English spelling differences are identified. Terms used in IEC standards of the International Electrotechnical Commission are marked, allowing the reader to have easy access to the multilingual glossary of the IEC. This book contains the in-house dictionaries of the internationally operating companies Festo, KEB, Phoenix Contact, and Rittal. Topics: - Basic of electrical engineering, - Electrical power engineering, - Mechatronics, - Electrical drive engineering, - Electrical connection technology, - Automation technology, - Safety-related technology, - Information technology, - Measurement and control technology, - Explosion protection - Power plant technology, - Lightning and overvoltage protection. (orig.)

  19. The Establishment of a Long-term Development Direction for Nuclear Power Technology in Korea

    International Nuclear Information System (INIS)

    Juhn, Poongeil

    1987-01-01

    Korea has about 30 years of experience in nuclear technology development. Until the late 1960's, main effort was employed to carry out basic reactors. The first nuclear power project in Korea was started in the early 1970's. And the first oil embargo in late 1973 stimulated to accelerate nuclear power program to get rid of dependency on oil considering the scarcity of domestic energy resources. During the decade of 1970's decision was made to construct nine nuclear power plants, namely, three 600 MW units and six 900 MW units, through various forms of contracts with foreign suppliers. Three 600 MW nuclear power projects, so called the first phase nuclear power projects, were implemented in a form of turn-key contract, mainly due to the lack of experienced manpower in the nuclear power technology. With some experiences obtained in the course of carrying out the first phase nuclear power projects, six 900 MW nuclear power projects, entitled as the second phase nuclear power projects, have been carried out under the framework of non-turn-key contract or component approach. It is realized, however, that software related technology including nuclear steam supply system design cannot be developed without having indigenous technological back-up or R and D support. Last year, mainly by the virtue of successful experience in indigenous development of CANDU fuel technology, Korea decided to carry out two more 900 MW nuclear power projects through which self-reliance in nuclear power projects, all nuclear-related organizations in Korean will participate in the project according to the respective functions or roles. The purpose of functional identification of each organization is to eliminate duplicated investment and to have or maintain critical manpower in each designated technical field in order to effectively achieve self-reliance in nuclear power technology by the 2000. The part and parcel of the nuclear activities on research and development of nuclear power technology

  20. Globalization & technology

    DEFF Research Database (Denmark)

    Narula, Rajneesh

    Technology and globalization are interdependent processes. Globalization has a fundamental influence on the creation and diffusion of technology, which, in turn, affects the interdependence of firms and locations. This volume examines the international aspect of this interdependence at two levels...

  1. Marginal Generation Technology in the Chinese Power Market towards 2030 Based on Consequential Life Cycle Assessment

    OpenAIRE

    Zhao, Guangling; Guerrero, Josep M.; Pei, Yingying

    2016-01-01

    Electricity consumption is often the hotspot of life cycle assessment (LCA) of products, industrial activities, or services. The objective of this paper is to provide a consistent, scientific, region-specific electricity-supply-based inventory of electricity generation technology for national and regional power grids. Marginal electricity generation technology is pivotal in assessing impacts related to additional consumption of electricity. China covers a large geographical area with regional...

  2. Plenary lecture 1: thermoelectric technology as renewable energy source for power generation and heating & cooling systems

    OpenAIRE

    SHAMMAS, Noel

    2011-01-01

    This paper will review the latest research and current status of thermoelectric power generation, and will also demonstrate, using electronic design, semiconductor simulation and practical laboratory experimentation, the application of thermoelectric technology for use in energy harvesting and scavenging systems. Ongoing research and advances in thermoelectric materials and manufacturing techniques, enables the technology to make a greater contribution to address the growing requirement for l...

  3. Development of equipment reliability process using predictive technologies at Hamaoka Nuclear Power Station

    International Nuclear Information System (INIS)

    Taniguchi, Yuji; Sakuragi, Futoshi; Hamada, Seiichi

    2014-01-01

    Development of equipment reliability(ER) process, specifically for predictive maintenance (PdM) technologies integrated condition based maintenance (CBM) process, at Hamaoka Nuclear Power Station is introduced in this paper. Integration of predictive maintenance technologies such as vibration, oil analysis and thermo monitoring is more than important to establish strong maintenance strategies and to direct a specific technical development. In addition, a practical example of CBM is also presented to support the advantage of the idea. (author)

  4. Blowing in the Wind: A Review of Wind Power Technology

    Science.gov (United States)

    Harris, Frank

    2014-01-01

    The use of wind as a replenishable energy resource has come back into favour in recent decades. It is much promoted as a viable, clean energy option that will help towards reducing CO[subscript 2] emissions in the UK. This article examines the history of wind power and considers the development of wind turbines, together with their economic,…

  5. Wind Power in Australia: Overcoming Technological and Institutional Barriers

    Science.gov (United States)

    Healey, Gerard; Bunting, Andrea

    2008-01-01

    Until recently, Australia had little installed wind capacity, although there had been many investigations into its potential during the preceding decades. Formerly, state-owned monopoly utilities showed only token interest in wind power and could dictate the terms of energy debates. This situation changed in the late 1990s: Installed wind capacity…

  6. Simulation Tools for Power Electronics Courses Based on Java Technologies

    Science.gov (United States)

    Canesin, Carlos A.; Goncalves, Flavio A. S.; Sampaio, Leonardo P.

    2010-01-01

    This paper presents interactive power electronics educational tools. These interactive tools make use of the benefits of Java language to provide a dynamic and interactive approach to simulating steady-state ideal rectifiers (uncontrolled and controlled; single-phase and three-phase). Additionally, this paper discusses the development and use of…

  7. The Mighty Atom? The Development of Nuclear Power Technology

    Science.gov (United States)

    Harris, Frank

    2014-01-01

    The use of nuclear energy for the generation of electricity started in the 1950s and was viewed, at the time, as a source of virtually free power. Development flourished and some countries adopted the nuclear option as their principal source for producing electrical energy. However, a series of nuclear incidents and concern about the treatment of…

  8. Advanced Vehicle Power Technology Alliance Technical Workshop and Operations Report

    Science.gov (United States)

    2011-10-05

    possible options for investigation are higher gear count automatic transmissions, Dual Clutch Transmissions (DCT), wet and dry clutch launch devices...capability, electromagnetic armor and Starting/Lighting/Igniting (SLI), while DOE highlighted hybrid electric vehicles and electric vehicles. DOE goals are...Modeling & Simulation: − Electromagnetic Emissions − Engine Oil − Human Factors − Lubricants − Power Electronics

  9. Reactor technology: power conversion systems and reactor operation and maintenance

    International Nuclear Information System (INIS)

    Powell, J.R.

    1977-01-01

    The use of advanced fuels permits the use of coolants (organic, high pressure helium) that result in power conversion systems with good thermal efficiency and relatively low cost. Water coolant would significantly reduce thermal efficiency, while lithium and salt coolants, which have been proposed for DT reactors, will have comparable power conversion efficiencies, but will probably be significantly more expensive. Helium cooled blankets with direct gas turbine power conversion cycles can also be used with DT reactors, but activation problems will be more severe, and the portion of blanket power in the metallic structure will probably not be available for the direct cycle, because of temperature limitations. A very important potential advantage of advanced fuel reactors over DT fusion reactors is the possibility of easier blanket maintenance and reduced down time for replacement. If unexpected leaks occur, in most cases the leaking circuit can be shut off and a redundant cooling curcuit will take over the thermal load. With the D-He 3 reactor, it appears practical to do this while the reactor is operating, as long as the leak is small enough not to shut down the reactor. Redundancy for Cat-D reactors has not been explored in detail, but appears feasible in principle. The idea of mobile units operating in the reactor chamber for service and maintenance of radioactive elements is explored

  10. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Delene, J.G.; Hudson, C.R. II.

    1993-05-01

    Several advanced power plant concepts are currently under development. These include the Modular High Temperature Gas Cooled Reactors, the Advanced Liquid Metal Reactor and the Advanced Light Water Reactors. One measure of the attractiveness of a new concept is its cost. Invariably, the cost of a new type of power plant will be compared with other alternative forms of electrical generation. This report provides a common starting point, whereby the cost estimates for the various power plants to be considered are developed with common assumptions and ground rules. Comparisons can then be made on a consistent basis. This is the second update of these cost estimate guidelines. Changes have been made to make the guidelines more current (January 1, 1992) and in response to suggestions made as a result of the use of the previous report. The principal changes are that the reference site has been changed from a generic Northeast (Middletown) site to a more central site (EPRI's East/West Central site) and that reference bulk commodity prices and labor productivity rates have been added. This report is designed to provide a framework for the preparation and reporting of costs. The cost estimates will consist of the overnight construction cost, the total plant capital cost, the operation and maintenance costs, the fuel costs, decommissioning costs and the power production or busbar generation cost

  11. Science and Technology Text Mining: Electric Power Sources

    Science.gov (United States)

    2004-04-01

    Journal of Engineering for Gas Turbines and Power- Transactions of the ASME, Brennstoff-Warme-Kraft , IEEE Transactions of Energy Conversion, IEEE...include HEAT PUMP, HEAT ENGINES, TURBINES , and SOLAR. Direct Converter categories include Reactants, Processes, Products, Components, and Systems. Direct...phenomena including EXERGY , RECYCLING, RADIATION, REFRIGERATION, Page 17 DISSOLUTION, DRYING, FLUORESCENCE, RECOVERY, PROPAGATION, RELAXATION, COOLING

  12. Wind power costs expected to decrease due to technological progress

    International Nuclear Information System (INIS)

    Williams, Eric; Hittinger, Eric; Carvalho, Rexon; Williams, Ryan

    2017-01-01

    The potential for future cost reductions in wind power affects adoption and support policies. Prior analyses of cost reductions give inconsistent results. The learning rate, or fractional cost reduction per doubling of production, ranges from −3% to +33% depending on the study. This lack of consensus has, we believe, contributed to high variability in forecasts of future costs of wind power. We find that learning rate can be very sensitive to the starting and ending years of datasets and the geographical scope of the study. Based on a single factor experience curve that accounts for capacity factor gains, wind quality decline, and exogenous shifts in capital costs, we develop an improved model with reduced temporal variability. Using a global adoption model, the wind-learning rate is between 7.7% and 11%, with a preferred estimate of 9.8%. Using global scenarios for future wind deployment, this learning rate range implies that the cost of wind power will decline from 5.5 cents/kWh in 2015 to 4.1–4.5 cents/kWh in 2030, lower than a number of other forecasts. If attained, wind power may be the cheapest form of new electricity generation by 2030, suggesting that support and investment in wind should be maintained or expanded. - Highlights: • Expectations for cost reductions in wind power is important for policy. • Wind learning rates are sensitive to data time period and regional choice. • We develop improved wind cost model with much reduced variability. • New model gives global wind learning rates between 7.7%-11%.

  13. High power density superconducting rotating machines—development status and technology roadmap

    Science.gov (United States)

    Haran, Kiruba S.; Kalsi, Swarn; Arndt, Tabea; Karmaker, Haran; Badcock, Rod; Buckley, Bob; Haugan, Timothy; Izumi, Mitsuru; Loder, David; Bray, James W.; Masson, Philippe; Stautner, Ernst Wolfgang

    2017-12-01

    Superconducting technology applications in electric machines have long been pursued due to their significant advantages of higher efficiency and power density over conventional technology. However, in spite of many successful technology demonstrations, commercial adoption has been slow, presumably because the threshold for value versus cost and technology risk has not yet been crossed. One likely path for disruptive superconducting technology in commercial products could be in applications where its advantages become key enablers for systems which are not practical with conventional technology. To help systems engineers assess the viability of such future solutions, we present a technology roadmap for superconducting machines. The timeline considered was ten years to attain a Technology Readiness Level of 6+, with systems demonstrated in a relevant environment. Future projections, by definition, are based on the judgment of specialists, and can be subjective. Attempts have been made to obtain input from a broad set of organizations for an inclusive opinion. This document was generated through a series of teleconferences and in-person meetings, including meetings at the 2015 IEEE PES General meeting in Denver, CO, the 2015 ECCE in Montreal, Canada, and a final workshop in April 2016 at the University of Illinois, Urbana-Champaign that brought together a broad group of technical experts spanning the industry, government and academia.

  14. Enhanced Passive Cooling for Waterless-Power Production Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-14

    Recent advances in the literature and at SNL indicate the strong potential for passive, specialized surfaces to significantly enhance power production output. Our exploratory computational and experimental research indicates that fractal and swirl surfaces can help enable waterless-power production by increasing the amount of heat transfer and turbulence, when compared with conventional surfaces. Small modular reactors, advanced reactors, and non-nuclear plants (e.g., solar and coal) are ideally suited for sCO2 coolant loops. The sCO2 loop converts the thermal heat into electricity, while the specialized surfaces passively and securely reject the waste process heat in an environmentally benign manner. The resultant, integrated energy systems are highly suitable for small grids, rural areas, and arid regions.

  15. Applications of high-temperature superconductors in power technology

    International Nuclear Information System (INIS)

    Hull, John R

    2003-01-01

    Since the discovery of the first high-temperature superconductors (HTSs) in the late 1980s, many materials and families of materials have been discovered that exhibit superconductivity at temperatures well above 20 K. Of these, several families of HTSs have been developed for use in electrical power applications. Demonstration of devices such as motors, generators, transmission lines, transformers, fault-current limiters, and flywheels in which HTSs and bulk HTSs have been used has proceeded to ever larger scales. First-generation wire, made from bismuth-based copper oxides, was used in many demonstrations. The rapid development of second-generation wire, made by depositing thin films of yttrium-based copper oxide on metallic substrates, is expected to further accelerate commercial applications. Bulk HTSs, in which large single-grain crystals are used as basic magnetic components, have also been developed and have potential for electrical power applications

  16. History of the nuclear power generation technology in Japan

    International Nuclear Information System (INIS)

    2016-01-01

    First, the outline of the historical fact is described. Next, the research institution, the industrial world, and the government which were the bearers of technical development are described and look back upon the history of development from each position. The focus is a viewpoint based on refection of a Fukushima disaster. 'Teachings from history' seen from each actor was described being based on the objective fact. Moreover, it focuses also on the society, the politics, and the economic factor which affected development of nuclear development. The following three were treated as themes. 1. Relation with the atomic power and the nonproliferation policy of the U.S. government. 2. Relation with public opinion or media. 3. Social responsibility of a society, or a scientist and an engineering person. Finally, based on these teachings, the viewpoint considered to be important for future nuclear power generation and technical development was summarized as a proposal. (author)

  17. Music and Technology in Death and the Powers

    OpenAIRE

    Jessop, Elena; Torpey, Peter A.; Bloomberg, Benjamin

    2011-01-01

    In composer Tod Machover's new opera Death and the Powers, the main character uploads his consciousness into anelaborate computer system to preserve his essence and agencyafter his corporeal death. Consequently, for much of theopera, the stage and the environment itself come alive asthe main character. This creative need brings with it a hostof technical challenges and opportunities. In order to satisfythe needs of this storyline, Machover's Opera of the Futuregroup at the MIT Media Lab has d...

  18. Technology and costs for decommissioning the Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1986-05-01

    The study shows that, from the viewpoint of radiological safety, a nuclear power plant can be dismantled immediately after it has been shut down and the fuel has been removed, which is estimated to take about one year. Most of the equipment that will be used in decommissioning is already available and is used routinely in maintenance and rebuilding work at the nuclear power plants. Special equipment need only be developed for dismantlement of the reactor vessel and for demolishing of heavy concrete structures. The dismantling of a nuclear power plant can be accomplished in about five years, with an average labour force of about 200 men. The maximum labour force required for Ringhals 1 has been estimated at about 500 men during the first years, when active systems are being dismantled in a number of fronts in the plant. During the last years when the buildings are being demolished, approximately 50 men are required. In order to limit the labour requirement and the dose burden to the personnel, the material is taken out in as large pieces as possible. The cost of decommissioning a boiling water reactor (BWR) of the size of Ringhals 1 has been estimated to be about MSEK 540 in January 1986 prices, and for a pressurized water reactor (PWR, Ringhals 2) about MSEK 460. The cost for the other Swedish nuclear power plants lie in the range of MSEK 410-760. These are the direct cost for the decommissioning work, to which must be added the costs of transportation and disposal of the decommissioning waste, about 100 000 m/sup3/. These costs have been estimated to be about MSEK 600 for the 12 Swedish reactors. (author)

  19. Survey of Current and Next Generation Space Power Technologies

    Science.gov (United States)

    2006-06-26

    non- faradaic processes without redox reactions ). The power density of supercapacitors is higher than batteries because there are no chemical...formation (interaction with incident photons) and transport of electron-hole charge carriers across an electric field at a semiconductor junction...the functions of light absorption and charge carrier transport are separated. Light is absorbed by a sensitizer, which is anchored to a wide band gap

  20. Earthing Technology

    NARCIS (Netherlands)

    Blok, Vincent

    2017-01-01

    In this article, we reflect on the conditions under which new technologies emerge in the Anthropocene and raise the question of how to conceptualize sustainable technologies therein. To this end, we explore an eco-centric approach to technology development, called biomimicry. We discuss opposing

  1. Technology Tiers

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    A technology tier is a level in a product system: final product, system, subsystem, component, or part. As a concept, it contrasts traditional “vertical” special technologies (for example, mechanics and electronics) and focuses “horizontal” feature technologies such as product characteristics...

  2. Radioisotope Power: A Key Technology for Deep Space Explorations

    Science.gov (United States)

    Schmidt, George R.; Sutliff, Thomas J.; Duddzinski, Leonard

    2009-01-01

    A Radioisotope Power System (RPS) generates power by converting the heat released from the nuclear decay of radioactive isotopes, such as Plutonium-238 (Pu-238), into electricity. First used in space by the U.S. in 1961, these devices have enabled some of the most challenging and exciting space missions in history, including the Pioneer and Voyager probes to the outer solar system; the Apollo lunar surface experiments; the Viking landers; the Ulysses polar orbital mission about the Sun; the Galileo mission to Jupiter; the Cassini mission orbiting Saturn; and the recently launched New Horizons mission to Pluto. Radioisotopes have also served as a versatile heat source for moderating equipment thermal environments on these and many other missions, including the Mars exploration rovers, Spirit and Opportunity. The key advantage of RPS is its ability to operate continuously, independent of orientation and distance relative to the Sun. Radioisotope systems are long-lived, rugged, compact, highly reliable, and relatively insensitive to radiation and other environmental effects. As such, they are ideally suited for missions involving long-lived, autonomous operations in the extreme conditions of space and other planetary bodies. This paper reviews the history of RPS for the U.S. space program. It also describes current development of a new Stirling cycle-based generator that will greatly expand the application of nuclear-powered missions in the future.

  3. Fact sheet on nuclear power plant instrumentation and control technologies

    International Nuclear Information System (INIS)

    2006-01-01

    Nuclear power plants (NPPs) are facing challenges in several instrumentation and control (I and C) areas with ageing and obsolete components and equipment. With license renewals and power uprates, the long-term operation and maintenance of obsolete I and C systems may not be a cost-effective and reliable option. The effort needed to maintain or increase the reliability and useful life of existing I and C systems may be greater in the long run than modernizing I and C systems or replacing them completely with new digital systems. The increased functionality of the new I and C systems can also open up new possibilities to better support the operation and maintenance activities in the plant. The IAEA recognizes the importance of the profound role the I and C systems play in the reliable, safe, efficient, and cost-effective operations of NPPs by supporting the activities of the Department of Nuclear Energy's Technical Working Group on Nuclear Power Plant Control and Instrumentation (TWG-NPPCI). The group was established in March 1970. Its membership currently includes thirty Member States and three international organizations. The most recent meeting of the TWG-NPPCI was held in May 2005 in Vienna. The meeting report is available at http://www.iaea.org/OurWork/ST/NE/NENP/twg_nppc.html. The next meeting of the TWGNPPCI will be the 21st meeting of the advisory body, and it will be held in May 2007

  4. Research on DTX Technology and Power Consumption Performance of Mobile Communication Terminal

    Directory of Open Access Journals (Sweden)

    Xie Shui Zhen

    2016-01-01

    Full Text Available In order to reduce the power consumption of GSM and TD-SCDMA mobile communication system terminal, the paper starts with DTX (Discontinuous Transmission technology of GSM and TD-SCDMA systems, offers a detailed analysis of the DTX’s function in optimizing power consumption of GSM and TDSCDMA mobile communication system terminal and reducing system interference, and verifies DTX’s positive role in reducing the power consumption of the mobile terminal by experiment.

  5. Frontiers of particle beam and high energy density plasma science using pulse power technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi

    2011-04-01

    The papers presented at the symposium on “Frontiers of Particle Beam and High Energy Density Plasma Science using Pulse Power Technology” held in November 20-21, 2009 at National Institute for Fusion Science are collected. The papers reflect the present status and resent progress in the experiment and theoretical works on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  6. Novel Space-based Solar Power Technologies and Architectures for Earth and Beyond

    Science.gov (United States)

    Howell, Joe T.; Fikes, John C.; O'Neill, Mark J.

    2005-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. Power beaming or wireless power transmission (WPT) can involve lasers or microwaves along with the associated power interfaces. Microwave and laser transmission techniques have been studied with several promising approaches to safe and efficient WPT identified. These investigations have included microwave phased array transmitters, as well as laser transmission and associated optics. There is a need to produce "proof-of-concept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space to surface sites. This paper briefly discusses achieving a promising approach to the solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components

  7. Environmental Externalities Related to Power Production Technologies in Denmark

    DEFF Research Database (Denmark)

    Ibsen, Liselotte Schleisner; Nielsen, Per Sieverts

    1997-01-01

    of the Danish part of the project is to implement the framework for externality evaluation, for three different power plants located in Denmark. The paper will focus on the assessment of the impacts of the whole fuel cycles for wind, natural gas and biogas. Priority areas for environmental impact assessment...... are identified, based on results of earlier studies and some identified of specific relevance for Denmark. Importance is attached to the quantification of impacts for each of the three fuel cycles and to monetisation of the externalities....

  8. High technology and the courts: nuclear power and the need for institutional reform

    International Nuclear Information System (INIS)

    Yellin, J.

    1981-01-01

    In this article Professor Yellin analyzes the performance of the courts when confronted with the important and complex issues attending the commercial development of nuclear power. He draws three general conclusions from the analysis: (1) the failure of nuclear regulation indicates that substantive review of agency decision making is necessary; (2) the limitations of the courts' ability to understand the scientific and technological arguments inherent in the nuclear power cases suggest the need for hybrid legal and scientific oversight of technological decisions; and (3) procedural requirements of the adversary system tend to impede full presentation of the issues in nuclear power cases, again pointing to the need for new systems of review. Professor Yellin proposes creation of a permanent review board composed of masters trained in both science and law to which technological and scientific issues falling outside the special competence of the judiciary would be referred by the federal appellate courts

  9. Marginal Generation Technology in the Chinese Power Market towards 2030 Based on Consequential Life Cycle Assessment

    DEFF Research Database (Denmark)

    Zhao, Guangling; Guerrero, Josep M.; Pei, Yingying

    2016-01-01

    generation, which is the same scenario in the North and Northwest China Grid. In the Northeast, East, and Central China Grid, nuclear power gradually replaces coal-fired electricity and becomes the marginal technology. In the Southwest China Grid and the China Southern Power Grid, the marginal electricity......Electricity consumption is often the hotspot of life cycle assessment (LCA) of products, industrial activities, or services. The objective of this paper is to provide a consistent, scientific, region-specific electricity-supply-based inventory of electricity generation technology for national...... and regional power grids. Marginal electricity generation technology is pivotal in assessing impacts related to additional consumption of electricity. China covers a large geographical area with regional supply grids; these are arguably equally or less integrated. Meanwhile, it is also a country with internal...

  10. Emerging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee

    1993-03-01

    The mission of the Emerging Technologies thrust area at Lawrence Livermore National Laboratory is to help individuals establish technology areas that have national and commercial impact, and are outside the scope of the existing thrust areas. We continue to encourage innovative ideas that bring quality results to existing programs. We also take as our mission the encouragement of investment in new technology areas that are important to the economic competitiveness of this nation. In fiscal year 1992, we have focused on nine projects, summarized in this report: (1) Tire, Accident, Handling, and Roadway Safety; (2) EXTRANSYT: An Expert System for Advanced Traffic Management; (3) Odin: A High-Power, Underwater, Acoustic Transmitter for Surveillance Applications; (4) Passive Seismic Reservoir Monitoring: Signal Processing Innovations; (5) Paste Extrudable Explosive Aft Charge for Multi-Stage Munitions; (6) A Continuum Model for Reinforced Concrete at High Pressures and Strain Rates: Interim Report; (7) Benchmarking of the Criticality Evaluation Code COG; (8) Fast Algorithm for Large-Scale Consensus DNA Sequence Assembly; and (9) Using Electrical Heating to Enhance the Extraction of Volatile Organic Compounds from Soil.

  11. Case study of siting technology for underground nuclear power plant

    International Nuclear Information System (INIS)

    Hibino, Satoshi; Komada, Hiroya; Honsho, Shizumitsu; Fujiwara, Yoshikazu; Motojima, Mutsumi; Nakagawa, Kameichiro; Nosaki, Takashi

    1991-01-01

    Underground siting method is one of new feasible siting methods for nuclear power plants. This report presents the results on case studies on underground siting. Two sites of a steeply inclined and plateau like configurations were selected. 'Tunnel type cavern; all underground siting' method was applied for the steeply inclined configuration, and 'shaft type semi-cavern; partial underground siting' method was applied for the plateau like configuration. The following designs were carried out for these two sites as case studies; (1) conceptual designs, (2) geological surveys and rock mechanics tests, (3) stability analysis during cavern excavations, (4) seismic stability analysis of caverns during earthquake, (5) reinforcement designs for caverns, (6) drainage designs. The case studies showed that these two cases were fully feasible, and comparison between two cases revealed that the 'shaft type semi-cavern; partial underground siting' method was more suitable for Japanese islands. As a first step of underground siting, therefore, the authors recommend to construct a nuclear power plant by this method. (author)

  12. Development of molten carbonate fuel cell technology at M-C Power Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, D. [M-C Power Corp., Burr Ridge, IL (United States)

    1996-04-01

    M-C Power Corporation was founded in 1987 with the mission to further develop and subsequently commercialize molten carbonate fuel cells (MCFC). The technology chosen for commercialization was initially developed by the Institute of Gas technology (IGT). At the center of this MCFC technology is the Internally Manifolded Heat EXchange (IMHEX) separator plate design. The IMHEX technology design provides several functions within one component assembly. These functions include integrating the gas manifold structure into the fuel cell stack, separating the fuel gas stream from the oxidant gas stream, providing the required electrical contact between cells to achieve desired power output, and removing excess heat generated in the electrochemical process. Development of this MCFC technology from lab-scale sizes too a commercial area size of 1m{sup 2} has focused our efforts an demonstrating feasibility and evolutionary progress. The development effort will culminate in a proof-of-concept- 250kW power plant demonstration in 1996. The remainder of our commercialization program focuses upon lowering the costs associated with the MCFC power plant system in low production volumes.

  13. Technological Networks

    Science.gov (United States)

    Mitra, Bivas

    The study of networks in the form of mathematical graph theory is one of the fundamental pillars of discrete mathematics. However, recent years have witnessed a substantial new movement in network research. The focus of the research is shifting away from the analysis of small graphs and the properties of individual vertices or edges to consideration of statistical properties of large scale networks. This new approach has been driven largely by the availability of technological networks like the Internet [12], World Wide Web network [2], etc. that allow us to gather and analyze data on a scale far larger than previously possible. At the same time, technological networks have evolved as a socio-technological system, as the concepts of social systems that are based on self-organization theory have become unified in technological networks [13]. In today’s society, we have a simple and universal access to great amounts of information and services. These information services are based upon the infrastructure of the Internet and the World Wide Web. The Internet is the system composed of ‘computers’ connected by cables or some other form of physical connections. Over this physical network, it is possible to exchange e-mails, transfer files, etc. On the other hand, the World Wide Web (commonly shortened to the Web) is a system of interlinked hypertext documents accessed via the Internet where nodes represent web pages and links represent hyperlinks between the pages. Peer-to-peer (P2P) networks [26] also have recently become a popular medium through which huge amounts of data can be shared. P2P file sharing systems, where files are searched and downloaded among peers without the help of central servers, have emerged as a major component of Internet traffic. An important advantage in P2P networks is that all clients provide resources, including bandwidth, storage space, and computing power. In this chapter, we discuss these technological networks in detail. The review

  14. Soulful Technologies

    DEFF Research Database (Denmark)

    Fausing, Bent

    2010-01-01

    or anthropomorphism is important for the branding of new technology. Technology is seen as creating a techno-transcendence towards a more qualified humanity which is in contact with fundamental human values like intuition, vision, and sensing; all the qualities that technology, industrialization, and rationalization......, - in short modernity - have taken away from human existence. What old technology has removed now comes back through new technology promoting a better humanity. The present article investigates how digital technology and affects are presented and combined, with examples from everyday imagery, e.g. TV......Samsung introduced in 2008 a mobile phone called "Soul" made with a human touch and including itself a "magic touch". Through the analysis of a Nokia mobile phone TV-commercials I want to examine the function and form of digital technology in everyday images. The mobile phone and its digital camera...

  15. Inventory of future power and heat production technologies. Partial report Small-scale technology; Inventering av framtidens el- och vaermeproduktionstekniker. Delrapport Smaaskalig teknik

    Energy Technology Data Exchange (ETDEWEB)

    Ridell, Bengt (Grontmij AB (Sweden))

    2008-12-15

    The following techniques for small-scale production have been selected to be studied more carefully, Fuel cells, Photovoltaics, Organic Rankine Cycle (ORC), and Wave power. Of the four selected technologies, fuel cells, solar cells, ORC are appropriate for use in so-called distributed generation, to be used close to a consumer, and possibly also for the production of electricity. Wave power is more like the wind in nature and is probably better suited to be used by power companies for direct input to the transmission grid. None of these technologies are now competitive against buying electricity from the Swedish grid. However, there are opportunities for all to reduce production costs so that they can become competitive alternatives in the future, depending largely on the general development of electricity prices, taxes, delivery reliability, etc. The four different technologies have different development stages and requirements that affect their possibility for a commercial breakthrough. These technologies will probably not all get a breakthrough in Sweden. Small-scale technologies will in the time period up to 2030 not be able to compete with the large-scale technologies that exist in today's power grid. In the longer term the situation may be different. The power system might be reduced in importance if the small scale technologies become cheap, reliable and easy to use. Electricity can then be produced locally, directly related to user needs

  16. Technical and Economic Assessment of Storage Technologies for Power-Supply Grids

    Directory of Open Access Journals (Sweden)

    H. Meiwes

    2009-01-01

    Full Text Available Fluctuating power generation from renewable energies such as wind and photovoltaic are a technical challenge for grid stability. Storage systems are an option to stabilise the grid and to maximise the utilisation factors of renewable power generators. This paper analyses the state of the art of storage technologies, including a detailed life cycle cost comparison. Beside this, benefits of using storage systems in electric vehicles are analysed and quantified. A comprehensive overview of storage technologies as well as possible applications and business cases for storage systems is presented. 

  17. High temperature molten salt reactor in a system of nuclear power supply of technological processes

    International Nuclear Information System (INIS)

    Belousov, I.G.

    1984-01-01

    Features of the high-temperature molten-salt reactor with natural convection of the coolant in the primary power curcuit are considered. An operating process of energy transfer from the core to the energy consumption zone is described. The main energy consumer is the metallurgical production based on the direct reduction of iron oxides by solid carbon. Some other energy consumers are being considered more briefly. A high efficiency usage of nuclear fuel in industrial technological cycles is possible only on fulfilling some definite conditions relating to compatibility limiting power properties of the nuclear heat source and the perfection of the technological cycle of energy consumption

  18. Advanced Technology for Ultra-Low Power System-on-Chip (SoC)

    Science.gov (United States)

    2017-06-01

    AFRL-RY-WP-TR-2017-0115 ADVANCED TECHNOLOGY FOR ULTRA-LOW POWER SYSTEM-ON-CHIP (SoC) Jason Woo, Weicong Li, and Peng Lu University of California...Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no person...September 2015 – 31 March 2017 4. TITLE AND SUBTITLE ADVANCED TECHNOLOGY FOR ULTRA-LOW POWER SYSTEM-ON- CHIP (SoC) 5a. CONTRACT NUMBER FA8650-15-1-7574 5b

  19. Review of the Tri-Agency Space Nuclear Reactor Power System Technology Program

    Science.gov (United States)

    Ambrus, J. H.; Wright, W. E.; Bunch, D. F.

    1984-01-01

    The Space Nuclear Reactor Power System Technology Program designated SP-100 was created in 1983 by NASA, the U.S. Department of Defense, and the Defense Advanced Research Projects Agency. Attention is presently given to the development history of SP-100 over the course of its first year, in which it has been engaged in program objectives' definition, the analysis of civil and military missions, nuclear power system functional requirements' definition, concept definition studies, the selection of primary concepts for technology feasibility validation, and the acquisition of initial experimental and analytical results.

  20. An evaluation of the dismantling technologies for decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Jeong, KwanSeong; Choi, ByungSeon; Moon, Jeikwon; Hyun, Dongjun; Lee, JongHwan; Kim, IkJune; Kim, GeunHo; Seo, JaeSeok

    2014-01-01

    Highlights: • This paper is evaluation method on the technologies for decommissioning of nuclear power plants. • The parameters of evaluation are performance, site-specific, safety, and cost impacts. • The evaluation model was applied for dismantling of a steam generator. - Abstract: This paper is to suggest an evaluation method on the dismantling technologies for decommissioning of nuclear power plants. The parameters of evaluation are performance impacts, site-specific impacts, safety impacts, and cost impacts. The evaluation model was provided and applied for dismantling of a steam generator

  1. A study on determinants of risk perception and attitude structures concerning nuclear power technology

    International Nuclear Information System (INIS)

    Tsuchida, Shoji; Kitada, Atsuko; Ato, Kazunori

    2000-01-01

    Many people claim that nuclear power technology should be subjected to stricter safety criteria than other mega-technologies, and some insist that every risk should be eliminated from the technology. For the future of nuclear technology it is one of the most important tasks to provide insight for the people seeking zero-risk safety from nuclear technology by understanding the mechanism of risk perception, especially the mechanism resulting in the zero-risk imperative. Specifically we describe the distribution of the people claiming zero-risk technology, risk perceptions and their factors, as well as the relationship between the risk perceptions and attitude structures. Our societies enjoy the benefits of mega-technologies, however at the same time we have some costs to put them to practical use, especially the costs on environments and on human health. And so, on decision-making processes of whether and how much we will practically use mega-technologies, public acceptance or consensus in societies are absolutely indispensable. Through the decision-making processes in societies, some people sometimes do not accept the 'risk evaluation' that scientists and technologists made. Some people believe that our lives should and could be perfectly safe (zero-risk perception), and they think or insist that we should not use the mega-technologies if we are not able to achieve perfect safety. In Japan, many people seem to have typical zero-risk perception toward nuclear power technology. While other people think that anywhere in our world we have no perfect safety, and that 'risk' should be evaluated by the ratio between costs and benefits (comparative-risk perception). On the other hand, in our democratic societies, we have political rules that the electorates, common people, ultimately decide whether mega-technologies are used or not, and how much costs are to be spent to reduce hazards. So, it is important to clarify the nature of the common people's risk perceptions and

  2. Technological, economic and sustainability evaluation of power plants using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Chatzimouratidis, Athanasios I.; Pilavachi, Petros A.

    2009-01-01

    Complexity of power plant evaluation is steadily rising, as more criteria are involved in the overall assessment while evaluation data change rapidly. Apart from evaluating several aspects of power plants separately, a multicriteria analysis based on hierarchically structured criteria is necessary, so as to address the overall assessment of power plants according to the technological, economic and sustainability aspects. For this reason, in this paper, ten types of power plant are evaluated using nine end node criteria properly structured under the Analytical Hierarchy Process. Moreover, pairwise comparisons allow for accurate subjective criteria weighting. According to the scenario based on the subjective criteria weighting, emphasis is laid on sustainability driving renewable energy power plants at the top of the overall ranking, while nuclear and fossil fuel power plants rank in the last five positions. End node criteria contribution to each power plant and power plant performance per end node criterion is presented for all types of power plant and end node criteria. (author)

  3. Technological, economic and sustainability evaluation of power plants using the analytic hierarchy process

    Energy Technology Data Exchange (ETDEWEB)

    Chatzimouratidis, Athanasios I.; Pilavachi, Petros A. [Department of Engineering and Management of Energy Resources, University of Western Macedonia, 50100 Kozani (Greece)

    2009-03-15

    Complexity of power plant evaluation is steadily rising, as more criteria are involved in the overall assessment while evaluation data change rapidly. Apart from evaluating several aspects of power plants separately, a multicriteria analysis based on hierarchically structured criteria is necessary, so as to address the overall assessment of power plants according to the technological, economic and sustainability aspects. For this reason, in this paper, ten types of power plant are evaluated using nine end node criteria properly structured under the Analytical Hierarchy Process. Moreover, pairwise comparisons allow for accurate subjective criteria weighting. According to the scenario based on the subjective criteria weighting, emphasis is laid on sustainability driving renewable energy power plants at the top of the overall ranking, while nuclear and fossil fuel power plants rank in the last five positions. End node criteria contribution to each power plant and power plant performance per end node criterion is presented for all types of power plant and end node criteria. (author)

  4. High quality, high efficiency welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    Aoki, Shigeyuki; Nagura, Yasumi

    1996-01-01

    For nuclear power plants, it is required to ensure the safety under the high reliability and to attain the high rate of operation. In the manufacture and installation of the machinery and equipment, the welding techniques which become the basis exert large influence to them. For the purpose of improving joint performance and excluding human errors, welding heat input and the number of passes have been reduced, the automation of welding has been advanced, and at present, narrow gap arc welding and high energy density welding such as electron beam welding and laser welding have been put to practical use. Also in the welding of pipings, automatic gas metal arc welding is employed. As for the welding of main machinery and equipment, there are the welding of the joints that constitute pressure boundaries, the build-up welding on the internal surfaces of pressure vessels for separating primary water from them, and the sealing welding of heating tubes and tube plates in steam generators. These weldings are explained. The welding of pipings and the state of development and application of new welding methods are reported. (K.I.)

  5. Physics and technology of silicon RF power devices

    CERN Document Server

    Cao, G

    2000-01-01

    can be increased by optimising the drift and epi-layer design, higher power can be delivered without increasing the input capacitance and feedback capacitance. first time, it is identified that the intrinsic MOSFET is the dominant component in the RF LDMOSFET, which ensures the saturation property in forward I-V characteristics. Detailed results are presented on the transconductance performance of the device. It is clarified that the fall-off of transconductance of a RF LDMOSFET is caused jointly by the high resistance of this region and the reduction in channel resistance at a high gate voltage. Because of these two factors, most of the potential is dropped across the drift region at a high gate bias. As a result, the intrinsic MOSFET is forced into its linear region of operation, which results in a fall-off of the transconductance. To increase the range of gate voltages for a constant transconductance, higher drift doping concentration is preferred. This can be achieved by incorporating a grounded field pla...

  6. Manufacture of power station heat exchangers using modern production technology

    International Nuclear Information System (INIS)

    Genzlinger, W.; Hoffmann, J.; Ohlhaeuser, K.

    1986-01-01

    Heat exchangers of high quality and operational safety can only be fabricated economically if fabrication is as 'simple' as possible and can be controlled and if, through value analysis, the work flows can be mechanized and automated and the following requirements are met: use of materials that are easy to work with for the application considered, choice of product designs and wall thicknesses that offer favourable conditions for processing and non-destructive testing, placing of seams in such a way that good accessibility for welding and minimum residual welding stresses are assured, minimizing the number of welding seams, use of automatic welding machines for submerged-arc welding and electronically controlled sources of welding current - semi-automatic equipment for spatter-free interfaces (pulse technique), electronically controlled equipment for welding in rollers and pipes and CNC-controlled machining centres for drilling pipe galleries (deep-hole drilling) and baffle plates and for machining the sealing elements after welding. Continuous inspections in each phase of fabrication assures that heat exchangers are made which fully meet the requirements of nuclear power station operators. (orig.)

  7. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    International Nuclear Information System (INIS)

    1991-06-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE

  8. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    Science.gov (United States)

    1991-01-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE.

  9. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  10. The development and application of SCR denitrification technology in power plant

    Science.gov (United States)

    Wu, Junnan

    2017-12-01

    In recent decades, the emission of the nitrogen oxides (NOX) has been increasing with the years of the thermal power plant. The environment pollution caused by the emission of quantities of nitrogen oxides became more and more serious, so people now put more emphasis on the control of the emission of the nitrogen oxides. Especially, our country and the society are paying much more attention to the environment protection and the environment problems cannot be neglected. In this paper, we introduced the related research background of the technology of SCR denitrification which was as the symbol of the technology of the catalytic denitrification and discussed the reaction principles of the SCR denitrification and frequently used catalysts, the process of the technology, and the configuration. In the end, we pointed the way of the future research of the technology of the SCR denitrification.

  11. Technology '90

    International Nuclear Information System (INIS)

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report

  12. Indian Nuclear Society annual conference-1994 on advanced technologies related to nuclear power: proceedings

    International Nuclear Information System (INIS)

    Grover, R.B.

    1994-01-01

    The focal theme of the conference is advanced technologies related to nuclear power. Over the past three decades civilian nuclear power plants around the world have accumulated about 6000 reactor years of experience and have performed quite well. Overall safety record has been satisfactory. However, nuclear community is trying to compete with its own record by trying to enhance the safety characteristics of the best operating plant. A safety culture has been established in the nuclear establishments, which is providing impetus to advances in all aspects of nuclear technology all over the world. India has ongoing programmes for the development of advanced reactors and related advanced technologies. Evolution of pressurised heavy water reactors in India, developments made in the design of advanced heavy water reactor and the fast reactor programme, are some of the topics covered in addition to highlighting worldwide developments for the next generation of light water reactors. India is one of the few countries in the world where expertise about complete fuel cycle is available. Developments in the back end of the fuel cycle, use of thorium and plutonium and other related issues are also discussed. Technology control regimes being advocated and adopted by developed nations make it imperative for us to indigenise every equipment and component that goes into a power plant. In view of this, some aspects of manufacturing technologies, inspection techniques and maintenance problems are also covered. Relevant papers are processed separately for INIS. (M.K.V.)

  13. Understanding Semiotic Technology in University Classrooms: A Social Semiotic Approach to PowerPoint-Assisted Cultural Studies Lectures

    Science.gov (United States)

    Zhao, Sumin; van Leeuwen, Theo

    2014-01-01

    In this paper, we propose a social semiotic approach to studying PowerPoint in university classrooms. Our approach is centred on two premises: (1) PowerPoint is a semiotic technology that can be integrated into the pedagogical discourse of classrooms, and (2) PowerPoint technology encompasses three interrelated dimensions of social semiotic…

  14. Proceedings of the 8. National Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities

    International Nuclear Information System (INIS)

    Antariksawan, Anhar R.; Soetrisnanto, Arnold Y.; Aziz, Ferhat; Untoro, Pudji; Su'ud, Zaki; Zarkasi, Amin Santosa; Umar, Faraz H.; Teguh Bambang; Hafnan, M.; Mustafa, Bustani; Rosfian, H.

    2002-10-01

    The eight proceeding of National Seminar on Technology and Safety of Nuclear Power Plant and Nuclear Facilities held by National Atomic Energy Agency and University of Trisakti. The aims of Seminar is to exchange and disseminate information about safety and nuclear Power Plant Temperature Reactor and Application for National Development sustain able and High Technology. This Seminar covers all aspect Technology, Power Reactor : Research Reactor; High Temperature Reactor and Nuclear Facilities. There are 33 articles have separated index

  15. High temperature heat exchanger application in power engineering and energy-technological processes

    International Nuclear Information System (INIS)

    Shpilrain, E.E.

    1986-01-01

    The possibilities for intensification of various processes in metallurgy and chemical technology, the prospects for enhancing power plant efficiency are often linked with temperature increase of reagents, heat carriers and working fluids. In some cases elevated temperatures give the opportunity to use new and principally different technologies, enhance capacities of power production units and technological apparatuses, improve their economical performance. The variety of problems where high temperature heat exchangers are or can be used are extremely wide. It is therefore impossible to overview all of them in one lecture. Therefore the author tries to consider only some examples which are typical and gives an impression of what kind of problems arise in these cases

  16. Investment appraisal for small CHP technology in biomass-fuel power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The paper is essentially an investment appraisal for small CHP (combined heat and power) technology in biomass-fuel power plant and discusses and presents data on the combustion/steam cycle technologies to demonstrate the economic viability of CHP projects using established market costs for technology and employing energy crops as biomass fuel. The data is based on the UK, where electricity prices are low, but the overseas market (where prices are higher and there is potential for UK exports) is also discussed. The report aims to synthesise up-to-date technical and economic information on biomass-fuel CHP projects of small scale and focuses on technical and financial information on equipment, capital, construction and operating costs, and revenue streams.

  17. Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yabei; Smith, Steven J.

    2007-08-16

    This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

  18. Interregional power transmission: a component in planning for renewable energy technologies

    International Nuclear Information System (INIS)

    Krueger Nielsen, S.; Soerensen, B.

    2000-01-01

    We discuss the role played by interregional power transmission on the basis of recent scenario work. In a project dealing with long-term planning for energy efficiency and renewable energy in Europe we modelled a scenario for the present 15 EU countries' energy system in 2050. The basis for the scenario is the concept of 'fair pricing' for energy services, meaning that the price of energy should reflect all externalities, but not otherwise be taxed or subsidized. The project assessed resource availability and expected technology price developments over time for a number of energy-related technologies, both on the supply side, the intermediate conversion chain and on the demand side. Among these, transmission technologies play an important role, both in smoothing out renewable energy supplies within the European Union region, and also allowing substantial import of energy from countries outside the EU having a surplus of renewable energy based power. (orig.)

  19. Associations among occupational roles, independence, assistive technology, and purchasing power of individuals with physical disabilities.

    Science.gov (United States)

    da Cruz, Daniel Marinho Cezar; Emmel, Maria Luisa Guillaumon

    2013-01-01

    to verify whether there are associations among occupational roles, independence to perform Activities of Daily Living, purchasing power, and assistive technology for individuals with physical disabilities. 91 individuals with physical disabilities participated in the study. The instruments used were: Role Checklist, Brazilian Economic Classification Criterion, Barthel Index, and a Questionnaire to characterize the subjects. an association with a greater number of roles was found among more independent individuals using a lower number of technological devices. Higher purchasing power was associated with a lower functional status of dependence. even though technology was not directly associated with independence, the latter was associated with a greater number of occupational roles, which requires reflection upon independence issues when considering the participation in occupational roles. These findings support interdisciplinary actions designed to promote occupational roles in individuals with physical disabilities.

  20. Analyse - technologies; Analyse - technologies

    Energy Technology Data Exchange (ETDEWEB)

    Roudil, D.; Chevalier, M.; Cormont, Ph.; Viala, F.; Kopp, Ch.; Peillet, O.; Chatroux, D.; Lausenaz, Y.; Villard, J.F.; Bruel, L.; Berhouet, F.; Chartier, F.; Aubert, M.; Blanchet, P.; Steiner, F.; Puech, M.H.; Bienvenu, Ph.; Noire, M.H.; Bouzon, C.; Schrive, L

    1999-07-01

    In this chapter of the DCC 1999 scientific report, the following theoretical studies are detailed: emulsions characterization by ultrasonics, high resolution wavelength meter, optimization methodology for diffractive and hybrid optic system, reliability for fast switches in power electronics, study of cesium isolation in irradiated fuels, chemical optodes based on evanescent wave absorption, radionuclides (Zirconium 93 and molybdenum 93) determination in irradiated fuels processing effluents, study of viscous liquid ultrafiltration using supercritical CO{sub 2} fluid. (A.L.B.)

  1. New bilingual version of the VGB abbreviation catalogue for power plant technology released

    Energy Technology Data Exchange (ETDEWEB)

    Hantschel, Jochen; Seiffert, Joerg [E.ON New Build and Technology GmbH, Gelsenkirchen (Germany); Froehner, Joerg [ct.e Controltechnology Engineering GmbH, Herne (Germany)

    2013-04-01

    The objective of the VGB Standard for power plant technology VGB-S-891-00 (abbreviation catalogue) is to regulate the systematic creation of abbreviations. The determination of abbreviations for terms related to power plants provides a common basis for planners, erectors, and operators of power plants and their systems. In combination with VGB-B 108 ''Rules for the creation of denominations and their application for power plant engineering'' the abbreviation catalogue is the basis for the creation of denominations.

  2. Transmission Technologies and Operational Characteristic Analysis of Hybrid UHV AC/DC Power Grids in China

    Science.gov (United States)

    Tian, Zhang; Yanfeng, Gong

    2017-05-01

    In order to solve the contradiction between demand and distribution range of primary energy resource, Ultra High Voltage (UHV) power grids should be developed rapidly to meet development of energy bases and accessing of large-scale renewable energy. This paper reviewed the latest research processes of AC/DC transmission technologies, summarized the characteristics of AC/DC power grids, concluded that China’s power grids certainly enter a new period of large -scale hybrid UHV AC/DC power grids and characteristics of “strong DC and weak AC” becomes increasingly pro minent; possible problems in operation of AC/DC power grids was discussed, and interaction or effect between AC/DC power grids was made an intensive study of; according to above problems in operation of power grids, preliminary scheme is summarized as fo llows: strengthening backbone structures, enhancing AC/DC transmission technologies, promoting protection measures of clean energ y accessing grids, and taking actions to solve stability problems of voltage and frequency etc. It’s valuable for making hybrid UHV AC/DC power grids adapt to operating mode of large power grids, thus guaranteeing security and stability of power system.

  3. Technological risks

    International Nuclear Information System (INIS)

    Klinke, A.; Renn, O.

    1998-01-01

    The empirical part about the technological risks deals with different technologies: nuclear energy, early warning systems of nuclear weapons and NBC-weapons, and electromagnetic fields. The potential of damage, the contemporary management strategies and the relevant characteristics will be described for each technology: risks of nuclear energy; risks of early warning systems of nuclear weapons and NBC-weapons; risks of electromagnetic fields. (authors)

  4. Technological risks

    Energy Technology Data Exchange (ETDEWEB)

    Klinke, A.; Renn, O. [Center of Technology Assessment in Baden-Wuerttemberg, Stuttgart (Germany)

    1998-07-01

    The empirical part about the technological risks deals with different technologies: nuclear energy, early warning systems of nuclear weapons and NBC-weapons, and electromagnetic fields. The potential of damage, the contemporary management strategies and the relevant characteristics will be described for each technology: risks of nuclear energy; risks of early warning systems of nuclear weapons and NBC-weapons; risks of electromagnetic fields. (authors)

  5. Technology alliances

    International Nuclear Information System (INIS)

    Torgerson, D.F.; Boczar, P.G.; Kugler, G.

    1991-10-01

    In the field of nuclear technology, Canada and Korea developed a highly successful relationship that could serve as a model for other high-technology industries. This is particularly significant when one considers the complexity and technical depth required to design, build and operate a nuclear reactor. This paper will outline the overall framework for technology transfer and cooperation between Canada and Korea, and will focus on cooperation in nuclear R and D between the two countries

  6. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources. Thermo-electric power generation...

  7. Integrated Automotive High-Power LED-Lighting Systems in 3D-MID Technology

    NARCIS (Netherlands)

    Thomas, W.

    2014-01-01

    The growing energy consumption of lighting as well as rising luminous efficacies and -fluxes of high-power Light Emitting Diodes (LEDs) have contributed to the widespread use of LEDs in modern lighting systems. One of the most prominent users of the LED-technology is automotive (exterior) lighting.

  8. Usability research study of a specially engineered sonic powered toothbrush with unique sensing and control technologies.

    Science.gov (United States)

    Hunter, Gail; Burns, Laurie; Bone, Brian; Mintel, Thomas; Jimenez, Eduardo

    2012-01-01

    This paper summarizes the results of a longitudinal usability research study of a specially engineered sonic powered toothbrush with unique sensing and control technologies. The usability test was conducted with fourteen (14) consumers from the St. Louis, MO, USA area who use manual toothbrushes. The study consisted of consumers using the specially engineered sonic powered toothbrush with unique sensing and control technologies for three weeks. During the study, users participated in four toothbrush trials during weekly visits to the research facility. These trials were videotaped and were analyzed regarding brushing time, behavior, and technique. In addition, the users were required to use the toothbrush twice a day for their at-home brushing. The toothbrush had a positive impact on consumers' tooth brushing behavior. Users spent more time brushing their teeth with this toothbrush as compared to their manual toothbrush. In addition, users spent more time keeping the sonic toothbrush in the recommended angle during use. Finally, users perceived their teeth to be cleaner when using the specially engineered sonic powered toothbrush with unique sensing and control technologies. The specially engineered sonic powered toothbrush with unique sensing and control technologies left a positive impression on the users. The users perceived the toothbrush to clean their teeth better than a manual toothbrush.

  9. International Nuclear Technology Forum: Future prospects of nuclear power plants and Turkey

    International Nuclear Information System (INIS)

    1994-01-01

    The document includes 19 papers presented at the 'International Nuclear Technology Forum: Future Prospects of Nuclear Power Plants in Turkey', held between 12-15 October 1993 in Ankara (Turkey). A separate abstract was prepared for each paper prepared for each paper

  10. Analysis of floor technology scheme in open-top construction of nuclear power project

    International Nuclear Information System (INIS)

    Zhang Shuxia; Lu Qinwu; Han Xiaoping

    2014-01-01

    Open-top construction is general technology in Ⅲ generation in nuclear power project. Because traditional floor structure and its form board upholding doesn't meet open-top construction, four floor scheme are presented, whose characters, advantages and disadvantages, and its application are summarized. The research results will help to the application of open-top construction. (authors)

  11. High temperature superconductors as a technological discontinuity in the power cable industry

    International Nuclear Information System (INIS)

    Beales, T.P.; McCormack, J.S.

    1994-01-01

    The advent of superconductivity above 77 K represents to the power cable industry a technological discontinuity analogous to that seen in the copper telecommunications industry by the arrival of optical fibres. This phenomenon is discussed along with technical criteria and performance targets needed for high temperature superconducting wire to have an economic impact in transmission cables

  12. Key technologies of laser power transmission for in-flight UAVs recharging

    Science.gov (United States)

    Cui, Z. H.; Hua, W. S.; Liu, X. G.; Guo, T.; Yan, Y.

    2017-04-01

    UAVs have played important roles in many fields. However, due to the insufficient energy of electric UAVs, the future development has a major obstacle. This problem can be solved by laser power transmission. This paper summarizes the research results at abroad and domestic, introduces the work flow of the whole system, discusses the key technologies and puts forward the prospect.

  13. Clean air program : use of hydrogen to power the advanced technology transit bus (ATTB) : an assessment

    Science.gov (United States)

    1997-11-01

    The Advanced Technology Transit Bus (ATTB), developed under primary funding from : the U.S. DOT/Federal Transit Administration (FTA), currently uses a power plant : based on a natural gas burning IC engine-generator set. FTA is interested in : demons...

  14. The potential impact of new power system technology on the design of a manned Space Station

    Science.gov (United States)

    Fordyce, J. S.; Schwartz, H. J.

    1984-01-01

    Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.

  15. Knowledge and Power in the Technology Classroom: A Framework for Studying Teachers and Students in Action

    Science.gov (United States)

    Danielsson, Anna T.; Berge, Maria; Lidar, Malena

    2018-01-01

    The purpose of this paper is to develop and illustrate an analytical framework for exploring how relations between knowledge and power are constituted in science and technology classrooms. In addition, the empirical purpose of this paper is to explore how disciplinary knowledge and knowledge-making are constituted in teacher-student interactions.…

  16. Installation and evaluation of a nuclear power plant operator advisor based on artificial intelligence technology

    International Nuclear Information System (INIS)

    Hajek, B.K.; Miller, D.W.

    1989-01-01

    This report discusses the following topics on a Nuclear Power Plant operator advisor based on artificial Intelligence Technology; Workstation conversion; Software Conversion; V ampersand V Program Development Development; Simulator Interface Development; Knowledge Base Expansion; Dynamic Testing; Database Conversion; Installation at the Perry Simulator; Evaluation of Operator Interaction; Design of Man-Machine Interface; and Design of Maintenance Facility

  17. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.; Hines, Wes; Upadhyaya, Belle

    2012-07-17

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.

  18. FPGA Based Low Power DES Algorithm Design And Implementation using HTML Technology

    DEFF Research Database (Denmark)

    Thind, Vandana; Pandey, Bishwajeet; Kalia, Kartik

    2016-01-01

    In this particular work, we have done power analysis of DES algorithm implemented on 28nm FPGA using HTML (H-HSUL, T-TTL, M-MOBILE_DDR, L-LVCMOS) technology. In this research, we have used high performance software Xilinx ISE where we have selected four different IO Standards i.e. MOBILE_DDR, HSUL...

  19. Low power wide spectrum optical transmitter using avalanche mode LEDs in SOI CMOS technology

    NARCIS (Netherlands)

    Agarwal, Vishal Vishal; Dutta, Satadal; Annema, Anne J.; Hueting, Raymond Josephus Engelbart; Steeneken, P.G.; Nauta, Bram

    2017-01-01

    This paper presents a low power monolithically integrated optical transmitter with avalanche mode light emitting diodes in a 140 nm silicon-on-insulator CMOS technology. Avalanche mode LEDs in silicon exhibit wide-spectrum electroluminescence (400 nm < λ < 850 nm), which has a significant overlap

  20. Low power wide spectrum optical transmitter using avalanche mode LEDs in SOI CMOS technology

    NARCIS (Netherlands)

    Agarwal, V.; Dutta, S; Annema, AJ; Hueting, RJE; Steeneken, P.G.; Nauta, B

    2017-01-01

    This paper presents a low power monolithically integrated optical transmitter with avalanche mode light emitting diodes in a 140 nm silicon-on-insulator CMOS technology. Avalanche mode LEDs in silicon exhibit wide-spectrum electroluminescence (400 nm < λ < 850 nm), which has a significant

  1. Supplement to the paper by Mr K.T. Brown: a review of nuclear power technology

    International Nuclear Information System (INIS)

    Hugo, J.P.

    1975-01-01

    In the paper by Mr K.T. Brown a comprehensive review of the present status of nuclear power technology and its diverse aspects are given. The factual background and technical information regarding the various types of power reactors, as set out in chapters 2 to 8 are not re-iterated in Dr Hugo's supplement. Dr Hugo gives a somewhat closer consideration of the nuclear fuel cycle (uranium resources, uranium enrichment) and ESCOM's program and safety requirements

  2. Development of life cycle water-demand coefficients for coal-based power generation technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2015-01-01

    Highlights: • We develop water consumption and withdrawals coefficients for coal power generation. • We develop life cycle water footprints for 36 coal-based electricity generation pathways. • Different coal power generation technologies were assessed. • Sensitivity analysis of plant performance and coal transportation on water demand. - Abstract: This paper aims to develop benchmark coefficients for water consumption and water withdrawals over the full life cycle of coal-based power generation. This study considered not only all of the unit operations involved in the full electricity generation life cycle but also compared different coal-based power generating technologies. Overall this study develops the life cycle water footprint for 36 different coal-based electricity generation pathways. Power generation pathways involving new technologies of integrated gasification combined cycle (IGCC) or ultra supercritical technology with coal transportation by conventional means and using dry cooling systems have the least complete life cycle water-demand coefficients of about 1 L/kW h. Sensitivity analysis is conducted to study the impact of power plant performance and coal transportation on the water demand coefficients. The consumption coefficient over life cycle of ultra supercritical or IGCC power plants are 0.12 L/kW h higher when conventional transportation of coal is replaced by coal-log pipeline. Similarly, if the conventional transportation of coal is replaced by its transportation in the form of a slurry through a pipeline, the consumption coefficient of a subcritical power plant increases by 0.52 L/kW h

  3. Chemistry Technology

    Data.gov (United States)

    Federal Laboratory Consortium — Chemistry technology experts at NCATS engage in a variety of innovative translational research activities, including:Design of bioactive small molecules.Development...

  4. Organizational learning in high risk technologies: Evidence from the nuclear power industry

    International Nuclear Information System (INIS)

    Marcus, A.; Bromiley, P.; Nichols, M.

    1990-01-01

    Technologies where catastrophe is possible pose dangers not only to the immediate victims, but also to innocent bystanders and to future generations who have no control over the system. The question has been raised as to whether organization theory can be extended to such high risk technologies; for, after all, this theory is based on organizations that do not have catastrophic potential. It has been argued that there may be special features of high risk technologies, for example the need to combine structured and disciplined organizational forms with decentralization to deal with unplanned interactions, that makes the application of organization theory especially difficult. Furthermore, there has been relatively little empirical work on the management of high risk technologies (with regard to the nuclear power industry the exceptions are noted); and much of what is known comes from case analyses. This paper attempts to respond to these challenges, first, by taking a concept from organizational theory and applying it to a high risk technology, and second, by trying to empirically relate measures of this concept to measures of safety. The concept is organizational learning. The authors wish to determine if there is evidence of learning in the nuclear power industry, and, if there is evidence of learning, what form this learning takes

  5. Day, night and all-weather security surveillance automation synergy from combining two powerful technologies

    International Nuclear Information System (INIS)

    Morellas, Vassilios; Johnson, Andrew; Johnston, Chris; Roberts, Sharon D.; Francisco, Glen L.

    2006-01-01

    Thermal imaging is rightfully a real-world technology proven to bring confidence to daytime, night-time and all weather security surveillance. Automatic image processing intrusion detection algorithms are also a real world technology proven to bring confidence to system surveillance security solutions. Together, day, night and all weather video imagery sensors and automated intrusion detection software systems create the real power to protect early against crime, providing real-time global homeland protection, rather than simply being able to monitor and record activities for post event analysis. These solutions, whether providing automatic security system surveillance at airports (to automatically detect unauthorized aircraft takeoff and landing activities) or at high risk private, public or government facilities (to automatically detect unauthorized people or vehicle intrusion activities) are on the move to provide end users the power to protect people, capital equipment and intellectual property against acts of vandalism and terrorism. As with any technology, infrared sensors and automatic image intrusion detection systems for global homeland security protection have clear technological strengths and limitations compared to other more common day and night vision technologies or more traditional manual man-in-the-loop intrusion detection security systems. This paper addresses these strength and limitation capabilities. False Alarm (FAR) and False Positive Rate (FPR) is an example of some of the key customer system acceptability metrics and Noise Equivalent Temperature Difference (NETD) and Minimum Resolvable Temperature are examples of some of the sensor level performance acceptability metrics. (authors)

  6. Technologies for power and thermal energy generation. Bring our energies together

    International Nuclear Information System (INIS)

    2014-05-01

    On behalf of ADEME, the DREAL and the Region of Brittany and produced by ENEA, consulting company in energy and sustainable development, this brochure presents main technologies for power and thermal energy generation in an effort to maintain objectivity (efficiency, intrinsic features of each technology and key figures as regards power and energy). If most of the technologies are operational or in development in Brittany, such as ocean energy, the scope has been extended to encompass all existing technologies in France in order to give useful references. The French Brittany is a peninsula, with regards to both its geographic situation and its energy context. The region has decided to investigate energy and climate issue through the Brittany Energy Conference and to commit for energy transition. Discussions which have taken place since 2010 at the regional level as well as the national debate on energy transition in 2013 have highlighted the need for educational tools for the main energy generation technologies. Thus, the purpose of this brochure is to share energy stakes with a broad audience

  7. Wearable Technology

    Science.gov (United States)

    Watson, Amanda

    2013-01-01

    Wearable technology projects, to be useful, in the future, must be seamlessly integrated with the Flight Deck of the Future (F.F). The lab contains mockups of space vehicle cockpits, habitat living quarters, and workstations equipped with novel user interfaces. The Flight Deck of the Future is one element of the Integrated Power, Avionics, and Software (IPAS) facility, which, to a large extent, manages the F.F network and data systems. To date, integration with the Flight Deck of the Future has been limited by a lack of tools and understanding of the Flight Deck of the Future data handling systems. To remedy this problem it will be necessary to learn how data is managed in the Flight Deck of the Future and to develop tools or interfaces that enable easy integration of WEAR Lab and EV3 products into the Flight Deck of the Future mockups. This capability is critical to future prototype integration, evaluation, and demonstration. This will provide the ability for WEAR Lab products, EV3 human interface prototypes, and technologies from other JSC organizations to be evaluated and tested while in the Flight Deck of the Future. All WEAR Lab products must be integrated with the interface that will connect them to the Flight Deck of the Future. The WEAR Lab products will primarily be programmed in Arduino. Arduino will be used for the development of wearable controls and a tactile communication garment. Arduino will also be used in creating wearable methane detection and warning system.

  8. Development of water demand coefficients for power generation from renewable energy technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2017-01-01

    Highlights: • Water consumption and withdrawals coefficients for renewable power generation were developed. • Six renewable energy sources (biomass, nuclear, solar, wind, hydroelectricity, and geothermal) were studied. • Life cycle water footprints for 60 electricity generation pathways were considered. • Impact of cooling systems for some power generation pathways was assessed. - Abstract: Renewable energy technology-based power generation is considered to be environmentally friendly and to have a low life cycle greenhouse gas emissions footprint. However, the life cycle water footprint of renewable energy technology-based power generation needs to be assessed. The objective of this study is to develop life cycle water footprints for renewable energy technology-based power generation pathways. Water demand is evaluated through consumption and withdrawals coefficients developed in this study. Sixty renewable energy technology-based power generation pathways were developed for a comprehensive comparative assessment of water footprints. The pathways were based on the use of biomass, nuclear, solar, wind, hydroelectricity, and geothermal as the source of energy. During the complete life cycle, power generation from bio-oil extracted from wood chips, a biomass source, was found to have the highest water demand footprint and wind power the lowest. During the complete life cycle, the water demand coefficients for biomass-based power generation pathways range from 260 to 1289 l of water per kilowatt hour and for nuclear energy pathways from 0.48 to 179 l of water per kilowatt hour. The water demand for power generation from solar energy-based pathways ranges from 0.02 to 4.39 l of water per kilowatt hour, for geothermal pathways from 0.04 to 1.94 l of water per kilowatt hour, and for wind from 0.005 to 0.104 l of water per kilowatt hour. A sensitivity analysis was conducted with varying conversion efficiencies to evaluate the impact of power plant performance on

  9. Technology Catalogue

    International Nuclear Information System (INIS)

    1994-02-01

    The Department of Energy's Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM's Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM's Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department's clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD's applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina)

  10. Distributed Energy Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Distributed Energy Technologies Laboratory (DETL) is an extension of the power electronics testing capabilities of the Photovoltaic System Evaluation Laboratory...

  11. Candidate for solar power: a novel desalination technology for coal bed methane produced water

    International Nuclear Information System (INIS)

    Sattler, Allan; Hanley, Charles; Hightower, Michael; Wright, Emily; Wallace, Sam; Pohl, Phillip; Donahe, Ryan; Andelman, Marc

    2006-01-01

    Laboratory and field developments are underway to use solar energy to power a desalination technology - capacitive deionization - for water produced by remote Coal Bed Methane (CBM) natural gas wells. Due to the physical remoteness of many CBM wells throughout the Southwestern U>S> as shown in Figure 1, this approach may offer promise. This promise is not only from its effectiveness in removing salt from CBM water and allowing it to be utilized for various applications, but also for its potentially lower energy consumption compared Figure 1: Candidate remote well sites for planned field implementation of new PV-powered desalination process: (a) Raton Basin and (b) San Juan Basin, New Mexico to other technologies, such as reverse osmosis. This coupled with the remoteness (Figure 1) of thousands these wells, makes them more feasible for use with photovoltaic (solar, electric, PV) systems. Concurrent laboratory activities are providing information about the effectiveness of this technology and of the attender energy requirements of this technology under various produced water qualities and water reuse applications, such as salinity concentrations and water flows. These parameters are being used to drive the design of integrated PV-powered desalination systems. Full-scale field implementations are planned, with data collection and analysis designed to optimize the system design for practical remote applications. Earlier laboratory (and very recent laboratory) studies of capacitive deionization have shown promise at common CBM salinity levels. The technology may require less energy. be less susceptible to fouling and is more compact than equivalent reverse osmosis (RO) systems. The technology uses positively and negatively charged electrodes to attract charged ions in a liquid, such as dissolved salts, metals, and some organics, to the electrodes. This concentrates the ions at the electrodes and reduced the ion concentrations in the liquid. This paper discusses the

  12. EV Charging Through Wireless Power Transfer: Analysis of Efficiency Optimization and Technology Trends

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John M [ORNL; Rakouth, Heri [Delphi Automotive Systems, USA; Suh, In-Soo [Korea Advanced Institute of Science and Technology

    2012-01-01

    This paper is aimed at reviewing the technology trends for wireless power transfer (WPT) for electric vehicles (EV). It also analyzes the factors affecting its efficiency and describes the techniques currently used for its optimization. The review of the technology trends encompasses both stationary and moving vehicle charging systems. The study of the stationary vehicle charging technology is based on current implementations and on-going developments at WiTricity and Oak Ridge National Lab (ORNL). The moving vehicle charging technology is primarily described through the results achieved by the Korean Advanced Institute of Technology (KAIST) along with on-going efforts at Stanford University. The factors affecting the efficiency are determined through the analysis of the equivalent circuit of magnetic resonant coupling. The air gap between both transmitting and receiving coils along with the magnetic field distribution and the relative impedance mismatch between the related circuits are the primary factors affecting the WPT efficiency. Currently the industry is looking at an air gap of 25 cm or below. To control the magnetic field distribution, Kaist has recently developed the Shaped Magnetic Field In Resonance (SMFIR) technology that uses conveniently shaped ferrite material to provide low reluctance path. The efficiency can be further increased by means of impedance matching. As a result, Delphi's implementation of the WiTricity's technology exhibits a WPT efficiency above 90% for stationary charging while KAIST has demonstrated a maximum efficiency of 83% for moving vehicle with its On Line Vehicle (OLEV) project. This study is restricted to near-field applications (short and mid-range) and does not address long-range technology such as microwave power transfer that has low efficiency as it is based on radiating electromagnetic waves. This paper exemplifies Delphi's work in powertrain electrification as part of its innovation for the real world

  13. The power(s) of observation: Theoretical perspectives on surveillance technologies and older people

    OpenAIRE

    Mortenson, W. Ben; Sixsmith, Andrew; Woolrych, Ryan

    2013-01-01

    There is a long history of surveillance of older adults in institutional settings and it is becoming an increasingly common feature of modern society. New surveillance technologies that include activity monitoring, and ubiquitous computing, which are described as ambient assisted living (AAL) are being developed to provide unobtrusive monitoring and support of activities of daily living and to extend the quality and length of time older people can live in their homes. However, concerns have b...

  14. Technological Advancements

    Science.gov (United States)

    Kennedy, Mike

    2010-01-01

    The influx of technology has brought significant improvements to school facilities. Many of those advancements can be found in classrooms, but when students head down the hall to use the washrooms, they are likely to find a host of technological innovations that have improved conditions in that part of the building. This article describes modern…

  15. Maritime Technology

    DEFF Research Database (Denmark)

    Sørensen, Herman

    1997-01-01

    Elementary introduction to the subject "Maritime Technology".The contents include drawings, sketches and references in English without any supplementary text.......Elementary introduction to the subject "Maritime Technology".The contents include drawings, sketches and references in English without any supplementary text....

  16. Nuclear power of the coming century and requirements to the nuclear technology

    International Nuclear Information System (INIS)

    Orlov, V.; Leonov, V.; Sila-Novitski, A.; Smirnov, V.; Tsikunov, V.; Filin, A.

    2001-01-01

    Current state of nuclear power in the world has been considered and the reasons for its falling short of the great expectations relating to its vigorous development in the outgoing century are considered. Anticipated energy demand of mankind in the next century is evaluated, suggesting that with exhausted resources of cheap fossil fuel and ecological restrictions it can be satisfied by means of a new nuclear technology meeting the requirements of large-scale power generation in terms of safety and economic indices, moreover, the technology can be elaborated in the context of achievements made in civil and military nuclear engineering. Since the developing countries are the most interested parties, it is just their initiative in the development of nuclear technology at the next stage that could provide an impetus for its actual advance. It is shown that large-scale development of nuclear power, being adequate to increase in energy demand, is possible even if solely large NPP equipped with breeders providing BR≥1 are constructed. Requirements for the reactor and fuel cycle technologies are made, their major aspects being: efficient utilization of Pu accumulated and reduction of U specific consumption by at least an order of magnitude; natural inherent safety and deterministic elimination of accidents involving high radioactive releases; assurance of a balance between radiation hazard posed by radioactive wastes disposed and uranium extracted from the ground; nuclear weapons nonproliferation due to fuel reprocessing ruling out potentiality of Pu diversion; reduction of the new generation reactor costs below the costs of today's LWR. (author)

  17. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    Science.gov (United States)

    Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott

    2012-01-01

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  18. Unleashing the power of IT bringing people, business, and technology together

    CERN Document Server

    Roberts, Dan

    2013-01-01

    Go from the ""IT guy"" to trusted business partner If you're in IT, quite a lot is expected of you and your team: be technologically advanced, business-minded, customer-focused, and financially astute, all at once. In the face of unforgiving competition, rampant globalization, and demanding customers, business leaders are discovering that it's absolutely essential to have a strong, active partner keeping a firm hand on the decisions and strategies surrounding information technology. Unleashing the Power of IT provides tangible, hard-hitting, real-world strategies, techniques, and approaches th

  19. The applicability of DOE solar cell and array technology to space power

    Science.gov (United States)

    Scott-Monck, J. A.; Stella, P. M.; Berman, P. A.

    1980-01-01

    Current trends in terrestrial photovoltaics that might benefit future space power needs are reviewed. Emphasis is placed on the Low-Cost Solar Array Project with attention given to the materials task, the silicon sheet task, the production processes and equipment task, and encapsulation. The Photovoltaic Concentrator Technology Development Project is also discussed. It is concluded that terrestrial photovoltaic technology that has either been developed to date or is currently under development will not have any significant effect on the performance or cost of solar cells and panels for space over the near term (1980-1990).

  20. Research and development of CO2 Capture and Storage Technologies in Fossil Fuel Power Plants

    Directory of Open Access Journals (Sweden)

    Lukáš Pilař

    2012-01-01

    Full Text Available This paper presents the results of a research project on the suitability of post-combustion CCS technology in the Czech Republic. It describes the ammonia CO2 separation method and its advantages and disadvantages. The paper evaluates its impact on the recent technology of a 250 MWe lignite coal fired power plant. The main result is a decrease in electric efficiency by 11 percentage points, a decrease in net electricity production by 62 MWe, and an increase in the amount of waste water. In addition, more consumables are needed.

  1. Methods and technologies for cost reduction in the design of water cooled reactor power plants

    International Nuclear Information System (INIS)

    1991-05-01

    The Specialists Meeting was organized in the framework of the IAEA International Working Group on Advanced Technologies for Water-Cooled Reactors. Its purpose was to provide an international forum for review and discussion on recent results in research and development on different methods and technologies of current and advanced water-cooled reactor power plants, which can lead to reduced investment and operation, maintenance and fuel-cycle costs of the plants. 27 specialists representing 10 countries and the IAEA took part in the meeting. 10 papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  2. Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Alejandro Mendez

    2014-07-01

    Full Text Available Autonomous Underwater Vehicles (AUVs are vehicles that are primarily used to accomplish oceanographic research data collection and auxiliary offshore tasks. At the present time, they are usually powered by lithium-ion secondary batteries, which have insufficient specific energies. In order for this technology to achieve a mature state, increased endurance is required. Fuel cell power systems have been identified as an effective means to achieve this endurance but no implementation in a commercial device has yet been realized. This paper summarizes the current state of development of the technology in this field of research. First, the most adequate type of fuel cell for this application is discussed. The prototypes and design concepts of AUVs powered by fuel cells which have been developed in the last few years are described. Possible commercial and experimental fuel cell stack options are analyzed, examining solutions adopted in the analogous aerial vehicle applications, as well as the underwater ones, to see if integration in an AUV is feasible. Current solutions in oxygen and hydrogen storage systems are overviewed and energy density is objectively compared between battery power systems and fuel cell power systems for AUVs. A couple of system configuration solutions are described including the necessary lithium-ion battery hybrid system. Finally, some closing remarks on the future of this technology are given.

  3. Security technology discussion for emergency command system of nuclear power plant

    International Nuclear Information System (INIS)

    Liu Zhenjun

    2014-01-01

    Nuclear power plant emergency command system can provide valuable data for emergency personnel, such as the unit data, weather data, environmental radiation data. In the course of emergency response, the emergency command system provides decision support to quickly and effectively control and mitigate the consequences of the nuclear accident, to avoid and reduce the dose received by staff and the public, to protect the environment and the public. There are high performance requirements on the security of the system and the data transmission. Based on the previous project and new demand after the Fukushima incident, the security technology design of emergency system in nuclear power plant was discussed. The results show that the introduction of information security technology can effectively ensure the security of emergency systems, and enhance the capacity of nuclear power plant to deal with nuclear accidents. (author)

  4. Lifetime Management in Non-US-Technology Nuclear Power Plants using US Regulations

    International Nuclear Information System (INIS)

    Cornelius Steenkamp, J.; Encabo Espartero, J.; Garcia Iglesias, R.

    2013-01-01

    In July 2009 the Spanish Nuclear Regulator (CSN) issued a Safety Instruction (IS-22) for the development of Lifetime Management in the Nuclear Power Plants within Spain. The context of this Safety Instruction is based on the American Regulations 10CFR54, NUREG1800/1801 and the technical guide NEI95-10. All these regulations are aimed at US-Technology Nuclear Power Plants. Lifetime Management of Nuclear Power Plants with a plant design different from US technologies can most certainly be developed with the mentioned US regulations. The successful development of Lifetime Management in these cases depends on the adaptation of the different requirements of the regulations. Challenges resulting from the adaptation process can be resolved by taking into consideration the plant design of the plant in question.

  5. Technology options for clean coal power generation with CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Song; Bergins, Christian; Kikkawa, Hirofumi; Kobayashi, Hironobu; Kawasaki, Terufumi

    2010-09-15

    The state-of-the-art coal-fired power plant today is about 20% more efficient than the average operating power plants, and can reduce emissions such as SO2, NOx, and mercury to ultra-low levels. Hitachi is developing a full portfolio of clean coal technologies aimed at further efficiency improvement, 90% CO2 reduction, and near-zero emissions, including 700 deg C ultrasupercritical boilers and turbines, post-combustion CO2 absorption, oxyfuel combustion, and IGCC with CCS. This paper discusses the development status, performance and economic impacts of these technologies with focus on post combustion absorption and oxyfuel combustion - two promising CO2 solutions for new and existing power plants.

  6. Technology collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Jacob [Halliburton (Brazil)

    2011-07-01

    The aim of this paper is to present Halliburton's Brazilian technology center. Halliburton has technology centers in the United States, Saudi Arabia, India, Singapore and Brazil, all of which aim at delivering accelerated innovation in the oil sector. The technology centers engage in research and development activities with the help of various universities and in collaboration with the customer or supplier. The Halliburton Brazil technology center provides its customers with timely research and development solutions for enhancing recovery and mitigating reservoir uncertainty; they are specialized in finding solutions for pre- and post-salt carbonate drilling and in the enhancement of production from mature fields. This presentation showcased the work carried out by the Halliburton Brazil technology center to help customers develop their deepwater field activities.

  7. A hybrid model for the optimum integration of renewable technologies in power generation systems

    International Nuclear Information System (INIS)

    Poullikkas, Andreas; Kourtis, George; Hadjipaschalis, Ioannis

    2011-01-01

    The main purpose of this work is to assess the unavoidable increase in the cost of electricity of a generation system by the integration of the necessary renewable energy sources for power generation (RES-E) technologies in order for the European Union Member States to achieve their national RES energy target. The optimization model developed uses a genetic algorithm (GA) technique for the calculation of both the additional cost of electricity due to the penetration of RES-E technologies as well as the required RES-E levy in the electricity bills in order to fund this RES-E penetration. Also, the procedure enables the estimation of the optimum feed-in-tariff to be offered to future RES-E systems. Also, the overall cost increase in the electricity sector for the promotion of RES-E technologies, for the period 2010-2020, is analyzed taking into account factors, such as, the fuel avoidance cost, the carbon dioxide emissions avoidance cost, the conventional power system increased operation cost, etc. The overall results indicate that in the case of RES-E investments with internal rate of return (IRR) of 10% the cost of integration is higher, compared to RES-E investments with no profit, (i.e., IRR at 0%) by 0.3-0.5 Euro c/kWh (in real prices), depending on the RES-E penetration level. - Research Highlights: →Development of a hybrid optimization model for the integration of renewable technologies in power generation systems. →Estimation of the optimum feed-in-tariffs to be offered to future renewable systems. →Determination of the overall cost increase in the electricity sector for the promotion of renewable technologies. →Analyses taking into account fuel avoidance cost, the carbon dioxide emissions avoidance cost, the conventional power system increased operation cost, etc.

  8. The Gas turbine Engine-based Power Technology Plant Using Wood Waste Gasification Products

    OpenAIRE

    S. K. Danilova; R. Z. Tumashev

    2016-01-01

    The paper outlines the problems of energy supply and waste utilization of the forest industries. As a solution, it proposes to use gasification to utilize wood leftovers, which is followed by electric power generation from combustion of producer gas. The plant was expected to have a power of 150 kW. The proposed power technology plant comprises a line for pre-treatment of wood chips, a gas generator (gasifier) and a gas turbine unit.The paper justifies a need for preliminary preparation of wo...

  9. The Development Status and Key Technologies of Solar Powered Unmanned Air Vehicle

    Science.gov (United States)

    Sai, Li; Wei, Zhou; Xueren, Wang

    2017-03-01

    By analyzing the development status of several typical solar powered unmanned aerial vehicles (UAV) at home and abroad, the key technologies involved in the design and manufacture of solar powered UAV and the technical difficulties need to be solved at present are obtained. It is pointed out that with the improvement of energy system efficiency, advanced aerodynamic configuration design, realization of high applicability flight stability and control system, breakthrough of efficient propulsion system, the application prospect of solar powered UAV will be more extensive.

  10. Marginal Generation Technology in the Chinese Power Market towards 2030 Based on Consequential Life Cycle Assessment

    DEFF Research Database (Denmark)

    Zhao, Guangling; Guerrero, Josep M.; Pei, Yingying

    2016-01-01

    generation, which is the same scenario in the North and Northwest China Grid. In the Northeast, East, and Central China Grid, nuclear power gradually replaces coal-fired electricity and becomes the marginal technology. In the Southwest China Grid and the China Southern Power Grid, the marginal electricity...... imbalances in regional energy supply and demand. Therefore, we suggest an approach to achieve a geographical subdivision of the Chinese electricity grid, corresponding to the interprovincial regional power grids, namely the North, the Northeast, the East, the Central, the Northwest, and the Southwest China...

  11. Improvement of design and construction technology in Japanese nuclear power plants

    International Nuclear Information System (INIS)

    Yomei Kato; Kiyoshi Shmizu

    1987-01-01

    Nuclear power generation currently offers economic merits superior to those of other methods dependant on such thermal power ganeration as petroleum, LNG, or coal. However, it is essential for the nuclear power generation continuously to retain economic superiority through concurently maintaining its high safety features and outstanding reliability. For achieving this purpose, taking into account of importance explained above, we have been developing and improving those of technologies such as design, engineering, and construction regarding the both field of management and techniques useful for plant construction. This paper covers the several instructive matters which Hitachi has accomplished throughout having had his hand in the project jobs. (author)

  12. A vision for growing a world-class power technology cluster in a smart, sustainable British Columbia : full report to the Premier's Technology Council

    International Nuclear Information System (INIS)

    Umedaly, M.

    2005-03-01

    This report presents a framework for power technology in British Columbia and the development of new sources of energy while ensuring the sustainable economic growth. It also explores the opportunities present in the power technology sector. A definition of the power technology industry was provided, and market drivers were identified, describing the region's competitive advantage and assets. Five market opportunities were introduced, comprising the report's targeted innovation strategy: remote power solutions; sustainable urban practices; smart transport; smart grid; and large scale clean green power production. An outline of the current energy market in British Columbia was presented with details of research and development in renewable energy sources. Global power demands were also outlined. A regional action plan was presented in order to develop the power technology cluster. Leadership strategies were presented, with economic development goals and working teams geared towards an implementation resource plan. A commercialization strategy was suggested in order to address local demand, commercialization funds, and increasing access and resources. A growth strategy was also presented to assist in the development of access to world markets, create partnerships and assist in branding and collaborations with industry and government. An innovation strategy was outlined, with the aim of developing research initiatives, support centres in key market and technology areas and connecting existing efforts in basic sciences to power technology applications. It was concluded that in order to achieve full implementation of these strategies, a short term task force is necessary to shape overall plans. Additionally, an ongoing vision team, working groups and coordination is necessary to implement overall strategies and subcomponents. Appendices were included with reference to each of the five market opportunities presented in the report. 58 refs

  13. PEAC: A Power-Efficient Adaptive Computing Technology for Enabling Swarm of Small Spacecraft and Deployable Mini-Payloads

    Data.gov (United States)

    National Aeronautics and Space Administration — This task is to develop and demonstrate a path-to-flight and power-adaptive avionics technology PEAC (Power Efficient Adaptive Computing). PEAC will enable emerging...

  14. Design of coordinated controller in nuclear power plant based on digital instrument and control technology

    International Nuclear Information System (INIS)

    Cheng Shouyu; Peng Minjun; Liu Xinkai; Zhao Qiang; Deng Xiangxin

    2014-01-01

    Nuclear power plant (NPP) is a multi-input and multi-output, no-linear and time-varying complex system. The conventional PID controller is usually used in NPP control system which is based on analog instrument. The system parameters are easy to overshoot and the response time is longer in the control mode of the conventional PID. In order to improve this condition, a new coordinated control strategy which is based on expert system and the original controllers in the digital instrument and control technology was presented. In order to verify and validate it, the proposed coordinated control technology was tested by the full-scope real-time simulation system. The results prove that using digital instrument and control technology to achieve coordinated controller is feasible, the coordinated controller can effectively improve the dynamic operating characteristics of the system, and the coordinated controller is superior to the conventional PID controller in control performance. (authors)

  15. High-power microwave LDMOS transistors for wireless data transmission technologies (Review)

    International Nuclear Information System (INIS)

    Kuznetsov, E. V.; Shemyakin, A. V.

    2010-01-01

    The fields of the application, structure, fabrication, and packaging technology of high-power microwave LDMOS transistors and the main advantages of these devices were analyzed. Basic physical parameters and some technology factors were matched for optimum device operation. Solid-state microwave electronics has been actively developed for the last 10-15 years. Simultaneously with improvement of old devices, new devices and structures are actively being adopted and developed and new semiconductor materials are being commercialized. Microwave LDMOS technology is in demand in such fields as avionics, civil and military radars, repeaters, base stations of cellular communication systems, television and broadcasting transmitters, and transceivers for high-speed wireless computer networks (promising Wi-Fi and Wi-Max standards).

  16. Automatic testing technologies for I and C systems for nuclear power plants

    International Nuclear Information System (INIS)

    Yoshida, Motoko; Sugio, Takayuki; Konishi, Tadao

    2014-01-01

    With the aim of enhancing the global competitiveness of instrumentation and control (I and C) systems for nuclear power plants, Toshiba has been making efforts to reduce the worker hours required for the testing of such systems and improve the quality of the tests. Display screen tests, which include many routine, repetitive tests and manual tests requiring a large number of operators to monitor multiple screen displays of the I and C system, are an essential element of the testing process. The introduction of automatic testing technologies is expected to substantially improve the efficiency of such display screen tests. We have now developed automatic testing technologies for display screen tests that can be applied without the need to change the I and C system. These technologies contribute to both the reduction of worker hours for testing and improvement of the quality of the tests. (author)

  17. GaN MODFET microwave power technology for future generation radar and communications systems

    Science.gov (United States)

    Grider, D. E.; Nguyen, N. X.; Nguyen, C.

    1999-08-01

    In order to gain a better understanding of the role that GaN MODFET technology will play in future generation radar and communications systems, a comparison of the state-of-the-art performance of alternative microwave power technologies will be reviewed. The relative advantages and limitations of each technology will be discussed in relation to system needs. Device results from recent MBE-grown GaN MODFETs will also be presented. In particular, 0.25 μm gate GaN MODFETs grown by MBE have been shown to exhibit less than 5% variation in maximum drain current density ( Idmax) from the center to the edge of a 2 inch wafer. This level of uniformity is a substantially higher than that normally found in MOCVD-grown GaN devices (˜28% variation). In addition, evidence is also presented to demonstrate the excellent reproducibility of MBE-grown GaN MODFETs.

  18. СALCULATION OF INDIVIDUAL TECHNOLOGICAL NORMS PERTAINING TO EXPENDITURE OF FUEL AND POWER RESOURCES IN CONSTRUCTION INDUSTRY

    Directory of Open Access Journals (Sweden)

    A. A. Lozovsky

    2011-01-01

    Full Text Available The paper considers private methods for calculation of individual technological norms pertaining to expenditure of fuel and power resources in  respect of main types of construction and installation works and technological processes whish are executed with the help of various machines, mechanisms, technological equipment etc. Analytical expressions that take into account various factors influencing on the power consumption level are presented in the paper.

  19. New power generation technologies pave the way for growth and environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Voges, K.

    2007-07-01

    As the global population and the economy grow, and more people live in urban areas, demand for energy and electrical power is on the rise. At present, for the first time ever, more people on earth live in cities than in rural areas. This urbanization will accelerate the demand for sufficient and secure power. Fossil fuels will continue to be the backbone of power supply over the next decades. However, finite conventional resources, security of supply, volatile fuel prices, increasing costs of exploration and the threat to the climate from greenhouse gases all impose global constraints. New technologies based on all energy resources are necessary to guarantee a balanced electricity supply. Examples of innovative technology fields: Efficiency: Higher firing temperatures and steam parameters allow increased efficiencies of combined-cycle power plants beyond 60% and supercritical steam power plants. Gasification: Gasifiers for broader usage of coal offer the option of power generation and synfuel production without emitting CO2. Renewables: The next major challenge is to increase efficiency and life-time of wind turbines and to establish offshore wind parks. Equipment suppliers are working on innovative concepts, products and solutions to renew and replace the world's power generation capacity under optimized ecological, technical and economic aspects. (auth)

  20. Benefits of Power and Propulsion Technology for a Piloted Electric Vehicle to an Asteroid

    Science.gov (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Pencil, Eric J.; Piszczor, Michael F.; Mason, Lee S.; Bury, Kristen M.; Manzella, David H.; Kerslake, Thomas W.; Hojinicki, Jeffrey S.; Brophy, John P.

    2012-01-01

    NASA s goal for human spaceflight is to expand permanent human presence beyond low Earth orbit (LEO). NASA is identifying potential missions and technologies needed to achieve this goal. Mission options include crewed destinations to LEO and the International Space Station; high Earth orbit and geosynchronous orbit; cis-lunar space, lunar orbit, and the surface of the Moon; near-Earth objects; and the moons of Mars, Mars orbit, and the surface of Mars. NASA generated a series of design reference missions to drive out required functions and capabilities for these destinations, focusing first on a piloted mission to a near-Earth asteroid. One conclusion from this exercise was that a solar electric propulsion stage could reduce mission cost by reducing the required number of heavy lift launches and could increase mission reliability by providing a robust architecture for the long-duration crewed mission. Similarly, solar electric vehicles were identified as critical for missions to Mars, including orbiting Mars, landing on its surface, and visiting its moons. This paper describes the parameterized assessment of power and propulsion technologies for a piloted solar electric vehicle to a near-Earth asteroid. The objective of the assessment was to determine technology drivers to advance the state of the art of electric propulsion systems for human exploration. Sensitivity analyses on the performance characteristics of the propulsion and power systems were done to determine potential system-level impacts of improved technology. Starting with a "reasonable vehicle configuration" bounded by an assumed launch date, we introduced technology improvements to determine the system-level benefits (if any) that those technologies might provide. The results of this assessment are discussed and recommendations for future work are described.