WorldWideScience

Sample records for technology pilot plant

  1. Fiscal 1997 report of the development of high efficiency waste power generation technology. No.2 volume. Pilot plant verification test; Kokoritsu haikibutsu hatsuden gijutsu kaihatsu (pilot plant jissho shiken). 1997 nendo hokokusho (daini bunsatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    As to a high efficiency waste power generation system using general waste as fuel, the details of the following were described: design/construction management and operational study of pilot plant, design/manufacture/construction of pilot plant, and study of an optimal total system. Concerning the construction management and operational study, the paper described the application for governmental/official inspection procedures and taking inspection, process management of pilot plant, site patrol, safety management, management of trial run of pilot plant, drawing-up of a verification test plan and test run, etc. Relating to the design/manufacture/construction of pilot plant, an outline of the pilot plant was described. The paper also stated points to be considered in design of furnace structure and boiler structure, points to be considered of the verification test, etc. As to the study of an optimal total system, the following were described: survey of waste gasification/slagging power generation technology, basic study on RDF production process, survey of trends of waste power generation technology in the U.S., etc. 52 refs., 149 figs., 121 tabs.

  2. Pilot-scale Biogas Plant for the Research and Development of New Technologies

    Directory of Open Access Journals (Sweden)

    Ivan Simeonov

    2012-09-01

    Full Text Available Тhe paper describes a new pilot-scale biogas plant of the Institute of Microbiology - Bulgarian Academy of Sciences. The equipment includes: a 100 L pilot bioreactor, a 200 L metal gasholder, sensors, actuators, a two-level automatic process monitoring and control system, a fire and explosion protection system and two web cameras. The monitoring and control system is composed on the lower level of a controller Beckhoff, and on the higher level - of a PC with specialized software (under development. The pilot biogas plant is designed to work out and scale up various anaerobic digestion (AD technologies based on different types of feedstock. All the data will be stored on the PC for quick reference and possibly data mining, parameter identification and verification of different AD mathematical models.

  3. Pilot and pilot-commercial plants for reprocessing spent fuels of FBR type reactors

    International Nuclear Information System (INIS)

    Shaldaev, V.S.; Sokolova, I.D.

    1988-01-01

    A review of modern state of investigations on the FBR mixed oxide uranium-plutonium fuel reprocessing abroad is given. Great Britain and France occupy the leading place in this field, operating pilot plants of 5 tons a year capacity. Technology of spent fuel reprocessing and specific features of certain stages of the technological process are considered. Projects of pilot and pilot-commercial plants of Great Britain, France, Japan, USA are described. Economic problems of the FBR fuel reprocessing are touched upon

  4. Development of some operations in technological flowsheet for spent VVER fuel reprocessing at a pilot plant

    International Nuclear Information System (INIS)

    Lazarev, L.N.; Galkin, B.Ya; Lyubtsev, R.I.; Romanovskii, V.N.; Velikhov, E.P.

    1981-01-01

    The fuel reprocessing pilot plants for high active materials would permit the study and development or particular processing steps and flowsheet variations; in some cases, these experimental installations realize on a small scale practically all technological chains of large reprocessing plants. Such a fuel reprocessing pilot plant with capacity of 3 kg U/d has been built at V. G. Khlopin Radium Institute. The pilot plant is installed in the hot cell of radiochemical compartment, and is composed of the equipments for fuel element cutting and dissolving, the preparation of feed solution (clarification, correction), extraction reprocessing and the production of uranium, plutonium and neptunium concentrates, the complex processing of liquid and solid wastes and a special unit for gas purification and analysis. In the last few years, a series of experiments have been carried out on the reprocessing of spent VVER fuel. (J.P.N.)

  5. Application of remedy studies to the development of a soil washing pilot plant that uses mineral processing technology: a practical experience

    International Nuclear Information System (INIS)

    Richardson, W.S.; Phillips, C.R.; Hicks, R.; Luttrell, J.; Cox, C.

    1999-01-01

    Soil washing employing mineral processing technology to treat radionuclide-contaminated soils has been examined as a remedy alternative to the exclusive excavation, transportation, and disposal of the soil. Successful application depends on a thorough remedy study, employing a systematic tiered approach that is efficient, self-limiting, and cost effective. The study includes: (1) site and soil characterization to determine the basic mineral and physical properties of both the soil and contaminants and to identify their relative associations; (2) treatment studies to evaluate the performance of process units for contaminant separation; (3) conceptual process design to develop a treatment pilot plant; and (4) engineering design to construct, test, and optimize the actual full-scale plant. A pilot plant using soil washing technology for the treatment of radium-contaminated soil was developed, tested, and demonstrated. The plant used particle-size separation to produced a remediated product that represented approximately 50% of the contaminated soil. Subsequently, it was modified for more effective performance and application to soil with alternate characteristics; it awaits further testing. The economic analysis of soil washing using the pilot plant as a model indicates that a remedy plan based on mineral processing technology is very competitive with the traditional alternative employing excavation, transportation, and disposal exclusively, even when disposal costs are modest or when recovery of remediated soil during treatment is low. This paper reviews the tiered approach as it applies to mineral processing technology to treat radionuclide-contaminated soils and a pilot plant developed to test the soil washing process. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. Development of 1000kW-class MCFC pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Ooue, M.; Yasue, H. [MCFC Research Association, Mie (Japan); Takasu, K.; Tsuchitori, T.

    1996-12-31

    This pilot plant is a part of the New Sunshine Program which has proceeded by the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry. MCFC Research Association is entrusted with the development of the pilot plant, and constructing it at Kawagoe site. Following items will be verified by this pilot plant operation. (a) Development of 250kW class stack and confirmation of stack performance and decay rate. (b) System verification such as basic process, control system and operation characteristics, toward commercialization. (c) To get design data for demonstration plant.

  7. Summary of the achievements in fiscal 1991 in developing the coal liquefaction technology and the bituminous coal liquefaction technology. Studies by using a pilot plant; 1991 nendo sekitan ekika gijutsu kaihatsu rekiseitan ekika gijutsu no kaihatsu seika gaiyo. Pilot plant ni yoru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-08-01

    This paper describes the achievements in 1991 on studies on the bituminous coal liquefaction technology using a pilot plant. Based on the detailed design of the 150-t/d pilot plant, study problems and analysis items were reviewed, and a material balance acquiring method and a reaction column data analyzing method were discussed. Utilization of the liquefaction simulator was attempted. Efficient execution of the pilot plant operation study requires to have the basic and support study achievements reflected on the pilot plant operation, and clarify the roles to be played by the groups. Therefore, discussion items were compiled. The overall process plan for the design and construction was reviewed based on the plan discussed in fiscal 1990. Fiscal 1991 has launched common civil engineering constructions. The operation plans for the main four facilities in the pilot plant, which have been prepared in fiscal 1988, were continued of reviewing to cope with the situation of the decreased construction budget. The budget was reviewed again in fiscal 1991, which would present a prospect of starting the operation in fiscal 1995. Annual reviews on the basic operation plans for the main four facilities and the conceptions taken to date were put into order. The project management system was also expanded and re-arranged, including the information registration and retrieval system. (NEDO)

  8. Study on designing a complete pilot plant for processing sandstone ores in Palua-Parong area

    International Nuclear Information System (INIS)

    Le Quang Thai; Tran Van Son; Tran The Dinh; Trinh Nguyen Quynh; Vu Khac Tuan

    2015-01-01

    Design work is the first step of the construction and operation of pilot plant. Thus, the project Study on designing a complete pilot plant for processing sandstone ores in Palua - Parong area was conducted to design a pilot plant for testing entire technological process to obtain yellowcake. Based on a literature review of uranium ore processing technology in the world, information of ore and previous research results of uranium ore in PaLua - PaRong area at the Institute for Technology of Radioactive and Rare Elements, a suitable technological flowsheet for processing this ore has been selected. The size, location of the pilot plant and planed experiments has been selected during the implementation of this project, in which basic parameters, designed system of equipment, buildings, ect. were also calculated. (author)

  9. Pilot plant of continuous ion-exchange in fluidized bed

    International Nuclear Information System (INIS)

    Botella, T.; Otero de Becerra, J.; Gasos, P.

    1985-01-01

    Research and development on continuous ion-exchange processes has been a major item in hydrometallurgy. This new technology has been under development during the last 15 years in the leading countries at uranium hydrometallurgy. The fluidized bed multi-stage column technique is proven to be the most attractive one, and since 1977 several commercial plants have begun production, some of them with a throughput of 500 cubic meters of pregnant liquour per hour. J.E.N. undertook the study of this new technology for uranium recovery in the early 70's. In 1979 a pilot plant had been installed, based on previous laboratory and smaller pilot plant experience. The plant was designed following JEN's own technology and has been operating successfully at a flow rate of near 0.5 cubic meters per hour. The test runs and the main processing, engineering and operation features are described. At present a demonstation plant is under design, and this installation will provide the necessary know-how for the construction and operation of a commercial scale plant. (author)

  10. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    Energy Technology Data Exchange (ETDEWEB)

    BLanc, Katya Le [Idaho National Lab. (INL), Idaho Falls, ID (United States); Powers, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spielman, Zachary [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rice, Brandon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fitzgerald, Kirk [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.

  11. Kvanefjeld refinery pilot plant operations

    International Nuclear Information System (INIS)

    Krebs, Damien; Furfaro, Domenic

    2016-01-01

    Greenland Minerals and Energy is a junior project development company which is listed on the Australian Stock Exchange (asx:GGG). It is developing the Kvanefjeld rare earth and uranium project located in the southern tip of Greenland. The project has completed a Feasibility Study and is currently in the permitting phase. Last year was a busy time for the company as it completed a Feasibility Study, a mining licence application (draft submitted in December 2015) and pilot plant operations. Beneficiation pilot plant operations were completed at GTK in Finland in April 2015. This pilot plant treated approximately 30 tonnes of ore to producing almost 2 tonnes of rare earth mineral concentrate. Later in the year a hydrometallurgical pilot plant was performed which mimicked the Refinery process. This pilot plant was performed at Outotec’s Pori Research laboratories in Finland from September till October 2015. The pilot plant treated approximately 200 kilograms of concentrate over 4 split operating campaigns. Each campaign was performed to focus on the performance of a specific part of the refinery flowsheet. This allowed for full operating focus on a single unit operation to ensure that it was operating correctly. The pilot plant operations were quite successful with no major issues with the flowsheet identified through continuous operation. Some fine tuning of conditions was required to ensure adequate removal of impurities was performed with recycle streams incorporated. Overall the leach extractions observed in the pilot plant exceeded the design assumptions in the Feasibility Study. These programs were partially funded by the EURARE program. The EURARE program aims to encourage the sustainable development of European based rare earth projects. This has the goal of allowing Europe to become less reliant on importation of these key raw materials. The professionalism and performance of both GTK and Outotec contributed significantly to the success of the pilot plant

  12. Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator

    International Nuclear Information System (INIS)

    Menard, J.E.; Bromberg, L.; Brown, T.; Burgess, Thomas W.; Dix, D.; Gerrity, T.; Goldston, R.J.; Hawryluk, R.; Kastner, R.; Kessel, C.; Malang, S.; Minervini, J.; Neilson, G.H.; Neumeyer, C.L.; Prager, S.; Sawan, M.; Sheffield, J.; Sternlieb, A.; Waganer, L.; Whyte, D.G.; Zarnstorff, M.C.

    2011-01-01

    A potentially attractive next-step towards fusion commercialization is a pilot plant, i.e. a device ultimately capable of small net electricity production in as compact a facility as possible and in a configuration scalable to a full-size power plant. A key capability for a pilot-plant programme is the production of high neutron fluence enabling fusion nuclear science and technology (FNST) research. It is found that for physics and technology assumptions between those assumed for ITER and nth-of-a-kind fusion power plant, it is possible to provide FNST-relevant neutron wall loading in pilot devices. Thus, it may be possible to utilize a single facility to perform FNST research utilizing reactor-relevant plasma, blanket, coil and auxiliary systems and maintenance schemes while also targeting net electricity production. In this paper three configurations for a pilot plant are considered: the advanced tokamak, spherical tokamak and compact stellarator. A range of configuration issues is considered including: radial build and blanket design, magnet systems, maintenance schemes, tritium consumption and self-sufficiency, physics scenarios and a brief assessment of research needs for the configurations.

  13. The pilot plant for electron beam food processing

    Science.gov (United States)

    Migdal, W.; Walis, L.; Chmielewski, A. G.

    1993-07-01

    In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in INCT. The pilot plant has been constructed inside an old fort what decreases significantly the cost of the investment. The pilot plant is equipped with a small research accelerator Pilot (10 MeV, 1 kW) and an industrial unit Elektronika (10 MeV, 10 kW). This allows both laboratory and full technological scale testing of the elaborated process to be conducted. The industrial unit is being equipped with e-/X conversion target, for high density products irradiation. On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for permanent treatment of spices, garlic, onions and temporary permissions for mushrooms, and potatoes. Dosimetric methods have been elaborated for the routine use at the plant. In the INCT laboratory methods for the control of e-/X treated food have been established.

  14. The pilot plant for electron beam food processing

    International Nuclear Information System (INIS)

    Migdal, W.; Kosmal, W.; Malec-Czechowska, K.; Maciszewski, W.

    1992-01-01

    In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in INCT. The pilot plant has been constructed inside an old fort what decreases significantly the cost of the investment. The pilot plants is equipped with a small research accelerator Pilot (10 MeV, 1 kW) and an industrial unit Elektronika (10 MeV, 10 kW). This allows both laboratory and full technological scale testing of the elaborated process to be conducted. The industrial unit is being equipped with e-/X conversion target, for high density products irradiation. On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for permanent treatment of spices, garlic, onions and temporary permissions for mushrooms, and potatoes. Dosimetric methods have been elaborated for the routine use at the plant. In the INCT laboratory methods for the control of e-/X treated food have been established. (author). 9 refs, 5 figs, 1 tab

  15. Operation result of 40kW class MCFC pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, H.; Hatori, S.; Hosaka, M.; Uematsu, H. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1996-12-31

    Ishikawajima-Harima Heavy Industries Co., Ltd. developed unique Molten Carbonate Fuel Cell (MCFC) system based on our original concept. To demonstrate the possibility of this system, based on MCFC technology of consigned research from New Energy and Industrial Technology Development Organization (NEDO) in Japan, we designed 40kW class MCFC pilot plant which had all equipments required as a power plant and constructed in our TO-2 Technical Center. This paper presents the test results of the plant.

  16. Large Pilot Scale Testing of Linde/BASF Post-Combustion CO2 Capture Technology at the Abbott Coal-Fired Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Kevin C. [University of Illinois, Champaign, IL (United States)

    2017-08-18

    The work summarized in this report is the first step towards a project that will re-train and create jobs for personnel in the coal industry and continue regional economic development to benefit regions impacted by previous downturns. The larger project is aimed at capturing ~300 tons/day (272 metric tonnes/day) CO2 at a 90% capture rate from existing coal- fired boilers at the Abbott Power Plant on the campus of University of Illinois (UI). It will employ the Linde-BASF novel amine-based advanced CO2 capture technology, which has already shown the potential to be cost-effective, energy efficient and compact at the 0.5-1.5 MWe pilot scales. The overall objective of the project is to design and install a scaled-up system of nominal 15 MWe size, integrate it with the Abbott Power Plant flue gas, steam and other utility systems, and demonstrate the viability of continuous operation under realistic conditions with high efficiency and capacity. The project will also begin to build a workforce that understands how to operate and maintain the capture plants by including students from regional community colleges and universities in the operation and evaluation of the capture system. This project will also lay the groundwork for follow-on projects that pilot utilization of the captured CO2 from coal-fired power plants. The net impact will be to demonstrate a replicable means to (1) use a standardized procedure to evaluate power plants for their ability to be retrofitted with a pilot capture unit; (2) design and construct reliable capture systems based on the Linde-BASF technology; (3) operate and maintain these systems; (4) implement training programs with local community colleges and universities to establish a workforce to operate and maintain the systems; and (5) prepare to evaluate at the large pilot scale level various methods to utilize the resulting captured CO2. Towards the larger project goal, the UI-led team, together

  17. Research cooperation project on environmentally friendly technology for highly efficient mineral resources extraction and treatment. Detail design for pilot plant (Mechanical fabrication)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper prepared plans of the mechanical equipment in the detailed design of a pilot plant in the joint research project on the environmental protection technology for highly efficient mineral resource extraction and treatment. (NEDO)

  18. Slipstream pilot-scale demonstration of a novel amine-based post-combustion technology for carbon dioxide capture from coal-fired power plant flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthy, Krish R. [Linde LLC, Murray Hill, NJ (United States)

    2017-02-03

    Post-combustion CO2 capture (PCC) technology offers flexibility to treat the flue gas from both existing and new coal-fired power plants and can be applied to treat all or a portion of the flue gas. Solvent-based technologies are today the leading option for PCC from commercial coal-fired power plants as they have been applied in large-scale in other applications. Linde and BASF have been working together to develop and further improve a PCC process incorporating BASF’s novel aqueous amine-based solvent technology. This technology offers significant benefits compared to other solvent-based processes as it aims to reduce the regeneration energy requirements using novel solvents that are very stable under the coal-fired power plant feed gas conditions. BASF has developed the desired solvent based on the evaluation of a large number of candidates. In addition, long-term small pilot-scale testing of the BASF solvent has been performed on a lignite-fired flue gas. In coordination with BASF, Linde has evaluated a number of options for capital cost reduction in large engineered systems for solvent-based PCC technology. This report provides a summary of the work performed and results from a project supported by the US DOE (DE-FE0007453) for the pilot-scale demonstration of a Linde-BASF PCC technology using coal-fired power plant flue gas at a 1-1.5 MWe scale in Wilsonville, AL at the National Carbon Capture Center (NCCC). Following a project kick-off meeting in November 2011 and the conclusion of pilot plant design and engineering in February 2013, mechanical completion of the pilot plant was achieved in July 2014, and final commissioning activities were completed to enable start-up of operations in January 2015. Parametric tests were performed from January to December 2015 to determine optimal test conditions and evaluate process performance over a variety of operation parameters. A long-duration 1500-hour continuous test campaign was performed from May to

  19. Double stage dry-wet-fermentation - start-up of a pilot biogas plant

    International Nuclear Information System (INIS)

    Buschmann, Jeannette; Busch, Gunter; Burkhardt, Marko

    2009-01-01

    The Brandenburg University of Technology (BTU) has developed a double stage dry-wet fermentation process for fast and safe anaerobic degradation. Originally designed for treatment of organic wastes, this process allows using a wide variety of solid biodegradable materials. The dividing of hydrolysis and methanation in this process, allows an optimization of the different steps of biogas generation separately. The main advantages of the process are the optimum process control, an extremely stable process operation and a high gas productivity and quality. Compared to conventional processes, the retention times within the percolation stage (hydrolysis) are reduced considerably. In cooperation with the engineering and consulting company GICON, the technology was qualified further to an industrial scale. In 2007 a pilot plant, and, simultaneously, an industrial plant were built by GICON based on this double stage technology. Based on practical experience from the operation of laboratory fermentation plants, the commissioning of the pilot plant was planned, controlled and monitored by our institution. The start-up of a biogas plant of this type focuses mainly on the inoculation the of methane reactor. The growth of microbial populations and generation of a stable biocenosis within the methane reactor is essential and affects the duration of starting period as well as the methanation efficiency a long time afterwards. This paper concerns with start-up of a pilot biogas plant and discusses particular occurrences and effects during this period. (author)

  20. Dissolution studies with pilot plant and actual INTEC calcines

    International Nuclear Information System (INIS)

    Herbst, R.S.; Garn, T.G.

    1999-01-01

    The dissolution of Idaho Nuclear Technology and Engineering Center (INTEC) pilot plant calcines was examined to determine solubility of calcine matrix components in acidic media. Two representatives pilot plant calcine types were studied: Zirconia calcine and Zirconia/Sodium calcine. Dissolution of these calcines was evaluated using lower initial concentrations of nitric acid than used in previous tests to decrease the [H+] concentration in the final solutions. Lower [H+] concentrations contribute to more favorable TRUEX/SREX solvent extraction flowsheet performance. Dissolution and analytical results were also obtained for radioactive calcines produced using high sodium feeds blended with non-radioactive Al(NO 3 ) 3 solutions to dilute the sodium concentration and prevent bed agglomeration during the calcination process. Dissolution tests indicated >95 wt.% of the initial calcine mass can be dissolved using the baseline dissolution procedure, with the exception that higher initial nitric acid concentrations are required. The higher initial acid concentration is required for stoichiometric dissolution of the oxides, primarily aluminum oxide. Statistically designed experiments using pilot plant calcine were performed to determine the effect of mixing rate on dissolution efficiency. Mixing rate was determined to provide minimal effects on wt.% dissolution. The acid/calcine ratio and temperature were the predominate variables affecting the wt.% dissolution, a result consistent with previous studies using other similar types of pilot plant calcines

  1. Achievement report for fiscal 1982 on Sunshine Program. Research and development of coal liquefaction technology (Conceptual designs for coal liquefaction pilot plants - Solvent extraction liquefaction process); 1982 nendo sekitan ekika gijutsu no kenkyu kaihatsu seika hokokusho. Sekitan ekika pilot plant no gainen sekkei (yozai chushutsu ekikaho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    This research aims to prepare conceptual designs for a 250t/d-class and 500t/d-class coal liquefaction pilot plants based on the achievement of research on solvent extraction liquefaction of coal. It also aims to define the solvent extraction process and provide decision-making material relative to the development and promotion of coal liquefaction technologies in the future. Development started in 1978 of the technology of solvent extraction liquefaction of coal, and a 1t/d PDU (process development unit) was completed in 1981. Studies through its operation have continued for more than 3000 hours already, and technical data are being accumulated steadily. Techniques acquired through operating the 1t/d PDU have been put together, and rough process conditions are established. A rough process result is achieved of the same conditions. In these two respects, the newly developed process is equal to other processes. The phenomena in this process are roughly grasped. It is deemed that, with the existing technique combined with the technique acquired here, a technological level has been reached where conceptual designs of large pilot plants may be worked out for solvent extraction liquefaction of coal. Under the circumstances, with a view to developing a commercial plant whose main products will be fuel oils, conceptual designs are prepared for large pilot plants, and are compiled into this report. (NEDO)

  2. Research cooperation project on environmentally friendly technology for highly efficient mineral resources extraction and treatment. Detail design for pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Photographs and drawings were edited into a book in relation with a joint project for environment preservation technologies in high-efficiency extraction and treatment of mineral resources, and detail design for a pilot plant. The book classified the related devices into fabricated devices, purchased devices and electrical devices, and contains detailed drawings and photographs thereof. (NEDO)

  3. A review on pilot plant development models

    International Nuclear Information System (INIS)

    Rosli Darmawan

    2005-01-01

    After more than 30 years, MINT has been able to produce many new findings, products and processes. Some of these have been able to penetrate local and international markets. This was achieved through a systematic commercialisation program practiced in MINT with its technological chain and MINT Technology Park program. This paper will review the development process of MINT pilot plants and compare them with a few other models from other institutions in Malaysia and abroad. The advantages and disadvantages of each model are reviewed and a discussion against MINT's model is presented. (Author)

  4. Vitrification of plutonium at Rocky Flats the argument for a pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L. [Rocky Mountain Peace Center, Boulder, CO (United States)

    1996-05-01

    Current plans for stabilizing and storing the plutonium at Rocky Flats Plant fail to put the material in a form suitable for disposition and resistant to proliferation. Vitrification should be considered as an alternate technology. The vitrification should begin with a small-scale pilot plant.

  5. Guidelines for wireless technology in nuclear power plants

    International Nuclear Information System (INIS)

    Shankar, Ramesh

    2003-01-01

    As a result of technological breakthroughs, increased demand for the use of wireless technology is common in all industries today, and the electric power industry is no exception. Already, wireless technology has many applications in our industry, including - but not limited to - cellular phone systems, paging systems, two-way radio communication systems, dose management and tracking systems, and operator logs. EPRI has prepared a comprehensive guidelines document to support evaluation of wireless technologies in power plants for integrated (voice/data/video) communication, remote equipment and system monitoring, and to complement an electronic procedures support system (EPSS). The guidelines effort focuses on the development of a rules structure to support the deployment of wireless devices in a plant without compromising continuous, safe, and reliable operation. The guidelines document consists of two volumes. The first volume is introductory in nature and lays out the business case for applying wireless technologies. The intended audience is senior plant management personnel and utility industry executives. This volume contains background information, templates, worksheets, processes, and presentations that will allow internal sponsors to create business cases for piloting wireless projects. The second volume includes guidance on implementation and regulatory issues relevant to plant implementation. It covers the following application areas: implementation of integrated communication capability, equipment monitoring, work quality control, time and knowledge management, and business process automation. It details regulatory issues relevant to the adoption of wireless technology within nuclear power plants and offers guidance on preparing for and executing pilot and implementations of wireless technologies. The paper will cover important aspects on the guidelines. (author)

  6. 7 CFR 1412.48 - Planting Transferability Pilot Project.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Planting Transferability Pilot Project. 1412.48... and Peanuts 2008 through 2012 § 1412.48 Planting Transferability Pilot Project. (a) Notwithstanding § 1412.47, for each of the 2009 and subsequent crop years, the Planting Transferability Pilot Project...

  7. Integrated automation system for a pilot plant for energy conversion using PEMFCs

    International Nuclear Information System (INIS)

    Culcer, Mihai; Iliescu, Mariana; Raceanu, Mircea; Stanciu, Vasile; Stefanescu, Ioan; Enache, Adrian; Lazaro, Pavel Gabriel; Lazaroiu, Gheorghe; Badea, Adrian

    2007-01-01

    Based on Hydrogen and Fuel Cells researches and technological capabilities achieved in the National R and D Programs, ICIT Rm. Valcea built an experimental-demonstrative pilot plant for energy conversion using hydrogen PEMFCs. This pilot plant consists of a fuel processor based on steam methane reforming (SMR) process, a hydrogen purification unit, a PEM fuel cells stack (FCS) and a power electronics unit. The paper deals with the dedicated controlling system that provides automated data acquisition, manual or on-line operational control, gas management, humidification, temperature and flow controls. (authors)

  8. Water-gas shift (WGS) Operation of Pre-combustion CO2 Capture Pilot Plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Van Dijk, H.A.J.; Damen, K.; Makkee, M.; Trapp, C.

    2014-01-01

    In the Nuon/Vattenfall CO2 Catch-up project, a pre-combustion CO2 capture pilot plant was built and operated at the Buggenum IGCC power plant, the Netherlands. The pilot consist of sweet water-gas shift, physical CO2 absorption and CO2 compression. The technology performance was verified and

  9. Process Experimental Pilot Plant

    International Nuclear Information System (INIS)

    Henze, H.

    1986-01-01

    The Process Experimental Pilot Plant (PREPP) at the Idaho National Engineering Laboratory (INEL) was built to convert transuranic contaminated solid waste into a form acceptable for disposal at the Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico. There are about 2.0 million cubic ft of transuranic waste stored at the Transuranic Storage Area of the INEL's Radioactive Waste Management Complex (RWMC). The Stored Waste Examination Pilot Plant (SWEPP) located at the RWMC will examine this stored transuranic waste to determine if the waste is acceptable for direct shipment to and storage at WIPP, or if it requires shipment to PREPP for processing before shipment to WIPP. The PREPP process shreds the waste, incinerates the shredded waste, and cements (grouts) the shredded incinerated waste in new 55-gal drums. Unshreddable items are repackaged and returned to SWEPP. The process off-gas is cleaned prior to its discharge to the atmosphere, and complies with the effluent standards of the State of Idaho, EPA, and DOE. Waste liquid generated is used in the grouting operation

  10. Radioactive Waste Treatment and Conditioning Using Plasma Technology Pilot Plant: Testing and Commissioning

    International Nuclear Information System (INIS)

    Rafizi Salihuddin; Rohyiza Baan; Norasalwa Zakaria

    2016-01-01

    Plasma pilot plant was commissioned for research and development program on radioactive waste treatment. The plant is equipped with a 50 kW direct current of non-transferred arc plasma torch which mounted vertically on top of the combustion chamber. The plant also consists of a dual function chamber, a water cooling system, a compress air supply system and a control system. This paper devoted the outcome after testing and commissioning of the plant. The problems arise was discussed in order to find the possible suggestion to overcome the issues. (author)

  11. Plan for the civil reprocessing pilot plant of China

    International Nuclear Information System (INIS)

    Wang, D.Y.; Chen, M.

    1987-01-01

    Based on the R and D work, experience on plant operation and site situation, the necessity and feasibility of building a pilot plant for civil reprocessing in China are discussed. The capacity of 100 kg HM/day (LWR) and 3 kg HM/day (MTR) has been proposed. The plant consists of cold testing facility and hot pilot facility. It is expected to complete the pilot plant in 1990's. This paper also describes the purpose, scale, process and equipment of the pilot plant

  12. Strategic pilot for operator support system in nuclear power plant - design considerations

    International Nuclear Information System (INIS)

    Bucur, I.; Tatar, F.

    1999-01-01

    In order to improve the plant operational safety the development of an Operator Support System (OSS) is required. This system is intended to process data from nuclear systems and to provide adequate outputs to the plant operation staff. Before implementing this system, a strategic pilot should be produced as a demonstration of the technology. The strategic pilot could be considered as a means of building both skills and credibility in development and implementation of OSS. In any organization this project should be under plant management control with operation group involvement. This paper describes the managerial tasks that should be carried out to define, build and implement such a module. The main objectives, the functional requirements and the benefits of pilot implementation are revealed. Furthermore, the problem relating to the background at CNE-PROD Cernavoda is analyzed and the present achievements are pointed out. (authors)

  13. Extractive metalurgical pilot plant. Project and installation

    International Nuclear Information System (INIS)

    Paula, H.C.B.; Rolim, T.L.; Santana, A.O. de; Santos, F.S.M. dos; Dantas, C.C.

    1986-01-01

    An extractive metalurgical pilot plant with a flow capacity of 200l/h of phosphoric leach, recovering 80% of the uranium content has been designed and installed. Starting from the diagrams of the chemical process in the laboratory scale, the equipment worksheet of the basic project were developed. The procedure for dimensioning and positioning of each component is described. An isometric figure and the pilot plant lay-out are included. The pilot plant occupying 41 m 2 has been tested and operates at its nominal capacity. (author) [pt

  14. The IPRP (Integrated Pyrolysis Regenerated Plant) technology: From concept to demonstration

    International Nuclear Information System (INIS)

    D’Alessandro, Bruno; D’Amico, Michele; Desideri, Umberto; Fantozzi, Francesco

    2013-01-01

    Highlights: ► IPRP technology development for distributed conversion of biomass and wastes. ► IPRP demonstrative unit combines a rotary kiln pyrolyzer to a 80 kWe microturbine. ► Main performances and critical issues are pointed out for different residual fuels. -- Abstract: The concept of integrated pyrolysis regenerated plant (IPRP) is based on a Gas Turbine (GT) fuelled by pyrogas produced in a rotary kiln slow pyrolysis reactor, where waste heat from GT is used to sustain the pyrolysis process. The IPRP plant provides a unique solution for microscale (below 250 kW) power plants, opening a new and competitive possibility for distributed biomass or wastes to energy conversion systems. The paper summarizes the state of art of the IPRP technology, from preliminary numerical simulation to pilot plant facility, including some new available data on pyrolysis gas from laboratory and pilot plants.

  15. ECN's torrefaction-based BO2-technology. From pilot to demo

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, J.H.A. [ECN Biomass, Coal and Environmental Research, Petten (Netherlands)

    2011-02-15

    The contents of this PowerPoint presentation are: Torrefaction design challenges; Initial small-scale R and D; ECN's torrefaction-based BO2-technology; Pilot-scale testing; and Demonstration and market introduction. The conclusions state that Torrefaction potentially allows cost-effective production of 2nd generation biomass pellets from a wide range of biomass/waste feedstock with a high energy efficiency (>90%); Torrefaction pellets show: High energy density, Water resistance, No/Limited biological degradation and heating, Excellent grindability, and Good combustion and gasification properties; Torrefaction is a separate thermal regime and requires dedicated reactor/process design; Torrefaction development is in pilot/demo-phase and shows strong market pull for torrefaction plants and torrefaction pellets; For ECN's BO2-technology a demo-plant is in preparation and industrial partnership for world-wide market introduction is nearly established.

  16. 75 FR 1591 - Green Technology Pilot Program

    Science.gov (United States)

    2010-01-12

    ... DEPARTMENT OF COMMERCE Patent and Trademark Office Green Technology Pilot Program ACTION: Proposed... methods: E-mail: [email protected] . Include A0651-0062 Green Technology Pilot Program [email protected] in... (USPTO) is implementing a streamlined examination pilot program for patent applications pertaining to...

  17. 75 FR 64692 - Green Technology Pilot Program

    Science.gov (United States)

    2010-10-20

    ... DEPARTMENT OF COMMERCE Patent and Trademark Office Green Technology Pilot Program ACTION: Proposed...- 0062 Green Technology Pilot Program comment'' in the subject line of the message. Fax: 571-273-0112... United States Patent and Trademark Office (USPTO) implemented a pilot program on December 8, 2009, that...

  18. Pilot plant for hydrogasification of coal with nuclear heat

    International Nuclear Information System (INIS)

    Falkenhain, G.; Velling, G.

    1976-01-01

    In the framework of a research and development programme sponsored by the Ministry of Research and Technology of the Federal Republic of Germany, two process variants for hydrogasification of coal by means of nuclear heat have been developed by the Rheinische Braunkohlenwerke AG, Cologne. For testing these process variants a semi-technical pilot plant for gasification of coal under pressure in a fluidized bed was constructed. The pilot plant, in which the gasification of lignite and hard coal is planned, is designed for a throughput of 100kg carbon per hour corresponding to 400kg raw lignite per hour or 150kg hard coal per hour. The plant should provide data on the influence of the most essential process parameters (pressure, temperature, residence time of gas and coal, type and pre-treatment of feed coal) on the performance of gasification and raw gas composition. Different plant components will also be tested. Since the pilot plant will permit testing of both process variants of hydrogasification, it was designed in such a way that it is possible to vary a great number of process parameters. Thus, for instance, the pressure can be chosen in a range up to 100 bar and pure hydrogen or mixtures of hydrogen, carbon monoxide and steam can be applied as gasification agents. The gasifier is an internally insulated fluidized bed reactor with an inner diameter of 200mm and a height of about 8m, to which an internally insulated cyclone for separation of the entrained fines is attached. The raw gas is then cooled down by direct water scrubbing. (author)

  19. MBR pilot plant for textile wastewater treatment and reuse.

    Science.gov (United States)

    Lubello, C; Caffaz, S; Mangini, L; Santianni, D; Caretti, C

    2007-01-01

    An experimental study was carried out in order to evaluate the possibility of upgrading the conventional activated sludge WWTP of Seano (Prato, Italy) which treats municipal and textile wastewaters, by using membrane bioreactor (MBR) technology. The MBR pilot plant, set up within Seano WWTP, was fed with mixed municipal-industrial wastewaters during the first experimental period and with pure industrial wastewaters during the second. Performances and operation of the MBR were evaluated in terms of permeate characteristics and variability (COD, colour, surfactants, total N and P) and other operational parameters (sludge growth and observed yield). According to the experimental results the MBR permeate quality was always superior to the Seano WWTP one and it was suitable for industrial reuse in the textile district of the Prato area. Respirometric tests provided a modified IWA ASM1 model which fits very well the experimental data and can be used for the design and the monitoring of a full-scale MBR pilot plant.

  20. FY 1990 report on the results of the development of the entrained bed coal gasification power plant. Part 2. Fabrication/installation of pilot plant; 1990 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 2. Pilot plant seisaku suetsuke hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, fabrication/installation work, etc. were made for a pilot plant of 200t/d entrained bed coal gasification power generation, and the FY 1990 results were summarized. Construction work of a pilot plant of coal gasification power generation was at its peak in April 1990, and installation/piping work for each facility/equipment was carried out. In May, transportation/installation of gas turbine and generator were started. In June, installation of equipment of the 66kV special high voltage switching station was conducted, and the initial power receiving of 6.9kV was conducted. In August, inspection before use was made of the main piping of the gasifier equipment, gas refining equipment and gas turbine equipment. In December, trial unit operation of each equipment and interlock test were carried out. 'The integrated plant protection interlock test' was made from January 21 to February 21, 1991, and the favorable results were obtained. On February 28, a ceremony to celebrate the completion of all facilities of pilot plant was made. In March, drying of gasifier and initial firing by light oil were conducted, and all the work was completed on March 25. (NEDO)

  1. FY 1990 report on the results of the development of the entrained bed coal gasification power plant. Part 2. Fabrication/installation of pilot plant; 1990 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 2. Pilot plant seisaku suetsuke hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, fabrication/installation work, etc. were made for a pilot plant of 200t/d entrained bed coal gasification power generation, and the FY 1990 results were summarized. Construction work of a pilot plant of coal gasification power generation was at its peak in April 1990, and installation/piping work for each facility/equipment was carried out. In May, transportation/installation of gas turbine and generator were started. In June, installation of equipment of the 66kV special high voltage switching station was conducted, and the initial power receiving of 6.9kV was conducted. In August, inspection before use was made of the main piping of the gasifier equipment, gas refining equipment and gas turbine equipment. In December, trial unit operation of each equipment and interlock test were carried out. 'The integrated plant protection interlock test' was made from January 21 to February 21, 1991, and the favorable results were obtained. On February 28, a ceremony to celebrate the completion of all facilities of pilot plant was made. In March, drying of gasifier and initial firing by light oil were conducted, and all the work was completed on March 25. (NEDO)

  2. Ningyo Toge uranium enrichment pilot plant comes into full

    International Nuclear Information System (INIS)

    1982-01-01

    The uranium enrichment pilot plant of the Power Reactor and Nuclear Fuel Development Corporation at Ningyo Toge went into full operation on March 26, 1982. This signifies that the front end of the nuclear fuel cycle in Japan, from uranium ore to enrichment, is only a step away from commercialization. On the same day, the pilot plant of uranium processing and conversion to UF 6 , the direct purification of uranium ore into uranium hexafluoride, began batch operation at the same works. The construction of the uranium enrichment pilot plant has been advanced in three stages: i.e. OP-1A with 1000 centrifuges, OP-1B with 3000 centrifuges and OP-2 with 3000 centrifuges. With a total of 7000 centrifuges, the pilot plant, the first enrichment plant in Japan, has now a capacity of supplying enriched uranium for six months operation of a 1,000 MW nuclear power plant. (J.P.N.)

  3. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  4. Experimental investigation of the chemical looping method on a 1 MW pilot plant

    International Nuclear Information System (INIS)

    Orth, Matthias

    2014-01-01

    Attempting to counteract the consequences of climate change, leading industrial nations have agreed on reducing their CO 2 emissions significantly. To reach these reduction goals, it is essential to reduce the CO 2 emissions in the field of energy conversion. This PHD thesis covers the field of chemical looping combustion, a technology that uses fossil fuels for energy conversion with inherent capture of CO 2 . Since the research regarding chemical looping had so far focused mainly on lab scale or small scale experiments, a 1 MW pilot plant has been erected at Technische Universitaet Darmstadt in order to investigate the process in a semi-industrial scale and to check the process efficiency with commercially usable equipment. This pilot consists of two interconnected fluidized bed reactors and has an overall height of more than 11 m. In this thesis, some experiments with ilmenite - used as the oxygen carrier - are explained. Furthermore, the design, erection and commissioning of the pilot plant are presented as well as the results of the first test campaigns. The evaluation of the latter proves that the process can be handled in the design configuration and that CO 2 can be safely captured in a pilot plant of this scale.

  5. Macroscopic mass and energy balance of a pilot plant anaerobic bioreactor operated under thermophilic conditions.

    Science.gov (United States)

    Espinosa-Solares, Teodoro; Bombardiere, John; Chatfield, Mark; Domaschko, Max; Easter, Michael; Stafford, David A; Castillo-Angeles, Saul; Castellanos-Hernandez, Nehemias

    2006-01-01

    Intensive poultry production generates over 100,000 t of litter annually in West Virginia and 9 x 10(6) t nationwide. Current available technological alternatives based on thermophilic anaerobic digestion for residuals treatment are diverse. A modification of the typical continuous stirred tank reactor is a promising process being relatively stable and owing to its capability to manage considerable amounts of residuals at low operational cost. A 40-m3 pilot plant digester was used for performance evaluation considering energy input and methane production. Results suggest some changes to the pilot plant configuration are necessary to reduce power consumption although maximizing biodigester performance.

  6. Waste Isolation Pilot Plant Overview

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Douglas James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-27

    The mission of Waste Isolation Pilot Plant (WIPP) is to demonstrate the safe, environmentally sound, cost effective, permanent disposal of Transuranic (TRU) waste left from production of nuclear weapons.

  7. Continuous precipitation of uranium peroxide in process pilot plant

    International Nuclear Information System (INIS)

    Quinelato, A.L.

    1990-01-01

    An experimental study on uranium peroxide precipitation has been carried out with the objective to evaluate the influence of the main process parameters with a technological approach. The uraniferous solution used was obtained from the hydrometallurgical processing of an ore from Itataia - CE. Studies were developed in two distinct experimental stages. In the first stage, the precipitation was investigated by means of laboratory batch tests and, in the second stage, by means of continuous operation in a process pilot plant. (author)

  8. Analytical technology in support of the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Villareal, R.

    1994-01-01

    The need for long-term disposal of defense-related transuranic (TRU) wastes became apparent as the DOE recognized the environmental consequences of maintaining waste storage facilities designed for short or interim storage periods, not long-term storage. In 1979, Congress authorized the Waste Isolation Pilot Plant (WIPP), a research and development facility and full-scale pilot plant, to demonstrate the safe management, storage, and disposal of TRU wastes. Environmental Protection Agency (EPA) regulations governing disposal of TRU wastes in 40 CFR 191 require that TRU waste disposal systems be designed to limit migration of radionuclides to the accessible environment for 10,000 years based on performance assessment results. The actinide source-term waste test program (STTP) is an experiment designed to quantitatively measure the time-dependent concentrations of plutonium, uranium, neptunium, thorium, and americium in TRU wastes immersed in brines that simulate the chemistry that may occur in WIPP disposal rooms, partially or completely contacted with brines. The total concentration of each actinide in brine is the sum of its dissolved and colloidally suspended components, as determined by variables including pcH, oxidation-reduction potential (Eh), chelating and complexing agents, sorption capacity, and colloidal suspension capabilities. To determine the effect of influencing variables on the concentration of actinides in WIPP brines, several TRU waste types will be characterized and loaded into specially designed noncorrosive test containers filled with brine containing additives to enhance the action of each influencing variable. The test container brine and headspace gases will be analyzed

  9. High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Boardman; B. H. O& #39; Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

    2004-02-01

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in the New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing

  10. Multi-Pollutant Emissions Control: Pilot Plant Study of Technologies for Reducing Hg, SO3, NOx and CO2 Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Fenger; Richard A. Winschel

    2005-08-31

    A slipstream pilot plant was built and operated to investigate technology to adsorb mercury (Hg) onto the existing particulate (i.e., fly ash) by cooling flue gas to 200-240 F with a Ljungstrom-type air heater or with water spray. The mercury on the fly ash was then captured in an electrostatic precipitator (ESP). An alkaline material, magnesium hydroxide (Mg(OH){sub 2}), is injected into flue gas upstream of the air heater to control sulfur trioxide (SO{sub 3}), which prevents acid condensation and corrosion of the air heater and ductwork. The slipstream was taken from a bituminous coal-fired power plant. During this contract, Plant Design and Construction (Task 1), Start Up and Maintenance (Task 2), Baseline Testing (Task 3), Sorbent Testing (Task 4), Parametric Testing (Task 5), Humidification Tests (Task 6), Long-Term Testing (Task 7), and a Corrosion Study (Task 8) were completed. The Mercury Stability Study (Task 9), ESP Report (Task 11), Air Heater Report (Task 12) and Final Report (Task 14) were completed. These aspects of the project, as well as progress on Public Outreach (Task 15), are discussed in detail in this final report. Over 90% mercury removal was demonstrated by cooling the flue gas to 200-210 F at the ESP inlet; baseline conditions with 290 F flue gas gave about 26% removal. Mercury removal is sensitive to flue gas temperature and carbon content of fly ash. At 200-210 F, both elemental and oxidized mercury were effectively captured at the ESP. Mg(OH){sub 2} injection proved effective for removal of SO{sub 3} and eliminated rapid fouling of the air heater. The pilot ESP performed satisfactorily at low temperature conditions. Mercury volatility and leaching tests did not show any stability problems. No significant corrosion was detected at the air heater or on corrosion coupons at the ESP. The results justify larger-scale testing/demonstration of the technology. These conclusions are presented and discussed in two presentations given in July and

  11. TASK 3: PILOT PLANT GASIFIER TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Fusselman, Steve

    2015-11-01

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. Design, fabrication and initial testing of the pilot plant compact gasifier was completed in 2011 by a development team led by AR. Findings from this initial test program, as well as subsequent gasifier design and pilot plant testing by AR, identified a number of technical aspects to address prior to advancing into a demonstration-scale gasifier design. Key among these were an evaluation of gasifier ability to handle thermal environments with highly reactive coals; ability to handle high ash content, high ash fusion temperature coals with reliable slag discharge; and to develop an understanding of residual properties pertaining to gasification kinetics as carbon conversion approaches 99%. The gasifier did demonstrate the ability to withstand the thermal environments of highly reactive Powder River Basin coal, while achieving high carbon conversion in < 0.15 seconds residence time. Continuous operation with the high ash fusion temperature Xinyuan coal was demonstrated in long duration testing, validating suitability of outlet design as well as downstream slag discharge systems. Surface area and porosity data were obtained for the Xinyuan and Xinjing coals for carbon conversion ranging from 85% to 97%, and showed a pronounced downward trend in surface area per unit mass carbon as conversion increased. Injector faceplate measurements showed no incremental loss of material over the course of these experiments, validating the commercially traceable design approach and supportive of long injector life goals. Hybrid testing of PRB and natural gas was successfully completed over a wide range of natural gas feed content, providing test data to anchor predictions

  12. A shaft seal system for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Hansen, F.D.; Ahrens, E.H.; Dennis, A.W.; Hurtado, L.D.; Knowles, M.K.; Tillerson, J.R.; Thompson, T.W.; Galbraith, D.

    1996-01-01

    As part of the demonstration of compliance with federal regulations, a shaft seal system has been designed for the Waste Isolation Pilot Plant. The system completely fills the 650 m shafts with components consisting of the common engineering materials, each of which possesses low permeability, longevity, and can be constructed using available technology. Design investigations couple rock mechanics and fluid flow analysis and tests of these materials within the natural geological setting, and demonstrate the effectiveness of the design

  13. Technical Proposal Salton Sea Geothermal Power Pilot Plant Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1975-03-28

    The proposed Salton Sea Geothermal Power Pilot Plant Program comprises two phases. The objective of Phase 1 is to develop the technology for power generation from high-temperature, high-salinity geothermal brines existing in the Salton Sea known geothermal resources area. Phase 1 work will result in the following: (a) Completion of a preliminary design and cost estimate for a pilot geothermal brine utilization facility. (b) Design and construction of an Area Resource Test Facility (ARTF) in which developmental geothermal utilization concepts can be tested and evaluated. Program efforts will be divided into four sub-programs; Power Generation, Mineral Extraction, Reservoir Production, and the Area Resources Test Facility. The Power Generation Subprogram will include testing of scale and corrosion control methods, and critical power cycle components; power cycle selection based on an optimization of technical, environmental and economic analyses of candidate cycles; preliminary design of a pilot geothermal-electric generating station to be constructed in Phase 2 of this program. The Mineral Extraction Subprogram will involve the following: selection of an optimum mineral recovery process; recommendation of a brine clean-up process for well injection enhancement; engineering, construction and operation of mineral recovery and brine clean-up facilities; analysis of facility operating results from environmental, economical and technical point-of-view; preliminary design of mineral recovery and brine clean-up facilities of sufficient size to match the planned pilot power plant. The Reservoir Production Subprogram will include monitoring the operation and maintenance of brine production, handling and injection systems which were built with private funding in phase 0, and monitoring of the brine characteristics and potential subsidence effects during well production and injection. Based on the above, recommendations and specifications will be prepared for production and

  14. Deep shaft high rate aerobic digestion: laboratory and pilot plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Tran, F; Gannon, D

    1981-01-01

    The Deep Shaft is essentially an air-lift reactor, sunk deep in the ground (100-160 m); the resulting high hydrostatic pressure together with very efficient mixing in the shaft provide extremely high O transfer efficiencies (O.T.E.) of less than or equal to 90% vs. 4-20% in other aerators. This high O.T.E. suggests real potential for Deep-Shaft technology in the aerobic digestion of sludges and animal wastes: with conventional aerobic digesters an O.T.E. over 8% is extremely difficult to achieve. Laboratory and pilot plant Deep-Shaft aerobic digester studies carried out at Eco-Research's Pointe Claire, Quebec laboratories, and at the Paris, Ontario pilot Deep-Shaft digester are described.

  15. WIPP: Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1984-01-01

    The following aspects of the Waste Isolation Pilot Plant are discussed briefly: history and site selection; salt as a disposal medium; transporting waste materials; early key events; impacts on New Mexico; project organization; and site certification profile

  16. Pilot demonstrations of arsenic removal technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Siegal Malcolm D.

    2004-09-01

    The Arsenic Water Technology Partnership (AWTP) program is a multi-year program funded by a congressional appropriation through the Department of Energy to develop and test innovative technologies that have the potential to reduce the costs of arsenic removal from drinking water. The AWTP members include Sandia National Laboratories, the American Water Works Association (Awwa) Research Foundation and WERC (A Consortium for Environmental Education and Technology Development). The program is designed to move technologies from bench-scale tests to field demonstrations. The Awwa Research Foundation is managing bench-scale research programs; Sandia National Laboratories is conducting the pilot demonstration program and WERC will evaluate the economic feasibility of the technologies investigated and conduct technology transfer activities. The objective of the Sandia Arsenic Treatment Technology Demonstration project (SATTD) is the field demonstration testing of both commercial and innovative technologies. The scope for this work includes: (1) Identification of sites for pilot demonstrations; (2) Accelerated identification of candidate technologies through Vendor Forums, proof-of-principle laboratory and local pilot-scale studies, collaboration with the Awwa Research Foundation bench-scale research program and consultation with relevant advisory panels; and (3) Pilot testing multiple technologies at several sites throughout the country, gathering information on: (a) Performance, as measured by arsenic removal; (b) Costs, including capital and Operation and Maintenance (O&M) costs; (c) O&M requirements, including personnel requirements, and level of operator training; and (d) Waste residuals generation. The New Mexico Environment Department has identified over 90 public water systems that currently exceed the 10 {micro}g/L MCL for arsenic. The Sandia Arsenic Treatment Technology Demonstration project is currently operating pilots at three sites in New Mexico. The cities of

  17. Ion exchange/adsorbent pilot plant

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    A decontamination of greater than 99% of the actinides and fission products contained in radioactive waste water can be obtained using ion exchange resins. A system for achieving this result is described in this paper. This ion exchange pilot-plant design is the culmination of five years of study of the decontamination of radioactive waste streams by ion exchange resins and other adsorbents at Mound. In order to maintain maximum flexibility of treatments, this pilot-plant design is a conceptual design with specific flows, resins, and column specifications, but with many optional features and no rigid equipment specifications. This flexibility allows the system to be amenable to almost any radioactive waste stream. Very specific designs can be constructed from this conceptual design for the treatment of any specific waste stream. Operating and capital costs are also discussed. 1 figure, 5 tables

  18. Decommissioning of an uranium hexafluoride pilot plant

    International Nuclear Information System (INIS)

    Santos, Ivan; Abrao, Alcidio; Carvalho, Fatima M.S.; Ayoub, Jamil M.S.

    2009-01-01

    The Institute of Nuclear and Energetic Researches has completed fifty years of operation, belongs to the National Commission for Nuclear Energy, it is situated inside the city of Sao Paulo. The IPEN-CNEN/SP is a Brazilian reference in the nuclear fuel cycle, researches in this field began in 1970, having dominance in the cycle steps from Yellow Cake to Uranium Hexafluoride technology. The plant of Uranium Hexafluoride produced 35 metric tonnes of this gas by year, had been closed in 1992, due to domain and total transference of know-how for industrial scale, demand of new facilities for the improvement of recent researches projects. The Institute initiates decommissioning in 2002. Then, the Uranium Hexafluoride pilot plant, no doubt the most important unit of the fuel cycle installed at IPEN-CNEN/SP, beginning decommissioning and dismantlement (D and D) in 2005. Such D and D strategies, planning, assessment and execution are described, presented and evaluated in this paper. (author)

  19. Waste water pilot plant research, development, and demonstration permit application

    International Nuclear Information System (INIS)

    1993-03-01

    This permit application has been prepared to obtain a research, development, and demonstration permit to perform pilot-scale treatability testing on the 242-A Evaporator process condensate waste water effluent stream. It provides the management framework, and controls all the testing conducted in the waste water pilot plant using dangerous waste. It also provides a waste acceptance envelope (upper limits for selected constituents) and details the safety and environmental protection requirements for waste water pilot plant testing. This permit application describes the overall approach to testing and the various components or requirements that are common to all tests. This permit application has been prepared at a sufficient level of detail to establish permit conditions for all waste water pilot plant tests to be conducted

  20. General Atomic Reprocessing Pilot Plant: engineering-scale dissolution system description

    International Nuclear Information System (INIS)

    Yip, H.H.

    1979-04-01

    In February 1978, a dissolver-centrifuge system was added to the cold reprocessing pilot plant at General Atomic Company, which completed the installation of an HTGR fuel head-end reprocessing pilot plant. This report describes the engineering-scale equipment in the pilot plant and summarizes the design features derived from development work performed in the last few years. The dissolver operating cycles for both thorium containing BISO and uranium containinng WAR fissile fuels are included. A continuous vertical centrifuge is used to clarify the resultant dissolver product solution. Process instrumentation and controls for the system reflect design philosophy suitable for remote operation

  1. Pilot plant for exploitation of geothermal waters

    Directory of Open Access Journals (Sweden)

    Stojiljković Dragan T.

    2006-01-01

    Full Text Available In Sijarinska spa, there are some 15 mineral and thermomineral springs, that are already being used for therapeutic purposes. For the exploitation of heat energy boring B-4 is very interesting. It is a boring of a closed type, with the water temperature of about 78°C and a flow rate of about 33 l/s. Waters with the flow rate of about 6 l/s are currently used for heating of the Gejzer hotel, and waters of the flow rate of about 0,121 l/s for the pilot drying plant. The paper presents this pilot plant. .

  2. Demonstration of a 100-kWth high-temperature solar thermochemical reactor pilot plant for ZnO dissociation

    Science.gov (United States)

    Koepf, E.; Villasmil, W.; Meier, A.

    2016-05-01

    Solar thermochemical H2O and CO2 splitting is a viable pathway towards sustainable and large-scale production of synthetic fuels. A reactor pilot plant for the solar-driven thermal dissociation of ZnO into metallic Zn has been successfully developed at the Paul Scherrer Institute (PSI). Promising experimental results from the 100-kWth ZnO pilot plant were obtained in 2014 during two prolonged experimental campaigns in a high flux solar simulator at PSI and a 1-MW solar furnace in Odeillo, France. Between March and June the pilot plant was mounted in the solar simulator and in-situ flow-visualization experiments were conducted in order to prevent particle-laden fluid flows near the window from attenuating transparency by blocking incoming radiation. Window flow patterns were successfully characterized, and it was demonstrated that particle transport could be controlled and suppressed completely. These results enabled the successful operation of the reactor between August and October when on-sun experiments were conducted in the solar furnace in order to demonstrate the pilot plant technology and characterize its performance. The reactor was operated for over 97 hours at temperatures as high as 2064 K; over 28 kg of ZnO was dissociated at reaction rates as high as 28 g/min.

  3. The UCOR pilot plant and the development of axial flow compressors

    International Nuclear Information System (INIS)

    Grant, W.

    1984-01-01

    This article discusses some of the mechanical aspects of the Uranium Enrichment Corporation of South Africa (Pty) Ltd. (UCOR) pilot plant. The most important mechanical components in a typical stage in the pilot plant, consists of a compressor which is used to compress the process gas mixture. After air cooling to almost room temperature, the mixture is fed through the separation elements. Other components are two pressure vessels connected to the compressor. The development and characteristics of the pilot plant is described in the article

  4. Babcock & Wilcox technologies for power plant stack emissions control

    Energy Technology Data Exchange (ETDEWEB)

    Polster, M.; Nolan, P.S.; Batyko, R.J. [Babcock & Wilcox, Barberton, OH (United States)

    1994-12-31

    The current status of sulfur dioxide control in power plants is reviewed with particular emphasis on proven, commercial technologies. This paper begins with a detailed review of Babcock & Wilcox commercial wet flue gas desulfurization (FGD) systems. This is followed by a brief discussion of B&W dry FGD technologies, as well as recent full-scale and pilot-scale demonstration projects which focus on lower capital cost alternatives to conventional FGD systems. A comparison of the economics of several of these processes is also presented. Finally, technology selections resulting from recent acid rain legislation in various countries are reviewed.

  5. Report on 1979 result of Sunshine Project (detailed design). Part 1. Forty t/day solvolysis coal liquefaction pilot plant; 1979 nendo 40T/nichi solvolysis sekitan pilot plant shosai sekkei. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    The subject design documents are the compilation of the result of the design operation for the 'detailed design of 40 t/day class solvolysis coal liquefaction pilot plant'. The design of this pilot plant was conducted using, as the fundamental reference, the basic data provided by Kyushu National Industrial Research Institute and Kyushu University and the results of a contract research on '1 t/day class solvolysis coal liquefaction plant'. The subject detailed design was intended for Phase 1 centering on a single stage liquefaction - coal liquefaction (transformation into pitch) by solvolysis liquefaction reaction. The areas covered consists of the pre-treatment process, material mixing process, reaction process, reaction freezing process, coke separation process, SR recovery process, pitch refining process, utility facilities, and waste water treatment facilities. Incidentally, the processes for which the design operation has been completed this year, particularly the reaction process, coke separation process, SR recovery process, etc., are in the field untrodden technologically in the world; therefore, their design method is supposed to be established from the results of the R and D on coal liquefaction, '1 t/day class solvolysis coal liquefaction plant.' (NEDO)

  6. Report on 1979 result of Sunshine Project (detailed design). Part 1. Forty t/day solvolysis coal liquefaction pilot plant; 1979 nendo 40T/nichi solvolysis sekitan pilot plant shosai sekkei. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    The subject design documents are the compilation of the result of the design operation for the 'detailed design of 40 t/day class solvolysis coal liquefaction pilot plant'. The design of this pilot plant was conducted using, as the fundamental reference, the basic data provided by Kyushu National Industrial Research Institute and Kyushu University and the results of a contract research on '1 t/day class solvolysis coal liquefaction plant'. The subject detailed design was intended for Phase 1 centering on a single stage liquefaction - coal liquefaction (transformation into pitch) by solvolysis liquefaction reaction. The areas covered consists of the pre-treatment process, material mixing process, reaction process, reaction freezing process, coke separation process, SR recovery process, pitch refining process, utility facilities, and waste water treatment facilities. Incidentally, the processes for which the design operation has been completed this year, particularly the reaction process, coke separation process, SR recovery process, etc., are in the field untrodden technologically in the world; therefore, their design method is supposed to be established from the results of the R and D on coal liquefaction, '1 t/day class solvolysis coal liquefaction plant.' (NEDO)

  7. Guidebook on design, construction and operation of pilot plants for uranium ore processing

    International Nuclear Information System (INIS)

    1990-01-01

    The design, construction and operation of a pilot plant are often important stages in the development of a project for the production of uranium concentrates. Since building and operating a pilot plant is very costly and may not always be required, it is important that such a plant be built only after several prerequisites have been met. The main purpose of this guidebook is to discuss the objectives of a pilot plant and its proper role in the overall project. Given the wide range of conditions under which a pilot plant may be designed and operated, it is not possible to provide specific details. Instead, this book discusses the rationale for a pilot plant and provides guidelines with suggested solutions for a variety of problems that may be encountered. This guidebook is part of a series of Technical Reports on uranium ore processing being prepared by the IAEA's Division of Nuclear Fuel Cycle and Waste Management. 42 refs, 7 figs, 3 tabs

  8. Italian experience with pilot reprocessing plants

    International Nuclear Information System (INIS)

    Cao, S.; Dworschak, H.; Rolandi, G.; Simonetta, R.

    1977-01-01

    Problems and difficulties recently experienced in the reprocessing technology of high burnup power reactor fuel elements have shown the importance of pilot plant experiments to optimize the separation processes and to test advanced equipment on a representative scale. The CNEN Eurex plant, in Saluggia (Vercelli), with a 50 kg/d thruput, in operation since '71, has completed several reprocessing campaigns on MTR type fuel elements. Two different chemical flowsheets based respectively on TBP and tertiary amines were thoroughly tested and compared: a concise comparative evaluation of the results obtained with the two schemes is given. Extensive modifications have then been introduced (namely a new headend cell equipped with a shear) to make the plant suitable to reprocess power reactor fuels. The experimental program of the plant includes a joint CNEN-AECL reprocessing experiment on CANDU (Pickering) type fuel elements to demonstrate a two cycle, amine based recovery of the plutonium. Later, a stock of high burnup fuel elements from the PWR Trino power station will be reprocessed to recover Pu and U with a Purex type flowsheet. ITREC, the second CNEN experimental reprocessing plant located at Trisaia Nuclear Center (Matera), started active operation two years ago. In the first campaign Th-U mixed oxide fuel elements irradiated in the Elk River reactor were processed. Results of this experiment are reported. ITREC special design features confer a high degree of versability to the plant allowing for substantial equipment modification under remote control conditions. For this reason the plant will be principally devoted in the near future to advanced equipment testing. Along this line high speed centrifugal contactor of a new type developed in Poland will be tested in the plant in the frame of a joint experiment between CNEN and the Polish AEC. Later on the plant program will include experimental campaign on fast reactor fuels; a detailed study on this program is in

  9. Pilot plant for flue gas treatment - continuous operation tests

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Tyminski, B.; Iller, E.; Zimek, Z.; Licki, J.; Radzio, B.

    1995-01-01

    Tests of continuous operation have been performed on pilot plant at EPS Kaweczyn in the wide range of SO 2 concentration (500-3000 ppm). The bag filter has been applied for aerosol separation. The high efficiencies of SO 2 and NO x removal, approximately 90% were obtained and influenced by such process parameters as: dose, gas temperature and ammonia stoichiometry. The main apparatus of the pilot plant (e.g. both accelerators) have proved their reliability in hard industrial conditions. (Author)

  10. Airlie House Pollution Prevention Technology Transfer pilot projects

    Energy Technology Data Exchange (ETDEWEB)

    Thuot, J.R.; Myron, H.; Gatrone, R.; McHenry, J.

    1996-08-01

    The projects were a series of pilot projects developed for DOE with the intention of transferring pollution prevention technology to private industry. The concept was to develop small technology transfer initiatives in partnership with the private sector. Argonne National Laboratory developed three projects: the microscale chemistry in education program, the microscale cost benefit study, and the Bethel New Life recycling trainee program. The two microscale chemistry projects focused on introducing microscale chemistry technologies to secondary and college education. These programs were inexpensive to develop and received excellent evaluations from participants and regulators. The recycle trainee project provided training for two participants and identified recycling and source reduction opportunities in Argonne`s solid waste stream. The pilot projects demonstrated that technology transfer initiatives can be developed and implemented with a small budget and within a short period of time. The essential components of the pilot projects were identification of target technologies that were already available, identification of target audiences, and a focus of effort to achieve a limited but defined objective.

  11. A soil washing pilot plant for removing petroleum hydrocarbons from contaminated soils

    International Nuclear Information System (INIS)

    Toor, I.A.; Roehrig, G.R.

    1992-01-01

    A soil washing pilot plant was built and tested for its ability to remove petroleum hydrocarbons from certain soils. The ITEX soil washing pilot plant is a trailer mountable mobile unit which has a washing capacity of two tons per hour of contaminated soils. A benchscale study was carried out prior to the fabrication of the pilot plant. The first sample was contaminated with diesel fuel while the second sample was contaminated with crude oil. Various nonionic, cationic and anionic cleaning agents were evaluated for their ability to remove petroleum hydrocarbons from these materials. The nonionic cleaning agents were more successful in cleaning the soils in general. The ultimate surfactant choice was based on several factors including cost, biodegradability, cleaning efficiency and other technical considerations. The soil samples were characterized in terms of their particle size distributions. Commercial diesel fuel was carefully mixed in this sand to prepare a representative sample for the pilot plant study. Two pilot runs were made using this material. A multistage washing study was also conducted in the laboratory which indicates that the contamination level can be reduced to 100 ppm using only four stages. Because the pilot plant washing efficiency is twice as high, it is believed that ultimate contamination levels can be reduced to lower levels using the same number of stages. However, this hypothesis has not been demonstrated to date

  12. Report of the Uranium Enrichment Technology Evaluation Committee

    International Nuclear Information System (INIS)

    1977-01-01

    The centrifuge method of uranium enrichment is being pushed forward in Japan as a national project. The results of the technology evaluation are described regarding the efforts heretofore, the plan for pilot plant construction, internationally competitive ability, and the schedule after the pilot plant. In conclusion, the basic technology for proceeding to a pilot plant is now mature, and the pilot plant planning by PNC (Power Reactor and Nuclear Fuel Development Corporation) is generally appropriate. The outlook for constructing and internationally competitive practical plant is reasonably good. (Mori, K.)

  13. Arsenic pilot plant operation and results:Weatherford, Oklahoma.

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, Malynda Jo; Arora, H. (Narasimhan Consulting Services Inc., Phoenix, Arizona); Karori, Saqib (Narasimhan Consulting Services Inc., Phoenix, Arizona); Pathan, Sakib (Narasimhan Consulting Services Inc., Phoenix, Arizona)

    2007-05-01

    Narasimhan Consulting Services, Inc. (NCS), under a contract with the Sandia National Laboratories (SNL), designed and operated pilot scale evaluations of the adsorption and coagulation/filtration treatment technologies aimed at meeting the recently revised arsenic maximum contaminant level (MCL) for drinking water. The standard of 10 {micro}g/L (10 ppb) is effective as of January 2006. The pilot demonstration is a project of the Arsenic Water Technology Partnership program, a partnership between the American Water Works Association Research Foundation (AwwaRF), SNL and WERC (A Consortium for Environmental Education and Technology Development). The pilot evaluation was conducted at Well 30 of the City of Weatherford, OK, which supplies drinking water to a population of more than 10,400. Well water contained arsenic in the range of 16 to 29 ppb during the study. Four commercially available adsorption media were evaluated side by side for a period of three months. Both adsorption and coagulation/filtration effectively reduced arsenic from Well No.30. A preliminary economic analysis indicated that adsorption using an iron oxide media was more cost effective than the coagulation/ filtration technology.

  14. Development of technology for brown coal liquefaction. Design, construction and operation of pilot plant; development of 50t/d pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    1986-08-01

    As for the development of 50t/d pilot plant for the development of liquefaction plant of Victorian brown coal in Austraria, outline of the contents about the second stage construction following the first stage construction up to this time is reported from the following 4 viewpoints; 1: design of process apparatuses, 2: manufacture of apparatuses, 3: fieldwork of the construction and 4: operation of the first stage facilities. On the first item the outline of detail design made by Japanese and Australian companies is described. On the second item the acceptance of purchasing goods from Japan and Australia and the condition of inspection and quality assurance to specific principal parts are described. On the third item the supplementary construction of the first stage, contents of constructions of the second stage are described. On the fourth item, preparation for operation, target, the whole circumstances and the results of maintenance, especially review of operation technique, training of operators, and occurrence and repair of troubles are described. As other relevant works, envirommental assessment, waste disposal, enviromental monitoring for exhaust gases, drainage and working enviroments, safety measure, educational training and moreover activities for local district people and the state of labor market as the support for execution of the project are described.

  15. Long term pilot plant experience on aromatics extraction with ionic liquids

    NARCIS (Netherlands)

    Meindersma, W.G.W.; Onink, F.S.A.F.; Hansmeier, A.R.; Haan, de A.B.

    2012-01-01

    Since 2004, we have been conducting pilot plant trials with various contactors and different ionic liquids for petrochemical model feeds as well as real refinery feeds. Our pilot plant contains a Rotating Disc Contactor with a height of 6 m and a diameter of 60 mm. Up to 100 kg of ionic liquid and

  16. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Britt, Phillip F [ORNL

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions based on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.

  17. Pilot plant study

    International Nuclear Information System (INIS)

    Morris, M.E.

    1978-01-01

    Sandia Laboratories undertook the design and fabrication of an 8 ton/day dry sewage sludge irradiatior. The facility is intended (1) to function as a high-gamma-dose rate research facility; (2) to be a testbed for the unique electrical and mechanical components to be used in larger facilities; (3) to fulfill the formal requirements of a pilot plant so that design and construction of a demonstration facility could proceed; and (4) to provide accurate data base on construction and operating experience for the Environmental Impact Assessment (EIA), the Safety Analysis Report (SAR), and the cost analyses for a larger facility. The facility and its component systems are described in detail

  18. 75 FR 28554 - Elimination of Classification Requirement in the Green Technology Pilot Program

    Science.gov (United States)

    2010-05-21

    ...] Elimination of Classification Requirement in the Green Technology Pilot Program AGENCY: United States Patent... (USPTO) implemented the Green Technology Pilot Program on December 8, 2009, which permits patent... technologies. However, the pilot program was limited to only applications classified in a number of U.S...

  19. Summary of uranium refining and conversion pilot plant at Ningyo-toge works

    International Nuclear Information System (INIS)

    Iwata, Ichiro

    1981-01-01

    In the Ningyo-toge works, Power Reactor and Nuclear Fuel Development Corp., the construction of the uranium refining and conversion pilot plant was completed, and the operation will be started after the various tests based on the related laws. As for the uranium refining in Japan, the PNC process by wet refining method has been developed since 1958. The history of the development is described. It was decided to construct the refining and conversion pilot plant with 200 t uranium/year capacity as the comprehensive result of the development. This is the amount sufficient to supply UF 6 to the uranium enrichment pilot plant in Ningyo-toge. The building for the refining and conversion pilot plant is a three-story ferro-concrete building with the total floor area of about 13,000 m 2 . The raw materials are the uranium ore produced in Ningyo-toge and the yellow cakes from abroad. Uranyl sulfate solution is obtained by solvent extraction using an extraction tower or a mixer-settler. The following processes are electrolytic reduction, precipitation of uranium tetrafluoride, filtration, drying, dehydration and UF 6 conversion. The fluorine for UF 6 conversion is produced by the facility in the plant. The operation of the pilot plant will be started in the latter half of the fiscal year 1981, the batch operation is carrried out in 1982, and the continuous operation from 1983. (Kako, I.)

  20. Report on results for fiscal 1997 (B edition) on development of coal liquefaction technology. Development of bituminous coal liquefaction technology (research by pilot plant) 1/2; 1997 nendo sekitan ekika gijutsu kaihatsu seika hokokusho (B gan). Rekiseitan ekika gijutsu no kaihatsu (pilot plant ni yoru kenkyu) 1/2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    Through the design, construction and operation of a pilot plant, the NEDOL method was verified, with its operation technology established, and also with a target set in collecting and accumulating data and knowledge required for a commercial plant in the future. With the Run-2, 3, 4 implemented using operating basis coal as the material, the operating stability of equipment/machines was confirmed, and a method of obtaining material balance as well as the operation technology was established, thereby demonstrating the NEDOL process, proving a long-term continuous operability and verifying the highest liquefaction yield. In addition, various process data, engineering data, operation control data, etc., were acquired, classified and analyzed. In the Run-3/4-1, a long-term coal charging continuous operation for 80 days was achieved, as was a high liquefaction yield of 58%. Moreover, data of material balance and thermal balance were obtained, with the performance confirmed of various kinds of equipment. Using the operating basis coat as the material, the coal charging operation of the Run-4-2 was commenced, with the performance verification test carried out for a neutron attenuation tracer method (NAT method), for the purpose of obtaining data of the flow characteristics of the liquefaction reaction tower. (NEDO)

  1. FGD Franchising Pilot Project of Thermal Power Plants

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    According to the national policy on enhancing environmental protection,the five major power generation companies are required to carry out flue gas desulphurization(FGD) franchising pilot project in thermal power plants.This paper introduces the development of this pilot project,including the foundation,purpose,objects,demands and procedures.It also discusses some main problems encountered during implementation,involving the understanding,legislation,financing,taxation,pricing and management of franchise.At...

  2. FY 1994 report on the results of the project supplementary to the New Sunshine Project - Development of the coal utilization hydrogen production technology. Ninth year - Part 2. Study using a pilot plant (Design/construction/operation study of the pilot plant and the dismantling study); 1994 nendo New Sunshine keikaku hojo jigyo Dai 9 nenji bun seika hokokusho - 2. Sekitan riyo suiso seizo gijutsu kaihatsu - Pilot plant ni yoru kenkyu (Pilot plant no sekkei kensetsu unten kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    In the R and D of the high temperature coal gasification technology by the entrained bed system which is the core technology of the coal utilization hydrogen production technology, the paper carried out the dismantling study of pilot plant and the summarization of the results. About the summarization of the results, as the results of the HYCOL operation study, there were insufficiencies in expansion of the coal kind used and acquisition of scale-up data, but it was verified that the conceptual design of the HYCOL method was fully applicable to the higher gasification efficiency, higher reliability, adaptability to many kinds of coal and compactness of facilities (low construction cost) which were the final subjects for the realization of commercial plant. This was highly evaluated. Especially, the greatest characteristic of the HYCOL method is the freedom in selection of temperature difference between the upper stage and lower stage, that is, temperatures can be controlled to temperatures they want in each of the upper stage and lower stage in the one-chamber gasifier according to coal properties and slagging control. The verification of this freedom was the base of the total results. Moreover, a reputation was being made that the gasification efficiency and process reliability are at the world's highest level. (NEDO)

  3. Solar Pilot Plant project review No. 9, May 4--5, 1977. CDRL item 10

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    Drawings and illustrations for the project review are presented. These are included for the 10 MW(e) solar pilot plant, the collector subsystem, the receiver subsystem, the electrical power generation system and balance of plant, plant controls and transient analysis, availability and safety, pilot and commercial plant designs, and summary and recommendations. (MHR)

  4. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Michael J. Holmes; Jason D. Laumb; Jill M. Mackenzie; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang

    2005-02-01

    The overall objective of the project was to develop advanced innovative mercury control technologies to reduce mercury emissions by 50%-90% in flue gases typically found in North Dakota lignite-fired power plants at costs from one-half to three-quarters of current estimated costs. Power plants firing North Dakota lignite produce flue gases that contain >85% elemental mercury, which is difficult to collect. The specific objectives were focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in electrostatic precipitators (ESPs) and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The approach to developing Hg control technologies for North Dakota lignites involved examining the feasibility of the following technologies: Hg capture upstream of an ESP using sorbent enhancement, Hg oxidation and control using dry scrubbers, enhanced oxidation at a full-scale power plant using tire-derived fuel and oxidizing catalysts, and testing of Hg control technologies in the Advanced Hybrid{trademark} filter.

  5. Electroosmotically enhanced sludge dewatering-pilot-plant study

    CSIR Research Space (South Africa)

    Smollen, M

    1994-01-01

    Full Text Available role in determining the ease or difficulty of phase separation. It seems that the inefficiency of dewatering applied to gelatinous and fine-particle sludges can be overcome by mechanical dewatering enhanced by electroosmosis. A prototype pilot-plant...

  6. Design of a uranium recovery pilot plant

    International Nuclear Information System (INIS)

    1984-01-01

    The engineering design of a pilot plant of uranium recover, is presented. The diagrams and specifications of the equipments such as pipelines, pumps, values tanks, filters, engines, etc... as well as metallic structure and architetonic design is also presented. (author)

  7. Introducing technology into medical education: two pilot studies.

    Science.gov (United States)

    George, Paul; Dumenco, Luba; Dollase, Richard; Taylor, Julie Scott; Wald, Hedy S; Reis, Shmuel P

    2013-12-01

    Educators are integrating new technology into medical curriculum. The impact of newer technology on educational outcomes remains unclear. We aimed to determine if two pilot interventions, (1) introducing iPads into problem-based learning (PBL) sessions and (2) online tutoring would improve the educational experience of our learners. We voluntarily assigned 26 second-year medical students to iPad-based PBL sessions. Five students were assigned to Skype for exam remediation. We performed a mixed-method evaluation to determine efficacy. Pilot 1: Seventeen students completed a survey following their use of an iPad during the second-year PBL curriculum. Students noted the iPad allows for researching information in real time, annotating lecture notes, and viewing sharper images. Data indicate that iPads have value in medical education and are a positive addition to the curriculum. Pilot 2: Students agreed that online tutoring is at least or more effective than in-person tutoring. In our pilot studies, students experienced that iPads and Skype are beneficial in medical education and can be successfully employed in areas such as PBL and remediation. Educators should continue to further examine innovative opportunities for introducing technology into medical education. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. The significance of the pilot conditioning plant (PKA) for spent fuel management

    International Nuclear Information System (INIS)

    Willax, H.O.

    1996-01-01

    The pilot conditioning plant (PKA) is intended as a multi-purpose facility and thus may serve various purposes involved in the conditioning or disposal of spent fuel elements or radwaste. Its design as a pilot plant permits development and trial of various methods and processes for fuel element conditioning, as well as for radwaste conditioning. (orig./DG) [de

  9. Radioactive Waste Disposal Pilot Plant concept for a New Mexico site

    International Nuclear Information System (INIS)

    Weart, W.D.

    1976-01-01

    Twenty years of investigation have shown that disposal of nuclear wastes in deep salt formations is the surest means of isolating these wastes from the biosphere for the extremely long period of time required. A large scale demonstration of this capability will soon be provided by a Radioactive Waste Disposal Pilot Plant (RWDPP) to be developed in southeastern New Mexico. Initially, the pilot plant will accept only ERDA generated waste; high level waste from the commercial power reactor fuel cycle will eventually be accommodated in the pilot plant and the initial RWDPP design will be compatible with this waste form. Selection of a specific site and salt horizon will be completed in June 1976. Conceptual design of the RWDPP and assessment of its environmental impact will be completed by June 1977. Construction is expected to start in 1978 with first waste accepted in 1982. The present concept develops disposal areas for all nuclear waste types in a single salt horizon about 800 meters deep. This single level can accommodate all low level and high level waste generated in the United States through the year 2010. A major constraint on the RWDPP design is the ERDA requirement that all waste be ''readily'' retrievable during the duration of pilot plant operation

  10. Report on the results of the R and D of a 200 t/d entrained bed coal gasification pilot plant. Summary - Part 1. Volume 1: Outline of the R and D/Volume 2: Outline of the details of execution of the R and D/Investigational study of verification plant; 1986- 200t/nichi funryusho sekitan gaska hatsuden pilot plant no kenkyu seika hokokusho (Matome). Sono 1. Dai 1 hen kenkyu kaihatsu no gaiyo, Dai 2 hen kenkyu kaihatsu jisshi keii no gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    A project was finished which had been carried out for 11 years since 1986 for technology of the entrained bed coal gasification power generation technology using a 200 t/d coal gasification combined cycle power generation pilot plant, and it was comprehensively summed up. In Volume 1: Outline of the R and D, the following were summarized: object and background, details of selection of the basic system, objectives and subjects of the R and D, developmental items of 200 t/d pilot plant, outline of pilot plant, place of execution of the R and D and system of the R and D, response to procedures for approval from government offices, etc. In Volume 2: Outline of the details of execution of the R and D, state of design/manufacture/construction, state of operational study, state of dismantling study, important notice at the time of design of pilot plant and the evaluation, outline of the execution of element study, outline of the details of the studies made public overseas. In Investigational study of verification plant, the basic viewpoint of conceptual design, conditions for conceptual design/basic design, outline of the results of the study every fiscal year, finally obtained results of the conceptual design, points to be considered in the design of verification plant, etc. (NEDO)

  11. Radioactive-waste isolation pilot plant

    International Nuclear Information System (INIS)

    Weart, W.D.

    1977-01-01

    The objective of the Waste Isolation Pilot Plant (WIPP) program is to demonstrate the suitability of bedded salt, specifically, the bedded salt deposits in the Los Medanos area of southeastern New Mexico, as a disposal medium for radioactive wastes. Our program responsibilities include site selection considerations, all aspects of design and development, technical guidance of facility operation, environmental impact assessment, and technical support to ERDA for developing public understanding of the facility

  12. Waste Isolation Pilot Plant No-migration variance petition

    International Nuclear Information System (INIS)

    1990-03-01

    This report describes various aspects of the Waste Isolation Pilot Plant (WIPP) including design data, waste characterization, dissolution features, ground water hydrology, natural resources, monitoring, general geology, and the gas generation/test program

  13. Pilot information needs survey regarding climate relevant technologies

    International Nuclear Information System (INIS)

    Van Berkel, R.; Van Roekel, A.

    1997-02-01

    The objective of this pilot survey was to arrive at a preliminary understanding of the initial technology and technology information needs in non-Annex II countries in order to support international efforts to facilitate the transfer of technologies and know-how conducive to mitigating and adapting to climate change. The study encompassed two main components, i.e. the development of a survey instrument and the execution of a pilot survey among selected non-Annex II countries. The survey instrument addresses the present status of enabling activities; technology and technology information needs; and issues related to information supply and accessibility. The survey was distributed to national focal points in 20 non-Annex II countries and to at least 35 other stakeholders in five of these non-Annex II countries. A total of 27 completed questionnaires were received, covering 10 non-Annex II countries. 3 refs

  14. Pilot information needs survey regarding climate relevant technologies

    Energy Technology Data Exchange (ETDEWEB)

    Van Berkel, R.; Van Roekel, A.

    1997-02-01

    The objective of this pilot survey was to arrive at a preliminary understanding of the initial technology and technology information needs in non-Annex II countries in order to support international efforts to facilitate the transfer of technologies and know-how conducive to mitigating and adapting to climate change. The study encompassed two main components, i.e. the development of a survey instrument and the execution of a pilot survey among selected non-Annex II countries. The survey instrument addresses the present status of enabling activities; technology and technology information needs; and issues related to information supply and accessibility. The survey was distributed to national focal points in 20 non-Annex II countries and to at least 35 other stakeholders in five of these non-Annex II countries. A total of 27 completed questionnaires were received, covering 10 non-Annex II countries. 3 refs.

  15. Sharing five years of pilot plant experience on aromatics extraction with ionic liquids

    NARCIS (Netherlands)

    Onink, S.A.F.; Hansmeier, A.R.; Meindersma, G.W.; Haan, de A.B.

    2011-01-01

    Since 2004 pilot plant trials have been conducted with various contactors and different ionic liquids for petrochemical model feeds as well as real refinery feeds. Our pilot plant contains several columns (rotating disc contactor, Kuhni, pulsed disc and donut column) with a height of 6 m and 5 cm

  16. Identification of Radioactive Pilot-Plant test requirements

    Energy Technology Data Exchange (ETDEWEB)

    Powell, W.J.; Riebling, E.F.

    1995-05-09

    Radioactive Pilot-Plant testing needs and alternatives are evaluated for enhanced Sludge Washing and High and Low-Level Vitrification efforts. Also investigated was instrument and equipment testing needs associated with the vitrification and retrieval process. The scope of this document is to record the existing March 1994 letter report for future use. A structured Kepner-Trego{trademark} decision analysis process was used to assist analysis of the testing needs. This analysis provided various combinations of laboratory and radioactive (hot) and cold pilot testing options associated with the above need areas. Recommendations for testing requirements were made.

  17. Identification of Radioactive Pilot-Plant test requirements

    International Nuclear Information System (INIS)

    Powell, W.J.; Riebling, E.F.

    1995-01-01

    Radioactive Pilot-Plant testing needs and alternatives are evaluated for enhanced Sludge Washing and High and Low-Level Vitrification efforts. Also investigated was instrument and equipment testing needs associated with the vitrification and retrieval process. The scope of this document is to record the existing March 1994 letter report for future use. A structured Kepner-Trego trademark decision analysis process was used to assist analysis of the testing needs. This analysis provided various combinations of laboratory and radioactive (hot) and cold pilot testing options associated with the above need areas. Recommendations for testing requirements were made

  18. Preliminary design needs for pilot plant of Monazite processing into Thorium Oxide (ThO_2)

    International Nuclear Information System (INIS)

    Hafni Lissa Nuri; Prayitno; Abdul Jami; M-Pancoko

    2014-01-01

    Data and information collection aimed in order to meet the needs of the initial design for pilot plant of monazite processing into thorium oxide (ThO_2). The content of thorium in monazite is high in Indonesia between 2.9 to 4.1% and relatively abundant in Bangka Belitung Islands. Thorium can be used as fuel because of its potential is more abundant instead of uranium. Plant of thorium oxide commercially from monazite established starting from pilot uranium. Plant of thorium oxide commercially from monazite established starting from pilot plant in order to test laboratory data. Pilot plant design started from initial design, basic design, detailed design, procurement and construction. Preliminary design needs includes data feed and products, a block diagram of the process, a description of the process, the determination of process conditions and type of major appliance has been conducted. (author)

  19. General Atomic HTGR fuel reprocessing pilot plant: results of initial sequential equipment operation

    International Nuclear Information System (INIS)

    1978-09-01

    In September 1977, the processing of 20 large high-temperature gas-cooled reactor (LHTGR) fuel elements was completed sequentially through the head-end cold pilot plant equipment. This report gives a brief description of the equipment and summarizes the results of the sequential operation of the pilot plant. 32 figures, 15 tables

  20. FY 1993 report on the results of the subsidy project for the Sunshine Project. Development of coal use hydrogen production technology (Support study of pilot plant - Trial development of materials of plant use equipment); 1993 nendo Sunshine keikaku hojo jigyo seika hokokusho. Sekitan riyo suiso seizo gijutsu kaihatsu - Pilot plant no shien kenkyu (Plant yo kiki zairyo no shisaku kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    As to the development of coal use hydrogen production technology, the paper made the test study on the improvement of gasifier use materials and evaluation of the characteristics, the evaluation test in the environment using the actual machine, etc., and the FY 1993 results were reported. The results of the study were as follows. Concerning the shaped refractory for gasifier hearth, it was found that high chromia base and picrochromite base refractory development materials had much more excellent coal slag resistance than other existing component-system materials. It was shown that the development materials began to deteriorate under the coal gasification environment at temperatures of about 1,500 degrees C or higher. As to the mullite ceramics, a possibility was shown of improving the slag permeation resistance by making the crystal grain coarse by long-time sintering. By the survey of the state of damage of the proposed materials (refractory and iridium) used in the operational environment of the pilot plant, the outlook for use limit was made clear. In the environment test using the actual machine on the proposed metal base alloy of the typical equipment of the pilot plant, the correspondence between the operational environment and material corrosion was made clear. (NEDO)

  1. Gas power plant with CO2 handling. A study of alternative technologies

    International Nuclear Information System (INIS)

    Bolland, Olav; Hagen, Roger I.; Maurstad, Ola; Tangen, Grethe; Juliussen, Olav; Svendsen, Hallvard

    2002-01-01

    The report documents a study which compares 12 different technologies for gas power plants with CO 2 handling. The additional costs in removing the CO 2 in connection with electricity production is calculated to at least 18-19 oere /kWh compared to conventional gas power production without CO 2 capture. The calculated extra costs are somewhat higher than previously published figures. The difference is mainly due to that the estimated costs for pipelines and injection system for CO 2 are higher than in other studies. The removal of CO 2 in connection with gas power production implies increased use of natural gas. The most developed technologies would lead to a procentual increase in the gas consumption per kWh electricity of 18-25%. Gas power plants based on the present technologies would have efficiencies in the size of 46-49%. The efficiency of power plants without CO 2 handling is supposed to be 58%. There is no foundation for pointing out a ''winner's' among the compared technologies in the study. The present available technologies excepted, there are no technology which stands out as better than the others from an economic viewpoint. Gas turbine with membrane based separation of oxygen from air (AZEP) has a potential for lower costs but implies challenging technological development and thence considerable technological risks. Two technologies, capture of carbon from natural gas previous to combustion and exhaust gas purification based on absorption, may be employed in 3 - 4 years. The other technologies require more development and maturing. Three of the technologies may be particularly interesting because hydrogen may be produced as a byproduct. Demonstration plant and choice of technology: 1) There is a limited need for demonstration plants with respect to technology development. 2) It is important for the technology development to be able to test various technologies in a laboratory or in a flexible pilot plant. 3) Many technologies and components may be

  2. Encapsulation pilot plant of radioactive wastes in thermosetting resins

    International Nuclear Information System (INIS)

    1982-01-01

    The thermosetting resins (polyesters, epoxides) are used to encapsulate the low and intermediate - level radioactive wastes. The testing program concerning the drums produced by the pilot plant of the Chooz nuclear power plant is described. The installation operating is examined while thinking of the industrial application. The production costs are then evaluated

  3. Pilot project of atomic energy technology record

    International Nuclear Information System (INIS)

    Song, K. C.; Kim, Y. I.; Kim, Y. G.

    2011-12-01

    Project of the Atomic Energy Technology Record is the project that summarizes and records in each category as a whole summary from the background to the performance at all fields of nuclear science technology which researched and developed at KAERI. This project includes Data and Document Management System(DDMS) that will be the system to collect, organize and preserve various records occurred in each research and development process. To achieve these goals, many problems should be solved to establish technology records process, such as issues about investigation status of technology records in KAERI, understanding and collection records, set-up project system and selection target field, definition standards and range of target records. This is a research report on the arrangement of research contents and results about pilot project which records whole nuclear technology researched and developed at KAERI in each category. Section 2 summarizes the overview of this pilot project and the current status of technology records in domestic and overseas, and from Section 3 to Section 6 summarize contents and results which performed in this project. Section 3 summarizes making TOC(Table of Content) and technology records, Section 4 summarizes sectoral templates, Section 5 summarizes writing detailed plan of technology records, and Section 6 summarizes Standard Document Numbering System(SDNS). Conclusions of this report are described in Section 7

  4. Technology Cooperation Agreement Pilot Project (TCAPP)

    Energy Technology Data Exchange (ETDEWEB)

    Keegan, P.; Benioff, R.

    1999-10-20

    The Technology Cooperation Agreement Pilot Project (TCAPP) is helping developing countries design and implement actions to attract investment in clean energy technologies that will meet their economic development goals, while mitigating greenhouse gas emissions. TCAPP was launched by three US government agencies -- the US Agency for International Development (USAID), the US Environmental Protection Agency (USEPA), and the US Department of Energy (USDOE) -- in August 1997 to establish a model for climate change technology cooperation with developing and transition countries. This report describes the TCAPP approach and the significant progress made by the participating countries.

  5. 75 FR 69049 - Expansion and Extension of the Green Technology Pilot Program

    Science.gov (United States)

    2010-11-10

    ... under the Green Technology Pilot Program is available on the USPTO's Internet Web site at http://www... Extension of the Green Technology Pilot Program AGENCY: United States Patent and Trademark Office, Commerce...) implemented the Green [[Page 69050

  6. A technical pilot plant assessment of flue gas desulfurisation in a circulating fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, F.J.; Ollero, P. [Universidad de Sevilla (Spain). Dept. de Ingenieria Quimica y Ambiental; Cabanillas, A.; Otero, J. [Centro de Investigaciones Energeticas y Medioambientales, (CIEMAT), Madrid (Spain)

    2002-11-01

    Flue gas desulfurisation in a circulating fluidised bed absorber (CFBA) is quite a novel dry desulfurisation technology [6th International Conference on Circulating Fluidised Beds (1999) 601] that shows significant advantages in comparison with other dry technologies and that could also be competitive with the widely-used wet FGD technology. This experimental study analyses the performance of a flue gas treatment plant comprising a CFBA and an electrostatic precipitator (ESP). The most significant aspects considered in this study are: the effect of precollecting the fly ash, the effect of the SO{sub 2} inlet concentration, the effect of power plant load changes, the contribution of the final particulate control equipment to the overall SO{sub 2} removal efficiency and the impact of the desulfurisation unit on the ESP behaviour and its final dust emissions. In addition, the behaviour of the integrated CFBA-ESP system with respect to the main operating parameters was studied by means of a fractional factorial design of experiments. All this experimental work was carried out in a 3-MWe equivalent pilot plant that processes real gases withdrawn from the Los Barrios Power Plant. Processing a flue gas with up to 2000 ppm SO{sub 2} concentration, a sulfur removal of 95-97% with a lime utilisation of 75% was achieved. A simple regression model to evaluate the efficiency of the whole system is also proposed.(author)

  7. Improvement of water treatment pilot plant with Moringa oleifera extract as flocculant agent.

    Science.gov (United States)

    Beltrán-Heredia, J; Sánchez-Martín, J

    2009-05-01

    Moringa oleifera extract is a high-capacity flocculant agent for turbidity removal in surface water treatment. A complete study of a pilot-plant installation has been carried out. Because of flocculent sedimentability of treated water, a residual turbidity occured in the pilot plant (around 30 NTU), which could not be reduced just by a coagulation-flocculation-sedimentation process. Because of this limitation, the pilot plant (excluded filtration) achieved a turbidity removal up to 70%. A slow sand filter was put in as a complement to installation. A clogging process was characterized, according to Carman-Kozeny's hydraulic hypothesis. Kozeny's k parameter was found to be 4.18. Through fouling stages, this k parameter was found to be up to 6.36. The obtained data are relevant for the design of a real filter in a continuous-feeding pilot plant. Slow sand filtration is highly recommended owing to its low cost, easy-handling and low maintenance, so it is a very good complement to Moringa water treatment in developing countries.

  8. FY 1991 report on the results of the development of an entrained bed coal gasification power plant. Part 4. Operation of pilot plant; 1991 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 4. Pilot plant unten sosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-01-01

    A record was summarized of the operation of the 200 t/d entrained bed coal gasification pilot plant that was constructed with the aim of establishing technology of the integrated coal gasification combined cycle power generation. As to the actual results of operation hours, the paper summarized the records of gasifier facilities, gas refining facilities, gas turbine facilities and safety environment facilities which were collected from April 1991 to January 1993. Relating to the actual results of start-up/stop, the paper summarized the records of gasifier facilities, gas refining facilities (desulfurization), gas refining facilities (dedusting), gas turbine facilities and safety environment facilities. Further, operation manuals were made for the schedule of plant start-up/stop, generalization, gasifier facilities, gas refining facilities (desulfurization), gas refining facilities (dedusting), gas turbine facilities, actual pressure/actual size combustor testing facilities and safety environment facilities. (NEDO)

  9. Textile wastewater treatment and reuse by solar catalysis: results from a pilot plant in Tunisia.

    Science.gov (United States)

    Bousselmi, L; Geissen, S U; Schroeder, H

    2004-01-01

    Based on results from bench-scale flow-film-reactors (FFR) and aerated cascade photoreactors, a solar catalytic pilot plant has been built at the site of a textile factory. This plant has an illuminated surface area of 50 m2 and is designed for the treatment of 1 m3 h(-1) of wastewater. The preliminary results are presented and compared with a bench-scale FFR using textile wastewater and dichloroacetic acid. Equivalent degradation kinetics were obtained and it was demonstrated that the solar catalytic technology is able to remove recalcitrant compounds and color. However, on-site optimization is still necessary for wastewater reuse and for an economic application.

  10. Decommissioning of uranium pilot plants at IPEN-CNEN/SP: Facilities dismantling, decontamination and reuse as new laboratories for strategic programs

    International Nuclear Information System (INIS)

    Oliveira Lainetti, P.; Freitas, A.; Cotrim, M.; Pires, M.

    2014-01-01

    Radical changes of the Brazilian nuclear policy, in the beginning of 1990s, determined the interruption of most nuclear fuel cycle activities and the facilities shutdown at IPEN. Those facilities had already played their roles of technological development and personnel's training, with transfer of the technology for institutions entrusted of the ''scale up'' of the units. Most of the pilot plants interrupted the activities more than ten years ago, due to the lack of resources for the continuity of the research. The appropriate facilities maintenance had been also harmed by the lack of resources, with evident signs of deterioration in structures and equipment. The existence of those facilities also implicated in the need of constant surveillance, representing additional obligations, costs and problems. It should be emphasized that one of the most concerning aspects, with relationship to the future of the facilities and the postponement of the dismantling, was the loss of the experience accumulated by the personnel that set up and operated the referred units. Besides the mentioned aspects, other reasons to promote the dismantling of the IPEN´s Nuclear Fuel Cycle Pilot Plants elapsed mainly from the need of physical space for new activities, since the R in the nuclear fuel cycle area were interrupted. In the last decade IPEN has changed its “nuclear profile” to a “comprehensive and multidisciplinary profile”. During this period, IPEN has been restructured in 13 Research Centers. With the end of most nuclear fuel cycle activities, the former facilities were distributed in four different centers: Environmental and Chemical Technology Center; Fuel Cell Center; Materials Science and Engineering Center; Nuclear Fuel Center. Each center has adopted a different strategy and priority to face the R problem and to reintegrate the areas. The resources available depend on the specific program developed in each area (resources available from other sources, not only CNEN

  11. Fiscal 1995 achievement report. Development of entrained bed coal gasification power plant (Part 4 - Pilot plant operation); 1995 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 4. Pilot plant unten sosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The 200 tons/day entrained bed coal gasification pilot plant constructed for establishing the technology of integrated coal gasification combined cycle was subjected to operational tests, and the fiscal 1995 results are compiled. In fiscal 1995, 1328 hours and 3 minutes (8 gasification operations) was recorded with gasification furnace facility, 899 hours and 53 minutes with the gas clean-up facility, 831 hours and 27 minutes with the gas turbine facility (11 startups for the generation of 6657 MWh), and 1958 hours and 2 minutes with the treatment furnace and 1331 hours and 10 minutes with the denitration unit of the safety/environment-related facility. The details of starts and stops were described in graphs which covered Runs D13, D14-1, D14-2, E1, D15, and A14. Operating procedures were studied and compiled for the plant start/stop schedule, general guidelines, gasification furnace facility, gas clean-up facility (dry type desulfurization facility), gas clean-up facility (dry type dedusting facility), gas turbine facility, real-pressure natural-size combustor test facility, and the safety/environment-related facility. (NEDO)

  12. Computer simulation of the off gas treatment process for the KEPCO pilot vitrification plant

    International Nuclear Information System (INIS)

    Kim, Hey Suk; Maeng, Sung Jun; Lee, Myung Chan

    1999-01-01

    Vitrification technology for treatment of low and intermediate radioactive wastes can remarkably reduce waste volume to about one twentieth of the initial volume as they are collected and converted into a very stable form. Therefore, it can minimize environmental impact when the vitrified waste is disposed of. But an off gas treatment system is necessary to apply this technology because air pollutants and radioisotopes are generated like those of other conventional incinerators during thermal oxidation process at high temperature. KEPCO designed and installed a pilot scale vitrification plant to demonstrate the feasibility of the vitrification process and then to make a conceptual design for a commercial vitrification facility. The purpose of this study was to simulate the off gas treatment system(OGTS) in order optimize the operating conditions. Mass balance and temperature profile in the off gas treatment system were simulated for different combinations of combustible wastes by computer simulation code named OGTS code and removal efficiency of each process was also calculated with change of design parameters. The OGTS code saved efforts,time and capital because scale and configuration of the system could be easily changed. The simulation result of the pilot scale off gas process as well as pilot tests will be of great use in the future for a design of the commercial vitrification facility. (author)

  13. FY 1996 report on the cooperative research on the development of environmentally friendly high efficiency mineral resource extraction/treatment technology. Basic design of pilot plant and a part of the detailed design; 1996 nendo kankyo chowagata kokoritsu kobutsu shigen chushutsu shori gijutsu no kaihatsu ni kansuru kenkyu kyoryoku. Pilot plant no kihon sekkei oyobi ichibu shosai sekkei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This project is a cooperative research on the development of environmental harmony type high efficiency mineral resource extraction/treatment technology. It aims to study/develop a system to recover valuable metals from unused resources in the Republic of Kazakhstan using the environmental harmony type technology which is easy to operate/maintain and is environmentally friendly with no mine pollution caused. In the project, which started in FY 1994, a pilot plant is finally constructed in Kazakhstan, a recovery system to be applied is demonstrated, and the comprehensive assessment of the system is made. Concretely, the recovery of Cu, Au, Ag, etc. is tried from the Nikolayevska low grade ore and Zhezkent tailings. This is a system into which the following techniques are integrated: treatment before dressing such as flotation, leaching of Cu, etc. by acid including bacteria, solvent leaching, electrowinning, cyanogen leaching activated carbon treatment and wastewater treatment of Au and Ag. As to the design/fabrication of pilot plant, conducted was the conceptual design in FY 1995, and the basic design, a part of the detailed design (crushing/grinding/leaching/dewatering facilities of the process of the acid (bacteria) leaching of Cu, etc.), and the fabrication in FY 1996. (NEDO).

  14. Investigation of Parameters Affecting Gypsum Dewatering Properties in a Wet Flue Gas Desulphurization Pilot Plant

    DEFF Research Database (Denmark)

    Hansen, Brian Brun; Kiil, Søren

    2012-01-01

    of impurities (0.002 M Al2F6; 50 g quartz/L; 0.02 M Al3+, and 0.040 M Mg2+) were investigated. In addition, slurry from a full-scale wet FGD plant, experiencing formation of flat shaped crystals and poor gypsum dewatering properties, was transferred to the pilot plant to test if the plant would now start...... to time. In this work, the particle size distribution, morphology, and filtration rate of wet FGD gypsum formed in a pilot-scale experimental setup, operated in forced oxidation mode, have been studied. The influence of holding tank residence time (10–408 h), solids content (30–169 g/L), and the presence...... to produce low quality gypsum. The crystals formed in the pilot plant, on the basis of the full-scale slurry did, however, show acceptable filtration rates and crystal morphologies closer to the prismatic crystals from after pilot plant experiments with demineralized water. The gypsum slurry filtration rates...

  15. Raft River binary-cycle geothermal pilot power plant final report

    Energy Technology Data Exchange (ETDEWEB)

    Bliem, C.J.; Walrath, L.F.

    1983-04-01

    The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

  16. Development of the Risk-Based Inspection Techniques and Pilot Plant Activities

    International Nuclear Information System (INIS)

    Phillips, J.H.

    1997-01-01

    Risk-based techniques have been developed for commercial nuclear power plants. System boundaries and success criteria is defined using the probabilistic risk analysis or probabilistic safety analysis developed to meet the individual plant evaluation. Final ranking of components is by a plant expert panel similar to the one developed for maintenance rule. Components are identified as being high risk-significant or low-risk significant. Maintenance and resources are focused on those components that have the highest risk-significance. The techniques have been developed and applied at a number of pilot plants. Results from the first risk-based inspection pilot plant indicates that safety due to pipe failure can be doubled while the inspection reduced to about 80% when compared with current inspection programs. The reduction in inspection reduces the person-rem exposure resulting in further increases in safety. These techniques have been documented in publication by the ASME CRTD

  17. Waste Isolation Pilot Plant transuranic wastes experimental characterization program: executive summary

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1978-11-01

    A general overview of the Waste Isolation Pilot Plant transuranic wastes experimental characterization program is presented. Objectives and outstanding concerns of this program are discussed. Characteristics of transuranic wastes are also described. Concerns for the terminal isolation of such wastes in a deep bedded salt facility are divided into two phases, those during the short-term operational phase of the facility, and those potentially occurring in the long-term, after decommissioning of the repository. An inclusive summary covering individual studies, their importance to the Waste Isolation Pilot Plant, investigators, general milestones, and comments are presented

  18. Waste Isolation Pilot Plant, Land Management Plan

    International Nuclear Information System (INIS)

    1993-01-01

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives

  19. Waste Isolation Pilot Plant, Land Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives.

  20. Progress in Developing a High-Availability Advanced Tokamak Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.; Goldston, R.; Kessel, C.; Neilson, G.; Menard, J.; Prager, S.; Scott, S.; Titus, P.; Zarnstorff, M., E-mail: tbrown@pppl.gov [Princeton University, Princeton Plasma Physics Laboratory, Princeton (United States); Costley, A. [Henley on Thames (United Kingdom); El-Guebaly, L. [University of Wisconsin, Madison (United States); Malang, S. [Fusion Nuclear Technology Consulting, Linkenheim (Germany); Waganer, L. [St. Louis (United States)

    2012-09-15

    Full text: A fusion pilot plant study was initiated to clarify the development needs in moving from ITER to a first of a kind fusion power plant, following a path similar to the approach adopted for the commercialization of fission. The mission of the pilot plant was set to encompass component test and fusion nuclear science missions yet produce net electricity with high availability in a device designed to be prototypical of the commercial device. The objective of the study was to evaluate three different magnetic configuration options, the advanced tokamak (AT), spherical tokamak (ST) and compact stellarator (CS) in an effort to establish component characteristics, maintenance features and the general arrangement of each candidate device. With the move to look beyond ITER the fusion community is now beginning to embark on DEMO reactor studies with an emphasis on defining configuration arrangements that can meet a high availability goal. In this paper the AT pilot plant design will be presented. The selected maintenance approach, the device arrangement and sizing of the in-vessel components and details of interfacing auxiliary systems and services that impact the ability to achieve high availability operations will be discussed. Efforts made to enhance the interaction of in-vessel maintenance activities, the hot cell and the transfer process to develop simplifying solutions will also be addressed. (author)

  1. Understanding and Modelling the Effect of Dissolved Metals on Solvent Degradation in Post Combustion CO2 Capture Based on Pilot Plant Experience

    Directory of Open Access Journals (Sweden)

    Sanjana Dhingra

    2017-05-01

    Full Text Available Oxidative degradation is a serious concern for upscaling of amine-based carbon capture technology. Different kinetic models have been proposed based on laboratory experiments, however the kinetic parameters included are limited to those relevant for a lab-scale system and not a capture plant. Besides, most of the models fail to recognize the catalytic effect of metals. The objective of this work is to develop a representative kinetic model based on an apparent auto-catalytic reaction mechanism between solvent degradation, corrosion and ammonia emissions. Measurements from four different pilot plants: (i EnBW’s plant at Heilbronn, Germany (ii TNO’s plant at Maasvlakte, The Netherlands; (iii CSIRO’s plants at Loy Yang and Tarong, Australia and (iv DONG Energy’s plant at Esbjerg, Denmark are utilized to propose a degradation kinetic model for 30 wt % ethanolamine (MEA as the capture solvent. The kinetic parameters of the model were regressed based on the pilot plant campaign at EnBW. The kinetic model was validated by comparing it with the measurements at the remaining pilot campaigns. The model predicted the trends of ammonia emissions and metal concentration within the same order of magnitude. This study provides a methodology to establish a quantitative approach for predicting the onset of unacceptable degradation levels which can be further used to devise counter-measure strategies such as reclaiming and metal removal.

  2. Systematic simulation of a tubular recycle reactor on the basis of pilot plant experiments

    Energy Technology Data Exchange (ETDEWEB)

    Paar, H; Narodoslawsky, M; Moser, A [Technische Univ., Graz (Austria). Inst. fuer Biotechnologie, Mikrobiologie und Abfalltechnologie

    1990-10-10

    Systematic simulatiom may decisively help in development and optimization of bioprocesses. By applying simulation techniques, optimal use can be made of experimental data, decreasing development costs and increasing the accuracy in predicting the behavior of an industrial scale plant. The procedure of the dialogue between simulation and experimental efforts will be exemplified in a case study. Alcoholic fermentation of glucose by zymomonas mobilis bacteria in a gasified turbular recycle reactor was studied first by systematic simulation, using a computer model based solely on literature data. On the base of the results of this simulation, a 0.013 m{sup 3} pilot plant reactor was constructed. The pilot plant experiments, too, were based on the results of the systematic simulation. Simulated and experimental data were well in agreement. The pilot plant experiments reiterated the trends and limits of the process as shown by the simulation results. Data from the pilot plant runs were then used to improve the simulation model. This improved model was subsequently used to simulate the performances of an industrial scale plant. The results of this simulation are presented. They show that the alcohol fermentation in a tubular recycle reactor is potentially advantageous to other reactor configurations, especially to continuous stirred tanks. (orig.).

  3. Tetrafluoride uranium pilot plant in operation at IEA, using the moving bed process

    International Nuclear Information System (INIS)

    Franca Junior, J.M.

    1975-01-01

    A UF 4 pilot plant, in operation at IEA, using the moving bed process is reported. UO 3 obtained from the thermal decomposition of ADU is used as a starting material in this pilot plant. The type of equipment and the process are both described. Ammonia gas (NH 3 ) was used in the reduction operation and anhydrous hydrofluoric acid (HF) in the hydrofluorination step

  4. Step 1: Human System Integration Pilot-Technology Interface Requirements for Weather Management

    Science.gov (United States)

    2005-01-01

    This document involves definition of technology interface requirements for Hazardous Weather Avoidance. Technology concepts in use by the Access 5 Weather Management Work Package were considered. Beginning with the Human System Integration (HIS) high-level functional requirement for Hazardous Weather Avoidance, and Hazardous Weather Avoidance technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge of hazardous weather, and (2) the control capability needed by the pilot to obtain hazardous weather information. Fundamentally, these requirements provide the candidate Hazardous Weather Avoidance technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how Hazardous Weather Avoidance operations and functions should interface with the pilot to provide the necessary Weather Management functionality to the UA-pilot system. Requirements and guidelines for Hazardous Weather Avoidance are partitioned into four categories: (1) Planning En Route (2) Encountering Hazardous Weather En Route, (3) Planning to Destination, and (4) Diversion Planning Alternate Airport. Each requirement is stated and is supported with a rationale and associated reference(s).

  5. [Yield of starch extraction from plantain (Musa paradisiaca). Pilot plant study].

    Science.gov (United States)

    Flores-Gorosquera, Emigdia; García-Suárez, Francisco J; Flores-Huicochea, Emmanuel; Núñez-Santiago, María C; González-Soto, Rosalia A; Bello-Pérez, Luis A

    2004-01-01

    In México, the banana (Musa paradisiaca) is cooked (boiling or deep frying) before being eaten, but the consumption is not very popular and a big quantity of the product is lost after harvesting. The unripe plantain has a high level of starch and due to this the use of banana can be diversified as raw material for starch isolation. The objective of this work was to study the starch yield at pilot plant scale. Experiments at laboratory scale were carried out using the pulp with citric acid to 0,3 % (antioxidant), in order to evaluate the different unitary operations of the process. The starch yield, based on starch presence in the pulp that can be isolated, were between 76 and 86 %, and the values at pilot plant scale were between 63 and 71 %, in different lots of banana fruit. Starch yield values were similar among the diverse lots, showing that the process is reproducible. The lower values of starch recovery at pilot plant scale are due to the loss during sieving operations; however, the amount of starch recovery is good.

  6. A pilot plant for solar-cell manufacture; Ligne pilote de fabrication de cellules solaires

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.; Ziegler, Y.; Closset, A. [VHF - Technologies SA, Yverdon-les-Bains (Switzerland)

    2005-07-01

    A pilot plant for the manufacture of amorphous silicon solar cells on plastic film substrate was built allowing the annual production of 40 kW peak power. The production steps comprise: a) the continuous coating of n-i-p solar cells by VHF-PECVD with a capacity of 28.5 meters in 8.5 hours; b) transparent-conducting-oxide (TCO) top contact structuring using a continuous process; c) series connection step (scribing and Ag-paste) with a capacity of 28 meters in 6 hours; d) back and top contact sputtering with 3 parallel magnetrons; e) integration of a large-area vacuum laminator enabling the simultaneous lamination of 4 products of 4 Wp. In parallel with this project, a complete cost model was established enabling a more quantitative approach of the future technological and industrial strategy of the company. An increase of the capacity to 100 kWp has been planned for summer 2005.

  7. Pilot studies on management of ageing of nuclear power plant components: Results of Phase 1

    International Nuclear Information System (INIS)

    1992-10-01

    To facilitate cooperation between the IAEA Member States and thus to enhance the safety and reliability of operating nuclear plants the IAEA has initiated pilot studies on the management of ageing of four representative plant components: the primary nozzle of the reactor pressure vessel, a motor operated valve, the concrete containment building and instrumentation and control cables. Phase 1 of the studies has been completed and its results are presented in this report. The report documents current understanding of ageing and methods for monitoring and mitigation of this ageing for the above components, identifies existing knowledge and technology gaps and defines follow-up work to deal with these gaps. Refs, figs and tabs

  8. Achievement report for fiscal 1993 on developing entrained bed coal gasification power plant. Part 2. Summary of tests and researches on pilot plant operation; 1993 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 2. Pilot plant unten shiken kenkyu no gaiyo hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    Tests and researches have been carried out on operation of a 200-t/d entrained bed coal gasification pilot plant built with an objective of establishing the coal gasification composite power generation technology. This paper summarizes the achievements in fiscal 1993. The current fiscal year has performed the test operation on the pilot plant as a whole by using the coal D in continuation from the previous fiscal year. For the gasification furnace facilities, an air variation test was conducted for charging coal into the gasification furnace by using recovered oxygen, wherein satisfactory control was verified on oxygen concentration in the air supplied into the gasification furnace. In the gas refining facilities (dry desulfurizing facilities), the total sulfur concentration at 300 to 650 ppm in the gas produced from the coal gasification furnace was refined to 30 to 100 ppm, having achieved the initial target value. The gas refining facilities (dry dust collecting facilities) have achieved satisfactory result that the entrance dust concentration at 66 to 270 mg/Nm{sup 3} was reduced to the exit dust concentration at 1 to 3 mg/Nm{sup 3}. With respect to the gas turbine facilities, the planned values of output and thermal efficiency were satisfied, having derived good performance characteristics. (NEDO)

  9. Studying on design of a complete pilot plant for processing sandstone ores in Pa Lua-Pa Rong area

    International Nuclear Information System (INIS)

    Le Quang Thai; Tran Van Son; Vu Khac Tuan; Tran The Dinh; Trinh Nguyen Quynh; Doan Thi Mo; Nguyen Hong Ha; Bui Thi Bay; Pham Minh Tuan; Than Van Lien

    2015-01-01

    Design, construction and operation of a pilot for processing uranium containing ores are important stages in the process of project development of uranium production from ores because uranium contained minerals and the composition of minerals are unstable factors. In this case, pilot needs to be a simulation of a plant in the future, but with upgrade equipment compared that at laboratory scale. Results of lab research were used to select the most appropriate process for ore processing and selection of equipment for each stages. In the circumstance when there has been a lack of experience in processing uranium ores in Vietnam, the design and construction of such a pilot with completed technological procedures are essential. The main purpose of this work is to verify results of lab researches and optimize operational parameters of the process. In addition, several purposes were also considered such as study on the effects of solution circulation/recycling and accumulation of impurities in a long run; obtain necessary and sufficient information for design, cost estimate for investment and operation. The pilot only can achieve the expected objectives when ore sources (including reserves and characteristics) are determined; a complete technological process for obtaining technical uranium (yellowcake) is designed; investment and operational capitals are estimated and these estimates show the costs and benefits of the process. In this article, the authors will focus on the presentation of research results, including data on ore, process technology, material balance, pilot scale, the basic parameters of equipment, installation diagram of equipment, construction, power and water needs identification, preliminary calculation of investment and operational costs. (author)

  10. The Marcoule pilot plant

    International Nuclear Information System (INIS)

    Faugeras, P.; Calame Longjean, A.; Le Bouhellec, J.; Revol, G.

    1986-06-01

    The Marcoule spent fuel reprocessing pilot facility was built in 1960-1961 for extended testing of the PUREX process with various types of fuel under conditions similar to those encountered in a production plant. Extensive modification work was undertaken on the facility in 1983 in the scope of the TOR project, designed with the following objectives: - increase the throughput capacity to at least 5 metric tons of PHENIX equivalent fuel per year, - extend equipment and process R and D capability, - improve job safety by maximum use of remote handling facilities, - maximize waste conditioning treatments to produce waste forms suitable for direct storage, - provide a true industrial process demonstration in continuous operation under centralized control using computerized procedures. The redesigned plant is scheduled to begin operation during the second half of 1986. The proximity of the Industrial Prototypes Service and the ATALANTE radiochemical research laboratory scheduled to begin operation in 1990, will provide a synergistic environment in which R and D program may be carried out under exceptional conditions

  11. Operation of a pilot plant for the maize desinfestation by irradiation

    International Nuclear Information System (INIS)

    Piedad Beneitez, A. de la.

    1975-01-01

    The paper describes the components and the operation of a pilot plant for radiation disinfestation of maize that has been set up at the Van de Graaff Accelerator Laboratory of the Physics Institute (Mexican National Autonomous University). The Laboratory is operated jointly by the Physics Institute and Technology Programme (National Nuclear Energy Institute). A section is included on the fundamentals and terminology relating to the applications of radiation. The present status of radiation disinfestation of maize in other countries is described, together with what has been achieved at this Laboratory. Another section deals in detail with the main components of the plant and its operation. Finally, the authors describe the experiments carried out with the plant to establish optimum conditions of operation prior to the irradiation of maize on a major scale. One such experiment involved determining the uniformity of the beam over the irradiation zone, for which purpose polyvinyl chloride films were used as dosimeters. The dose received by the maize in a single run past the irradiation head was likewise determined from the thermoluminescent response of powdered lithium fluoride irradiated in capsules along with the maize kernels. (author)

  12. Waste Isolation Pilot Plant 2001 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse TRU Solutions, Inc.

    2002-09-20

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  13. Waste Isolation Pilot Plant 2001 Site Environmental Report

    International Nuclear Information System (INIS)

    Westinghouse TRU Solutions, Inc.

    2002-01-01

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment

  14. Waste Isolation Pilot Plant 1999 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Roy B.; Adams, Amy; Martin, Don; Morris, Randall C.; Reynolds, Timothy D.; Warren, Ronald W.

    2000-09-30

    The U.S. Department of Energy's (DOE)Carlsbad Area Office and the Westinghouse Waste Isolation Division (WID) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 1999 Site Environmental Report summarizes environmental data from calendar year 1999 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year 1999. WIPP received its first shipment of waste on March 26, 1999. In 1999, no evidence was found of any adverse effects from WIPP on the surrounding environment. Radionuclide concentrations in the environment surrounding WIPP were not statistically higher in 1999 than in 1998.

  15. Fiscal 1994 achievement report. Development of entrained bed coal gasification power plant (Part 4 - Pilot plant operation); 1994 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 4. Pilot plant unten sosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The 200 tons/day entrained bed coal gasification pilot plant constructed for the establishment of the technology of integrated coal gasification combined cycle power generation was operated for testing, and the results are put together. Operating hours recorded were 1347 hours and 7 minutes for the gasification furnace facility (7 gasification operations), 752 hours and 22 minutes for the gas clean-up facilities, 425 hours and 20 minutes for the gas turbine facility (6 startups for generating 2616.1 MWh), and 1852 hours for the treatment furnace and 1304 hours and 32 minutes for the denitration system in the safety/environment-related facility. Detailed graphs were drawn for the description of starts and stops in Run D8, Run D9 (1-3), Run D10, Run D11, and in Run D12. Operating procedures were studied and then compiled for the plant start-stop schedule, general guidelines, gasification furnace facility, gas clean-up facility (dry type desulfurization facility), gas clean-up facility (dry type dedusting facility), gas turbine facility, real-pressure natural-size combustor test facility, and for the safety/environment related facility. (NEDO)

  16. Pilot demonstrations of arsenic treatment technologies in U.S. Department of Energy Arsenic Water Technology Partnership program.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Randy L.; Aragon, Alicia R.; Siegal Malcolm D.; Dwyer, Brian P.

    2005-01-01

    The Arsenic Water Technology Partnership program is a multi-year program funded by a congressional appropriation through the Department of Energy. The program is designed to move technologies from benchscale tests to field demonstrations. It will enable water utilities, particularly those serving small, rural communities and Indian tribes, to implement the most cost-effective solutions to their arsenic treatment needs. As part of the Arsenic Water Technology Partnership program, Sandia National Laboratories is carrying out field demonstration testing of innovative technologies that have the potential to substantially reduce the costs associated with arsenic removal from drinking water. The scope for this work includes: (1) Selection of sites and identification of technologies for pilot demonstrations; (2) Laboratory studies to develop rapid small-scale test methods; and (3) Pilot-scale studies at community sites involving side-by-side tests of innovative technologies. The goal of site selection is to identify sites that allow examination of treatment processes and systems under conditions that are relevant to different geochemical settings throughout the country. A number of candidate sites have been identified through reviews of groundwater quality databases, conference proceedings and discussions with state and local officials. These include sites in New Mexico, Arizona, Colorado, Oklahoma, Michigan, and California. Candidate technologies for the pilot tests are being reviewed through vendor forums, proof-of-principle benchscale studies managed by the American Water Works Association Research Foundation (AwwaRF) and the WERC design contest. The review considers as many potential technologies as possible and screens out unsuitable ones by considering data from past performance testing, expected costs, complexity of operation and maturity of the technology. The pilot test configurations will depend on the site-specific conditions such as access, power availability

  17. Developing linear-alpha-olefins technology. From laboratory to a commercial plant

    Energy Technology Data Exchange (ETDEWEB)

    Meiswinkel, A.; Woehl, A.; Mueller, W.; Boelt, H. [Linde AG, Pullach (Germany)

    2011-07-01

    Linear {alpha}-Olefins (LAOs) are used in several applications in chemical industry. Together with SABIC (Saudi Basic Industries Corporation) Linde jointly developed the {alpha}-SABLIN technology for a full range LAO plant as well as a 1-Hexene selective ''On Purpose'' technology (LAO OP) to cover the rapidly increasing demand for this specific comonomer. The {alpha}-SABLIN as well as the OP technology are both homogenously catalyzed systems. This is raising special challenges concerning process and reactor design compared to much more established heterogeneous systems in chemical industry. E.g., the reactor concept is a bubble-column which allows efficient mixing as well as cooling of the reaction mixture. The development of the process was based on laboratory experiments which - based on an initial conceptual design for a large scale technical process - were first transformed into a pilot device before the commercial plant was designed, engineered and successfully started up and declared as commercialized. Today the {alpha}-SABLIN technology is the only LAO technology with a commercial reference which is free for licensing. A lot of experience and knowledge from the {alpha}-SABLIN development and commercial operation was gained. Although newly developed OP technology is based on a different catalytic system, this experience is now utilized and transformed within the commercialization of this new technological development. (orig.)

  18. Prototype plant for nuclear process heat (PNP) - operation of the pilot plant for hydrogasification of coal

    International Nuclear Information System (INIS)

    Bruengel, N.; Dehms, G.; Fiedler, P.; Gerigk, H.P.; Ruddeck, W.; Schrader, L.; Schumacher, H.J.

    1988-04-01

    The Rheinische Braunkohlenwerke AG developed the process of hydrogasification of coal in a fluidized bed for generation of SNG. On basis of test results obtained in a semi-technical pilot plant of a through-put of 250 kg/h dried coal a large pilot plant was erected processing 10 t/h dried brown coal. This plant was on stream for about 14700 h, of which about 7800 h were with gasifier operation; during this time about 38000 t of dried brown coal of the Rhenish district were processed containing 4 to 25% of ash. At pressures of 60 to 120 bar and temperatures of 800 to 935 0 C carbon conversion rates up to 81 percent and methane amounts of 5000 m 3 (STP)/h were reached. The decisive parameter for methane generation was the hydrogen/coal-ratio. Even at high moisture contents, usually diminishing the methane yield from the coal essentially, by high hydrogen/coal-ratios high methane yields could be obtained. The gasifier itself caused no troubles during the total time operation. Difficulties with the original design of the residual char cooler could be overcome by change-over from water injection to liquid carbon dioxide. The design of the heat recovery system proved well. Alltogether so the size increasement of the gasifier from the semi-technical to the large pilot plant as well as the harmonization of gas generation and gas refining was proved. (orig.) With 20 refs., 20 tabs., 81 figs [de

  19. SkyMine Carbon Mineralization Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, Norm; Walters, Jerel

    2014-12-31

    This Topical Report addresses accomplishments achieved during Phase 2b of the SkyMine® Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO2 from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO2 to products having commercial value (i.e., beneficial use), show the economic viability of the CO2 capture and conversion process, and thereby advance the technology to the point of readiness for commercial scale demonstration and deployment. The overall process is carbon negative, resulting in mineralization of CO2 that would otherwise be released into the atmosphere. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at the commercial scale. The project is being conducted in two phases. The primary objectives of Phase 1 were to evaluate proven SkyMine® process chemistry for commercial pilot-scale operation and complete the preliminary design for the pilot plant to be built and operated in Phase 2, complete a NEPA evaluation, and develop a comprehensive carbon life cycle analysis. The objective of Phase 2b was to build the pilot plant to be operated and tested in Phase 2c.

  20. The working of RVNRL pilot plant of Rubber Board and it's safety devices

    International Nuclear Information System (INIS)

    Britto, I.J.; Thomas, E.V.

    1996-01-01

    A pilot plant for producing radiation vulcanized natural rubber latex (RVNRL) was established at Rubber Board, India in 1992. Irradiation is done by a batch process in the plant. The plant has a versatile safety system for safety of operators and people working in and around the plant

  1. Waste Isolation Pilot Plant Technical Assessment Team Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-17

    This report provides the results of the Waste Isolation Pilot Plant (WIPP) technical assessment led by the Savannah River National Laboratory and conducted by a team of experts in pertinent disciplines from SRNL and Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (SNL).

  2. Report on results for fiscal 1997 (B edition) on development of coal liquefaction technology. Development of bituminous coal liquefaction technology (research by pilot plant) 1/2; 1997 nendo sekitan ekika gijutsu kaihatsu seika hokokusho (B ban). Rekiseitan ekika gijutsu no kaihatsu (pilot plant ni yoru kenkyu) 2/2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This paper reports the operation of a pilot plant of a bituminous coal liquefaction technology as the 1/2 report. The operation research of the Run-2 through the Run-4-2 was conducted using, as the material, tanitoharum coal which is operating basis coal. The Run-2 achieved a coal charging continuous operation for 42 days. During the operation of 80% slurry supply load, various data were obtained including material balance under the NEDOL standard liquefaction conditions, with a liquefaction yield of 54% daf coal achieved. Steam blowing into the heating tube was found effective as measures to cope with coking generation in the heating furnace of a vacuum distillation tower. The softening point of liquefaction residuals was improved to 178 degrees C through the extracting adjustment of reduced pressure heavy gravity light oil fraction for washing. The Run-3/4-1 achieved a plant load ratio of 100% and a long-term coal charging continuous operation for 80 days, while the Run-3 achieved a slurry supply load of 100% under the NEDOL standard liquefaction conditions. The Run-4-1 achieved a high liquefaction yield of 58wt% daf coal. Performance was confirmed of a neutron beam source irradiation apparatus/measuring system and a tracer injection equipment. (NEDO)

  3. ISO New England: Results of Ancillary Service Pilot Programs, Alternative Technology Regulation Pilot Program and Demand Response Reserves Pilot Program

    Energy Technology Data Exchange (ETDEWEB)

    Lowell, Jon [ISO New England, Holyoke, MA (United States); Yoshimura, Henry [ISO New England, Holyoke, MA (United States)

    2011-10-26

    This PowerPoint presentation compares performance of pilot program assets and generation resources in alternative technology regulation and demand response reserves for flywheels and residential electric thermal storage.

  4. Pilot plant production at Riso of LEU silicide fuel for the Danish reactor DR3

    International Nuclear Information System (INIS)

    Toft, P.; Borring, J.; Adolph, E.

    1988-01-01

    A pilot plant for fabricating LEU silicide fuel elements has been established at Riso National Laboratory. Three test elements for the Danish reactor DR3 have been fabricated, based on 19.88% enriched U 3 Si 2 powder that has been purchased elsewhere. The pilot plant has been set up and 3 test elements fabricated without any major difficulties

  5. FY 1993 report on the results of the subsidy project for the Sunshine Project. Development of coal use hydrogen production technology (Support study of pilot plant - Study using the small equipment); 1993 nendo Sunshine keikaku hojo jigyo seika hokokusho. Sekitan riyo suiso seizo gijutsu kaihatsu - Pilot plant no shien kenkyu (Kogata souchi ni yoru kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    As to the development of coal use hydrogen production technology, the paper studied the reactivity of char and ignition characteristics of various coals in the use of electric furnace and the participation in pilot plant test and the improvement, and the FY 1993 results were reported. In the study of reactivity of char, it was found that the reactivity was the same, regardless of the equipment and kind of raw coal, if considered of the ratio of the total oxygen amount (the char-containing oxygen amount added to the oxygen supply amount) to the carbon supply amount in char. In the test on ignition characteristics of overseas coals, the same characteristics as those of the Taiheiyo coal conventionally tested were obtained and it was found that it was good to use the same method for start-up of gasifier as conventionally used. In the pilot plant test in the previous year, slag and ash stuck to the outlet of the gasification part and heat recovery part and developed, which hindered the continued operation. To improve it, the following were carried out: model study, study of ash sintering, study using the synthetic test equipment, analysis of the deposit in gasifier, etc. Based on these results, the plant was improved, and the continued operation of 1,149 hours was stably achieved in RUN8. (NEDO)

  6. 10-MWe pilot-plant-receiver panel test requirements document solar thermal test facility

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-25

    Testing plans for a full-scale test receiver panel and supporting hardware which essentially duplicate both physically and functionally, the design planned for the Barstow Solar Pilot Plant are presented. Testing is to include operation during normal start and shutdown, intermittent cloud conditions, and emergencies to determine the panel's transient and steady state operating characteristics and performance under conditions equal to or exceeding those expected in the pilot plant. The effects of variations of input and output conditions on receiver operation are also to be investigated. Test hardware are described, including the pilot plant receiver, the test receiver assembly, receiver panel, flow control, electrical control and instrumentation, and structural assembly. Requirements for the Solar Thermal Test Facility for the tests are given. The safety of the system is briefly discussed, and procedures are described for assembly, installation, checkout, normal and abnormal operations, maintenance, removal and disposition. Also briefly discussed are quality assurance, contract responsibilities, and test documentation. (LEW)

  7. Experimental investigation of the chemical looping method on a 1 MW pilot plant; Experimentelle Untersuchung des Chemical Looping Verfahrens an einer 1 MW Versuchsanlage

    Energy Technology Data Exchange (ETDEWEB)

    Orth, Matthias

    2014-08-27

    Attempting to counteract the consequences of climate change, leading industrial nations have agreed on reducing their CO{sub 2} emissions significantly. To reach these reduction goals, it is essential to reduce the CO{sub 2} emissions in the field of energy conversion. This PHD thesis covers the field of chemical looping combustion, a technology that uses fossil fuels for energy conversion with inherent capture of CO{sub 2}. Since the research regarding chemical looping had so far focused mainly on lab scale or small scale experiments, a 1 MW pilot plant has been erected at Technische Universitaet Darmstadt in order to investigate the process in a semi-industrial scale and to check the process efficiency with commercially usable equipment. This pilot consists of two interconnected fluidized bed reactors and has an overall height of more than 11 m. In this thesis, some experiments with ilmenite - used as the oxygen carrier - are explained. Furthermore, the design, erection and commissioning of the pilot plant are presented as well as the results of the first test campaigns. The evaluation of the latter proves that the process can be handled in the design configuration and that CO{sub 2} can be safely captured in a pilot plant of this scale.

  8. Safety concerning the alteration in fuel material usage (new installation of the uranium enrichment pilot plant) at Ningyo Pass Mine of Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    1978-01-01

    A report of the Committee on Examination of Nuclear Fuel Safety was presented to the Atomic Energy Commission of Japan, which is concerned with the safety in the alteration of fuel material usage (new installation of the uranium enrichment pilot plant) at the Ningyo Pass Mine. Its safety was confirmed. The alteration, i.e. installation of the uranium enrichment pilot plant, is as follows. Intended for the overall test of centrifugal uranium enrichment technology, the pilot plant includes a two-storied main building of about 9,000 m 2 floor space, containing centrifuges, UF 6 equipment, etc., a uranium storage of about 1,000 m 2 floor space, and a waste water treatment facility, two-storied with about 300 m 2 floor space. The contents of the examination are safety of the facilities, criticality control, radiation control, waste treatment, and effects of accidents on the surrounding environment. (Mori, K

  9. Field-reversed mirror pilot reactor. Annual report

    International Nuclear Information System (INIS)

    Devoto, R.S.; Erickson, J.L.; Fink, J.H.

    1980-09-01

    This report concludes a two-year effort to design a near-term small-scale fusion power plant which, through its construction and operation, would be a direct and important step toward the commercialization of fusion energy. The fusion reactor pilot plant was designed under the ground rules that it must produce net power, be compact, have minimum total cost, and use near-term (late 1980's) engineering technology. The neutral beam driven, field-reversed mirror (FRM) was selected as the fusion plasma confinement concept around which the pilot plant was designed. Although the physics data base for this design is not yet well in hand, it is being pursued within the magnetic field-reversal framework of the US Mirror Fusion Program. Depending on the plasma size, the pilot plant would gross up to 19.8 MW(e) and would produce up to 10.7 MW(e) net, with the recirculated power used principally for the neutral beam injectors and refrigeration for the superconducting magnets

  10. The design of a continuous ion-exchange pilot plant for the recovery of uranium from partially clarified solutions

    International Nuclear Information System (INIS)

    Cloete, F.L.D.

    1980-01-01

    A preliminary design is given for a pilot plant to recover uranium from partially clarified slime pulp by continuous ion exchange. Process and plant-design methods are indicated briefly, and an outline is given of experimental work that should be undertaken before the start-up of the pilot plant

  11. FY 1991 report on the results of the development of the entrained bed coal gasification power plant. Part 1. Element study/investigational study of technology/study of the integrated coal gasification combined cycle power system; 1991 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 1. Youso kenkyu hen, gijutsu chosa hen, sekitan gaska fukugo hatsuden system kento hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-01-01

    For the purpose of establishing the technology of integrated coal gasification combined cycle power generation, the following were conducted: element study of a 200t/d entrained bed coal gasification pilot plant, survey of technology of the coal gasification power generation, study of the practical scale IGCC, etc. The FY 1991 results were summarized. In the gasification test using 2t/d furnace equipment, evaluation test on the test coal for pilot plant was made. In the study of gas turbine combustor for demonstration machine use, measuring duct was fabricated for measurement of combustion gas temperature/pressure, etc. In the simulational study of the total system of combined cycle power generation, review/modification of part of the simulation model and detailing of the model were conducted by comparison with the data on pilot plant operation. In the technology study, joint technology conferences were held for discussions between Japan and Australia, Japan and the U.S., and Japan and Canada. As to the practical scale IGCC, the initially planned output capacity and thermal efficiency were studied based on the knowledge/information obtained through the R and D on the 200t/d pilot plant. (NEDO)

  12. Water Treatment Pilot Plant Design Manual: Low Flow Conventional/Direct Filtration Water Treatment Plant for Drinking Water Treatment Studies

    Science.gov (United States)

    This manual highlights the project constraints and concerns, and includes detailed design calculations and system schematics. The plant is based on engineering design principles and practices, previous pilot plant design experiences, and professional experiences and may serve as ...

  13. Bentonite as a waste isolation pilot plant shaft sealing material

    International Nuclear Information System (INIS)

    Daemen, J.; Ran, Chongwei

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites

  14. Bentonite as a waste isolation pilot plant shaft sealing material

    Energy Technology Data Exchange (ETDEWEB)

    Daemen, J.; Ran, Chongwei [Univ. of Nevada, Reno, NV (United States)

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites.

  15. Achievement report for fiscal 1993 on developing entrained bed coal gasification power plant. Part 4. Pilot plant operation edition; 1993 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 4. Pilot plant unten sosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    Tests and researches have been carried out on operation of a 200-t/d entrained bed coal gasification pilot plant built with an objective of establishing the coal gasification composite power generation technology. This paper summarizes the operation achievements in fiscal 1993. The plant operation record in fiscal 1993 was as follows: 430 hours 27 minutes in the gasification furnace (ten gasification operations), 233 hours 51 minutes in the gas refining facility, 140 hours 31 minutes in the gas turbine facility (power generation amount of 746.8 MWh with nine actuations), 1,263 hours 09 minutes in the processing furnace in the safety environment facility, and 427 hours 22 minutes in the NOx removal equipment. Descriptions were given with detailed graphs on the actuation and shutdown record with respect to the run D2, the run D3 (1 and 2), the run D4, the run D5, the run D6, and the run D7 (1 through 4). The operation procedures were prepared for the plant startup and shutdown schedule, the generalization report, the gasification furnace facility, the gas refining facility (dry type desulfurizing facility), the gas refining facility (dry type dust removing facility), the gas turbine facility, the combustor testing facility with actual pressure and size, and the safety environment facilities. (NEDO)

  16. General Atomic reprocessing pilot plant: description and results of initial testing

    International Nuclear Information System (INIS)

    1977-12-01

    In June 1976 General Atomic completed the construction of a reprocessing head-end cold pilot plant. In the year since then, each system within the head end has been used for experiments which have qualified the designs. This report describes the equipment in the plant and summarizes the results of the initial phase of reprocessing testing

  17. Airspace Technology Demonstration 2 (ATD-2): ATD-2 CLT Pilot Community Engagement

    Science.gov (United States)

    Capps, Al; Hooey, Becky

    2017-01-01

    The Airspace Technology Demonstration 2 (ATD-2) project conducted a pilot community workshop at Charlotte Douglas International Airport (CLT) in Charlotte, North Carolina. The goal was to familiarize pilots with the ATD-2 project, with an emphasis on procedures that may affect pilots during the Phase 1 Field Demonstration (beginning September 30, 2017). At this workshop, the high-level goals and objectives of ATD-2, expected benefits for pilots, changes to procedures, training requirements, and data sharing elements were presented.

  18. Rock mechanics activities at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Francke, C.; Saeb, S.

    1996-01-01

    The application of rock mechanics at nuclear waste repositories is a true multidisciplinary effort. A description and historical summary of the Waste Isolation Pilot Plant (WIPP) is presented. Rock mechanics programs at the WIPP are outlined, and the current rock mechanics modeling philosophy of the Westinghouse Waste Isolation Division is discussed

  19. Industrial plant for electron beam flue gas treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Iller, E.; Tyminnski, B.; Zimek, Z; Ostapczuk, A.; Licki, J.

    2001-01-01

    The electron beam flue gas treatment technology was invented many years ago. Research on the process has been carried out in Japan, USA, Germany and Poland. However, the recent fidings, based on the experiments performed at pilot plant at Electric Power Station Kaweczyn, led to developments which made process mature just at the dawn of the XXI century. The process is being implemented in the full industrial scale at Electric Power Station Pomorzany (Dolna Odra EPS Group). Other developments are reported in Japan and after Nagoya's pilot plant experiments, an industrial plant has been built in China and another one is constructed in Japan. There are remarkable differences in technological and design solutions applied in all these installations. Developments achieved at EPS Kaweczyn pilot plant and INCT laboratory unit were the basis for the project realized at EPS Pomorzan

  20. Performance and Model Calibration of R-D-N Processes in Pilot Plant

    DEFF Research Database (Denmark)

    de la Sota, A.; Larrea, L.; Novak, L.

    1994-01-01

    This paper deals with the first part of an experimental programme in a pilot plant configured for advanced biological nutrient removal processes treating domestic wastewater of Bilbao. The IAWPRC Model No.1 was calibrated in order to optimize the design of the full-scale plant. In this first phas...

  1. Particle collection by a pilot plant venturi scrubber downstream from a pilot plant electrostatic precipitator

    Science.gov (United States)

    Sparks, L. E.; Ramsey, G. H.; Daniel, B. E.

    The results of pilot plant experiments of particulate collection by a venturi scrubber downstream from an electrostatic precipitator (ESP) are presented. The data, which cover a range of scrubber operating conditions and ESP efficiencies, show that particle collection by the venturi scrubber is not affected by the upstream ESP; i.e., for a given scrubber pressure drop, particle collection efficiency as a function of particle diameter is the same for both ESP on and ESP off. The experimental results are in excellent agreement with theoretical predictions. Order of magnitude cost estimates indicate that particle collection by ESP scrubber systems may be economically attractive when scrubbers must be used for SO x control.

  2. Experimental results: Pilot plant calcine dissolution and liquid feed stability

    International Nuclear Information System (INIS)

    Herbst, R.S.; Fryer, D.S.; Brewer, K.N.; Johnson, C.K.; Todd, T.A.

    1995-02-01

    The dissolution of simulated Idaho Chemical Processing Plant pilot plant calcines, containing none of the radioactive actinides, lanthanides or fission products, was examined to evaluate the solubility of calcine matrix materials in acidic media. This study was a necessary precursor to dissolution and optimization experiments with actual radionuclide-containing calcines. The importance of temperature, nitric acid concentration, ratio of acid volume to calcine mass, and time on the amount, as a weight percentage of calcine dissolved, was evaluated. These parameters were studied for several representative pilot plant calcine types: (1) Run No. 74 Zirconia calcine; (2) Run No. 17 Zirconia/Sodium calcine; (3) Run No. 64 Zirconia/Sodium calcine; (3) Run No. 1027 Alumina calcine; and (4) Run No. 20 Alumina/Zirconia/Sodium calcine. Statistically designed experiments with the different pilot plant calcines indicated the effect of the studied process variables on the amount of calcine dissolved decreases in the order: Acid/Calcine Ratio > Temperature > HNO 3 Concentration > Dissolution Time. The following conditions are suitable to achieve greater than 90 wt. % dissolution of most Zr, Al, or Na blend calcines: (1) Maximum nitric acid concentration of 5M; (2) Minimum acid/calcine ratio of 10 mL acid/1 gram calcine; (3) Minimum dissolution temperature of 90 degrees C; and (4) Minimum dissolution time of 30 minutes. The formation of calcium sulphate (CaSO 4 ) precipitates was observed in certain dissolved calcine solutions during the dissolution experiments. Consequently, a study was initiated to evaluate if and under what conditions the resulting dissolved calcine solutions would be unstable with regards to precipitate formation. The results indicate that precipitate formation in the calcine solutions prepared under the above proposed dissolution conditions are not anticipated

  3. DU-AGG pilot plant design study

    International Nuclear Information System (INIS)

    Lessing, P.A.; Gillman, H.

    1996-07-01

    The Idaho National Engineering Laboratory (INEL) is developing new methods to produce high-density aggregate (artificial rock) primarily consisting of depleted uranium oxide. The objective is to develop a low-cost method whereby uranium oxide powder (UO[sub 2], U[sub 3]O[sub ]8, or UO[sub 3]) can be processed to produce high-density aggregate pieces (DU-AGG) having physical properties suitable for disposal in low-level radioactive disposal facilities or for use as a component of high-density concrete used as shielding for radioactive materials. A commercial company, G-M Systems, conducted a design study for a manufacturing pilot plant to process DU-AGG. The results of that study are included and summarized in this report. Also explained are design considerations, equipment capacities, the equipment list, system operation, layout of equipment in the plant, cost estimates, and the proposed plan and schedule

  4. Process control of an HTGR fuel reprocessing cold pilot plant

    International Nuclear Information System (INIS)

    Rode, J.S.

    1976-10-01

    Development of engineering-scale systems for a large-scale HTGR fuel reprocessing demonstration facility is currently underway in a cold pilot plant. These systems include two fluidized-bed burners, which remove the graphite (carbon) matrix from the crushed HTGR fuel by high temperature (900 0 C) oxidation. The burners are controlled by a digital process controller with an all analog input/output interface which has been in use since March, 1976. The advantages of such a control system to a pilot plant operation can be summarized as follows: (1) Control loop functions and configurations can be changed easily; (2) control constants, alarm limits, output limits, and scaling constants can be changed easily; (3) calculation of data and/or interface with a computerized information retrieval system during operation are available; (4) diagnosis of process control problems is facilitated; and (5) control panel/room space is saved

  5. Small-scale CHP Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels- Development, Technology and Operating Experiences

    DEFF Research Database (Denmark)

    Obernberger, I.; Carlsen, Henrik; Biedermann, F.

    2003-01-01

    ) process and the Stirling engine process. The ORC process represents an economically interesting technology for small-scale biomass-fired combined heat and power plants in a power range between 400 and 1,500 kWel. A newly developed ORC technology with a nominal electric capacity of 1,000 kW was implemented...... in the biomass CHP plant Lienz (A) in the framework of an EU demonstration project. This plant was put in operation in February 2002. Stirling engines are a promising solution for installations with nominal electric capacities between 10 and 150 kW. A biomass CHP pilot plant based on a 35 kWel-Stirling engine...

  6. Pressurized fluidized bed combustion combined cycle power plant with coal gasification: Second generation pilot plant

    International Nuclear Information System (INIS)

    Farina, G.L.; Bressan, L.

    1991-01-01

    This paper presents the technical and economical background of a research and development program of a novel power generation scheme, which is based on coal gasification, pressurized fluid bed combustion and combined cycles. The participants in this program are: Foster Wheeler (project leader), Westinghouse, IGT and the USA Dept. of Energy. The paper describes the characteristics of the plant, the research program in course of implementation, the components of the pilot plant and the first results obtained

  7. Sequential Design of Experiments to Maximize Learning from Carbon Capture Pilot Plant Testing

    Energy Technology Data Exchange (ETDEWEB)

    Soepyan, Frits B.; Morgan, Joshua C.; Omell, Benjamin P.; Zamarripa-Perez, Miguel A.; Matuszewski, Michael S.; Miller, David C.

    2018-02-06

    Pilot plant test campaigns can be expensive and time-consuming. Therefore, it is of interest to maximize the amount of learning and the efficiency of the test campaign given the limited number of experiments that can be conducted. This work investigates the use of sequential design of experiments (SDOE) to overcome these challenges by demonstrating its usefulness for a recent solvent-based CO2 capture plant test campaign. Unlike traditional design of experiments methods, SDOE regularly uses information from ongoing experiments to determine the optimum locations in the design space for subsequent runs within the same experiment. However, there are challenges that need to be addressed, including reducing the high computational burden to efficiently update the model, and the need to incorporate the methodology into a computational tool. We address these challenges by applying SDOE in combination with a software tool, the Framework for Optimization, Quantification of Uncertainty and Surrogates (FOQUS) (Miller et al., 2014a, 2016, 2017). The results of applying SDOE on a pilot plant test campaign for CO2 capture suggests that relative to traditional design of experiments methods, SDOE can more effectively reduce the uncertainty of the model, thus decreasing technical risk. Future work includes integrating SDOE into FOQUS and using SDOE to support additional large-scale pilot plant test campaigns.

  8. Waste Isolation Pilot Plant CY 2000 Site Environmental Report

    International Nuclear Information System (INIS)

    Westinghouse TRU Solutions, LLC; Environmental Science and Research Foundation, Inc.

    2001-01-01

    The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no evidence was found of any adverse

  9. Waste Isolation Pilot Plant CY 2000 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse TRU Solutions, LLC; Environmental Science and Research Foundation, Inc.

    2001-12-31

    The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no

  10. Decontamination and decommissioning of the EBR-I complex. Topical report No. 3. NAK disposal pilot plant test

    International Nuclear Information System (INIS)

    Commander, J.C.; Lewis, L.; Hammer, R.

    1975-06-01

    Decontamination and decommissioning of the Experimental Breeder Reactor No. 1 (EBR-I) requires processing of the primary coolant, an eutectic solution of sodium and potassium (NaK), remaining in the EBR-I primary and secondary coolant systems. While developing design criteria for the NaK processing system, reasonable justification was provided for the development of a pilot test plant for field testing some of the process concepts and proposed hardware. The objective of this activity was to prove the process concept on a low-cost, small-scale test bed. The pilot test plant criteria provided a general description of the test including: the purpose, location, description of test equipment available, waste disposal requirements, and a flow diagram and conceptual equipment layout. The pilot plant test operations procedure provided a detailed step-by-step procedure for operation of the pilot plant to obtain the desired test data and operational experience. It also spelled out the safety precautions to be used by operating personnel, including the requirement for alkali metals training certification, use of protective clothing, availability of fire protection equipment, and caustic handling procedures. The pilot plant test was performed on May 16, 1974. During the test, 32.5 gallons or 240 lb of NaK was successfully converted to caustic by reaction with water in a caustic solution. (auth)

  11. Operational experience of electron beam flue gases treatment pilot installation at the Maritsa East 2 Thermal Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Dutskinov, N. [NEK-EAD (Bulgaria)

    2011-07-01

    The electron beam flue gases treatment process is very versatile and effective technology for simultaneous removal of acidic pollutants i.e. sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) from the flue gas produced in the combustion of fossil fuel. The technology allows decomposition of VOC (volatile organic compound) such as polycyclic aromatic compound (PAC) and persistent organic pollutants (POP). The electron beam flue gases treatment technology for combustion flue gases purification was applied in Maritsa-East 2 Thermal Power Plant. The decision for construction of Electron Beam Pilot Plant at Maritsa-East 2 TPP was taken at the technical meeting in IAEA Vienna, November 1998. The flue gases of 10 000 nm³/h are irradiated by three high energy electron accelerators of 800 keV and 35 kW beam power each. The plant has been operated since November 2003. The removal efficiency 90-99% for SO{sub x} and 85-90% for NO{sub x} was observed. The quality of coals are characterised with high ash content up to 45%, high moisture up to 57%, low calorific value from 1196 kcal/kg up to 1603 kcal/kg and high concentration of sulphur. The Bulgarian lignite coals are unique in their usage as fuel for the thermal power plants in Maritsa East region. (author)

  12. Remote maintenance system technology development for nuclear fuel cycle plants

    International Nuclear Information System (INIS)

    Kashihara, Hidechiyo

    1984-01-01

    The necessity of establishing the technology of remote maintenance, the kinds of maintenance techniques and the change, the image of a facility adopting remote maintenance canyon process, and the outline of the R and D plan to put remote maintenance canyon process in practical use are described. As the objects of development, there are twin arm type servo manipulator system, rack system, remote tube connectors, solution sampling system, inspection system for in-cell equipment, and large plugs for wall penetration. The outline of those are also reported. The development of new remote maintenance technology has been forwarded in the Tokai Works aiming at the application to a glass solidification pilot plant and a FBR fuel recycling test facility. The lowering of the rate of utilization of cells due to poor accessibility and the increase of radiation exposure of workers must be overcome to realize nuclear fuel cycle technology. The maintenance technology is classified into crane canyon method, direct maintenance cell method, remote maintenance cell method and remote maintenance canyon method, and those are described briefly. The development plan of remote maintenance technology is outlined. (Kako, I.)

  13. The starting up of a pilot plant for radioactive incinerator ash conditioning - results of two embedding campaigns

    International Nuclear Information System (INIS)

    Kertesz, C.J.; Chenavas, P.R.; Naud, G.M.

    1990-01-01

    A new pilot plant called 'PICC' designed for radioactive incinerator ash conditioning, by embedding in several matrices, was launched at the Nuclear Research Centre in Cadarache - France - in the middle of 1988. This polyvalent facility can work with the three following embedding products = cement, thermosetting epoxide resin and an epoxide-cement compound. The capacity per day of the plant is two 100 or 200 I drums of solidified ash form. Two embedding campaigns have been carried out on inactive ashes: the first is a cementation campaign, done on phosphated ash coming from incineration of spent tributylphosphate. The second is a polymer cement campaign done on simulated alpha ash coming from technological wastes. Description of the PICC and data on these two campaigns are given

  14. Pilot plant for the radioactive decontamination of spent oils

    International Nuclear Information System (INIS)

    Flores E, R.M.; Ortiz O, H.V.; Cisneros L, L.; Lopez G, R.

    2002-01-01

    In this work the operation parameters obtained in the laboratory of oil storage are presented, as well as the operations which shape the pilot plant, the design criteria and the basic design of the core equipment of the developed process. Finally, the comparative results obtained the decontamination process of oil are given as well as laboratory scale. (Author)

  15. Advanced Instrumentation, Information and Control (II&C) Research and Development Facility Buildout and Project Execution of LWRS II&C Pilot Projects 1 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Farris; Johanna Oxstrand; Gregory Weatherby

    2011-09-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II&C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II&C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive

  16. New conceptual method in maintenance with application in cryogenics pilot plant (CPP)

    International Nuclear Information System (INIS)

    Anghel, Vasile

    2006-01-01

    Full text: This study concluded with a series of suggestions concerning the methodology of maintaining a Cryogenics Nuclear Plant where the maintenance is either fundamental or only of importance. The implementation of this methodology can be achieved in two main steps. The first step concerns the conception of the scientific basis for maintenance, while the second step regards the implementation. The first step describes the management of maintenance in conditions of quality, risk and cost constraints. The conditions are established on the basis of a project of research in maintenance. The second step notifies the aspects of design and technology in maintenance of nuclear industrial units. The nuclear complex technical systems of the Cryogenics Pilot Plant at ICSI - Rm Valcea implies the development of some dedicated software, to ensure the designing, realization and operation of the plant, and prototypes of integrated software modules, to ensure the systems operation during of the life cycle. The implementation method is based on vibration analyses and mechanical studies while a flexible data acquisition system for monitoring, and control must be developed as a platform to ensure a more precise diagnosis and prediction of machinery malfunction. With a flexible data acquisition and analysis system in operation it is possible to easily increase the number of input channels. (author)

  17. Modeling temperature variations in a pilot plant thermophilic anaerobic digester.

    Science.gov (United States)

    Valle-Guadarrama, Salvador; Espinosa-Solares, Teodoro; López-Cruz, Irineo L; Domaschko, Max

    2011-05-01

    A model that predicts temperature changes in a pilot plant thermophilic anaerobic digester was developed based on fundamental thermodynamic laws. The methodology utilized two simulation strategies. In the first, model equations were solved through a searching routine based on a minimal square optimization criterion, from which the overall heat transfer coefficient values, for both biodigester and heat exchanger, were determined. In the second, the simulation was performed with variable values of these overall coefficients. The prediction with both strategies allowed reproducing experimental data within 5% of the temperature span permitted in the equipment by the system control, which validated the model. The temperature variation was affected by the heterogeneity of the feeding and extraction processes, by the heterogeneity of the digestate recirculation through the heating system and by the lack of a perfect mixing inside the biodigester tank. The use of variable overall heat transfer coefficients improved the temperature change prediction and reduced the effect of a non-ideal performance of the pilot plant modeled.

  18. Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report

    Energy Technology Data Exchange (ETDEWEB)

    James E. Francfort

    2003-12-01

    Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling station—the APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

  19. Step 1: Human System Integration (HSI) FY05 Pilot-Technology Interface Requirements for Contingency Management

    Science.gov (United States)

    2005-01-01

    This document involves definition of technology interface requirements for Contingency Management. This was performed through a review of Contingency Management-related, HSI requirements documents, standards, and recommended practices. Technology concepts in use by the Contingency Management Work Package were considered. Beginning with HSI high-level functional requirements for Contingency Management, and Contingency Management technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge of system failures and associated contingency procedures, and (2) the control capability needed by the pilot to obtain system status and procedure information. Fundamentally, these requirements provide the candidate Contingency Management technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how Contingency Management operations and functions should interface with the pilot to provide the necessary Contingency Management functionality to the UA-pilot system. Requirements and guidelines for Contingency Management are partitioned into four categories: (1) Health and Status and (2) Contingency Management. Each requirement is stated and is supported with a rationale and associated reference(s).

  20. Laboratory and pilot-plant studies on the conversion of uranyl nitrate hexahydrate to UF6 by fluidized-bed processes

    International Nuclear Information System (INIS)

    Youngblood, E.L.; Urza, I.J.; Cathers, G.I.

    1977-06-01

    This report describes laboratory and pilot-plant studies on the conversion of uranyl nitrate hexahydrate (UNH) to UF 6 and on purification of the UF 6 . Experimental laboratory studies on the removal of residual nitrate from uranium trioxide (UO 3 ) calcine and the fluorination of technetium and subsequent sorption on MgF 2 were conducted to support the pilot-plant work. Two engineering-scale pilot plants utilizing fluidized-bed processes were constructed for equipment and process testing of the calcination of UNH to UO 3 and the direct fluorination of UO 3 to UF 6

  1. SkyMine Carbon Mineralization Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Joe Jones; Clive Barton; Mark Clayton; Al Yablonsky; David Legere

    2010-09-30

    This Topical Report addresses accomplishments achieved during Phase 1 of the SkyMine{reg_sign} Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO{sub 2} from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO{sub 2} to products having commercial value (i.e., beneficial use), show the economic viability of the CO{sub 2} capture and conversion process, and thereby advance the technology to a point of readiness for commercial scale demonstration and proliferation. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at commercial scale. The primary objectives of Phase 1 of the project were to elaborate proven SkyMine{reg_sign} process chemistry to commercial pilot-scale operation and complete the preliminary design ('Reference Plant Design') for the pilot plant to be built and operated in Phase 2. Additionally, during Phase 1, information necessary to inform a DOE determination regarding NEPA requirements for the project was developed, and a comprehensive carbon lifecycle analysis was completed. These items were included in the formal application for funding under Phase 2. All Phase 1 objectives were successfully met on schedule and within budget.

  2. The 10 MWe Solar Thermal Central Receiver Pilot Plant: Solar facilities design integration. Pilot-plant station manual (RADL Item 2-1). Volume 1: System description

    Science.gov (United States)

    1982-09-01

    The complete Barstow Solar Pilot Plant is described. The plant requirements and general description are presented, the mechanical, electric power, and control and instrumentation systems as well as civil engineering and structural aspects and the station buildings are described. Included in the mechanical systems are the heliostats, receiver, thermal storage system, beam characterization system, steam, water, nitrogen, and compressed air systems, chemical feed system, fire protection system, drains, sumps and the waste disposal systems, and heating, ventilating, and air conditioning systems.

  3. Vitrification pilot plant experiences at Fernald, Ohio

    International Nuclear Information System (INIS)

    Akgunduz, N.; Gimpel, R.F.; Paine, D.; Pierce, V.H.

    1997-01-01

    A one metric ton/day Vitrification Pilot Plant (VITPP) at Fernald, Ohio, simulated the vitrification of radium and radon bearing silo residues using representative non-radioactive surrogates containing high concentrations of lead, sulfates, and phosphates. The vitrification process was carried out at temperatures of 1,150 to 1,350 C. The VITPP processed glass for seven months, until a breach of the melter containment vessel suspended operations. More than 70,000 pounds of surrogate glass were produced by the VITPP. Experiences, lessons learned, and path forward will be presented

  4. Output-Feedback Model Predictive Control of a Pasteurization Pilot Plant based on an LPV model

    Science.gov (United States)

    Karimi Pour, Fatemeh; Ocampo-Martinez, Carlos; Puig, Vicenç

    2017-01-01

    This paper presents a model predictive control (MPC) of a pasteurization pilot plant based on an LPV model. Since not all the states are measured, an observer is also designed, which allows implementing an output-feedback MPC scheme. However, the model of the plant is not completely observable when augmented with the disturbance models. In order to solve this problem, the following strategies are used: (i) the whole system is decoupled into two subsystems, (ii) an inner state-feedback controller is implemented into the MPC control scheme. A real-time example based on the pasteurization pilot plant is simulated as a case study for testing the behavior of the approaches.

  5. Gamma radiation pretreatment in processing technology of ruminant feed: a pilot scale trial run

    International Nuclear Information System (INIS)

    Mat Rasol Awang

    2002-01-01

    The technology for production ruminant feed from agriculture by-product remains scare despite plentiful availability of feeding materials worldwide. Factors that prohibit the process technology development suggested that their peculiar physical make up, high cost of production and inferior product quality compared to established raw material, had consequently impeding the effort. In Malaysia, only two pilot plants exist; they demonstrate utilization of Oil Palm Frond (OPF) into feed. In the case of OPF in situ utilization as feed, farmers use chipper machine or shredder to process it. Other by-products have not been successfully exploited, except for Palm Kernel Cake (PKC) and Palm Oil Mill Effluent (POME) that already in commercial operation. In view of the by-product availability as feeding material in ruminant feeding system and availability of new chipper and shredder machines, the prospect of processing agriculture by-products into feed is expected to be a promising business venture. This paper describes the technology for production of new feed from oil palm Empty Fruit Bunch (EFB). It elaborates on Sterifeed Plant Operation based on plant capacity of 0.5 ton/day production. The operation aspects discuss raw materials handling and pretreatment involving γ-ray as an integral part of the total system. In this process EFB initially pasteurized and predigested by fungi in fermentation process into feed materials, and the product were fed in fresh form to animal. The operation exercise had established actual process flow, identified problems and process drawbacks. Based on this experience, availability of localized raw materials EFB at the palm oil mill and rapid development of processing machinery, it is very likely that a commercially viable feed processing plant can be established in the near future. (Author)

  6. FY 1992 report on the results of the development of an entrained bed coal gasification power plant. Part 4. Operation of pilot plant; 1992 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 4. Pilot plant unten sosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    A record was summarized of the operation test study in FY 1992 of the 200 t/d entrained bed coal gasification pilot plant that was constructed with the aim of establishing technology of the integrated coal gasification combined cycle power generation. The operating hour of gasifier facilities in FY 1992 was 635 hours 19 minutes, and the number of times of gasification operation was 9. The operating hour of letting gas through to gas refining facilities was 549 hours 14 minutes. The operating hour of gas turbine facilities was 310 hours 18 minutes, and the generated output was 1,366.2 MWh. The operating hour of treatment furnace of safety environment facilities was 1,401 hours 4 minutes, and that of the denitrification system was 621 hours 24 minutes. As to the actual results of the start-up/stop, the paper detailedly recorded those of RUNs 10, 11, 12, 13 and D1. Further, operation manuals were made for the schedule of plant start-up/stop, gasifier facilities, gas refining facilities (dry desulfurization facilities), gas refining facilities (dry dedusting facilities), actual pressure/actual size combustor testing facilities and safety environment facilities. (NEDO)

  7. 10th International Topical Meeting on Nuclear Plant Instrumentation, Control and Human Machine Interface Technologies, San Francisco, CA, USA, June 11–15, 2017

    Energy Technology Data Exchange (ETDEWEB)

    Rashdan, Ahmad Al; Oxstrand, Johanna; Agarwal, Vivek

    2017-02-01

    As part of the ongoing efforts at the U.S. Department of Energy’s Light Water Reactor Sustainability Program, Idaho National Laboratory is conducting several pilot projects in collaboration with the nuclear industry to improve the reliability, safety, and economics of the nuclear power industry, especially as the nuclear power plants extend their operating licenses to 80 years. One of these pilot projects is the automated work package (AWP) pilot project. An AWP is an electronic intelligent and interactive work package. It uses plant condition, resources status, and user progress to adaptively drive the work process in a manner that increases efficiency while reducing human error. To achieve this mission, the AWP acquires information from various systems of a nuclear power plant’s and incorporates several advanced instrumentation and control technologies along with modern human factors techniques. With the current rapid technological advancement, it is possible to envision several available or soon-to-be-available capabilities that can play a significant role in improving the work package process. As a pilot project, the AWP project develops a prototype of an expanding set of capabilities and evaluates them in an industrial environment. While some of the proposed capabilities are based on using technological advances in other applications, others are conceptual; thus, require significant research and development to be applicable in an AWP. The scope of this paper is to introduce a set of envisioned capabilities, their need for the industry, and the industry difficulties they resolve.

  8. Advanced Instrumentation, Information and Control (II and C) Research and Development Facility Buildout and Project Execution of LWRS II and C Pilot Projects 1 and 3

    International Nuclear Information System (INIS)

    Farris, Ronald; Oxstrand, Johanna; Weatherby, Gregory

    2011-01-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II and C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II and C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive results

  9. Conditioning of spent fuel for interim and final storage in the pilot conditioning plant (PKA) at Gorleben

    International Nuclear Information System (INIS)

    Lahr, H.; Willax, H.O.; Spilker, H.

    1999-01-01

    In 1994, due to the change of the nuclear law in Germany, the concept of direct final disposal for spent fuel was developed as an equivalent alternative to the waste management with reprocessing. Since 1979, tests for the direct final disposal of spent fuel have been conducted in Germany. In 1985, the State and the utilities came to an agreement to develop this concept of waste management to technical maturity. Gesellschaft fuer Nuklear-Service (GNS) was commissioned by the utilities with the following tasks: to develop and test components with regard to conditioning technology, to construct and operate the pilot conditioning plant (PKA), and to develop casks suitable for final disposal. Since 1990, the construction of the PKA has taken place at the Brennelementlager Gorleben site. The PKA has been designed as a multipurpose facility and can thus fulfil various tasks within the framework of the conditioning and management of spent fuel assemblies and radioactive waste. The pilot character of the plant allows for development and testing in the field of spent fuel assembly conditioning. The objectives of the PKA may be summarized as follows: to condition spent fuel assemblies, to reload spent fuel assemblies and waste packages, to condition radioactive waste, and to do maintenance work on transport and storage casks as well as on waste packages. Currently, the buildings of the PKA are constructed and the technical facilities are installed. The plant will be ready for service in the middle of 1999. It is the first plant of its kind in the world. (author)

  10. Verification of criticality Safety for ETRR-2 Fuel Manufacturing pilot Plant (FMPP) at Inshas

    International Nuclear Information System (INIS)

    Aziz, M.; Gadalla, A.A.; Orabi, G.

    2006-01-01

    The criticality safety of the fuel manufacturing pilot plant (FMPP) at inshas is studied and analyzed during normal and abnormal operation conditions. the multiplication factor during all stages of the manufacturing processes is determined. several accident scenarios were simulated and the criticality of these accidents were investigated. two codes are used in the analysis : MCNP 4 B code, based on monte Carlo method, and CITATION code , based on diffusion theory. the results are compared with the designer calculations and satisfactory agreement were found. the results of the study indicated that the safety of the fuel manufacturing pilot plant is confirmed

  11. Waste Isolation Pilot Plant Environmental Monitoring Plan

    International Nuclear Information System (INIS)

    2008-01-01

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problems; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) explains the rationale and design criteria for the environmental monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document changes in the environmental monitoring program. Guidance for preparation of EMPs is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

  12. Central receiver solar thermal power system, Phase 1. CRDL Item 2. Pilot plant preliminary design report. Volume III, Book 2. Collector subsystem

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The methods and plans for the manufacture of the 10-MW collector heliostats and associated controls for the pilot plant are detailed. An in-depth description of the production, installation, and verification testing of heliostats for the pilot plant is presented. Specifications for the performance, design, and test requirements for the pilot plant collector subsystem are included. Also, a heliostat location summary report is given. (WHK)

  13. Design of preconcentration flow-sheet for processing Bhimunipatnam beach sands using pilot plant experiments and computer simulation

    International Nuclear Information System (INIS)

    Padmanabhan, N.P.H.; Sridhar, U.

    1993-01-01

    Simulation was carried out using a beach sand beneficiation plant simulator software, SANDBEN, currently being developed in Indian School of Mines, Dhanbad, and the results were compared and analyzed with those obtained by actual pilot plant experiments on a beach sand sample from Bhimunipatnam deposit. The software is discussed and its capabilities and limitations are highlighted. An optimal preconcentrator flow-sheet for processing Bhimunipatnam beach sand was developed by simulation and using the results of the pilot plant experiments. (author). 13 refs., 2 tabs., 3 figs

  14. Report on the results of the R and D of a 200 t/d entrained bed coal gasification pilot plant. Summary - Part 2. Volume 3: Results of the study operation and the evaluation; 1986- 200t/nichi funryusho sekitan gaska hatsuden pilot plant no kenkyu seika hokokusho (Matome). Sono 2. Dai 3 hen kenkyu unten seika to sono hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    A project was finished which had been carried out for 11 years since 1986 for technology of the entrained bed coal gasification power generation technology using a 200 t/d coal gasification combined cycle power generation pilot plant, and it was comprehensively summed up. In Volume 3: Results of the study operation and the evaluation, the following were summarized on gasifier: gasification performance of 200 t/d furnace, operation ability of the bituminous coal supply system, stability of char recovery, deposition of slag and char in furnace, discharge characteristics of molten slag, operation characteristics, etc. The following on gas refining facilities: dry desulfurizer, dust remover, new gas refining equipment (fixed bed dust removal/desulfurization system, packed bed desulfuriztion/dust removal system), etc. The following on gas turbine facilities: 12.5 MW gas turbine, large gas turbine, large gas turbine combustor, etc. Additionally, the paper summarized the control system and total function, operation characteristics of the whole pilot plant, relations of environmental preservation, study of the effective slag utilization, collection/study of unfavorable conditions/troubles and matters for the reflection, etc. (NEDO)

  15. Achievement report for fiscal 1993 on developing entrained bed coal gasification power plant. Part 1. Element research and technology survey edition; 1993 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 1. Youso kenkyu hen, gijutsu chosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    With an objective of establishing a coal gasification composite power generation technology, R and D works have been carried out on elementary technologies. This paper summarizes the achievements in fiscal 1993. In the research on the slag utilization technology, discussions were given on the applicability of slag discharged from a 200 t/d pilot plant to fine aggregate for concrete. In the research on a large gas turbine combustor for a demonstration plant, the test conditions were discussed and the reliability of the combustor was analyzed to conduct an actual gas combustion test using the coal D in continuation from the test in the previous fiscal year. In the research on the simulation of a composite power generation system, the simulation models were reviewed and corrected. Load variation simulations were carried out on every operation mode to have conducted comparison with and discussion on the actual plant data. In order to clarify the slagging phenomenon in the 200 t/d pilot plant, a characteristics test was performed by using a 2 t/d furnace. As a result, the combustor ash load and the dynamic pressure in the axial direction in the throat section were presumed to be the large factors for the occurrence of slagging. (NEDO)

  16. Waste Isolation Pilot Plant Site Environmental Report Calendar Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services

    2003-09-17

    The United States (U.S.) Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environment, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2002 Site Environmental Report summarizes environmental data from calendar year 2002 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2002 (DOE Memorandum EH-41: Natoli:6-1336, April 4, 2003). These Orders and the guidance document require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED).

  17. Waste Isolation Pilot Plant Site Environmental Report Calendar Year 2002

    International Nuclear Information System (INIS)

    Washington Regulatory and Environmental Services

    2003-01-01

    The United States (U.S.) Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environment, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2002 Site Environmental Report summarizes environmental data from calendar year 2002 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2002 (DOE Memorandum EH-41: Natoli:6-1336, April 4, 2003). These Orders and the guidance document require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED)

  18. The Stored Waste Examination Pilot Plant program at the INEL

    International Nuclear Information System (INIS)

    McKinley, K.B.; Anderson, B.C.; Clements, T.L.; Hinckley, J.P.; Mayberry, J.L.; Smith, T.H.

    1983-01-01

    Since 1970, defense transuranic waste has been placed into 20-year retrievable storage at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL). A major objective of the U.S. Department of Energy (DOE) Nuclear Waste Management Program is to remove all retrievably stored transuranic waste from the INEL. The January 1981 DOE Record of Decision on the Waste Isolation Pilot Plant (WIPP) stated, ''The WIPP facility will dispose of defense transuranic waste stored retrievably at the Idaho National Engineering Laboratory.'' After retrieval and before shipment, processing may be necessary to prepare the waste for acceptance, handling, and enhanced long-term isolation in the WIPP. However, some of the waste is certifiable to the WIPP waste acceptance criteria without container opening or waste processing. To minimize costs, the Stored Waste Examination Pilot Plant (SWEPP) is being developed to certify INEL stored transuranic waste without container opening or waste processing. The SWEPP certification concept is based on records assessment, nondestructive examination techniques, assay techniques, health physics examinations, and limited opening of containers at another facility for quality control

  19. Dismantling of an alpha contaminated hot cell at the Marcoule Pilot Plant

    International Nuclear Information System (INIS)

    Tachon, M.

    1988-01-01

    For the remodeling of Marcoule Pilot Plant, the cell 82: old unit for plutonium solution purification by extraction, was dismantled. About 42 tons of wastes were evacuated. Some wastes wen decontaminated by mechanical means other wastes with higher residual activity were stored for subsequent processing. The operation shows that dismantling of a hot cell is possible even if incorporated in an operating plant [fr

  20. Pilot plant study for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J S [Korea Inst. of Science and Technology, Seoul (Korea, Republic of)

    1996-02-01

    Most of domestic alcohol fermentation factory adopt batch process of which productivity is lower than continuous fermentation process. They have made great effort to increase productivity by means of partial unit process automatization and process improvement with their accumulated experience but there is technical limitation in productivity of batch fermentation process. To produce and supply fuel alcohol, economic aspects must be considered first of all. Therefore, development of continuous fermentation process, of which productivity is high, is prerequisite to produce and use fuel alcohol but only a few foreign company possess continuous fermentation technic and use it in practical industrial scale fermentation. We constructed pilot plant (5 Stage CSTR 1 kl 99.5 v/v% ethanol/Day scale) to study some aspects stated below and our ultimate aims are production of industrial scale fuel alcohol and construction of the plant by ourselves. Some study concerned with energy saving separation and contamination control technic were entrusted to KAIST, A-ju university and KIST respectively. (author) 67 refs., 100 figs., 58 tabs.

  1. Pilot test of flue gas treatment by electron beam

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro

    1995-01-01

    The development of the technology of the desulfurization and denitration for flue gas by using electron beam was started in Japan in 1970s, and since then, the development research for putting it to practical use and the basic research on the subjects which must be resolved for promoting the practical use have been advanced. Based on these results, the verifying test using a pilot scale plant was carried out from 1991 to 1994 for the treatment of coal-burning flue gas, municipal waste-burning flue gas and highway tunnel exhaust gas. The operation of the pilot plant was already finished, and the conceptual design of a practical scale plant based on the results and the assessment of the economical efficiency were performed. As for the coal-burning flue gas treatment by using electron beam, the basic test, the pilot test and the conceptual design of a practical scale plant and the assessment of the economical efficiency are reported. As for the municipal waste-burning flue gas treatment by using electron beam, the basic test and the pilot test are reported. Also the pilot test on the denitration of exhaust gas in highway tunnels in reported. In Poland, the pilot test on the treatment of flue gas in coal-burning thermal power stations is carried out. In Germany, the technical development for cleaning the air contaminated by volatile organic compounds by electron beam irradiation is advanced. (K.I.)

  2. Pilot Project Technology Business Case: Mobile Work Packages

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lawrie, Sean [ScottMadden, Inc., Raleigh, NC (United States); Niedermuller, Josef [ScottMadden, Inc., Raleigh, NC (United States)

    2015-05-01

    Performance advantages of the new pilot project technologies are widely acknowledged, but it has proven difficult for utilities to derive business cases for justifying investment in these new capabilities. Lack of a business case is often cited by utilities as a barrier to pursuing wide-scale application of digital technologies to nuclear plant work activities. The decision to move forward with funding usually hinges on demonstrating actual cost reductions that can be credited to budgets and thereby truly reduce O&M or capital costs. Technology enhancements, while enhancing work methods and making work more efficient, often fail to eliminate workload such that it changes overall staffing and material cost requirements. It is critical to demonstrate cost reductions or impacts on non-cost performance objectives in order for the business case to justify investment by nuclear operators. The Business Case Methodology (BCM) was developed in September of 2015 to frame the benefit side of II&C technologies to address the “benefit” side of the analysis—as opposed to the cost side—and how the organization evaluates discretionary projects (net present value (NPV), accounting effects of taxes, discount rates, etc.). The cost and analysis side is not particularly difficult for the organization and can usually be determined with a fair amount of precision (not withstanding implementation project cost overruns). It is in determining the “benefits” side of the analysis that utilities have more difficulty in technology projects and that is the focus of this methodology. The methodology is presented in the context of the entire process, but the tool provided is limited to determining the organizational benefits only. This report describes a the use of the BCM in building a business case for mobile work packages, which includes computer-based procedures and other automated elements of a work package. Key to those impacts will be identifying where the savings are

  3. Pilot incineration plant for solid, combustible, and low-level wastes

    International Nuclear Information System (INIS)

    Francioni, W.M.

    Radioactively contaminated wastes are formed in the handling of radioactive materials at the Federal Institute for Reactor Research (FIRR) and in other facilities, hospitals, sanitoria, industry, and nuclear power plants. A large part of the wastes are combustible and only very slightly radioactive. Incineration of these wastes is obvious. A pilot incineration plant, henceforth called the PIP, for radioactive combustible wastes of the FIRR is surveyed. The plant and its individual components are described. The production costs of the plant and experience gained in operation available at present are reviewed. Solid combustible radioactive waste can be incinerated in the PIP. The maximum possible reduction in volume of these wastes is achieved by incineration. Subsequently the chemically sterile ashes can be consolidated in a stable block suitable for long-term storage mixing with cement

  4. Selective absorption pilot plant for decontamination of fuel reprocessing plant off-gas

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, M.J.; Eby, R.S.; Huffstetler, V.C.

    1977-10-01

    A fluorocarbon-based selective absorption process for removing krypton-85, carbon-14, and radon-222 from the off-gas of conventional light water and advanced reactor fuel reprocessing plants is being developed at the Oak Ridge Gaseous Diffusion Plant in conjunction with fuel recycle work at the Oak Ridge National Laboratory and at the Savannah River Laboratory. The process is characterized by an especially high tolerance for many other reprocessing plant off-gas components. This report presents detailed drawings and descriptions of the second generation development pilot plant as it has evolved after three years of operation. The test facility is designed on the basis of removing 99% of the feed gas krypton and 99.9% of the carbon and radon, and can handle a nominal 15 scfm (425 slm) of contaminated gas at pressures from 100 to 600 psig (7.0 to 42.2 kg/cm/sup 2/) and temperatures from minus 45 to plus 25/sup 0/F (-43 to -4/sup 0/C). Part of the development program is devoted to identifying flowsheet options and simplifications that lead to an even more economical and reliable process. Two of these applicative flowsheets are discussed.

  5. Fusion pilot plant scoping study

    International Nuclear Information System (INIS)

    Gierszewski, P.J.; Blevins, P.J.; Brunnader, H.; Natalizio, A.; Cumyn, P.; Dean, B.; Smith, S.; Galambos, J.; Holloway, C.; Stremlaw, J.; Williams, G.

    1994-05-01

    CFFTP Pilot is representative of a class of machines that, like NPD in the CANDU development program, could test the key reactor core technologies on an integrated power reactor relevant system (materials, conditions, configuration). But in order to reduce costs, the machine would operate at reduced neutron flux relative to a power reactor, would not produce electricity, and would not test superconducting magnets. This design shows research directions towards a machine that could provide integrated nuclear testing (but not ignition physics) at a cost of about 1/3 ITER CDA. The test volume - the outboard blanket volume - would be comparable to the test port volume on ITER CDA, while the fluence and power density would be about 1/4 ITER CDA. 91 refs., 43 tabs., 45 figs

  6. Fusion pilot plant scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Gierszewski, P J; Blevins, P J; Brunnader, H; Natalizio, A [Canadian Fusion Fuels Technology Project, Toronto, ON (Canada); Cumyn, P [Canatom Ltd., Montreal, PQ (Canada); Dean, B; Smith, S [Wardrop (W.L.) and Associates Ltd., Winnipeg, MB (Canada); Galambos, J [Oak Ridge National Lab., TN (United States); Holloway, C [Spar Aerospace Ltd., Toronto, ON (Canada); Stremlaw, J [Monenco AGRA Inc., Calgary, AB (Canada); Williams, G [Spectrum Engineering Corp., Peterborough, ON (Canada)

    1994-05-01

    CFFTP Pilot is representative of a class of machines that, like NPD in the CANDU development program, could test the key reactor core technologies on an integrated power reactor relevant system (materials, conditions, configuration). But in order to reduce costs, the machine would operate at reduced neutron flux relative to a power reactor, would not produce electricity, and would not test superconducting magnets. This design shows research directions towards a machine that could provide integrated nuclear testing (but not ignition physics) at a cost of about 1/3 ITER CDA. The test volume - the outboard blanket volume - would be comparable to the test port volume on ITER CDA, while the fluence and power density would be about 1/4 ITER CDA. 91 refs., 43 tabs., 45 figs.

  7. Experimental fact-finding in CFB biomass gasification for ECN's 500 kWth pilot-plant

    NARCIS (Netherlands)

    Kersten, Sascha R.A.; Prins, W.; van der Drift, A.; van Swaaij, Willibrordus Petrus Maria

    2003-01-01

    CFB biomass gasification has been studied by experimentation with ECN's pilot facility and a cold-flow model of this plant. Data obtained by normal operation of this plant and the results of some special experiments have provided new insight into the behavior of circulating fluidized bed reactors

  8. Women in Science and Technology: A Global Development Leadership Pilot Scheme

    Science.gov (United States)

    Turnbull, Sarah; Howe-Walsh, Liza; Shute, Janis

    2014-01-01

    In 2012 The University of Portsmouth piloted their first Global Development Leadership program for women in Science and Technology faculties. This was seen to be particularly important because of the wider under-representation of women in Science, Technology, Engineering and Maths (STEM) and the need to encourage more women into senior positions…

  9. Pilot-plant development of a Rover waste calcination flowsheet

    International Nuclear Information System (INIS)

    Birrer, S.A.

    1978-04-01

    Results of eight runs, six using the 10-cm dia and two using the 30-cm dia pilot-plant calciners, in which simulated first-cycle Rover waste was calcined, are described. Results of the tests showed that a feed blend consisting of one volume simulated first-cycle Rover waste and one or two volumes simulated first-cycle zirconium waste could not be successfully calcined. 5 figs., 8 tables

  10. Waste Isolation Pilot Plant Site Environmental Report for calendar year 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This is the 1989 Site Environmental Report (SER) for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP is a government owned and contractor-operated facility. The WIPP project is operated by Westinghouse Electric Corporation for the US Department of Energy (DOE). The mission of the WIPP is to provide a research and development facility to demonstrate the safe disposal of transuranic (TRU) waste generated by the defense activities of the US Government. This report provides a comprehensive description of environmental activities at the WIPP during calendar year 1989. The WIPP facility will not receive waste until all concerns affecting opening the WIPP are addressed to the satisfaction of the Secretary of Energy. Therefore, this report describes the status of the preoperational activities of the Radiological Environmental Surveillance (RES) program, which are outlined in the Radiological Baseline Program for the Waste Isolation Pilot Plant (WTSD-TME-057). 72 refs., 13 figs., 20 tabs

  11. Central receiver solar thermal power system, Phase 1. CDRL item 2. Pilot plant preliminary design report. Volume VI. Electrical power generation and master control subsystems and balance of plant

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The requirements, performance, and subsystem configuration for both the Commercial and Pilot Plant electrical power generation subsystems (EPGS) and balance of plants are presented. The EPGS for both the Commercial Plant and Pilot Plant make use of conventional, proven equipment consistent with good power plant design practices in order to minimize risk and maximize reliability. The basic EPGS cycle selected is a regenerative cycle that uses a single automatic admission, condensing, tandem-compound double-flow turbine. Specifications, performance data, drawings, and schematics are included. (WHK)

  12. A realistic approach to modeling an in-duct desulfurization process based on an experimental pilot plant study

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, F.J.G.; Ollero, P. [University of Seville, Seville (Spain)

    2008-07-15

    This paper has been written to provide a realistic approach to modeling an in-duct desulfurization process and because of the disagreement between the results predicted by published kinetic models of the reaction between hydrated lime and SO{sub 2} at low temperature and the experimental results obtained in pilot plants where this process takes place. Results were obtained from an experimental program carried out in a 3-MWe pilot plant. Additionally, five kinetic models, from the literature, of the reaction of sulfation of Ca(OH){sub 2} at low temperatures were assessed by simulation and indicate that the desulfurization efficiencies predicted by them are clearly lower than those experimentally obtained in our own pilot plant as well as others. Next, a general model was fitted by minimizing the difference between the calculated and the experimental results from the pilot plant, using Matlab{sup TM}. The parameters were reduced as much as possible, to only two. Finally, after implementing this model in a simulation tool of the in-duct sorbent injection process, it was validated and it was shown to yield a realistic approach useful for both analyzing results and aiding in the design of an in-duct desulfurization process.

  13. Oxyfuel technology with focus on the boiler

    Energy Technology Data Exchange (ETDEWEB)

    Kluger, Frank; Krohmer, Bernd; Moenckert, Patrick; Stamatelopoulos, Georg-Nikolaus [Alstom Power Systems GmbH (Germany)

    2009-07-01

    Against the background of a worldwide increasing use of fossil primary energy carriers for the power and heat generation and the associated impact of CO{sub 2} emissions on the climate, technologies for CO{sub 2} reduction or separation and storage for power plant processes (Carbon Capture and Storage = CCS) must be developed and brought to market within a short time. Considerable efforts for the development of CO{sub 2} separation technologies are undertaken both by the power plant operators and power plant manufacturers. Alstom develops technologies for CO{sub 2} separation, which can be integrated in new plants and with which existing power plants can also be retrofitted. For the power plant industry, the development of economic solutions for the existing power plant fleet holds as well the possibility of exploiting the maximum CO{sub 2} reduction potential once commercial introduction of these technologies has started. The ''oxyfuel'' technology is one of the most promising CO{sub 2} separation technologies in terms of performance, life cycle costs, and development time as a result of the adaptation of proven large scale industrial equipment, and it can be employed for both new plants and as retrofit for existing power plants. The different CO{sub 2} separation technologies are already partly tested on pilot plant scale and provide important knowledge for the design of demonstration plants, which must then also prove the economic efficiency of the relevant technology besides the technical feasibility. Alstom participates in various pilot projects (15 - 30 MW{sub th}) for the further development of the oxyfuel technology and is creating a broad knowledge base for the design, construction and operation of an oxyfuel demonstration power plant (200 - 300 MW{sub el}) and subsequent commercial deployment. (orig.)

  14. Laboratory and pilot-plant studies on the conversion of uranyl nitrate hexahydrate to UF/sub 6/ by fluidized-bed processes

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, E.L.; Urza, I.J.; Cathers, G.I.

    1977-06-01

    This report describes laboratory and pilot-plant studies on the conversion of uranyl nitrate hexahydrate (UNH) to UF/sub 6/ and on purification of the UF/sub 6/. Experimental laboratory studies on the removal of residual nitrate from uranium trioxide (UO/sub 3/) calcine and the fluorination of technetium and subsequent sorption on MgF/sub 2/ were conducted to support the pilot-plant work. Two engineering-scale pilot plants utilizing fluidized-bed processes were constructed for equipment and process testing of the calcination of UNH to UO/sub 3/ and the direct fluorination of UO/sub 3/ to UF/sub 6/.

  15. Modernization and enlarging of the Marcoule pilot plant for R and D

    International Nuclear Information System (INIS)

    Calame-Longjean, A.; Revol, G.; Roux, J.P.; Ranger, G.

    1987-01-01

    The aim of the pilot plant is the testing of process and equipment in actual conditions with spent fuels on a half-industrial scale and for a significant time. From 1963 to 1983 more than 11t of spent fuels (mainly from fast reactors) were reprocessed. Since 1983 is modernized and enlarged and the new plant of the TOR project (treatment of oxides from fast reactors) are described [fr

  16. A pilot plant for removing chromium from residual water of tanneries.

    Science.gov (United States)

    Landgrave, J

    1995-02-01

    The purpose of this study is to develop a technical process for removing trivalent chromium from tannery wastewater via precipitation. This process can be considered an alternative that avoids a remediation procedure against the metal presence in industrial wastes. This process was verified in a treatment pilot plant located in León, México handling 10 m3/day of three types of effluents. The effluent streams were separated to facilitate the elimination of pollutants from each one. The process was based on in situ treatment and recycle to reduce problems associated with transportation and confinement of contaminated sludges. Two types of treatment were carried out in the pilot plant: The physical/chemical and biological treatments. Thirty-five experiments were conducted and the studied variables were the pH, type of flocculant, and its dose. The statistical significance of chromium samples was 94.7% for its precipitation and 99.7% for recovery. The objectives established for this phase of the development were accomplished and the overall efficiencies were measured for each stage in the pilot plant. The results were: a) chromium precipitation 99.5% from wastewater stream, b) chromium recovery 99% for recycling, and c) physical/chemical treatment to eliminate grease and fat at least 85% and 65 to 70% for the biological treatment. The tanning of a hide lot (350 pieces) was accomplished using 60% treated and recycled water without affecting the product quality. The recovered chromium liquor was also used in this hide tanning. This technical procedure is also applicable for removing heavy metals in other industrial sectors as well as in reducing water consumption rates, if pertinent adjustments are implemented.

  17. Testing of downstream catalysts for tar destruction with a guard bed in a fluidised bed biomass gasifier at pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M.P.; Frances, E.; Campos, I.J.; Martin, J.A.; Gil, J. [Saragossa Univ. (Spain). Dept. of Chemistry and Environment Engineering; Corella, J. [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1996-12-31

    A new pilot plant for advanced gasification of biomass in a fast fluidised bed is now fully operative at University of Saragossa, Spain. It is a `3rd generation` pilot plant. It has been built up after having used two previous pilot plants for biomass gasification. The main characteristic of this pilot plant is that it has two catalytic reactors connected in series, downstream the biomass gasifier. Such reactors, of 4 cm i.d., are placed in a slip stream in a by-pass from the main gasifier exit gas. The gasification is made at atmospheric pressure, with flow rates of 3-50 kg/in, using steam + O{sub 2} mixtures as the gasifying agent. Several commercial Ni steam-reforming catalyst are being tested under a realistic raw gas composition. Tar eliminations or destructions higher than 99 % are easily achieved. (orig.) 2 refs.

  18. Testing of downstream catalysts for tar destruction with a guard bed in a fluidised bed biomass gasifier at pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M P; Frances, E; Campos, I J; Martin, J A; Gil, J [Saragossa Univ. (Spain). Dept. of Chemistry and Environment Engineering; Corella, J [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1997-12-31

    A new pilot plant for advanced gasification of biomass in a fast fluidised bed is now fully operative at University of Saragossa, Spain. It is a `3rd generation` pilot plant. It has been built up after having used two previous pilot plants for biomass gasification. The main characteristic of this pilot plant is that it has two catalytic reactors connected in series, downstream the biomass gasifier. Such reactors, of 4 cm i.d., are placed in a slip stream in a by-pass from the main gasifier exit gas. The gasification is made at atmospheric pressure, with flow rates of 3-50 kg/in, using steam + O{sub 2} mixtures as the gasifying agent. Several commercial Ni steam-reforming catalyst are being tested under a realistic raw gas composition. Tar eliminations or destructions higher than 99 % are easily achieved. (orig.) 2 refs.

  19. WIPP conceptual design report. Addendum G. Accident analysis for Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Shefelbine, H.C.; Metcalf, J.H.

    1977-06-01

    The types of accidents or risks pertinent to the Waste Isolation Pilot Plant (WIPP) are presented. Design features addressing these risks are discussed. Also discussed are design features that protect the public

  20. Development of a computer systems for operational data acquisition of uranium isotopic enrichment pilot plant

    International Nuclear Information System (INIS)

    Maia, W.M.C.

    1985-01-01

    A pilot plant for uranium enrichment using the jet nozzle process was transfered from Federal Republic of Germany to Brazil, to train Brazilian technicist in its operation and to improve the process. This pilot plant is monitored by a data acquisition system and the possibility of faulty events would cause serious dificulties, as far as maintenance is concerned (for instance, unvailable special components). It is described the development of a new system, which is proposed in order to minimize difficulties with maintenance that utilizes in the assembling integrated circuits of large scale of integration. It is controlled by a microcomputer. (Author) [pt

  1. FY 1989 report on the results of the development of the entrained bed coal gasification power plant. Part 2. Fabrication/installation of pilot plant; 1989 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 2. Pilot plant seisaku suetsuke hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, the fabrication, installation work, etc. were conducted of a 200t/d entrained bed coal gasification pilot plant, and the FY 1989 results were summarized. As to the gasifier equipment, fabrication of a considerable number of the main equipment was finished. And, the equipment was sent into the coal gasification power plant and the installation work was done. Concerning gas refining facilities, fabrication of most of the components of the dry desulfurization system was finished, and further, fabrication of part of the piping prefabrication, disk and part of the disk fitting instrument was finished. The partial equipment of the dry dust removal system was also fabricated. About gas turbine facilities, the drawings necessary for each of the equipment fabricated/installed in this fiscal year were made, and at the same time a part of the technical data prepared so far was reviewed according to the progress of design. As to safety environmental facilities, installation work was done of gas treatment furnace, gas cooling system, buffer tank, desulfurizing tower, etc. Besides, design/technical study were made of the total control system, equipment of the indoor switching station, etc. (NEDO)

  2. Development of CO2 Selective Poly(Ethylene Oxide-Based Membranes: From Laboratory to Pilot Plant Scale

    Directory of Open Access Journals (Sweden)

    Torsten Brinkmann

    2017-08-01

    Full Text Available Membrane gas separation is one of the most promising technologies for the separation of carbon dioxide (CO2 from various gas streams. One application of this technology is the treatment of flue gases from combustion processes for the purpose of carbon capture and storage. For this application, poly(ethylene oxide-containing block copolymers such as Pebax® or PolyActive™ polymer are well suited. The thin-film composite membrane that is considered in this overview employs PolyActive™ polymer as a selective layer material. The membrane shows excellent CO2 permeances of up to 4 m3(STP·(m2·h·bar−1 (1 bar = 105 Pa at a carbon dioxide/nitrogen (CO2/N2 selectivity exceeding 55 at ambient temperature. The membrane can be manufactured reproducibly on a pilot scale and mounted into flat-sheet membrane modules of different designs. The operating performance of these modules can be accurately predicted by specifically developed simulation tools, which employ single-gas permeation data as the only experimental input. The performance of membranes and modules was investigated in different pilot plant studies, in which flue gas and biogas were used as the feed gas streams. The investigated processes showed a stable separation performance, indicating the applicability of PolyActive™ polymer as a membrane material for industrial-scale gas processing.

  3. NPDES Permit for Crow Municipal Rural & Industrial Pilot Water Treatment Plant in Montana

    Science.gov (United States)

    Under NPDES permit MT-0031827, the Crow Indian Tribe is authorized to discharge from the Crow Municipal Rural & Industrial (MR&I) Pilot Water Treatment Plant in Bighorn County, Montana to the Bighorn River.

  4. Waste Isolation Pilot Plant No-migration variance petition. Addendum: Volume 7, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    This report describes various aspects of the Waste Isolation Pilot Plant (WIPP) including design data, waste characterization, dissolution features, ground water hydrology, natural resources, monitoring, general geology, and the gas generation/test program.

  5. Power plant chemical technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    17 contributions covering topies of fossil fuel combustion, flue gas cleaning, power plant materials, corrosion, water/steam cycle chemistry, monitoring and control were presented at the annual meeting devoted to Power Plant Chemical Technology 1996 at Kolding (Denmark) 4-6 September 1996. (EG)

  6. Radiation treatment of sewage sludge - experience with an operating pilot plant

    International Nuclear Information System (INIS)

    Suess, A.; Lessel, T.

    1977-01-01

    After an operation time of a pilot plant for the γ-irradiation of sewage sludge after 3 years promising results could be obtained for economic considerations, killing rate of pathogenes and radiation induced changes in sedimentation properties. Irradiated sewage sludge indicated nearly the same effect on soil and plant as untreated. No special trained personnel are necessary for maintenance because of the simple design. Successful experience during 18 months resulted in an increase of the daily capacity up to 120 m 3 from December 1975. (author)

  7. Achievement report for fiscal 1981 on Sunshine Program-assisted project. Data 4. Development of coal liquefaction technology/Development of solvent extraction liquefaction technology/Development of brown coal solvent extraction plant (Development of 50t/d pilot plant); 1981 nendo sekitan ekika gijutsu no kaihatsu seika hokokusho (Shiryo 4). Yozai chushutsu ekika gijutsu no kaihatsu (kattankei yozai chushutsu plant no kaihatsu (50ton/nichi pilot plant no kaihatsu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Research is conducted for the development of a liquefaction plant (50t/d pilot plant) for Australia's Victorian brown coal. In fiscal 1981, using the process concept and design data obtained through the study of elements, a detailed design of a primary hydrogenation system is drawn, part of the equipment is procured, and on-site construction work is started. The book is a collection of materials which include instrumentation-related drawings covering an instrumentation loop sketch, instrument inspection specifications (flow meter, level gage, pressure gage, thermometer, regulation meter, analyzing meter, signal receiving meter, and instrument board), general specifications for electrical instrumentation facilities, etc. (NEDO)

  8. Achievement report for fiscal 1981 on Sunshine Program-assisted project. Data 4. Development of coal liquefaction technology/Development of solvent extraction liquefaction technology/Development of brown coal solvent extraction plant (Development of 50t/d pilot plant); 1981 nendo sekitan ekika gijutsu no kaihatsu seika hokokusho (Shiryo 4). Yozai chushutsu ekika gijutsu no kaihatsu (kattankei yozai chushutsu plant no kaihatsu (50ton/nichi pilot plant no kaihatsu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Research is conducted for the development of a liquefaction plant (50t/d pilot plant) for Australia's Victorian brown coal. In fiscal 1981, using the process concept and design data obtained through the study of elements, a detailed design of a primary hydrogenation system is drawn, part of the equipment is procured, and on-site construction work is started. The book is a collection of materials which include instrumentation-related drawings covering an instrumentation loop sketch, instrument inspection specifications (flow meter, level gage, pressure gage, thermometer, regulation meter, analyzing meter, signal receiving meter, and instrument board), general specifications for electrical instrumentation facilities, etc. (NEDO)

  9. Pilot plant studies of the bioconversion of cellulose and production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C.R.

    1977-09-30

    Work for the period July 1 to September 30, 1977 is summarized briefly. Results of the following studies are reported: analysis and evaluation of potential raw materials--chemical analysis of the Kudzu plant and effect of NO/sub x/ pretreatments on the hydrolysis of wheat straw; utilization of hemicellulose sugars; process design and economic studies--hydrolysis process and ethanol fermentation; pilot plant process development and design studies--enhanced cellulase production and continuous hydrolysis. (JGB)

  10. Use of Pilot Plants for Developing Used Nuclear Fuel Recycling Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Chris; Arm, Stuart [EnergySolutions LLC (United States); Banfield, Zara; Jeapes, Andrew; Taylor, Richard [National Nuclear Laboratory (United Kingdom)

    2009-06-15

    EnergySolutions and its teaming partners are working with the US Department of Energy (DOE) to develop processes, equipment and facilities for recycling used nuclear fuel (UNF). Recycling significantly reduces the volume of wastes that ultimately will be consigned to the National Geologic Repository, enables the re-use in new fuel of the valuable uranium and plutonium in the UNF, and allows the long-lived minor actinides to be treated separately so they do not become long term heat emitters in the Repository. A major requirement of any new UNF recycling facility is that pure plutonium is not separated anywhere in the process, so as to reduce the nuclear proliferation attractiveness of the facility. EnergySolutions and its team partner the UK National Nuclear Laboratory (NNL) have developed the NUEX process to achieve this and to handle appropriately the treatment of other species such as krypton, tritium, neptunium and technetium. NUEX is based on existing successful commercial UNF recycling processes deployed in the UK, France and imminently in Japan, but with a range of modifications to the flowsheet to keep some uranium with the plutonium at all times and to minimize aerial and liquid radioactive discharges. NNL's long-term experience in developing the recycling and associated facilities at the Sellafield site in the UK, and its current duties to support technically the operation of the Thermal Oxide Reprocessing Plant (THORP) at Sellafield provides essential input to the design of the US NUEX-based facility. Development work for THORP and other first-of-kind nuclear plants employed miniature scale fully radioactive through large scale inactive pilot plants. The sequence of development work that we have found most successful is to (i) perform initial process development at small (typically 1/5000) scale in gloveboxes using trace active materials, (ii) demonstrate the processes at the same small scale with actual irradiated fuel in hot cells and (iii

  11. Technology Cooperation Agreement Pilot Project: Development-Friendly Greenhouse Gas Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Keegan, P.

    1998-10-30

    This paper provides an overview of TCAPP, including the methodology, the results to date, and proposed future activities. It includes a detailed description of the technology cooperation frameworks completed by each country, the process that produced them and the plans for how TCAPP will help to implement the directions articulated by the country teams. The US Government initiated the Technology Cooperation Agreement Pilot Project (TCAPP) in August 1997 in recognition of the need to establish a mechanism for implementing Article 4.5 of the Framework Convention on Climate Change. ''The developed country partners shall take all practicable steps to promote, facilitate and finance, as appropriate, the transfer of, or access to, environmentally sound technologies and know-how to other Parties, particularly developing country Parties, to enable them to implement the provisions of the Convention.'' TCAPP builds support for implementing clean energy technologies by facilitating collaboration among the participating countries, the US and other OECD countries, international donors, and the private sector. The governments of Brazil, China, Kazakhstan, Mexico and the Philippines are currently participating and helping to shape this initiative. International donors and the private sector have also been actively engaged in the design and implementation of this pilot program.

  12. Conceptual design of a lunar oxygen pilot plant Lunar Base Systems Study (LBSS) task 4.2

    Science.gov (United States)

    1988-01-01

    The primary objective was to develop conceptual designs of two pilot plants to produce oxygen from lunar materials. A lunar pilot plant will be used to generate engineering data necessary to support an optimum design of a larger scale production plant. Lunar oxygen would be of primary value as spacecraft propellant oxidizer. In addition, lunar oxygen would be useful for servicing nonregenerative fuel cell power systems, providing requirements for life support, and to make up oxygen losses from leakage and airlock cycling. Thirteen different lunar oxygen production methods are described. Hydrogen reduction of ilmenite and extraction of solar-wind hydrogen from bulk lunar soil were selected for conceptual design studies. Trades and sensitivity analyses were performed with these models.

  13. Safety study on nuclear heat utilization system - accident delineation and assessment on nuclear steelmaking pilot plant

    International Nuclear Information System (INIS)

    Yoshida, T.; Mizuno, M.; Tsuruoka, K.

    1982-01-01

    This paper presents accident delineation and assessment on a nuclear steelmaking pilot plant as an example of nuclear heat utilization systems. The reactor thermal energy from VHTR is transported to externally located chemical process plant employing helium-heated steam reformer by an intermediate heat transport loop. This paper on the nuclear steelmaking pilot plant will describe (1) system transients under accident conditions, (2) impact of explosion and fire on the nuclear reactor and the public and (3) radiation exposure on the public. The results presented in this paper will contribute considerably to understanding safety features of nuclear heat utilization system that employs the intermediate heat transport loop and the helium-heated steam reformer

  14. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services (WRES)

    2004-10-25

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2002, to March 31, 2004. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico.

  15. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    International Nuclear Information System (INIS)

    2004-01-01

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2002, to March 31, 2004. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico.

  16. Separation of packaging plastics by froth flotation in a continuous pilot plant

    International Nuclear Information System (INIS)

    Carvalho, Teresa; Durao, Fernando; Ferreira, Celia

    2010-01-01

    The objective of the research was to apply froth flotation to separate post-consumer PET (Polyethylene Terephthalate) from other packaging plastics with similar density, in a continuously operated pilot plant. A representative sample composed of 85% PET, 2.5% PVC (Polyvinyl Chloride) and 11.9% PS (Polystyrene) was subjected to a combination of alkaline treatment and surfactant adsorption followed by froth flotation. A mineral processing pilot plant, owned by a Portuguese mining company, was adapted for this purpose. The experimentation showed that it is possible to produce an almost pure concentrate of PET, containing 83% of the PET in feed, in a single bank of mechanical flotation cells. The concentrate grade attained was 97.2% PET, 1.1% PVC and 1.1% PS. By simulation it was shown that the Portuguese recycling industry specifications can be attained if one cleaning and one scavenger stages are added to the circuit.

  17. Operating Experiences with a Small-scale CHP Pilot Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels

    DEFF Research Database (Denmark)

    Biedermann, F.; Carlsen, Henrik; Schoech, M.

    2003-01-01

    Within the scope of the RD&D project presented a small-scale CHP plant with a hermetic four cylinder Stirling engine for biomass fuels was developed and optimised in cooperation with the Technical University of Denmark, MAWERA Holzfeuerungsanlagen GesmbH, an Austrian biomass furnace and boiler...... exchanger of the Stirling engine, of the air preheater and of the entire combustion system. Furthermore, the optimisation of the pneumatic cleaning system to reduce ash deposition in the hot heat exchanger is of great relevance....... manufacturer, and BIOS BIOENERGIESYSTEME GmbH, an Austrian development and engineering company. Based on the technology developed, a pilot plant was designed and erected in Austria. The nominal electric power output of the plant is 35 kWel and the nominal thermal output amounts to approx. 220 kWth. The plant...

  18. Conceptual design of SO3 decomposer for thermo-chemical iodine-sulfur process pilot plant

    International Nuclear Information System (INIS)

    Akihiro Kanagawa; Seiji Kasahara; Atsuhiko Terada; Shinji Kubo; Ryutaro Hino; Yoshiyuki Kawahara; Masaharu Watabe; Hiroshi Fukui; Kazuo Ishino; Toshio Takahashi

    2005-01-01

    Thermo-chemical water-splitting cycle is a method to make an effective use of the high temperature nuclear heat for hydrogen production. Japan Atomic Energy Research Institute (JAERI) has been conducting R and D on HTGR and also on thermo-chemical hydrogen production by using a thermo-chemical iodine-sulfur cycle (IS process). Based on the test results and know-how obtained through a bench-scale tests of hydrogen production of about 30 NL/hr, JAERI has a plan to construct a pilot test plant heated by high temperature helium gas, which has a hydrogen production performance of 30 Nm 3 /hr and will be operated under the high pressure up to 2 MPa. One of the key components of the pilot test plant is a SO 3 decomposer under high temperature conditions up to 850 degree C and high pressure up to 2 MPa. In this paper, a concept of the SO 3 decomposer for the pilot test plant fabricated with SiC ceramics, a corrosion-resistant material is investigated. Preliminary analyses on temperature and flow-rate distributions in the SO 3 decomposer and on thermal stress were carried out. A SO 3 decomposer model was experimentally manufactured. (authors)

  19. 1974 conceptual design description of a bedded salt pilot plant in southeast New Mexico

    International Nuclear Information System (INIS)

    1977-06-01

    The policy of the United States Atomic Energy Commission is to take custody of all commercial high-level radioactive wastes and maintain control of them in perpetuity. This policy (Title 10, Code of Federal Regulations, Part 50, Appendix F) requires that the high-level wastes from nuclear fuels reprocessing plants be solidified within five years after reprocessing and then shipped to a federal repository within ten years after reprocessing. Ultimate disposal sites and/or methods have not yet been selected and are not expected to be ready when waste deliveries begin about 1983. Therefore, the AEC plans to build an interim storage facility, called Retrievable Surface Storage Facility (RSSF), to store and isolate the waste from man and his environment until the suitability of the permanent repository is demonstrated and public acceptance has been established. Meantime, the AEC is proceeding with the study and development of an ultimate disposal method. Bedded salt is being considered for ultimate waste disposal, and work is in progress to develop a Bedded Salt Pilot Plant to demonstrate its acceptability. The pilot plant will permit in situ verification of laboratory work on the interaction of heat and radioactivity of the waste with the salt and surroundings. One concept of such a pilot facility is described

  20. Remote maintenance demonstration tests at a pilot plant for high level waste vitrification

    International Nuclear Information System (INIS)

    Selig, M.

    1984-01-01

    The remote maintenance and replacement technique designed for a radioactive vitrification plant have been developed and tested in a full scale handling mockup and in an inactive pilot plants by the Central Engineering Department of the Karlsruhe Nuclear Research Center. As a result of the development work and the tests it has been proved that the remote maintenance technique and remote handling equipment can be used without any technical problems and are suited for application in a radioactive waste vitrification plant

  1. Pilot plant study for treating sewage in the waste water treatment plant at Crevillente-Derramador, Alicante, Spain; Estudio con plant piloto para el tratamiento de aguas residuales en la EDAR de Crevillente-Derramador (Alicante)

    Energy Technology Data Exchange (ETDEWEB)

    Morenilla Martinez, J. J.; Bernacer Bonora, I.; Santos Asensi, J. M.; Martinez Muro, M. A.; Sanchez Ventral, A.; Martinez Cosin, J. M.

    2002-07-01

    It is much easier to carry out preliminary studies before a waste water treatment plant is built or enlarged or to identify existing problems and their possible solutions by using a portable pilot plant that is capable of operating under real conditions using the actual waste water that is causing the problem. A pilot plant was used to conduct treatability studies on the ground in the waste water treatment plant at Crevillente-Derramador, Alicante, Spain. The project was set up and directed by the Public Waste Water Treatment Agency of the Autonomous Community of Valencia. The work was aimed at finding a solution to existing problems in the plant and in pre dimensioning its future facilities. (Author) 8 refs.

  2. Macroalgae for CO2 Capture and Renewable Energy - A Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, Kristine [Gas Technology Inst., Des Plaines, IL (United States)

    2011-01-31

    The objective of this project was to demonstrate, at a pilot scale, the beneficial use of carbon dioxide (CO2) through a technology designed to capture CO2 from fossil-fuel fired power plant stack gas, generating macroalgae and converting the macroalgae at high efficiency to renewable methane that can be utilized in the power plant or introduced into a natural gas pipeline. The proposed pilot plant would demonstrate the cost-effectiveness and CO2/ NOx flue-gas removal efficiency of an innovative algal scrubber technology where seaweeds are grown out of water on specially-designed supporting structures contained within greenhouses where the plants are constantly bathed by recycled nutrient sprays enriched by flue gas constituents. The work described in this document addresses Phase 1 of the project only. The scope of work for Phase 1 includes the completion of a preliminary design package; the collection of additional experimental data to support the preliminary and detailed design for a pilot scale utilization of CO2 to cultivate macroalage and to process that algae to produce methane; and a technological and economic analysis to evaluate the potential of the system. Selection criteria for macroalgae that could survive the elevated temperatures and potential periodic desiccation of near desert project sites were identified. Samples of the selected macroalgae species were obtained and then subjected to anaerobic digestion to determine conversions and potential methane yields. A Process Design Package (PDP) was assembled that included process design, process flow diagram, material balance, instrumentation, and equipment list, sizes, and cost for the Phase 2 pilot plant. Preliminary economic assessments were performed under the various assumptions made, which are purposely conservative. Based on the results, additional development work should be conducted to delineate the areas for improving efficiency, reducing

  3. LEU fuel element produced by the Egyptian fuel manufacturing pilot plant

    International Nuclear Information System (INIS)

    Zidan, W.I.

    2000-01-01

    The Egyptian Fuel Manufacturing Pilot Plant, FMPP, is a Material Testing Reactor type (MTR) fuel element facility, for producing the specified fuel elements required for the Egyptian Second Research Reactor, ETRR-2. The plant uses uranium hexafluoride (UF 6 , 19.75% U 235 by wt) as a raw material which is processed through a series of the manufacturing, inspection and test plan to produce the final specified fuel elements. Radiological safety aspects during design, construction, operation, and all reasonably accepted steps should be taken to prevent or reduce the chance of accidents occurrence. (author)

  4. Radioactive waste disposal: Waste isolation pilot plants (WIPP). (Latest citations from the NTIS Bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning the Waste Isolation Pilot Plant (WIPP), a geologic repository located in New Mexico for transuranic wastes generated by the U.S. Government. Articles follow the development of the program from initial site selection and characterization through construction and testing, and examine research programs on environmental impacts, structural design, and radionuclide landfill gases. Existing plants and facilities, pilot plants, migration, rock mechanics, economics, regulations, and transport of wastes to the site are also included. The Salt Repository Project and the Crystalline Repository Project are referenced in separate bibliographies. (Contains a minimum of 228 citations and includes a subject term index and title list.)

  5. Select Generic Dry-Storage Pilot Plant Design for Safeguards and Security by Design (SSBD) per Used Fuel Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sprinkle, James K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-26

    As preparation to the year-end deliverable (Provide SSBD Best Practices for Generic Dry-Storage Pilot Scale Plant) for the Work Package (FT-15LA040501–Safeguards and Security by Design for Extended Dry Storage), the initial step was to select a generic dry-storage pilot plant design for SSBD. To be consistent with other DOE-NE Fuel Cycle Research and Development (FCR&D) activities, the Used Fuel Campaign was engaged for the selection of a design for this deliverable. For the work Package FT-15LA040501–“Safeguards and Security by Design for Extended Dry Storage”, SSBD will be initiated for the Generic Dry-Storage Pilot Scale Plant described by the layout of Reference 2. SSBD will consider aspects of the design that are impacted by domestic material control and accounting (MC&A), domestic security, and international safeguards.

  6. Waste Isolation Pilot Plant Safety Analysis Report. Volume 5

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  7. Waste Isolation Pilot Plant Safety Analysis Report. Volume 4

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  8. Waste Isolation Pilot Plant Safety Analysis Report. Volume 1

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection: Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating control and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  9. Waste Isolation Pilot Plant Safety Analysis Report. Volume 2

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  10. Two treatment methods for stormwater sediments--pilot plant and landfarming--and reuse of the treated sediments in civil engineering.

    Science.gov (United States)

    Petavy, F; Ruban, V; Conil, P; Viau, J Y; Auriol, J C

    2009-07-01

    The aim of this research was to present a pilot plant for the treatment of stormwater sediments and to compare the decontamination rate to that obtained by landfarming. The possibilities for reuse of the treated sediments in civil engineering are also studied. Four sediments from retention/infiltration ponds or from street sweeping were studied. In each case organic matter (OM), total hydrocarbons (TH) and polycyclic aromatic hydrocarbons (PAH) were measured. Geotechnical tests were carried out to evaluate the reuse possibilities of the treated sediments. Treatment by means of the pilot plant was efficient at reducing TH and PAH concentrations: THs were reduced by 53-97% and PAHs were decreased by 60-95%. By comparison, a reduction of 45-75% in TH concentration is obtained with landfarming, whereas there is no significant decrease in PAHs. Furthermore, geotechnical tests showed that the treated fractions from the pilot plant can be reused as road embankments and as a capping layer. These results are most encouraging and show that stormwater sediments can valuably be reused after treatment in a pilot plant. Landfarming is less efficient but this technique could be used as a pretreatment in the case of high TH pollution.

  11. The integrated in situ testing program for the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Matalucci, R.V.

    1987-03-01

    The US Department of Energy (DOE) is developing the Waste Isolation Pilot Plant (WIPP) Project in southeastern New Mexico as a research and development (R and D) facility for examining the response of bedded (layered) salt to the emplacement of radioactive wastes generated from defense programs. The WIPP Experimental Program consists of a technology development program, including laboratory testing and theoretical analysis activities, and an in situ testing program that is being done 659 m underground at the project site. This experimental program addresses three major technical areas that concern (1) thermal/structural interactions, (2) plugging and sealing, and (3) waste package performance. To ensure that the technical issues involved in these areas are investigated with appropriate emphasis and timing, an in situ testing plan was developed to integrate the many activities and tasks associated with the technical issues of waste disposal. 5 refs., 4 figs

  12. Waste Isolation Pilot Plant Safety Analysis Report

    International Nuclear Information System (INIS)

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions'' (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.'' This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment

  13. Waste Isolation Pilot Plant Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  14. Population dynamics of iron-oxidizing communities in pilot plants for the treatment of acid mine waters.

    Science.gov (United States)

    Heinzel, Elke; Janneck, Eberhard; Glombitza, Franz; Schlömann, Michael; Seifert, Jana

    2009-08-15

    The iron-oxidizing microbial community in two pilot plants for the treatment of acid mine water was monitored to investigate the influence of different process parameters such as pH, iron concentration, and retention time on the stability of the system to evaluate the applicability of this treatment technology on an industrial scale. The dynamics of the microbial populations were followed using T-RFLP (terminal restriction fragment length polymorphism) over a period of several months. For a more precise quantification, two TaqMan assays specific for the two prominent groups were developed and the relative abundance of these taxa in the iron-oxidizing community was verified by real-time PCR. The investigations revealed that the iron-oxidizing community was clearly dominated by two groups of Betaproteobacteria affiliated with the poorly known and not yet recognized species "Ferrovum myxofaciens" and with strains related to Gallionella ferruginea, respectively. These taxa dominated the microbial community during the whole investigation period and accelerated the oxidation of ferrous iron despite the changing characteristics of mine waters flowing into the plants. Thus, it is assumed that the treatment technology can also be applied to other mine sites and that these organisms play a crucial role in such treatment systems.

  15. WIPP conceptual design report. Addendum C. Cost worksheets for Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1977-04-01

    The cost worksheets for the Waste Isolation Pilot Plant (WIPP) are presented. A summary cost estimate, cost estimate for surface facilities, and cost estimate for shafts and underground facilities are included

  16. Assessment of materials selection and performance for direct-coal- liquefaction plants in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, A.R.; Judkins, R.R.; Keiser, J.R.

    1996-09-01

    Several direct coal liquefaction processes have been demonstrated at the pilot plant level in the United States. Presently only one plant remains operational, namely, the Hydrocarbon Technologies, Inc., 4.0- ton-per-day process development unit in Lawrenceville, New Jersey. The period from 1974 to 1982 saw the greatest amount of development of direct coal liquefaction in the United States with four major pilot plants being devoted to variants of this technology. The plants included the SRC-I plant at Wilsonville, Alabama, which operated from 1974 to 1992; the SRC-I/II plant at Fort Lewis, Washington, which operated from 1974 to 1981; the H-Coal plant at Catlettsburg, Kentucky, which operated from 1980 to 1982; and the Exxon Coal Liquefaction Pilot Plant at Baytown, Texas, which operated from 1980 to 1982. Oak Ridge National Laboratory scientists and engineers were actively involved in many phases and technical disciplines at all four of these plants, especially in materials testing, evaluation, and failure analyses. In addition, ORNL materials scientists and engineers conducted reviews of the demonstration and commercial plant designs for materials selections. The ORNL staff members worked closely with materials engineers at the pilot plants in identifying causes of materials degradation and failures, and in identifying solutions to these problems. This report provides a comprehensive summary of those materials activities. Materials performance data from laboratory and coal liquefaction pilot plant tests, failure analyses, and analyses of components after use in pilot plants were reviewed and assessed to determine the extent and causes of materials degradation in direct coal liquefaction process environments. Reviews of demonstration and commercial plant design documents for materials selections were conducted. These reviews and assessments are presented to capture the knowledge base on the most likely materials of construction for direct coal liquefaction plants.

  17. Pilot plant experiments at Wairakei Power Station

    International Nuclear Information System (INIS)

    Brown, Kevin L.; Bacon, Lew G.

    2009-01-01

    In the mid-1990s, several pilot plants were constructed at Wairakei to either improve the operational and economic performance of the power station or to mitigate the environmental effects of discharges to the Waikato River. The results of the following investigations are discussed: (1) fluid flow dynamic effects on silica scaling; (2) production of silica sols of predetermined particle size to evaluate the potential for generating commercial grade silica products; (3) use of 'sulfur oxidising bacteria' for the abatement of dissolved hydrogen sulphide in cooling water; (4) removal of arsenic from separated geothermal water; (5) steam line condensate corrosion; and (6) measurement and modelling of steam scrubbing in Wairakei's long steamlines. (author)

  18. Report on development of high-efficiency wastes power generation technology in fiscal 1998. 1. Development of component technology, and demonstration test of a pilot plant; 1998 nendo kokoritsu haikibutsu hatsuden gijutsu kaihatsu seika hokokusho. Yoso gijutsu kaihatsu (pilot plant jissho shiken) (dai 1 bunsatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A technology is developed to perform high-efficiency power generation by generating high-temperature and high-pressure steam stably by burning general wastes and combustible industrial wastes as fuel. This paper describes summary of the achievements in fiscal 1998. Corrosion tests were performed on over-heater materials under steam condition of 500 degrees C and 100 kg/cm{sup 2} by using a hot model. It was verified by the tests that the corrosion environment around an external heat exchanger is milder than that with an external stack. A circulation fluid bed was simulated from operation data, and a prospect was obtained on steam conditions required for the high-efficiency power generation. In order to elucidate the corrosion mechanism, discussions were given on deposited ash properties, corrosion characteristics and stress. Elucidation was made on a discharge chamber structure most suitable for removing dioxins and NOx by using a waste gas treatment process that uses plasma generated by discharge. A concept design was made. The economic effect of the system is equivalent to that of the activated carbon blow-in process, whereas a waste gas treatment system was nearly completed. As a result of the pilot plant test, the power generation efficiency is estimated to be 30% in a scale of 1200 tons per 24 hours. A demonstration test revealed that dioxin emission was far below the regulation value. An optimal system was also discussed. (NEDO)

  19. Use of phosphorus release batch tests for modelling an EBPR pilot plant

    DEFF Research Database (Denmark)

    Tykesson, E.; Aspegren, H.; Henze, Mogens

    2002-01-01

    The aim of this study was to evaluate how routinely performed phosphorus release tests could be used when modelling enhanced biological phosphorus removal (EBPR) using activated sludge models such as ASM2d. A pilot plant with an extensive analysis programme was used as basis for the simulations...

  20. Not-from-concentrate pilot plant ‘Wonderful’ cultivar pomegranate juice changes: Volatiles

    Science.gov (United States)

    Pilot plant ultrafiltration was used to mimic the dominant U.S. commercial pomegranate juice extraction method (hydraulic pressing whole fruit), to deliver a not-from-concentrate (NFC) juice that was high-temperature short-time pasteurized and stored at 4 and 25 °C. Recovered were 46 compounds, of ...

  1. New developments of high dust-SCR technology in the cement industry results of pilot tests in Solnhofen and development state of a full scale SCR unit; Nouveaux developpements de la technologie SCR ''High Dust'' dans l'industrie du ciment - resultats de tests pilotes a Solnhoffen et etat de developpement d'une unite pilote a l'echelle

    Energy Technology Data Exchange (ETDEWEB)

    Samant, G. [Lurgi Energie und Entsorgung GmbH, Frankfurt (Germany); Sauter, G. [Soinhofer Portland Zementwerke AG, Solnhofen (Germany); Haug, N. [Agence Federale de l' Environnement, Berlin (Germany)

    2001-07-01

    The production of clinker in the cement industry involve the formation of nitrous oxides, and the emission limits are becoming more stringent from year to year. The added up total NOx emissions from the European cement industry amounts at present approx. 450.000 Mg/year. As such it is high time for the decision to develop and implement a technology to reduce NOx-emissions. At present SCR technology which is implemented in the glass industry, waste incineration and power plants seems to be the best economical and ecological solution for cement industry. In the period time from 1997 to the end of 1999 pilot plant test work was carried out by the companies 'Solnhofer Portland Zementwerke AG' and 'mg Engineering Lurgi' in the cement plant in Solnhofen. The results of pilot plan test work show that NOx reduction rates above 90% with NH{sub 3} slip less then 5 vppm can be achieved. The results of the test work with different type of catalysts are discussed. Based on the results of the test work a suitable SCR-process for cement industry is developed. At present a High-Dust-SCR demonstration plant at 'Solnhofer Portland Zementwerke AG' with the help of German Federal Environmental Agency, UBA-Berlin, is under commissioning and going on stream. (authors)

  2. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 4, Revision 1.0

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The US Department of Energy is currently constructing the Waste Isolation Pilot near Carlsbad, New Mexico. The full-scale pilot plant will demonstrate the feasibility of the safe disposal of defense-related nuclear waste in a bedded salt formation at a depth of 2160 feet below the surface. WIPP will provide for the permanent storage of 25,000 cu ft of remote-handled (RH) transuranic waste and 6,000,000 cu ft of contact-handled (CH) transuranic waste. This paper covers the major mechanical/structural design considerations for the waste hoist and its hoist tower structure. The design of the hoist system and safety features incorporates state-of-the-art technology developed in the hoist and mining industry to ensure safe operation for transporting nuclear waste underground. Also included are design specifications for VOC-10 monitoring system.

  3. The waste isolation pilot plant regulatory compliance program

    International Nuclear Information System (INIS)

    Mewhinney, J.A.; Kehrman, R.F.

    1996-01-01

    The passage of the WIPP Land Withdrawal Act of 1992 (LWA) marked a turning point for the Waste Isolation Pilot Plant (WIPP) program. It established a Congressional mandate to open the WIPP in as short a time as possible, thereby initiating the process of addressing this nation's transuranic (TRU) waste problem. The DOE responded to the LWA by shifting the priority at the WIPP from scientific investigations to regulatory compliance and the completion of prerequisites for the initiation of operations. Regulatory compliance activities have taken four main focuses: (1) preparing regulatory submittals; (2) aggressive schedules; (3) regulator interface; and (4) public interactions

  4. Seismic reflection data report: Waste Isolation Pilot Plant (WIPP) site, Southeastern New Mexico

    International Nuclear Information System (INIS)

    Hern, J.L.; Powers, D.W.; Barrows, L.J.

    1978-12-01

    Volume II contains uninterpreted processed lines and shotpoint maps from three seismic reflection surveys conducted from 1976 through 1978 by Sandia Laboratories to support investigations for the Waste Isolation Pilot Plant. Data interpretations will be the subject of subsequent reports

  5. Pulsed Corona Plasma Technology for Treating VOC Emissions from Pulp Mills

    International Nuclear Information System (INIS)

    Fridman, Alexander A.; Gutsol, Alexander; Kennedy, Lawrence A.; Saveliev, Alexei V.; Korobtsev, Sergey V.; Shiryaevsky, Valery L.; Medvedev, Dmitry

    2004-01-01

    Under the DOE Office of Industrial Technologies Forest Products program various plasma technologies were evaluated under project FWP 49885 ''Experimental Assessment of Low-Temperature Plasma Technologies for Treating Volatile Organic Compound Emissions from Pulp Mills and Wood Products Plants''. The heterogeneous pulsed corona discharge was chosen as the best non-equilibrium plasma technology for control of the vent emissions from HVLC Brownstock Washers. The technology for removal of Volatile Organic Compounds (VOCs) from gas emissions with conditions typical of the exhausts of the paper industry by means of pulsed corona plasma techniques presented in this work. For the compounds of interest in this study (methanol, acetone, dimethyl sulfide and ? -pinene), high removal efficiencies were obtained with power levels competitive with the present technologies for the VOCs removal. Laboratory experiments were made using installation with the average power up to 20 W. Pilot plant prepared for on-site test has average plasma power up to 6.4 kW. The model of the Pilot Plant operation is presented

  6. Continuous operation of a pilot plant for the production of beryllium oxide

    International Nuclear Information System (INIS)

    Costa, T.C.; Amaral, S.; Silveira, C.M.S.; Oliveira, A.P. de

    1975-01-01

    A method of obtaining beryllium oxide with a purity of 99,2% was developed in a pilot plant with a capacity of 7 tons per month destined to operate continuously. The operation market prospects and control of production with the objective of obtaining internacional technical grade beryllium oxide are discussed [pt

  7. Continuous operation of a pilot plant for the production of beryllium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Costa, T C; Amaral, S; Silveira, C M.S.; de Oliveira, A P [Instituto de Tecnologia, Governador Valadares (Brazil)

    1975-12-01

    A method of obtaining beryllium oxide with a purity of 99,2% was developed in a pilot plant with a capacity of 7 tons per month destined to operate continuously. The operation market prospects and control of production with the objective of obtaining internacional technical grade beryllium oxide are discussed.

  8. Summary of the research achievements in fiscal 1988. Development of coal liquefaction technologies; Sekitan ekika gijutsu kaihatsu. 1988 nendo kenkyu seika no gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-03-01

    This paper reports the summary of the research and development works in fiscal 1988. The following researches were carried out: as development of a bituminous coal liquefaction technology, studies by using a pilot plant, studies on support of the pilot plant (studies by using an experimental plant (studies by using a 1-t/d PSU, development of an optimal pretreatment technology for coals to be used for liquefaction, studies on improvement in fraction oil distribution in the NEDOL process, and studies by using a 1-t/d plant)), and (studies by using a small device (studies on coal liquefying conditions, and studies on solvent hydrogenation catalysts)). Studies were carried out on operation of the pilot plant, and on support of the pilot plant operation. Materials for auxiliary machinery were developed (including in-plant test of new materials), and so were the devices (including development of a let-down valve) as trial fabrication and development of the plant devices and materials. As coal type selection and survey, coal types were surveyed, and liquefaction performance of Chinese coals was tested. In order to develop applications of coal liquefied products and a refining technology, developments were carried out on up-grading of the coal liquefied oil, a petroleum mixing technology, and a technology to separate hetero compounds in coal liquefied oil, and applications of the compounds. (NEDO)

  9. Retrieval of canistered experimental waste at the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Stinebaugh, R.E.

    1979-07-01

    To assess the suitability of bedded salt for nuclear waste disposal, an extensive experimental program will be implemented at the Waste Isolation Pilot Plant. In order to evaluate experimental results, it will be necessary to recover certain of these experiments for postmortem examination and analysis. This document describes the equipment and procedures used to effect recovery of one category of WIPP experiments

  10. NEREDA Pilot Studies 2003 - 2010; NEREDA Pilotonderzoeken 2003 - 2010

    Energy Technology Data Exchange (ETDEWEB)

    Berkhof, D.; De Bruin, B.; Kerstholt, M.; Kraan, R.; Miska, V.; Peeters, T.; Van der Roest, H.; Verschoor, J. [DHV, Amersfoort (Netherlands); De Kreuk, M.; Van Loosdrecht, M. [Technische Universiteit Delft TUD, Delft (Netherlands)

    2010-10-15

    Since the nineties of last century research has been conducted on the development of the aerobic granular sludge technology for wastewater treatment. A first STOWA pilot research project was executed at Ede, Netherlands. In 2005 a technological breakthrough was accomplished and was the starting sign for a broader national development program (NNOP). Next to STOWA, Delft University of Delft and DHV, six Waterboards are involved within this development program. Main goal of the NNOP is to develop a new competitive biological wastewater treatment technology (Nereda). After the Ede project additional pilot research projects were conducted at four locations in the Netherlands. Within these pilot research projects the following aspects were investigated: granulation on different wastewater types; stability of granular sludge; optimization of nitrogen and phosphate removal, especially during winter time; control of effluent suspended solids concentration; and obtain technological design parameters for full scale WWTPs (waste water treatment plants) [Dutch] In dit rapport staan de resultaten beschreven van de tussen 2003 en 2010 uitgevoerde pilots met de aeroob-korrelslibtechnologie Nereda. Dit is een nieuwe zuiveringstechnologie waarbij het reinigende actief slib geen vlokken maar korrels vormt. Hierdoor bezinkt het slib sneller en makkelijker. De technologie wordt gekenmerkt door hoge zuiveringsrendementen, weinig ruimtebeslag (voor bezinking) en relatief lage energiekosten. De resultaten van de pilots zijn dermate goed, dat drie van de vijf deelnemende waterschappen hebben besloten om 1 van hun rwzi's (rioolwaterzuiveringsinstallaties) aan te passen op basis van de Nereda-technologie.

  11. Science and Technology in Regional Flood Disaster Pilots: A GEOSS Capacity Building Imperative

    Science.gov (United States)

    Frye, S. W.; Cappelaere, P. G.; Mandl, D.

    2009-12-01

    This paper describes activities and results of melding basic scientific research in remote sensing with applied science and technology development and infusion to implement regional flood pilot programs in Sub-Saharan Africa and the Caribbean Region. These regional flood pilots support local and national agency involvement in emergency response and humanitarian assistance activities using orbital, sub-orbital, and in-situ sensors combined with predictive models and socio-economic data to form a cohesive, interoperable set of systems that cover the full cycle of disaster mitigation, warning, response, and recovery for societal benefit. Global satellite coverage is coordinated through the Committee on Earth Observation Satellites (CEOS) in conjunction with the United Nations Space Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER). Other international non-government organizations plus regional and local agencies all play individual roles in exploring the science results, applying the observations and model outputs to form geo-referenced maps that provide improved situational awareness and environmental intelligence for disaster management. The improvements to flood forecast and nowcast outputs include higher resolution drainage and hydrology mapping, improved retrievals for microwave data for soil moisture, plus improved validation from regional ground truth databases. Flow gauge and river depth archive data from local assets provide improved validation of flood model results. Incorporation of atmospheric correction using ground truth data from calibration and validation sites enables better detection and classification of plant species identification and plant stress. Open Geospatial Consortium (OGC) standards for Sensor Web Enablement (SWE) are implemented to provide internet access to satellite tasking, data processing, and distribution/notification in addition to model outputs and other local and regional data sets

  12. Results of the DIOS pilot plant test and summary of the joint research; DIOS pilot plant no shiken sogyo kekka to kenkyu seika no matome

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T [Center for Coal Utilization, Japan, Tokyo (Japan); Kawaoka, K [The Japan Iron and Steel Federation, Tokyo (Japan)

    1996-09-01

    A joint research had been carried out with a subsidy from the Agency of Natural Resources and Energy since fiscal 1988 to fiscal 1995 on the direct iron ore smelting reduction process (DIOS process). The process utilizes coal directly as a process to use the strong points and supplement the weak points of the blast furnace process. During the period, a pilot plant had been operated since 1993. Upon having completed the feasibility study, this paper reports the result thereof. The main facilities consist of a smelting and reducing furnace of iron bath type, a spare reducing furnace of fluidized bed type, and a preheating furnace. The former two furnaces constitute a unit structure with the two furnaces connected vertically. The pilot plant achieved a three-day continuous operation producing 500 tons of iron every day. The production rate reached 21 tons an hour at an upward oxygen blowing velocity of about 13,000 Nm {sup 3} per hour. The coal unit requirement showed a result of <1000 kg/t for high VM coal and <900 kg/t for low VM coal. These results verified a possibility that this process can supplement or replace the blast furnace process even for a production scale of 9000 tons a day. 7 refs., 15 figs., 3 tabs.

  13. A Practical Approach for Studying Fouling Process in Li-Recovery Pilot Plant

    Science.gov (United States)

    Kong, M.; Yoon, H.; Eom, C.; Kim, B.; Chung, K.

    2011-12-01

    The efficiency of selective ion recovery such as lithium from seawater has been major interest of previous studies. However, the characterization of adsorption behavior as well as dissolution yield as discharging environmentally problematic chemical species must carefully studied in various conditions including different seawater conditions [1]. Marine biofouling communities are complex, highly dynamic ecosystems consisting of a diverse range of organisms. The development of such communities begins with bacterial attachment followed by the colonization of higher organisms such as invertebrate larvae and algal spores [2-3]. Monitoring and field studies regarding fouling problems during operation of Li-recovery pilot plant which is designed by the Korea Institute of Geoscience & Mineral Resources (KIGAM) were major concern of this study. We examined fouling process for the duration of exposure time in real marine environment. Substrated with no-antifouling treated material and antifouling treated material were exposed and tested for different behaviors toward fouling in ocean. SEM-EDS (Scanning Electron Microscope-Energy dispersive Spectroscopy) analysis was done for surface identification of specific elements for possible dissolution during seawater exposure. To identify organic compound was used GC-MS (Gas Chromatography Mass Spectrometer) analysis. Experiment results, organisms such as alga are fouled the most on 30 days and antitreated material is fouled less than non antitreated material. Operating Li-recovery pilot plant to sea, we need to consider in order to effectively and economically resolve the fouling problem. Acknowledgement : This research was supported by the national research project titled "The Development of Technology for Extraction of Resources Dissolved in Seawater" of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Land, Transport and Maritime Affairs. References [1] M. Y. Diego, K. Soren, and D. J. Kim

  14. A pilot plant study for CO{sub 2} capture by aqueous ammonia applied to blast furnace gas in iron and steel making process

    Energy Technology Data Exchange (ETDEWEB)

    Young Kim, J.; Han, K.; Dong Chun, H. [CO2 Project, Research Inst. of Industrial Science and Technology, Pohang (Korea, Republic of)

    2009-07-01

    This presentation reported on a study in which carbon dioxide (CO{sub 2}) was captured from a demonstration iron and steel plant using low concentration aqueous ammonia as the absorbent chemical. The pilot plant was designed to process 50 Nm{sup 3}/h of blast furnace gas (BFG). The feed gas contained more than 20 per cent CO{sub 2} at 35 to 60 degrees C. Test runs revealed that the absorption efficiency of CO{sub 2} exceeded 80 per cent with a CO{sub 2} purity of more than 90 per cent in the product stream. The process parameters are currently being studied along with the various salts needed to prevent salt precipitation. It was determined that the use of waste heat recovery technology in the iron and steel-making process can render ammonia-based CO{sub 2} capture technology more economically feasible for the reduction of CO{sub 2}.

  15. Fate of NDMA precursors through an MBR-NF pilot plant for urban wastewater reclamation and the effect of changing aeration conditions.

    Science.gov (United States)

    Mamo, Julian; Insa, Sara; Monclús, Hèctor; Rodríguez-Roda, Ignasi; Comas, Joaquim; Barceló, Damià; Farré, Maria José

    2016-10-01

    The removal of N-nitrosodimethylamine (NDMA) formation potential through a membrane bioreactor (MBR) coupled to a nanofiltration (NF) pilot plant that treats urban wastewater is investigated. The results are compared to the fate of the individual NDMA precursors detected: azithromycin, citalopram, erythromycin, clarithromycin, ranitidine, venlafaxine and its metabolite o-desmethylvenlafaxine. Specifically, the effect of dissolved oxygen in the aerobic chamber of the MBR pilot plant on the removal of NDMA formation potential (FP) and individual precursors is studied. During normal aerobic operation, implying a fully nitrifying system, the MBR was able to reduce NDMA precursors above 94%, however this removal percentage was reduced to values as low as 72% when changing the conditions to minimize nitrification. Removal decreased also for azithromycin (68-59%), citalopram (31-17%), venlafaxine (35-15%) and erythromycin (61-16%) on average during nitrifying versus non-nitrifying conditions. The removal of clarithromycin, o-desmethylvenlafaxine and ranitidine could not be correlated with the nitrification inhibition, as it varied greatly during the experiment time. The MBR pilot plant is coupled to a nanofiltration (NF) system and the results on the rejection of both, NDMA FP and individual precursors, through this system was above 90%. Finally, results obtained for the MBR pilot plant are compared to the percentage of removal by a conventional full scale biological wastewater treatment plant (WWTP) fed with the same influent. During aerobic operation, the removal of NDMA FP by the MBR pilot plant was similar to the full scale WWTP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Performance Comparison of BPL, EtherLoop and SHDSL technology performance on existing pilot cable circuits under the presence of induced voltage

    International Nuclear Information System (INIS)

    Che, Y X; Ong, H S; Lai, L C; Ong, X J; Do, N Q; Karuppiah, S

    2013-01-01

    Pilot cable is originally used for utility protection. Then, pilot cable is further utilized for SCADA communication with low frequency PSK modem in the early 1990. However, the quality of pilot cable communication drops recently. Pilot cable starts to deteriorate due to aging and other unknown factors. It is also believed that the presence of induced voltage causes interference to existing modem communication which operates at low frequency channel. Therefore, BPL (Broadband Power Line), EtherLoop and SHDSL (Symmetrical High-speed Digital Subscriber Line) modem technology are proposed as alternative communication solutions for pilot cable communication. The performance of the 3 selected technologies on existing pilot cable circuits under the presence of induced voltage are measured and compared. Total of 11 pilot circuits with different length and level of induced voltage influence are selected for modem testing. The performance of BPL, EtherLoop and SHDSL modem technology are measured by the delay, bandwidth, packet loss and the long term usability SCADA (Supervisory Control and Data Acquisition) application. The testing results are presented and discussed in this paper. The results show that the 3 selected technologies are dependent on distance and independent on the level of induced voltage.

  17. Sono-photo-degradation of carbamazepine in a thin falling film reactor: Operation costs in pilot plant.

    Science.gov (United States)

    Expósito, A J; Patterson, D A; Monteagudo, J M; Durán, A

    2017-01-01

    The photo-Fenton degradation of carbamazepine (CBZ) assisted with ultrasound radiation (US/UV/H 2 O 2 /Fe) was tested in a lab thin film reactor allowing high TOC removals (89% in 35min). The synergism between the UV process and the sonolytic one was quantified as 55.2%. To test the applicability of this reactor for industrial purposes, the sono-photo-degradation of CBZ was also tested in a thin film pilot plant reactor and compared with a 28L UV-C conventional pilot plant and with a solar Collector Parabolic Compound (CPC). At a pilot plant scale, a US/UV/H 2 O 2 /Fe process reaching 60% of mineralization would cost 2.1 and 3.8€/m 3 for the conventional and thin film plant respectively. The use of ultrasound (US) produces an extra generation of hydroxyl radicals, thus increasing the mineralization rate. In the solar process, electric consumption accounts for a maximum of 33% of total costs. Thus, for a TOC removal of 80%, the cost of this treatment is about 1.36€/m 3 . However, the efficiency of the solar installation decreases in cloudy days and cannot be used during night, so that a limited flow rate can be treated. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Operations Program Plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1990-09-01

    This document, Revision 4 of the Operations Program Plan, has been developed as the seven-year master plan for operating of the Waste Isolation Pilot Plant (WIPP). Subjects covered include public and technical communications; regulatory and environmental programs; startup engineering; radiation handling, surface operations, and underground operations; waste certification and waste handling; transportation development; geotechnical engineering; experimental operations; engineering program; general maintenance; security program; safety, radiation, and regulatory assurance; quality assurance program; training program; administration activities; management systems program; and decommissioning. 243 refs., 19 figs., 25 tabs. (SM)

  19. The design of a modular pilot plant based on the adsorber loop concept

    International Nuclear Information System (INIS)

    Koske, P.H.; Ohlrogge, K.

    1984-01-01

    The main design criteria for a pilot plant producing about 100 t uranium per year from seawater are discussed. The application of the ''adsorber loop concept'' for the contact between seawater and the adsorber granulate enables the employment of high seawater velocities. The seawater flow is accomplished by active pumping and the plant is supposed to be operating far from shores. Besides some informations on the theoretical background the essential engineering considerations are presented. (orig.) [de

  20. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  1. Research on the enhancement of biological nitrogen removal at low temperatures from ammonium-rich wastewater by the bio-electrocoagulation technology in lab-scale systems, pilot-scale systems and a full-scale industrial wastewater treatment plant.

    Science.gov (United States)

    Li, Liang; Qian, Guangsheng; Ye, Linlin; Hu, Xiaomin; Yu, Xin; Lyu, Weijian

    2018-04-17

    In cold areas, nitrogen removal performance of wastewater treatment plants (WWTP) declines greatly in winter. This paper systematically describes the enhancement effect of a periodic reverse electrocoagulation technology on biological nitrogen removal at low temperatures. The study showed that in the lab-scale systems, the electrocoagulation technology improved the biomass amount, enzyme activity and the amount of nitrogen removal bacteria (Nitrosomonas, Nitrobacter, Paracoccus, Thauera and Enterobacter). This enhanced nitrification and denitrification of activated sludge at low temperatures. In the pilot-scale systems, the electrocoagulation technology increased the relative abundance of cold-adapted microorganisms (Luteimonas and Trueperaceae) at low temperatures. In a full-scale industrial WWTP, comparison of data from winter 2015 and winter 2016 showed that effluent chemical oxygen demand (COD), NH 4 + -N, and NO 3 - -N reduced by 10.37, 3.84, and 136.43 t, respectively, throughout the winter, after installation of electrocoagulation devices. These results suggest that the electrocoagulation technology is able to improve the performance of activated sludge under low-temperature conditions. This technology provides a new way for upgrading of the performance of WWTPs in cold areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Experimental Investigation and Modelling of a Wet Flue Gas Desulphurisation Pilot Plant

    DEFF Research Database (Denmark)

    Kiil, Søren; Michelsen, Michael Locht; Dam-Johansen, Kim

    1998-01-01

    A detailed model for a wet flue gas desulphurisation (FGD) pilot plant, based on the packed tower concept, has been developed. All important rate determining steps, absorption of SO2, oxidation of HSO3-, dissolution of limestone, and crystallisation of gypsum were included. Population balance...... equations, governing the description of particle size distributions of limestone in the plant, were derived. Model predictions were compared to experimental data such as gas phase concentration profiles of SO2, slurry pH-profiles, solids content of the slurry, liquid phase concentrations, and residual...

  3. STAGE TECHNOLOGY FOR OBTAINIGN AN ECONOMIC WHITE WINE TO AN INDUSTRIAL SCALE

    Directory of Open Access Journals (Sweden)

    Juan Esteban Miño Valdés

    2015-07-01

    Full Text Available The purpose of this work was to develop a sustainable technology to produce economical white wine, industrial scale, not viniferous grapes grown in Misiones. This technological project started at laboratory scale, it continued in a pilot plant and planned to an industrial scale. It was considered as productive unit 12 rural families with 27 hectares of vines each. The 8 stages followed with inductive and deductive methodology were: the development of dry white wine at laboratory scale, the evaluation of the variables of the process in the vilification, the Mathematical modeling of alcoholic fermentation in winemaking conditions, the assessment of the fitness of wines for human consumption, the establishment of a technological process for winemaking in a pilot plant, the evaluation in pilot plant of the technological process established, the calculation and selection of industrial equipment and finally, the costs estimation and profitability of the industrial technological process. A technology for a production capacity of 5,834 L day-1, with dynamic economic indicators was reached whose values were 6,602,666 net present value of U$D, an internal rate of return of 60 % for a period of payback a value net of three years to date.

  4. Hydrologic studies for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Davies, P.B.

    1994-01-01

    The objective of this paper is to provide a general overview of hydrologic conditions at the Waste Isolation Pilot Plant (WIPP) by describing several key hydrologic studies that have been carried out as part of the site characterization program over the last 20 years. The paper is composed of three parts: background information about general objectives of the WIPP project; information about the geologic and hydrologic setting of the facility; and information about three aspects of the hydrologic system that are important to understanding the long-term performance of the WIPP facility. For additional detailed information, the reader is referred to the references cited in the text

  5. Study in pilot plant of the Itataia phosphoro-uraniferous ore - CE (Brazil)

    International Nuclear Information System (INIS)

    Reis Junior, J.B.; Aquino, J.A. de; Oliveira Luz, I.L. de.

    1987-01-01

    Pilot plant data have been obtained for the physical treatment studies of the Itataia, phosphoro-uraniferous ore body located in the state of Ceara-Brazil. Due to the presence of the silic-carbonated gangue, which turns the ore complex, the pilot plant operation comprised 1200 hours. From the results obtained, it was possible to stablish a basic flowsheet for the concentration process. Such process includes a grinding step followed by a cyclone disliming (d 50 =10μm). The cyclone underflow feeds the flotation step. The conventional flotation process, which envolves the direct phosphate flotation followed by cleaning steps, was not efficient due to the presence of the carbonated gangue. In fact, the presence of silicates and carbonates in the gangue required that the flotation would be carried out in two steps. The silicated gangue is eliminated in the first flotation and a phosphate concentrate with significant amount of carbonates is obtained. This concentrate is fed to the second flotation step, termed reverse flotation, where the calcite is floated and the apatite is depressed. (Author) [pt

  6. Study in pilot plant of the Itataia phosphoro-uraniferous ore (CE,Brazil)

    International Nuclear Information System (INIS)

    Reis Junior, J.B.; Aquino, J.A. de; Oliveira Luz, I.L. de

    1985-01-01

    Pilot plant data have been obtained for the physical treatment studies of the Itataia, phosphoro-uraniferous ore body located in the state of Ceara-Brazil. Due to the presence of the silic-carbonated gangue, which turns the ore complex, the pilot plant operation comprised 1200 hours. From the results obtained, it was possible to establish a basic flowsheet for the concentration process. Such process includes a grinding step (-65) followed by a cyclone disliming (d50 = 10μ). The cyclone underflow feeds the flotation step. The conventional flotation process, which envolves the direct phosphate flotation followed by cleaning steps, was not efficient due to the presence of the carbonated gangue. In fact, the presence of silicates and carbonates in the gangue required that the flotation would be carried out in two steps. The silicated gangue is eliminated in the first flotation and a phosphate concentrate with significant amount of carbonates is obtained. This concentrate is fed to the second flotation step, termed reverse flotation, where the calcite is floated and the apatite is depressed. (Author) [pt

  7. EPRI nuclear power plant decommissioning technology program

    International Nuclear Information System (INIS)

    Kim, Karen S.; Bushart, Sean P.; Naughton, Michael; McGrath, Richard

    2011-01-01

    The Electric Power Research Institute (EPRI) is a non-profit research organization that supports the energy industry. The Nuclear Power Plant Decommissioning Technology Program conducts research and develops technology for the safe and efficient decommissioning of nuclear power plants. (author)

  8. NOx Abatement Pilot Plant 90-day test results report

    International Nuclear Information System (INIS)

    McCray, J.A.; Boardman, R.D.

    1991-01-01

    High-level radioactive liquid wastes produced during nuclear fuel reprocessing at the Idaho Chemical Processing Plant are calcined in the New Waste Calcining Facility (NWCF) to provide both volume reduction and a more stable waste form. Because a large component of the HLW is nitric acid, high levels of oxides of nitrogen (NO x ) are produced in the process and discharged to the environment via the calciner off-gas. The NO x abatement program is required by the new Fuel Processing Restoration (FPR) project permit to construct to reduce NO x emissions from the NWCF. Extensive research and development has indicated that the selective catalytic reduction (SCR) process is the most promising technology for treating the NWCF off-gas. Pilot plant tests were performed to determine the compatibility of the SCR process with actual NWCF off-gas. Test results indicate that the SCR process is a viable method for abating the NO x from the NWCF off-gas. Reduction efficiencies over 95% can be obtained, with minimal amounts of ammonia slip, provided favorable operating conditions exist. Two reactors operated with series flow will provide optimum reduction capabilities. Typical operation should be performed with a first reactor stage gas space velocity of 20,000 hr -1 and an inlet temperature of 320 degrees C. The first stage exhaust NO x concentration will then dictate the parameter settings for the second stage. Operation should always strive for a peak reactor temperature of 520 degrees C in both reactors, with minimal NH 3 slip from the second reactor. Frequent fluctuations in the NWCF off-gas NO x concentration will require a full-scale reduction facility that is versatile and quick-responding. Sudden changes in NWCF off-gas NO x concentrations will require quick detection and immediate response to avoid reactor bed over-heating and/or excessive ammonia slip

  9. PILOT PLANT STUDY ON NATURAL WATER COAGULANTS AS COAGULAN AIDS FOR WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    B BINA

    2001-06-01

    Full Text Available Introduction: Natural plant coagulants have an important role to play in provision of portable water to rural communities in the developing world. The plant material that their coagulation properties have been confirmed in previous lab scale studies and can be found widely in Iran was selected as coagulant aids. Pilot plant study was done to evaluate the efficiency of natural material such as Starch/Gum Tragacanth, Fenugreek and Yeast as coagulant aids in conjunction with comercial alum. Methods: The pilot was placed in Isfahan Water Treatment Plant (IWTP and efficiency of these materials in removal of turbidity from raw water enters the IWTP was evaluated. The results indicated while these materials were used as coagulant aids in concentration of 1-5 mg/l conjunction with alum are able to reduced the turbidity and final residuals turbidity meets the standards limits. Results: The coagulation efficiency of these material were found to be effected by certain physico-chemical factors, namely, concentration of suspended solids, divalent cation metal and time of agitation. The relative importance of these variable was evaluated. The results of COD test proved that the natural coagulant aids in the optimum doses produce no any significant organic residual. Discussion: Economical considerations showed that using of these material as coagulant aids can cause reduction in alum consumption and in some cases are more econmical than synthetic polyelectrolyte.

  10. Computational model for the tritium inventory management in a nuclear plant

    International Nuclear Information System (INIS)

    Zamfirache, M.; Bornea, A.; Stefanescu, I.; Stefan, L.; Bidica, N.; Vasut, F.; David, C.

    2010-01-01

    Full text: ICIT Rm. Valcea has built an experimental pilot plant having as the main objective the development of a technology for detritiation of heavy water processed in CANDU-type reactors at the nuclear power plant in Cernavoda, Romania. The aspects related to safeguards and safety for such a detritiation installation being of great importance, a complex computational model has been developed. The model allows real-time calculation of tritium inventory in a working installation. The applied detritiation technology is catalyzed isotopic exchange coupled with cryogenic distillation. The computational model was developed as based on the experience obtained in the pilot installation operation. The model uses a set of coefficients specific for isotopic exchange processes. The coefficients were experimentally determined in the pilot installation. The model is included in the monitoring system and uses as input data the parameters acquired in real-time from automation system of the pilot installation. A friendly interface has been created to visualize the final results as data or graphs. (authors)

  11. Drying and purification of natural gas by clinoptilolite on an experimental pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Tsitsishvili, G V; Urotadze, S L; Lukin, V D; Bagirov, R M

    1976-02-01

    The paper deals with the process of the drying and purification of natural gas from CO/sub 2/ on an experimental pilot plant using the natural zeolite clinoptilolite. On the basis of the obtained data the dynamic activity of clinoptilolite against water and CO/sub 2/ has been calculated.

  12. Pasteurization of strawberry puree using a pilot plant pulsed electric fields (PEF) system

    Science.gov (United States)

    The processing of strawberry puree by pulsed electric fields (PEF) in a pilot plant system has never been evaluated. In addition, a method does not exist to validate the exact number and shape of the pulses applied during PEF processing. Both buffered peptone water (BPW) and fresh strawberry puree (...

  13. A pilot study for the extraction and treatment of groundwater from a manufactured gas plant site. Final report

    International Nuclear Information System (INIS)

    1997-12-01

    This report describes a pilot study involving treatment of contaminated groundwater at a former manufactured gas plant site on the eastern seaboard of the US. The work was performed in order to provide the design basis for a full-scale groundwater extraction and treatment system at the site, as well as to develop a generic approach to selection of groundwater treatment sequences at other MGP sites. It included three main components: hydrogeologic investigations, bench-scale treatability studies, and pilot-scale treatability studies. Technologies evaluated in bench-scale work included gravity settling, filtration, and dissolved air flotation (DAF) for primary treatment of nonaqueous phase materials; biological degradation, air stripping, and carbon adsorption for secondary treatment of dissolved organics; and carbon adsorption as tertiary treatment of remaining dissolved contaminants. Pilot-scale studies focused on collecting system performance data fore three distinct levels of contamination. Two treatment trains were evaluated. One consisted of DAF, fluidized-bed biotreatment, and filtration plus carbon adsorption; the other used the same steps except to substitute air stripping for fluidized bed treatment. The final effluents produced by both treatment sequences were similar and demonstrated complete treatment of the groundwater. Besides detailing system design and performance for the treatability studies, the report includes an analysis of groundwater treatment applications to MGP sites in general, including a discussion of capital and operating costs

  14. Effects of foaming and antifoaming agents on the performance of a wet flue gas desulfurization pilot plant

    DEFF Research Database (Denmark)

    Qin, Siqiang; Hansen, Brian Brun; Kiil, Søren

    2014-01-01

    Foaming is a common phenomenon in industrial processes, including wet flue gas desulfurization (FGD) plants. A systemic investigation of the influence of two foaming agents, sodium dodecyl sulphate (SDS) and egg white albumin (protein), and two commercial antifoams on a wet FGD pilot plant...

  15. A 10-MWe solar-thermal central-receiver pilot plant: Solar facilities design integration. Plant operating/training manual (RADL-Item 2-36)

    Science.gov (United States)

    1982-07-01

    Plant and system level operating instructions are provided for the Barstow Solar Pilot Plant. Individual status instructions are given that identify plant conditions, process controller responsibilities, process conditions and control accuracies, operating envelopes, and operator cautions appropriate to the operating condition. Transition operating instructions identify the sequence of activities to be carried out to accomplish the indicated transition. Most transitions involve the startup or shutdown of an individual flowpath. Background information is provided on collector field operations, and the heliostat groupings and specific commands used in support receiver startup are defined.

  16. Final Report: Pilot-scale Cross-flow Filtration Test - Envelope A + Entrained Solids

    International Nuclear Information System (INIS)

    Duignan, M.R.

    2000-01-01

    This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company.This filter technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. This plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project

  17. The ten stages pilot plant: its utilization in the research of the dynamic behavior and regullating process of a jet nozzle cascade for uranium enrichment

    International Nuclear Information System (INIS)

    Yadoya, R.; Camara, A.S.; Consiglio, R.V.; Bley, P.; Hein, H.; Linder, G.

    1986-01-01

    A ten stage pilot plant to study experimentally dynamic behavior of a uranium enrichment plant based on separation nozzle process was developed and constructed at Karlsruhe Nuclear Research Center. This installation was transfered to the Development Center of Nuclear Technology (CDTN) of Nuclebras in Belo Horizonte, Brazil. The separation elements installed have a new design with higher efficiency, Known as double-deflections system. The power plant has been used to improve the control method and to prove the stability of separation nozzle cascade under pertubations produced artificially. The stabilization process of UF 6 quantity in cascade by UF 6 inventory regulation at bottom stage will have practication in the First Cascade, in Rezende, RJ, Brazil and may be uded i emonstration plant. The experimental results have shown to be comparable with those obtained by computer simulation. (Author) [pt

  18. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse TRU Solutions

    2000-12-01

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified in the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period.

  19. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    International Nuclear Information System (INIS)

    Westinghouse TRU Solutions

    2000-01-01

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified in the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period

  20. Laboratory and pilot plant studies for the recovery of uranium from phosphoric acid by the D2EHPA-TOPO process

    International Nuclear Information System (INIS)

    Botella, T.; Gasos, P.

    1989-01-01

    The activities and costs involved in laboratory and pilot plant studies are discussed as applied to the D2EHPA-TOPO process. The overall capital investment (including engineering) for a plant with a throughput of 12 cubic meters of acid/day has been estimated to be around one million US dollars. Operating costs per year, without considering amortization and labor, are over 20,000 US dollars. A total time of 3,5 years (including engineering, purchase and pilot plant tests) could be needed to obtain the information required for final scale-up. (author). 40 refs, 1 fig., 5 tabs

  1. Geotechnical Perspectives on the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Francke, Chris T.; Hansen, Frank D.; Knowles, M. Kathyn; Patchet, Stanley J.; Rempe, Norbert T.

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP) is the first nuclear waste repository certified by the United States Environmental Protection Agency. Success in regulatory compliance resulted from an excellent natural setting for such a repository, a facility with multiple, redundant safety systems, and from a rigorous, transparent scientific and technical evaluation. The WIPP story, which has evolved over the past 25 years, has generated a library of publications and analyses. Details of the multifaceted program are contained in the cited references. Selected geotechnical highlights prove the eminent suitability of the WIPP to serve its congressionally mandated purpose

  2. Some economic considerations for a pilot plant based on the adsorber loop concept

    International Nuclear Information System (INIS)

    Koske, P.H.; Ohlrogge, K.; Jager, W.

    1984-01-01

    Some first order estimates about the production costs of seawater uranium are presented on the basis of a pilot plant with a capacity of about 100 t uranium per year. The plant is assumed to be operating at high seas using the ''adsorber loop concept'' for the contact between seawater and adsorber granulate. The effects of some process relevant components and parameters are discussed with regard to their contribution to the production costs and in order to analyse their cost-cutting potential. (orig.) [de

  3. Pilot plant development of a new catalytic process for improved electrostatic separation of fly-ash in coal fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Olivares del Valle, J.; Salvador Martinez, L.; Muniz Baum, B.; Cortes Galeano, V. [University of Seville, Seville (Spain). Chemical and Environmental Engineering Dept.

    1996-12-31

    A new catalytic process for flue gas conditioning in pulverized coal fired power plants is outlined. Vanadium and platinum catalysts specifically prepared on ceramic honeycomb monoliths to oxidize SO{sub 2} into SO{sub 3} have been tested and evaluated at pilot scale. 10 refs., 3 figs., 2 tabs.

  4. Attentional models of multitask pilot performance using advanced display technology.

    Science.gov (United States)

    Wickens, Christopher D; Goh, Juliana; Helleberg, John; Horrey, William J; Talleur, Donald A

    2003-01-01

    In the first part of the reported research, 12 instrument-rated pilots flew a high-fidelity simulation, in which air traffic control presentation of auditory (voice) information regarding traffic and flight parameters was compared with advanced display technology presentation of equivalent information regarding traffic (cockpit display of traffic information) and flight parameters (data link display). Redundant combinations were also examined while pilots flew the aircraft simulation, monitored for outside traffic, and read back communications messages. The data suggested a modest cost for visual presentation over auditory presentation, a cost mediated by head-down visual scanning, and no benefit for redundant presentation. The effects in Part 1 were modeled by multiple-resource and preemption models of divided attention. In the second part of the research, visual scanning in all conditions was fit by an expected value model of selective attention derived from a previous experiment. This model accounted for 94% of the variance in the scanning data and 90% of the variance in a second validation experiment. Actual or potential applications of this research include guidance on choosing the appropriate modality for presenting in-cockpit information and understanding task strategies induced by introducing new aviation technology.

  5. The pilot plant for electron beam food processing

    International Nuclear Information System (INIS)

    Migdal, W.; Stachowicz, W.

    1993-01-01

    The investigations on food irradiation began in Poland in the end of 50-ties. Till the end of 70-ties the research activity on food irradiation was rather of the random nature and the objectives involved the fundamental research areas of food science. After the JECFI recommended in 1980 the general approval of foods treated with the doses of ionizing radiation up to 10 kG as unconditionally wholesome, the interest on practical application of food irradiation was gained in Poland. In 1986 the governmental bodies decided to recognize the possibilities of practical application of radiation techniques in agriculture, and the Central Research and Development Project No 10.13. ''Radiation Techniques in Agriculture'' was initiated for the period of 5 years. The project in the part that refers to food irradiations involved 3 major objectives: - radiation preservation of food; - radiation hygienization of animal feed; - Pilot plants for food irradiation. The most liable project of the programme was the construction of experimental plant for electron beam food irradiation, intended to be the national center for future testing and implementary works in this field. (orig.)

  6. Biomass conversion to hydrocarbon fuels using the MixAlco™ process at a pilot-plant scale

    International Nuclear Information System (INIS)

    Taco Vasquez, Sebastian; Dunkleman, John; Chaudhuri, Swades K.; Bond, Austin; Holtzapple, Mark T.

    2014-01-01

    Texas A and M University has built a MixAlco™ pilot plant that converts biomass to hydrocarbons (i.e., jet fuel, gasoline) using the following steps: fermentation, descumming, dewatering, thermal ketonization, distillation, hydrogenation, and oligomerization. This study describes the pilot plant and reports results from an 11-month production campaign. The focus was to produce sufficient jet fuel to be tested by the U.S. military. Because the scale was relatively small, energy-saving features were not included in the pilot plant. Further, the equipment was operated in a manner to maximize productivity even if yields were low. During the production campaign, a total of 6.015 Mg of shredded paper and 120 kg of chicken manure (dry basis) were fermented to produce 126.5 m 3 of fermentation broth with an average concentration of 12.5 kg m −3 . A total of 1582 kg of carboxylate salts were converted to 587 L of raw ketones, which were distilled and hydrogenated to 470 L of mixed alcohols ranging from C3 to C12. These alcohols, plus 300 L of alcohols made by an industrial partner (Terrabon, Inc.) were shipped to an independent contractor (General Electric) and transformed to jet fuel (∼100 L) and gasoline (∼100 L) byproduct. - Highlights: • We produce hydrocarbons from paper and chicken manure in a pilot-scale production using the MixAlco™ process. • About 100 L of jet fuel were produced for military testing. • High production rates and good product quality were preferred rather than high yields or energy efficiency. • The MixAlco™ process converted successfully lignocellulosic biomass to hydrocarbons and viable for commercial-scale production

  7. Environmental assessment for the reuse of TNX as a multi-purpose pilot plant campus at the Savannah River Site

    International Nuclear Information System (INIS)

    1998-07-01

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental and safety impacts of DOE planning to allow asset reuse of the TNX Area at the Savannah River Site (SRS) located near Aiken, South Carolina. The proposed action would include providing for a location for the Centers of Excellence at or adjacent to SRS and entering into a cooperative agreement with a non-profit management and operations (management firm) contractor to operate and market the TNX facilities and equipment. The area (formerly TNX) would be called a Multi-Purpose Pilot Plant Campus (MPPC) and would be used: (1) as location for technology research, development, demonstration, and commercial operations; (2) to establish partnerships with industry to develop applied technologies for commercialization; and (3) serve as administrative headquarters for Centers of Excellence in the program areas of soil remediation, radioecology, groundwater contamination, and municipal solid waste minimization

  8. Environmentally friendly production of charcoal from empty fruit bunches using pilot plant

    International Nuclear Information System (INIS)

    Normah Mulop; Mohd Suffian Abdul Rahim

    2000-01-01

    Empty fruit bunches (EFB) from palm oil milling process are classified as palm oil waste. The EFB can be turned into valuable product such as charcoal, which can be processed further to activated carbon in order to solve some of the disposal problems. In this project, raw EFB was converted to charcoal by means of a pilot plant. A burner generating indirect heat controls the temperature of the process. The carbonization process was carried out in the absence of air at various temperatures and durations to find the optimum carbonization parameters. The study shows that the optimum operating, temperature for carbonization of EFB is 500 o C for the duration of 11/2 hours. The average fixed carbon content of the charcoal is 61.08. The high percentage of volatile matter is prevented from escaping into the air by trapping them in a series of cyclones. The double layered cyclones using water as the cooling medium, condense more volatile matter and reduces smoke exhaust. 50.7 % of ,gaseous product is condensed and 49.2 % is emitted to the atmosphere. The result is an environmental friendly pilot plant. (author)

  9. Final Report: Pilot-scale Cross-flow Filtration Test - Envelope A + Entrained Solids

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.

    2000-06-27

    This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company.This filter technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. This plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

  10. Advanced power plant materials, design and technology

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  11. The Kuroshio power plant

    CERN Document Server

    Chen, Falin

    2013-01-01

    By outlining a new design or the Kuroshio power plant, new approaches to turbine design, anchorage system planning, deep sea marine engineering and power plant operations and maintenance are explored and suggested. The impact on the local environment, particularly in the face of natural disasters, is also considered to provide a well rounded introduction to plan and build a 30MW pilot power plant. Following a literature review, the six chapters of this book propose a conceptual design by focusing on the plant's core technologies and establish the separate analysis logics for turbine design and

  12. Wireless Technology Application to Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Jeong Kweon; Jeong, See Chae; Jeong, Ki Hoon; Oh, Do Young; Kim, Jae Hack

    2009-01-01

    Wireless technologies are getting widely used in various industrial processes for equipment condition monitoring, process measurement and other applications. In case of Nuclear Power Plant (NPP), it is required to review applicability of the wireless technologies for maintaining plant reliability, preventing equipment failure, and reducing operation and maintenance costs. Remote sensors, mobile technology and two-way radio communication may satisfy these needs. The application of the state of the art wireless technologies in NPPs has been restricted because of the vulnerability for the Electromagnetic Interference and Radio Frequency Interference (EMI/RFI) and cyber security. It is expected that the wireless technologies can be applied to the nuclear industry after resolving these issues which most of the developers and vendors are aware of. This paper presents an overview and information on general wireless deployment in nuclear facilities for future application. It also introduces typical wireless plant monitoring system application in the existing NPPs

  13. Report on the achievements in development of a coal liquefaction technology (a solvent extraction and liquefaction technology) in the Sunshine Project in fiscal 1981. Data 1. Development of a brown coal based solvent extraction plant (50 t/d pilot plant); 1981 nendo sekitan ekika gijutsu no kaihatsu seika hokokusho (shiryo 1). Yozai chushutsu ekika gijutsu no kaihatsu (kattankei yozai chushutsu plant no kaihatsu (50ton/nichi pilot plant no kaihatsu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    This paper describes the data-1 for developing a brown coal based solvent extraction plant in the Sunshine Project in fiscal 1981. The data are for the development of a liquefaction plant for Victoria brown coal produced in Australia (a 50-t/d pilot plant). Fiscal 1981 has performed detailed design on the primary hydrogenation system by using the process conception and the design data obtained in the element studies. Part of the machines and devices was procured, and the site construction was begun. Detailed design documents and drawings were prepared. The data collected in relation with the plant design included the followings: device lists, entire factory layout drawings, device arrangement drawings, process flow sheets, utility flow sheets (fuel gas and fuel oil systems, steam and condensate systems, air for instrumentation, plant air, cooling water supply and return, industrial water and treated water, a waste water treatment system, a nitrogen system, and a waste gas system), public pollution preventing facilities, hazardous location classifying plans, and material balances. The data collected in relation with the machine design included pressure vessel engineering specifications, heat exchanger engineering specifications, and device purchase specifications. (NEDO)

  14. Fiscal 1995 achievement report. Development of entrained bed coal gasification power plant (Part 5 - Surveys and studies of demonstration plant); 1995 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 5. Jissho plant ni kansuru chosa kenkyu hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Surveys and studies were conducted concerning a demonstration plant for establishing the technology of integrated coal gasification combined cycle, and the fiscal 1995 results are compiled. In this fiscal year, a demonstration plant conceptual design was prepared for assuring smooth transition from a pilot plant to a commercial plant. The design followed the system employed at the Nakoso pilot plant for its gasification power generation. It was decided that the gasification furnace be of the air-blown (oxygen enriched) 2-stage entrained bed type, that the desulfurization system be of the dry type 2-stage fluidized bed type, the dedusting system be of the dry type granular bed type (moving bed type), that the combined cycle power facility be derived from the commercialized gas turbine, and that the cycle of the steam system agree with the integrated coal gasification combined cycle system now under discussion. Studies were made, which covered heat efficiency (generating end/sending end), heat/matter balance, process flow, gas turbine/steam system optimization, comparison in performance with a pilot plant with its dimensions increased, estimation of the performance of each of the facilities, estimation of the construction cost, calculation of the generation cost, environmental friendliness, operating characteristics, acceptable coal types, and the like. (NEDO)

  15. Development of pilot model of virtual nuclear power plant and its application to radiation management

    International Nuclear Information System (INIS)

    Kang, K. D.; Sin, S. W.

    2002-01-01

    Using Virtual Reality (VR) technique, a real model for radiation controlled area in nuclear power plant was developed and a feasibility study to develop a computational program to estimate radiation dose was performed. For this purpose a pilot model with an dynamic function and bi-directional communication was developed. This model was enhanced from the existing 3-D single-directional communication. In this pilot model, a plant visitor needs a series of security checking process initially. If he(she) enters the controlled area and approaches radiation hazard area, the alarms with warning lamp will be initiated automatically. Throughout the test to connect this model from both domestic and international sites in various time zones it has proven that it showed a sufficient performance. Therefore this model can be applied to broad fields as radiation protection procedures photographic data, on-line dose program

  16. Plant life management and maintenance technologies for nuclear power plants

    International Nuclear Information System (INIS)

    Ikegami, Tsukasa; Aoki, Masataka; Shimura, Takao; Kaimori, Kimihiro; Koike, Masahiro

    2001-01-01

    Nuclear power generation occupying an important position for energy source in Japan and supplying about one third of total electric power usage is now required for further upgrading of its economics under regulation relaxation of electric power business. And, under execution retardation of its new planning plant, it becomes important to operate the already established plants for longer term and to secure their stability. Therefore, technical development in response to the plant life elongation is promoted under cooperation of the Ministry of Economics and Industries, electric power companies, literate, and plant manufacturers. Under such conditions, the Hitachi, Ltd. has progressed some technical developments on check inspection, repairs and maintenance for succession of the already established nuclear power plants for longer term under securing of their safety and reliability. And in future, by proposing the check inspection and maintenance program combined with these technologies, it is planned to exert promotion of maintenance program with minimum total cost from a viewpoint of its plant life. Here were described on technologies exerted in the Hitachi, Ltd. such as construction of plant maintenance program in response to plant life elongation agreeing with actual condition of each plant, yearly change mechanism grasping, life evaluation on instruments and materials necessary for maintenance, adequate check inspection, repairs and exchange, and so forth. (G.K.)

  17. Construction of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Munson, D.E.; Matalucci, R.V. [Sandia National Lab., Albuquerque, NM (United States); Hoag, D.L.; Blankenship D.A. [RE/SPEC Inc., Albuquerque, NM (United States)] [and others

    1997-02-01

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories has the responsibility for experimental activities at the WIPP and has emplaced several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The construction of the tests relied heavily on earlier excavations at the WIPP site to provide a basis for selecting excavation, surveying, and instrumentation methods, and achievable construction tolerances. The tests were constructed within close tolerances to provide consistent room dimensions and accurate placement of gages. This accuracy has contributed to the high quality of data generated which in turn has facilitated the comparison of test results to numerical predictions. The purpose of this report is to detail the construction activities of the TSI tests.

  18. Construction of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Munson, D.E.; Matalucci, R.V.; Hoag, D.L.; Blankenship D.A.

    1997-02-01

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories has the responsibility for experimental activities at the WIPP and has emplaced several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The construction of the tests relied heavily on earlier excavations at the WIPP site to provide a basis for selecting excavation, surveying, and instrumentation methods, and achievable construction tolerances. The tests were constructed within close tolerances to provide consistent room dimensions and accurate placement of gages. This accuracy has contributed to the high quality of data generated which in turn has facilitated the comparison of test results to numerical predictions. The purpose of this report is to detail the construction activities of the TSI tests

  19. Electrocoagulation project: Pilot study testwork

    Energy Technology Data Exchange (ETDEWEB)

    Donini, J.C.; Garand, D.K.; Hassan, T.A.; Kar, K.L.; Thind, S.S.

    1991-09-01

    When a suspension or emulsion flows between two sacrificial metal electrodes excited by ac, the dispersed phase is consolidated and then settles. Laboratory-scale investigation of this mechanism, called electrocoagulation, and of its areas of application to water treatment were previously completed and a subsequent project was initiated to design and construct pilot-scale equipment consisting of an electrocoagulation cell, power supply, and computerized control system. The constructed pilot plant was used to test the effectiveness of electrocoagulation to clarify coal processing plant effluent. Results obtained with clay suspensions showed that flow conditions in the cell have a major effect on electric power consumption, and a reduction by a factor of three on this crucial cost parameter appeared possible compared to a previously tested batch-scale electrocoagulation system. Results obtained using the coal plant thickener feed closely duplicated those obtained with the clay mixtures. Aluminum electrode consumption, however, remained unchanged compared to the bench-scale tests. Supernatant clarity far exceeded requirements, while settling rate was too low. The settling could be speeded up by appropriate use of chemicals, but such addition affects the coagulation mechanism and reduces supernatant clarity. A tradeoff between settling rate and clarity was thus established. The total cost of treatment was deemed to be in excess of coal company requirements, but the pilot tests revealed much about the electrocoagulation system under continuous flow conditions. The technology is seen as having application in other areas such as municipal and industrial waste treatment. 22 refs., 6 figs., 2 tabs.

  20. Construction of Industrial Electron Beam Plant for Wastewater Treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.; Kim, Y.; Kim, S.; Lee, M.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

    2004-01-01

    A pilot plant for treating 1,000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with electron beam in this plant, and it gave rise to elaborate the optimal technology of the electron beam treatment of wastewater with increased reliability at instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable to reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government

  1. Quality Assurance in Environmental Technology Verification (ETV): Analysis and Impact on the EU ETV Pilot Programme Performance

    Science.gov (United States)

    Molenda, Michał; Ratman-Kłosińska, Izabela

    2018-03-01

    Many innovative environmental technologies never reach the market because they are new and cannot demonstrate a successful track record of previous applications. This fact is a serious obstacle on their way to the market. Lack of credible data on the performance of a technology causes mistrust of investors in innovations, especially from public sector, who seek effective solutions however without compromising the technical and financial risks associated with their implementation. Environmental technology verification (ETV) offers a credible, robust and transparent process that results in a third party confirmation of the claims made by the providers about the performance of the novel environmental technologies. Verifications of performance are supported by high quality, independent test data. In that way ETV as a tool helps establish vendor credibility and buyer confidence. Several countries across the world have implemented ETV in the form of national or regional programmes. ETV in the European Union was implemented as a voluntary scheme if a form of a pilot programme. The European Commission launched the Environmental Technology Pilot Programme of the European Union (EU ETV) in 2011. The paper describes the European model of ETV set up and put to operation under the Pilot Programme of Environmental Technologies Verification of the European Union. The goal, objectives, technological scope, involved entities are presented. An attempt has been made to summarise the results of the EU ETV scheme performance available for the period of 2012 when the programme has become fully operational until the first half of 2016. The study was aimed at analysing the overall organisation and efficiency of the EU ETV Pilot Programme. The study was based on the analysis of the documents the operation of the EU ETV system. For this purpose, a relevant statistical analysis of the data on the performance of the EU ETV system provided by the European Commission was carried out.

  2. Waste Isolation Pilot Plant Environmental Monitoring Plan

    International Nuclear Information System (INIS)

    2004-01-01

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problem; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) has been written to contain the rationale and design criteria for the monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document any proposed changes in the environmental monitoring program. Guidance for preparation of Environmental Monitoring Plans is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance. The plan will be effective when it is approved by the appropriate Head of Field Organization or their designee. The plan discusses major environmental monitoring and hydrology activities at the WIPP and describes the programs established to ensure that WIPP operations do not

  3. Waste Isolation Pilot Plant: Alcove Gas Barrier trade-off study

    International Nuclear Information System (INIS)

    Lin, M.S.; Van Sambeek, L.L.

    1992-07-01

    A modified Kepner-Tregoe method was used for a trade-off study of Alcove Gas Barrier (AGB) concepts for the Waste Isolation Pilot Plant. The AGB is a gas-constraining seal to be constructed in an alcove entrance drift. In this trade-off study, evaluation criteria were first selected. Then these criteria were classified as to their importance to the task, assigning a weighting value to each aspect. Eleven conceptual design alternatives were developed based on geometrical/geological considerations, construction materials, constructibility, and other relevant factors and evaluated

  4. Waste Isolation Pilot Plant Annual Site Environmental Report for 2012

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2012 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year; Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS).

  5. Test phase plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1993-03-01

    The US Department of Energy (DOE) has prepared this Test Phase Plan for the Waste Isolation Pilot Plant to satisfy the requirements of Public Law 102-579, the Waste Isolation Pilot Plant (WIPP) Land Withdrawal Act (LWA). The Act provides seven months after its enactment for the DOE to submit this Plan to the Environmental Protection Agency (EPA) for review. A potential geologic repository for transuranic wastes, including transuranic mixed wastes, generated in national-defense activities, the WIPP is being constructed in southeastern New Mexico. Because these wastes remain radioactive and chemically hazardous for a very long time, the WIPP must provide safe disposal for thousands of years. The DOE is developing the facility in phases. Surface facilities for receiving waste have been built and considerable underground excavations (2150 feet below the surface) that are appropriate for in-situ testing, have been completed. Additional excavations will be completed when they are required for waste disposal. The next step is to conduct a test phase. The purpose of the test phase is to develop pertinent information and assess whether the disposal of transuranic waste and transuranic mixed waste in the planned WIPP repository can be conducted in compliance with the environmental standards for disposal and with the Solid Waste Disposal Act (SWDA) (as amended by RCRA, 42 USC. 6901 et. seq.). The test phase includes laboratory experiments and underground tests using contact-handled transuranic waste. Waste-related tests at WIPP will be limited to contact-handled transuranic and simulated wastes since the LWA prohibits the transport to or emplacement of remote-handled transuranic waste at WIPP during the test phase

  6. Pilot solid-waste incinerator

    International Nuclear Information System (INIS)

    Farber, M.G.; Hootman, H.E.; Trapp, D.J.

    1982-01-01

    An experimental program to develop and confirm technology for incinerating solid radioactive waste is in progress at the Savannah River Laboratory (SRL) in support of the short-term and long-term waste management objectives of the Savannah River Plant (SRP). This report reviews the experience of a pilot incinerator with a capacity of 1.0 lb/hr. The facility was tested with nonradioactive materials similar to the radioactive waste generated at the Savannah River site. The experimental program included determining operating parameters, testing wet and dry off-gas treatment systems, and evaluating materials of construction

  7. TECHNOLOGICAL DEVELOPMENT TO ELABORATE COMMON WHITE WINE IN MISIONES, WITH ECONOMIC EVALUATION AT INDUSTRIAL SCALE

    Directory of Open Access Journals (Sweden)

    Miño Valdés, Juan Esteban

    2013-01-01

    Full Text Available The objective of this paper was to develop a sustainable technology on an industrial scale to produce common white wine with non viniferous grapes cultivated in Misiones. This technological project was initiated at a laboratory scale, continued in the pilot plant and industrial-scale project. It was considered as a productive unit to 12 rural families with 27 hectares of vines each. The 8 stages followed with inductive and deductive methodology were: The development of dry white wine at laboratory scale. The evaluation of process variables in the vivification. The mathematical modeling of the alcoholic fermentation in oenological conditions. The valuation of the aptitude of wines for human consumption. The establishment of a technological procedure for wine in the pilot plant. The evaluation of the pilot plant in technological procedure established. The calculation and selection of industrial equipment. The estimate of the costs and profitability of industrial technological process. It reached a technology for a production capacity of 5,834 L day-1, with dynamic economic indicators whose values were: net present value of 6,602,666 U$D, an internal rate of return of 60 % for a period of recovery of investment to net present value of 3 years.

  8. Automation technology in power plants

    International Nuclear Information System (INIS)

    Essen, E.R.

    1995-01-01

    In this article a summery of the current architecture of modern process control systems in power plants and future trends have been explained. The further development of process control systems for power plants is influenced both by the developments in component and software technologies as well as the increased requirements of the power plants. The convenient and low cost configuration facilities of new process control systems have now reached a significance which makes it easy for customers to decide to purchase. (A.B.)

  9. Integrated bicarbonate-form ion exchange treatment and regeneration for DOC removal: Model development and pilot plant study.

    Science.gov (United States)

    Hu, Yue; Boyer, Treavor H

    2017-05-15

    The application of bicarbonate-form anion exchange resin and sodium bicarbonate salt for resin regeneration was investigated in this research is to reduce chloride ion release during treatment and the disposal burden of sodium chloride regeneration solution when using traditional chloride-form ion exchange (IX). The target contaminant in this research was dissolved organic carbon (DOC). The performance evaluation was conducted in a completely mixed flow reactor (CMFR) IX configuration. A process model that integrated treatment and regeneration was investigated based on the characteristics of configuration. The kinetic and equilibrium experiments were performed to obtain required parameters for the process model. The pilot plant tests were conducted to validate the model as well as provide practical understanding on operation. The DOC concentration predicted by the process model responded to the change of salt concentration in the solution, and showed a good agreement with pilot plant data with less than 10% difference in terms of percentage removal. Both model predictions and pilot plant tests showed over 60% DOC removal by bicarbonate-form resin for treatment and sodium bicarbonate for regeneration, which was comparable to chloride-form resin for treatment and sodium chloride for regeneration. Lastly, the DOC removal was improved by using higher salt concentration for regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Monitoring and toxicity evaluation of phytoplankton on lithium manganese oxide adsorbents at lithium recovery pilot plant field.

    Science.gov (United States)

    Yoon, H. O.; Kim, J. A.; Kim, J. C.; Chung, K. S.; Ryu, J. H.

    2015-12-01

    For recovery of rare mineral resources such as lithium or boron from seawater, the lithium adsorbent material have been made by Korea Institute of Geoscience and Mineral Resources (KIGAM) and pilot plant was conducted in Okgye Harbor, Gangneung, Korea. The application of lithium adsorbent in pilot plant, it is important to consider the impact on the marine environment. Especially phytoplankton communities are important marine microorganism to represent marine primary product. At the same time, phytoplankton is possible to induce the decrease of lithium recovery rate due to cause of biofouling to surfaces of lithium adsorbents. Therefore long-term and periodic monitoring of phytoplankton is necessary to understand the environmental impact and biofouling problems near the lithium pilot plant. The abundance and biomass of phytoplankton have been evaluated through monthly interval sampling from February 2013 to May 2015. Abundance and species diversity of phytoplankton went up to summer from winter. When lithium adsorbents were immersing to seawater, eco-toxicities of released substances were determined using Microtox with bioluminescence bacteria Vibrio fischeri. The adsorbents were soaked in sterilized seawater and aeration for 1, 3, 5, 7, 10 and 14 days intervals under controlled temperature. Maximum EC50 concentration was 61.4% and this toxicity was showed in more than 10 days exposure.

  11. The Waste Isolation Pilot Plant: a potential solution for the disposal of transuranic waste

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Geosciences, Environment and Resources; Division on Earth and Life Studies; National Research Council; National Academy of Sciences

    ... Isolation Pilot Plant Board on Radioactive Waste Management Commission on Geosciences, Environment, and Resources National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1996 i Copyrighttrue Please breaks inserted. are Page files. accidentally typesetting been have may original from the errors not typographic original retained, and from the c...

  12. Achievement report on the development of solar thermal electric power plant technologies. Annex; Taiyonetsu hatsuden plant gijutsu kaihatsu seika hokokusho. Fuzoku shiryo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    The two solar thermal electric power pilot plants are of the tower concentration type and the flat/curved surface concentration type. For the first time in the world, they succeeded in operating at a rated output of 1,000kW in August and September, 1981, respectively. Sunshine was inputted at an unstable rate, and the plants were operated under various load patterns. Studies were conducted and an optimum operating technique is established. Since designing, construction, and operation were carried for two types of pilot plants, quantities of useful data were collected through a variety of experiences. Valuable hints and design data were provided for use in the construction of full-scale power plants in the future. Element units developed for the plants were high-reflectance mirrors, high-precision tracking mechanisms, solar heat collectors of the cavity type and paraboloidal type, and molten salt heat accumulators. The tower concentration type plant exhibits a power generation efficiency of 16-17% and an overall plant efficiency of 3.1-4.4%. The maximum overall efficiency a month is 3.9% with the flat/curved surface concentration type plant. (NEDO)

  13. Electron beam facilities and technologies developed in the Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Walis, L.; Zimek, Z.

    1992-01-01

    The operation of the first electron accelerator has been started at Institute /former Institute for Nuclear Research/ in 1971. This LAE-13/9 accelerator is a two-section lineac with adjustable energy of electrons: 5 to 13 MeV and the beam power up to 9 kW. The main technologies developed on the basis of LAE-13/9 are: sterilization, manufacturing of thermoshrinkable materials and modification of semiconductors. The accelerator is operated 4000 hours per year and used for small scale production and services in these fields. The other problems investigated in laboratory scale are: food preservation and hygenization, hygenization of municipal sewage sludge, and bio-conversion of pig-farm wastes into animal fodder. The laboratory experiments are basis for pilot construction and other industrial applications. The mentioned technology of thermoshrinkable tube production was implemented in industrial scale at ZWUT Czluchow which factory is equipped in the accelerator ILU-6 /20 kW, 2 MeV/. On the basis of similar unit a technological installation was built at Institute. The plant is furnished with a conveyer and the rewinding machines for tubes and tapes manufacturing. This allows continuous production of these materials. The plant will start operation next year and linear accelerator /10 MeV, 15 kW/ for this purpose is already delivered. The pilot plant for food preservation and hygenization has been built. It is equipped in small pilot accelerator 10 MeV, 1 kW and will be furnished with 10 MeV, 10 kW lineac this year. Beside of this technological lines Institute is furnished in Van de Graff accelerator /2, MeV, 100 μA/ and another laboratory unit LAE-10 /10 MeV, 10-100 ns 2 us/ is under construction. (J.P.N.)

  14. Power plants 2010. Lectures

    International Nuclear Information System (INIS)

    2010-01-01

    The proceedings include the following lectures: Facing the challenges - new structures for electricity production. Renewable energies in Europe - chances and challenges. Nuclear outlook in the UK. Sustainable energy for Europe. Requirements of the market and the grid operator at the electricity production companies. Perspectives for the future energy production. Pumped storage plants - status and perspectives. Nuclear power/renewable energies -partners or opponents? New fossil fired power stations in Europe - status and perspectives. Nuclear energy: outlook for new build and lifetime extension in Europe. Biomass in the future European energy market - experiences for dong energy. Meeting the EU 20:20 renewable energy targets: the offshore challenges. DESERTEC: sustainable electricity for Europe, Middle East and North Africa. New power plants in Europe - a challenge for project and quality management. Consideration of safely in new build activities of power plants. Challenges to an integrated development in Maasvlakte, Netherlands. Power enhancement in EnBW power plants. Operational experiences of CCS pilot plants worldwide. Two years of operational experiences with Vattenfall's oxyfuel pilot plant. Pre-conditions for CCS. Storage technologies for a volatile generation. Overview: new generation of gas turbines.

  15. Innovative applications of technology for nuclear power plant productivity improvements

    International Nuclear Information System (INIS)

    Naser, J. A.

    2012-01-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  16. Using interactive video technology in nursing education: a pilot study.

    Science.gov (United States)

    Zerr, Daria M; Pulcher, Karen L

    2008-02-01

    A pilot study was conducted to analyze the benefits of using interactive technology with external assessors and graduating senior nursing students during Senior Nurse Leadership Assessment Day at the University of Central Missouri. The primary aim was to determine whether videoconferencing technology would promote recruitment and retention of professional nurse external assessors without compromising student learning. Among the issues discussed are the advantages and disadvantages of using interactive videoconferencing technology in education and the influence of external assessors in nursing education. The study results indicate that interactive videoconferencing is an effective, accepted format for educational opportunities such as Senior Nurse Leadership Assessment Day, based on the lived experiences of the study participants. In addition, the results demonstrate that interactive videoconferencing does not compromise student learning or assessment by external assessors.

  17. International Facility for Food Irradiation Technology

    International Nuclear Information System (INIS)

    Farkas, J.

    1982-01-01

    The International Facility for Food Irradiation Technology (IFFIT) was set up in November 1978 for a period of five years at the Pilot Plant for Food Irradiation, Wageningen, The Netherlands under an Agreement between the FAO, IAEA and the Ministry of Agriculture and Fisheries of the Government of the Netherlands. Under this Agreement, the irradiation facilities, office space and services of the Pilot Plant for Food Irradiation are put at IFFIT's disposal. Also the closely located Research Foundation, ITAL, provides certain facilities and laboratory services within the terms of the Agreement. The FAO and IAEA contribute US-Dollar 25,000. Annually for the duration of IFFIT. (orig.) [de

  18. Draft forecast of the final report for the comparison to 40 CFR Part 191, Subpart B, for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Bertram-Howery, S.G.; Marietta, M.G.; Anderson, D.R.; Gomez, L.S.; Rechard, R.P. (Sandia National Labs., Albuquerque, NM (USA)); Brinster, K.F.; Guzowski, R.V. (Science Applications International Corp., Albuquerque, NM (USA))

    1989-12-01

    The United States Department of Energy is planning to dispose of transuranic wastes, which have been generated by defense programs, at the Waste Isolation Pilot Plant. The WIPP Project will assess compliance with the requirements of the United States Environmental Protection Agency. This report forecasts the planned 1992 document, Comparison to 40 CFR, Part 191, Subpart B, for the Waste Isolation Pilot Plant (WIPP). 130 refs., 36 figs., 11 tabs.

  19. A 22 MW pilot plant with an ammonia bottoming cycle is being tested by Electricite de France

    International Nuclear Information System (INIS)

    Fleury, J.; Bellot, C.

    1989-01-01

    EDF's DER has built a 22 MW ammonia bottoming cycle pilot power plant in Gennevilliers near Paris. This construction marks a turning point in the development of bottoming cycles which was undertaken at EDF in 1970. These cycles could be used in powerful PWR plants. The key feature of this type of plant is its appreciable capacity gain when the temperature of the heat sink drops. Thus, with a heat sink of the dry cooling tower type, low air temperatures in winter can be turned to use to produce more energy when demand is at its highest. At the same time, with dry cooling towers, a tiresome constraint vanishes since the plant location choice does no longer depend on the existence of a water reservoir in the vicinity of the plant. The construction of the pilot plant Cybiam began in 1980. Its steam turbine-generator set was coupled to the French network in March 1986 and its ammonia turbine-generator set in December 1986. The full load was attained on June 4th 1987. The main problems met during its commissioning are described in this paper as well as the first test results. From the economic point of view, the money value of the extra power generated during cold spells is assessed

  20. Emission Control Technologies for Thermal Power Plants

    Science.gov (United States)

    Nihalani, S. A.; Mishra, Y.; Juremalani, J.

    2018-03-01

    Coal thermal power plants are one of the primary sources of artificial air emissions, particularly in a country like India. Ministry of Environment and Forests has proposed draft regulation for emission standards in coal-fired power plants. This includes significant reduction in sulphur-dioxide, oxides of nitrogen, particulate matter and mercury emissions. The first step is to evaluate the technologies which represent the best selection for each power plant based on its configuration, fuel properties, performance requirements, and other site-specific factors. This paper will describe various technology options including: Flue Gas Desulfurization System, Spray Dryer Absorber (SDA), Circulating Dry Scrubber (CDS), Limestone-based Wet FGD, Low NOX burners, Selective Non Catalytic Reduction, Electrostatic Precipitator, Bag House Dust Collector, all of which have been evaluated and installed extensively to reduce SO2, NOx, PM and other emissions. Each control technology has its advantages and disadvantages. For each of the technologies considered, major features, potential operating and maintenance cost impacts, as well as key factors that contribute to the selection of one technology over another are discussed here.

  1. Electrodialytic remediation of CCA-treated waste wood in a 2 m3 pilot plant

    DEFF Research Database (Denmark)

    Christensen, Iben Vernegren; Pedersen, Anne Juul; Ottosen, Lisbeth M.

    2006-01-01

    Waste wood that has been treated with chromated-copper-arsenate (CCA) poses a potential environmental problem due to the content of copper, chromium and arsenic. A pilot plant for electrodialytic remediation of up to 2 m3 wood has been designed and tested and the results are presented here. Sever...

  2. Environmental control implications of generating electric power from coal. Appendix B. Assessment of status of technology for solvent refining of coal. 1977 technology status report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This report reviews the technology and environmental impacts of the solvent refined coal process to produce clean solid fuel (SRC-I). Information on SRC-I pilot plant operation, process design, and economics is presented. A bibliography of current available literature in this technology area, divided into fourteen categories with abstracts of the references, is appended. The history, current operations, and future plans for the SRC pilot plants at Fort Lewis and Wilsonville are reviewed. Process data generated at these pilot plants for various coals are used as a basis for a conceptual commercial plant design with a capacity to process 20,000 tons per day (TPD) of prepared coal. Block flow diagrams, material balances, an energy balance, and a list of raw materials for the plant are also provided. Capital cost estimates for a 20,000 TPD coal feed plant derived from four prior economic studies range from $706 million to $1093 million in 1976 dollars. The annual net operating cost is estimated at $238.6 million (1976 dollars) and the average product cost at $2.71/MM Btu based on utility financing (equity 25:debt 75) with $25/ton as the delivered price of the dry coal. The report also discusses special technical considerations associated with some of the process operations and major equipment items and enumerates technical risks associated with the commercialization of the SRC-I process.

  3. Operating boundaries of full-scale advanced water reuse treatment plants: many lessons learned from pilot plant experience.

    Science.gov (United States)

    Bele, C; Kumar, Y; Walker, T; Poussade, Y; Zavlanos, V

    2010-01-01

    Three Advanced Water Treatment Plants (AWTP) have recently been built in South East Queensland as part of the Western Corridor Recycled Water Project (WCRWP) producing Purified Recycled Water from secondary treated waste water for the purpose of indirect potable reuse. At Luggage Point, a demonstration plant was primarily operated by the design team for design verification. The investigation program was then extended so that the operating team could investigate possible process optimisation, and operation flexibility. Extending the demonstration plant investigation program enabled monitoring of the long term performance of the microfiltration and reverse osmosis membranes, which did not appear to foul even after more than a year of operation. The investigation primarily identified several ways to optimise the process. It highlighted areas of risk for treated water quality, such as total nitrogen. Ample and rapid swings of salinity from 850 to 3,000 mg/l-TDS were predicted to affect the RO process day-to-day operation and monitoring. Most of the setpoints used for monitoring under HACCP were determined during the pilot plant trials.

  4. Feasibility study for adapting ITREC plant to reprocessing LMFBR fuels

    International Nuclear Information System (INIS)

    Moccia, A.; Rolandi, G.

    1976-05-01

    The report evaluates the feasibility of adapting ITREC plant to the reprocessing LMFBR fuels, with the double purpose of: 1) recovering valuable Pu contained in these fuels and recycling it to the fabrication plant; 2) trying, on a pilot scale, the chemical process technology to be applied in a future industrial plant for reprocessing the fuel elements discharged from fast breeder power reactors

  5. Resource conservation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1993-08-01

    Volume I contains the following attachments for Module II: waste analysis plan; quality assurance program plan for the Waste Isolation Pilot Plant (WIPP) Experiment Waste Characterization Program(QAPP); WIPP Characterization Sampling and Analysis Guidance Manual (Plan)(SAP); and no migration Determination Requirement Summary (NMD)

  6. Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate

    International Nuclear Information System (INIS)

    Anglada, Angela; Urtiaga, Ana M.; Ortiz, Inmaculada

    2010-01-01

    Kinetic data regarding COD oxidation were measured in a laboratory scale cell and used to scale-up an electro-oxidation process for landfill leachate treatment by means of boron-doped diamond anodes. A pilot-scale reactor with a total BDD anode area of 1.05 m 2 was designed. Different electrode gaps in the laboratory and pilot plant cells resulted in dissimilar reactor hydrodynamics. Consequently, generalised dimensionless correlations concerning mass transfer were developed in order to define the mass transfer conditions in both electrochemical systems. These correlations were then used in the design equations to validate the scale-up procedure. A series of experiments with biologically pre-treated landfill leachate were done to accomplish this goal. The evolution of ammonia and COD concentration could be well predicted.

  7. Continuous process of powder production for MOX fuel fabrication according to ''granat'' technology

    International Nuclear Information System (INIS)

    Morkovnikov, V.E.; Raginskiy, L.S.; Pavlinov, A.P.; Chernov, V.A.; Revyakin, V.V.; Varykhanov, V.S.; Revnov, V.N.

    2000-01-01

    During last years the problem of commercial MOX fuel fabrication for nuclear reactors in Russia was solved in a number of directions. The paper deals with the solution of the problem of creating a continuous pilot plant for the production of MOX fuel powders on the basis of the home technology 'Granat', that was tested before on a small-scale pilot-commercial batch-operated plant of the same name and confirmed good results. (authors)

  8. Pilot project concerning the establishment of a collective biomass conversion plant on the island of Mors

    International Nuclear Information System (INIS)

    1993-06-01

    This pilot project comprises a feasibility study in connection with plans to establish a biomass conversion plant, on the Danish island of Mors, which would provide methane to be used as fuel, in combination with natural gas, for a cogeneration plant serving six villages. The subjects of location, organization, the transportation of biomass, the design of the biomass conversion plant, economical aspects and conditions of the use of the methane are discussed as a basis for decisions in this respect. Environmental considerations are also dealt with. (AB)

  9. Support to design and construction of the PBMR plant

    International Nuclear Information System (INIS)

    Cazorla, F.; Moron, P.; Gonzalez, J. I.

    2010-01-01

    Developing the new reactor design to a licensable state for constructing a pilot plant is a tough task require specific resources, concerning knowledge and previous experience, which trespassing the pure scientific or technologic knowledge linked to the reactor conceptual design. Taking into consideration the experience derived from the collaboration between the South African company PBMR (PTY) Ltd.; the Pebble Bed Modular Reactor Designer, and Tecnatom SA, the article presents some of the aspects in which the companies or organization in charge of the design can demand external support to license and construct the pilot plants with guaranteed success. (Author)

  10. Fiscal 1995 achievement report. Development of entrained bed coal gasification power plant (Part 3 - Pilot plant operational test - 2/2); 1995 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 3. Pilot plant unten shiken hen (2/2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The 200 tons/day entrained bed coal gasification pilot plant constructed for establishing the technology of integrated coal gasification combined cycle was subjected to operational tests, and the fiscal 1995 results are detailed. During Runs D13, D14, E1, D15, and A14 in the operational test of the gas clean-up facility (dry type dedusting facility), 10 troubles occurred, including damage of the separator screen, leak in the seal valve, and leak of the expansion gas, and measures were taken to deal with each of the troubles. The results of the gas turbine facility operational test were satisfactory, without any trouble worth discussion. In the operational test of the safety/environment-related facility, it was found that the produced gas was stably incinerated and that denitration performance during gas turbine operation roughly achieved the intended level. In the operational test of electric and control facilities, an overall test was conducted, inspection was made of the indoor switching facility, etc., and 13 improvements were made, which included the alteration of the high ANN setting in the water tank for slag, the alteration of the mill exit temperature setting for enabling the use of Taiheiyo coal, and proper methods for carrying out high-load operation. (NEDO)

  11. Desind an operation of pilot plant production of biodisel fron frying oils

    Directory of Open Access Journals (Sweden)

    Nelly Morales Pedraza

    2008-06-01

    Full Text Available The objective of this article is present the pilot plant used in the research titled: Production of biodiesel from used edible oils to industrial level for the production of methyl or ethyl esters from vegetable oils used in the food industry that be used as a fuel in diesel engines type, in order to generate alternative use for these oils are reused, and additionally, generate new options in biofuels that can replace methyl ester, since these need of methanol, a product that usually is a derived petrochemical and highly toxic. In this small-scale plant for the production of ethyl esters (biodiesel can be evaluated spent oils of different kinds and diverse origin, or study oils from food industries, which are usually a blend of palm oil and soybean oil, and other times palm oils hydrogenated or mixtures of oil spent with palm oil refning RBD (refned, bleached and deodorized. The results are the basis for the design and construction of a pilot plant to produce biodiesel by lot of 6 liter by hour approximately, which is evaluated under simulated conditions of loading and operation. It was designed and implemented a batch reactor with heating and stirring mechanics, drivers with temperature, condensation and total alcohol refux, maintaining a molar relationship of 6:1 (alcohol/oil, which is considered the best relation for a esterification with basic catalysis several scientifc publications. The temperature of the reaction is set at 60 °C and atmospheric pressure. The productivity of the reaction

  12. Clean coal technology - Study on the pilot project experiment of underground coal gasification

    International Nuclear Information System (INIS)

    Yang Lanhe; Liang Jie; Yu Li

    2003-01-01

    In this paper, the gasification conditions, the gasifier structure, the measuring system and the gasification rationale of a pilot project experiment of underground coal gasification (UCG) in the Liuzhuang Colliery, Tangshan, are illustrated. The technique of two-phase underground coal gasification is proposed. The detection of the moving speed and the length of the gasification working face is made using radon probing technology. An analysis of the experiment results indicates that the output of air gas is 3000 m 3 /h with a heating value of about 4.18 MJ/m 3 , while the output of water gas is 2000 m 3 /h with a heating value of over 11.00 MJ/m 3 , of which H 2 content is above 40% with a maximum of 71.68%. The cyclical time of two-phase underground gasification is 16 h, with 8 h for each phase. This prolongs the time when the high-heating value gas is produced. The moving speed of the gasification working face in two alternative gasifiers is identified, i.e. 0.204 and 0.487 m/d, respectively. The success of the pilot project experiment of the underground gasification reveals the strides that have been made toward the commercialization of the UCG in China. It also further justifies the reasonability and feasibility of the new technology of long channel, big section, two-phase underground gasification. A conclusion is also drawn that the technology of the pilot project experiment can be popularized in old and discarded coal mines

  13. Annual stability evaluation of Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1993-06-01

    A stability evaluation of the underground workings of the Waste Isolation Pilot Plant (WIPP) was completed by the US Bureau of Mines' WIPP evaluation committee. This work included a critical evaluation of the processes employed at WIPP to ensure stability, an extensive review of available deformation measurements, a 3-day site visit, and interviews with the Department of Energy (DOE) and Westinghouse staff. General ground control processes are in place at WIPP to minimize the likelihood that major stability problems will go undetected. To increase confidence in both short- and long-term stability throughout the site (underground openings and shafts), ground stability monitoring systems, mine layout design, support systems and data analyses must be continuously improved. Such processes appear to be in place at WIPP and are discussed in this paper

  14. Revised concept for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Dennis, A.W.; Milloy, J.A.; Scully, L.W.; Shefelbine, H.C.; Stinebaugh, R.E.; Wowak, W.E.

    1978-07-01

    The quantities of remotely handled wastes that must be handled at the Waste Isolation Pilot Plant have been reduced from 250 x 10 3 ft 3 /y to 10 x 10 3 ft 3 /y; the capital cost of the facility will be reduced from 534 to 428 million dollars. Changes in the facility design due to the reduction in the amount of remote-handled waste are discussed. If DOE should exercise its option to construct a high-level waste repository concurrently with the construction of the revised design, with both facilities receiving waste in 1985, the combined cost would be about 580 million dollars. However, it is unlikely that significant quantities of high-level waste in a form suitable for geologic disposal would be available until after 1990. (13 figures, 5 tables)

  15. The Waste Isolation Pilot Plant status and related socioeconomic impacts

    International Nuclear Information System (INIS)

    Little, C.C.; Adcock, L.D.; Hohmann, G.L.

    1984-01-01

    The Waste Isolation Pilot Plant (WIPP) has been ''authorized as a defense activity of the Department of Energy...for the express purpose of providing a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States...'' (PL 96-164). As reported in previous conferences, WIPP continues ahead of schedule and below budget with full facility construction well underway. To date, based on recent review, the socioeconomic impacts have been negligible and steps have been taken to ensure that they remain that way throughout operations

  16. Achievement report for fiscal 1981 on Sunshine Program-assisted project. Data 5. Development of coal liquefaction technology/Development of solvent extraction liquefaction technology/Development of brown coal solvent extraction plant (Development of 50t/d pilot plant); 1981 nendo sekitan ekika gijutsu no kaihatsu seika hokokusho (shiryo 5). Yozai chushutsu ekika gijutsu no kaihatsu (kattankei yozai chushutsu plant no kaihatsu (50ton/nichi pilot plant no kaihatsu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Research is conducted for the development of a liquefaction plant (50t/d pilot plant) for Australia's Victorian brown coal. In fiscal 1981, using the process concept and design data obtained through the study of elementary matters, a detailed design of a primary hydrogenation system is drawn, part of the equipment is procured, and on-site construction work is started. The book is a collection of materials which include engineering specifications related to electrical designs, lists of electrical items, specifications related to civil engineering designs, drawings such as planning drawings, and a detailed construction design drawn by an Australian engineering corporation and related documents and drawings. Concerning the manufacture of mechanical systems, items procurable in Japan, specifications of items procurable in Australia, lists, drawings, etc., are shown. Also included are the details of on-site preparation for construction and on-site work, conceptual designs of processes of dehydration, deashing, and secondary hydrogenation, etc. (NEDO)

  17. Achievement report for fiscal 1981 on Sunshine Program-assisted project. Data 5. Development of coal liquefaction technology/Development of solvent extraction liquefaction technology/Development of brown coal solvent extraction plant (Development of 50t/d pilot plant); 1981 nendo sekitan ekika gijutsu no kaihatsu seika hokokusho (shiryo 5). Yozai chushutsu ekika gijutsu no kaihatsu (kattankei yozai chushutsu plant no kaihatsu (50ton/nichi pilot plant no kaihatsu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Research is conducted for the development of a liquefaction plant (50t/d pilot plant) for Australia's Victorian brown coal. In fiscal 1981, using the process concept and design data obtained through the study of elementary matters, a detailed design of a primary hydrogenation system is drawn, part of the equipment is procured, and on-site construction work is started. The book is a collection of materials which include engineering specifications related to electrical designs, lists of electrical items, specifications related to civil engineering designs, drawings such as planning drawings, and a detailed construction design drawn by an Australian engineering corporation and related documents and drawings. Concerning the manufacture of mechanical systems, items procurable in Japan, specifications of items procurable in Australia, lists, drawings, etc., are shown. Also included are the details of on-site preparation for construction and on-site work, conceptual designs of processes of dehydration, deashing, and secondary hydrogenation, etc. (NEDO)

  18. Future-oriented computerized information system for power plant process control in a pilot project at Philippsburg nuclear power plant

    International Nuclear Information System (INIS)

    Woehrle, G.; Kraft, M.

    1988-01-01

    The motivation for the pilot project at Philippsburg nuclear power plant resulted from the Three Mile Island accident in 1979. The primary task embraces an efficient computer-aided reduction of information when a fault occurs based on a process engineering analysis of the information accrued. Accompanying this are a consolidation and evaluation of the information available in the control room. In this pilot project the new tasks of status monitoring, information reduction and operationalcontrol have been realized for the first time using a computer-aided process information system. In addition to the existing control computer, an information computer with approximately 1200 analogue and about 10000 binary signals has been installed. The installation of the system was completed in 1984 and in the meantime initial operational experience has become available. (orig.) [de

  19. An overview of performance assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Jow, Hong-Nian; Anderson, D.R.; Marietta, M.

    1997-01-01

    This paper presents an overview of the methodology used in the recent performance assessment (PA) to support the U.S. Department of Energy (DOE) Carlsbad Area Office's (CAO's) Waste Isolation Pilot Plant (WIPP) Compliance Certification Application (CCA). The results of this recently completed WIPP PA will be presented. Major release modes contributing to the total radionuclide release to the accessible environment will be discussed. Comparison of the mean complementary cumulative distribution function (CCDF) curve against the Environmental Protection Agency (EPA) radionuclide release limits will be presented

  20. Developments in the pre-combustion CO2 capture pilot plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Damen, K.; Gnutek, R.; Kaptein, J.; Nannan, N.R.; Oyarzun, B.; Trapp, C.; Colonna, P.; Van Dijk, E.; Gross, J.; Bardow, A.

    2011-01-01

    N.V. Nuon (part of the Vattenfall Group) operates an IGCC in Buggenum and is developing a multi-fuel IGCC with CO2 capture and storage (Nuon Magnum) in Eemshaven, the Netherlands. In order to prepare for large-scale application of CO2 capture and storage, a CO2 capture pilot plant is constructed at

  1. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    International Nuclear Information System (INIS)

    1993-01-01

    The DOE has mandated in DOE Order 5400.1 that its operations will be conducted in an environmentally safe manner. The Waste Isolation Pilot Plant (WIPP) will comply with DOE Order 5400.1 and will conduct its operations in a manner that ensures the safety of the environment and the public. This document outlines how the WIPP will protect and preserve groundwater within and surrounding the WIPP facility. Groundwater protection is just one aspect of the WIPP environmental protection effort. The WIPP groundwater surveillance program is designed to determine statistically if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will be determined and appropriate corrective action initiated

  2. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions

    2002-09-24

    U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program, requires each DOE site to prepare a Groundwater Protection Management Program Plan. This document fulfills the requirement for the Waste Isolation Pilot Plant (WIPP). This document was prepared by the Hydrology Section of the Westinghouse TRU Solutions LLC (WTS) Environmental Compliance Department, and it is the responsibility of this group to review the plan annually and update it every three years. This document is not, nor is it intended to be, an implementing document that sets forth specific details on carrying out field projects or operational policy. Rather, it is intended to give the reader insight to the groundwater protection philosophy at WIPP.

  3. Dynawave froth scrubbing technology

    International Nuclear Information System (INIS)

    McLean, J.E.

    1989-01-01

    The DynaWave family of scrubbers was developed and patented by DuPont in the 1970's and is used extensively within the company. Because the technology was treated as confidential, information about the scrubbers was not published outside of DuPont. In 1986 Monsanto Enviro-Chem was asked to install a Reverse Jet scrubber at DuPont's Burnside spent acid recovery pant to replace an aging spray humidifying tower. Enviro-Chem was impressed with the technology and entered into a licensing agreement with DuPont in late 1987. This paper addresses the application of DynaWave froth scrubbing technology to metallurgical plant process and effluent gas streams. Froth scrubber design principles an sampling results from pilot plant trails on fluid bed roaster off-gas are presented

  4. Pilot plant SERSE: Description and results of the experimental tests under treatment of simulated chemical liquid waste

    International Nuclear Information System (INIS)

    Calle, C.; Gili, M.; Luce, A.; Marrocchelli, A.; Pietrelli, L.; Troiani, F.

    1989-11-01

    The chemical processes for the selective separation of the actinides and long lived fission products from aged liquid wastes is described. The SERSE pilot plant is a cold facility which has been designed, by ENEA, for the engineering scale demonstration of the chemical separation processes. The experimental tests carried out in the plant are described and the results confirm the laboratory data. (author)

  5. Pilot-plant for NOx, SO2, HCl removal from flue-gas of municipal waste incinerator by electron beam irradiation

    International Nuclear Information System (INIS)

    Doi, Takeshi; Suda, Shoichi; Morishige, Atsushi; Tokunaga, Okihiro; Aoki, Yasushi; Sato, Shoichi; Komiya, Mikihisa; Hashimoto, Nobuo; Nakajima, Michihiro.

    1992-01-01

    A pilot-Plant for NO x , SO 2 and HCl removal from flue-gas of municipal waste incinerator by electron beam irradiation was designed and its construction at Matsudo City Waste Disposal Center was planned. The flue-gas of 1,000 Nm 3 /hr is guided from the waste incinerator flue-gas line of 30,000 Nm 3 /hr to the Pilot-Plant to be processed by spraying Ca(OH) 2 slurry (NKK-LIMAR Process) and irradiating high-energy electron beam of an accelerator. NO x , SO 2 and HCl are removed simultaneously from the flue-gas by the enhanced reaction with Ca(OH) 2 under irradiation. According to the basic research performed using a small size reactor at TRCRE of JAERI, the electron beam irradiation process was proved to be very effective for these harmful gases removal. Based on this result, the Pilot-Plant was designed for the demonstration of NO x , SO 2 and HCl removal performance using electron accelerator of maximum energy 0.95 MeV and maximum power 15 kW. The designing and planning were promoted by NKK in cooperation with JAERI and Matsudo City. (author)

  6. Simulation studies of the influence of HCl absorption on the performance of a wet flue gas desulphurisation pilot plant

    DEFF Research Database (Denmark)

    Kiil, Søren; Nygaard, Helle; Johnsson, Jan Erik

    2002-01-01

    The mathematical model of Kiil et al, (Ind. Eng, Chem. Res. 37 (1998) 2792) for a wet flue gas desulphurisation (FGD) pilot plant was extended to include the simultaneous absorption of HCl. In contrast to earlier models for wet FGD plants, the inclusion of population balance equations...

  7. Revolution of Nuclear Power Plant Design Through Digital Technology

    International Nuclear Information System (INIS)

    Zhang, L.; Shi, J.; Chen, W.

    2015-01-01

    In the digital times, digital technology has penetrated into every industry. As the highest safety requirement standard, nuclear power industry needs digital technology more to breed high quality and efficiency. Digital power plant is derived from digital design and the digitisation of power plant transfer is an inevitable trend. This paper introduces the technical solutions and features of digital nuclear power plant construction by Shanghai Nuclear Engineering Research & Design Institute, points out the key points and technical difficulties that exist in the process of construction and can serve as references for further promoting construction of digital nuclear power plant. Digital technology is still flourishing. Although many problems will be encountered in construction, it is believed that digital technology will make nuclear power industry more safe, cost-effective and efficient. (author)

  8. Carbon dioxide cleaning pilot project

    International Nuclear Information System (INIS)

    Knight, L.; Blackman, T.E.

    1994-01-01

    In 1989, radioactive-contaminated metal at the Rocky Flats Plant (RFP) was cleaned using a solvent paint stripper (Methylene chloride). One-third of the radioactive material was able to be recycled; two-thirds went to the scrap pile as low-level mixed waste. In addition, waste solvent solutions also required disposal. Not only was this an inefficient process, it was later prohibited by the Resource Conservation and Recovery Act (RCRA), 40 CFR 268. A better way of doing business was needed. In the search for a solution to this situation, it was decided to study the advantages of using a new technology - pelletized carbon dioxide cleaning. A proof of principle demonstration occurred in December 1990 to test whether such a system could clean radioactive-contaminated metal. The proof of principle demonstration was expanded in June 1992 with a pilot project. The purpose of the pilot project was three fold: (1) to clean metal so that it can satisfy free release criteria for residual radioactive contamination at the Rocky Flats Plant (RFP); (2) to compare two different carbon dioxide cleaning systems; and (3) to determine the cost-effectiveness of decontamination process in a production situation and compare the cost of shipping the metal off site for waste disposal. The pilot project was completed in August 1993. The results of the pilot project were: (1) 90% of those items which were decontaminated, successfully met the free release criteria , (2) the Alpheus Model 250 was selected to be used on plantsite and (3) the break even cost of decontaminating the metal vs shipping the contaminated material offsite for disposal was a cleaning rate of 90 pounds per hour, which was easily achieved

  9. The 4th technological meeting of Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Ohnishi, Tohru; Maki, Akira; Shibata, Satomi; Yatogi, Hideo; Nyui, Daisuke; Hashimoto, Takakazu; Fukuda, Kazuhito; Ohzeki, Tatsuya

    2001-11-01

    ''The 4th technological meeting of Tokai Reprocessing Plant (TRP)'' was held in JNFL Rokkasho site on October 11 th , 2001. The report contains the proceedings, transparencies and questionnaires of the meeting. This time, we reported about ''Maintenance and repair results of Tokai Reprocessing Plant'' based on technology and knowledge accumulated in Tokai Reprocessing Plant. (author)

  10. Investigations into the operating behavior of separation nozzle cascades for uranium-235 enrichment in a 10-stage pilot plant

    International Nuclear Information System (INIS)

    Bley, P.; Hein, H.; Linder, G.

    1984-03-01

    The separation nozzle method developed by the Karlsruhe Nuclear Research Center is based on the centrifugal force in a curved jet consisting of uranium hexafluoride and a light auxiliary gas. To determine in experiments the operating and controlling behavior of separation nozzle cascades a 10-stage pilot plant was erected some year ago. This plant was transferred to the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) in Belo Horizonte as a donation made within the framework of the German-Brazilian Agreement on scientific cooperation in the field of uranium enrichment. The plant previously equipped with single deflection systems was modified to operate with the double deflection system envisaged for commercial plants. A controlling concept meanwhile developed and improved for separation nozzle cascades equipped with single and double deflection systems was verified experimentally and optimized at the pilot plant of the CDTN. A comparison of the experimental operating behavior with the operating behavior calculated by simulation programs has confirmed the faithfulness of simulation of the computer codes developed to apply to cascades with double deflection systems as well. (orig.) [de

  11. Report on the achievements in the projects subsidized by the Sunshine Project in fiscal 1981. Data 2. Development of a coal liquefaction technology - development of a solvent extraction and liquefaction technology - 'development of a brown coal based solvent extraction plant' (Development of a 50-t/d pilot plant); 1981 nendo sekitan ekika gijutsu no kaihatsu seika hokokusho (shiryo 2). Yozai chushutsu ekika gijutsu no kaihatsu (kattankei yozai chushutsu plant no kaihatsu (50ton/nichi pilot plant no kaihatsu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Developmental researches were carried out on a liquefaction plant for the Victoria brown coal produced in Australia (a 50-t/d pilot plant). In fiscal 1981, detailed design was performed on the primary hydrogenation system by using the process conception and the design data obtained in the element studies. Part of the devices was procured, and the site construction was begun. The present data is a collection of drawings in relation with the machine design, such as the piping specifications, standard piping drawings, piping design procedures, piping drawings, pipe lists, and device inspection specifications. In relation with the instrumentation design, the instrumentation engineering specifications and meter lists. (NEDO)

  12. Bench-Scale and Pilot-Scale Treatment Technologies for the ...

    Science.gov (United States)

    Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have established TDS wastewater regulations and the US EPA has proposed a benchmark conductivity limit to reduce TDS impacts in streams near mining sites. Traditional CMW treatment effectively removes some TDS components, but is not effective in removing major salt ions due to their higher solubility. This paper describes the basic principles, effectiveness, advantages and disadvantages of various TDS removal technologies (adsorption, bioremediation, capacitive deionization, desalination, electro-chemical ion exchange, electrocoagulation, electrodialysis, ion exchange, membrane filtration, precipitation, and reverse osmosis) that have at least been tested in bench- and pilot-scale experiments. Recent discussions about new regulations to include total dissolved solids TDS) limits would propel interest in the TDS removal technologies focused on coal mine water. TDS removal is not a new concept and has been developed using different technologies for a number of applications, but coal mine water has unique characteristics (depending on the site, mining process, and solid-water-oxygen interactions), which make it unlikely to have a single technology predominating over others. What are some novel technolog

  13. WIPP conceptual design report. Addendum A. Design calculations for Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1977-04-01

    The design calculations for the Waste Isolation Pilot Plant (WIPP) are presented. The following categories are discussed: general nuclear calculations; radwaste calculations; structural calculations; mechanical calculations; civil calculations; electrical calculations; TRU waste surface facility time and motion analysis; shaft sinking procedures; hoist time and motion studies; mining system analysis; mine ventilation calculations; mine structural analysis; and miscellaneous underground calculations

  14. Off-gas treatment system Process Experimental Pilot Plant (PREPP) k-t evaluation

    International Nuclear Information System (INIS)

    Hedahl, T.G.; Cargo, C.H.; Ayers, A.L.

    1982-06-01

    The scope of work for this task involves a systems' evaluation, using the Kepner-Tregoe (K-T) decision analysis methodology, of off-gas treatment alternatives for a Process Experimental Pilot Plant (PREPP). Two basic systems were evaluated: (1) a wet treatment system using a quencher and scrubber system; and (2) a dry treatment system using a spray dryer and baghouse arrangement. Both systems would neutralize acidic off-gases (HCL and SO 2 ) and remove radioactive particulates prior to release to the environment. The K-T analysis results provided a numerical comparison of the two basic off-gas treatments systems for PREPP. The overall ratings for the two systems differ by only 7%. The closeness of the evaluation indicates that either system is capable of treating the off-gases from PREPP. Based on the analysis, the wet treatment system design is slightly more favorable for PREPP. Technology development, expected operability, total costs, and safety aspects were determined to be more advantageous for the wet system design. Support technology was the only major category that appears less favorable for using the wet off-gas system for PREPP. When considering the two criteria considered most important for PREPP (capital cost and major accident prevention - both rated 10), the wet treatment system received maximum ratings. Space constraints placed on the design by the existing TAN-607 building configuration also are more easily met by the wet system design. Lastly, the level of development for the wet system indicates more applicable experience for nuclear waste processing

  15. Waste Isolation Pilot Plant Annual Site Environmental Report for 2014. Emended

    International Nuclear Information System (INIS)

    2015-01-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2014 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year (CY); Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE environmental sustainability goals made through implementation of the WIPP Environmental Management System (EMS).

  16. Waste Isolation Pilot Plant Annual Site Environmental Report for 2014. Emended

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2014 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year (CY); Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE environmental sustainability goals made through implementation of the WIPP Environmental Management System (EMS).

  17. HTGR fuel reprocessing pilot plant: results of the sequential equipment operation

    International Nuclear Information System (INIS)

    Strand, J.B.; Fields, D.E.; Kergis, C.A.

    1979-05-01

    The second sequential operation of the HTGR fuel reprocessing cold-dry head-end pilot plant equipment has been successfully completed. Twenty standard LHGTR fuel elements were crushed to a size suitable for combustion in a fluid bed burner. The graphite was combusted leaving a product of fissile and fertile fuel particles. These particles were separated in a pneumatic classifier. The fissile particles were fractured and reburned in a fluid bed to remove the inner carbon coatings. The remaining products are ready for dissolution and solvent extraction fuel recovery

  18. Temperature Profile Measurements in a Newly Constructed 30-Stage 5 cm Centrifugal Contactor Pilot Plant

    International Nuclear Information System (INIS)

    Garn, Troy G.; Meikrantz, Dave H.; Greenhalgh, Mitchell R.; Law, Jack D.

    2008-01-01

    An annular centrifugal contactor pilot plant incorporating 30 stages of commercial 5 cm CINC V-02 units has been built and operated at INL during the past year. The pilot plant includes an automated process control and data acquisitioning system. The primary purpose of the pilot plant is to evaluate the performance of a large number of inter-connected centrifugal contactors and obtain temperature profile measurements within a 30-stage cascade. Additional solvent extraction flowsheet testing using stable surrogates is also being considered. Preliminary hydraulic testing was conducted with all 30 contactors interconnected for continuous counter-current flow. Hydraulic performance and system operational tests were conducted successfully but with higher single-stage rotor speeds found necessary to maintain steady interstage flow at flowrates of 1 L/min and higher. Initial temperature profile measurements were also completed in this configuration studying the performance during single aqueous and two-phase counter-current flow at ambient and elevated inlet solution temperatures. Temperature profile testing of two discreet sections of the cascade required additional feed and discharge connections. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 were the solution feeds for all the testing described in this report. Numerous temperature profiles were completed using a newly constructed 30-stage centrifugal contactor pilot plant. The automated process control and data acquisition system worked very well throughout testing. Temperature data profiles for an array of total flowrates (FT) and contactor rpm values for both single-phase and two-phase systems have been collected with selected profiles and comparisons reported. Total flowrates (FT) ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Solution inlet temperatures ranging from ambient up to 50 C were tested. Ambient temperature testing shows that a small

  19. Information Technology for Nuclear Power Plant Configuration Management

    International Nuclear Information System (INIS)

    2010-07-01

    Configuration management (CM) is an essential component of nuclear power plant design, construction and operation. The application of information technology (IT) offers a method to automate and ensure the timely and effective capture, processing and distribution of key nuclear power plant information to support CM principles and practical processes and procedures for implementation of CM at nuclear power plants. This publication reviews some of the principles established in IAEA-TECDOC-1335, 'Configuration Management in Nuclear Power Plants.' It also recaps tenets laid out in IAEA- TECDOC-1284, 'Information Technology Impact on Nuclear Power Plant Documentation' that supports CM programmes. This publication has been developed in conjunction with and designed to support these other two publications. These three publications combined provide a comprehensive discussion on configuration management, information technology and the relationship between them. An extensive discussion is also provided in this publication on the role of the design basis of the facility and its control through the CM process throughout the facility's lifetime. While this report was developed specifically for nuclear power plants, the principles discussed can be usefully applied to any high hazard nuclear facility

  20. Technology success: Integration of power plant reliability and effective maintenance

    International Nuclear Information System (INIS)

    Ferguson, K.

    2008-01-01

    The nuclear power generation sector has a tradition of utilizing technology as a key attribute for advancement. Companies that own, manage, and operate nuclear power plants can be expected to continue to rely on technology as a vital element of success. Inherent with the operations of the nuclear power industry in many parts of the world is the close connection between efficiency of power plant operations and successful business survival. The relationship among power plant availability, reliability of systems and components, and viability of the enterprise is more evident than ever. Technology decisions need to be accomplished that reflect business strategies, work processes, as well as needs of stakeholders and authorities. Such rigor is needed to address overarching concerns such as power plant life extension and license renewal, new plant orders, outage management, plant safety, inventory management etc. Particular to power plant reliability, the prudent leveraging of technology as a key to future success is vital. A dominant concern is effective asset management as physical plant assets age. Many plants are in, or are entering in, a situation in which systems and component design life and margins are converging such that failure threats can come into play with increasing frequency. Wisely selected technologies can be vital to the identification of emerging threats to reliable performance of key plant features and initiating effective maintenance actions and investments that can sustain or enhance current reliability in a cost effective manner. This attention to detail is vital to investment in new plants as well This paper and presentation will address (1) specific technology success in place at power plants, including nuclear, that integrates attention to attaining high plant reliability and effective maintenance actions as well as (2) complimentary actions that maximize technology success. In addition, the range of benefits that accrue as a result of

  1. Report on the fiscal 1996 development of high efficient waste power generation technology; 1996 nendo kokoritsu haikibutsu hatsuden gijutsu kaihatsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The technical development was made by which high-temperature/high-pressure steam is generated in the incineration furnace using general waste, combustible industrial waste, etc. as fuel to generate power high efficiently, and reliability of the superheater, etc. was verified by the pilot plant. For it, the following were conducted: development of element technology (high-temperature/high-efficiency combustion furnace, corrosion resistant super heater materials, environmental load reduction technology) and the demonstration (demonstrative test in pilot plant, study of an optimum total system). In relation to the external circulation type fluidized bed furnace, reformation was made which enables simultaneous sampling of dioxins, etc. The combustion test was done using the reformed combustion testing furnace to obtain the data necessary for the study of formation/decomposition mechanism of dioxin. The amount of corrosion reduction of superheater sample material for pilot plant use was determined. A study was made of improvement of removal of dioxins and NOx in the pulse plasma exhaust gas treatment method. The pilot plant was installed. 10 refs., 205 figs., 79 tabs.

  2. Final environmental impact statement. Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described

  3. The technology transfer and the Laguna Verde power plants

    International Nuclear Information System (INIS)

    Garza, R.F. de La

    1991-01-01

    The process of technology transfer to the construction of Laguna Verde Nuclear Power Plants, Mexico, is described. The options and the efforts for absorbing the technology of Nuclear Power Plant design and construction by the mexican engineers are emphasized. (author)

  4. Plant gene technology: social considerations

    African Journals Online (AJOL)

    Administrator

    The genetic modification of plants by gene technology is of immense potential benefits, but there may be possible risks. ... As a new endeavour, however, people have a mixed ... reality by gene biotechnology (Watson, 1997). Industrial ...

  5. Final Report: Pilot-Scale X-Flow Filtration Test - Env C Plus Entrained Solids Plus Sr/TRU

    International Nuclear Information System (INIS)

    Duignan, M.R.

    2000-01-01

    This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company. This filtration technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. The plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project

  6. National priorities for the assessment of clinical conditions and medical technologies: report of a pilot study

    National Research Council Canada - National Science Library

    Lara, María Elena; Goodman, Clifford

    1990-01-01

    ... and Medical Technologies Report of a Pilot Study Maria Elena Lara and Clifford Goodman, editors Priority-Setting Group Council on Health Care Technology Institute of Medicine NATIONAL ACADEMY PRESS WASHINGTON, D.C. 1990 i Copyrightoriginal retained, the be not from cannot book, paper original however, for version formatting, authoritative the typese...

  7. No-migration variance petition for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Duff, M.; Carnes, R.; Hart, J.; Hansen, R.

    1991-01-01

    The US Department of Energy (DOE) is petitioning the US Environmental Protection Agency (EPA) to allow the emplacement of hazardous wastes subject to the Resource Conservation and Recovery Act (RCRA) land disposal restrictions in the Waste Isolation Pilot Plant (WIPP). The basis of the petition is that there will be no migration of hazardous constituents from the repository for as long as the wastes remain hazardous. The EPA regulations in 40 CFR Section 268.6 identify specific criteria that must be addressed in making a demonstration of no migration. EPA's approval of this petition will allow the WIPP facility to accept wastes otherwise prohibited or restricted from land disposal. 5 refs

  8. Optimisation of a wet FGD pilot plant using fine limestone and organic acids

    DEFF Research Database (Denmark)

    Frandsen, Jan; Kiil, Søren; Johnsson, Jan Erik

    2001-01-01

    , but the residual limestone content in the gypsum increased to somewhere between 19 and 30 wt%, making this pH range unsuitable for use in a full-scale plant. The investigations have shown that both the addition of organic acids and the use of a limestone with a fine PSD can be used to optimise wet FGD plants. (C......The effects of adding an organic acid or using a limestone with a fine particle size distribution (PSD) have been examined in a wet flue gas desulphurisation (FGD) pilot plant. Optimisation of the plant with respect to the degree of desulphurisation and the residual limestone content of the gypsum...... has been the aim of the work. In contrast to earlier investigations with organic acids, all essential process parameters (i.e. gas phase concentration profiles of SO(2), slurry pH profiles. and residual limestone in the gypsum) were considered. Slurry concentrations of adipic acid in the range of 0...

  9. AECL's plant Information Technologies

    International Nuclear Information System (INIS)

    DeVerno, M.; Lupton, L.; Didsbury, R.; Judd, R.

    1998-01-01

    The competitiveness of the world-wide energy market is a continual driving force for improvements to CANDU performance and lower operating, maintenance, and administration costs. As in other industries, advanced Information Technologies (IT) are changing the way we work and conduct business. The nuclear industry is no different and there exists strong incentives to improve work processes and provide faster and more flexible access to the information needed to effectively manage and maintain nuclear plant assets. AECL has responded to these forces through the development of a vision of integrated IT systems addressing all phases of nuclear plant development and operations. This includes the initial engineering, design, and construction processes as well as support to the long-term operations and maintenance. Integral to the AECL vision is the need for cost-effective engineering and operational configuration management systems, proactive maintenance processes and systems, and advanced plant surveillance and diagnostics. This paper presents the vision and describes the integrated information systems needed to manage both the design basis and operating plant data systems to ensure the cost-effective, long-term viability of CANDU plants. (author)

  10. Fiscal 2000 achievement report. Development of coal gas production technology for fuel cells (Research using pilot test facility - for public release); 2000 nendo seika hokokusho (Kokai you). Nenryo denchi you sekitan gas seizo gijutsu kaihatsu - Pilot shiken setsubi ni yoru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the development of a coal gasification furnace optimum for fuel cells, research and development was conducted of a coal gas production technology using the oxygen-blown coal gasification technology, and the fiscal 2000 results are put together. In the construction of the pilot test facility, part of the road in the site was constructed as continued from the preceding fiscal year. In the construction of the coal gasification facility, some of the devices were built, which were the coal feeding system, coal gasification furnace, heat recovery boiler, and the char recovery device, and some of the thus-built devices and procured devices were installed. In the study of the control of the operation of the oxygen-blown coal gasification system, the pilot test facility was divided into unit devices and, for each of the unit devices, detailed procedures for pre-start preparation, start, stop, and for the stop of accessorise were deliberated, and important operating steps were worked out. Timing charts were prepared for the operation of each of the facilities during plant start/stop operations. In the effort to deal with serious accidents, special operation procedures were studied and prepared on the case-by-case basis. (NEDO)

  11. Demonstration test of electron beam flue gas treatment pilot plant of a coal fired thermal power station

    International Nuclear Information System (INIS)

    Doi, Yoshitaka; Hayashi, Kazuaki; Izutsu, Masahiro; Watanabe, Shigeharu; Namba, Hideki; Tokunaga, Okihiro; Hashimoto, Shoji; Tanaka, Tadashi; Ogura, Yoshimi.

    1995-01-01

    The Japan Atomic Energy Research Institute, Chubu Electric Power Company and Ebara Corporation jointly constructed a pilot plant for electron beam flue gas treatment (dry process) capable of treating 12,000 m 3 /h (NTP) of flue gas from a coal fired boiler, at Shin-Nagoya Thermal Power Station, Chubu Electric Power Company. Various tests carried out at the plant over a period extending one year verified the followings. By appropriately controlling parameters such as electron beam dosage, flue gas temperature, and ammonia stoichiometric amount, highly efficient simultaneous SO 2 and NOx removal from flue gas was achieved under all gas conditions, equal to or more efficient than that by the highest level conventional treatment. The operation of the pilot plant was stable and trouble-free over a long term, and the operation and the process was easy to operate and control. By-products (ammonium sulfate and ammonium nitrate) produced by the flue gas treatment were proven to have superior quality, equivalent to that of market-available nitrogen fertilizers. These by-products had been registered as by-product nitrogen fertilizers. (author)

  12. Design of a Small Scale Pilot Biodiesel Production Plant and Determination of the Fuel Properties of Biodiesel Produced With This Plant

    Directory of Open Access Journals (Sweden)

    Tanzer Eryılmaz

    2014-09-01

    Full Text Available A small scale pilot biodiesel production plant that has a volume of 65 liters/day has been designed, constructed and tested. The plant was performed using oil mixture (50% wild mustard seed oil + 50% refined canola oil and methanol with sodium hydroxide (NaOH catalyst. The fuel properties of biodiesel indicated as density at 15oC (889.64 kg/m3, kinematic viscosity at 40oC (6.975 mm2/s, flash point (170oC, copper strip corrosion (1a, water content (499.87 mg/kg, and calorific value (39.555 MJ/kg, respectively.

  13. Plasma Technologies of Solid Fuels Processing

    International Nuclear Information System (INIS)

    Karpenko, E.I.; Messerle, V.E.; Ustimenko, A.

    2003-01-01

    Use of fuel processing plasma technologies improves ecological and economical indexes of low-grade coal utilization at thermal power plants. This paper presents experimental plasma plant 70 k W of power and 11 kg per hour of coal productivity. On the base of material and heat balances integral indexes of the process of plasma gasification of Podmoskovny brown coal 48% of ash content were found. Synthesis gas with concentration 85.2% was got. Hydrogen concentration in the synthesis gas was higher than carbon monoxide one. Ratio H 2 :CO in synthesis gas was 1.4-1.5. It was shown that steam consumption and temperature of the process increase causes H 2 concentration and coal gasification degree increase. Fulfilled experiments and comparison of their result with theoretical investigations allowed creating pilot experimental plant for plasma processing of low-grade coals. The power of the pilot plant is 1000 k W and coal productivity is 300 kg/h. (author)

  14. Research Regarding High Gravity Brewing in the Pilot Station USAMV Cluj-Napoca

    Directory of Open Access Journals (Sweden)

    Andrei Borsa

    2013-11-01

    Full Text Available This paper aims to present preliminary research results obtained while developing and implementing a high gravity beer fermentation process. Production trials were performed in brewery pilot plant from University of Agricultural Sciences and Veterinary Medicine, Faculty of Food Science and Technology. The tehnological parameters were adapted and monitored during the making.

  15. Test operation of the uranium ore processing pilot plant and uranium conversion plant

    International Nuclear Information System (INIS)

    Suh, I.S.; Lee, K.I.; Whang, S.T.; Kang, Y.H.; Lee, C.W.; Chu, J.O.; Lee, I.H.; Park, S.C.

    1983-01-01

    For the guarantee of acid leaching process of the Uranium Ore Processing Pilot Plnat, the KAERI team performed the test operation in coorperation with the COGEMA engineers. The result of the operation was successful achieving the uranium leaching efficiency of 95%. Completing the guarentee test, a continuous test operation was shifted to reconform the reproducibility of the result and check the functions of every units of the pilot plant feeding the low-grade domestic ore, the consistency of the facility was conformed that the uranium can easily be dissolved out form the ore between the temperature range of 60degC-70degC for two hours of leaching with sulfuric acid and could be obtained the leaching efficiency of 92% to 95%. The uranium recovery efficiencies for the processes of extraction and stripping were reached to 99% and 99.6% respectively. As an alternative process for the separation of solid from the ore pulp, four of the Counter Current Decanters were shifted replacing the Belt Filter and those were connected in a series, which were not been tested during the guarantee operation. It was found out that the washing efficiencies of the ore pulp in each tests for the decanters were proportionally increased according to the quantities of the washing water. As a result of the test, it was obtained that washing efficiencies were 95%, 85%, 83% for the water to ore ratio of 3:1, 2:1, 1.5:1 respectively. (Author)

  16. Report on the achievements in the projects subsidized by the Sunshine Project in fiscal 1981. Data 3. Development of a coal liquefaction technology - development of a solvent extraction and liquefaction technology - 'development of a brown coal based solvent extraction plant' (Development of a 50-t/d pilot plant); 1981 nendo sekitan ekika gijutsu no kaihatsu seika hokokusho (shiryo 3). Yozai chushutsu ekika gijutsu no kaihatsu (kattankei yozai chushutsu plant no kaihatsu (50ton/nichi pilot plant no kaihatsu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Developmental researches were carried out on a liquefaction plant for the Victoria brown coal produced in Australia (a 50-t/d pilot plant). In fiscal 1981, detailed design was performed on the primary hydrogenation system by using the process conception and the design data obtained in the element studies. Part of the devices was procured, and the site construction was begun. The present data is a collection of drawings in relation with the instrumentation design, such as the meter specifications, front view drawings for meter panels, drawings for panel arrangement in the central control room, a computer room layout drawing, control system explanation drawings, interlock diagrams, and the instrumentation power supply diagrams. (NEDO)

  17. Fiscal 1997 report of the development of high efficiency waste power generation technology. No.1 volume. Element technology development; Kokoritsu haikibutsu hatsuden gijutsu kaihatsu (yoso gijutsu kaihatsu). 1997 nendo hokokusho (daiichi bunsatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Following the previous fiscal year, the technology development was conducted of a high efficiency waste power generation system using general waste as fuel. In the development of high temperature high efficiency combustion furnace, a combustion test on the external circulating fluidized bed incinerator was made to obtain data on formation/decomposition of dioxins. Moreover, a combustion test was conducted using mock refuse, petroleum-derived waste and waste plastics, to confirm stabilized combustion characteristics and low pollution. In the development of a corrosion resistant superheater, made were the stress load high temperature corrosion test, study of intergranular corrosion by elements of impurities, etc. In the development of the environmental load reduction technology, conducted was the conceptional design of pulse plasma exhaust gas disposal equipment corresponding to the actual one. In the verification test in a pilot plant, the pilot plant passed the pre-use inspection and was completed in February 1998. In the study of an optimal total system, discussed were the data on the pilot plant verification test, measuring points, how to arrange them, etc. 2 refs., 88 figs., 50 tabs.

  18. New technology for BWR power plant control and instrumentation

    International Nuclear Information System (INIS)

    Takano, Yoshiyuki; Nakamura, Makoto; Murata, Fumio.

    1992-01-01

    Nuclear power plants are facing strong demands for higher reliability and cost-performance in their control and instrumentation systems. To meet these needs, Hitachi is developing advanced control and instrumentation technology by rationalizing the conventional technology in that field. The rationalization is done through the utilization of reliable digital technology and optical transmission technology, and others, which are now commonly used in computer applications. The goal of the development work is to ensure safe, stable operation of the plant facilities and to secure harmony between man and machine. To alleviate the burdens of the operators, the latest electronic devices are being employed to create an advanced man-machine interface, and to promote automatic operation of the plant based upon the automatic operation of individual systems. In addition, the control and instrumentation system, including the safety system, incorporates more and more digital components in order to further enhance the reliability and maintainability of the plant. (author)

  19. Wet treatment of low-quality coal. II stage. Pilot Plant; Tratamiento en fase humeda de carbones de baja calidad 2 fase: planta piloto

    Energy Technology Data Exchange (ETDEWEB)

    1999-09-01

    At this second stage, the project was aimed at determining the appropriate operating conditions which permit the use of slack with a high ratio of inert materials after a treatment by means of wet oxidation at thigh pressure as well as carrying out an economic feasibility study. Based on the conclusions of the first stage, four representative samples were selected and the pilot plant for testing the influence of different process variables was designed. Continuous tests were conducted and the basic engineering was determined (process diagram, material, energy and equipment balances). An economic analysis for the erecting of an industrial plant for the treatment of low-quality coal using this technology was also carried out in order to establish whether a short-term or medium-term profitability of the required investment for the erecting could be achieved. It can be deduced from both the theoretical and experimental studies carried out that the technology of wet oxidation can be applied to the treatment of slacks, but the energetic efficiency of the reaction is so low that its use is not advisable for the proposed purposes. (Author)

  20. Effect of heating strategy on power consumption and performance of a pilot plant anaerobic digester.

    Science.gov (United States)

    Espinosa-Solares, Teodoro; Valle-Guadarrama, Salvador; Bombardiere, John; Domaschko, Max; Easter, Michael

    2009-05-01

    The effect of heating strategy on power consumption and performance of a pilot plant anaerobic digester treating chicken litter, under thermophilic conditions, has been studied. Heating strategy was evaluated using three different spans (0.2 degrees C, 0.6 degrees C, and 1.0 degree C) for triggering the temperature control system from target temperature (56.7 degrees C). The hydraulic retention time in the pilot plant digester was in the range of 32 to 37 days, varying the total solids concentration fed from 5% to 6%. The results showed that under the experimental conditions, heating was the most energy-demanding process with 95.5% of the energy used. Increments up to 7.5% and 3.8%, respectively, on mechanical and heating power consumption, were observed as the span, for triggering the temperature control system from target temperature, was increased. Under the experimental conditions studied here, an increment of 30.6% on the global biodigester performance index was observed when a span of 1.0 degree C was compared to the one of 0.2 degrees C.

  1. Digital Process Management Technology for Nuclear Power Plants

    International Nuclear Information System (INIS)

    You, Young M.; Suh, Kune Y.

    2009-01-01

    PHILOSOPHIA, Inc. and Seoul National University have utilized the cutting edge Digital Process Management (DPM) technology for the good of Nuclear Power Plant in recent days. This work represent the overall benefits and the use of this new flow of technology which come into the spotlight. Before realizing the three dimensional (3D) technologies and applying it to real mechanical manufactures and constructions, majority of planning and designing works need huge time and cost even if the process is before the real work. Especially, for a massive construction such as power plant and harbor, without computer-aided technology currently we cannot imagine the whole process can be established easily. Computer-aided Design (CAD) is now main and common technology for manufacturing or construction. This technology lead the other virtual reality 3D technologies into the job site. As a member of these new technologies, DPM is utilized in high-tech and huge scale manufacturing and construction for the benefits of time and cost

  2. Final Report: Pilot-Scale X-Flow Filtration Test - Env C Plus Entrained Solids Plus Sr/TRU

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.

    2000-07-27

    This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company. This filtration technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. The plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

  3. Modularization Technology in Power Plant Construction

    International Nuclear Information System (INIS)

    Kenji Akagi; Kouichi Murayama; Miki Yoshida; Junichi Kawahata

    2002-01-01

    Since the early 1980's, Hitachi has been developing and applying modularization technology to domestic nuclear power plant construction, and has achieved great rationalization. Modularization is one of the plant construction techniques which enables us to reduce site labor by pre-assembling components like equipment, pipes, valves and platforms in congested areas and installing them using large capacity cranes for cost reduction, better quality, safety improvement and shortening of construction time. In this paper, Hitachi's modularization technologies are described especially from with respect to their sophisticated design capabilities. The application of 3D-CAD at the detailed layout design stage, concurrent design environment achieved by the computer network, module design quantity control and the management system are described. (authors)

  4. Final Report: RPP-WTP Semi-Integrated Pilot Plant

    International Nuclear Information System (INIS)

    Duignan, M. R.; Adamson, D. J.; Calloway, T. B.; Fowley, M. D.; Qureshi, Z. H.; Steimke, J. L.; Williams, M. R.; Zamecnik, J. R.

    2005-01-01

    In August 2004 the last of the SIPP task testing ended--a task that formally began with the issuance of the RPP-WTP Test Specification in June 2003. The planning for the task was a major effort in itself and culminated with the input of all stakeholders, DOE, Bechtel National, Inc., Washington Group International, in October 2003 at Hanford, WA (Appendix A). This report documents the activities carried out as a result of that planning. Campaign IV, the fourth and final step towards the Semi-Integrated Pilot Plant (SIPP) task, conducted by the Savannah River National Laboratory (SRNL) at the Savannah River Site, was to take the several recycle streams produced in Campaign III, the third step of the task, and combine them with other simulated recycle and chosen waste streams. (Campaign III was fed recycles from Campaign II, as Campaign II was fed by Campaign I.) The combined stream was processed in a fashion that mimicked the pretreatment operations of the DOE River Protection Project--Waste Treatment and Immobilization Plant (RPP-WTP) with the exception of the Ion Exchange Process. The SIPP task is considered semi-integrated because it only deals with the pretreatment operations of the RPP-WTP. That is, the pilot plant starts by receiving waste from the tank farm and ends when waste is processed to the point of being sent for vitrification. The resulting pretreated LAW and HLW simulants produced by the SIPP were shipped to VSL (Vitreous State Laboratory) and successfully vitrified in pilot WTP melters. Within the SIPP task these steps are referred to as Campaigns and there were four Campaigns in all. Campaign I, which is completely different than other campaigns, subjected a simulant of Hanford Tank 241-AY-102/C-106 (AY102) waste to cross-flow ultrafiltration only and in that process several important recycle streams were produced as a result of washing the simulant and cleaning the cross-flow filter. These streams were fed to subsequent campaigns and that work was

  5. Final Report: RPP-WTP Semi-Integrated Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M. R.; Adamson, D. J.; Calloway, T. B.; Fowley, M. D.; Qureshi, Z. H.; Steimke, J. L.; Williams, M. R.; Zamecnik, J. R.

    2005-06-01

    In August 2004 the last of the SIPP task testing ended--a task that formally began with the issuance of the RPP-WTP Test Specification in June 2003. The planning for the task was a major effort in itself and culminated with the input of all stakeholders, DOE, Bechtel National, Inc., Washington Group International, in October 2003 at Hanford, WA (Appendix A). This report documents the activities carried out as a result of that planning. Campaign IV, the fourth and final step towards the Semi-Integrated Pilot Plant (SIPP) task, conducted by the Savannah River National Laboratory (SRNL) at the Savannah River Site, was to take the several recycle streams produced in Campaign III, the third step of the task, and combine them with other simulated recycle and chosen waste streams. (Campaign III was fed recycles from Campaign II, as Campaign II was fed by Campaign I.) The combined stream was processed in a fashion that mimicked the pretreatment operations of the DOE River Protection Project--Waste Treatment and Immobilization Plant (RPP-WTP) with the exception of the Ion Exchange Process. The SIPP task is considered semi-integrated because it only deals with the pretreatment operations of the RPP-WTP. That is, the pilot plant starts by receiving waste from the tank farm and ends when waste is processed to the point of being sent for vitrification. The resulting pretreated LAW and HLW simulants produced by the SIPP were shipped to VSL (Vitreous State Laboratory) and successfully vitrified in pilot WTP melters. Within the SIPP task these steps are referred to as Campaigns and there were four Campaigns in all. Campaign I, which is completely different than other campaigns, subjected a simulant of Hanford Tank 241-AY-102/C-106 (AY102) waste to cross-flow ultrafiltration only and in that process several important recycle streams were produced as a result of washing the simulant and cleaning the cross-flow filter. These streams were fed to subsequent campaigns and that work was

  6. Final environmental impact statement. Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described. (DMC)

  7. The dispersal and impact of salt from surface storage piles the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Reith, C.C.; Louderbough, E.T.

    1986-01-01

    A comprehensive program of ecological studies occurs at the Waste Isolation Pilot Plant (WIPP) in an effort to detect and quantify impacts of excavated salt which is stored on the surface in two piles: one having originated in 1980, the other in 1984. Both piles are surrounded by berms which channel runoff to holding ponds, so nearly all dispersal is due to the resuspension, transport, and deposition of salt particles by wind. Ecological parameters which have been monitored since 1984 include: visual evidence (via photography), soil properties, microbial activity, leaf-litter decomposition, seedling emergence, plant foliar cover, and plant species diversity. These are periodically assessed at experimental plots near the salt piles, and at control plots several kilometers away

  8. Control system for high-temperature slagging incinerator plant

    International Nuclear Information System (INIS)

    Matsuzaki, Yuji

    1986-01-01

    Low-level radioactive wastes generated in the nuclear generating plants are increasing year by year and to dispose them safely constitutes a big problem for the society. A few years ago, as the means of reducing them to as little volume as possible by incinerating and fusing the wastes, a high-temperature slagging incinerating method was developed, and this method is highly assessed. JGC Corp. has introduced that system technology and in order to prove the capacity of disposal and salubrity of the plant, and have constructed a full-sized pilot plant, then obtained the operational record and performance as they had planned. This report introduces the general processing of the wastes from their incineration and fusion as well as process control technology characteristic to high-temperature slagging incinerator furnaces and sensor technology. (author)

  9. Synthesis in pilot plant scale and physical properties of sulfonated polystyrene

    Directory of Open Access Journals (Sweden)

    Martins Cristiane R.

    2003-01-01

    Full Text Available The homogenous sulfonation of polystyrene was developed in a pilot plant scale producing polymers with different sulfonation degrees (18 to 22 mole % of sulfonated styrene units. The reaction yield depends chiefly on the concentration ratio of acetyl sulfate and polystyrene. The morphological and thermal properties of the sulfonated polystyrene obtained by homogeneous sulfonation were studied by means of scanning electron microscopy, differential scanning calorimetry and thermogravimetry. The glass transition temperature of sulfonated polystyrene increases in relation to pure polystyrene and DCp was evaluated in order to confirm the strong interactions among the ~SO3H groups.

  10. Perspective of the Science Advisor to the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    WEART, WENDELL D.

    1999-01-01

    In 1975 Sandia National Laboratories (SNL) was asked by the predecessor to the Department of Energy to assume responsibility for the scientific programs necessary to assure the safe and satisfactory development of a geologic repository in the salt beds of southeast New Mexico. Sandia has continued in the role of Science Advisor to the Waste Isolation Pilot Plant (WIPP) to the present time. This paper will share the perspectives developed over the past 25 years as the project was brought to fruition with successful certification by the Environmental Protection Agency (EPA) on May 13, 1998 and commencement of operations on April 26, 1999

  11. Radioactive waste disposal: Waste Isolation Pilot Plants (WIPP). March 1978-November 1989 (Citations from the NTIS data base). Report for Mar 78-Nov 89

    International Nuclear Information System (INIS)

    1990-01-01

    This bibliography contains citations concerning the Waste Isolation Pilot Plant (WIPP), a geologic repository located in New Mexico for transuranic wastes generated by the U.S. Government. Articles follow the development of the program from initial site selection and characterization through construction and testing, along with research programs on environmental impacts, structural design, and radionuclide landfill gases. Existing plants and facilities, pilot plants, migration, rock mechanics, economics, regulations, and transport of wastes to the site are also included. The Salt Repository Project and the Crystalline Repository Project are referenced in related published bibliographies. (Contains 184 citations fully indexed and including a title list.)

  12. Prospects for power plant technology

    International Nuclear Information System (INIS)

    Schilling, H.D.

    1993-01-01

    Careful conservation of resources in the enlarged context of the rational utilization of energy, the environment and capital will determine future power plant technology. The mainstays will be the further development of power plant concepts based on fossil (predominantly coal) and nuclear fuels; world-wide, also regenerative and CO 2 -free hydro-electric power will play a role. Rapid conversion of the available potential requires clear, long-term stable and reliable political framework conditions for the release of the necessary entrepreneurial forces. (orig.) [de

  13. Waste Isolation Pilot Plant in situ experimental program for HLW

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1977-01-01

    The Waste Isolation Pilot Plant (WIPP) will be a facility to demonstrate the environmental and operational safety of storing radioactive wastes in a deep geologic bedded salt facility. The WIPP will be located in southeastern New Mexico, approximately 30 miles east of the city of Carlsbad. The major focus of the pilot plant operation involves ERDA defense related low and intermediate-level transuranic wastes. The scope of the project also specifically includes experimentation utilizing commercially generated high-level wastes, or alternatively, spent unreprocessed fuel elements. WIPP HLW experiments are being conducted in an inter-related laboratory, bench-scale, and in situ mode. This presentation focuses on the planned in situ experiments which, depending on the availability of commercially reprocessed waste plus delays in the construction schedule of the WIPP, will begin in approximately 1985. Such experiments are necessary to validate preceding laboratory results and to provide actual, total conditions of geologic storage which cannot be adequately simulated. One set of planned experiments involves emplacing bare HLW fragments into direct contact with the bedded salt environment. A second set utilizes full-size canisters of waste emplaced in the salt in the same manner as planned for a future HLW repository. The bare waste experiments will study in an accelerated manner waste-salt bed-brine interactions including matrix integrity/degradation, brine leaching, system chemistry, and potential radionuclide migration through the salt bed. Utilization of full-size canisters of HLW in situ permits us to demonstrate operational effectiveness and safety. Experiments will evaluate corrosion and compatibility interactions between the waste matrix, canister and overpack materials, getter materials, stored energy, waste buoyancy, etc. Using full size canisters also allows us to demonstrate engineered retrievability of wastes, if necessary, at the end of experimentation

  14. 10-MWe solar-thermal central-receiver pilot plant: collector subsystem foundation construction. Revision No. 1

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-18

    Bid documents are provided for the construction of the collector subsystem foundation of the Barstow Solar Pilot Plant, including invitation to bid, bid form, representations and certifications, construction contract, and labor standards provisions of the Davis-Bacon Act. Instructions to bidders, general provisions and general conditions are included. Technical specifications are provided for the construction. (LEW)

  15. Waste isolation pilot plant disposal room model

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, B.M.

    1997-08-01

    This paper describes development of the conceptual and mathematical models for the part of the Waste Isolation Pilot Plant (WIPP) repository performance assessment that is concerned with what happens to the waste over long times after the repository is decommissioned. These models, collectively referred to as the {open_quotes}Disposal Room Model,{close_quotes} describe the repository closure process during which deformation of the surrounding salt consolidates the waste. First, the relationship of repository closure to demonstration of compliance with the Environmental Protection Agency (EPA) standard (40 CFR 191 Appendix C) and how sensitive performance results are to it are examined. Next, a detailed description is provided of the elements of the disposal region, and properties selected for the salt, waste, and other potential disposal features such as backfill. Included in the discussion is an explanation of how the various models were developed over time. Other aspects of closure analysis, such as the waste flow model and method of analysis, are also described. Finally, the closure predictions used in the final performance assessment analysis for the WIPP Compliance Certification Application are summarized.

  16. Waste isolation pilot plant disposal room model

    International Nuclear Information System (INIS)

    Butcher, B.M.

    1997-08-01

    This paper describes development of the conceptual and mathematical models for the part of the Waste Isolation Pilot Plant (WIPP) repository performance assessment that is concerned with what happens to the waste over long times after the repository is decommissioned. These models, collectively referred to as the open-quotes Disposal Room Model,close quotes describe the repository closure process during which deformation of the surrounding salt consolidates the waste. First, the relationship of repository closure to demonstration of compliance with the Environmental Protection Agency (EPA) standard (40 CFR 191 Appendix C) and how sensitive performance results are to it are examined. Next, a detailed description is provided of the elements of the disposal region, and properties selected for the salt, waste, and other potential disposal features such as backfill. Included in the discussion is an explanation of how the various models were developed over time. Other aspects of closure analysis, such as the waste flow model and method of analysis, are also described. Finally, the closure predictions used in the final performance assessment analysis for the WIPP Compliance Certification Application are summarized

  17. Resource Conservation and Recovery Act, Part B permit application [of the Waste Isolation Pilot Plant (WIPP)]. Volume 11, Chapter D, Appendix D4--Chapter D, Appendix D17: Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This volume contains appendices D4 through D17 which cover the following: Waste Isolation Pilot Plant site environmental report; ecological monitoring program at the Waste Isolation Pilot Plant; site characterization; regional and site geology and hydrology; general geology; dissolution features; ground water hydrology; typical carbon sorption bed efficiency; VOC monitoring plan for bin-room tests; chemical compatibility analysis of waste forms and container materials; probable maximum precipitation; WHIP supplementary roof support system room 1, panel 1; and corrosion risk assessment of the Waste Isolation Pilot Plant ``humid`` test bins.

  18. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 5: Appendices D and D, DEF, FAC

    International Nuclear Information System (INIS)

    1995-01-01

    This plan serves to describe the objectives of decommissioning for the Waste Isolation Pilot Plant (WIPP), identifies the elements necessary to accomplish the decommissioning, and defines the steps to execute those elements in a safe and environmentally sound manner. The plan provides a strategy for progressing from the final actions of the Disposal Phase, through the Decontamination and Decommissioning Phase, and into the initiation of the Long-Term Monitoring Phase. This plan describes a sequence of events for decontamination of the WIPP facilities and structures used to manage and contain TRU and TRU mixed waste during the receipt and emplacement operations. Alternative methods of decontamination are provided where practical. The methods for packaging and disposal of the waste generated (derived waste) during this process are discussed. The best available technology at the time of this plan's development, may become outmoded by future technology and alternative strategies. If alternative technologies are identified the affected stakeholder(s), the Secretary of the Interior and the State will be consulted prior to implementation

  19. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 5: Appendices D and D, DEF, FAC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-31

    This plan serves to describe the objectives of decommissioning for the Waste Isolation Pilot Plant (WIPP), identifies the elements necessary to accomplish the decommissioning, and defines the steps to execute those elements in a safe and environmentally sound manner. The plan provides a strategy for progressing from the final actions of the Disposal Phase, through the Decontamination and Decommissioning Phase, and into the initiation of the Long-Term Monitoring Phase. This plan describes a sequence of events for decontamination of the WIPP facilities and structures used to manage and contain TRU and TRU mixed waste during the receipt and emplacement operations. Alternative methods of decontamination are provided where practical. The methods for packaging and disposal of the waste generated (derived waste) during this process are discussed. The best available technology at the time of this plan`s development, may become outmoded by future technology and alternative strategies. If alternative technologies are identified the affected stakeholder(s), the Secretary of the Interior and the State will be consulted prior to implementation.

  20. Report on the achievements in the projects subsidized by the Sunshine Project in fiscal 1981. Data 2. Development of a coal liquefaction technology - development of a solvent extraction and liquefaction technology - 'development of a brown coal based solvent extraction plant' (Development of a 50-t/d pilot plant); 1981 nendo sekitan ekika gijutsu no kaihatsu seika hokokusho (shiryo 2). Yozai chushutsu ekika gijutsu no kaihatsu (kattankei yozai chushutsu plant no kaihatsu (50ton/nichi pilot plant no kaihatsu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Developmental researches were carried out on a liquefaction plant for the Victoria brown coal produced in Australia (a 50-t/d pilot plant). In fiscal 1981, detailed design was performed on the primary hydrogenation system by using the process conception and the design data obtained in the element studies. Part of the devices was procured, and the site construction was begun. The present data is a collection of drawings in relation with the machine design, such as the piping specifications, standard piping drawings, piping design procedures, piping drawings, pipe lists, and device inspection specifications. In relation with the instrumentation design, the instrumentation engineering specifications and meter lists. (NEDO)

  1. Cold flow model study of an oxyfuel combustion pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Guio-Perez, D.C.; Tondl, G.; Hoeltl, W.; Proell, T.; Hofbauer, H. [Vienna University of Technology, Institute of Chemical Engineering, Vienna (Austria)

    2011-12-15

    The fluid-dynamic behavior of a circulating fluidized bed pilot plant for oxyfuel combustion was studied in a cold flow model, down-scaled using Glicksman's criteria. Pressures along the unit and the global circulation rate were used for characterization. The analysis of five operating parameters and their influence on the system was carried out; namely, total solids inventory and the air velocity of primary, secondary, loop seal and support fluidizations. The cold flow model study shows that the reactor design allows stable operation at a wide range of fluidization rates, with results that agree well with previous observations described in the literature. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Fissile material holdup monitoring in the PREPP [Process Experimental Pilot Plant] process

    International Nuclear Information System (INIS)

    Becker, G.K.; Pawelko, R.J.

    1989-01-01

    The Process Experimental Pilot Plant (PREPP) is an incineration system designed to thermally process mixed transuranic (TRU) waste and TRU contaminated low-level waste. The TRU isotopic composition is that of weapons grade plutonium (Pu) which necessitates that criticality prevention measures by incorporated into the plant design and operation. Criticality safety in the PREPP process is assured through the utilization of mass and moderation control in conjunction with favorable vessel geometries. The subject of this paper concerns the Pu mass holdup instrumentation system which is an integral part of the inprocess mass control strategy. Plant vessels and components requiring real-time mass holdup measurements were selected based on their evaluated potential for achieving physically credible Pu mass loadings and associated parameters which could lead to a criticality event. If the parameters requisite to a criticality occurrence could not physically be achieved under credible plant conditions, the particular location only required periodic portable holdup monitoring. Based on these analyses five real-time holdup monitoring locations were identified for criticality assurance purposes. An additional real-time instrument is part of the system but serves primarily in the capacity of providing operational support data. 1 fig

  3. Cleaning up coal-fired plants : multi-pollutant technology

    Energy Technology Data Exchange (ETDEWEB)

    Granson, E.

    2009-06-15

    Coal is the source of 41 per cent of the world's electricity. Emission reduction technologies are needed to address the rapid growth of coal-fired plants in developing countries. This article discussed a multi-pollutant technology currently being developed by Natural Resources Canada's CANMET Energy Technology Centre. The ECO technology was designed to focus on several types of emissions, including sulfur oxides (SOx), nitrogen oxides (NOx), mercury and particulates, as well as acid gases and other metals from the exhaust gas of coal-fired plants. The ECO process converts and absorbs incoming pollutants in a wet electrostatic precipitator while at the same time producing a valuable fertilizer. The ECO system is installed as part of the plant's existing particulate control device and treats flue gas in 3 process steps: (1) a dielectric barrier discharge reactor oxidizes gaseous pollutants to higher oxides; (2) an ammonia scrubber then removes sulfur dioxide (SO{sub 2}) not converted by the reactor while also removing the NOx; and (3) the wet electrostatic precipitator captures acid aerosols produced by the discharge reactor. A diagram of the ECO process flow was included. It was concluded that the systems will be installed in clean coal plants by 2015. 2 figs.

  4. Production characteristics of lettuce Lactuca sativa L. in the frame of the first crop tests in the Higher Plant Chamber integrated into the MELiSSA Pilot Plant

    Science.gov (United States)

    Tikhomirova, Natalia; Lawson, Jamie; Stasiak, Michael; Dixon, Mike; Paille, Christel; Peiro, Enrique; Fossen, Arnaud; Godia, Francesc

    Micro-Ecological Life Support System Alternative (MELiSSA) is an artificial closed ecosystem that is considered a tool for the development of a bioregenerative life support system for manned space missions. One of the five compartments of MELiSSA loop -Higher Plant Chamber was recently integrated into the MELiSSA Pilot Plant facility at Universitat Aut`noma deo Barcelona. The main contributions expected by integration of this photosynthetic compartment are oxygen, water, vegetable food production and CO2 consumption. Production characteristics of Lactuca sativa L., as a MELiSSA candidate crop, were investigated in this work in the first crop experiments in the MELiSSA Pilot Plant facility. The plants were grown in batch culture and totaled 100 plants with a growing area 5 m long and 1 m wide in a sealed controlled environment. Several replicates of the experiments were carried out with varying duration. It was shown that after 46 days of lettuce cultivation dry edible biomass averaged 27, 2 g per plant. However accumulation of oxygen in the chamber, which required purging of the chamber, and decrease in the food value of the plants was observed. Reducing the duration of the tests allowed uninterrupted test without opening the system and also allowed estimation of the crop's carbon balance. Results of productivity, tissue composition, nutrient uptake and canopy photosynthesis of lettuce regardless of test duration are discussed in the paper.

  5. Transition to Glass: Pilot Training for High-Technology Transport Aircraft

    Science.gov (United States)

    Wiener, Earl L.; Chute, Rebecca D.; Moses, John H.

    1999-01-01

    This report examines the activities of a major commercial air carrier between 1993 and late 1996 as it acquired an advanced fleet of high-technology aircraft (Boeing 757). Previously, the airline's fleet consisted of traditional (non-glass) aircraft, and this report examines the transition from a traditional fleet to a glass one. A total of 150 pilots who were entering the B-757 transition training volunteered for the study, which consisted of three query phases: (1) first day of transition training, (2) 3 to 4 months after transition training, and (3) 12 to 14 months after initial operating experience. Of these initial 150 pilots, 99 completed all three phases of the study, with each phase consisting of probes on attitudes and experiences associated with their training and eventual transition to flying the line. In addition to the three questionnaires, 20 in-depth interviews were conducted. Although the primary focus of this study was on the flight training program, additional factors such as technical support, documentation, and training aids were investigated as well. The findings generally indicate that the pilot volunteers were highly motivated and very enthusiastic about their training program. In addition, the group had low levels of apprehension toward automation and expressed a high degree of satisfaction toward their training. However, there were some concerns expressed regarding the deficiencies in some of the training aids and lack of a free-play flight management system training device.

  6. Computer aided process planning at the Oak Ridge Y-12 plant: a pilot project

    International Nuclear Information System (INIS)

    Hewgley, R.E. Jr.; Prewett, H.P. Jr.

    1979-01-01

    In 1976, a formal needs analysis was conducted in one of the Fabrication Division Shops of all activities from the receipt of an order through final machining. The results indicated deficiencies in process planning activities involving special production work. A pilot program was organized to investigate the benefits of emerging CAM technology and application of GT concepts for machining operations at the Y-12 Plant. The objective of the CAPP Project was to provide computer-assisted process planning for special production machining in th shop. The CAPP team was charged with the specific goal of demonstrating computer-aided process planning within a four-year term. The CAPP charter included a plan with intermediate measurable milestones for achieving its mission. In three years, the CAPP project demonstrated benefits to process planning. A capability to retrieve historical records for similar parts, to review accurately the status of all staff assignments, and to generate detailed machining procedures definitely can impact the way in which a machine shop prepared for new orders. The real payoff is in the hardcopy output (N/C programs, studies, sequence plans, and procedures). 4 figures,

  7. Effect of ZSM-5 on the production of reformulated gasoline. Comparison between FCC pilot plant and commercial results

    International Nuclear Information System (INIS)

    Lappas, A.A.; Iatridis, D.; Vasalos, I.A.; Phyxogios, G.

    1999-01-01

    One of the more interesting ways for production of light olefins and for minimization of Gasoline olefins is the use of catalytic additives in the FCC (fluid catalytic cracking) inventory. The most widely used additive for the FCC process is the ZSM-5 which is a shape selective zeolite. When this additive is added to FCC units, it boosts the yields of LPG's olefins at the expense of gasoline, while increasing gasoline RON. The addition of ZSM-5 offers a great flexibility to a refinery since, in a relatively simple and cheap way, it can increase the RON and produces higher yields of light olefins. For all the above reasons the last years more studies are carried out in order to investigate the effect of this additive. In study presented in this paper, main emphasis was given, for the investigation of the effect of ZSM- 5 addition on FCC product distribution and especially on gasoline olefins. Moreover, in the previous literature works the ZSM-5 influences were examined using mainly fixed bed reactors. In the present study the investigation was carried out in a FCC pilot plant. The additive was also added in a commercial FCC unit of a Greek refinery (Hellenic Aspropyrgos Refinery - HAR) and thus comparison results of commercial and pilot plant test are also presented. The above study is part of a research collaboration which exists the last 10 years between the laboratory of Environmental Fuels and hydrocarbons of Chemical Process Engineering Research Institute (LEFH/CPERI) and the main Greek refineries (HEL.PETROLEUM, Motor Oil Hellas Refinery). The target of this research collaboration is i) the development of technology for the production of reformulated fuels and hydrocarbons and ii) to assist the Greek refineries to face the new regulations for environmental friendly fuels

  8. Pilot plant experiments for baking of anode blocks in electrically heated ovens

    Energy Technology Data Exchange (ETDEWEB)

    Grjotheim, K. (Oslo Univ. (Norway). Dept. of Chemistry); Kvande, H. (Hydro Aluminium AS, Stabekk (Norway)); Naixiang, F.; Shiheng, Z.; An, L.; Guangxia, H. (Northeast Univ. of Technology, Shenyang, LN (China). Dept. of Non-Ferrous Metallurgy)

    1990-04-01

    Pilot plant experiments were made to bake anode blocks in electrically heated baking ovens. About 70% of the baked anodes had a specific electrical resistance between 35 and 60 {Omega}xmm{sup 2}xm{sup -1}. About 25% had higher resistances, and these were returned to the baking ovens and used as heating elements in the next baking cycle. The average electrical energy consumption was 1430 kWh per tonne of anodes produced, which is about only 60% of the energy consumption in classical oil or gas-fired baking ovens. (orig.).

  9. Pilot plant studies of the bioconversion of cellulose and production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C.R.

    1977-01-31

    Progress is reported in several areas of research. The following cellulosic raw materials were selected for study: wheat, barley, and rice straws, rice hulls, sorghum, corn stover, cotton gin trash, newsprint, ground wood, and masonite steam-treated Douglas fir and redwood. Samples were collected, prepared, and analyzed for hexosans, pentosans, lignin, ash, and protein. Results of acid extraction and enzymatic hydrolysis are discussed. Yields of glucose, polyglucose, xylose, and arabinose are reported. Progress in process design and economic studies, as well as pilot plant process development and design studies, is summarized. (JGB)

  10. Evaluation on maintenance technology developed in Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Yamamura, Osamu

    2008-01-01

    Tokai reprocessing plant (TRP) has been processing 1,140 tons of spent fuels, including 29tons of Fugen MOX fuels, since the beginning of its active operation in Sept.1977. For 30 years operation of TRP, many technological problems have been overcome to obtain the stable and reliable operation. This knowledge of maintenance technology could contribute to the safety and stable operation of Rokkasho reprocessing plant (RRP), as well as to the design and construction of the next reprocessing plant. (author)

  11. Upgrading of Wastewater Treatment Plants Through the Use of Unconventional Treatment Technologies: Removal of Lidocaine, Tramadol, Venlafaxine and Their Metabolites

    Directory of Open Access Journals (Sweden)

    Wilhelm Püttmann

    2012-09-01

    Full Text Available The occurrence and removal efficiencies of the pharmaceuticals lidocaine (LDC, tramadol (TRA and venlafaxine (VEN, and their major active metabolites monoethylglycinexylidide (MEGX, O-desmethyltramadol (ODT and O-desmethylvenlafaxine (ODV were studied at four wastewater treatment plants (WWTPs equipped with activated sludge treatment technologies. In parallel to activated sludge treatment, the removal efficiency of the compounds in pilot- and full-scale projects installed at the WWTPs was investigated. Within these projects two different treatment methods were tested: adsorption onto powdered/granulated activated carbon (PAC/GAC and ozonation. The metabolite MEGX was not detected in any sample. The concentrations of the target analytes in wastewater effluents resulting from activated sludge treatment ranged from 55 to 183 (LDC, 88 to 416 (TRA, 50 to 245 (ODT, 22 to 176 (VEN and 77 to 520 ng L−1 (ODV. In the pilot project with subsequent treatment with PAC/GAC, the mean concentrations of the analytes were between

  12. Step 1: Human System Integration (HSI) FY05 Pilot-Technology Interface Requirements for Command, Control, and Communications (C3)

    Science.gov (United States)

    2005-01-01

    The document provides the Human System Integration(HSI) high-level functional C3 HSI requirements for the interface to the pilot. Description includes (1) the information required by the pilot to have knowledge C3 system status, and (2) the control capability needed by the pilot to obtain C3 information. Fundamentally, these requirements provide the candidate C3 technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how C3 operations and functions should interface with the pilot to provide the necessary C3 functionality to the UA-pilot system. Requirements and guidelines for C3 are partitioned into three categories: (1) Pilot-Air Traffic Control (ATC) Voice Communications (2) Pilot-ATC Data Communications, and (3) command and control of the unmanned aircraft (UA). Each requirement is stated and is supported with a rationale and associated reference(s).

  13. Pilot plant experience on high-level waste solidification and design of the engineering prototype VERA

    Energy Technology Data Exchange (ETDEWEB)

    Guber, W; Diefenbacher, W; Hild, W; Krause, H; Schneider, E; Schubert, G

    1972-11-01

    In the present paper the solidification process for highly active waste solutions as developed in the Karlsruhe Nuclear Research Center is presented. Its principal steps are: denitration, calcination in a spray calciner operated with superheated steam, melting of the calcine with appropriate additives to borosilicate glass in an induction-heated melting furnace. The operational experiences gained so far in the inactive 1:1 pilot plant are reported. Furthermore, a description is given of the projected multi-purpose experimental facility VERA 2 which is provided for processing the highly active waste solutions from the first German reprocessing plant WAK.

  14. Reinvestigation into Closure Predictions of Room D at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Reedlunn, Benjamin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    Room D was an in-situ, isothermal, underground experiment conducted at theWaste Isolation Pilot Plant between 1984 and 1991. The room was carefully instrumented to measure the horizontal and vertical closure immediately upon excavation and for several years thereafter. Early finite element simulations of salt creep around Room D under predicted the vertical closure by 4.5×, causing investigators to explore a series of changes to the way Room D was modeled. Discrepancies between simulations and measurements were resolved through a series of adjustments to model parameters, which were openly acknowledged in published reports. Interest in Room D has been rekindled recently by the U.S./German Joint Project III and Project WEIMOS, which seek to improve the predictions of rock salt constitutive models. Joint Project participants calibrate their models solely against laboratory tests, and benchmark the models against underground experiments, such as room D. This report describes updating legacy Room D simulations to today’s computational standards by rectifying several numerical issues. Subsequently, the constitutive model used in previous modeling is recalibrated two different ways against a suite of new laboratory creep experiments on salt extracted from the repository horizon of the Waste Isolation Pilot Plant. Simulations with the new, laboratory-based, calibrations under predict Room D vertical closure by 3.1×. A list of potential improvements is discussed.

  15. Reinvestigation into Closure Predictions of Room D at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Reedlunn, Benjamin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-27

    Room D was an in-situ, isothermal, underground experiment conducted at the Waste Isolation Pilot Plant between 1984 and 1991. The room was carefully instrumented to measure the horizontal and vertical closure immediately upon excavation and for several years thereafter. Early finite element simulations of salt creep around Room D under-predicted the vertical closure by 4.5×, causing investigators to explore a series of changes to the way Room D was modeled. Discrepancies between simulations and measurements were resolved through a series of adjustments to model parameters, which were openly acknowledged in published reports. Interest in Room D has been rekindled recently by the U.S./German Joint Project III and Project WEIMOS, which seek to improve the predictions of rock salt constitutive models. Joint Project participants calibrate their models solely against laboratory tests, and benchmark the models against underground experiments, such as room D. This report describes updating legacy Room D simulations to today’s computational standards by rectifying several numerical issues. Subsequently, the constitutive model used in previous modeling is recalibrated two different ways against a suite of new laboratory creep experiments on salt extracted from the repository horizon of the Waste Isolation Pilot Plant. Simulations with the new, laboratory-based, calibrations under-predict Room D vertical closure by 3.1×. A list of potential improvements is discussed.

  16. RNA Silencing in Plants: Mechanisms, Technologies and Applications in Horticultural Crops.

    Science.gov (United States)

    Guo, Qigao; Liu, Qing; Smith, Neil A; Liang, Guolu; Wang, Ming-Bo

    2016-12-01

    Understanding the fundamental nature of a molecular process or a biological pathway is often a catalyst for the development of new technologies in biology. Indeed, studies from late 1990s to early 2000s have uncovered multiple overlapping but functionally distinct RNA silencing pathways in plants, including the posttranscriptional microRNA and small interfering RNA pathways and the transcriptional RNA-directed DNA methylation pathway. These findings have in turn been exploited for developing artificial RNA silencing technologies such as hairpin RNA, artificial microRNA, intrinsic direct repeat, 3' UTR inverted repeat, artificial trans-acting siRNA, and virus-induced gene silencing technologies. Some of these RNA silencing technologies, such as the hairpin RNA technology, have already been widely used for genetic improvement of crop plants in agriculture. For horticultural plants, RNA silencing technologies have been used to increase disease and pest resistance, alter plant architecture and flowering time, improve commercial traits of fruits and flowers, enhance nutritional values, remove toxic compounds and allergens, and develop high-value industrial products. In this article we aim to provide an overview of the RNA silencing pathways in plants, summarize the existing RNA silencing technologies, and review the current progress in applying these technologies for the improvement of agricultural crops particularly horticultural crops.

  17. Overcoming technology - obsolescence: a case study in Heavy Water Plant

    International Nuclear Information System (INIS)

    Gupta, O.P.; Sonde, R.R.; Wechalekar, A.K.

    2002-01-01

    Ammonia based Heavy Water Plants in India are set up essentially in conjunction with fertiliser plants for the supply of feed synthesis gas. Earlier ammonia was being produced in fertiliser plants using high-pressure technology which was highly energy intensive. However with fast developments in the field of production of ammonia, fertiliser plants are switching over to low pressure technology. Ammonia based heavy water plants have to operate on pressures corresponding to that of fertiliser plants. Due to low pressures in production of ammonia, heavy water plants would also be required to operate at low pressures than the existing operating pressures. This problem was faced at Heavy Water Plant at Baroda where GSFC supplying synthesis gas switched over to low pressure technology making it imperative on the part of Heavy Water Board to carry out modification to the main plant for continued operation of Heavy Water Plant, Baroda. Anticipating similar problems due to production of ammonia at lower pressures in other fertiliser plants linked to existing Heavy Water Plants, it became necessary for HWB to develop water ammonia front end. The feed in such a case would be water instead of synthesis gas. This would enable HWB to dispense with dependence on fertiliser plants especially if grass-root ammonia based heavy water plants are to be set up. Incorporation of water ammonia front end would enable HWB to de link ammonia based heavy water plants with fertiliser plants. This paper discusses the advantage of de linking heavy water plant respective fertiliser plant by incorporating water ammonia front end and technical issues related to front end technology. A novel concept of ammonia absorption refrigeration (AAR) was considered for the process integration with the front end. The incorporation of AAR with water ammonia front-end configuration utilizes liquid ammonia refrigerant to generate refrigeration without additional energy input which otherwise would have been

  18. Multinational Companies, Technology Spillovers, and Plant Survival

    OpenAIRE

    Holger Görg; Eric Strobl

    2003-01-01

    This paper examines the effect of the presence of multinational companies on plant survival in the host country. We postulate that multinational companies can impact positively on plant survival through technology spillovers. We study the nature of the effect of multinationals using a Cox proportional hazard model which we estimate using plant level data for Irish manufacturing industries. Our results show that the presence of multinationals has a life enhancing effect only on indigenous plan...

  19. Reports on 1977 result of research. Investigation for selecting site location of pilot plant for 7,000Nm{sup 3}/day class high calorie gasification; 1977 nendo sunshine keikaku ni kakawaru plant kenkyu kaihatsu seika hokoku. 7,000Nm{sup 3}/nichi kyu kokarori gas ka pilot plant yochi no ricchi sentei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-20

    A report was made on the result of investigation for selecting a suitable site for a coal gasification pilot plant. The high calorie gasification plant under the Sunshine Project is scheduled to have a parallel operation of two methods. It could be decided on one only method depending on the future studies. One is the 'water gasification method' using coal only as the raw material, with hydrogen gas added to contrive methanization. The other is the 'hybrid gasification method' using mixed slurry of powdered coal and heavy oil as the raw material, with oxygen supplied to it to form a clean gas. The sites proposed for the pilot plant are the cities of Yubari, Iwaki, Kita-Ibaraki, Tagawa, Iizuka and Imari. The items for assessment of cost effectiveness are the expenses of development of a site, road construction, removal of existing obstacles, plant construction, power receiving equipment construction, irrigation supply facilities construction, wastewater treatment system construction, ash discharging system construction, transportation, and supply/processing-related maintenance. As a result of the assessment, Iwaki city was picked up as the area almost free from drawbacks to cost effectiveness. (NEDO)

  20. Reports on 1977 result of research. Investigation for selecting site location of pilot plant for 7,000Nm{sup 3}/day class high calorie gasification; 1977 nendo sunshine keikaku ni kakawaru plant kenkyu kaihatsu seika hokoku. 7,000Nm{sup 3}/nichi kyu kokarori gas ka pilot plant yochi no ricchi sentei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-20

    A report was made on the result of investigation for selecting a suitable site for a coal gasification pilot plant. The high calorie gasification plant under the Sunshine Project is scheduled to have a parallel operation of two methods. It could be decided on one only method depending on the future studies. One is the 'water gasification method' using coal only as the raw material, with hydrogen gas added to contrive methanization. The other is the 'hybrid gasification method' using mixed slurry of powdered coal and heavy oil as the raw material, with oxygen supplied to it to form a clean gas. The sites proposed for the pilot plant are the cities of Yubari, Iwaki, Kita-Ibaraki, Tagawa, Iizuka and Imari. The items for assessment of cost effectiveness are the expenses of development of a site, road construction, removal of existing obstacles, plant construction, power receiving equipment construction, irrigation supply facilities construction, wastewater treatment system construction, ash discharging system construction, transportation, and supply/processing-related maintenance. As a result of the assessment, Iwaki city was picked up as the area almost free from drawbacks to cost effectiveness. (NEDO)

  1. New technology in nuclear power plant instrumentation and control

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The primary topic of this book is what can be done to improve nuclear power plant operation safety and the economic benefits that can be gained with the utilization of advance instrumentation and control technology. Other topics discussed are the industry's reluctance to accept new designs determining cost effective improvements, and difficulties in meeting regulatory standards with new technology control. The subjects will be useful when considering the area of instrumentation and control for enhancing plant operation and safety. Contents: Advanced Instrumention, Plant Control and Monitoring, Plant Diagnostics and Failure Detection, Human Factors Considerations in Instrumentation and Control, NRC and Industry Perspective on Advanced Instrumentation and Control

  2. Technology Trend in the Maintenance of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Yoon, Kyungsup; Lee, Unjang

    2014-01-01

    In this paper, overall technology evolution is reviewed and the improvements in the plant safety, reliability and productivity are described. And the issue and some recommendation for better maintenance of Korean nuclear power plants are presented as the interim study results on the 'Management and Regulatory Policy for the Nuclear Power Plant Maintenance and Equipment Reliability' under the agreement with the Nuclear Safety and Security Commission. The future trend in the maintenance technologies is also covered. Maintenance is the essential element for the enhancement of plant safety, reliability and economics and also for public safety. Therefore the regulator's involvements and the utility's active participation is inevitable for the better maintenance. For the better sustainability of our nuclear power plants the followings are recommended. ·Establishment of the good maintenance program and continuous improvement. ·Application of OLM on the safety related and non-safety related components by step-by-step approach. ·Improvement PRA technology for the accurate and reliable risk analysis. ·Continuous training and cultivation for the qualified maintenance personnel

  3. Technology Trend in the Maintenance of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kyungsup; Lee, Unjang [CTO and CEO, Seoul (Korea, Republic of)

    2014-05-15

    In this paper, overall technology evolution is reviewed and the improvements in the plant safety, reliability and productivity are described. And the issue and some recommendation for better maintenance of Korean nuclear power plants are presented as the interim study results on the 'Management and Regulatory Policy for the Nuclear Power Plant Maintenance and Equipment Reliability' under the agreement with the Nuclear Safety and Security Commission. The future trend in the maintenance technologies is also covered. Maintenance is the essential element for the enhancement of plant safety, reliability and economics and also for public safety. Therefore the regulator's involvements and the utility's active participation is inevitable for the better maintenance. For the better sustainability of our nuclear power plants the followings are recommended. ·Establishment of the good maintenance program and continuous improvement. ·Application of OLM on the safety related and non-safety related components by step-by-step approach. ·Improvement PRA technology for the accurate and reliable risk analysis. ·Continuous training and cultivation for the qualified maintenance personnel.

  4. Application of Advanced Technology to Improve Plant Performance in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2011-01-01

    Advances in computer technologies, signal processing, analytical modeling, and the advent of wireless sensors have provided the nuclear industry with ample means to automate and optimize maintenance activities and improve safety, efficiency, and availability, while reducing costs and radiation exposure to maintenance personnel. This paper provides a review of these developments and presents examples of their use in the nuclear power industry and the financial and safety benefits that they have produced. As the current generation of nuclear power plants have passed their mid-life, increased monitoring of their health is critical to their safe operation. This is especially true now that license renewal of nuclear power plants has accelerated, allowing some plants to operate up to 60 years or more. Furthermore, many utilities are maximizing their power output through uprating projects and retrofits. This puts additional demand and more stress on the plant equipment such as the instrumentation and control (I and C) systems and the reactor internal components making them more vulnerable to the effects of aging, degradation, and failure. In the meantime, the nuclear power industry is working to reduce generation costs by adopting condition-based maintenance strategies and automation of testing activities. These developments have stimulated great interest in on-line monitoring (OLM) technologies and new diagnostic and prognostic methods to anticipate, identify, and resolve equipment and process problems and ensure plant safety, efficiency, and immunity to accidents. The foundation for much of the required technologies has already been established through 40 years of research and development (R and D) efforts performed by numerous organizations, scientists, and engineers around the world including the author. This paper provides examples of these technologies and demonstrates how the gap between some of the more important R and D efforts and end users have been filled

  5. FY 1992 report on the results of the development of an entrained bed coal gasification power plant. Part 3. Operation test of pilot plant (1/2); 1992 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 3. Pilot plant unten shiken hen (1/2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    The study of operation test was made of the 200 t/d entrained bed coal gasification pilot plant that was constructed with the aim of establishing technology of the integrated coal gasification combined cycle power generation, and the details of the FY 1992 results were summarized. At RUN 10, conducted were the confirmation of the quantity of state of gasifier in the coal-fired high load operation and coal-fired constant load operation, and slagging survey. At RUN 11, the evaluation made after the work for prevention of slagging, and confirmation of the quantity of state of gasifier at a load of 80% heat input. At RUN 12, the evaluation of the measures taken against slagging, and test on the high load stable operation. At RUN 13, the evaluation of the measures taken against slagging, and large combustor response/total pressure control response tests. At RUN D1, test on the change of coal kind from A coal to D coal, and test on the initial adjusting operation of D coal. In the trial operation of these, the following were generated and the preventive measures were studied: impossibility of circulation of desulfurizing agent in gas refining facilities (dry desulfurizing system), bolt fracture of gas refining facilities (separator of dedusting facilities). (NEDO)

  6. Membrane bio-reactor for textile wastewater treatment plant upgrading.

    Science.gov (United States)

    Lubello, C; Gori, R

    2005-01-01

    Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.

  7. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This volume documents model parameters chosen as of July 1992 that were used by the Performance Assessment Department of Sandia National Laboratories in its 1992 preliminary performance assessment of the Waste Isolation Pilot Plant (WIPP). Ranges and distributions for about 300 modeling parameters in the current secondary data base are presented in tables for the geologic and engineered barriers, global materials (e.g., fluid properties), and agents that act upon the WIPP disposal system such as climate variability and human-intrusion boreholes. The 49 parameters sampled in the 1992 Preliminary Performance Assessment are given special emphasis with tables and graphics that provide insight and sources of data for each parameter

  8. DSM energy saving pilot project report. Furniture Plant Teika, Riga, Latvia

    International Nuclear Information System (INIS)

    Ananevski, V.; Kalejs, M.; Hercogs, J.; Blumbergs, U.

    1995-07-01

    The purpose of this pilot project was to carry out energy audit into the furniture plant TEIKA and energy saving measures. Another aim was to transfer the Danish know how and experience obtained through the Danish effort in Latvian industries consumers. Therefore great attention is paid to energy mapping in order to show possibilities of the Danish methodisms. This report is a part of the Joint Latvian - Danish Project Demand Side Management and Energy Saving. It is a results of collaborative efforts between a Latvian team, consisting of the specialists from Latvenergo and on the other hand a Danish team, which was represented by the Danish Power Consult company NESA. (EG)

  9. Nuclear power plant control room task analysis. Pilot study for pressurized water reactors

    International Nuclear Information System (INIS)

    Barks, D.B.; Kozinsky, E.J.; Eckel, S.

    1982-05-01

    The purposes of this nuclear plant task analysis pilot study: to demonstrate the use of task analysis techniques on selected abnormal or emergency operation events in a nuclear power plant; to evaluate the use of simulator data obtained from an automated Performance Measurement System to supplement and validate data obtained by traditional task analysis methods; and to demonstrate sample applications of task analysis data to address questions pertinent to nuclear power plant operational safety: control room layout, staffing and training requirements, operating procedures, interpersonal communications, and job performance aids. Five data sources were investigated to provide information for a task analysis. These sources were (1) written operating procedures (event-based); (2) interviews with subject matter experts (the control room operators); (3) videotapes of the control room operators (senior reactor operators and reactor operators) while responding to each event in a simulator; (4) walk-/talk-throughs conducted by control room operators for each event; and (5) simulator data from the PMS

  10. Waste Isolation Pilot Plant Geotechnical Analysis Report for July 2005 - June 2006, Volume 2, Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-03-25

    This report is a compilation of geotechnical data presented as plots for each active instrument installed in the underground at the Waste Isolation Pilot Plant (WIPP) through June 30, 2006. A summary of the geotechnical analyses that were performed using the enclosed data is provided in Volume 1 of the Geotechnical Analysis Report (GAR).

  11. Waste Isolation Pilot Plant Geotechnical Analysis Report for July 2005 - June 2006, Volume 2, Supporting Data

    International Nuclear Information System (INIS)

    2007-01-01

    This report is a compilation of geotechnical data presented as plots for each active instrument installed in the underground at the Waste Isolation Pilot Plant (WIPP) through June 30, 2006. A summary of the geotechnical analyses that were performed using the enclosed data is provided in Volume 1 of the Geotechnical Analysis Report (GAR).

  12. EPR pilot study on the population of Stepnogorsk city living in the vicinity of a uranium processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Zhumadilov, Kassym; Akilbekov, Abdirash; Morzabayev, Aidar [L.N. Gumilyov Eurasian National University, Astana (Kazakhstan); Ivannikov, Alexander; Stepanenko, Valeriy [Medical Radiological Research Center, Obninsk (Russian Federation); Abralina, Sholpan; Sadvokasova, Lyazzat; Rakhypbekov, Tolebay [Semey State Medical University, Semey (Kazakhstan); Hoshi, Masaharu [Hiroshima University, Research Institute for Radiation Biology and Medicine, Hiroshima (Japan)

    2015-03-15

    The aim of this pilot study was to evaluate possible doses in teeth received by workers of a uranium processing plant, in excess to the natural background dose. For this, the electron paramagnetic resonance dosimetry method was applied. Absorbed doses in teeth from the workers were compared with those measured in teeth from the Stepnogorsk city population and a control pool population from Astana city. The measured tooth samples were extracted according to medical indications. In total, 32 tooth enamel samples were analyzed, 5 from Astana city, Kazakhstan (control population), 21 from the residents of Stepnogorsk city (180 km from Astana city), and 6 from the workers of a uranium processing plant. The estimated doses in tooth enamel from the uranium processing plant workers were not significantly different to those measured in enamel from the control population. In teeth from the workers, the maximum dose in excess to background dose was 33 mGy. In two teeth from residents of Stepnogorsk city, however, somewhat larger doses were measured. The results of this pilot study encourage further investigations in an effort to receiving a final conclusion on the exposure situation of the uranium processing plant workers and the residents of Stepnogorsk city. (orig.)

  13. Pilot Plant for Food Irradiation in The Netherlands; Usine Pilote pour l'Irradiation de Denrees Alimentaires aux Pays-Bas; Opytnaya ustanovka po oblucheniyu pishchevykh produktov v Gollandii; Planta Piloto de Irradiacion de Alimentos en los Paises Bajos

    Energy Technology Data Exchange (ETDEWEB)

    De Zeeuw, D.; Van Kooy, J. G. [Association EURATOM-ITAL, Wageningen (Netherlands)

    1966-11-15

    The main problem raised by pilot- plant investigations is to devise a method for bridging the gap between developmental work in the laboratory and the practical applications of this work. How can the knowledge acquired in the laboratory be passed on to manufacturers or processors? The following questions are pertinent: (a) Is the pilot plant regarded as an immediate precursor of commercial plants? (b) How is a 100-fold increase in product handling realized? (c) How is commercial interest increased? (d) Who carries the final responsibilities for the programme of the pilot plant? (e) What technical facilities are needed, and (f) How the pilot plant should be organized to keep a constant flow of information between interested parties. All these aspects are discussed on the basis of a planned pilot plant for food irradiation in the Netherlands. (author) [French] Le principal probleme que pose l'etude d'une installation pilote consiste a franchir le pas entre les travaux en laboratoire et leur application pratique. En d'autres termes, comment les connaissances acquises en laboratoire peuvent-elles etre transmises aux constructeurs ou aux utilisateurs? Les questions suivantes se posent: a) L'installation pilote est-elle consideree comme le precurseur immediat d'une version commerciale? b) comment peut-on multiplier sa capacite par 100? c) Comment peut-on la rendre commercialement plus interessante? d) Qui est responsable en dernier ressort du programme de l'installation pilote? e) Quels sont les moyens techniques necessaires? f) Comment organiser l'installation pilote pour assurer un echange constant de renseignements entre les parties interessees? Tous les points mentionnes ci-dessus sont etudies en partant des donnees relatives a une installation pilote d'irradiation dont la construction est envisagee aux Pays-Bas. (author) [Spanish] El problema principal que plantea el estudio de las plantas piloto es idear un metodo que sirva de nexo entre los trabajos de

  14. The creation of a uranium oxide industry, from the laboratory stage to a pilot plant (1961)

    International Nuclear Information System (INIS)

    Caillat, R.; Delange, M.; Sauteron, J.

    1961-01-01

    The qualities of uranium oxide, in particular its good in-pile characteristics and its resistance to corrosion by the usual heat-exchange fluids, have led to this material being chose at the present time as a nuclear fuel in many power reactors, either planned or under construction. A great effort has been made these last few years in France in studying processes for transforming powdered uranium oxide into a dense material with satisfactory behaviour in a neutron flux. The laboratories at Saclay have studied the physico-chemical features of the phenomena accompanying the calcination of uranium peroxide or ammonium uranate to give uranium trioxide, and the subsequent reduction of the latter to dioxide as well as the sintering of the powders obtained. This work has made it possible on one hand to prepare powder of known specific surface area, and on the other to show the overriding influence of this factor, all other things being equal, on the behaviour of powders during sintering in a hydrogen atmosphere. The work has led to defining two methods for sintering stoichiometric uranium oxide of high density. The technological study of the preparation of the powder and its industrial production are carried out at the plant of Le Bouchet which produces at the moment powders of known characteristics suitable for sintering in hydrogen at 1650 deg. C without prior grinding. The industrial sintering is carried out by the Compagnie industrielle des Combustibles Atomiques Frittes who has set up a pilot plant having a capacity of 25 metric tons/year, for the Commissariat l'Energie Atomique and has been operating this plant since May 1958. This plant is presented by a film entitled 'uranium oxide'. (author) [fr

  15. Report on the achievements in the projects subsidized by the Sunshine Project in fiscal 1981. Data 3. Development of a coal liquefaction technology - development of a solvent extraction and liquefaction technology - 'development of a brown coal based solvent extraction plant' (Development of a 50-t/d pilot plant); 1981 nendo sekitan ekika gijutsu no kaihatsu seika hokokusho (shiryo 3). Yozai chushutsu ekika gijutsu no kaihatsu (kattankei yozai chushutsu plant no kaihatsu (50ton/nichi pilot plant no kaihatsu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Developmental researches were carried out on a liquefaction plant for the Victoria brown coal produced in Australia (a 50-t/d pilot plant). In fiscal 1981, detailed design was performed on the primary hydrogenation system by using the process conception and the design data obtained in the element studies. Part of the devices was procured, and the site construction was begun. The present data is a collection of drawings in relation with the instrumentation design, such as the meter specifications, front view drawings for meter panels, drawings for panel arrangement in the central control room, a computer room layout drawing, control system explanation drawings, interlock diagrams, and the instrumentation power supply diagrams. (NEDO)

  16. Pilot studies of management of ageing of nuclear power plant instrumentation and control components

    International Nuclear Information System (INIS)

    Burnay, S.G.; Simola, K.; Kossilov, A.; Pachner, J.

    1993-01-01

    This paper describes pilot studies which have been implemented to study the aging behavior of safety related component parts of nuclear power plants. In 1989 the IAEA initiated work on pilot studies related to the aging of such components. Four components were identified for study. They are the primary nozzle of a reactor vessel; a motor operated isolating valve; the concrete containment building; and instrumentation and control cables within the containment facility. The study was begun with phase 1 efforts directed toward understanding the aging process, and methods for monitoring and minimizing the effects of aging. Phase 2 efforts are directed toward aging studies, documentation of the ideas put forward, and research to answer questions identified in phase 1. This paper describes progress made on two of these components, namely the motor operated isolation valves, and in-containment I ampersand C cables

  17. Development of charcoal retort pilot plant in Zambia. African Energy Programme research report series no. 4

    International Nuclear Information System (INIS)

    Yamba, F.D.

    1988-01-01

    The technical report discusses the theoretical and experimental work which has been undertaken in the design, construction, testing and evaluation of charcoal retort model prototypes. Optimum operating conditions have been established at an initial temperature of 350 deg. C and stabilisation time of 5 hours. From the technical point of view, the project is viable since as per set objectives, charcoal is being produced at a higher conversion efficiency of around 40% and the by-products in the form of pyroligenous liquor and tar are recovered. As expected, the analysis shows that the model is uneconomic since the technological price of the products exceeds that of the selling price of products. However, the increase in the size of the retort chamber by eighteen renders the prototype economically viable. The report also discusses further work such as continuation of the testing of the retort to establish concretely the optimum operating conditions, determination of the reliability and durability of the retort and evaluation of the quality of charcoal produced, which has been recommended. Based on the results from the retort model and preliminary financial analysis, an economic analysis on the value of by-products from wood distillation is undertaken. The analysis shows that there is a reasonable market of by-products, (acetone, methanol and acetic acid) to warrant processing of the pyroligenous liquor, and subsequent setting up of a small scale distillation plant. Using the same results from the retort model, a charcoal retort plant with a 10m 3 retort chamber capacity is designed. In the design of the retort chamber, various considerations are undertaken such as stress calculations of the retort chamber on the support legs, furnace, piping and distribution chamber design, and their associated heat losses. Basing on the amount of heat required to complete the carbonisation process and heat losses from the system, a suitable furnace size and air blower are selected

  18. A farm-scale pilot plant for biohydrogen and biomethane production by two-stage fermentation

    Directory of Open Access Journals (Sweden)

    R. Oberti

    2013-09-01

    Full Text Available Hydrogen is considered one of the possible main energy carriers for the future, thanks to its unique environmental properties. Indeed, its energy content (120 MJ/kg can be exploited virtually without emitting any exhaust in the atmosphere except for water. Renewable production of hydrogen can be obtained through common biological processes on which relies anaerobic digestion, a well-established technology in use at farm-scale for treating different biomass and residues. Despite two-stage hydrogen and methane producing fermentation is a simple variant of the traditional anaerobic digestion, it is a relatively new approach mainly studied at laboratory scale. It is based on biomass fermentation in two separate, seuqential stages, each maintaining conditions optimized to promote specific bacterial consortia: in the first acidophilic reactorhydrogen is produced production, while volatile fatty acids-rich effluent is sent to the second reactor where traditional methane rich biogas production is accomplished. A two-stage pilot-scale plant was designed, manufactured and installed at the experimental farm of the University of Milano and operated using a biomass mixture of livestock effluents mixed with sugar/starch-rich residues (rotten fruits and potatoes and expired fruit juices, afeedstock mixture based on waste biomasses directly available in the rural area where plant is installed. The hydrogenic and the methanogenic reactors, both CSTR type, had a total volume of 0.7m3 and 3.8 m3 respectively, and were operated in thermophilic conditions (55 2 °C without any external pH control, and were fully automated. After a brief description of the requirements of the system, this contribution gives a detailed description of its components and of engineering solutions to the problems encountered during the plant realization and start-up. The paper also discusses the results obtained in a first experimental run which lead to production in the range of previous

  19. Benefits of Power and Propulsion Technology for a Piloted Electric Vehicle to an Asteroid

    Science.gov (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Pencil, Eric J.; Piszczor, Michael F.; Mason, Lee S.; Bury, Kristen M.; Manzella, David H.; Kerslake, Thomas W.; Hojinicki, Jeffrey S.; Brophy, John P.

    2012-01-01

    NASA s goal for human spaceflight is to expand permanent human presence beyond low Earth orbit (LEO). NASA is identifying potential missions and technologies needed to achieve this goal. Mission options include crewed destinations to LEO and the International Space Station; high Earth orbit and geosynchronous orbit; cis-lunar space, lunar orbit, and the surface of the Moon; near-Earth objects; and the moons of Mars, Mars orbit, and the surface of Mars. NASA generated a series of design reference missions to drive out required functions and capabilities for these destinations, focusing first on a piloted mission to a near-Earth asteroid. One conclusion from this exercise was that a solar electric propulsion stage could reduce mission cost by reducing the required number of heavy lift launches and could increase mission reliability by providing a robust architecture for the long-duration crewed mission. Similarly, solar electric vehicles were identified as critical for missions to Mars, including orbiting Mars, landing on its surface, and visiting its moons. This paper describes the parameterized assessment of power and propulsion technologies for a piloted solar electric vehicle to a near-Earth asteroid. The objective of the assessment was to determine technology drivers to advance the state of the art of electric propulsion systems for human exploration. Sensitivity analyses on the performance characteristics of the propulsion and power systems were done to determine potential system-level impacts of improved technology. Starting with a "reasonable vehicle configuration" bounded by an assumed launch date, we introduced technology improvements to determine the system-level benefits (if any) that those technologies might provide. The results of this assessment are discussed and recommendations for future work are described.

  20. In-Flight Icing Training for Pilots Using Multimedia Technology

    Science.gov (United States)

    Burke, Kevin M.; VanZante, Judith Foss; Bond, Thomas H.

    2004-01-01

    Over the last five years, the Aircraft Icing Project of the NASA Aviation Safety Program has developed a number of in-flight icing education and training aids to support increased awareness for pilots of the hazards associated with atmospheric icing conditions. Through the development of this work, a number of new instructional design approaches and media delivery methods have been introduced to enhance the learning experience, expand user interactivity and participation, and, hopefully, increase the learner retention rates. The goal of using these multimedia techniques is to increase the effectiveness of the training materials. This paper will describe the mutlimedia technology that has been introduced and give examples of how it was used.

  1. Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Larson, D.E.; Allen, C.R.; Kruger, O.L.; Weber, E.T.

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to immobilize pretreated Hanford high-level waste and transuranic waste in borosilicate glass contained in stainless steel canisters. Testing is being conducted in the HWVP Technology Development Project to ensure that adapted technologies are applicable to the candidate Hanford wastes and to generate information for waste form qualification. Empirical modeling is being conducted to define a glass composition range consistent with process and waste form qualification requirements. Laboratory studies are conducted to determine process stream properties, characterize the redox chemistry of the melter feed as a basis for controlling melt foaming and evaluate zeolite sorption materials for process waste treatment. Pilot-scale tests have been performed with simulated melter feed to access filtration for solids removal from process wastes, evaluate vitrification process performance and assess offgas equipment performance. Process equipment construction materials are being selected based on literature review, corrosion testing, and performance in pilot-scale testing. 3 figs., 6 tabs

  2. The pilot plant in Geiselbullach for the gamma irradiation of sewage sludge - design, operation experience and cost calculations

    International Nuclear Information System (INIS)

    Lessel, T.; Hennig, E.

    1976-01-01

    The pilot plant for sewage sludge irradiation in Geiselbullach near Munich has been in operation from July '73 to October '75 with a capacity of 30 m 3 per day. Successful experiences during this period resulted in an increase of the installed radiation energy and in several improvements for the technique and the efficiency. From December 1975 on the plant has been operating with a daily capacity of 120 m 3 of sludge per day. The experience with this plant brought several problems which caused interruptions of the continuous operation and that had to be solved with new measures. But although the facility at Geiselbullach is a pilot plant the availability was more than 350 days per year. Due to the simple design of the plant and of the fully automatic operation no special trained personal is necessary for the maintenance. Beside the effect of the hygienization the irradiation caused improved sedimentation properties of the sludge. Presently investigations are undertaken to prove better mechanical sludge dewatering properties. Cost calculations resulted in about DM 2.30 for operating expenses and DM 2.25 for capital costs per m 3 of sludge for the fully charged plant. The capital costs will be less in commercial plants. The conditioning effect on the sludge by the irradiation means savings of about DM 1.00 per m 3 . The irradiation of sewage sludge proved to be possible at about equal costs compared to the wellknown heat treatment (pasteurization at 70 0 C during 30 minutes.). Further investigations have to be done to overcome the contrary development of the plant capacity, limited by the decaying radiation energy and the normally rising sludge quantities of a sewage water treatment plant. (author)

  3. Pre-Study Walkthrough with a Commercial Pilot for a Preliminary Single Pilot Operations Experiment

    Science.gov (United States)

    O'Connor-Dreher, Ryan; Roberts, Z.; Ziccardi, J.; Vu, K-P. L.; Strybel, T.; Koteskey, Robert William; Lachter, Joel B.; Vi Dao, Quang; Johnson, Walter W.; Battiste, V.

    2013-01-01

    The number of crew members in commercial flights has decreased to two members, down from the five-member crew required 50 years ago. One question of interest is whether the crew should be reduced to one pilot. In order to determine the critical factors involved in safely transitioning to a single pilot, research must examine whether any performance deficits arise with the loss of a crew member. With a concrete understanding of the cognitive and behavioral role of a co-pilot, aeronautical technologies and procedures can be developed that make up for the removal of the second aircrew member. The current project describes a pre-study walkthrough process that can be used to help in the development of scenarios for testing future concepts and technologies for single pilot operations. Qualitative information regarding the tasks performed by the pilots can be extracted with this technique and adapted for future investigations of single pilot operations.

  4. Waste Isolation Pilot Plant (WIPP) startup plan

    International Nuclear Information System (INIS)

    1988-03-01

    To allow the Waste Isolation Pilot Plant (WIPP) to transition from a Major System Acquisition to an operating demonstration facility, the Acquisition Executive and the Energy System Acquisition Advisory Board (ESAAB) must concur in the facility's readiness to receive waste. This action, designated in DOE Order 4700.1 as Key Decision Four, concludes with the Chairman of the ESAAB issuing a Record of Decision. Since the meeting leading to the Record of Decision is scheduled for August 1988, plans must be made to ensure all activities contributing to that decision are completed in a clear and well-coordinated process. To support that effort, this Start-Up Plan was prepared to identify and track key events necessary to verify WIPP's readiness to receive waste; this provides a management/scheduling/tracking tool for the DOE WIPP Project Office (WPO) and a tracking mechanism for the DOE Albuquerque Operations Office (DOE-AL) and for DOE Headquarters (DOE-HQ); and describe the process to ensure readiness is documented by providing relevant data and reports to the cognizant decision makers. The methods by which these two purposes are achieved are discussed in further detail in the remainder of this plan

  5. Waste Isolation Pilot Plant safety analysis report

    International Nuclear Information System (INIS)

    1997-03-01

    The United States Department of Energy (DOE) was authorized by Public Law 96-164 to provide a research and development facility for demonstrating the safe permanent disposal of transuranic (TRU) wastes from national defense activities and programs of the United States exempted from regulations by the US Nuclear Regulatory Commission (NRC). The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico near Carlsbad, was constructed to determine the efficacy of an underground repository for disposal of TRU wastes. In accordance with the 1981 and 1990 Records of Decision (ROD), the development of the WIPP was to proceed with a phased approach. Development of the WIPP began with a siting phase, during which several sites were evaluated and the present site selected based on extensive geotechnical research, supplemented by testing. The site and preliminary design validation phase (SPDV) followed the siting phase, during which two shafts were constructed, an underground testing area was excavated, and various geologic, hydrologic, and other geotechnical features were investigated. The construction phase followed the SPDV phase during which surface structures for receiving waste were built and underground excavations were completed for waste emplacement

  6. Conversion of Claus plants of Kirkuk-Iraq to produce hydrogen and sulfur

    International Nuclear Information System (INIS)

    Naman, S.A.; Veziroglu, A.

    2009-01-01

    'Full text': Hydrogen production from rich sub-quality natural gas (SQNG) is visible technically with assessment of cost, safety and environmental toxicology analysis of hydrogen sulfide, is summarized. There are two Claus plants in Kirkuk-Iraq, converting hydrogen sulfide to elemental sulfur capacity of 2200 ton/day. One of these plants is working with only 400 ton/day and it is an old Claus process. The other is a modified Claus sulfur recovery process with a capacity of 1800 ton/day. Both of these plants operate with low efficiency due to lack of maintenance and the present situation in Iraq. Therefore, the agricultural area around Kirkuk is very polluted by this gas. Two pilot plants have been constructed inside the modified Claus plant in Kirkuk The first one is based on the flow system tube furnace reactor containing mixed Titanium oxide/sulfide with a cold trap for sulfur separation and a bath of 30% dithanolamine to separate and recycle H 2 S from hydrogen. The second pilot plant consists of a thermal diffusion ceramic rod inside a silica column containing Zeolit 5A as a catalyst. This pilot plant also consists of a trap for continuous separation of sulfur and a system for separation of hydrogen from unreacted H 2 S to recycle. The efficiency of conversion of H 2 S to hydrogen and sulfur has been optimized as a function of catalyst type and mixture, temperature of furnace, flow rate of gas and reactor materials until the efficiency reaches more than 97%. The Kirkuk natural gas consists of a mixture of CO 2 10% and H 2 S 12%. We found that these pilot plants were suitable with Cadmium chalcogens catalysts to produce hydrogen, methane, ethane and sulphur, but with lower efficiency than H 2 S decomposition only. Our aim in the second pilot plant, which consists of a silica column, was to supply the heat by solar energy concentrator instead of electricity as our catalyst needs 450 o C. and the solar intensity is about 1000 w/m 2 during the summer. The idea of

  7. A pilot plant demonstration of the vitrification of radioactive solutions using microwave power

    International Nuclear Information System (INIS)

    Morrell, M.S.; Hardwick, W.H.; Murphy, V.; Wace, P.F.

    1986-01-01

    A process has been developed that exploits the characteristics of microwave heating for the vitrification of high-level radioactive liquid waste. This process, microwave vitrification, has been successfully operated at pilot plant scale in an active cell using simulated liquid waste containing several curies of radioactivity. Excellent decontamination factors have been achieved for both volatiles and nonvolatiles with an average ruthenium decontamination factor of 490 and a gross alpha emitter decontamination factor of 100,000. Almost all the radioactivity is incorporated in a glass block

  8. Evaluation and thermodynamic calculation of ureolytic magnesium ammonium phosphate precipitation from UASB effluent at pilot scale.

    Science.gov (United States)

    Desmidt, E; Ghyselbrecht, K; Monballiu, A; Verstraete, W; Meesschaert, B D

    2012-01-01

    The removal of phosphate as magnesium ammonium phosphate (MAP, struvite) has gained a lot of attention. A novel approach using ureolytic MAP crystallization (pH increase by means of bacterial ureases) has been tested on the anaerobic effluent of a potato processing company in a pilot plant and compared with NuReSys(®) technology (pH increase by means of NaOH). The pilot plant showed a high phosphate removal efficiency of 83 ± 7%, resulting in a final effluent concentration of 13 ± 7 mg · L(-1) PO(4)-P. Calculating the evolution of the saturation index (SI) as a function of the remaining concentrations of Mg(2+), PO(4)-P and NH(4)(+) during precipitation in a batch reactor, resulted in a good estimation of the effluent PO(4)-P concentration of the pilot plant, operating under continuous mode. X-ray diffraction (XRD) analyses confirmed the presence of struvite in the small single crystals observed during experiments. The operational cost for the ureolytic MAP crystallization treating high phosphate concentrations (e.g. 100 mg · L(-1) PO(4)-P) was calculated as 3.9 € kg(-1) P(removed). This work shows that the ureolytic MAP crystallization, in combination with an autotrophic nitrogen removal process, is competitive with the NuReSys(®) technology in terms of operational cost and removal efficiency but further research is necessary to obtain larger crystals.

  9. Pilot testing of a membrane system for postcombustion CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Tim [Membrane Technology And Research, Incorporated, Newark, CA (United States); Kniep, Jay [Membrane Technology And Research, Incorporated, Newark, CA (United States); Wei, Xiaotong [Membrane Technology And Research, Incorporated, Newark, CA (United States); Carlisle, Trevor [Membrane Technology And Research, Incorporated, Newark, CA (United States); White, Steve [Membrane Technology And Research, Incorporated, Newark, CA (United States); Pande, Saurabh [Membrane Technology And Research, Incorporated, Newark, CA (United States); Fulton, Don [Membrane Technology And Research, Incorporated, Newark, CA (United States); Watson, Robert [Membrane Technology And Research, Incorporated, Newark, CA (United States); Hoffman, Thomas [Membrane Technology And Research, Incorporated, Newark, CA (United States); Freeman, Brice [Membrane Technology And Research, Incorporated, Newark, CA (United States); Baker, Richard [Membrane Technology And Research, Incorporated, Newark, CA (United States)

    2015-09-30

    This final report summarizes work conducted for the U.S. Department of Energy, National Energy Technology Laboratory (DOE) to scale up an efficient post-combustion CO2 capture membrane process to the small pilot test stage (award number DE-FE0005795). The primary goal of this research program was to design, fabricate, and operate a membrane CO2 capture system to treat coal-derived flue gas containing 20 tonnes CO2/day (20 TPD). Membrane Technology and Research (MTR) conducted this project in collaboration with Babcock and Wilcox (B&W), the Electric Power Research Institute (EPRI), WorleyParsons (WP), the Illinois Sustainable Technology Center (ISTC), Enerkem (EK), and the National Carbon Capture Center (NCCC). In addition to the small pilot design, build and slipstream testing at NCCC, other project efforts included laboratory membrane and module development at MTR, validation field testing on a 1 TPD membrane system at NCCC, boiler modeling and testing at B&W, a techno-economic analysis (TEA) by EPRI/WP, a case study of the membrane technology applied to a ~20 MWe power plant by ISTC, and an industrial CO2 capture test at an Enerkem waste-to-biofuel facility. The 20 TPD small pilot membrane system built in this project successfully completed over 1,000 hours of operation treating flue gas at NCCC. The Polaris™ membranes used on this system demonstrated stable performance, and when combined with over 10,000 hours of operation at NCCC on a 1 TPD system, the risk associated with uncertainty in the durability of postcombustion capture membranes has been greatly reduced. Moreover, next-generation Polaris membranes with higher performance and lower cost were validation tested on the 1 TPD system. The 20 TPD system also demonstrated successful operation of a new low-pressure-drop sweep module that will reduce parasitic energy losses at full scale by as much as 10 MWe. In modeling and pilot boiler testing, B&W confirmed the

  10. New technologies accelerate the exploration of non-coding RNAs in horticultural plants

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Degao; Mewalal, Ritesh; Hu, Rongbin; Tuskan, Gerald A.; Yang, Xiaohan

    2017-07-05

    Non-coding RNAs (ncRNAs), that is, RNAs not translated into proteins, are crucial regulators of a variety of biological processes in plants. While protein-encoding genes have been relatively well-annotated in sequenced genomes, accounting for a small portion of the genome space in plants, the universe of plant ncRNAs is rapidly expanding. Recent advances in experimental and computational technologies have generated a great momentum for discovery and functional characterization of ncRNAs. Here we summarize the classification and known biological functions of plant ncRNAs, review the application of next-generation sequencing (NGS) technology and ribosome profiling technology to ncRNA discovery in horticultural plants and discuss the application of new technologies, especially the new genome-editing tool clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems, to functional characterization of plant ncRNAs.

  11. Photocatalytic treatment of an industrial effluent using artificial and solar UV radiation: an operational cost study on a pilot plant scale.

    Science.gov (United States)

    Durán, A; Monteagudo, J M; San Martín, I

    2012-05-15

    The aim of this work was to study the operation costs of treating a real effluent from an integrated gasification combined cycle (IGCC) power station located in Spain. The study compares different homogeneous photocatalytic processes on a pilot plant scale using different types of radiation (artificial UV or solar UV with a compound parabolic collector). The efficiency of the processes was evaluated by an analysis of the total organic carbon (TOC) removed. The following processes were considered in the study: (i) a photo-Fenton process at an artificial UV pilot plant (with the initial addition of H(2)O(2)), (ii) a modified photo-Fenton process with continuous addition of H(2)O(2) and O(2) to the system and (iii) a ferrioxalate-assisted solar photo-Fenton process at a compound parabolic collector (CPC) pilot plant. The efficiency of these processes in degrading pollutants has been studied previously, and the results obtained in each of those studies have been published elsewhere. The operational costs due to the consumption of electrical energy, reagents and catalysts were calculated from the optimal conditions of each process. The results showed that the solar photo-Fenton system was economically feasible, being able to achieve up to 75% mineralization with a total cost of 6 €/m(3), which can be reduced to 3.6 €/m(3) by subtracting the electrical costs because the IGCC plant is self-sufficient in terms of energy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Waste Isolation Pilot Plant Strategic Plan

    International Nuclear Information System (INIS)

    1993-03-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Strategic Plan is to provide decision makers, project participants, and the public with a high-level overview of the objectives, issues, and strategiesthat impact a decision on the suitability of WIPP as a permanent, safe disposal facility for transuranic (TRU) waste that has resulted from defense activities. This document is a component of an integrated planning process and is a key management tool that is coordinated and consistent with the Secretary's Disposal Decision Plan and the Environmental Restoration and Waste Management (EM) Five-Year Plan. This documentsupports other US Department of Energy (DOE) planning efforts, including the TRU Waste Program. The WIPP Strategic Plan addresses the WIPP Program Test Phase, Disposal Decision, Disposal Phase, and Decommissioning Phase (decontamination and decommissioning). It describes the actions and activities that the DOE will conduct to ensure that WIPP will comply with applicable, relevant, and appropriate requirements of the US Environmental Protection Agency (EPA), State of New Mexico, and other applicable federal and state regulations. It also includes the key assumptions under which the strategy was developed. A comprehensive discussion of the multitude of activities involved in the WIPP Program cannot be adequately presented in this document. The specific details of these activities are presented in other, more detailed WIPP planningdocuments

  13. Waste Isolation Pilot Plant borehole data

    International Nuclear Information System (INIS)

    1995-04-01

    Data pertaining to all the surface boreholes used at the WIPP site for site characterization hydrological testing and resource evaluation exist in numerous source documents. This project was initiated to develop a comprehensive data base that would include the data on all WIPP related surface boreholes from the Atomic Energy Commission, Waste Isolation Pilot Plant Energy Research and Development Administration, Department of Energy, and Hydrologic Test Borehole Programs. The data compiled from each borehole includes: operator, permit number, location, total depth, type of well, driller, drilling record, casing record, plugging schedule, and stratigraphic summary. There are six groups of boreholes contained in this data base, they are as follows: Commercially Drilled Potash Boreholes, Energy Department Wells, Geologic Exploration Boreholes, Hydrologic Test Boreholes, Potash Boreholes, and Subsurface Exploration Boreholes. There were numerous references which contained borehole data. In some cases the data found in one document was inconsistent with data in another document. In order to ensure consistency and accuracy in the data base, the same references were used for as many of the boreholes as possible. For example, all elevations and locations were taken from Compilation and Comparison of Test-Hole Location Surveys in the Vicinity of the WIPP Site. SAND 88-1065, Table 3-5. There are some sections where a data field is left blank. In this case, the information was either not applicable or was unavailable

  14. Waste Isolation Pilot Plant borehole data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    Data pertaining to all the surface boreholes used at the WIPP site for site characterization hydrological testing and resource evaluation exist in numerous source documents. This project was initiated to develop a comprehensive data base that would include the data on all WIPP related surface boreholes from the Atomic Energy Commission, Waste Isolation Pilot Plant Energy Research and Development Administration, Department of Energy, and Hydrologic Test Borehole Programs. The data compiled from each borehole includes: operator, permit number, location, total depth, type of well, driller, drilling record, casing record, plugging schedule, and stratigraphic summary. There are six groups of boreholes contained in this data base, they are as follows: Commercially Drilled Potash Boreholes, Energy Department Wells, Geologic Exploration Boreholes, Hydrologic Test Boreholes, Potash Boreholes, and Subsurface Exploration Boreholes. There were numerous references which contained borehole data. In some cases the data found in one document was inconsistent with data in another document. In order to ensure consistency and accuracy in the data base, the same references were used for as many of the boreholes as possible. For example, all elevations and locations were taken from Compilation and Comparison of Test-Hole Location Surveys in the Vicinity of the WIPP Site. SAND 88-1065, Table 3-5. There are some sections where a data field is left blank. In this case, the information was either not applicable or was unavailable.

  15. Application of AI technology to nuclear plant operations

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1988-01-01

    In this paper, applications of Artificial Intelligence (AI) Technology to nuclear-power plant operation are reviewed. AI Technology is advancing rapidly and in the next five years is expected to enjoy widespread application to operation, maintenance, management and safety. Near term emphasis on a sensor validation, scheduling, alarm handling, and expert systems for procedural assistance. Ultimate applications are envisioned to culminate in autonomous control such as would be necessary for a power system in space, where automatic control actions are taken based upon reasoned conclusions regarding plant conditions, capability and control objectives

  16. Pilot vehicle interface on the advanced fighter technology integration F-16

    Science.gov (United States)

    Dana, W. H.; Smith, W. B.; Howard, J. D.

    1986-01-01

    This paper focuses on the work load aspects of the pilot vehicle interface in regard to the new technologies tested during AMAS Phase II. Subjects discussed in this paper include: a wide field-of-view head-up display; automated maneuvering attack system/sensor tracker system; master modes that configure flight controls and mission avionics; a modified helmet mounted sight; improved multifunction display capability; a voice interactive command system; ride qualities during automated weapon delivery; a color moving map; an advanced digital map display; and a g-induced loss-of-consciousness and spatial disorientation autorecovery system.

  17. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    International Nuclear Information System (INIS)

    2009-01-01

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first

  18. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Enviromnetal Services

    2009-09-21

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first

  19. Distillation Parameters for Pilot Plant Production of Laurus nobilis Essential oil

    Directory of Open Access Journals (Sweden)

    Temel Özek

    2012-01-01

    Full Text Available Essential oils have increasing importance in flavour and fragrance industries. They are obtained by distillation techniques. In order to produce an oil with market potential its optimum production parameters have to be well known prior to its commercial production. Determination of the steam distillation parameters of commercially available Laurel leaves oil in pilot plant scale is described. The effect of steam rate and processing time play a major role in distillation of essential oils. Distillation speed was high in the beginning of the process, then gradually reduced as the distillation proceeded. The main component of the oil of Laurel leaf oil was 1,8-cineole accumulating significantly in the early fractions.

  20. Application of Modern Technologies for Nuclear Power Plant Productivity Improvements

    International Nuclear Information System (INIS)

    Joseph, A. Naser

    2011-01-01

    The nuclear power industry in several countries is concerned about the ability to maintain current high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, new requirements and commitments, unnecessary workloads and stress levels, and human errors. Current plant operations are labor-intensive due to the vast number of operational and support activities required by the commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the desire by many plants to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New productivity improvement capabilities with measurable economic benefits are needed so that a successful business case can be made for their use. Improved and new instrumentation and control, human-system interface, information and communications technologies used properly can address concerns about cost-effectively maintaining current performance levels and enable shifts to even higher performance levels. This can be accomplished through the use of new technology implementations to improve productivity, reduce costs of systemic inefficiencies and avoid unexpected costs. Many of the same type of productivity improvements for operating plants will be applicable for new plants. As new plants are being built, it is important to include these productivity improvements or at least provide the ability to implement them easily later

  1. Development of membrane technology in BARC

    International Nuclear Information System (INIS)

    Misra, B.M.

    2003-01-01

    BARC has been engaged in research and development work on pressure-driven membrane technology from laboratory to pilot plant scale and its commercial scale deployment, for sea and brackish water desalination into potable water, effluent water treatment and water reuse and in various industrial separations including decontamination of radioactive liquid effluents for their safe disposal into the environment. This paper gives a brief description of pressure-driven membrane processes, reverse osmosis, nano filtration, ultrafiltration and micro filtration. Selection of polymeric candidate materials, preparation of semi-permeable membranes and their characterization has been discussed. Various applications of these processes conducted on pilot plant scale have been presented. Large scale deployment of membrane processes for sea water desalination has been indicated. Research and development at BARC has thus resulted in the indigenous development of membrane processes for commercial scale operation. (author)

  2. Hydraulic testing of Salado Formation evaporites at the Waste Isolation Pilot Plant site: Second interpretive report

    Energy Technology Data Exchange (ETDEWEB)

    Beauheim, R.L. [Sandia National Labs., Albuquerque, NM (United States); Roberts, R.M.; Dale, T.F.; Fort, M.D.; Stensrud, W.A. [INTERA, Inc., Austin, TX (United States)

    1993-12-01

    Pressure-pulse, constant-pressure flow, and pressure-buildup tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Transmissivities have been interpreted from six sequences of tests conducted on five stratigraphic intervals within 15 m of the WIPP underground excavations.

  3. Hydraulic testing of Salado Formation evaporites at the Waste Isolation Pilot Plant site: Second interpretive report

    International Nuclear Information System (INIS)

    Beauheim, R.L.; Roberts, R.M.; Dale, T.F.; Fort, M.D.; Stensrud, W.A.

    1993-12-01

    Pressure-pulse, constant-pressure flow, and pressure-buildup tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Transmissivities have been interpreted from six sequences of tests conducted on five stratigraphic intervals within 15 m of the WIPP underground excavations

  4. Innovative waste treatment and conditioning technologies at nuclear power plants

    International Nuclear Information System (INIS)

    2006-05-01

    The objective of this publication is to provide Member States with information on the most innovative technologies and strategies used in waste treatment and conditioning. At present, some of those technologies and strategies might not be widely implemented at nuclear power plants (NPP), but they have an important potential for their use as part of the long range NPP, utility, or national strategy. Thus, the target audience is those decision makers at the national and organizational level responsible for selecting waste processing technologies and strategies over a period of three to ten years. Countries and individual nuclear plants have limited financial resources which can be applied toward radioactive waste processing (treatment and conditioning). They are challenged to determine which of the many available technologies and strategies are best suited to meet national or local needs. This publication reduces the selection of processes for wastes generated by nuclear power plants to those technologies and strategies which are considered innovative. The report further identifies the key benefits which may derive from the adoption of those technologies, the different waste streams to which each technology is relevant, and the limitations of the technologies. The technologies and strategies identified have been evaluated to differentiate between (1) predominant technologies (those that are widely practiced in multiple countries or a large number of nuclear plants), and (2) innovative technologies (those which are not so widely used but are considered to offer benefits which make them suitable for broader application across the industry). Those which fall into the second category are the primary focus of this report. Many IAEA publications address the technical aspects of treatment and conditioning for radioactive wastes, covering research, technological advances, and safety issues. These studies and reports primarily target the research and technical staff of a

  5. Hanford Waste Vitrification Plant applied technology plan

    International Nuclear Information System (INIS)

    Kruger, O.L.

    1990-09-01

    This Applied Technology Plan describes the process development, verification testing, equipment adaptation, and waste form qualification technical issues and plans for resolution to support the design, permitting, and operation of the Hanford Waste Vitrification Plant. The scope of this Plan includes work to be performed by the research and development contractor, Pacific Northwest Laboratory, other organizations within Westinghouse Hanford Company, universities and companies with glass technology expertise, and other US Department of Energy sites. All work described in this Plan is funded by the Hanford Waste Vitrification Plant Project and the relationship of this Plan to other waste management documents and issues is provided for background information. Work to performed under this Plan is divided into major areas that establish a reference process, develop an acceptable glass composition envelope, and demonstrate feed processing and glass production for the range of Hanford Waste Vitrification Plant feeds. Included in this work is the evaluation and verification testing of equipment and technology obtained from the Defense Waste Processing Facility, the West Valley Demonstration Project, foreign countries, and the Hanford Site. Development and verification of product and process models and other data needed for waste form qualification documentation are also included in this Plan. 21 refs., 4 figs., 33 tabs

  6. Improving CANDU plant operation and maintenance through retrofit information technology systems

    International Nuclear Information System (INIS)

    Lupton, L.R.; Judd, R.A.; MacBeth, M.J.

    1998-01-01

    CANDU plant owners are facing an increasingly competitive environment for the generation of electricity. To meet this challenge, all owners have identified that information technology offers opportunities for significant improvements in CANDU operation, maintenance and administration (OM and A) costs. Targeted information technology application areas include instrumentation and control, engineering, construction, operations and plant information management. These opportunities also pose challenges and issues that must be addressed if the full benefits of the advances in information technology are to be achieved. Key among these are system hardware and software maintenance, and obsolescence protection; AECL has been supporting CANDU stations with the initial development and evaluation of systems to improve plant performance and cost. Key initiatives that have been implemented or are in the process of being implemented in some CANDU plants to achieve operational benefits include: critical safety parameter monitor system; advanced computerized annunciation system; plant historical data system; and plant display system. Each system will be described in terms of its role in enhancing current CANDU plant performance and how they will contribute to future CANDU plant performance

  7. Offgas system particulate cleaning test and evaluation for the process experimental pilot plant

    International Nuclear Information System (INIS)

    Ayers, A.L. Jr.; Gale, L.G.; Stermer, D.L.

    1990-01-01

    The process experimental pilot plant (PREPP) incinerates mixed solid waste. The exhaust gas is processed through a wet offgas cleaning system. Rapid loading of the exhaust filters has been a problem and an important contributing factor is the use of quench solution containing a relatively high concentration of dissolved solids. The dissolved solids are released as a submicron particulate when the quench solution evaporates. A series of tests were performed to better identify the nature of the problem and explore solutions to the problem involving modifications to the quench process

  8. Offgas system particulate cleaning test and evaluation for the Process Experimental Pilot Plant

    International Nuclear Information System (INIS)

    Ayers, A.L. Jr.; Gale, L.G.; Stermer, D.L.

    1990-01-01

    The Process Experimental Pilot Plant (PREPP) incinerates mixed solid waste. The exhaust gas is processed through a wet offgas cleaning system. Rapid loading of the exhaust filters has been a problem and an important contributing factor is the use of a quench solution containing a relatively high concentration of dissolved solids. The dissolved solids are released as a submicron particulate when the quench solution evaporates. A series of tests were performed to better identify the nature of the problem and explore solutions to the problem involving modifications to the quench process. 2 refs., 7 figs

  9. Impact of Vicarious Learning Experiences and Goal Setting on Preservice Teachers' Self-Efficacy for Technology Integration: A Pilot Study.

    Science.gov (United States)

    Wang, Ling; Ertmer, Peggy A.

    This pilot study was designed to explore how vicarious learning experiences and goal setting influence preservice teachers' self-efficacy for integrating technology into the classroom. Twenty undergraduate students who were enrolled in an introductory educational technology course at a large midwestern university participated and were assigned…

  10. 'Virtual' monitoring in LabVIEW 8 and process simulation of the cryogenic pilot plant

    International Nuclear Information System (INIS)

    Moraru, Carmen Maria; Stefan, Iuliana; Balteanu, Ovidiu; Bucur, Ciprian; Stefan, Liviu; Bornea, Anisia; Stefanescu, Ioan

    2007-01-01

    Full text: The implementation of the new software and hardware's technologies for tritium processing nuclear plants, and especially those with an experimental character or of new technology developments shows a coefficient of complexity due to issues raised by the use of the performing instrumentation and equipment into a unitary monitoring system of the nuclear technological process of tritium removal. Keeping the system's flexibility is a demand of the nuclear experimental plants for which the change of configuration, process and parameters is something usual. The big amount of data that needs to be processed, stored and accessed for real time simulation and optimization demands the achievement of the virtual technologic platform where the data acquiring, control and analysis systems of the technological process can be integrated with a developed technological monitoring system. Thus, integrated computing and monitoring systems needed for the supervising of the technological process will be carried out, and continued with the optimization of the system, by choosing new and performing methods corresponding to the technological processes within the tritium removal processing nuclear plants. The developing software applications is carried out by means of the program packages dedicated to industrial processes and they will include acquisition and monitoring sub-modules, named 'virtual' as well as the storage sub-module of the process data later required for the software of optimization and simulation of the technological process for tritium removal. The system plays an important role in the environment protection and sustainable development through new technologies, that is - the reduction of and fight against industrial accidents in the case of tritium processing nuclear plants. Research for monitoring optimization of nuclear processes is also a major driving force for economic and social development. (authors)

  11. Facing technological challenges of Solar Updraft Power Plants

    Science.gov (United States)

    Lupi, F.; Borri, C.; Harte, R.; Krätzig, W. B.; Niemann, H.-J.

    2015-01-01

    The Solar Updraft Power Plant technology addresses a very challenging idea of combining two kinds of renewable energy: wind and solar. The working principle is simple: a Solar Updraft Power Plant (SUPP) consists of a collector area to heat the air due to the wide-banded ultra-violet solar radiation, the high-rise solar tower to updraft the heated air to the atmosphere, and in between the power conversion unit, where a system of coupled turbines and generators transforms the stream of heated air into electric power. A good efficiency of the power plant can only be reached with extra-large dimensions of the tower and/or the collector area. The paper presents an up-to-date review of the SUPP technology, focusing on the multi-physics modeling of the power plant, on the structural behavior of the tower and, last but not least, on the modeling of the stochastic wind loading process.

  12. Statistics on Science and Technology in Latin America, Experience with UNESCO Pilot Projects, 1972-1974.

    Science.gov (United States)

    Thebaud, Schiller

    This report examines four UNESCO pilot projects undertaken in 1972 in Brazil, Colombia, Peru, and Uruguay to study the methods used for national statistical surveys of science and technology. The projects specifically addressed the problems of comparing statistics gathered by different methods in different countries. Surveys carried out in Latin…

  13. Pilot-industrial plant for radiation-chemical finishing of textiles

    International Nuclear Information System (INIS)

    Burov, V.K.; Vanyushkin, B.M.; Voskoboev, A.E.

    1976-01-01

    A pilot technological radiational-chemical line for liquid-phase radiational-chemical finish of fabrics is described, which is being mounted at the Glukhov cotton group of enterprises now. It is designed primarily for the anti-microbe finish of cotton fabrics by grafting copper polyacrylate. The technological scheme is built on the principle of direct (combined) irradiation of the fabric impregnated by a monomer solution. Graft of the monomer to the fabric is performed by the radiational method. As source of radiation, an electron accelerator with the beam power of 0.4-0.7 Mev and with a biological protection has been employed. Depending on the thickness of the material irradiated and irradiation conditions, the fabric drive mechanism permits to change a number of irradiated fabric layers from 1 to 9 and by this to utilize in the most complete manner the energy of the accelerated electron beam. The nominal width of the irradiated material is 1000 m, the transportation velocity can vary in the range from 10 through 100 m/min. The radiational-chemical method of fabric finish is economical, highly productive and easily controllable

  14. Performance Evaluation of Speech Recognition Systems as a Next-Generation Pilot-Vehicle Interface Technology

    Science.gov (United States)

    Arthur, Jarvis J., III; Shelton, Kevin J.; Prinzel, Lawrence J., III; Bailey, Randall E.

    2016-01-01

    During the flight trials known as Gulfstream-V Synthetic Vision Systems Integrated Technology Evaluation (GV-SITE), a Speech Recognition System (SRS) was used by the evaluation pilots. The SRS system was intended to be an intuitive interface for display control (rather than knobs, buttons, etc.). This paper describes the performance of the current "state of the art" Speech Recognition System (SRS). The commercially available technology was evaluated as an application for possible inclusion in commercial aircraft flight decks as a crew-to-vehicle interface. Specifically, the technology is to be used as an interface from aircrew to the onboard displays, controls, and flight management tasks. A flight test of a SRS as well as a laboratory test was conducted.

  15. MOBIL CONTAINER UNIT FOR SEWAGE SLUDGE UTILIZATION FROM SMALL AND MEDIUM WASTWATER TREATMENT PLANTS

    OpenAIRE

    Stanisław Ledakowicz; Paweł Stolarek; A. Malinowski

    2016-01-01

    The most wastewater treatment plants in Poland are small and medium plants of flow capacity below 1000 m3/d. These plants are not able to build sludge incineration plants and the transportation costs to the nearest plants increase the total costs of wastewater treatment. Polish company Metal Expert together with the French company ETIA and Lodz University of Technology proposed mobile unit for integrated drying and pyrolysis of sewage sludge in a pilot bench scale with capacity of 100 kg/h ...

  16. Optimization of instant powdered chicken feet broth’s drying temperature and time on pilot plant scale production

    Science.gov (United States)

    Hidayati, N.; Widyaningsih, T. D.

    2018-03-01

    Chicken feet by-product of chicken industries amounted to approximately 65,894 tons/year commonly used as broths. These by-products are potentially produced into an instant form as an anti-inflammatory functional food on industrial scale. Therefore, it is necessary to optimize the critical parameters of the drying process. The aim of this study was to determine the optimum temperature and time of instant powdered chicken feet broth’s drying on pilot plant scale, to find out product’s comparison of the laboratory and pilot plant scale, and to assess financial feasibility of the business plan. The optimization of pilot plant scale’s research prepared and designed with Response Surface Methodology-Central Composite Design. The optimized factors were powdered broth’s drying temperature (55°C, 60°C, 65°C) and time (10 minutes, 11 minutes, 12 minutes) with the response observed were water and chondroitin sulphate content. The optimum condition obtained was drying process with temperature of 60.85°C for 10,05 minutes resulting in 1.90 ± 0.02% moisture content, 32.48 ± 0.28% protein content, 12.05 ± 0.80% fat content, 28.92 ± 0.09 % ash content, 24.64 ± 0.52% carbohydrate content, 1.26 ± 0.05% glucosamine content, 0.99 ± 0.23% chondroitin sulphate content, 50.87 ± 1.00% solubility, 8.59 ± 0.19% water vapour absorption, 0.37% levels of free fatty acid, 13.66 ± 4.49% peroxide number, lightness of 60.33 ± 1.24, yellowness of 3.83 ± 0.26 and redness of 21.77 ± 0.42. Financial analysis concluded that this business project was feasible to run.

  17. The Waste Isolation Pilot Plant Performance Assessment Program

    International Nuclear Information System (INIS)

    Myers, J.; Coons, W.E.; Eastmond, R.; Morse, J.; Chakrabarti, S.; Zurkoff, J.; Colton, I.D.; Banz, I.

    1986-01-01

    The Waste Isolation Pilot Plant (WIPP) Performance Assessment Program involves a comprehensive analysis of the WIPP project with respect to the recently finalized Environmental Protection Agency regulations regarding the long-term geologic isolation of radioactive wastes. The performance assessment brings together the results of site characterization, underground experimental, and environmental studies into a rigorous determination of the performance of WIPP as a disposal system for transuranic radioactive waste. The Program consists of scenario development, geochemical, hydrologic, and thermomechanical support analyses and will address the specific containment and individual protection requirements specified in 40 CFR 191 sub-part B. Calculated releases from these interrelated analyses will be reported as an overall probability distribution of cumulative release resulting from all processes and events occurring over the 10,000 year post-closure period. In addition, results will include any doses to the public resulting from natural processes occurring over the 1,000 year post-closure period. The overall plan for the WIPP Performance Assessment Program is presented along with approaches to issues specific to the WIPP project

  18. Study of economic viability of biodiesel pilot plant; Estudo de viabilidade economica de planta piloto de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Pagliardi, Odail; Maciel, Antonio Jose da Silva; Lopes, Osvaldo Candido; Albiero, Daniel [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola

    2006-07-01

    The present paper shows the economics viability of a half-industrial plant, operating with the transesterification in vegetal oil transformation or animal fats to bio diesel. The pilot plant needed an investment of R$ 400,000.00, and it showed viable with 99.99 percents of efficiency, with feeding of 100 kg per hour of raw material working in only 12 hours daily at 25 days per months. It was considered the more usual economic analysis tools, as payback, internal rate of return and net present value. (author)

  19. Analysis of Pilot Feedback Regarding the Use of State Awareness Technologies During Complex Situations

    Science.gov (United States)

    Evans, Emory; Young, Steven D.; Daniels, Taumi; Santiago-Espada, Yamira; Etherington, Tim

    2016-01-01

    A flight simulation study was conducted at NASA Langley Research Center to evaluate flight deck systems that (1) predict aircraft energy state and/or autoflight configuration, (2) present the current state and expected future state of automated systems, and/or (3) show the state of flight-critical data systems in use by automated systems and primary flight instruments. Four new technology concepts were evaluated vis-à-vis current state-of-the-art flight deck systems and indicators. This human-in-the-loop study was conducted using commercial airline crews. Scenarios spanned a range of complex conditions and several emulated causal factors and complexity in recent accidents involving loss of state awareness by pilots (e.g. energy state, automation state, and/or system state). Data were collected via questionnaires administered after each flight, audio/video recordings, physiological data, head and eye tracking data, pilot control inputs, and researcher observations. This paper strictly focuses on findings derived from the questionnaire responses. It includes analysis of pilot subjective measures of complexity, decision making, workload, situation awareness, usability, and acceptability.

  20. Design and Analysis of a Shaft Seal System for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Hansen, F.D.; Knowles, M.K.

    1999-01-01

    This special issue of Reliability Engineering and System Safety presents a wide range of analyses pertaining to performance of the first EPA-certified nuclear waste repository, called the Waste Isolation Pilot Plant (WIPP). Licensing of the first such repository has involved unprecedented analysis accompanied by an equivalent peer review and public scmtiny. As a deep geologic repository, isolation of the repository from the biosphere requires implementation of unique seal systems. This paper describes the shall sealing system, which is designed to'mit fluid transport through the four existing shafts. The design approach applies redundancy to fictional elements and specifies multiple, common, low-permeability materials to ensure reliable performance. The system comprises 13 elements that completely fill the shafts with engineered materials possessing high density and low permeability. Laboratory and field measurements of component properties and performance provide the basis for the design and related evaluations. Hydrologic, mechanical, thermal, and physical features of the system are evaluated in a series of calculations. These sophisticated calculations indicate that the design effectively limits transport of fluids within the shafts, thereby limiting transport of waste material to regulatory boundaries. Additionally, the use or adaptation of existing technologies for seal construction combined with the use of available common materials assures that the design can be constructed