WorldWideScience

Sample records for technology optical rectennas

  1. Nonlinear Optical Rectennas

    CERN Document Server

    Stolz, A; Markey, L; Francs, G Colas des; Bouhelier, A

    2013-01-01

    We introduce strongly-coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion and demonstrate that a two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.

  2. Photovoltaic Technologies Beyond the Horizon: Optical Rectenna Solar Cell, Final Report, 1 August 2001-30 September 2002

    Energy Technology Data Exchange (ETDEWEB)

    Berland, B.

    2003-02-01

    ITN Energy Systems is developing next-generation solar cells based on the concepts of an optical rectenna. ITN's optical rectenna consists of two key elements: (1) an optical antenna to efficiently absorb the incident solar radiation, and (2) a high-frequency metal-insulator-metal (MIM) tunneling diode that rectifies the AC field across the antenna, providing DC power to an external load. The combination of a rectifying diode at the feedpoints of a receiving antenna is often referred to as a rectenna. Rectennas were originally proposed in the 1960s for power transmission by radio waves for remote powering of aircraft for surveillance or communications platforms. Conversion efficiencies greater than 85% have been demonstrated at radio frequencies (efficiency defined as DC power generated divided by RF power incident on the device). Later, concepts were proposed to extend the rectennas into the IR and optical region of the electromagnetic spectrum for use as energy collection devices (optical rectennas).

  3. A carbon nanotube optical rectenna

    Science.gov (United States)

    Sharma, Asha; Singh, Virendra; Bougher, Thomas L.; Cola, Baratunde A.

    2015-12-01

    An optical rectenna—a device that directly converts free-propagating electromagnetic waves at optical frequencies to direct current—was first proposed over 40 years ago, yet this concept has not been demonstrated experimentally due to fabrication challenges at the nanoscale. Realizing an optical rectenna requires that an antenna be coupled to a diode that operates on the order of 1 PHz (switching speed on the order of 1 fs). Diodes operating at these frequencies are feasible if their capacitance is on the order of a few attofarads, but they remain extremely difficult to fabricate and to reliably couple to a nanoscale antenna. Here we demonstrate an optical rectenna by engineering metal-insulator-metal tunnel diodes, with a junction capacitance of ˜2 aF, at the tip of vertically aligned multiwalled carbon nanotubes (˜10 nm in diameter), which act as the antenna. Upon irradiation with visible and infrared light, we measure a d.c. open-circuit voltage and a short-circuit current that appear to be due to a rectification process (we account for a very small but quantifiable contribution from thermal effects). In contrast to recent reports of photodetection based on hot electron decay in a plasmonic nanoscale antenna, a coherent optical antenna field appears to be rectified directly in our devices, consistent with rectenna theory. Finally, power rectification is observed under simulated solar illumination, and there is no detectable change in diode performance after numerous current-voltage scans between 5 and 77 °C, indicating a potential for robust operation.

  4. Rectenna solar cells

    CERN Document Server

    Moddel, Garret

    2013-01-01

    Rectenna Solar Cells discusses antenna-coupled diode solar cells, an emerging technology that has the potential to provide ultra-high efficiency, low-cost solar energy conversion. This book will provide an overview of solar rectennas, and provide thorough descriptions of the two main components: the diode, and the optical antenna. The editors discuss the science, design, modeling, and manufacturing of the antennas coupled with the diodes. The book will provide concepts to understanding the challenges, fabrication technologies, and materials required to develop rectenna structures. Written by e

  5. Simulation study of a high power density rectenna array for biomedical implantable devices

    Science.gov (United States)

    Day, John; Yoon, Hargsoon; Kim, Jaehwan; Choi, Sang H.; Song, Kyo D.

    2016-04-01

    The integration of wireless power transmission devices using microwaves into the biomedical field is close to a practical reality. Implanted biomedical devices need a long lasting power source or continuous power supply. Recent development of high efficiency rectenna technology enables continuous power supply to these implanted devices. Due to the size limit of most of medical devices, it is imperative to minimize the rectenna as well. The research reported in this paper reviews the effects of close packing the rectenna elements which show the potential of directly empowering the implanted devices, especially within a confined area. The rectenna array is tested in the X band frequency range.

  6. Rectenna that converts infrared radiation to electrical energy

    Science.gov (United States)

    Davids, Paul; Peters, David W.

    2016-09-06

    Technologies pertaining to converting infrared (IR) radiation to DC energy are described herein. In a general embodiment, a rectenna comprises a conductive layer. A thin insulator layer is formed on the conductive layer, and a nanoantenna is formed on the thin insulator layer. The thin insulator layer acts as a tunnel junction of a tunnel diode.

  7. Fiber Optics Technology.

    Science.gov (United States)

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  8. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    Science.gov (United States)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  9. Optical Disk Technology.

    Science.gov (United States)

    Abbott, George L.; And Others

    1987-01-01

    This special feature focuses on recent developments in optical disk technology. Nine articles discuss current trends, large scale image processing, data structures for optical disks, the use of computer simulators to create optical disks, videodisk use in training, interactive audio video systems, impacts on federal information policy, and…

  10. Polymer optical motherboard technology

    Science.gov (United States)

    Keil, N.; Yao, H.; Zawadzki, C.; Grote, N.; Schell, M.

    2008-02-01

    In this paper, different hybridly integrated optical devices including optical multiplexer/ demultiplexer and optical transceivers are described. The devices were made using polymer planar light wave circuit (P2LC) technology. Laser diodes, photodiodes, and thin-film filters have been integrated. Key issues involved in this technology, in particular the coupling between laser diodes and polymer waveguides, and between waveguides and photodiodes and also fibers are discussed.

  11. Rectennas design using DG-MOSFETs

    Science.gov (United States)

    Rodríguez, Raúl; González, B.; García, J.; Marrero-Martín, M.; Hernández, A.

    2013-05-01

    The objective of this work is to study the possibility of implementing SOI rectennas for UWB RFIDs, with undoped Double Gate MOSFETs (DG-MOSFETs). For that purpose we use two commercial TCAD tools: Sentaurus Device (created by Synopsys), and ADS (created by Agilent) where in a large signal circuit model derived for the transistors is implemented with Verilog-A. Once the DG-MOSFETs output characteristics are fit, the rectennas performance at high frequencies is simulated; numerical and electrical results are successfully compared.

  12. Technologies for Optical Processing

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2008-01-01

    The article consists of a Powerpoint presentation on technologies for optical processing. The paper concludes that the nonlinear elements based on SOA, fibers and waveguide structures have capabilities of simple processing at data rates of 100-600 Gb/s. Switching powers comparable to electronics...

  13. Advanced Adaptive Optics Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  14. DC-pass filter design with notch filters superposition for CPW rectenna at low power level

    Science.gov (United States)

    Rivière, J.; Douyère, A.; Alicalapa, F.; Luk, J.-D. Lan Sun

    2016-03-01

    In this paper the challenging coplanar waveguide direct current (DC) pass filter is designed, analysed, fabricated and measured. As the ground plane and the conductive line are etched on the same plane, this technology allows the connection of series and shunt elements to the active devices without via holes through the substrate. Indeed, this study presents the first step in the optimization of a complete rectenna in coplanar waveguide (CPW) technology: key element of a radio frequency (RF) energy harvesting system. The measurement of the proposed filter shows good performance in the rejection of F0=2.45 GHz and F1=4.9 GHz. Additionally, a harmonic balance (HB) simulation of the complete rectenna is performed and shows a maximum RF-to-DC conversion efficiency of 37% with the studied DC-pass filter for an input power of 10 µW at 2.45 GHz.

  15. Large Optics Technology.

    Science.gov (United States)

    1986-05-22

    EEEEEEEEEEmhEE SENSEffl -2-5 12" 110111111 LLLo 111M1. 2 15 .1 111-= NATIONAL BUREAU OF S Mouopy *9sO9u TESI , C N LARGE OPTICS TECHNOLOGY FINAL...Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1981 !mw ’(’* 17 ABSTRACT The mirrors used in high energy laser systems...SCIENCES (GRADUATE) In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1982

  16. Fiber Optics and Library Technology.

    Science.gov (United States)

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  17. Optical technologies for space sensor

    Science.gov (United States)

    Wang, Hu; Liu, Jie; Xue, Yaoke; Liu, Yang; Liu, Meiying; Wang, Lingguang; Yang, Shaodong; Lin, Shangmin; Chen, Su; Luo, Jianjun

    2015-10-01

    Space sensors are used in navigation sensor fields. The sun, the earth, the moon and other planets are used as frame of reference to obtain stellar position coordinates, and then to control the attitude of an aircraft. Being the "eyes" of the space sensors, Optical sensor system makes images of the infinite far stars and other celestial bodies. It directly affects measurement accuracy of the space sensor, indirectly affecting the data updating rate. Star sensor technology is the pilot for Space sensors. At present more and more attention is paid on all-day star sensor technology. By day and night measurements of the stars, the aircraft's attitude in the inertial coordinate system can be provided. Facing the requirements of ultra-high-precision, large field of view, wide spectral range, long life and high reliability, multi-functional optical system, we integration, integration optical sensors will be future space technology trends. In the meantime, optical technologies for space-sensitive research leads to the development of ultra-precision optical processing, optical and precision test machine alignment technology. It also promotes the development of long-life optical materials and applications. We have achieved such absolute distortion better than ±1um, Space life of at least 15years of space-sensitive optical system.

  18. Graphene rectenna for efficient energy harvesting at terahertz frequencies

    Science.gov (United States)

    Dragoman, Mircea; Aldrigo, Martino

    2016-09-01

    In this paper, we propose a graphene rectenna that encompasses two distinct functions in a single device, namely, antenna and rectifier, which till now were two separate components. In this way, the rectenna realizes an efficient energy harvesting technique due to the absence of impedance mismatch between antenna and diode. In particular, we have obtained a maximum conversion efficiency of 58.43% at 897 GHz for the graphene rectenna on n-doped GaAs, which is a very good value, close to the performance of an RF harvesting system. A comparison with a classical metallic antenna with an HfO2-based metal-insulator-metal diode is also provided.

  19. Key Technologies for Optical Packet Switching

    Institute of Scientific and Technical Information of China (English)

    Akira; Okada

    2003-01-01

    The paper describes our recent progress on key technologies and components for realizing optical packet switching, including an out-of-band optical label switching technique, an optical packet synchronizer and a burst-mode optical receiver.

  20. Key Technologies for Optical Packet Switching

    Institute of Scientific and Technical Information of China (English)

    Akira Okada

    2003-01-01

    The paper describes our recent progress on key technologies and components for realizing optical packet switching,including an out-of-band optical label switching technique, an optical packet synchronizer and a burst-mode optical receiver.

  1. Integrated Optics Theory and Technology

    CERN Document Server

    Hunsperger, Robert G

    2009-01-01

    Integrated Optics: Theory and Technology explains the subject of optoelectronic devices and their use in integrated optics and fiber optic systems. The text emphasizes the physics of how devices work and how they can be used in various applications. Mathematical derivations and the development of design equations are provided where necessary to explain phenomena and engineering principles, but a strong effort has been made to avoid obscuring important concepts with mathematical details. Illustrations and references from technical journals have been used to demonstrate the relevance of the theory to currently important topics in industry. This sixth edition of Integrated Optics: Theory and Technology includes updates and revisions in all chapters, as well as a completely new chapter on nanophotonics. Problems are included at the end of each chapter to develop students' knowledge. Scientists, engineers, students and engineering managers can utilize this book to obtain an overall view of the theory and the most ...

  2. Design and fabrication of a rectenna system to be coupled to photovoltaic solar cells

    Science.gov (United States)

    Mossavat, Mazda

    Inkjet-printed metamaterials and nanotechnology enabled flexible antennas fabricated on glass or polyester substrates help in further absorption of transmitted radiation through photovoltaic solar cells. Using metamaterials processed by inkjet printing and diffusing it, for a rectenna system coupled with photovoltaic solar cells, as rectifying antenna, an antenna in system in tandem is created. Metamaterials are artificial materials engineered to have properties that may not be found in nature (negative refractive index). When used in an antenna, they increase gain. For efficient solar cell use, nanophotonics on the incident surface or metamaterials under it as a rectenna, can enhance voltage gain in cloudy or rainy condition, which in turn increases the overall efficiency and reduces the amount of material required, thereby cutting costs. Photovoltaic is a field of technology and research related to practical application of photovoltaic cells in producing electricity from light. Cells are described as photovoltaic cells when the light source is not necessarily sunlight but can be lamplight, artificial light, or any other source used for detecting light or other electromagnetic radiation at different light intensity and producing voltage. These can be, for example, infrared detectors, or detectors for measurement of light intensity. Conventional solar cell films are typically manufactured using expensive and slow manufacturing methods, which rely on high-temperature fabrication and finicky `vacuum deposition' processes for depositing solar materials onto substrates (III-V elements). The resultant products are simply too thick to allow for transparency. An important consideration in the development of a commercially viable solar powered cell is the glass substrate. The learning process and skills involved in developing the antenna below a solar cell is a great experience in theory and practice. My main effort will be to design and check performance of different

  3. A Novel Oscillating Rectenna for Wireless Microwave Power Transmission

    Science.gov (United States)

    McSpadden, J. O.; Dickinson, R. M.; Fan, L.; Chang, K.

    1998-01-01

    A new concept for solid state wireless microwave power transmission is presented. A 2.45 GHz rectenna element that was designed for over 85% RF to dc power conversion efficiency has been used to oscillate at 3.3 GHz with an approximate 1% dc to RF conversion efficiency.

  4. Impact of the coupling effect and the configuration on a compact rectenna array

    Science.gov (United States)

    Rivière, J.; Douyere, A.; Luk, J. D. Lan Sun

    2014-10-01

    This paper proposes an experimental study of the coupling effect of a rectenna array. The rectifying antenna consists of a compact and efficient rectifying circuit in a series topology, coupled with a small metamaterial-inspired antenna. The measurements are investigated in the X plane on the rectenna array's behavior, with series and parallel DC- combining configuration of two and three spaced rectennas from 3 cm to 10 cm. This study shows that the maximum efficiency is reached for the series configuration, with a resistive load of 10 kQ. The optimal distance is not significant for series or parallel configuration. Then, a comparison between a rectenna array with non-optimal mutual coupling and a more traditional patch rectenna is performed. Finally, a practical application is tested to demonstrate the effectiveness of such small rectenna array.

  5. Design of a Compact Planar Rectenna for Wireless Power Transfer in the ISM Band

    Directory of Open Access Journals (Sweden)

    Fang Zhang

    2014-01-01

    Full Text Available This paper presents a compact planar rectenna with high conversion efficiency in the ISM band. The proposed rectenna is developed by the decomposing of a planar rectenna topology into two functional parts and then recombining the two parts into a new topology to make the rectenna size reduction. The operation mechanism of the antenna and rectifying circuit in the proposed novel topology is explained and the design methodology is presented in detail. The proposed topology not only reduces the rectenna design cycle time but also leads to easy realization at the required frequency ranges with a very low cost. For validation, a 2.45 GHz rectenna system is designed and measured to show their microwave performances.

  6. Fiber-optic technology review

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, P.B.

    1980-01-01

    A history of fiber technology is presented. The advantages of fiber optics are discussed (bandwidth, cost, weight and size, nonmetallic construction and isolation). Some aspects of the disadvantages of fiber systems briefly discussed are fiber and cable availability, fiber components, radiation effects, receivers and transmitters, and material dispersion. Particular emphasis over the next several years will involve development of fibers and systems optimized for use at wavelengths near 1.3 ..mu..m and development of wavelengths multiplexers for simultaneous system operation at several wavelengths.

  7. Infrared Solar Energy Harvesting using Nano-Rectennas

    CERN Document Server

    Sayed, Islam E Hashem

    2015-01-01

    Rectennas formed from nanodipole antennas terminated by plasmonic metal-insulator-metal (MIM) travelling wave transmission line rectifiers are developed for ambient thermal energy harvesting at 30 THz. The transmission lines are formed from two strips coupled either vertically or laterally. A systematic design approach is presented, that shows how different components can be integrated with each other with maximum radiation receiving nantenna efficiency, maximum coupling efficiency between nantenna and rectifier, and maximum MIM diode rectifier efficiency. The tunneling current of the rectifier is calculated using the transfer matrix method (TMM) and the nonequilibrium Green's function (NEGF). The figures of merit of the rectifier are analyzed, and the effect of the metals and insulator choices on these merits is investigated. A detailed parametric study of the coupled strips plasmonic transmission lines is presented and thoroughly discussed. The overall efficiencies of the proposed travelling wave rectennas ...

  8. Single/Dual-Polarized Infrared Rectenna for Solar Energy Harvesting

    Directory of Open Access Journals (Sweden)

    S. H. Zainud-Deen

    2016-05-01

    Full Text Available Single and dual linearly-polarized receiving mode nanoantennas are designed for solar energy harvesting at 28.3 THz. The infrared rectennas are used to harvest the solar energy and converting it to electrical energy.  The proposed infrared rectenna is a thin dipole made of gold and printed on a silicon dioxide substrate. Different shapes of the dipole arms have been investigated for maximum collected energy. The two poles of the dipole have been determined in a rectangular, circular and rhombus shapes. The rectenna dipole is used to concentrate the electromagnetic energy into a small localized area at the inner tips of the gap between the dipole arms. The dimensions of the different dipole shapes are optimized for maximum near electric field intensity at a frequency of 28.3 THz. A Metal Insulator Metal (MIM diode is incorporated with the nanoantenna dipole to rectify the received energy. The receiving efficiency of the solar energy collector with integrated MIM diode has been investigated. A dual-polarized, four arms, rhombus shaped nanoantenna dipole for solar energy harvesting has been designed and optimized for 28.3 THz applications.

  9. Ultrasonic precision optical grinding technology

    Science.gov (United States)

    Cahill, Michael J.; Bechtold, Michael J.; Fess, Edward; Wolfs, Frank L.; Bechtold, Rob

    2015-10-01

    As optical geometries become more precise and complex and a wider range of materials are used, the processes used for manufacturing become more critical. As the preparatory stage for polishing, this is especially true for grinding. Slow processing speeds, accelerated tool wear, and poor surface quality are often detriments in manufacturing glass and hard ceramics. The quality of the ground surface greatly influences the polishing process and the resulting finished product. Through extensive research and development, OptiPro Systems has introduced an ultrasonic assisted grinding technology, OptiSonic, which has numerous advantages over traditional grinding processes. OptiSonic utilizes a custom tool holder designed to produce oscillations in line with the rotating spindle. A newly developed software package called IntelliSonic is integral to this platform. IntelliSonic automatically characterizes the tool and continuously optimizes the output frequency for optimal cutting while in contact with the part. This helps maintain a highly consistent process under changing load conditions for a more accurate surface. Utilizing a wide variety of instruments, test have proven to show a reduction in tool wear and increase in surface quality while allowing processing speeds to be increased. OptiSonic has proven to be an enabling technology to overcome the difficulties seen in grinding of glass and hard optical ceramics. OptiSonic has demonstrated numerous advantages over the standard CNC grinding process. Advantages are evident in reduced tool wear, better surface quality, and reduced cycle times due to increased feed rates. These benefits can be seen over numerous applications within the precision optics industry.

  10. IC-Compatible Technologies for Optical MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Krygowski, T.W.; Sniegowski, J.J.

    1999-04-30

    Optical Micro Electro Mechanical Systems (Optical MEMS) Technology holds the promise of one-day producing highly integrated optical systems on a common, monolithic substrate. The choice of fabrication technology used to manufacture Optical MEMS will play a pivotal role in the size, functionality and ultimately the cost of optical Microsystems. By leveraging the technology base developed for silicon integrated circuits, large batches of routers, emitters, detectors and amplifiers will soon be fabricated for literally pennies per part. In this article we review the current status of technologies used for Optical MEMS, as well as fabrication technologies of the future, emphasizing manufacturable surface micromachining approaches to producing reliable, low-cost devices for optical communications applications.

  11. Ultrahigh-Speed Optical Transmission Technology

    CERN Document Server

    Weber, Hans-Georg

    2007-01-01

    Ultrahigh-speed optical transmission technology is a key technology for increasing the communication capacity. In optical fibre networks, the number of wavelength channels and the bit rate per wavelength channel, i.e. the TDM (Time Division Multiplexing) bit rate, determine the transmission capacity. Currently, TDM bit rates of more than 40 Gbit/s require optical signal processing (Optical Time Division Multiplexing, OTDM). OTDM bit rates of up to 1.2 Tbit/s have already been reported. The devices developed for ultrahigh-speed optical transmission are not limited to communication applications only. They are key devices for high-speed optical signal processing, i.e. monitoring, measurement and control, and will thus give a wide technological basis for innovative science and technology. All these aspects of ultrahigh-speed optical transmission technology are described in detail in this book.

  12. A Review of Optical NDT Technologies

    OpenAIRE

    Hong Zhang(Department of Physics and Center for Quantum Spacetime (CQUeST), Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 121-742 Korea); Rong-Sheng Lu; Gui-Yun Tian; Yong-Kai Zhu

    2011-01-01

    Optical non-destructive testing (NDT) has gained more and more attention in recent years, mainly because of its non-destructive imaging characteristics with high precision and sensitivity. This paper provides a review of the main optical NDT technologies, including fibre optics, electronic speckle, infrared thermography, endoscopic and terahertz technology. Among them, fibre optics features easy integration and embedding, electronic speckle focuses on whole-field high precision detection, inf...

  13. Fiber optics physics and technology

    CERN Document Server

    Mitschke, Fedor

    2016-01-01

    This book tells you all you want to know about optical fibers: Their structure, their light-guiding mechanism, their material and manufacture, their use. It began with telephone, then came telefax and email. Today we use search engines, music downloads and internet videos, all of which require shuffling of bits and bytes by the zillions. The key to all this is the conduit: the line which is designed to carry massive amounts of data at breakneck speed. In their data carrying capacity optical fiber lines beat all other technologies (copper cable, microwave beacons, satellite links) hands down, at least in the long haul; wireless devices rely on fibers, too. Several effects tend to degrade the signal as it travels down the fiber: they are spelled out in detail. Nonlinear processes are given due consideration for a twofold reason: On the one hand they are fundamentally different from the more familiar processes in electrical cable. On the other hand, they form the basis of particularly interesting and innovative ...

  14. Fiber Optics Physics and Technology

    CERN Document Server

    Mitschke, Fedor

    2010-01-01

    Telephone, telefax, email and internet -- the key ingredient of the inner workings is the conduit: the line which is designed to carry massive amounts of data at breakneck speed. In their data-carrying capacity optical fiber lines beat other technologies (copper cable, microwave beacons, satellite links) hands down, at least in the long haul. This book tells you all you want to know about optical fibers: Their structure, their light-guiding mechanism, their material and manufacture, their use. Several effects tend to degrade the signal as it travels down the fiber: they are spelled out in detail. Nonlinear processes are given due consideration for a twofold reason: On the one hand they are fundamentally different from the more familiar processes in electrical cable. On the other hand, they form the basis of particularly interesting and innovative applications, provided they are understood well enough. A case in point is the use of so-called solitons, i.e. special pulses of light which have the wonderful prope...

  15. X-BAND CIRCULARLY POLARIZED RECTENNAS FOR MICROWAVE POWER TRANSMISSION APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    Yang Xuexia; Xu Junshu; Xu Deming; Xu Changlong

    2008-01-01

    Circularly polarized rectennas operating at X-band are studied in this paper. The quasi-square patches fed by aperture coupling are used as the circularly polarized receiving antennas,which are easily matched and integrated with the circuits of rectennas. The double-layer structure not only minimizes the size of the rectennas but also decreases the effects of the circuits on the antenna. The receiving elements have broader bandwidth and higher gain than the single-layer patches.Two rectennas operating at 10GHz are designed, fabricated and measured. The voltage of 3.86V on a load of 200Ωis measured and a high RF-DC conversion efficiency of 75% is obtained at 9.98GHz. It is convenient for this kind of rectennas to form large arrays for high power applications.

  16. Optics and photonics: essential technologies for our nation (technology & engineering)

    CERN Document Server

    Research, Committee on Harnessing Light: Capitalizing on Optical Science Trends and Challenges for Future; Sciences, Division on Engineering and Physical; Council, National Research

    2013-01-01

    Optics and photonics technologies are ubiquitous: they are responsible for the displays on smart phones and computing devices, optical fiber that carries the information in the internet, advanced precision manufacturing, enhanced defense capabilities, and a plethora of medical diagnostics tools. The opportunities arising from optics and photonics offer the potential for even greater societal impact in the next few decades, including solar power generation and new efficient lighting that could transform the nation's energy landscape and new optical capabilities that will be essential to support the continued exponential growth of the Internet. As described in the National Research Council report Optics and Photonics: Essential Technologies for our Nation, it is critical for the United States to take advantage of these emerging optical technologies for creating new industries and generating job growth. The report assesses the current state of optical science and engineering in the United States and abroad--incl...

  17. Optical Network Technologies for Future Digital Cinema

    Directory of Open Access Journals (Sweden)

    Sajid Nazir

    2016-01-01

    Full Text Available Digital technology has transformed the information flow and support infrastructure for numerous application domains, such as cellular communications. Cinematography, traditionally, a film based medium, has embraced digital technology leading to innovative transformations in its work flow. Digital cinema supports transmission of high resolution content enabled by the latest advancements in optical communications and video compression. In this paper we provide a survey of the optical network technologies for supporting this bandwidth intensive traffic class. We also highlight the significance and benefits of the state of the art in optical technologies that support the digital cinema work flow.

  18. Optical technologies for intraoperative neurosurgical guidance.

    Science.gov (United States)

    Valdés, Pablo A; Roberts, David W; Lu, Fa-Ke; Golby, Alexandra

    2016-03-01

    Biomedical optics is a broadly interdisciplinary field at the interface of optical engineering, biophysics, computer science, medicine, biology, and chemistry, helping us understand light-tissue interactions to create applications with diagnostic and therapeutic value in medicine. Implementation of biomedical optics tools and principles has had a notable scientific and clinical resurgence in recent years in the neurosurgical community. This is in great part due to work in fluorescence-guided surgery of brain tumors leading to reports of significant improvement in maximizing the rates of gross-total resection. Multiple additional optical technologies have been implemented clinically, including diffuse reflectance spectroscopy and imaging, optical coherence tomography, Raman spectroscopy and imaging, and advanced quantitative methods, including quantitative fluorescence and lifetime imaging. Here we present a clinically relevant and technologically informed overview and discussion of some of the major clinical implementations of optical technologies as intraoperative guidance tools in neurosurgery.

  19. A Review of Optical NDT Technologies

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2011-08-01

    Full Text Available Optical non-destructive testing (NDT has gained more and more attention in recent years, mainly because of its non-destructive imaging characteristics with high precision and sensitivity. This paper provides a review of the main optical NDT technologies, including fibre optics, electronic speckle, infrared thermography, endoscopic and terahertz technology. Among them, fibre optics features easy integration and embedding, electronic speckle focuses on whole-field high precision detection, infrared thermography has unique advantages for tests of combined materials, endoscopic technology provides images of the internal surface of the object directly, and terahertz technology opens a new direction of internal NDT because of its excellent penetration capability to most of non-metallic materials. Typical engineering applications of these technologies are illustrated, with a brief introduction of the history and discussion of recent progress.

  20. Biomedical Optical Imaging Technologies Design and Applications

    CERN Document Server

    2013-01-01

    This book provides an introduction to design of biomedical optical imaging technologies and their applications. The main topics include: fluorescence imaging, confocal imaging, micro-endoscope, polarization imaging, hyperspectral imaging, OCT imaging, multimodal imaging and spectroscopic systems. Each chapter is written by the world leaders of the respective fields, and will cover: principles and limitations of optical imaging technology, system design and practical implementation for one or two specific applications, including design guidelines, system configuration, optical design, component requirements and selection, system optimization and design examples, recent advances and applications in biomedical researches and clinical imaging. This book serves as a reference for students and researchers in optics and biomedical engineering.

  1. A Preliminary Case Study for Rectenna Sites in Indonesia

    Science.gov (United States)

    Purwanto, Y.; Collins, P.

    2004-12-01

    Electricity power generation using alternative energy sources in Indonesia has become an important policy. Until now, the contribution from alternative energy sources (especially from renewable energy sources) is very small, only about 1% of the total energy supply. It is expected that in the next 10 years this contribution will be raised to 20%. The development of renewable energy sources is primarily performed in remote areas, that are poor in infrastructure facilities. This is considered to be a good policy since there are many such remote areas in Indonesia that need development programs. The existence of Solar Power Satellite system will open a new horizon in alternative energy supply, including Indonesia, because of its higher efficiency compared to conventional terrestrial solar cells, with almost no influence from either climate or solar position. Like other countries in the world, Indonesia, although one of the largest mineral energy producers in the world (i.e. oil, coal, and natural gas), still gives attention to energy diversification programs, including solar energy utilization. SPS, being based on solar energy, could be a good choice. The Indonesian archipelago consists of thousands of islands (more than 13,000) and is the equatorial country with the longest equatorial extent (more than 5000 km). This condition is very good for energy reception from the SPS 2000 pilot plant since the energy transmitting system (spacetenna) will orbit above the equator. Along the equator there could be placed more than four receiving stations (rectenna), especially in remote areas. Thus, it is very important to consider the involvement of Indonesia in SPS energy reception research. This paper describes a preliminary study of the development possibilities in SPS energy reception in Indonesia. To define the rectenna sites and physical development aspect, this study considers some major aspects: environmental, technical, social, and economic aspects. Environmental aspects

  2. Korea-China Optical Technology Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Cha, H. K.; Rhee, Y. J. (and others)

    2007-04-15

    The main objectives of this project are to develop cooperative channel by personnel exchanges between industrial, educational and research partners of Korea and China on the fields of optical technologies which are the basis of optical industry and being spot-lighted as new industry of 21th century, and to raise the class of Korean optical technology up to world class by utilization of Chinese large facilities through the cooperative research between the optical technology institutions of both sides. To attain the goals mentioned above, we carried out the cooperative researches between the Korean and Chinese optical technology institutions in the following 7 fields; ? research cooperation between KAERI-SITP for the quantum structured far-IR sensor technology - research cooperation for the generation of femtosecond nuclear fusion induced neutrons - research cooperation between KAERI-AIOFM for laser environment analysis and remote sensing technology - research cooperation between KAERI-SIOM for advanced diode-pumped laser technology - cooperative research related on linear and nonlinear magneto-optical properties of advanced magnetic quantum structures - design of pico-second PW high power laser system and its simulation and - cooperative research related on the femto-second laser-plasma interaction physics.

  3. Enabling technologies for fiber optic sensing

    Science.gov (United States)

    Ibrahim, Selwan K.; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.

    2016-04-01

    In order for fiber optic sensors to compete with electrical sensors, several critical parameters need to be addressed such as performance, cost, size, reliability, etc. Relying on technologies developed in different industrial sectors helps to achieve this goal in a more efficient and cost effective way. FAZ Technology has developed a tunable laser based optical interrogator based on technologies developed in the telecommunication sector and optical transducer/sensors based on components sourced from the automotive market. Combining Fiber Bragg Grating (FBG) sensing technology with the above, high speed, high precision, reliable quasi distributed optical sensing systems for temperature, pressure, acoustics, acceleration, etc. has been developed. Careful design needs to be considered to filter out any sources of measurement drifts/errors due to different effects e.g. polarization and birefringence, coating imperfections, sensor packaging etc. Also to achieve high speed and high performance optical sensing systems, combining and synchronizing multiple optical interrogators similar to what has been used with computer/processors to deliver super computing power is an attractive solution. This path can be achieved by using photonic integrated circuit (PIC) technology which opens the doors to scaling up and delivering powerful optical sensing systems in an efficient and cost effective way.

  4. Optical technologies for computational intelligence

    Science.gov (United States)

    Pavlov, Alexander V.

    2001-11-01

    Optics has a number of deep analogies with main principles of Computational Intelligence. We can see strong analogies between basic optical phenomena, used in Fourier-holography, and mathematical foundations of Fuzzy Set Theory. Also, analogies between optical holography technique and principles of Neural Networks Paradigm can be seen. Progress in new holographic recording media with self-developing property leads to Evolutionary Computations holographic realization. Based on these analogies we review holographic techniques from two points of view: Fuzzy Logic and Fuzzy relations.

  5. Nonlinear Optical Terahertz Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our approach is based on high-Q optical WGM resonators made with a nonlinear crystal. Such resonators have been demonstrated to dramatically enhance nonlinear...

  6. High Spectral Density Optical Communication Technologies

    CERN Document Server

    Nakazawa, Masataka; Miyazaki, Tetsuya

    2010-01-01

    The latest hot topics of high-spectral density optical communication systems using digital coherent optical fibre communication technologies are covered by this book. History and meaning of a "renaissance" of the technology, requirements to the Peta-bit/s class "new generation network" are also covered in the first part of this book. The main topics treated are electronic and optical devices, digital signal processing including forward error correction, modulation formats as well as transmission and application systems. The book serves as a reference to researchers and engineers.

  7. Solar power satellite rectenna design study: Directional receiving elements and parallel-series combining analysis

    Science.gov (United States)

    Gutmann, R. J.; Borrego, J. M.

    1978-01-01

    Rectenna conversion efficiencies (RF to dc) approximating 85 percent were demonstrated on a small scale, clearly indicating the feasibility and potential of efficiency of microwave power to dc. The overall cost estimates of the solar power satellite indicate that the baseline rectenna subsystem will be between 25 to 40 percent of the system cost. The directional receiving elements and element extensions were studied, along with power combining evaluation and evaluation extensions.

  8. Technology of optical azimuth transmission

    Science.gov (United States)

    Lu, Honggang; Hu, Chunsheng; Wang, Xingshu; Gao, Yang

    2012-11-01

    It often needs transfer a reference from one place to another place in aerospace and guided missile launching. At first, principles of several typical optical azimuth transmission methods are presented. Several typical methods are introduced, such as Theodolite (including gyro-theodolite) collimation method, Camera series method, Optical apparatus for azimuth method and polarization modulated light transmission method. For these typical azimuth transmission methods, their essential theories are elaborated. Then the devices, the application fields and limitations of these typical methods' are presented. Theodolite (including gyro-theodolite) collimation method is used in the ground assembly of spacecraft. Camera series method and optical apparatus for azimuth method are used in azimuth transmission between different decks of ship. Polarization modulated light transmission method is used in azimuth transmission of rocket and guided missile. At the last, the further developments of these methods are discussed.

  9. Developments in distributed optical fiber detection technology

    Science.gov (United States)

    Ye, Wei; Zhu, Qianxia; You, Tianrong

    2014-12-01

    The distributed optical fiber detection technology plays an important role in many fields, such as key regional security monitoring, pipeline maintenance and communication cable protection. It is superior to the traditional detector, and has a good prospect. This paper presents an overview of various distributed optical fiber sensors. At first, some related technologies of the optical fiber detection schemes are introduced in respect of sensing distance, real-time ability, signal strength, and system complexity; and the advantages and limitations of fiber gratings sensors, reflection-based optical fiber sensors, and interference- based optical fiber sensors are discussed. Then some advanced distributed optical fiber detection systems are mentioned. And the double-loop Sagnac distributed system is improved by adding photoelectric modulators and depolarizers. In order to denoise and enhance the original signal, a spectral subtraction-likelihood ratio method is improved. The experiment results show the spatial resolution is +/-15m per kilometer. Finally, based on the development trends of optical fiber detection technology at home and abroad, development tendency and application fields are predicted.

  10. Integrated optics theory and technology

    CERN Document Server

    Hunsperger, Robert G

    1984-01-01

    Our intent in producing this book was to provide a text that would be comprehensive enough for an introductory course in integrated optics, yet concise enough in its mathematical derivations to be easily readable by a practicing engineer who desires an overview of the field. The response to the first edition has indeed been gratifying; unusually strong demand has caused it to be sold out during the initial year of publication, thus providing us with an early opportunity to produce this updated and improved second edition. This development is fortunate, because integrated optics is a very rapidly progressing field, with significant new research being regularly reported. Hence, a new chapter (Chap. 17) has been added to review recent progress and to provide numerous additional references to the relevant technical literature. Also, thirty-five new problems for practice have been included to supplement those at the ends of chapters in the first edition. Chapters I through 16 are essentially unchanged, except for ...

  11. Enabling Technologies for Cognitive Optical Networks

    DEFF Research Database (Denmark)

    Borkowski, Robert

    to technologies required for their implementation. Operation of CON-enabling machine learning methods is tested experimentally and DSP-based OPM techniques for software-defined receivers are introduced and verified. The presented set of technologies forms a foundation, upon which next generation fiber-optic data......Cognition is a new paradigm for optical networking, in which the network has capabilities to observe, plan, decide, and act autonomously in order to optimize the end-to-end performance and minimize the need for human supervision. This PhD thesis expands the state of the art on cognitive optical......, and machine learning algorithms that make cognition possible. Secondly, advanced optical performance monitoring (OPM) capabilities performed via digital signal processing (DSP) that provide CONs with necessary feedback information allowing for autonomous network optimization. The research results presented...

  12. Optical assay technology for safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Edelson, M.C.; Lipert, R.J.; Murray, G.M.; Schuler, R.A.; Vera, J.; Wang, Z.M.; Weeks, S.J.

    1990-10-01

    Research conducted in the Ames Laboratory Nuclear Safeguards and Security Program during the period July 1, 1990 to September 30, 1990 is reviewed; included are reprints and preprints of papers written during this quarter. The first demonstration of isotopic selectivity in Inductively Coupled Plasma -- Laser Excited Atomic Fluorescence Spectroscopy (ICP-LEAFS) is reported and the application of ICP-LEAFS to U isotopic analysis is discussed. Current work in applying optical spectroscopy to the analytical determination of gas phase metal atoms is reviewed. Program administration topics are included in a separately bound Management Supplement to this report.

  13. Innovative Technologies for Optical and Infrared Astronomy

    CERN Document Server

    Cunningham, C R; Molster, F; Kendrew, S; Kenworthy, M A; Snik, F

    2012-01-01

    Advances in astronomy are often enabled by adoption of new technology. In some instances this is where the technology has been invented specifically for astronomy, but more usually it is adopted from another scientific or industrial area of application. The adoption of new technology typically occurs via one of two processes. The more usual is incremental progress by a series of small improvements, but occasionally this process is disruptive, where a new technology completely replaces an older one. One of the activities of the OPTICON Key Technology Network over the past few years has been a technology forecasting exercise. Here we report on a recent event which focused on the more radical, potentially disruptive technologies for ground-based, optical and infrared astronomy.

  14. Efficient manufacturing technology of metal optics

    Science.gov (United States)

    Zhang, Jizhen; Wu, Yanxiong; Zhang, Xin; Zhang, Liping; Wang, Lingjie; Qu, Hemeng

    2015-10-01

    The efficient manufacturing technologies greatly accelerate the development and production process. Optical components have higher precision requirements than mechanical parts. This provides great challenge for rapid manufacturing. Metallic optical system is featured high resolution, wide spectral range, light weight, compact design, low cost and short manufacturing period. Reflective mirrors and supporting structures can be made from the same material to improve athermal performance of the system. Common materials for metal mirrors in optical applications include aluminum, copper, beryllium, aluminum beryllium alloy and so on. Their physical characteristics and relative advantages are presented. Most kinds of metals have good machinability and can be manufactured by many kinds of producing methods. This makes metallic optical system saving 30%~60% cost and time than others. The manufacturing process of metal mirror is different due to its working spectral. The metal mirror can be directly manufactured by single point diamond turning. This is an outstanding technique in point of ultra-precision as well as economical manufacture of mirrors. The roughness values and form accuracy of optical surfaces after diamond turning can satisfy the quality level for applications in the near infrared and infrared range. And for visible light spectral the turning structures must be removed with a smoothing procedure in order to minimize the scatter losses. Some smoothing methods to obtain visible quality metal mirrors are given in this paper. Some new manufacturing technology, such as 3D printing, can be used for metallic optical system and several promising techniques are presented.

  15. Optical coherence tomography technology and applications

    CERN Document Server

    Fujimoto, James

    2015-01-01

    Optical coherence tomography (OCT) is the optical analog of ultrasound imaging and is a powerful imaging technique that enables non-invasive, in vivo, high resolution, cross-sectional imaging in biological tissue.  Between 30 to 40 Million OCT imaging procedures are performed per year in ophthalmology.  The overall market is estimated at more than 0.5 Billion USD.  A new generation OCT technology was developed, dramatically increasing resolution and speed, achieving in vivo optical biopsy, i.e. the visualization of tissue architectural morphology in situ and in real time.  Functional extensions of OCT technology enable non-invasive, depth resolved functional assessment and imaging of tissue.  The book introduces OCT technology and applications not only from an optical and technological viewpoint, but also from the biomedical and clinical perspective. This second edition is widely extended and covers significantly more topics then the first edition of this book. The chapters are written leading intern...

  16. Applications of Optical Technology: Information Retrieval.

    Science.gov (United States)

    O'Connor, Mary Ann

    1991-01-01

    Discusses applications of optical technology, especially CD-ROMs, to information management needs. Information retrieval problems are discussed; design questions that concern the format of the data, indexing methods, and retrieval capabilities are presented; the need for updates is considered; access requirements are discussed; and the importance…

  17. Fiber Optic Communications Technology. A Status Report.

    Science.gov (United States)

    Hull, Joseph A.

    Fiber optic communications (communications over very pure glass transmission channels of diameter comparable to a human hair) is an emerging technology which promises most improvements in communications capacity at reasonable cost. The fiber transmission system offers many desirable characteristics representing improvements over conventional…

  18. Technology Development for High Efficiency Optical Communications

    Science.gov (United States)

    Farr, William H.

    2012-01-01

    Deep space optical communications is a significantly more challenging operational domain than near Earth space optical communications, primarily due to effects resulting from the vastly increased range between transmitter and receiver. The NASA Game Changing Development Program Deep Space Optical Communications Project is developing four key technologies for the implementation of a high efficiency telecommunications system that will enable greater than 10X the data rate of a state-of-the-art deep space RF system (Ka-band) for similar transceiver mass and power burden on the spacecraft. These technologies are a low mass spacecraft disturbance isolation assembly, a flight qualified photon counting detector array, a high efficiency flight laser amplifier and a high efficiency photon counting detector array for the ground-based receiver.

  19. Efficient RF energy harvesting by using a fractal structured rectenna system

    Science.gov (United States)

    Oh, Sechang; Ramasamy, Mouli; Varadan, Vijay K.

    2014-04-01

    A rectenna system delivers, collects, and converts RF energy into direct current to power the electronic devices or recharge batteries. It consists of an antenna for receiving RF power, an input filter for processing energy and impedance matching, a rectifier, an output filter, and a load resistor. However, the conventional rectenna systems have drawback in terms of power generation, as the single resonant frequency of an antenna can generate only low power compared to multiple resonant frequencies. A multi band rectenna system is an optimal solution to generate more power. This paper proposes the design of a novel rectenna system, which involves developing a multi band rectenna with a fractal structured antenna to facilitate an increase in energy harvesting from various sources like Wi-Fi, TV signals, mobile networks and other ambient sources, eliminating the limitation of a single band technique. The usage of fractal antennas effects certain prominent advantages in terms of size and multiple resonances. Even though, a fractal antenna incorporates multiple resonances, controlling the resonant frequencies is an important aspect to generate power from the various desired RF sources. Hence, this paper also describes the design parameters of the fractal antenna and the methods to control the multi band frequency.

  20. 微波整流天线研究进展%Development of Microwave Rectennas

    Institute of Scientific and Technical Information of China (English)

    付文丽; 董士伟; 董亚洲; 王颖

    2016-01-01

    整流天线是微波无线能量传输和环境能量收集的关键技术之一。文章对整流天线的应用场景作了概述,介绍了微波整流天线的主要组成及各部分的作用和特点。综述了国内外对整流天线的研究热点和研究现状,讨论了整流天线的应用前景和发展方向。%Rectenna is one of the key modules in microwave wireless power transmission and ambient energy harvesting systems.Firstly,applications of rectennas are reviewed with main components of rectenna module and their functions and characteristics investigated Secondly ,development history and recent advances of rectennas are summarized .Finally,the ap-plication prospects and development direction of rectennas are discussed .

  1. Optical nano and micro actuator technology

    CERN Document Server

    Knopf, George K

    2012-01-01

    In Optical Nano and Micro Actuator Technology, leading engineers, material scientists, chemists, physicists, laser scientists, and manufacturing specialists offer an in-depth, wide-ranging look at the fundamental and unique characteristics of light-driven optical actuators. They discuss how light can initiate physical movement and control a variety of mechanisms that perform mechanical work at the micro- and nanoscale. The book begins with the scientific background necessary for understanding light-driven systems, discussing the nature of light and the interaction between light and NEMS/MEMS d

  2. Development of 24GHz Rectenna for Receiving and Rectifying Modulated Waves

    Science.gov (United States)

    Shinohara, Naoki; Hatano, Ken

    2014-11-01

    In this paper, we show experimental results of RF-DC conversion with modulated 24GHz waves. We have already developed class-F MMIC rectenna with resonators for higher harmonics at no modulated 24GHz microwave for RF energy transfer. Dimensions of the MMIC rectifying circuit is 1 mm × 3 mm on GaAs. Maximum RF-DC conversion efficiency is measured 47.9% for a 210 mW microwave input of 24 GHz with a 120 Ω load. The class-F rectenna is based on a single shunt full-wave rectifier. For future application of a simultaneous energy and information transfer system or an energy harvesting from broadcasting waves, input microwave will be modulated. In this paper, we show an experimental result of RF-DC conversion of the class-F rectenna with 24GHz waves modulated by 16QAM as 1st modulation and OFDM as 2nd modulation.

  3. Wireless transfer of power by a 35-GHz metamaterial split-ring resonator rectenna

    CERN Document Server

    Maedler, Carsten; Yi, Adrian; Christopher, Jason; Hong, Mi K; Mertiri, Alket; House, Larry; Seren, Huseyin R; Zhang, Xin; Averitt, Richard; Mohanty, Pritiraj; Erramilli, Shyamsunder

    2016-01-01

    Wireless transfer of power via high frequency microwave radiation using a miniature split ring resonator rectenna is reported. RF power is converted into DC power by integrating a rectification circuit with the split ring resonator. The near-field behavior of the rectenna is investigated with microwave radiation in the frequency range between 20-40 GHz with a maximum power level of 17 dBm. The observed resonance peaks match those predicted by simulation. Polarization studies show the expected maximum in signal when the electric field is polarized along the edge of the split ring resonator with the gap and minimum for perpendicular orientation. The efficiency of the rectenna is on the order of 1% for a frequency of 37.2 GHz. By using a cascading array of 9 split ring resonators the output power was increased by a factor of 20.

  4. Efficient 2.45 GHz Rectenna Design with high Harmonic Rejection for Wireless Power Transmission

    Directory of Open Access Journals (Sweden)

    Zied Harouni

    2010-09-01

    Full Text Available The purpose of this work is to propose an efficient microstrip rectenna operating on ISM band with high harmonic rejection. The receiving antenna with proximity coupled feeding line implemented in a multilayer substrate. The rectenna with integrated circular sector antenna can eliminate the need for an low pass filter (LPF placed between the antenna and the diode as well as produce higher output power, with maximum conversion efficiency of 74% using a 1300 load resistor at a power density of 0.3 mW/cm square.

  5. Optical wireless communications an emerging technology

    CERN Document Server

    Capsoni, Carlo; Ghassemlooy, Zabih; Boucouvalas, Anthony; Udvary, Eszter

    2016-01-01

    This book focuses on optical wireless communications (OWC), an emerging technology with huge potential for the provision of pervasive and reliable next-generation communications networks. It shows how the development of novel and efficient wireless technologies can contribute to a range of transmission links essential for the heterogeneous networks of the future to support various communications services and traffic patterns with ever-increasing demands for higher data-transfer rates. The book starts with a chapter reviewing the OWC field, which explains different sub-technologies (visible-light, ultraviolet (UV) and infrared (IR) communications) and introduces the spectrum of application areas (indoor, vehicular, terrestrial, underwater, intersatellite, deep space, etc.). This provides readers with the necessary background information to understand the specialist material in the main body of the book, which is in four parts. The first of these deals with propagation modelling and channel characterization of ...

  6. Photonics technology development for optical fuzing

    Science.gov (United States)

    Geib, K. M.; Serkland, D. K.; Keeler, G. A.; Peake, G. M.; Mar, A.; von der Lippe, C. M.; Liu, J. J.

    2005-09-01

    This paper describes the photonic component development taking place at Sandia National Laboratories, ARDEC and the Army Research Laboratory in support of an effort to develop a robust, compact, and affordable photonic proximity sensor for munitions fuzing applications. Successful implementation of this sensor will provide a new capability for direct fire applications. The technologies under investigation for the optical fuze design covered in this paper are vertical-cavity surface-emitting lasers (VCSELs), vertical-external-cavity surface-emitting lasers (VECSELs), integrated resonant-cavity photodetectors (RCPDs), and refractive micro-optics. The culmination of this work will be low cost, robust, fully integrated, g-hardened components suitable for proximity fuzing applications. The use of advanced photonic components will enable replacement of costly assemblies that employ discrete lasers, photodetectors, and bulk optics. The integrated devices will be mass produced and impart huge savings for a variety of Army applications. The specific application under investigation is for gun-fired munitions. Nevertheless, numerous civilian uses exist for this proximity sensor in automotive, robotics and aerospace applications. This technology is also applicable to robotic ladar and short-range 3-D imaging.

  7. Analysis of the Optimum Gain of a High-Pass L-Matching Network for Rectennas

    Directory of Open Access Journals (Sweden)

    Manel Gasulla

    2017-07-01

    Full Text Available Rectennas, which mainly consist of an antenna, matching network, and rectifier, are used to harvest radiofrequency energy in order to power tiny sensor nodes, e.g., the nodes of the Internet of Things. This paper demonstrates for the first time, the existence of an optimum voltage gain for high-pass L-matching networks used in rectennas by deriving an analytical expression. The optimum gain is that which leads to maximum power efficiency of the rectenna. Here, apart from the L-matching network, a Schottky single-diode rectifier was used for the rectenna, which was optimized at 868 MHz for a power range from −30 dBm to −10 dBm. As the theoretical expression depends on parameters not very well-known a priori, an accurate search of the optimum gain for each power level was performed via simulations. Experimental results show remarkable power efficiencies ranging from 16% at −30 dBm to 55% at −10 dBm, which are for almost all the tested power levels the highest published in the literature for similar designs.

  8. Analysis of the Optimum Gain of a High-Pass L-Matching Network for Rectennas.

    Science.gov (United States)

    Gasulla, Manel; Jordana, Josep; Robert, Francesc-Josep; Berenguer, Jordi

    2017-07-25

    Rectennas, which mainly consist of an antenna, matching network, and rectifier, are used to harvest radiofrequency energy in order to power tiny sensor nodes, e.g., the nodes of the Internet of Things. This paper demonstrates for the first time, the existence of an optimum voltage gain for high-pass L-matching networks used in rectennas by deriving an analytical expression. The optimum gain is that which leads to maximum power efficiency of the rectenna. Here, apart from the L-matching network, a Schottky single-diode rectifier was used for the rectenna, which was optimized at 868 MHz for a power range from -30 dBm to -10 dBm. As the theoretical expression depends on parameters not very well-known a priori, an accurate search of the optimum gain for each power level was performed via simulations. Experimental results show remarkable power efficiencies ranging from 16% at -30 dBm to 55% at -10 dBm, which are for almost all the tested power levels the highest published in the literature for similar designs.

  9. A brief examination of optical tagging technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, Mark R.; Cahill, Paul A. (Aspecular Optics, Dayton, OH); Drummond, Timothy J.; Wilcoxon, Jess Patrick

    2003-07-01

    Presented within this report are the results of a brief examination of optical tagging technologies funded by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. The work was performed during the summer months of 2002 with total funding of $65k. The intent of the project was to briefly examine a broad range of approaches to optical tagging concentrating on the wavelength range between ultraviolet (UV) and the short wavelength infrared (SWIR, {lambda} < 2{micro}m). Tagging approaches considered include such things as simple combinations of reflective and absorptive materials closely spaced in wavelength to give a high contrast over a short range of wavelengths, rare-earth oxides in transparent binders to produce a narrow absorption line hyperspectral tag, and fluorescing materials such as phosphors, dies and chemically precipitated particles. One technical approach examined in slightly greater detail was the use of fluorescing nano particles of metals and semiconductor materials. The idea was to embed such nano particles in an oily film or transparent paint binder. When pumped with a SWIR laser such as that produced by laser diodes at {lambda}=1.54{micro}m, the particles would fluoresce at slightly longer wavelengths, thereby giving a unique signal. While it is believed that optical tags are important for military, intelligence and even law enforcement applications, as a business area, tags do not appear to represent a high on return investment. Other government agencies frequently shop for existing or mature tag technologies but rarely are interested enough to pay for development of an untried technical approach. It was hoped that through a relatively small investment of laboratory R&D funds, enough technologies could be identified that a potential customers requirements could be met with a minimum of additional development work. Only time will tell if this proves to be correct.

  10. Satellite power system (SPS). Rectenna siting: availability and distribution of nominally eligible sites

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    Siting of 60 ground receiving stations (rectennas) for the SPS may pose a problem due to the large area per rectenna (15,000 hectares, 38,000 acres) and numerous siting constraints. This study analyzes areas potentially eligible for rectenna sites by mapping, at a national scale, those conditions which would preclude rectenna construction. These exclusion variables which reflect restricted lands, topography, safety, national policy and electromagnetic (microwave) effects, have been computer encoded and tabulated. Subsequent analysis of the nine electric power planning regions that make up the contiguous states indicate an apparently adequate number of nominally eligible sites in all regions in comparison to projected electrical generation. Eligibility in this context means only that areas were not excluded in this national level analysis; more detailed investigation may reveal purely local constraints or smaller scale exclusions. A second major qualification relates to small isolated eligible areas. Eliminating individual eligible clusters with less than nine times the area of one rectenna eliminates much of the Eastern US; a four-to-one adjacent eligible area test poses no such problem. An independant study of the placement of 60 nominal sites in relation to projected load centers reveals that, even with modest transmission distances, the supply of eligible areas is not a key constraint, except perhaps in the Mid-Atlantic (Electric Reliability) Council Region. Even when several less critical (potential) exclusions are considered, more than 19% of the US is eligible; every region except Mid-Atlantic has at least 50 times an many eligible sites as are required.

  11. Satellite power system (SPS). Rectenna siting: availability and distribution of nominally eligible sites

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    Siting of 60 ground receiving stations (rectennas) for the SPS may pose a problem due to the large area per rectenna (15,000 hectares, 38,000 acres) and numerous siting constraints. This study analyzes areas potentially eligible for rectenna sites by mapping, at a national scale, those conditions which would preclude rectenna construction. These exclusion variables which reflect restricted lands, topography, safety, national policy and electromagnetic (microwave) effects, have been computer encoded and tabulated. Subsequent analysis of the nine electric power planning regions that make up the contiguous states indicate an apparently adequate number of nominally eligible sites in all regions in comparison to projected electrical generation. Eligibility in this context means only that areas were not excluded in this national level analysis; more detailed investigation may reveal purely local constraints or smaller scale exclusions. A second major qualification relates to small isolated eligible areas. Eliminating individual eligible clusters with less than nine times the area of one rectenna eliminates much of the Eastern US; a four-to-one adjacent eligible area test poses no such problem. An independant study of the placement of 60 nominal sites in relation to projected load centers reveals that, even with modest transmission distances, the supply of eligible areas is not a key constraint, except perhaps in the Mid-Atlantic (Electric Reliability) Council Region. Even when several less critical (potential) exclusions are considered, more than 19% of the US is eligible; every region except Mid-Atlantic has at least 50 times an many eligible sites as are required.

  12. Recent progress on planar lightwave circuit technology for optical communication

    Science.gov (United States)

    Takahashi, Hiroshi

    2009-11-01

    Silica waveguide planar lightwave circuit (PLC) technology is very useful for fabricating compact and high performance optical devices for optical communication. Wavelength multiplexers and optical switches for ROADM and OXC are still being developed to improve performance further. New devices for an advanced modulation format can also be fabricated with PLC technology.

  13. Dual-Functional On-Chip AlGaAs/GaAs Schottky Diode for RF Power Detection and Low-Power Rectenna Applications

    Directory of Open Access Journals (Sweden)

    Abdul Manaf Hashim

    2011-08-01

    Full Text Available A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT structure. Current-voltage (I-V measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device’s good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  14. Optical microsystems based on a nanomaterial technology

    Energy Technology Data Exchange (ETDEWEB)

    De Stefano, L [National Council of Research-Institute for Microelectronic and Microsystems-Department of Naples, Via P Castellino 111, 80131 Naples (Italy); Rotiroti, L [National Council of Research-Institute for Microelectronic and Microsystems-Department of Naples, Via P Castellino 111, 80131 Naples (Italy); Rea, I [National Council of Research-Institute for Microelectronic and Microsystems-Department of Naples, Via P Castellino 111, 80131 Naples (Italy); Iodice, M [National Council of Research-Institute for Microelectronic and Microsystems-Department of Naples, Via P Castellino 111, 80131 Naples (Italy); Rendina, I [National Council of Research-Institute for Microelectronic and Microsystems-Department of Naples, Via P Castellino 111, 80131 Naples (Italy)

    2007-10-03

    In this work, we present an optical sensor for quantitative determination of the alcohol content in hydro-alcohol mixtures, realized by using porous silicon (PSi) nanotechnology. The device is an oxidized PSi micro-cavity (PSMC) constituted by a Fabry-Perot layer between two distributed Bragg reflectors. Due to the capillary condensation, a red shift of the PSMC reflectivity spectrum is observed on exposure to vapour mixtures. The phenomenon is completely reversible. Moreover, to reduce the analysis time, we have designed the integration of the sensor in a thermally controlled lab-on-chip, by merging PSi and anodic bonding technologies. Numerical calculations have been performed to study the thermal behaviour of the integrated device.

  15. Broadband access technology for passive optical network

    Science.gov (United States)

    Chi, Sien; Yeh, Chien-Hung; Chow, Chi-Wai

    2009-01-01

    We will introduce four related topics about fiber access network technologies for PONs. First, an upstream signal powerequalizer is proposed and designed using a FP-LD in optical line terminal applied to the TDM-PON, and a 20dB dynamic upstream power range from -5 to -25dBm having a 1.7dB maximal power variation is retrieved. The fiber-fault protection is also an important issue for PON. We investigate a simple and cost-effective TDM/WDM PON system with self-protected function. Next, using RSOA-based colorless WDM-PON is also demonstrated. We propose a costeffective CW light source into RSOA for 2.5Gb/s upstream in WDM-PON together with self-healing mechanism against fiber fault. Finally, we investigate a 4Gb/s OFDM-QAM for both upstream and downstream traffic in long-reach WDM/TDM PON system under 100km transmission without dispersion compensation. As a result, we believe that these key access technologies are emerging and useful for the next generation broadband FTTH networks.

  16. Theoretical and experimental investigation of a rectenna element for microwave power transmission

    Science.gov (United States)

    Mcspadden, James O.; Yoo, Taewhan; Chang, Kai

    1992-01-01

    A microstrip measurement system has been designed to analyze packaged GaAs Schottky barrier diodes under small and large signal conditions. The nonlinear equivalent circuit parameters of the diode are determined using a small signal test method that analyzes the diode's scattering parameters at various bias levels. The experimental results of a 2.45 GHz diode are verified using a nonlinear circuit simulation program based on a multireflection algorithm. A 35 GHz rectenna has been built using a microstrip patch antenna and Ka-band mixer diode. The measured efficiency was 29 percent at 120 mW input power. A frequency selective surface is designed using an equivalent circuit model to reduce the second harmonic radiations for a 2.45 GHz rectenna. Theoretical results are found to be in fairly good agreement with experiments.

  17. Optical fiber sensing technology in the pipeline industry

    Energy Technology Data Exchange (ETDEWEB)

    Braga, A.M.B.; Llerena, R.W.A. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica]. E-mail: abraga@mec.puc-rio.br; roberan@mec.puc-rio.br; Valente, L.C.G.; Regazzi, R.D. [Gavea Sensors, Rio de Janeiro, RJ (Brazil)]. E-mail: guedes@gaveasensors.com; regazzi@gaveasensors.com

    2003-07-01

    This paper is concerned with applications of optical fiber sensors to pipeline monitoring. The basic principles of optical fiber sensors are briefly reviewed, with particular attention to fiber Bragg grating technology. Different potential applications in the pipeline industry are discussed, and an example of a pipeline strain monitoring system based on optical fiber Bragg grating sensors is presented. (author)

  18. Cognitive Heterogeneous Reconfigurable Optical Networks (CHRON): Enabling Technologies and Techniques

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Zibar, Darko; Guerrero Gonzalez, Neil;

    2011-01-01

    We present the approach of cognition applied to heterogeneous optical networks developed in the framework of the EU project CHRON: Cognitive Heterogeneous Reconfigurable Optical Network. We introduce and discuss in particular the technologies and techniques that will enable a cognitive optical ne...

  19. SiON technology for integrated optical sensors

    NARCIS (Netherlands)

    Lambeck, P.V.; Wörhoff, Kerstin; Righini, Giancarlo C.

    2002-01-01

    Silicon oxynitride (SiON)- technology has been widely accepted for realizing integrated optical devices for application in optical telecommunication. Some of the severe requirements put in this field to devices and hence to technology are more relaxed in sensing applications, but other ones pop up i

  20. Domestic Enterprise Awarded Overseas Patents On Fiber Optical Technologies

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Beijing Aerospace Times Optical-Electronic Technology Corp. Ltd was granted a patent for a fiber optical gyroscope using a low-polarization and polarization-maintaining hybrid light path in Ukraine. After filling an ordinary patent application for the technology domestically in 2006, the company filed a Paris Convention application in Ukraine to collaborate with a Ukrainian technical center in 2007.

  1. Study on Millimeter-Wave Vivaldi Rectenna and Arrays with High Conversion Efficiency

    Directory of Open Access Journals (Sweden)

    Guan-Nan Tan

    2016-01-01

    Full Text Available A novel Vivaldi rectenna operated at 35 GHz with high millimeter wave to direct current (MMW-to-DC conversion efficiency is presented and the arrays are investigated. The measured conversion efficiency is 51.6% at 35 GHz and the efficiency higher than 30% is from 33.2 GHz to 36.6 GHz when the input MMW power is 79.4 mW. The receiving Vivaldi antenna loaded with metamaterial units has a high gain of 10.4 dBi at 35 GHz. A SIW- (substrate integrated waveguide- to-microstrip transition is designed not only to integrate the antenna with the rectifying circuit directly but also to provide the DC bypass for the rectifying circuit. When the power density is 8.7 mW/cm2, the received MMW power of the antenna is 5.6 mW, and the maximum conversion efficiency of the rectenna element is 31.5%. The output DC voltage of the element is nearly the same as that of the parallel array and is about half of the series array. The DC power obtained by the 1 × 2 rectenna arrays is about two times as much as that of the element. The conversion efficiencies of the arrays are very close to that of the element. Large scale arrays could be expended for collecting more DC power.

  2. Preparing the optics technology to observe the hot universe

    DEFF Research Database (Denmark)

    Bavdaz, M.; Wille, Eric; Wallace, Kotska;

    2014-01-01

    is the Silicon Pore Optics (SPO) [1 to 23], a modular X-ray optics technology, which utilises processes and equipment developed for the semiconductor industry. The paper provides an overview of the programmatic background, the status of SPO technology and gives an outline of the development roadmap...... and activities undertaken and planned by ESA on optics, coatings [24 to 30] and test facilities [31, 33]....

  3. Label-controlled optical packet routing technologies and applications

    DEFF Research Database (Denmark)

    Koonen, A.M.J.; Yan, N.; Vegas Olmos, Juan José;

    2007-01-01

    An overview is given of various optical packet labeling techniques. The architecture and technologies are discussed for optical packet routing nodes using orthogonal labeling with optoelectronic label processing, and for nodes using time-serial labeling with all-optical time-serial label processing....... An example of a nearterm application is given, and a comparison of routing technologies is made regarding their cost and reliability aspects....

  4. Overview of fiber optics technology :industrial and military

    OpenAIRE

    Derrington, Dolores Cormack

    1989-01-01

    Fiber optics technology is being used in many applications, both in the military world and in the industrial world. A broad overview of this technology is provided, including a discussion of the fundamentals of fiber operation and component characteristics. Applications of fiber optics in both military and industrial communities is addressed, identifying specific examples in both cases. In addition, market projections and technology trends are discussed for both the milit...

  5. Alternative high-resolution lithographic technologies for optical applications

    Science.gov (United States)

    Zeitner, Uwe D.; Weichelt, Tina; Bourgin, Yannick; Kinder, Robert

    2016-03-01

    Modern optical applications have special demands on the lithographic fabrication technologies. This relates to the lateral shape of the structures as well as to their three dimensional surface profile. On the other hand optical nano-structures are often periodic which allows for the use of dedicated lithographic exposure principles. The paper briefly reviews actual developments in the field of optical nano-structure generation. Special emphasis will be given to two technologies: electron-beam lithography based on a flexible cell-projection method and the actual developments in diffractive mask aligner lithography. Both offer a cost effective fabrication alternative for high resolution structures or three-dimensional optical surface profiles.

  6. Optical Parametric Technology for Methane Measurements

    Science.gov (United States)

    Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris

    2015-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 microJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).

  7. Optical parametric technology for methane measurements

    Science.gov (United States)

    Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris

    2015-09-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 μJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).

  8. Polyguide polymeric technology for optical interconnect circuits and components

    Science.gov (United States)

    Booth, Bruce L.; Marchegiano, Joseph E.; Chang, Catherine T.; Furmanak, Robert J.; Graham, Douglas M.; Wagner, Richard G.

    1997-04-01

    The expanding information revolution has been made possible by the development of optical communication technology. To meet the escalating demand for information transmitted and processed at high data rates and the need to circumvent the growing electronic circuit bottlenecks, mass deployment of not only optical fiber networks but manufacturable optical interconnect circuits, components and connectors for interfacing fibers and electronics that meet economic and performance constraints are absolutely necessary. Polymeric waveguide optical interconnection are considered increasingly important to meet these market needs. DuPont's polyguide polymeric integrated optic channel waveguide system is thought by many to have considerable potential for a broad range of passive optical interconnect applications. In this paper the recent advances, status, and unique attributes of the technology are reviewed. Product and technology developments currently in progress including parallel optical ink organization and polymer optical interconnect technology developments funded by DARPA are used as examples to describe polyguide breadth and potential for manufacture and deployment of optical interconnection products for single and multimode telecom and datacom waveguide applications.

  9. Fabrication and Characterization of n-AlGaAs/GaAs Schottky Diode for Rectenna Device Application

    Science.gov (United States)

    Parimon, Norfarariyanti; Mustafa, Farahiyah; Manaf Hashim, Abdul; Fadzli Abd Rahman, Shaharin; Rahman, Abdul Rahim Abdul; Nizam Osman, Mohd

    2011-02-01

    Schottky diode was designed and fabricated on n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for rectenna device application. Rectenna is one of the most potential devices to form the wireless power supply which is really good at converting microwaves to DC. The processing steps used in the fabrication of Schottky diode were the conventional steps used in standard GaAs processing. Current-voltage (I-V) measurements showed that the device had rectifying properties with a barrier height of 0.5468 eV for Ni/Au metallization. The fabricated Schottky diode detected RF signals and the cut-off frequency up to 20 GHz was estimated in direct injection experiments. These preliminary results will provide a breakthrough for the direct integration with antenna towards realization of rectenna device application.

  10. Fabrication and Characterization of n-AlGaAs/GaAs Schottky Diode for Rectenna Device Application

    Energy Technology Data Exchange (ETDEWEB)

    Parimon, Norfarariyanti; Mustafa, Farahiyah; Hashim, Abdul Manaf; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul [Material Innovations and Nanoelectronics Research Group, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Osman, Mohd Nizam, E-mail: manaf@fke.utm.my [Telekom Research and Development, TM Innovation Centre, 63000 Cyberjaya (Malaysia)

    2011-02-15

    Schottky diode was designed and fabricated on n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for rectenna device application. Rectenna is one of the most potential devices to form the wireless power supply which is really good at converting microwaves to DC. The processing steps used in the fabrication of Schottky diode were the conventional steps used in standard GaAs processing. Current-voltage (I-V) measurements showed that the device had rectifying properties with a barrier height of 0.5468 eV for Ni/Au metallization. The fabricated Schottky diode detected RF signals and the cut-off frequency up to 20 GHz was estimated in direct injection experiments. These preliminary results will provide a breakthrough for the direct integration with antenna towards realization of rectenna device application.

  11. Feasibility Study of Cargo Airship Transportation Systems Powered by New Green Energy Technologies

    Science.gov (United States)

    Skuza, Jonathan R.; Park, Yeonjoon; Kim, Hyun Jung; Seaman, Shane T.; King, Glen C.; Choi, Sang H.; Song, Kyo D.; Yoon, Hargsoon; Lee, Kunik

    2014-01-01

    The development of transportation systems that use new and sustainable energy technologies is of utmost importance due to the possible future shortfalls that current transportation modes will encounter because of increased volume and costs. The introduction and further research and development of new transportation and energy systems by materials researchers at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) and the Department of Transportation are discussed in this Technical Memorandum. In this preliminary study, airship concepts were assessed for cargo transportation using various green energy technologies capable of 24-hour operation (i.e., night and day). Two prototype airships were successfully constructed and tested at LaRC to demonstrate their feasibility: one with commercially available solar cells for operation during the daytime and one with microwave rectennas (i.e., rectifying antennas) developed in-house for night-time operation. The test results indicate the feasibility of a cargo transportation airship powered by new green energy sources and wireless power technology. Future applications will exploit new green energy sources that use materials and devices recently developed or are in the process of being developed at LaRC. These include quantum well SiGe solar cells; low, mid-, and high temperature thermoelectric modules; and wireless microwave and optical rectenna devices. This study examines the need and development of new energy sources for transportation, including the current status of research, materials, and potential applications.

  12. Fabrication Technology for X-Ray Optics and Mandrels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a cross-project need for large format aspheric x-ray optics, which, demonstrate exceptionally low periodic surface errors. Available technologies to both...

  13. Precision molding of advanced glass optics: innovative production technology for lens arrays and free form optics

    Science.gov (United States)

    Pongs, Guido; Bresseler, Bernd; Bergs, Thomas; Menke, Gert

    2012-10-01

    Today isothermal precision molding of imaging glass optics has become a widely applied and integrated production technology in the optical industry. Especially in consumer electronics (e.g. digital cameras, mobile phones, Blu-ray) a lot of optical systems contain rotationally symmetrical aspherical lenses produced by precision glass molding. But due to higher demands on complexity and miniaturization of optical elements the established process chain for precision glass molding is not sufficient enough. Wafer based molding processes for glass optics manufacturing become more and more interesting for mobile phone applications. Also cylindrical lens arrays can be used in high power laser systems. The usage of unsymmetrical free-form optics allows an increase of efficiency in optical laser systems. Aixtooling is working on different aspects in the fields of mold manufacturing technologies and molding processes for extremely high complex optical components. In terms of array molding technologies, Aixtooling has developed a manufacturing technology for the ultra-precision machining of carbide molds together with European partners. The development covers the machining of multi lens arrays as well as cylindrical lens arrays. The biggest challenge is the molding of complex free-form optics having no symmetrical axis. A comprehensive CAD/CAM data management along the entire process chain is essential to reach high accuracies on the molded lenses. Within a national funded project Aixtooling is working on a consistent data handling procedure in the process chain for precision molding of free-form optics.

  14. NIF Optical Materials and Fabrication Technologies: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J H; Hawley-Fedder, R; Stolz, C J; Menapace, J A; Borden, M R; Whitman, P; Yu, J; Runkel, M; Riley, M; Feit, M; Hackel, R

    2004-02-23

    The high-energy/high-power section of the NIF laser system contains 7360 meter-scale optics. Advanced optical materials and fabrication technologies needed to manufacture the NIF optics have been developed and put into production at key vendor sites. Production rates are up to 20 times faster and per-optic costs 5 times lower than could be achieved prior to the NIF. In addition, the optics manufactured for NIF are better than specification giving laser performance better than the design. A suite of custom metrology tools have been designed, built and installed at the vendor sites to verify compliance with NIF optical specifications. A brief description of the NIF optical wavefront specifications for the glass and crystal optics is presented. The wavefront specifications span a continuous range of spatial scale-lengths from 10 {micro}m to 0.5 m (full aperture). We have continued our multi-year research effort to improve the lifetime (i.e. damage resistance) of bulk optical materials, finished optical surfaces and multi-layer dielectric coatings. New methods for post-processing the completed optic to improve the damage resistance have been developed and made operational. This includes laser conditioning of coatings, glass surfaces and bulk KDP and DKDP and well as raster and full aperture defect mapping systems. Research on damage mechanisms continues to drive the development of even better optical materials.

  15. NIF optical materials and fabrication technologies: an overview

    Science.gov (United States)

    Campbell, John H.; Hawley-Fedder, Ruth A.; Stolz, Christopher J.; Menapace, Joseph A.; Borden, Michael R.; Whitman, Pamela K.; Yu, June; Runkel, Michael J.; Riley, Michael O.; Feit, Michael D.; Hackel, Richard P.

    2004-05-01

    The high-energy/high-power section of the NIF laser system contains 7360 meter-scale optics. Advanced optical materials and fabrication technologies needed to manufacture the NIF optics have been developed and put into production at key vendor sites. Production rates are up to 20 times faster and per-optic costs 5 times lower than could be achieved prior to the NIF. In addition, the optics manufactured for NIF are better than specification giving laser performance better than the design. A suite of custom metrology tools have been designed, built and installed at the vendor sites to verify compliance with NIF optical specifications. A brief description of the NIF optical wavefront specifications for the glass and crystal optics is presented. The wavefront specifications span a continuous range of spatial scale-lengths from 10 μm to 0.5 m (full aperture). We have continued our multi-year research effort to improve the lifetime (i.e. damage resistance) of bulk optical materials, finished optical surfaces and multi-layer dielectric coatings. New methods for post-processing the completed optic to improve the damage resistance have been developed and made operational. This includes laser conditioning of coatings, glass surfaces and bulk KDP and DKDP and well as raster and full aperture defect mapping systems. Research on damage mechanisms continues to drive the development of even better optical materials.

  16. New Optical Link Technologies for HEP Experiments

    CERN Document Server

    Delurgio, P; Salvachua, B; Lopez, D; Stanek, R; Underwood, D

    2011-01-01

    As a concern with the reliability and mass of current optical links in LHC experiments, we are investigating CW lasers and light modulators as an alternative to VCSELs. In addition we are developing data links in air, utilizing steering by MEMS mirrors and optical feedback paths for the control loop. Laser, modulator, and lens systems used are described, as well as two different electronic systems for a free space steering feedback loop. Our prototype system currently operates at 1.25 Gb/s, but could be upgraded. This link works over distances of order meters. Such links might enable one to move communication lasers (e.g. VCSELs) and optical fibers out of tracking detectors, for reasons such as reliability and power consumption. Some applications for free space data links, such as local triggering and data readout and trigger-clock distribution and links for much longer distances are also discussed.

  17. Optical coherent technologies in next generation access networks

    Science.gov (United States)

    Iwatsuki, Katsumi; Tsukamoto, Katsutoshi

    2012-01-01

    This paper reviews optical coherent technologies in next generation access networks with the use of radio over fiber (RoF), which offer key enabling technologies of wired and wireless integrated and/or converged broadband access networks to accommodate rapidly widespread cloud computing services. We describe technical issues on conventional RoF based on subcarrier modulation (SCM) and their countermeasures. Two examples of RoF access networks with optical coherent technologies to solve the technical issues are introduced; a video distribution system with FM conversion and wired and wireless integrated wide-area access network with photonic up- and down-conversion.

  18. Effect of technological parameters on optical performance of fiber coupler

    Institute of Scientific and Technical Information of China (English)

    SHUAI Ci-jun; DUAN Ji-an; ZHONG Jue

    2007-01-01

    To find out the influence of technological parameters on optical performance of fused optical fiber device, the fiber coupler was served as subject investigated by using the fused biconical taper machining as experimental setup. Fused fiber coupler's optical performances such as insertion loss, excess loss, directivity and uniformity were tested with the optical test system that was constituted of tunable laser and optical spectrum analyzer. Especially the relationship between optical performance and drawing speed was investigated. The experimental results show that the optical performance is closely related to process conditions. At fused temperature of 1 200℃, there exists a drawing speed of 150 μm/s, which makes the device's performance optimum. Out of this speed region, the optical performance drops quickly. At drawing speed of 200 tm/s, the excess loss is relatively small when the fused temperature is above 1 200℃. So the technological parameters have close relationship with optical performance of the coupler, and the good performance coupler can't get until the drawing speed and fused temperature match accurately.

  19. Korea-China Optical Technology Research Centre Project

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Rhee, Y. J.; Jung, D. Y. and others

    2004-06-15

    The main objectives of this project are to establish the international collaboration basis of optical technologies between Korea and China. The combination of the Chinese advanced fundamental technologies with the Korean industrialization and commercialization infrastructures is realized, by ways of exchanging scientists and informations, holding joint seminars, cooperative utilization of research resources. On the ground of this establishment, the optical technologies of Korea are supposed to be leveled up to those of the world-most advanced. At the same time, for the improvement of mutual benefit and financial profit of both countries, providing technical advice and suggestions to the optical industries in the two countries is an another goal of this project. The state-of-the-arts of the Chinese technologies such as aerospace engineering, military defence technology, medical technology, laser fusion research, and so on, are known to be far above those of Korean and up to one of the most advanced in the world. Thus it is thought to be necessary that the acquisition of these technologies, implementation of joint research projects for technology development as well as the balanced opportunities for commercial product/sales and cooperation should be actively pursued in order to enhance the levels of Korean technologies in these fields.

  20. Recent developments in optical neuromodulation technologies

    NARCIS (Netherlands)

    Kos, A.; Loohuis, N.F.; Glennon, J.C.; Celikel, T.; Martens, G.J.M.; Tiesinga, P.H.E.; Aschrafi, A.

    2013-01-01

    The emergence of optogenetics technology facilitated widespread applications for interrogation of complex neural networks, such as activation of specific axonal pathways, previously found impossible with electrical stimulation. Consequently, within the short period of its application in neuroscience

  1. Extremely Lightweight Segmented Membrane Optical Shell Fabrication Technology for Future IR to Optical Telescope Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose that the Membrane Optical Shell Technology (MOST) substrate fabrication approach be extended with a specific focus on advanced off-axis very light weight,...

  2. CORPORATE FEED WITH DUAL SEGMENT CIRCULAR POLARIZED ARRAY RECTENNA FOR LOW POWER RF ENERGY HARVESTING

    Directory of Open Access Journals (Sweden)

    CHIA CHAO KANG

    2016-06-01

    Full Text Available This paper focuses on the investigation of the level powers that can be scavenged from the ambient environment by using corporate feed with dual segment circular polarized antenna array . It will converts the received power to direct current (DC. Being a circular polarized antenna, it has higher inductance per unit area, a good Q-factor and compact capability. The design of corporate-series feed rectenna array is to achieve a high gain antenna and maximize the RF energy received by the rectenna system at ultra low power levels. The entire structure was investigated using a combination of harmonic balance nonlinear analysis and full wave electromagnetic field analysis. The results show that 5.0 dBi gain for circular polarized antenna array can be achieved at frequency 956 MHz. When the input power of 20 dBm fed into the transmitting antenna, the maximum distance for radio frequency (RF harvesting is 5.32m. The output DC voltage for various values of incident RF power is also presented. There are noticed reasonable agreements between the simulated and measured result and the works concludes that the investigation of RF energy harvesting system was successful.

  3. An ultra-fast optical header replacement technology and its application for broadband optical packet switch

    NARCIS (Netherlands)

    Tian, B.; van Etten, Wim; Beuwer, W.A.M.; Thienpont, H.; Berghmans, F.; Danckaert, J.; Desmet, L.

    2001-01-01

    An optical header replacement technology based on Self Electro-optic Effect Devices (SEEDs) is presented. By using the measurement result of a 75 μm long SEED device, we simulate an 8 Gbps throughput is achievable. Based on the switching characteristics of SEEDs, we proposed several methods to impro

  4. Fully roll-to-roll gravure printed rectenna on plastic foils for wireless power transmission at 13.56 MHz.

    Science.gov (United States)

    Park, Hyejin; Kang, Hwiwon; Lee, Yonggil; Park, Yongsu; Noh, Jinsoo; Cho, Gyoujin

    2012-08-31

    Wireless power transmission to inexpensive and disposable smart electronic devices is one of the key issues for the realization of a ubiquitous society where sensor networks such as RFID tags, price tags, smart logos, signage and sensors could be fully interconnected and utilized by DC power of less than 0.3 W. This DC power can be provided by inductively coupled AC from a 13.56 MHz power transmitter through a rectenna, consisting of an antenna, a diode and a capacitor, which would be cheap to integrate with inexpensive smart electronic devices. To integrate the rectenna with a minimum cost, a roll-to-roll (R2R) gravure printing process has been considered to print the rectenna on plastic foils. In this paper, R2R gravure printing systems including printing condition and four different nanoparticle based inks will be reported to print the rectenna (antenna, diode and capacitor) on plastic foils at a printing speed of 8 m min(-1) and more than 90% device yield for a wireless power transmission of 0.3 W using a standard 13.56 MHz power transmitter.

  5. Military Applications of Fiber Optics Technology

    Science.gov (United States)

    1989-05-01

    I. P., D. Marcuse , and H.M. Presby, "Multimode Fiber Bandwidth: Theory and Practice," Proceedings of the IEEE, Vol. 68 , No. 10, October 1980, pp...Li, Tingye, "Structures, Parameters, and Transmission Properties of Optical Fibers," Proceedings of the IEEE, Vol. 68 , No. 10, October 1980, pp. 1175...121. Sigel, George H., Jr., "Fiber Transmission Losses in High-Radiation Fields," Proceedings of the IEEE, Vol. 68 , No. 10, October 1980, pp. 1236

  6. MPACVD processing technologies for planar integrated optics

    Science.gov (United States)

    Li, Cheng-Chung; Boudreau, Robert A.; Bowen, Terry P.

    1998-06-01

    Optical circuits based on low-loss glass waveguide are the practical and promising approaches to integrate different functional components for optical communication system. Microwave plasma assisted chemical vapor deposition produces superior quality, low birefringence, low-loss, planar waveguides for integrated optical devices. A microwave plasma initiates the chemical vapor of SiCl4, GeCl4 and oxygen. A Ge-doped silica layer thus deposited on the substrates with reasonable high growth rate. Film properties are based on various parameters, such as chemical flow rates, chamber pressure and temperature, power level and injector design. The main emphasis has been on optimizing the deposition parameters and reproducibility. An uniform, low-loss film can be made by properly balancing the precursor flows. The refractive index of deposited film can also be controlled by adjusting the flow ratio of SiCl4 and GeCl4 bubblers. Deposited films was characterized by prism coupler, loss measurement, residual stress, and composition analysis. The resulted refractive index step can be varied between 1.46 to 1.60. Waveguide can be fabricated with any desired refractive index profile. Standard photolithography defines the waveguide pattern on mask layer. Core layer was remove by the plasma dry etch which has been investigated by both reactive ion etch (RIE) and inductively coupled plasma etch. Etch rate of 3000-4000 angstrom/min has been achieved by using ICP compared to typical etch rate of 200-300 angstrom/min by using conventional RIE.

  7. Femtosecond Optical Frequency Comb Technology Principle, Operation and Application

    CERN Document Server

    Ye, Jun

    2005-01-01

    Over the last few years, there has been a remarkable convergence among the fields of ultrafast optics, optical frequency metrology, and precision laser spectroscopy. This convergence has enabled unprecedented advances in control of the electric field of the pulses produced by femtosecond mode-locked lasers. The resulting spectrum consists of a comb of sharp spectral lines with well-defined frequencies. These new techniques and capabilities are generally known as "femtosecond comb technology." They have had dramatic impact on the diverse fields of precision measurement and extreme nonlinear optical physics. This book provides an introductory description of mode-locked lasers, the connection between time and frequency descriptions of their output and the physical origins of the electric field dynamics, together with an overview of applications of femtosecond comb technology. Individual chapters go into more detail on mode-locked laser development, spectral broadening in microstructure fiber, optical parametric ...

  8. Adaptive optics technology for high-resolution retinal imaging.

    Science.gov (United States)

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2012-12-27

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging.

  9. Adaptive Optics Technology for High-Resolution Retinal Imaging

    Directory of Open Access Journals (Sweden)

    Giuseppe Lombardo

    2012-12-01

    Full Text Available Adaptive optics (AO is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging.

  10. A passive optical network based on optical code division multiplexing and time division multiple access technology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A passive optical network (PON) scheme based on optical code division multiplexing (OCDM) for the downstream traffics is proposed and analyzed in detail. In the PON, the downstream traffics are broadcasted by OCDM technology to guarantee the security, while the upstream traffics pass through the same optical fiber by the common time division multiple access (TDMA) technology to decrease the cost.This schemes are denoted as OCDM/TDMA-PON, which can be applied to an optical access network (OAN) with full services on demand, such as Internet protocol, video on demand, tele-presence and high quality audio. The proposed OCDM/TDMA-PON scheme combines advantages of PON, TDMA, and OCDM technology. Simulation results indicate that the designed scheme improves the OAN performance,and enhances flexibility and scalability of the system.

  11. Technological Aspects of Creating Large-size Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    Full Text Available A concept of the telescope creation, first of all, depends both on a choice of the optical scheme to form optical radiation and images with minimum losses of energy and information and on a choice of design to meet requirements for strength, stiffness, and stabilization characteristics in real telescope operation conditions. Thus, the concept of creating large-size telescopes, certainly, involves the use of adaptive optics methods and means.The level of technological capabilities to realize scientific and engineering ideas define a successful development of large-size optical telescopes in many respects. All developers pursue the same aim that is to raise an amount of information by increasing a main mirror diameter of the telescope.The article analyses the adaptive telescope designs developed in our country. Using a domestic ACT-25 telescope as an example, it considers creation of large-size optical telescopes in terms of technological aspects. It also describes the telescope creation concept features, which allow reaching marginally possible characteristics to ensure maximum amount of information.The article compares a wide range of large-size telescopes projects. It shows that a domestic project to create the adaptive ACT-25 super-telescope surpasses its foreign counterparts, and there is no sense to implement Euro50 (50m and OWL (100m projects.The considered material gives clear understanding on a role of technological aspects in development of such complicated optic-electronic complexes as a large-size optical telescope. The technological criteria of an assessment offered in the article, namely specific informational content of the telescope, its specific mass, and specific cost allow us to reveal weaknesses in the project development and define a reserve regarding further improvement of the telescope.The analysis of results and their judgment have shown that improvement of optical largesize telescopes in terms of their maximum

  12. Optical technologies and the publishing revolution

    Science.gov (United States)

    Thorman, Chris

    1990-08-01

    Several factors work together to make the publishing industry among the most demanding environments for extremely high performance mass storage systems. The first factor is the size and volume of the images, text sources, and other data that must be gathered, considered, selected and altered as a publication is produced. Mother factor is the speed with which these operations must be performed in order to support a publishing staff in its fast paced and time critical work. A third factor is the intensive level of interpersonal collaboration that is a fundamental part of the publication process. The requirements of the publishing industry are only beginning to be addressed by currently available technologies. Examples of some typical publishing processes are presented with an analysis of the storage and computational capabilities that would be required to support them at their current level of flexibility. An examination of existing storage and network technologies points out that there is much need for improvement in the areas of shared storage and retrieval systems for publishing. Data rates of existing systems remain inadequate for the needs of image intensive publication work.

  13. Easing wave optics understanding through technology

    Science.gov (United States)

    Garg, Amit; Kachru, Priyanka; Singh, Shatakshi; Tiwary, Rishabh

    2014-09-01

    As part of the course curriculum of Physics of class XII, students do a comprehensive theoretical study about the wave nature of light specially related to interference, diffraction and polarisation. But, these studies are not backed up by any experiments. This makes the understanding of these complex topics very difficult. The purpose of the present outreach activity is to make students do many hands-on experiments on the above topics. The experiments have been designed keeping in mind the various theoretical concepts taught to the students. The studies are helpful in making the students understand fringe formation, intensity variation across the fringes formed helping them compare interference and diffraction fringes, dependence of fringe separation on various parameters, linear polarization, Malus' law and Brewster's law. The tools used to perform the experiments include He-Ne/ diode laser(s), Laptop/Digital Storage Oscilloscope, CCD, various optical components like set of polarisers and analysers, glass plate and hardware components like single slit and double slit. The class XII students are divided into batches and each batch is handled by a team of three University of Delhi at ANDC SPIE student chapter members. The gains of the activity are measured through pre and post-tests.

  14. Elastic optical networks architectures, technologies, and control

    CERN Document Server

    Velasco, Luis

    2016-01-01

    This book addresses challenges and potential solutions surrounding the dramatic yearly increases in bandwidth demand. The editors discuss the predicament surrounding current growth, which is predicted to continue because of the proliferation of disruptive, high bandwidth applications like video and cloud applications. They also discuss that in addition to growth, traffic will become much more dynamic, both in time and direction. The contributors show how large changes in traffic magnitude during a 24-hour period can be observed, as day-time business users have very different demands to evening-time residential customers, and how this plays into addressing future challenges. In addition, they discuss potential solutions for the issues surrounding situations where multiple content and cloud service providers offer competing services, causing the traffic direction to become more dynamic. The contributors discuss that although the WDM transponder technology can be upgraded to 100Gb/s in the short to medium term, ...

  15. All-Optical Switches in Optical Time-Division Multiplexing Technology: Theory,Experience and Application

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Optical time division multiplexing (OTDM) is one of thepromisinig ways for the future high-speed optical fiber communication networks. All-optical switch is, being one of the core technologies of OTDM systems and networks, crucial to realize the various signal processes including time-division demultiplexing, packet switching, all-optical regenerating and so on. This thesis mainly studies various all-optical switch technologies and their utilization in the fields of all-optical signal processings in the OTDM systems and networks. The main jobs are listed as follows.(1) A novel all-optical ultrafast demultiplexing scheme using the soliton self-trapping effect in birefringent fiber is proposed.(2) The demultiplexing performance of the Nonlinear Optical Loop Mirror(NOLM) is thoroughly analyzed and its optimization is further discussed.(3) The performance analysis and the configuration optimization of the all-optical switches based on the Semiconductor Optical Amplifier(SOA) are systematically presented. The speed limitation of the all-optical SOA switches induced by the fast gain depletion of SOA is discussed. Besides, a novel SOA switch is proposed, which adopts the asymmetric Mach-Zehnder Interferometer configuration.(4) The 8×2\\^5 Gb/s OTDM experimental transmission system along 105 km standard fiber is realized using the NOLM demultiplexer.(5) The NOLM switch is used to realize the all-optical 3R regeneration of 2\\^5 Gb/s Return-to-Zero signal.(6) The feasibility and limitation of the all-optical SOA packet switch is discussed. And a developed MZI configuration of SOA packet switch is further shown to improve the packet switching performance. Finally, an all-optical packet dropping node suitable in the networks with ring or bus configuration and an all-optical packet switching node in the ShuffleNet networks are proposed to show the feasibility of all-optical packet switching through combining the all-optical switches and the reasonable logic decisions.

  16. Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy

    OpenAIRE

    Fujimoto, James G.; Pitris, Costas; Boppart, Stephen A.; Brezinski, Mark E.

    2000-01-01

    Optical coherence tomography (OCT) is an emerging technology for performing high-resolution cross-sectional imaging. OCT is analogous to ultrasound imaging, except that it uses light instead of sound. OCT can provide cross-sectional images of tissue structure on the micron scale in situ and in real time. Using OCT in combination with catheters and endoscopes enables high-resolution intraluminal imaging of organ systems. OCT can function as a type of optical biopsy and is a powerful imaging te...

  17. Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology

    Science.gov (United States)

    Chullen, Cinda

    2015-01-01

    Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology" project will investigate newly developed optic gas sensors delivered from a Small Business Innovative Research (SBIR) Phase II effort. A ventilation test rig will be designed and fabricated to test the sensors while integrated with a Suited Manikin Test Apparatus (SMTA). Once the sensors are integrated, a series of test points will be completed to verify that the sensors can withstand Advanced Suit Portable Life Support System (PLSS) environments and associated human metabolic profiles for changes in pressure and levels of Oxygen (ppO2), carbon dioxide (ppCO2), and humidity (ppH2O).

  18. Design, Optimization and Fabrication of a 28.3...THz Nano-Rectenna for Infrared Detection and Rectification

    KAUST Repository

    Gadalla, M. N.

    2014-03-06

    The increasing energy demands of the world\\'s population and the quickly diminishing fossil fuel reserves together suggest the urgent need to secure long-lasting alternative and renewable energy resources. Here, we present a THz antenna integrated with a rectifier (rectenna) for harvesting infrared energy. We demonstrate a resonant bowtie antenna that has been optimized to produce highly enhanced localized fields at the bow tip. To benefit from this enhancement, the rectifier is realized between the overlapped antenna\\'s arms using a 0.7...nm copper oxide. The thin film diode offers low zero bias resistance of 500...?, thus improving the impedance matching with the antenna. In addition, the rectenna prototype demonstrates high zero bias responsivity (4...A/W), which is critical in producing DC current directly from THz signals without the application of an external electric source, particularly for energy harvesting applications.

  19. Ultrafast optical imaging technology: principles and applications of emerging methods

    Science.gov (United States)

    Mikami, Hideharu; Gao, Liang; Goda, Keisuke

    2016-09-01

    High-speed optical imaging is an indispensable technology for blur-free observation of fast transient dynamics in virtually all areas including science, industry, defense, energy, and medicine. High temporal resolution is particularly important for microscopy as even a slow event appears to occur "fast" in a small field of view. Unfortunately, the shutter speed and frame rate of conventional cameras based on electronic image sensors are significantly constrained by their electrical operation and limited storage. Over the recent years, several unique and unconventional approaches to high-speed optical imaging have been reported to circumvent these technical challenges and achieve a frame rate and shutter speed far beyond what can be reached with the conventional image sensors. In this article, we review the concepts and principles of such ultrafast optical imaging methods, compare their advantages and disadvantages, and discuss an entirely new class of applications that are possible using them.

  20. 2nd Topical Workshop on Laser Technology and Optics Design

    CERN Document Server

    2013-01-01

    Lasers have a variety of applications in particle accelerator operation and will play a key role in the development of future particle accelerators by improving the generation of high brightness electron and exotic ion beams and through increasing the acceleration gradient. Lasers will also make an increasingly important contribution to the characterization of many complex particle beams by means of laser-based beam diagnostics methods. The second LANET topical workshop will address the key aspects of laser technology and optics design relevant to laser application to accelerators. The workshop will cover general optics design, provide an overview of different laser sources and discuss methods to characterize beams in details. Participants will be able to choose from a range of topical areas that go deeper in more specific aspects including tuneable lasers, design of transfer lines, noise sources and their elimination and non-linear optics effects. The format of the workshop will be mainly training-based wit...

  1. DESIGNING FEATURES OF POWER OPTICAL UNITS FOR TECHNOLOGICAL EQUIPMENT

    Directory of Open Access Journals (Sweden)

    M. Y. Afanasiev

    2016-03-01

    Full Text Available This paper considers the question of an optical unit designing for transmitting power laser radiation through an optical fiber. The aim of this work is designing a simple construction unit with minimized reflection losses. The source of radiation in the optical unit described below is an ultraviolet laser with diode pumping. We present the general functioning scheme and designing features for the three main parts: laser beam deflecting system, laser beam dump and optical unit control system. The described laser beam deflection system is composed of a moving flat mirror and a spherical scattering mirror. Comparative analysis of the production technology for such mirrors was carried out, and, as a result, the decision was made to produce both mirrors of 99.99 % pure molybdenum without coating. A moving mirror deflects laser emission from a source through a fiber or deflects it on a spherical mirror and into the laser beam dump, moreover, switching from one position to another occurs almost immediately. It is shown that a scattering mirror is necessary, otherwise, the absorbing surface of the beam dump is being worn out irregularly. The laser beam dump is an open conical cavity, in which the conical element with its spire turned to the emission source is placed. Special microgeometry of the internal surface of the beam dump is suggested for the better absorption effect. An optical unit control system consists of a laser beam deflection system, laser temperature sensor, deflection system solenoid temperature sensor, and deflection mirror position sensor. The signal processing algorithm for signals coming from the sensors to the controller is described. The optical unit will be used in special technological equipment.

  2. Ultra-high-speed serial optical communications: Enabling technologies

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen

    2008-01-01

    This paper will present recently identified and demonstrated key technologies for ultra-high-speed serial communications. Certain key components such as stabilised highly non-linear fibre switches, periodically poled Lithium Niobate devices and semiconductor optical amplifiers will be described...... with demonstrations of 640 Gb/s transmission, clock recovery, demultiplexing, add/drop, wavelength conversion and channel identification. Timing jitter tolerance is addressed through techniques to create flat-top pulses....

  3. 3rd International Conference on Photonics, Optics and Laser Technology

    CERN Document Server

    Raposo, Maria

    2016-01-01

    The book provides a collection of selected papers presented to the third International Conference on Photonics, Optics and Laser Technology PHOTOPTICS 2015, covering the three main conference scientific areas of “Optics”, “Photonics” and “Lasers”. The selected papers, in two classes full and short, result from a double blind review carried out by the conference program committee members which are highly qualified experts in conference topic areas.

  4. 2nd International Conference on Photonics, Optics and Laser Technology

    CERN Document Server

    Raposo, Maria

    2016-01-01

    This collection of the selected papers presented to the Second International Conference on Photonics, Optics and laser technology PHOTOPTICS 2014 covers the three main conference scientific areas of “Optics”, “Photonics” and “Lasers”. The selected papers, in two classes full and short, result from a double blind review carried out by conference Program Committee members who are highly qualified experts in the conference topic areas.

  5. Design of a rectenna system for GSM-900 band using novel broadside 2 × 1 array antenna

    Directory of Open Access Journals (Sweden)

    Manish Singh

    2017-05-01

    Full Text Available In this study, a rectenna operating at the GSM-900 frequency band has been fabricated and tested. This rectenna composed of a 2 × 1 T-shaped monopole array antenna and an energy processing circuit. In order to reduce the gap between adjacent antenna elements in the array structure, the proposed array antenna uses a ground stub. Compared with other array antennas, the proposed array antenna with the ground stub reduces the size up to 50% without affecting the gain and bandwidth. An antenna prototype is fabricated and experimentally tested. The measured antenna's gain and bandwidth are 3.2 and 152 MHz, respectively, hence showing its suitability for radio-frequency (RF energy harvesting application. For this to be feasible, the developed array antenna is matched with the rectifier at GSM-900 using a single stub matching network. The measured result demonstrates that the proposed rectifier circuit offers the conversion efficiency of 21.2 and 63.6% for an input power of −20 and 0 dBm, respectively. Finally, the rectifier performance is attested experimentally with the developed array antenna. The rectenna's measured RF-to-dc conversion efficiency was found to be 60% at the far-field distance from the transmitting antenna.

  6. Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy1

    Science.gov (United States)

    Fujimoto, James G; Pitris, Costas; Boppart, Stephen A; Brezinski, Mark E

    2000-01-01

    Abstract Optical coherence tomography (OCT) is an emerging technology for performing high-resolution cross-sectional imaging. OCT is analogous to ultrasound imaging, except that it uses light instead of sound. OCT can provide cross-sectional images of tissue structure on the micron scale in situ and in real time. Using OCT in combination with catheters and endoscopes enables high-resolution intraluminal imaging of organ systems. OCT can function as a type of optical biopsy and is a powerful imaging technology for medical diagnostics because unlike conventional histopathology which requires removal of a tissue specimen and processing for microscopic examination, OCT can provide images of tissue in situ and in real time. OCT can be used where standard excisional biopsy is hazardous or impossible, to reduce sampling errors associated with excisional biopsy, and to guide interventional procedures. In this paper, we review OCT technology and describe its potential biomedical and clinical applications. PMID:10933065

  7. Coherent DWDM technology for high speed optical communications

    Science.gov (United States)

    Saunders, Ross

    2011-10-01

    The introduction of coherent digital optical transmission enables a new generation of high speed optical data transport and fiber impairment mitigation. An initial implementation of 40 Gb/s coherent systems using Dual Polarization Quadrature Phase Shift Keying (DP-QPSK) is already being installed in carrier networks. New systems running at 100 Gb/s DP-QPSK data rate are in development and early technology lab and field trial phase. Significant investment in the 100 Gb/s ecosystem (optical components, ASICs, transponders and systems) bodes well for commercial application in 2012 and beyond. Following in the footsteps of other telecommunications fields such as wireless and DSL, we can expect coherent optical transmission to evolve from QPSK to higher order modulations schemes such as Mary PSK and/or QAM. This will be an interesting area of research in coming years and poses significant challenges in terms of electro-optic, DSP, ADC/DAC design and fiber nonlinearity mitigation to reach practical implementation ready for real network deployments.

  8. Overview of deformable mirror technologies for adaptive optics and astronomy

    Science.gov (United States)

    Madec, P.-Y.

    2012-07-01

    From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.

  9. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

    2003-06-01

    Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real

  10. Signature Optical Cues: Emerging Technologies for Monitoring Plant Health

    Directory of Open Access Journals (Sweden)

    Anand K. Asundi

    2008-05-01

    Full Text Available Optical technologies can be developed as practical tools for monitoring plant health by providing unique spectral signatures that can be related to specific plant stresses. Signatures from thermal and fluorescence imaging have been used successfully to track pathogen invasion before visual symptoms are observed. Another approach for noninvasive plant health monitoring involves elucidating the manner with which light interacts with the plant leaf and being able to identify changes in spectral characteristics in response to specific stresses. To achieve this, an important step is to understand the biochemical and anatomical features governing leaf reflectance, transmission and absorption. Many studies have opened up possibilities that subtle changes in leaf reflectance spectra can be analyzed in a plethora of ways for discriminating nutrient and water stress, but with limited success. There has also been interest in developing transgenic phytosensors to elucidate plant status in relation to environmental conditions. This approach involves unambiguous signal creation whereby genetic modification to generate reporter plants has resulted in distinct optical signals emitted in response to specific stressors. Most of these studies are limited to laboratory or controlled greenhouse environments at leaf level. The practical translation of spectral cues for application under field conditions at canopy and regional levels by remote aerial sensing remains a challenge. The movement towards technology development is well exemplified by the Controlled Ecological Life Support System under development by NASA which brings together technologies for monitoring plant status concomitantly with instrumentation for environmental monitoring and feedback control.

  11. Technology Development for Nickel X-Ray Optics Enhancement

    Science.gov (United States)

    Bubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell

    2008-01-01

    We are developing grazing-incidence x-ray optics for high-energy astrophysics using the electroform-nickel replication process. In this process, mirror shells are fabricated by replication off super-polished cylindrical mandrels. The mirrors fabricated using this process have a demonstrated optical performance at the level of 11-12 arc seconds resolution (HPD) for 30 keV x rays. Future missions demand ever higher angular resolutions and this places stringent requirements on the quality of the mandrels, the precision of the metrology, and the mounting and alignment of the mirror shells in their housings. A progress report on recent technology developments in all these areas will be presented along with a discussion on possible post fabrication, in-situ improvement of the x-ray mirrors quality.

  12. Optimizing Fiber Topologies for WDM Optical Networks Based on Multi-Granularity Optical Switching Technology

    Institute of Scientific and Technical Information of China (English)

    LI Junjie; ZHOU Bingkun; ZHANG Hanyi; LI Yanhe

    2006-01-01

    For the quality of service (QoS) and fairness considerations, the hop counts of various lightpaths in a wavelength division multiplexing (WDM) optical network should be short and compact. The development of multi-granularity optical switching technology has made it possible to construct various fiber topologies over a fixed physical topology. This paper describes a fiber topology design (FTD) problem, which minimizes the maximum number of required fibers in the physical links for a maximum lightpath hop count in the fiber topology. After the formular description for the FTD problem, a method was given to obtain the lower bound on the maximum number of required fibers. For large or moderate scale networks, three heuristic algorithms are given to efficiently solve the FTD problem. This study gives a new way to optimize the resource configuration performance in WDM optical networks at the topology level and proves its effectiveness via both analyses and numerical experiments.

  13. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibility of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).

  14. Health information management using optical storage technology: case studies.

    Science.gov (United States)

    Kohn, D

    1992-05-01

    All the health care facilities examined in the case studies addressed several important organizational issues before and during the installation of their systems. All the facilities examined employee commitment. The prudent managers considered how easily their employees adapt to changes in their jobs and work environment. They considered how enthusiastic cooperation can be fostered in the creation of a liberated and reengineered office. This was determined not only by each individual's reaction to change, but also by the health care facility's track record with other system installations. For example, document image, diagnostic image, and coded data processing systems allow the integration of divergent health care information systems within complex institutions. Unfortunately, many institutions are currently struggling with how to create an information management architecture that will integrate their mature systems, such as their patient care and financial systems. Information managers must realize that if optical storage technology-based systems are used in a strategic and planned fashion, these systems can act as focal points for systems integration, not as promises to further confuse the issue. Another issue that needed attention in all the examples was the work environment. The managers considered how the work environment was going to affect the ability to integrate optical image and data systems into the institution. For example, many of these medical centers have created alliances with clinics, HMOs, and large corporate users of medical services. This created a demand for all or part of the health information outside the confines of the original institution. Since the work environment is composed of a handful of factors such as merged medical services, as many work environment factors as possible were addressed before application of the optical storage technology solution in the institutions. And finally, the third critical issue was the organization of work

  15. EDITORIAL: Special issue on optical neural engineering: advances in optical stimulation technology Special issue on optical neural engineering: advances in optical stimulation technology

    Science.gov (United States)

    Shoham, Shy; Deisseroth, Karl

    2010-08-01

    Neural engineering, itself an 'emerging interdisciplinary research area' [1] has undergone a sea change over the past few years with the emergence of exciting new optical technologies for monitoring, stimulating, inhibiting and, more generally, modulating neural activity. To a large extent, this change is driven by the realization of the promise and complementary strengths that emerging photo-stimulation tools offer to add to the neural engineer's toolbox, which has been almost exclusively based on electrical stimulation technologies. Notably, photo-stimulation is non-contact, can in some cases be genetically targeted to specific cell populations, can achieve high spatial specificity (cellular or even sub-cellular) in two or three dimensions, and opens up the possibility of large-scale spatial-temporal patterned stimulation. It also offers a seamless solution to the problem of cross-talk generated by simultaneous electrical stimulation and recording. As in other biomedical optics phenomena [2], photo-stimulation includes multiple possible modes of interaction between light and the target neurons, including a variety of photo-physical and photo-bio-chemical effects with various intrinsic components or exogenous 'sensitizers' which can be loaded into the tissue or genetically expressed. Early isolated reports of neural excitation with light date back to the late 19th century [3] and to Arvanitaki and Chalazonitis' work five decades ago [4]; however, the mechanism by which these and other direct photo-stimulation, inhibition and modulation events [5-7] took place is yet unclear, as is their short- and long-term safety profile. Photo-chemical photolysis of covalently 'caged' neurotransmitters [8, 9] has been widely used in cellular neuroscience research for three decades, including for exciting or inhibiting neural activity, and for mapping neural circuits. Technological developments now allow neurotransmitters to be uncaged with exquisite spatial specificity (down to

  16. Thin film technologies for optoelectronic components in fiber optic communication

    Science.gov (United States)

    Perinati, Agostino

    1998-02-01

    'The Asian Routes Towards the Global Information Society' and 'Towards a Strategic Planning for the Global Information Society' will be the forum themes of 'Asia Telecom 97' and 'Telecom Interactice 97' events respectively, to be held by the International Telecommunication Union (ITU) in order to further telecommunication development around the world. International telecommunications network affects our life by keeping us in touch, bringing us world news and underpinning the global economy. Global tele-economy, global information infrastructure, global information society terms are more and more used to indicate the evolution towards an information- driven world where the access to information, communication and technologies is essential to the economic and social development in every country. Telecommunication industry can strongly contribute to this evolution together with broadcasting and computer industry, and fiber optic communications are expected to continue to grow up and share a relevant part of the total telecom market. In 1995 telecom market shown a 3.8 percent worldwide investment growth reaching a 545 billion value. According to 'Kessler Marketing Intelligence (KMI) Corp.' analysis of fiberoptics and multimedia market the amount of cabled fiber installed in U.S. will be around 11 million fiber-km in 1997 and 15 million fiber-km are predicted in the year 2000. Between 1995 and 1998 the undersea industry is estimated to deal with 13.9 billion as additional undersea cable systems investment in the global telecom network. In China beside satellite telecom stations and digital microwave systems 22 fiber optic backbones have been realized and another 23 systems are expected to be built in the Ninth Five-Year National Plan (1996 to approximately 2000) with a total length of nearly 30,000 sheat-km. The study, Fiber and Fiberoptic Cable Markets in China, recently released by KMI Corp. shows that fiber optic cable installation by MPT and other network operators

  17. Optical Characterization of Different Thin Film Module Technologies

    Directory of Open Access Journals (Sweden)

    R. Ebner

    2015-01-01

    Full Text Available For a complete quality control of different thin film module technologies (a-Si, CdTe, and CIS a combination of fast and nondestructive methods was investigated. Camera-based measurements, such as electroluminescence (EL, photoluminescence (PL, and infrared (IR technologies, offer excellent possibilities for determining production failures or defects in solar modules which cannot be detected by means of standard power measurements. These types of optical measurement provide high resolution images with a two-dimensional distribution of the characteristic features of PV modules. This paper focuses on quality control and characterization using EL, PL, and IR imaging with conventional cameras and an alternative excitation source for the PL-setup.

  18. 78 FR 17187 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Science.gov (United States)

    2013-03-20

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... to grant to Fiber Optic Sensor Systems Technology Corporation, a revocable, nonassignable, exclusive... its intent to grant to Fiber Optic Sensor Systems Technology Corporation a revocable, nonassignable...

  19. Activities report of the Division of Optical Technology (FOA 33)

    Science.gov (United States)

    Letalick, Dietmar

    1988-11-01

    Research on hydro-optics; laser remote sensing; coherent CO2 laser radar; optical signatures; atmospheric transmission; ionizing radiation effects on electronics; fiber optics; optical processing; and terrain models is summarized.

  20. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    Directory of Open Access Journals (Sweden)

    Merino D

    2016-04-01

    Full Text Available David Merino, Pablo Loza-Alvarez The Institute of Photonic Sciences (ICFO, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain Abstract: Adaptive optics (AO retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. Keywords: high-resolution, in vivo retinal imaging, AOSLO

  1. Review on an Advanced High-Temperature Measurement Technology: The Optical Fiber Thermometry

    Directory of Open Access Journals (Sweden)

    Y. B. Yu

    2009-01-01

    Full Text Available Optical fiber thermometry technology for high-temperature measurement is briefly reviewed in this paper. The principles, characteristics, recent progresses and advantages of the technology are described. Examples of using the technology are introduced. Many blackbody, infrared, and fluorescence optical thermometers are developed for practical applications.

  2. Precision Membrane Optical Shell (PMOS) Technology for Lightweight LIDAR Apertures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision membrane optical shell (PMOS) technology is an innovative combination of 1) ultra lightweight optically smooth membrane thin films, 2) advanced mold based...

  3. Precision Membrane Optical Shell (PMOS) Technology for RF/Microwave to Lightweight LIDAR Apertures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Membrane Optical Shell Technology (MOST) is an innovative combination of 1) very low areal density (40 to 200g/m2) optically smooth (<20 nm rms), metallic coated...

  4. Silica optical fiber technology for devices and components design, fabrication, and international standards

    CERN Document Server

    Oh, Kyunghwan

    2012-01-01

    From basic physics to new products, Silica Optical Fiber Technology for Device and Components examines all aspects of specialty optical fibers. Moreover, the inclusion of the latest international standards governing optical fibers enables you to move from research to fabrication to commercialization. Reviews all the latest specialty optical fiber technologies, including those developed for high capacity WDM applications; broadband fiber amplifiers; fiber filleters based on periodic coupling; fiber branching devices; and fiber terminations Discusses key differences among sing

  5. Are Optical Gas Imaging Technologies Effective For Methane Leak Detection?

    Science.gov (United States)

    Ravikumar, Arvind P; Wang, Jingfan; Brandt, Adam R

    2017-01-03

    Concerns over mitigating methane leakage from the natural gas system have become ever more prominent in recent years. Recently, the U.S. Environmental Protection Agency proposed regulations requiring use of optical gas imaging (OGI) technologies to identify and repair leaks. In this work, we develop an open-source predictive model to accurately simulate the most common OGI technology, passive infrared (IR) imaging. The model accurately reproduces IR images of controlled methane release field experiments as well as reported minimum detection limits. We show that imaging distance is the most important parameter affecting IR detection effectiveness. In a simulated well-site, over 80% of emissions can be detected from an imaging distance of 10 m. Also, the presence of "superemitters" greatly enhance the effectiveness of IR leak detection. The minimum detectable limits of this technology can be used to selectively target "superemitters", thereby providing a method for approximate leak-rate quantification. In addition, model results show that imaging backdrop controls IR imaging effectiveness: land-based detection against sky or low-emissivity backgrounds have higher detection efficiency compared to aerial measurements. Finally, we show that minimum IR detection thresholds can be significantly lower for gas compositions that include a significant fraction nonmethane hydrocarbons.

  6. Progress in Nano-Electro-Optics VII Chemical, Biological, and Nanophotonic Technologies for Nano-Optical Devices and Systems

    CERN Document Server

    Ohtsu, Motoichi

    2010-01-01

    This book focuses on chemical and nanophotonic technology to be used to develop novel nano-optical devices and systems. It begins with temperature- and photo-induced phase transition of ferromagnetic materials. Further topics include: energy transfer in artificial photosynthesis, homoepitaxial multiple quantum wells in ZnO, near-field photochemical etching and nanophotonic devices based on a nonadiabatic process and optical near-field energy transfer, respectively and polarization control in the optical near-field for optical information security. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.

  7. Endoscopic optical coherence tomography: technologies and clinical applications [Invited].

    Science.gov (United States)

    Gora, Michalina J; Suter, Melissa J; Tearney, Guillermo J; Li, Xingde

    2017-05-01

    In this paper, we review the current state of technology development and clinical applications of endoscopic optical coherence tomography (OCT). Key design and engineering considerations are discussed for most OCT endoscopes, including side-viewing and forward-viewing probes, along with different scanning mechanisms (proximal-scanning versus distal-scanning). Multi-modal endoscopes that integrate OCT with other imaging modalities are also discussed. The review of clinical applications of endoscopic OCT focuses heavily on diagnosis of diseases and guidance of interventions. Representative applications in several organ systems are presented, such as in the cardiovascular, digestive, respiratory, and reproductive systems. A brief outlook of the field of endoscopic OCT is also discussed.

  8. Adaptive optics scanning laser ophthalmoscope imaging: technology update.

    Science.gov (United States)

    Merino, David; Loza-Alvarez, Pablo

    2016-01-01

    Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it.

  9. Diseño de una "rectenna" en la banda WiFi de 2.45GHz para aplicaciones de captación de energía electromagnética : energy harvesting

    OpenAIRE

    Siljeström Galiana, Paola

    2015-01-01

    Este proyecto trata sobre el proceso llevado a cabo para diseñar y finalmente implementar una antena rectificadora. Comúnmente conocida como rectenna, este dispositivo no es más que la unión de dos elementos, una antena y un rectificador. Una rectenna es un tipo de antena que transforma la señal alterna recibida por la antena en una señal continua. Este proyecto tratara de lograr el dispositivo en cuestión usando una antena de parche y un rectificador de onda media. La rectenna en cuestión...

  10. Nonlinear photon-assisted tunneling transport in optical gap antennas.

    Science.gov (United States)

    Stolz, Arnaud; Berthelot, Johann; Mennemanteuil, Marie-Maxime; Colas des Francs, Gérard; Markey, Laurent; Meunier, Vincent; Bouhelier, Alexandre

    2014-05-14

    We introduce strongly coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical gap antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion involving d-band electrons and demonstrate that a simple two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.

  11. 75 FR 34988 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Science.gov (United States)

    2010-06-21

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... Navy hereby gives notice of its intent to grant to Fiber Optic Sensor Systems Technology Corporation a.... Patent No. 7,149,374: Fiber Optic Pressure Sensor, Navy Case No. 84,557.//U.S. Patent No. 7,379,630...

  12. 77 FR 73456 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Science.gov (United States)

    2012-12-10

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... Navy hereby gives notice of its intent to grant to Fiber Optic Sensor Systems Technology Corporation a... described in U.S. Patent No. 7,020,354: Intensity Modulated Fiber Optic Pressure Sensor, Navy Case No. 83...

  13. Deployment of a Testbed in a Brazilian Research Network using IPv6 and Optical Access Technologies

    Science.gov (United States)

    Martins, Luciano; Ferramola Pozzuto, João; Olimpio Tognolli, João; Chaves, Niudomar Siqueira De A.; Reggiani, Atilio Eduardo; Hortêncio, Claudio Antonio

    2012-04-01

    This article presents the implementation of a testbed and the experimental results obtained with it on the Brazilian Experimental Network of the government-sponsored "GIGA Project." The use of IPv6 integrated to current and emerging optical architectures and technologies, such as dense wavelength division multiplexing and 10-gigabit Ethernet on the core and gigabit capable passive optical network and optical distribution network on access, were tested. These protocols, architectures, and optical technologies are promising and part of a brand new worldwide technological scenario that has being fairly adopted in the networks of enterprises and providers of the world.

  14. X-Ray Pore Optics Technologies and Their Application in Space Telescopes

    OpenAIRE

    Bavdaz, Marcos; Collon, Max; Beijersbergen, Marco; Wallace, Kotska; Wille, Eric

    2010-01-01

    Silicon Pore Optics (SPO) is a new X-ray optics technology under development in Europe, forming the ESA baseline technology for the International X-ray Observatory candidate mission studied jointly by ESA, NASA, and JAXA. With its matrix-like structure, made of monocrystalline-bonded Silicon mirrors, it can achieve the required angular resolution and low mass density required for future large X-ray observatories. Glass-based Micro Pore Optics (MPO) achieve modest angular resolution compared t...

  15. Optical coherence tomography: technology and applications (biological and medical physics, biomedical engineering)

    CERN Document Server

    2013-01-01

    Optical coherence tomography (OCT) is the optical analog of ultrasound imaging and is emerging as a powerful imaging technique that enables non-invasive, in vivo, high resolution, cross-sectional imaging in biological tissue. This book introduces OCT technology and applications not only from an optical and technological viewpoint, but also from biomedical and clinical perspectives. The chapters are written by leading research groups, in a style comprehensible to a broad audience.

  16. Angle-of-arrival reception for optical wireless location technology.

    Science.gov (United States)

    Arafa, Ahmed; Dalmiya, Sumant; Klukas, Richard; Holzman, Jonathan F

    2015-03-23

    An optical wireless location (OWL) system is introduced for indoor positioning. The OWL system makes use of a mobile photoreceiver that facilitates triangulation by measuring angle-of-arrival (AOA) bearings from LEDs in an optical beacon grid. The photoreceiver has three photodiodes (PDs), arranged in a corner-cube, to facilitate differential photocurrent sensing of the incident light AOA, by way of azimuthal ϕ and polar θ angles. The AOA error for indoor positioning is characterized empirically. Optical AOA positioning is shown to have a fundamental advantage over known optical received signal strength (RSS) positioning, as AOA estimation is insensitive to power and alignment imbalances of the optical beacon grid. The OWL system is built, and a performance comparison is carried out between optical AOA and RSS positioning. It is shown that optical AOA positioning can achieve a mean 3-D positioning error of only 5 cm. Experimental design and future prospects of optical AOA positioning are discussed.

  17. Implementation of 3D Optical Scanning Technology for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Abdil Kuş

    2009-03-01

    Full Text Available Reverse engineering (RE is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters.

  18. Nano Antenna Integrated Diode (Rectenna) For Infrared Energy Harvesting

    KAUST Repository

    Gadalla, Mena N.

    2013-01-01

    electrically tested and shown high sensitivity and rectification ability without any bias. Finally, nano antenna integrated diode is under optical testing using   a   10.6μm   2 laser at Electro-Optics Lab, Prince Sultan Advanced Technologies Research Institute (PSATRI), King Saud University due to the unavailability of the measurement setup in KAUST.

  19. Satellite Power Systems (SPS) concept definition study. Volume 5: Special emphasis studies. [rectenna and solar power satellite design studies

    Science.gov (United States)

    Hanley, G. M.

    1980-01-01

    Satellite configurations based on the Satellite Power System baseline requirements were analyzed and a preferred concept selected. A satellite construction base was defined, precursor operations incident to establishment of orbital support facilities identified, and the satellite construction sequence and procedures developed. Rectenna construction requirement were also addressed. Mass flow to orbit requirements were revised and traffic models established based on construction of 60 instead of 120 satellites. Analyses were conducted to determine satellite control, resources, manufacturing, and propellant requirements. The impact of the laser beam used for space-to-Earth power transmission upon the intervening atmosphere was examined as well as the inverse effect. The significant space environments and their effects on spacecraft components were investigated to define the design and operational limits imposed by the environments on an orbit transfer vehicle. The results show that LEO altitude 300 nmi and transfer orbit duration 6 months are preferrable.

  20. New Electronic Technology Applied in Flexible Organic Optical System

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2014-02-01

    Full Text Available The synthesis and application of new organic materials, nanostructured, for developing technology based on organic devices, have been the main focus of the scientific community. In recent years, the first polymeric electronics products have entered the market (organic semiconductor materials and there are some electrochromic devices among them that have been called smart windows, once they control the passage of light or heat through a closed environment as an ordinary window. The main functional aspect of electrochromic devices, when being used in architectural and automotive industry, is to control the passage of light and temperature with thermal and visual comfort. These devices can be flexible and very thin, not containing heavy metals, and formed by layers of organic material deposited in several architectures. In this study, the electro-deposition of organic materials in the Polyaniline, PANI case, which provide stability in optical and electrical parameters, was utilized with the means of developing prototypes of organic electrochromic devices. These materials were characterized by: ultraviolet-visible spectroscopy absorption (UV-Vis, measurement of thickness (MT and electrical measurements (EM. This study aims to establish the relationship between the thickness of the active layer and the value of the electrical resistivity of the layer deposited through an electro-deposition technique. The experimental results enabled the equating of the electrical resistivity related to the thickness of the deposited layer. The linear fit of these results has expressed the thickness of the conducting layer, α, and the lowest value of the electrical resistivity, β, associated with the gap between the valence band and the conduction band. Thus, the results have demonstrated that, when the layer of organic material is completely conductive, we may obtain the thickness of the organic material deposited on the substrate.

  1. Large core plastic planar optical splitter fabricated by 3D printing technology

    Science.gov (United States)

    Prajzler, Václav; Kulha, Pavel; Knietel, Marian; Enser, Herbert

    2017-10-01

    We report on the design, fabrication and optical properties of large core multimode optical polymer splitter fabricated using fill up core polymer in substrate that was made by 3D printing technology. The splitter was designed by the beam propagation method intended for assembling large core waveguide fibers with 735 μm diameter. Waveguide core layers were made of optically clear liquid adhesive, and Veroclear polymer was used as substrate and cover layers. Measurement of optical losses proved that the insertion optical loss was lower than 6.8 dB in the visible spectrum.

  2. 40-Gb/s all-optical processing systems using hybrid photonic integration technology

    DEFF Research Database (Denmark)

    Kehayas, E.; Tsiokos, D.I.; Bakopoulos, P.;

    2006-01-01

    This paper presents an experimental performance characterization of all-optical subsystems at 40 Gb/s using interconnected hybrid integrated all-optical semiconductor optical amplifier (SOA) Mach-Zehnder interferometer (MZI) gates and flip-flop prototypes. It was shown that optical gates can...... the potential that all-optical technology can find application in future data-centric networks with efficient and dynamic bandwidth utilization. This paper also reports on the latest photonic integration breakthroughs as a potential migration path for reducing fabrication cost by developing photonic systems...

  3. Optics Technologies for LUVOIR & HabEx: Polarization & Mirror Count

    Science.gov (United States)

    Breckinridge, James B.

    2017-01-01

    We show that polarization aberrations and mirror count will limit the optical system performance of LUVOIR and HabEx and thus both their exoplanet science yield and their UV science. In addition we show how increased mirror count reduces optical system transmittance and increases cost in large aperture telescopes. We make the observation that orthogonally polarized light does not interfere to form an intensity image. We show how the two polarization aberrations (diattenuation & and retardance) distort the system PSF, decrease transmittance, and increase the unwanted background above that predicted using scalar models. An optical system corrected for geometric path difference errors is a necessary but not sufficient condition for the perfect image formation needed to directly image terrestrial exoplanets. Geometric (trigonometric) path difference errors are controlled using adaptive optics (tip-tilt & wavefront), active metrology and precision pointing. However, image quality is also determined by several physical optics factors: diffraction, polarization, partial coherence, and chromatism all of which degrade image quality and are not corrected through the control of geometric path difference. The source of physical optics errors lies in the opto-mechanical packaging of optical elements, masks, stops and the thin film coatings needed to obtain high transmittance. Adaptive optics corrects wavefront errors described by geometric or optical path length errors but not those wavefront errors introduced by physical optics. We show that for large telescopes each reflection costs over $100 million to increase the collecting area in order to recover lost SNR. Examples will be shown. The LUVOIR and HabEx systems will need fewer optical surfaces than current systems

  4. Technologies for all-optical wavelength conversion in DWDM networks

    DEFF Research Database (Denmark)

    Wolfson, David; Fjelde, Tina; Kloch, Allan

    2001-01-01

    Different techniques for all-optical wavelength conversion are reviewed and the advantages and disadvantages seen from a system perspective are highlighted. All-optical wavelength conversion will play a major role in making cost-effective network nodes in future high-speed WDM networks, where fun...

  5. Broadband Optical Access Technologies to Converge towards a Broadband Society in Europe

    Science.gov (United States)

    Coudreuse, Jean-Pierre; Pautonnier, Sophie; Lavillonnière, Eric; Didierjean, Sylvain; Hilt, Benoît; Kida, Toshimichi; Oshima, Kazuyoshi

    This paper provides insights on the status of broadband optical access market and technologies in Europe and on the expected trends for the next generation optical access networks. The final target for most operators, cities or any other player is of course FTTH (Fibre To The Home) deployment although we can expect intermediate steps with copper or wireless technologies. Among the two candidate architectures for FTTH, PON (Passive Optical Network) is by far the most attractive and cost effective solution. We also demonstrate that Ethernet based optical access network is very adequate to all-IP networks without any incidence on the level of quality of service. Finally, we provide feedback from a FTTH pilot network in Colmar (France) based on Gigabit Ethernet PON technology. The interest of this pilot lies on the level of functionality required for broadband optical access networks but also on the development of new home network configurations.

  6. Exabits/s integrated photonic interconnection technology for flexible data-centric optical networks

    Science.gov (United States)

    Binh, Le N.; Tao, Thomas W.; Ning, Gordon L.

    2016-03-01

    Optical networking is evolving from classical service-provider base data-center centric (DCC) internetworking environment with massive capacity, hence demanding novel optical switching and interconnecting technologies. The traditional telecom networks are under a flattening transformation to meet challenges from DCC networks for massive capacity serving in order of multi-Pb/s. We present proposed distributed and concentric data center based networks and the essential optical interconnection technologies, from the photonic kernels to electronic and optoelectronic server clusters, in both passive and active structures. Optical switching devices and integrated matrices are proposed composing of tunable (bandwidth and center wavelength) optical filters and switches as well as resonant microring modulators (μRM)(switching and spectral demux/mux) for multi-wavelength flexible-bandwidth optical channels of aggregate capacity reaching Ebps. The design principles and some experimental results are also reported.

  7. Application and the key technology on high power fiber-optic laser in laser weapon

    Science.gov (United States)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  8. Computer-assisted optics teaching at the Moscow Institute of Physics and Technology

    Science.gov (United States)

    Soboleva, Natalia N.; Kozel, Stanislav M.; Lockshin, Gennady R.; Entin, M. A.; Galichsky, K. V.; Lebedinsky, P. L.; Zhdanovich, P. M.

    1995-10-01

    Traditional methods used in optics teaching lack clarity and vividness when illustrating abstract notions such as polarization or interference. Here's where computer models may help, but they usually show only a single phenomenon or process and don't let the student see the entire picture. For this reason at Moscow Institute of Physics and Technology was developed the courseware 'Wave Optics on the Computer' consisting of a number of related simulations. It is intended for students studying optics at the Universities. Recently we have developed different simulations in optics for secondary school level. They are included as part of large computer courseware 'Physics by Pictures'. The courseware 'Wave Optics on the Computer' consists of nine large simulation programs and the textbook. The programs are simulating basic phenomena of wave optics. parameters of optical systems can be varied by the user. The textbook contains theoretical considerations on studied optical phenomena, recommendations concerning work with computer programs, and, especially for those wishing to deeper understand wave optics, original problems for individual solution. At the Moscow Institute of Physics and Technology the course 'Wave Optics on the Computer' is used for teaching optics in the course of general physics. The course provides both the computer assisted teaching for lectures support and computer assisted learning for students during seminars in the computer classroom.

  9. Design of an All-Optical Network Based on LCoS Technologies

    Science.gov (United States)

    Cheng, Yuh-Jiuh; Shiau, Yhi

    2016-06-01

    In this paper, an all-optical network composed of the ROADMs (reconfigurable optical add-drop multiplexer), L2/L3 optical packet switches, and the fiber optical cross-connection for fiber scheduling and measurement based on LCoS (liquid crystal on silicon) technologies is proposed. The L2/L3 optical packet switches are designed with optical output buffers. Only the header of optical packets is converted to electronic signals to control the wavelength of input ports and the packet payloads can be transparently destined to their output ports. An optical output buffer is designed to queue the packets when more than one incoming packet should reach to the same destination output port. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The wavelength of input ports is designed for routing incoming packets using LCoS technologies. Finally, the proposed OFS (optical flow switch) with input buffers can quickly transfer the big data to the output ports and the main purpose of the OFS is to reduce the number of wavelength reflections. The all-optical content delivery network is comprised of the OFSs for a large amount of audio and video data transmissions in the future.

  10. Laser Communications and Fiber Optics Lab Manual. High-Technology Training Module.

    Science.gov (United States)

    Biddick, Robert

    This laboratory training manual on laser communications and fiber optics may be used in a general technology-communications course for ninth graders. Upon completion of this exercise, students achieve the following goals: match concepts with laser communication system parts; explain advantages of fiber optic cable over conventional copper wire;…

  11. Living Brain Optical Imaging: Technology, Methods and Applications

    Science.gov (United States)

    Tsytsarev, Vassiliy; Bernardelli, Chad; Maslov, Konstantin I.

    2017-01-01

    Within the last few decades, optical imaging methods have yielded revolutionary results when applied to all parts of the central nervous system. The purpose of this review is to analyze research possibilities and limitations of several novel imaging techniques and show some of the most interesting achievements obtained by these methods. Here we covered intrinsic optical imaging, voltage-sensitive dye, photoacoustic, optical coherence tomography, near-infrared spectroscopy and some other techniques. All of them are mainly applicable for experimental neuroscience but some of them also suitable for the clinical studies.

  12. New paradigm for rapid production of large precision optics: frozen membrane mirror technology

    Science.gov (United States)

    Lieber, Mike; Kendrick, Stephen; Lipscy, Sarah; Ebbets, Dennis; Acton, Scott; Knight, Scott

    2013-09-01

    Traditional mirror manufacturing, particularly for astronomical purposes, requires substantial lead time, due to the nature of the materials and the grinding/polishing process. We propose a new technique for rapid, low-cost production of large, lightweight precision optics by fusing several technologies which in combination we call frozen membrane mirror technology (FMMT). FMMT combines well-understood subsystem technologies, including electrostatic control of membrane mirrors, adaptive optics, wavefront sensing and control, and inflatable structures technology to shorten production time. The basic technique is to control the surface of a reflective coated membrane mirror with electrostatic actuation and wavefront sensor feedback and freeze the membrane shape. We discuss the details of the concept and present results of early lab testing. We focus on the optical regime, but this technology has applicability from the microwave to x-ray spectral bands. Starting with a flexible membrane mirror, one can envision techniques for deployment of large apertures in space.

  13. Initial technology assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) mission concept study

    Science.gov (United States)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-07-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  14. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study

    Science.gov (United States)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  15. Initial Technology Assessment for the Large UV-Optical-Infrared (LUVOIR) Mission Concept Study

    Science.gov (United States)

    Bolcar, Matthew R.; Feinberg, Lee D.; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Divisions 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet-optical-infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for bio-signatures via direct-imaging and spectroscopic characterization of habitable exo-planets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV-Optical Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  16. Optical technologies in extended-reach access networks

    DEFF Research Database (Denmark)

    Wong, Elaine; Amaya Fernández, Ferney Orlando; Tafur Monroy, Idelfonso

    2009-01-01

    The merging of access and metro networks has been proposed as a solution to lower the unit cost of customer bandwidth. This paper reviews some of the recent advances and challenges in extended-reach optical access networks....

  17. Long-focus reflective optical elements for technological application

    Science.gov (United States)

    Tolstopyatov, Eugene M.

    1998-09-01

    Simple and cheap long-focus optical systems consisting of cylindrical mirrors are proposed to use in processes of laser processing of materials (cutting, welding, thin film deposition by evaporation). Methods of calculation of the focusing systems of this type are developed and aberrations are estimated. Optical system was used as a part of installation for thin alloys and polymer films deposition as well as for manufacturing PTFE wool and PTFE porous material.

  18. Multi terabits/s optical access transport technologies

    Science.gov (United States)

    Binh, Le Nguyen; Wang Tao, Thomas; Livshits, Daniil; Gubenko, Alexey; Karinou, Fotini; Liu Ning, Gordon; Shkolnik, Alexey

    2016-02-01

    Tremendous efforts have been developed for multi-Tbps over ultra-long distance and metro and access optical networks. With the exponential increase demand on data transmission, storage and serving, especially the 5G wireless access scenarios, the optical Internet networking has evolved to data-center based optical networks pressuring on novel and economical access transmission systems. This paper reports (1) Experimental platforms and transmission techniques employing band-limited optical components operating at 10G for 100G based at 28G baud. Advanced modulation formats such as PAM-4, DMT, duo-binary etc are reported and their advantages and disadvantages are analyzed so as to achieve multi-Tbps optical transmission systems for access inter- and intra- data-centered-based networks; (2) Integrated multi-Tbps combining comb laser sources and micro-ring modulators meeting the required performance for access systems are reported. Ten-sub-carrier quantum dot com lasers are employed in association with wideband optical intensity modulators to demonstrate the feasibility of such sources and integrated micro-ring modulators acting as a combined function of demultiplexing/multiplexing and modulation, hence compactness and economy scale. Under the use of multi-level modulation and direct detection at 56 GBd an aggregate of higher than 2Tbps and even 3Tbps can be achieved by interleaved two comb lasers of 16 sub-carrier lines; (3) Finally the fundamental designs of ultra-compacts flexible filters and switching integrated components based on Si photonics for multi Tera-bps active interconnection are presented. Experimental results on multi-channels transmissions and performances of optical switching matrices and effects on that of data channels are proposed.

  19. Optical sensor technology for simultaneous measurement of particle speed and concentration of micro sized particles

    DEFF Research Database (Denmark)

    Clausen, Casper; Han, Anpan; Kristensen, Martin

    2013-01-01

    Experimental characterization of a sensor technology that can measure particle speed and concentration simultaneously in liquids and gases is presented here. The basic sensor principle is based on an optical element that shapes a light beam into well-defined fringes. The technology can be described...... independently from particle speeds and is a key advantage compared to normal Laser Particle Counters....

  20. Comparison of different technologies for high-quality optical coatings

    Science.gov (United States)

    Flory, Francois

    1990-08-01

    Modern optical systems require still higher quality optical coatings. Conventional production techniques are not able to give such high quality layers. One of the main defaults comes from the relatively porous structure of the thin films; as a consequence the sensitiveness of the materials to the moisture gives noticeably unstable properties versus time. In this work, after a very short review of the different techniques nowaday used to perform high quality optical thin films, we will be especially interested in oxide layer production (Si02, Ta2O5, Ti02). To give a good comparison of the performances obtained with techniques such as TAD and ion plating we need extremely powerful characterization means: - In vacuo measurements of optical properties allowing the study of spontaneous water adsorption during air entrance; - Absorption measurement with photothermal deflection spectroscopy; - Scattering losses measurements and consequently determination of the grain size of the microstructure. Refractive index measurements, and optical anisotropy determined by guided mode study. Finally some views from electron microscopy justify the validity of the model used with our characterization techniques. To end, we will show the interest of ion plating technique when we are looking for very uniform deposition on large surfaces.

  1. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 1: Executive summary

    Science.gov (United States)

    1986-01-01

    Over the past two decades, fiber optics has emerged as a highly practical and cost-efficient communications technology. Its competitiveness vis-a-vis other transmission media, especially satellite, has become a critical question. This report studies the likely evolution and application of fiber optic networks in the United States to the end of the century. The outlook for the technology of fiber systems is assessed and forecast, scenarios of the evolution of fiber optic network development are constructed, and costs to provide service are determined and examined parametrically as a function of network size and traffic carried. Volume 1 consists of the Executive Summary. Volume 2 focuses on fiber optic technology and long distance fiber optic networks. Volume 3 develops a traffic and financial model of a nationwide long distance transmission network. Among the study's most important conclusions are: revenue requirements per circuit for LATA-to-LATA fiber optic links are less than one cent per call minute; multiplex equipment, which is likely to be required in any competing system, is the largest contributor to circuit costs; the potential capacity of fiber optic cable is very large and as yet undefined; and fiber optic transmission combined with other network optimization schemes can lead to even lower costs than those identified in this study.

  2. Hybrid Ground Station Technology for RF and Optical Communication Links

    Science.gov (United States)

    Davarian, Faramaz; Hoppe, D.; Charles, J.; Vilnrotter, V.; Sehic, A.; Hanson, T.; Gam, E.

    2012-01-01

    To support future enhancements of NASA's deep space and planetary communications and tracking services, the Jet Propulsion Laboratory is developing a hybrid ground station that will be capable of simultaneously supporting RF and optical communications. The main reason for adding optical links to the existing RF links is to significantly increase the capacity of deep space communications in support of future solar system exploration. It is envisioned that a mission employing an optical link will also use an RF link for telemetry and emergency purposes, hence the need for a hybrid ground station. A hybrid station may also reduce operations cost by requiring fewer staff than would be required to operate two stations. A number of approaches and techniques have been examined. The most promising ones have been prototyped for field examination and validation.

  3. Novel Progress in Rewritable High Density Optical Data Storage Technology

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ In collaboration with colleagues at the University of Science and Technology of China and East China University of Science and Technology, CAS researchers from the Institute of Chemistry have synthesized a novel spironaphthoxazine SOFC molecule with a stable ringopened photomerocyanine form by incorporating a ferrocene moiety to the parent spironaphthoxazine. Their work has been reported in a recent issue of Advanced Materials.

  4. Silicon technology compatible photonic molecules for compact optical signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Barea, Luis A. M., E-mail: barea@ifi.unicamp.br; Vallini, Felipe; Jarschel, Paulo F.; Frateschi, Newton C. [Device Research Laboratory, Applied Physics Department, “GlebWataghin” Physics Institute, University of Campinas–UNICAMP, 13083-859 Campinas, SP (Brazil)

    2013-11-11

    Photonic molecules (PMs) based on multiple inner coupled microring resonators allow to surpass the fundamental constraint between the total quality factor (Q{sub T}), free spectral range (FSR), and resonator size. In this work, we use a PM that presents doublets and triplets resonance splitting, all with high Q{sub T}. We demonstrate the use of the doublet splitting for 34.2 GHz signal extraction by filtering the sidebands of a modulated optical signal. We also demonstrate that very compact optical modulators operating 2.75 times beyond its resonator linewidth limit may be obtained using the PM triplet splitting, with separation of ∼55 GHz.

  5. Interactive educational technologies as a method of communicative competency development of optical and fiber optic communication systems specialists

    Science.gov (United States)

    Matveeva, Tatiana U.; Osadchiy, Igor S.; Husnutdinova, Marina N.

    2017-04-01

    The article examines the process of formation of communicative competencies of optic and fiber optic communication systems specialists; the role of communicative competencies is examined in the structure of professionally important skills, together with the contents of professional activity. The stages of empirical research into formation of communicative competencies have been presented, and the values of statistical reliability of data have been provided. The model of formation of communicative competency using interactive technology has been developed based on the research done, and main stages of model implementation and motives of formation of communicative competency have been highlighted. A scheme of "Communicative competence as a base of future success" training session has been suggested as one of the basic interactive technologies. Main components of education that are used during the stages of the training cycle have been examined. The statistical data on the effectiveness of use of interactive educational technologies has been presented; it allowed development of communicative competency of specialists in the field of optical and fiber optic communication system.

  6. Miniature and Molecularly Specific Optical Screening Technologies for Breast Cancer

    Science.gov (United States)

    2008-10-01

    and molecular contrast in breast cancer V. Millon SR, Provenzano PP, Elicieri, KW, Brown, JQ, Keely, PJ, Ramanujam, N. "Imaging of ALA-induced PpIX...calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms. Appl Opt, 2006. 45(5): p. 1062-71. 4. Baumann, M., C

  7. Future technologies for optical and infrared telescopes and instruments

    Science.gov (United States)

    Cunningham, Colin

    2009-08-01

    The theme of this conference is the evolution of telescopes over the last 400 years. I present my view on what the major leaps of technology have been, and attempt to predict what new technologies could come along in the next 50 years to change the way we do astronomy and help us make new discoveries. Are we approaching a peak of innovation and discovery, and will this be followed by a slow decline? Or are there prospects for even further technology leaps and consequent new discoveries? Will global resource and financial crises bring an end to our great ambitions, or will we continue with bigger telescopes and more ambitious space observatories?

  8. Physics and technology development of multilayer EUV reflective optics

    NARCIS (Netherlands)

    Louis, E.

    2012-01-01

    This thesis describes the development of molybdenum/silicon based multilayer reflective elements for the Extreme UV wavelength range, as motivated by their application in photolithography for semiconductor manufacturing. The thesis reflects the basic thin film physics, technological developments, an

  9. Review of ultra-high density optical storage technologies for big data center

    Science.gov (United States)

    Hao, Ruan; Liu, Jie

    2016-10-01

    In big data center, optical storage technologies have many advantages, such as energy saving and long lifetime. However, how to improve the storage density of optical storage is still a huge challenge. Maybe the multilayer optical storage technology is the good candidate for big data center in the years to come. Due to the number of layers is primarily limited by transmission of each layer, the largest capacities of the multilayer disc are around 1 TB/disc and 10 TB/ cartridge. Holographic data storage (HDS) is a volumetric approach, but its storage capacity is also strictly limited by the diffractive nature of light. For a holographic disc with total thickness of 1.5mm, its potential capacities are not more than 4TB/disc and 40TB/ cartridge. In recent years, the development of super resolution optical storage technology has attracted more attentions. Super-resolution photoinduction-inhibition nanolithography (SPIN) technology with 9 nm feature size and 52nm two-line resolution was reported 3 years ago. However, turning this exciting principle into a real storage system is a huge challenge. It can be expected that in the future, the capacities of 10TB/disc and 100TB/cartridge can be achieved. More importantly, due to breaking the diffraction limit of light, SPIN technology will open the door to improve the optical storage capacity steadily to meet the need of the developing big data center.

  10. Silicon photonic switch technology for optical networks in telecom and datacom areas

    Science.gov (United States)

    Nakamura, Shigeru; Yanagimachi, Shigeyuki; Takeshita, Hitoshi; Tajima, Akio

    2017-01-01

    As a promising platform technology for optical switches, silicon photonics is recently attracting much attention. In this paper, we demonstrate compact 8 × 8 silicon photonic switch modules with low loss, low polarization sensitivity, and low cross-talk properties. An optical circuit including 152 thermo-optical switch elements and spot size converters were formed within a silicon chip size of 12 mm × 14 mm. The developed module where a silicon photonic chip was assembled with a fiber array showed about 6-dB average excess optical loss, including optical coupling loss, on all 64 paths of the 8 × 8 optical switch. Measured polarization dependent loss was about 0.6 dB on average over 64 paths and cross-talk was less than -35 dB. These optical switch modules are intended for applying to ROADMs in telecom optical networks, but, the port count extensibility using multiple compact modules and the faster switching capability of the optical switch are also useful for datacenter applications where hybrid network scheme with electronic packet switches and optical circuit switches is intensively investigated.

  11. Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, a.; Pickrell, G.; Xiao, H.; May, r.

    2003-02-27

    The overall goal of this project was to develop reliable cost effective sensors for application in the down-hole environment. The physical parameters measured by these sensors were temperature, pressure, flow and acoustic signals. Sensor head configurations for each of the physical measurands were optimized to increase the sensitivity to the particular measurand of interest while decreasing the cross-sensitivity to the other physical measurands and to environmental influences. In addition, the optical signal demodulation electronics was designed to be insensitive to environmental influences while maintaining the required resolution, precision and accuracy of the parameter being sensed. The influence of potentially detrimental agents such as water in the down-hole environment was investigated as well as methods to protect both the optical fiber and the sensor from these detrimental effects.

  12. Optical technologies for the observation of low Earth orbit objects

    CERN Document Server

    Hampf, Daniel; Riede, Wolfgang

    2015-01-01

    In order to avoid collisions with space debris, the near Earth orbit must be continuously scanned by either ground- or spaced-based facilities. For the low Earth orbit, radar telescopes are the workhorse for this task, especially due to their continuous availability. However, optical observation methods can deliver complementary information, especially towards high accuracy measurements. Passive-optical observations are inexpensive and can yield very precise information about the apparent position of the object in the sky via comparison with background stars. However, the object's distance from the observer is not readily accessible, which constitutes a major drawback of this approach for the precise calculation of the orbital elements. Two experimental methods have been devised to overcome this problem: Using two observatories a few kilometres apart, strictly simultaneous observations of the same object yield an accurate, instantaneous 3D position determination through measurement of the parallax. If only on...

  13. Advanced Optical Technologies for Defense Trauma and Critical Care

    Science.gov (United States)

    2014-02-04

    and human tracheas, with visualization around the entire circumference of the airway, and high resolution visualization of subsurface tissue layers...lumen of excised pig and human tracheas, with visualization around the entire circumference of the airway, and high resolution visualization of...Optical Coherence Tomography in the Rabbit,” JAMA Otolaryngol. Head Neck Surg. 139, 503-8 (2013). 16. Liu, G., W. Jia, V. Sun, B. Choi and Z. Chen

  14. Ultrafast Optics: Vector Cavity Laser - Physics and Technology

    Science.gov (United States)

    2016-06-14

    fiber lasers the effective cavity gain bandwidth could be far broader than the laser emission bandwidth, if the optical field is in resonance with the...periodic modulation on the CW laser field , where fc is the modulation frequency. Fig. 2.1 shows the evolution of the laser emission under existence of...real saturable absorber (SA) mode locking techniques, such as the carbon nanotube mode locking, 2D-nano-materials mode locking, formation of bound

  15. Ultrafast Optics: Vector Cavity Fiber Lasers - Physics and Technology

    Science.gov (United States)

    2016-06-14

    fiber lasers the effective cavity gain bandwidth could be far broader than the laser emission bandwidth, if the optical field is in resonance with the...periodic modulation on the CW laser field , where fc is the modulation frequency. Fig. 2.1 shows the evolution of the laser emission under existence of...real saturable absorber (SA) mode locking techniques, such as the carbon nanotube mode locking, 2D-nano-materials mode locking, formation of bound

  16. Ultrafast Optics - Vector Cavity Lasers: Physics and Technology

    Science.gov (United States)

    2016-06-14

    fiber lasers the effective cavity gain bandwidth could be far broader than the laser emission bandwidth, if the optical field is in resonance with the...periodic modulation on the CW laser field , where fc is the modulation frequency. Fig. 2.1 shows the evolution of the laser emission under existence of...real saturable absorber (SA) mode locking techniques, such as the carbon nanotube mode locking, 2D-nano-materials mode locking, formation of bound

  17. Advanced optical 3D scanners using DMD technology

    Science.gov (United States)

    Muenstermann, P.; Godding, R.; Hermstein, M.

    2017-02-01

    Optical 3D measurement techniques are state-of-the-art for highly precise, non-contact surface scanners - not only in industrial development, but also in near-production and even in-line configurations. The need for automated systems with very high accuracy and clear implementation of national precision standards is growing extremely due to expanding international quality guidelines, increasing production transparency and new concepts related to the demands of the fourth industrial revolution. The presentation gives an overview about the present technical concepts for optical 3D scanners and their benefit for customers and various different applications - not only in quality control, but also in design centers or in medical applications. The advantages of DMD-based systems will be discussed and compared to other approaches. Looking at today's 3D scanner market, there is a confusing amount of solutions varying from lowprice solutions to high end systems. Many of them are linked to a very special target group or to special applications. The article will clarify the differences of the approaches and will discuss some key features which are necessary to render optical measurement systems suitable for industrial environments. The paper will be completed by examples for DMDbased systems, e. g. RGB true-color systems with very high accuracy like the StereoScan neo of AICON 3D Systems. Typical applications and the benefits for customers using such systems are described.

  18. Laser Ablation as Enabling Technology for the Structuring of Optical Multilayer Structures

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickx, N; Steenberge, G Van; Geerinck, P; Daele, P Van [TFCG Microsystems, Department of Information Technology, Ghent University, Technologiepark Zwijnaarde, Building 914A, B-9052 Ghent (Belgium)

    2007-04-15

    In this paper, laser ablation is presented as a versatile technology that can be used for the fabrication of all building blocks and functional elements required for an optical interconnection, integrated in printed circuit boards (PCBs). The integration of optical interconnections in PCBs is an emerging field in which interest worldwide is rapidly growing. The limiting factor is mainly the compatibility of new technologies, used to define and fabricate the optical interconnections, with standard FR4-processing steps, temperatures and lamination pressures. Laser ablation, which is currently frequently used for the drilling of electrical micro-vias in PCBs, has proven to be fully compatible with standard PCB manufacturing. An optical two layer structure is studied that can make full use of the functionalities of 2D elements such as VCSEL or photodiode arrays.

  19. Digital Diffractive Optics: An Introduction to Planar Diffractive Optics and Related Technology

    Science.gov (United States)

    Kress, B.; Meyrueis, P.

    2000-10-01

    Diffractive optical elements (DOEs) are becoming more and more widely used in a braod range of fields, including telecommunications, optical computing, consumer electronics, laser material processing and the biomedical sciences, to manipulate light through micro-optical systems. In order to get the most out of such DOEs, knowledge of the design process, fabrication, packaging in a particular system, and operation is required. Digital Diffractive Optics discusses in detail the design and simulation of DOEs, before considering the main fabrication techniques. The increasingly important CAD/CAM tool requirements for the production of DOEs are covered, and a chapter is devoted to the crucial area of systematic fabrication error compensation. Finally, the integration and use of DOEs in a number of different systems, including various opto-electronic and opto-mechanical systems, are discussed. Digital Diffractive Optics will be of great interest to all those involved in the fields of optical engineering and photonics. It presents a clear view of the whole process, from design to fabrication and application, without overstressing the, often complex, mathematics, and will thus be accessible to postgraduate students and those entering the field, as well as more experienced engineers and scientists.

  20. Strategic planning of developing automatic optical inspection (AOI) technologies in Taiwan

    Science.gov (United States)

    Fan, K. C.; Hsu, C.

    2005-01-01

    In most domestic hi-tech industries in Taiwan, the automatic optical inspection (AOI) equipment is mostly imported. In view of the required specifications, AOI consists of the integration of mechanical-electrical-optical-information technologies. In the past two decades, traditional industries have lost their competitiveness due to the low profit rate. It is possible to promote a new AOI industry in Taiwan through the integration of its strong background in mechatronic technology in positioning stages with the optical image processing techniques. The market requirements are huge not only in domestic need but also in global need. This is the main reason to promote the AOI research for the coming years in Taiwan. Focused industrial applications will be in IC, PCB, LCD, communication, and MEMS parts. This paper will analyze the domestic and global AOI equipment market, summarize the necessary fish bone technology diagrams, survey the actual industrial needs, and propose the strategic plan to be promoted in Taiwan.

  1. Research of Digital Manufacturing Technology Application on Ultra-precision Optical Workpiece Machining

    Institute of Scientific and Technical Information of China (English)

    HE Daxing

    2006-01-01

    Digital manufacturing technology can be used in optical field to solve many problems caused by traditional machining. According to the characters of digital manufacturing and the practical applications of ultra-precision machining, the process of digital ultra-precision machining and its technical contents were presented in this paper. In the conclusions, it was stated that the digitalization of ultra-precision machining will be an economical and efficient way for the production of new sorts of optical workpieces.

  2. Second Approximation Model for Optical Head in Super High Density Storage Technology

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The paper presents second approximation model for optical head in super high-density storage technology firstly and it is an important part for three grades approximate model of ultra-small-size quantum well corn-shaped laser and simulative calculations. It supplies the important and useful results for the NFOD optical head design with ultra thin active layer and ultra small spot laser.

  3. Foil-based optical technology platform for optochemical sensors

    NARCIS (Netherlands)

    Kalathimekkad, S.; Missinne, J.; Arias Espinoza, J.D.; Hoe, B. van; Bosman, E.; Smits, E.; Mandamparambil, R.; Steenberge, G. van; Vanfleteren, J.

    2012-01-01

    This paper describes the development of a low-cost technology platform for fluorescence-based optochemical sensors. These sensors were constructed by incorporating fluorescent sensing elements in the core of multimode waveguides or lightguides, and have applications in medical, biochemical and envir

  4. Optical screening of oral cancer: technology for emerging markets.

    Science.gov (United States)

    Naik, Sarif Kumar; Gupta, Lalit; Mittal, Chetan; Balakrishnan, Srinivasan; Rath, Satish Prasad; Santhosh, C; Pai, Keerthilatha M

    2007-01-01

    Oral cancer is the sixth most common cancer in the world. It is one of the most prevalent cancers in the developing countries of South Asia accounting for one third of the world burden. Sixty percent of the cancers are advanced by the time they are detected. Two methods of optical spectroscopy for detection of oral cancer have been discussed here. These methods are simple, easy to handle and non-invasive. The evaluation of the data is done automatically using pattern recognition techniques, making the screening subjective.

  5. Single-mode glass waveguide technology for optical interchip communication on board level

    Science.gov (United States)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a

  6. Optical technologies for extreme-ultraviolet and soft X-ray coherent sources

    Energy Technology Data Exchange (ETDEWEB)

    Canova, Federico [Amplitude Technologies, Evry (France); Poletto, Luca (ed.) [National Research Council, Padova (Italy). Inst. of Photonics and Nanotechnology

    2015-07-01

    The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advanced. New problems were faced for the realization of optical components of beamlines demanding to manage coherent X-ray photons, e.g. the preservation of coherence and time structure of ultra short pulses.

  7. Wide field of view adaptive optical system for lightweight deployable telescope technologies

    Science.gov (United States)

    McComas, Brian K.; Cermak, Michael A.; Friedman, Edward J.

    2003-02-01

    A NASA research contract (NAS1-00116) was awarded to Ball Aerospace & Technologies Corp. in January 2000 to study wide field-of-view adaptive optical systems. These systems will be required on future high resolution Earth remote sensing systems that employ large, flexible, lightweight, deployed primary mirrors. The deformations from these primary mirrors will introduce aberrations into the optical system, which must be removed by corrective optics. For economic reasons, these remote sensing systems must have a large field-of-view (a few degrees). Unlike ground-based adaptive optical systems, which have a negligible field-of-view, the adaptive optics on these space-based remote sensing systems will be required to correct for the deformations in the primary mirror over the entire field-of-view. A new error function, which is an enhancement to conventional adaptive optics, for wide field-of-view optical systems will be introduced. This paper will present the goals of the NASA research project and its progress. The initial phase of this research project is a demonstration of the wide field-of-view adaptive optics theory. A breadboard has been designed and built for this purpose. The design and assembly of the breadboard will be presented, along with the final results for this phase of the research project. Finally, this paper will show the applicability of wide field-of-view adaptive optics to space-based astronomical systems.

  8. Evaluation of emerging parallel optical link technology for high energy physics

    Science.gov (United States)

    Chramowicz, J.; Kwan, S.; Prosser, A.; Winchell, M.

    2012-01-01

    Modern particle detectors utilize optical fiber links to deliver event data to upstream trigger and data processing systems. Future detector systems can benefit from the development of dense arrangements of high speed optical links emerging from industry advancements in transceiver technology. Supporting data transfers of up to 120 Gbps in each direction, optical engines permit assembly of the optical transceivers in close proximity to ASICs and FPGAs. Test results of some of these parallel components will be presented including the development of pluggable FPGA Mezzanine Cards equipped with optical engines to provide to collaborators on the Versatile Link Common Project for the HI-LHC at CERN. This work was supported by the U.S. Department of Energy, operated by Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359 with the United States Department of Energy.

  9. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.

    Science.gov (United States)

    Ye, X W; Su, Y H; Han, J P

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.

  10. Medical smart textiles based on fiber optic technology: an overview.

    Science.gov (United States)

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-04-13

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.

  11. Medical Smart Textiles Based on Fiber Optic Technology: An Overview

    Directory of Open Access Journals (Sweden)

    Carlo Massaroni

    2015-04-01

    Full Text Available The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.

  12. Application research on hydraulic coke cutting monitoring system based on optical fiber sensing technology

    Science.gov (United States)

    Zhong, Dong; Tong, Xinglin

    2014-06-01

    With the development of the optical fiber sensing technology, the acoustic emission sensor has become one of the focal research topics. On the basis of studying the traditional hydraulic coke cutting monitoring system, the optical fiber acoustic emission sensor has been applied in the hydraulic coke cutting monitoring system for the first time, researching the monitoring signal of the optical fiber acoustic emission sensor in the system. The actual test results show that using the acoustic emission sensor in the hydraulic coke cutting monitoring system can get the real-time and accurate hydraulic coke cutting state and the effective realization of hydraulic coke cutting automatic monitoring in the Wuhan Branch of Sinopec.

  13. Design of a Multicast Optical Packet Switch Based on Fiber Bragg Grating Technology for Future Networks

    Science.gov (United States)

    Cheng, Yuh-Jiuh; Yeh, Tzuoh-Chyau; Cheng, Shyr-Yuan

    2011-09-01

    In this paper, a non-blocking multicast optical packet switch based on fiber Bragg grating technology with optical output buffers is proposed. Only the header of optical packets is converted to electronic signals to control the fiber Bragg grating array of input ports and the packet payloads should be transparently destined to their output ports so that the proposed switch can reduce electronic interfaces as well as the bit rate. The modulation and the format of packet payloads may be non-standard where packet payloads could also include different wavelengths for increasing the volume of traffic. The advantage is obvious: the proposed switch could transport various types of traffic. An easily implemented architecture which can provide multicast services is also presented. An optical output buffer is designed to queue the packets if more than one incoming packet should reach to the same destination output port or including any waiting packets in optical output buffer that will be sent to the output port at a time slot. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The fiber Bragg grating arrays for both input ports and output ports are designed for routing incoming packets using optical code division multiple access technology.

  14. Biodeterioration of optical glass induced by lubricants used in optical instruments technology.

    Science.gov (United States)

    Bartosik, Magdalena; Zakowska, Zofia; Cedzińska, Krystyna; Rozniakowski, Kazimierz

    2010-01-01

    The process of biodeterioration of optical glass was studied after being induced by an auxiliary material (lubricant 4CKP) used in the production of optical instruments. It was determined that the lubricant can initiate growth of conidia of Aspergillus niger fungus. Acid spawn metabolites cause deterioration of the glass surface. Measurements of laser light beam transmittance through the glass plate and the AAS chemical analysis method of the post-culture fluid allowed to determine that glass with a high SiO2 content is most resistant to corrosion caused by the growth of A. niger fungi spawn.

  15. Update on the SKA Offset Optics Design for the U.S. Technology Development Project

    Science.gov (United States)

    Imbriale, William A.; Cortes-Medellin, German; Baker, Lynn

    2011-01-01

    The U.S. design concept for the Square Kilometre Array (SKA) program is based on utilizing a large number of small-diameter dish antennas in the 12 to 15 meter diameter range. The Technology Development Project (TDP) is planning to design and build the first of these antennas to provide a demonstration of the technology and a solid base on which to estimate costs. The latest considerations for selecting both the optics and feed design are presented.

  16. Enabling Technologies for Direct Detection Optical Phase Modulation Formats

    Science.gov (United States)

    Xu, Xian

    Phase modulation formats are believed to be one of the key enabling techniques for next generation high speed long haul fiber-optic communication systems due to the following main advantages: (1) with a balanced detection, a better receiver sensitivity over conventional intensity modulation formats, e.g., a ˜3-dB sensitivity improvement using differential phase shift keying (DPSK) and a ˜1.3-dB sensitivity improvement using differential quadrature phase shift keying (DQPSK); (2) excellent robustness against fiber nonlinearities; (3) high spectrum efficiency when using multilevel phase modulation formats, such as DQPSK. As the information is encoded in the phase of the optical field, the phase modulation formats are sensitive to the phase-related impairments and the deterioration induced in the phase-intensity conversion. This consequently creates new challenging issues. The research objective of this thesis is to depict some of the challenging issues and provide possible solutions. The first challenge is the cross-phase modulation (XPM) penalty for the phase modulated channels co-propagating with the intensity modulated channels. The penalty comes from the pattern dependent intensity fluctuations of the neighboring intensity modulated channels being converted into phase noise in the phase modulation channels. We propose a model to theoretically analyze the XPM penalty dependence on the walk off effect. From this model, we suggest that using fibers with large local dispersion or intentionally introducing some residual dispersion per span would help mitigate the XPM penalty. The second challenge is the polarization dependent frequency shift (PDf) induced penalty during the phase-intensity conversion. The direct detection DPSK is usually demodulated in a Mach-Zehnder delay interferometer (DI). The polarization dependence of DI introduces a PDf causing a frequency offset between the laser's frequency and the transmissivity peak of DI, degrading the demodulated DPSK

  17. Optical technologies for extreme-ultraviolet and soft X-ray coherent sources

    CERN Document Server

    Poletto, Luca

    2015-01-01

    The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advance...

  18. Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation

    NARCIS (Netherlands)

    Habbema, L.; Verhagen, R.; Van Hal, R.; Liu, Y.; Varghese, B.

    2011-01-01

    We describe a novel, minimally invasive laser technology for skin rejuvenation by creating isolated microscopic lesions within tissue below the epidermis using laser induced optical breakdown. Using an in-house built prototype device, tightly focused near-infrared laser pulses are used to create opt

  19. Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation

    NARCIS (Netherlands)

    Habbema, L.; Verhagen, R.; Van Hal, R.; Liu, Y.; Varghese, B.

    2011-01-01

    We describe a novel, minimally invasive laser technology for skin rejuvenation by creating isolated microscopic lesions within tissue below the epidermis using laser induced optical breakdown. Using an in-house built prototype device, tightly focused near-infrared laser pulses are used to create

  20. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  1. Potentiality of optical diffraction grating technology in the fabrication of miniaturized multicapillary chromatographic and electrophoresis columns.

    Science.gov (United States)

    Samsonov, Y N

    2001-10-01

    A possible way of fabricating miniaturized multicapillary columns for gas and liquid chromatographs or electrophoresis devices containing many thousands of identical channels with a width (or depth) of approximately 1-30 microm by means of industrial technology for the production of optical plane reflecting diffraction gratings is proposed.

  2. Optical Measurement System for Motion Characterization of Surface Mount Technology

    Institute of Scientific and Technical Information of China (English)

    LI Song; AN Bing; ZHANG Tong-jun; XIE Yong-jun

    2006-01-01

    Advanced testing methods for the dynamics of mechanical microdevices are necessary to develop reliable,marketable microelectromechanical systems. A system for measuring the nanometer motions of microscopic structures has been demonstrated. Stop-action images of a target have been obtained with computer microvision,microscopic interferometry,and stroboscopic illuminator. It can be developed for measuring the in-plane-rigid-body motions,surface shapes,out-of-plane motions and deformations of microstructures. A new algorithm of sub-pixel step length correlation template matching is proposed to extract the in-plane displacement from vision images. Hariharan five-step phase-shift interferometry algorithm and unwrapping algorithms are adopted to measure the out-of-plane motions. It is demonstrated that the system can measure the motions of solder wetting in surface mount technology(SMT).

  3. Optical Material Researches for Frontier Optical Ceramics and Visible Fiber Laser Technologies

    Science.gov (United States)

    2016-07-07

    AM2A.2, 27 October - 01 November 2013, Paris Marriott Rive Gauche Hotel and Convention Center, Paris, France. 2) “ Development on advanced functional...DISTRIBUTION/AVAILABILITY STATEMENT A DISTRIBUTION UNLIMITED: PB Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT We have successfully developed a new...are very useful for scientific and industrial applications. 15. SUBJECT TERMS Fibre Lasers, Laser Dynamics, Nonlinear Optical Materials 16. SECURITY

  4. Logical optical line terminal technologies towards flexible and highly reliable metro- and access-integrated networks

    Science.gov (United States)

    Okamoto, Satoru; Sato, Takehiro; Yamanaka, Naoaki

    2017-01-01

    In this paper, flexible and highly reliable metro and access integrated networks with network virtualization and software defined networking technologies will be presented. Logical optical line terminal (L-OLT) technologies and active optical distribution networks (ODNs) are the key to introduce flexibility and high reliability into the metro and access integrated networks. In the Elastic Lambda Aggregation Network (EλAN) project which was started in 2012, a concept of the programmable optical line terminal (P-OLT) has been proposed. A role of the P-OLT is providing multiple network services that have different protocols and quality of service requirements by single OLT box. Accommodated services will be Internet access, mobile front-haul/back-haul, data-center access, and leased line. L-OLTs are configured within the P-OLT box to support the functions required for each network service. Multiple P-OLTs and programmable optical network units (P-ONUs) are connected by the active ODN. Optical access paths which have flexible capacity are set on the ODN to provide network services from L-OLT to logical ONUs (L-ONUs). The L-OLT to L-ONU path on the active ODN provides a logical connection. Therefore, introducing virtualization technologies becomes possible. One example is moving an L-OLT from one P-OLT to another P-OLT like a virtual machine. This movement is called L-OLT migration. The L-OLT migration provides flexible and reliable network functions such as energy saving by aggregating L-OLTs to a limited number of P-OLTs, and network wide optical access path restoration. Other L-OLT virtualization technologies and experimental results will be also discussed in the paper.

  5. Implantable optogenetic device with CMOS IC technology for simultaneous optical measurement and stimulation

    Science.gov (United States)

    Haruta, Makito; Kamiyama, Naoya; Nakajima, Shun; Motoyama, Mayumi; Kawahara, Mamiko; Ohta, Yasumi; Yamasaki, Atsushi; Takehara, Hiroaki; Noda, Toshihiko; Sasagawa, Kiyotaka; Ishikawa, Yasuyuki; Tokuda, Takashi; Hashimoto, Hitoshi; Ohta, Jun

    2017-05-01

    In this study, we have developed an implantable optogenetic device that can measure and stimulate neurons by an optical method based on CMOS IC technology. The device consist of a blue LED array for optically patterned stimulation, a CMOS image sensor for acquiring brain surface image, and eight green LEDs surrounding the CMOS image sensor for illumination. The blue LED array is placed on the CMOS image sensor. We implanted the device in the brain of a genetically modified mouse and successfully demonstrated the stimulation of neurons optically and simultaneously acquire intrinsic optical images of the brain surface using the image sensor. The integrated device can be used for simultaneously measuring and controlling neuronal activities in a living animal, which is important for the artificial control of brain functions.

  6. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    A. Wang; H. Xiao; R. May

    1999-10-29

    Efficient and complete recovery of petroleum reserves from existing oil wells has proven difficult due to a lack of robust instrumentation that can monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multi-lateral wells. The main objective of the research program is to develop cost-effective, reliable fiber sensor instrumentation for real-time monitoring and /or control of various key parameters crucial to efficient and economical oil production. This report presents the detailed research work and technical progress from October 1, 1998 to September 30, 1999. The research performed over the first year of the program has followed the schedule as proposed, and solid research progress has been made in specification of the technical requirements, design and fabrication of the SCIIB sensor probes, development of the sensor systems, development of DSP-based signal processing techniques, and construction of the test systems. These technical achievements will significantly help to advance continued research on sensor tests and evaluation during the second year of the program.

  7. Quantum plasmonics for next-generation optical and sensing technologies

    Science.gov (United States)

    Moaied, Modjtaba; Ostrikov, Kostya (Ken)

    2015-12-01

    Classical plasmonics has mostly focused on structures characterized by large dimension, for which the quantummechanical effects have nearly no impact. However, recent advances in technology, especially on miniaturized plasmonics devices at nanoscale, have made it possible to imagine experimental applications of plasmons where the quantum nature of free charge carriers play an important role. Therefore, it is necessary to use quantum mechanics to model the transport of charge carriers in solid state plasma nanostructures. Here, a non-local quantum model of permittivity is presented by applying the Wigner equation with collision term in the kinetic theory of solid state plasmas where the dominant electron scattering mechanism is the electron-lattice collisions. The surface plasmon resonance of ultra-small nanoparticles is investigated using this non-local quantum permittivity and its dispersion relation is obtained. The successful application of this theory in ultra-small plasmonics structures such as surface plasmon polariton waveguides, doped semiconductors, graphene, the metamaterials composed of alternating layers of metal and dielectric, and the quantum droplets is anticipated.

  8. Optically pumped VECSELs: review of technology and progress

    Science.gov (United States)

    Guina, M.; Rantamäki, A.; Härkönen, A.

    2017-09-01

    Vertical-external-cavity surface-emitting lasers (VECSELs) are the most versatile laser sources, combining unique features such as wide spectral coverage, ultrashort pulse operation, low noise properties, high output power, high brightness and compact form-factor. This paper reviews the recent technological developments of VECSELs in connection with the new milestones that continue to pave the way towards their use in numerous applications. Significant attention is devoted to the fabrication of VECSEL gain mirrors in challenging wavelength regions, especially at the yellow and red wavelengths. The reviewed fabrication approaches address wafer-bonded VECSEL structures as well as the use of hybrid mirror structures. Moreover, a comprehensive summary of VECSEL characterization methods is presented; the discussion covers different stages of VECSEL development and different operation regimes, pointing out specific characterization techniques for each of them. Finally, several emerging applications are discussed, with emphasis on the unique application objectives that VECSELs render possible, for example in atom and molecular physics, dermatology and spectroscopy.

  9. A Review on Radio-Over-Fiber Technology-Based Integrated (Optical/Wireless) Networks

    Science.gov (United States)

    Rajpal, Shivika; Goyal, Rakesh

    2017-03-01

    In the present paper, radio-over-fiber (RoF) technology has been proposed, which is the integration of the optical and radio networks. With a high transmission capacity, comparatively low cost and low attenuation, optical fiber provides an ideal solution for accomplishing the interconnections. In addition, a radio system enables the significant mobility, flexibility and easy access. Therefore, the system integration can meet the increasing demands of subscribers for voice, data and multimedia services that require the access network to support high data rates at any time and any place inexpensively. RoF has the potentiality to the backbone of the wireless access network and it has gained significant momentum in the last decade as a potential last-mile access scheme. This paper gives the comprehensive review of RoF technology used in the communication system. Concept, applications, advantages and limitations of RoF technology are also discussed in this paper.

  10. Recent Developments in Optical Detection Technologies in Lab-on-a-Chip Devices for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Nuno Miguel Matos Pires

    2014-08-01

    Full Text Available The field of microfluidics has yet to develop practical devices that provide real clinical value. One of the main reasons for this is the difficulty in realizing low-cost, sensitive, reproducible, and portable analyte detection microfluidic systems. Previous research has addressed two main approaches for the detection technologies in lab-on-a-chip devices: (a study of the compatibility of conventional instrumentation with microfluidic structures, and (b integration of innovative sensors contained within the microfluidic system. Despite the recent advances in electrochemical and mechanical based sensors, their drawbacks pose important challenges to their application in disposable microfluidic devices. Instead, optical detection remains an attractive solution for lab-on-a-chip devices, because of the ubiquity of the optical methods in the laboratory. Besides, robust and cost-effective devices for use in the field can be realized by integrating proper optical detection technologies on chips. This review examines the recent developments in detection technologies applied to microfluidic biosensors, especially addressing several optical methods, including fluorescence, chemiluminescence, absorbance and surface plasmon resonance.

  11. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications.

    Science.gov (United States)

    Pires, Nuno Miguel Matos; Dong, Tao; Hanke, Ulrik; Hoivik, Nils

    2014-08-21

    The field of microfluidics has yet to develop practical devices that provide real clinical value. One of the main reasons for this is the difficulty in realizing low-cost, sensitive, reproducible, and portable analyte detection microfluidic systems. Previous research has addressed two main approaches for the detection technologies in lab-on-a-chip devices: (a) study of the compatibility of conventional instrumentation with microfluidic structures, and (b) integration of innovative sensors contained within the microfluidic system. Despite the recent advances in electrochemical and mechanical based sensors, their drawbacks pose important challenges to their application in disposable microfluidic devices. Instead, optical detection remains an attractive solution for lab-on-a-chip devices, because of the ubiquity of the optical methods in the laboratory. Besides, robust and cost-effective devices for use in the field can be realized by integrating proper optical detection technologies on chips. This review examines the recent developments in detection technologies applied to microfluidic biosensors, especially addressing several optical methods, including fluorescence, chemiluminescence, absorbance and surface plasmon resonance.

  12. JPRS Report, Science & Technology, Japan, Optical Communications, Optronic Devices Manufacturing Technology

    Science.gov (United States)

    1988-11-04

    Casting When processing the preform into optical fiber ( wire drawing ), it is necessary to soften it under the temperature of crystallization. Moreover...when the preform is subjected to wire drawing in air as is, crystallization very often occurs from the surface. As a result, the technique used is...to jacket it with a fluoride resin tube having roughly equal softening temperature to make a unified piece, which is then subjected to wire drawing . 4.3

  13. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M. [Analysis and Measurement Services Corporation, Knoxville, TN (United States)

    1996-03-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I&C) systems for the next generation of reactors and in older plants which are retrofitted with new I&C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment.

  14. 3D micro-optical lens scanner made by multi-wafer bonding technology

    Science.gov (United States)

    Bargiel, S.; Gorecki, C.; Barański, M.; Passilly, N.; Wiemer, M.; Jia, C.; Frömel, J.

    2013-03-01

    We present the preliminary design, construction and technology of a microoptical, millimeter-size 3-D microlens scanner, which is a key-component for a number of optical on-chip microscopes with emphasis on the architecture of confocal microscope. The construction of the device relies on the vertical integration of micromachined building blocks: top glass lid, silicon electrostatic comb-drive X-Y and Z microactuators with integrated scanning microlenses, ceramic LTCC spacer, and bottom lid with focusing microlens. All components are connected on the wafer level only by sequential anodic bonding. The technology of through wafer vias is applied to create electrical connections through a stack of wafers. More generally, the presented bonding/connection technologies are also of a great importance for the development of various silicon-based devices based on vertical integration scheme. This approach offers a space-effective integration of complex MOEMS devices and an effective integration of various heterogeneous technologies.

  15. Ethernet access network based on free-space optic deployment technology

    Science.gov (United States)

    Gebhart, Michael; Leitgeb, Erich; Birnbacher, Ulla; Schrotter, Peter

    2004-06-01

    The satisfaction of all communication needs from single households and business companies over a single access infrastructure is probably the most challenging topic in communications technology today. But even though the so-called "Last Mile Access Bottleneck" is well known since more than ten years and many distribution technologies have been tried out, the optimal solution has not yet been found and paying commercial access networks offering all service classes are still rare today. Conventional services like telephone, radio and TV, as well as new and emerging services like email, web browsing, online-gaming, video conferences, business data transfer or external data storage can all be transmitted over the well known and cost effective Ethernet networking protocol standard. Key requirements for the deployment technology driven by the different services are high data rates to the single customer, security, moderate deployment costs and good scalability to number and density of users, quick and flexible deployment without legal impediments and high availability, referring to the properties of optical and wireless communication. We demonstrate all elements of an Ethernet Access Network based on Free Space Optic distribution technology. Main physical parts are Central Office, Distribution Network and Customer Equipment. Transmission of different services, as well as configuration, service upgrades and remote control of the network are handled by networking features over one FSO connection. All parts of the network are proven, the latest commercially available technology. The set up is flexible and can be adapted to any more specific need if required.

  16. Fiber optic vibration sensor for high-power electric machines realized using 3D printing technology

    Science.gov (United States)

    Igrec, Bojan; Bosiljevac, Marko; Sipus, Zvonimir; Babic, Dubravko; Rudan, Smiljko

    2016-03-01

    The objective of this work was to demonstrate a lightweight and inexpensive fiber-optic vibration sensor, built using 3D printing technology, for high-power electric machines and similar applications. The working principle is based on modulating the light intensity using a blade attached to a bendable membrane. The sensor prototype was manufactured using PolyJet Matrix technology with DM 8515 Grey 35 Polymer. The sensor shows linear response, expected bandwidth (< 150 Hz), and from our measurements we estimated the damping ratio for used polymer to be ζ ≍ 0.019. The developed prototype is simple to assemble, adjust, calibrate and repair.

  17. Optics Design for the U.S. SKA Technology Development Project Design Verification Antenna

    Science.gov (United States)

    Imbriale, W. A.; Baker, L.; Cortes-Medellin, G.

    2012-01-01

    The U.S. design concept for the Square Kilometer Array (SKA) program is based on utilizing a large number of 15 meter dish antennas. The Technology Development Project (TDP) is planning to design and build the first of these antennas to provide a demonstration of the technology and a solid base on which to estimate costs. This paper describes the performance of the selected optics design. It is a dual-shaped offset Gregorian design with a feed indexer that can accommodate corrugated horns, wide band single pixel feeds or phased array feeds.

  18. Optics Design for the U.S. SKA Technology Development Project Design Verification Antenna

    Science.gov (United States)

    Imbriale, W. A.; Baker, L.; Cortes-Medellin, G.

    2012-01-01

    The U.S. design concept for the Square Kilometer Array (SKA) program is based on utilizing a large number of 15 meter dish antennas. The Technology Development Project (TDP) is planning to design and build the first of these antennas to provide a demonstration of the technology and a solid base on which to estimate costs. This paper describes the performance of the selected optics design. It is a dual-shaped offset Gregorian design with a feed indexer that can accommodate corrugated horns, wide band single pixel feeds or phased array feeds.

  19. The electronic image stabilization technology research based on improved optical-flow motion vector estimation

    Science.gov (United States)

    Wang, Chao; Ji, Ming; Zhang, Ying; Jiang, Wentao; Lu, Xiaoyan; Wang, Jiaoying; Yang, Heng

    2016-01-01

    The electronic image stabilization technology based on improved optical-flow motion vector estimation technique can effectively improve the non normal shift, such as jitter, rotation and so on. Firstly, the ORB features are extracted from the image, a set of regions are built on these features; Secondly, the optical-flow vector is computed in the feature regions, in order to reduce the computational complexity, the multi resolution strategy of Pyramid is used to calculate the motion vector of the frame; Finally, qualitative and quantitative analysis of the effect of the algorithm is carried out. The results show that the proposed algorithm has better stability compared with image stabilization based on the traditional optical-flow motion vector estimation method.

  20. Inner structure detection by optical tomography technology based on feedback of microchip Nd:YAG lasers.

    Science.gov (United States)

    Xu, Chunxin; Zhang, Shulian; Tan, Yidong; Zhao, Shijie

    2013-05-20

    We describe a new optical tomography technology based on feedback of microchip Nd:YAG lasers. In the case of feedback light frequency-shifted, light can be magnified by a fact of 10(6) in the Nd:YAG microchip lasers, which makes it possible to realize optical tomography with a greater depth than current optical tomography. The results of the measuring and imaging of kinds of samples are presented, which demonstrate the feasibility and potential of this approach in the inner structure detection. The system has a lateral resolution of ~1 μm, a vertical resolution of 15 μm and a longitudinal scanning range of over 10mm.

  1. Ultrastable assembly and integration technology for ground- and space-based optical systems.

    Science.gov (United States)

    Ressel, Simon; Gohlke, Martin; Rauen, Dominik; Schuldt, Thilo; Kronast, Wolfgang; Mescheder, Ulrich; Johann, Ulrich; Weise, Dennis; Braxmaier, Claus

    2010-08-01

    Optical metrology systems crucially rely on the dimensional stability of the optical path between their individual optical components. We present in this paper a novel adhesive bonding technology for setup of quasi-monolithic systems and compare selected characteristics to the well-established state-of-the-art technique of hydroxide-catalysis bonding. It is demonstrated that within the measurement resolution of our ultraprecise custom heterodyne interferometer, both techniques achieve an equivalent passive path length and tilt stability for time scales between 0.1 mHz and 1 Hz. Furthermore, the robustness of the adhesive bonds against mechanical and thermal inputs has been tested, making this new bonding technique in particular a potential option for interferometric applications in future space missions. The integration process itself is eased by long time scales for alignment, as well as short curing times.

  2. New radiological material detection technologies for nuclear forensics: Remote optical imaging and graphene-based sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Richard Karl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Jeffrey B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wiemann, Dora K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Choi, Junoh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development of room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.

  3. Mono-Cycle Photonics and Optical Scanning Tunneling Microscopy Route to Femtosecond Ångstrom Technology

    CERN Document Server

    Yamashita, Mikio; Morita, Ryuji

    2005-01-01

    "Mono-Cycle Photonics and Optical Scanning Tunneling Microscopy" deals with both the ultrashort laser-pulse technology in the few- to mono-cycle region and the laser-surface-controlled scanning-tunneling microscopy (STM) extending into the spatiotemporal extreme technology. The former covers the theory of nonlinear pulse propagation beyond the slowly-varing-envelope approximation, the generation and active chirp compensation of ultrabroadband optical pulses, the amplitude and phase characterization of few- to mono-cycle pulses, and the feedback field control for the mono-cycle-like pulse generation. In addition, the wavelength-multiplex shaping of ultrabroadband pulse is described. The latter covers the CW-laser-excitation STM, the femtosecond-time-resolved STM and atomic-level surface phenomena controlled by femtosecond pulses.

  4. Technology of fiber-optic temperature sensing and its application in temperature measuring of gob area

    Institute of Scientific and Technical Information of China (English)

    LIU Jing-wen; HUANG Li-ming

    2011-01-01

    Based on advantages of technology of distributive fiber-optic temperature sensing and specific to its applications in monitoring mine conflagration, the corresponding Processes such as connection arrangement, signal transmission and monitoring were illustrated. As applied in Sitai Coal Mine of Datong Coal Mine Group Co., this method is effective and accurate and could provide reliable gist for monitoring spontaneous combustion in gob area of mines.

  5. Optical coherence tomography—current technology and applications in clinical and biomedical research

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Sander, Birgit; Mogensen, Mette

    2011-01-01

    Optical coherence tomography (OCT) is a noninvasive imaging technique that provides real-time two- and three-dimensional images of scattering samples with micrometer resolution. By mapping the local reflectivity, OCT visualizes the morphology of the sample. In addition, functional properties such...... biology. The number of companies involved in manufacturing OCT systems has increased substantially during the last few years (especially due to its success in opthalmology), and this technology can be expected to continue to spread into various fields of application....

  6. Optical coherence tomography-current technology and applications in clinical and biomedical research

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Sander, Birgit; Mogensen, Mette

    2011-01-01

    Optical coherence tomography (OCT) is a noninvasive imaging technique that provides real-time two- and three-dimensional images of scattering samples with micrometer resolution. By mapping the local reflectivity, OCT visualizes the morphology of the sample. In addition, functional properties such...... biology. The number of companies involved in manufacturing OCT systems has increased substantially during the last few years (especially due to its success in opthalmology), and this technology can be expected to continue to spread into various fields of application....

  7. Dense all-optical WDM-SCM technology for high-speed computer interconnects

    Science.gov (United States)

    Ih, Charles S.; Tian, Rongsheng; Zhou, H. X.; Xia, Xiang-Gen

    1993-07-01

    We describe a dense and flexible all optical multi-channel communication system for high speed computer interconnects. The system can provide 10 Gb/s for each individual node with a total system capacity to 250 Gb/s using currently available technologies. The system capacity can be scaled to 1 Tb/s using optical amplifiers with a broader bandwidth and higher modulations. The system is based on the multi-beam (heterodyne) modulator (MBM) recently demonstrated in our laboratory and other current technologies in tunable laser arrays and acousto-optical tunable filter (AOTF). Each MBM automatically forms a high frequency microwave sub-carrier multiplexing (SCM) with sub-carrier frequency to tens of GHz. A MBM with sub-carriers at 17 and 21 GHz has already been demonstrated and can be scaled to higher frequencies by using a higher frequency detector. Each SCM group may consist of up to 10 one-Gb/s channels and occupies only 1 nm spectral width. Therefore we can form a conventional WDM with 25 divisions within the bandwidth of commercially available optical amplifiers.

  8. Research on sensor technology of Lamb-wave signal acquisition using optical low-coherence

    Science.gov (United States)

    Zhu, Y. K.; Yang, C.; Li, X. W.; Chong, B.

    2012-10-01

    Non-destructive testing of composite materials is a key technology issue in equipment testing. Among the emerging new testing methods, Lamb-wave technology is getting more and more attention. This paper proposed a sensing method to acquire the Lamb-wave signal in thin plate based on optical low-coherence principles. Methods to acquire Lamb-wave in thin plate using optical low-coherence technology were analyzed, and the technical path of non-contact, high-precision method was chosen. Complete in-line experimental system and methods were designed and built up for testing. A sensor system based on Michelson low-coherence interferometer was set up. The distributed optical fiber sensors were arranged on the top of sample materials for signal detection. Mirrors to enhance reflection intensity were attached on the sample. The phase of sensing arm was modulated by PZT vibration. Then signals were detected and processed by Daubechies10 wavelet and Gabor wavelet. In-line testing of thin plate with features of high-precision and high signal-noise-ratio was realized, which is meaningful to dynamic testing of large-scale structure.

  9. The rectenna design on contact lens for wireless powering of the active intraocular pressure monitoring system.

    Science.gov (United States)

    Cheng, H W; Jeng, B M; Chen, C Y; Huang, H Y; Chiou, J C; Luo, C H

    2013-01-01

    This paper proposed a wireless power harvesting system with micro-electro-mechanical-systems (MEMS) fabrication for noninvasive intraocular pressure (IOP) measurement on soft contact lens substructure. The power harvesting IC consists of a loop antenna, an impedance matching network and a rectifier. The proposed IC has been designed and fabricated by CMOS 0.18 um process that operates at the ISM band of 5.8 GHz. The antenna and the power harvesting IC would be bonded together by using flip chip bonding technologies without extra wire interference. The circuit utilized an impedance transformation circuit to boost the input RF signal that improves the circuit performance. The proposed design achieves an RF-to-DC conversion efficiency of 35% at 5.8 GHz.

  10. Aircraft corrosion and crack inspection using advanced magneto-optic imaging technology

    Science.gov (United States)

    Thome, David K.; Fitzpatrick, Gerald L.; Skaugset, Richard L.; Shih, William C.

    1996-11-01

    A next generation magneto-optic imaging system, the MOI 303, has recently been introduced with the ability to generate real-time, complete, 2D eddy current images of cracks and corrosion in aircraft. The new imaging system described features advanced, digital remote control operation and on- screen display of setup parameters for ease of use. This instrument gives the inspector the capability to more rapidly scan large surfaces areas. The magneto-optic/eddy current imaging technology has already been formally approved for inspection of surface cracking on an aircraft fuselage. The improved magneto-optic imager is now poised to aid rapid inspection for corrosion and subsurface cracking. Previous magneto-optic imaging systems required the inspector to scan the surface twice for complete inspection coverage: a second scan was necessary with the imager rotated about 90 degrees from the orientation of the first pass. However, by providing eddy current excitation simultaneously from two orthogonal directions, complete, filled-in magneto-optic images are now generated regardless of the orientation of the imager. THese images are considerably easier to interpret and evaluate. In addition, there is a synergism obtained in applying eddy current excitation simultaneously in multiple directions: better penetration is obtained and the resulting images have better signal to noise levels compared to those produced with eddy current excitation applied only in one direction. Examples of these improved images are presented.

  11. The outlook of innovative optical-electronic technologies implementation in transportation

    Science.gov (United States)

    Shilina, Elena V.; Ryabichenko, Roman B.

    2005-06-01

    Information and telecommunication technologies (ITT) are already tool economic development of society and their role will grow. The first task is providing of information security of ITT that is necessary for it distribution in "information" society. The state policy of the leading world countries (USA, France, Japan, Great Britain and China) is focused on investment huge funds in innovative technologies development. Within the next 4-6 years the main fiber-optic transfer lines will have data transfer speed 40 Gbit/s, number of packed channels 60-200 that will provide effective data transfer speed 2,4-8 Tbit/s. Photonic-crystalline fibers will be promising base of new generation fiber-optic transfer lines. The market of information imaging devices and digital photo cameras will be grown in 3-5 times. Powerful lasers based on CO2 and Nd:YAG will be actively used in transport machinery construction when producing aluminum constructions of light rolling-stock. Light-emitting diodes (LEDs) will be base for energy saving and safety light sources used for vehicles and indoor lighting. For example, in the USA cost reducing for lighting will be 200 billion dollars. Implementation analysis of optic electronic photonic technologies (OPT) in ground and aerospace systems shows that they provide significant increasing of traffic safety, crew and passengers comfort with help of smart vehicles construction and non-contact dynamic monitoring both transport facilities (for example, wheel flanges) and condition of rail track (road surface), equipping vehicles with night vision equipment. Scientific-technical programs of JSC "RZD" propose application of OPT in new generation systems: axle-box units for coaches and freight cars monitoring when they are moved, track condition analysis, mechanical stress and permanent way irregularity detection, monitoring geometric parameters of aerial contact wire, car truck, rail and wheel pair roll surface, light signals automatic detection from

  12. Research of subdivision driving technology for brushless DC motors in optical fiber positioning

    Science.gov (United States)

    Kan, Yi; Gu, Yonggang; Zhu, Ye; Zhai, Chao

    2016-07-01

    In fiber spectroscopic telescopes, optical fiber positioning units are used to position thousands of fibers on the focal plane quickly and precisely. Stepper motors are used in existing units, however, it has some inherent deficiencies, such as serious heating and low efficiency. In this work, the universally adopted subdivision driving technology for stepper motors is transplanted to brushless DC motors. It keeps the advantages of stepper motors such as high positioning accuracy and resolution, while overcomes the disadvantages mentioned above. Thus, this research mainly focuses on develop a novel subdivision driving technology for brushless DC motor. By the proving of experiments of online debug and subdivision speed and position, the proposed brushless DC motor subdivision technology can achieve the expected functions.

  13. Integration of photodetectors with lasers for optical interconnects using 200 mm waferscale III-V/SOI technology

    DEFF Research Database (Denmark)

    Spuesens, Thijs; Liu, Liu; Vermeulen, Diedrik;

    2011-01-01

    We demonstrate efficient photodetectors on top of a laser epitaxial structure completely fabricated using 200 mm wafer scale III-V/SOI technology enabling very dense integration of lasers and detectors for optical interconnect circuits....

  14. International Conference on New Technologies in the Humanities and Fourth International Conference on Optics Within Life Sciences

    CERN Document Server

    Bally, Gert

    1997-01-01

    New high-tech developments in the field of optics show increasing applicability not only in classical technological fields but also in the humanities. This book contains selected contributions to an international, interdisciplinary joint conference on "New Technologies in the Humanities" and "Optics Within Life Sciences". Its objective is to forward interdisciplinary information and communication between specialists in optics as well as in medicine, biology, environmental sciences, and cultural heritage. It is unique as a presentation of new optical technologies for cultural heritage protection. The contributions cover international research activities in the areas of archaeological research and new technologies, holography and interferometry, material analysis, laser cleaning, pattern recognition, unconventional microscopy, spectroscopial techniques, and profilometry.

  15. NASA's first in-space optical gyroscope: A technology experiment on the X ray Timing Explorer spacecraft

    Science.gov (United States)

    Unger, Glenn; Kaufman, David M.; Krainak, Michael; Sanders, Glenn; Taylor, Bill; Schulze, Norman R.

    1993-01-01

    A technology experiment on the X-ray Timing Explorer spacecraft to determine the feasibility of Interferometric Fiber Optic Gyroscopes for space flight navigation is described. The experiment consists of placing a medium grade fiber optic gyroscope in parallel with the spacecraft's inertial reference unit. The performance of the fiber optic gyroscope will be monitored and compared to the primary mechanical gyroscope's performance throughout the two-year mission life.

  16. Optical Multi-Gas Monitor Technology Demonstration on the International Space Station

    Science.gov (United States)

    Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Johnson, Michael D.; Mudgett, Paul D.

    2014-01-01

    The International Space Station (ISS) employs a suite of portable and permanently located gas monitors to insure crew health and safety. These sensors are tasked with functions ranging from fixed mass spectrometer based major constituents analysis to portable electrochemical sensor based combustion product monitoring. An all optical multigas sensor is being developed that can provide the specificity of a mass spectrometer with the portability of an electrochemical cell. The technology, developed under the Small Business Innovation Research program, allows for an architecture that is rugged, compact and low power. A four gas version called the Multi-Gas Monitor was launched to ISS in November 2013 aboard Soyuz and activated in February 2014. The portable instrument is comprised of a major constituents analyzer (water vapor, carbon dioxide, oxygen) and high dynamic range real-time ammonia sensor. All species are sensed inside the same enhanced path length optical cell with a separate vertical cavity surface emitting laser (VCSEL) targeted at each species. The prototype is controlled digitally with a field-programmable gate array/microcontroller architecture. The optical and electronic approaches are designed for scalability and future versions could add three important acid gases and carbon monoxide combustion product gases to the four species already sensed. Results obtained to date from the technology demonstration on ISS are presented and discussed.

  17. 浅论光纤通信技术%Optical Fiber Communication Technology Study

    Institute of Scientific and Technical Information of China (English)

    封晓燕

    2011-01-01

    Optical fiber communication in China has nearly 30 years history of use,this history is the history of the development of optical communication technology and the development of optical fiber and cable history.Loss of optical fiber communication because of its low transmission frequency bandwidth, large capacity, small size,light weight,anti-electromagnetic interference,crosstalk is not easy, abundant resources,etc.,and much favored by the industry developed rapidly.Currently, fiber optic cable has been wired into all areas of communications,including telecommunications,radio communication,power communication,oil and communications,and military communications.In this paper, Analysis of the Optical Fiber Communication Research and Development.%光纤通信在我国已有近30年的使用历史,这段历史也就是光通信技术的发展史和光纤光缆的发展史。光纤通信因其具有的损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音、资源丰富等优点,而备受业内人士青睐,发展非常迅速。目前,光纤光缆已经进入了有线通信的各个领域,包括邮电通信、广播通信、电力通信、石油通信和军用通信等领域。本文主要浅析我国光纤通信研究现状及其发展。

  18. Design of 5 .8GHz Circular Microstrip Rectenna Based on ADS%基于 ADS 的5.8GHz 圆形微带整流天线仿真设计

    Institute of Scientific and Technical Information of China (English)

    耿凯峰; 刘丽; 漆世锴

    2016-01-01

    Rectenna is one of the critical components of wireless power transmission(WPT ) .Common rectangle patch microstrip antenna have its shortages which include oversize area ,high-cost ,difficult integration and so on .According to the design theory of circular microstrip antenna and a source of feed cavity model theory ,a novel 5 .8GHz circular microstrip re-ctenna is designed .Optimizing the designed circular microstrip rectenna using ADS2008 software ,which makes this receiving antenna area of circular microstrip rectenna nearly 4 times smaller than the same kind rectangle patch microstrip antenna .It not only greatly reduces the production cost ,but also is easy to be integrated and conformal ,more suitable to make up anten-na array .Experimental results show that power transmission efficiency of this rectenna system is above 70% ,which indirect-ly demonstrates the simulation and optimization of this microstrip rectenna availability using ADS2008 software .%整流天线是无线能量传输的关键部件之一。常用的矩形微带天线存在面积大、成本高、不易集成等不足。根据圆形微带天线设计理论和有馈源的空腔模型理论,设计了一种工作在5.8GHz 的新型圆形微带整流天线。经过ADS2008软件仿真优化使得该圆形微带整流天线的接收天线面积比同类矩形微带天线将近小4倍左右,这不仅大大降低了生产成本,而且易集成和共形,更适合组成天线阵。实验结果表明,该整流天线系统的输能效率可达到70%以上,间接说明了利用 ADS2008仿真优化该微带整流天线的可行性。

  19. Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology

    Science.gov (United States)

    Belsito, L.; Vannacci, E.; Mancarella, F.; Ferri, M.; Veronese, G. P.; Biagi, E.; Roncaglia, A.

    2014-08-01

    A micro-opto-mechanical system (MOMS) technology for the fabrication of fiber-optic optoacoustic emitters is presented. The described devices are based on the thermoelastic generation of ultrasonic waves from patterned carbon films obtained by the controlled pyrolysis of photoresist layers and fabricated on miniaturized single-crystal silicon frames used to mount the emitters on the tip of an optical fiber. Thanks to the micromachining process adopted, high miniaturization levels are reached in the fabrication of the emitters, and self-standing devices on optical fiber with diameter around 350 µm are demonstrated, potentially suited to minimally invasive medical applications. The functional testing of fiber-optic emitter prototypes in water performed by using a 1064 nm Q-switched Nd-YAG excitation laser source is also presented, yielding broadband emission spectra extended from low frequencies up to more than 40 MHz, and focused emission fields with a maximum peak-to-peak pressure level of about 1.2 MPa at a distance of 1 mm from the devices.

  20. Printing polymer optical waveguides on conditioned transparent flexible foils by using the aerosol jet technology

    Science.gov (United States)

    Reitberger, Thomas; Hoffmann, Gerd-Albert; Wolfer, Tim; Overmeyer, Ludger; Franke, Joerg

    2016-09-01

    The optical data transfer is considered as the future of signal transfer due to its various advantages compared to conventional copper-based technologies. The Aerosol Jet Printing (AJP) technology offers the opportunity to print materials with high viscosities, such as liquid transparent polymer adhesives (epoxy resins), on almost any possible substrate material and even in third dimension. This paper introduces a new flexible and comparatively cost-effective way of generating polymer optical waveguides through AJP. Furthermore, the conditioning of the substrate material and the printing process of planar waveguides are presented. In the first step, two lines with hydrophobic behavior are applied on foil material (PMMA, PVC, PI) by using a flexographic printing machine. These silicone based patterns containing functional polymer form barriers for the core material due to their low surface energy after curing. In the second step, the core material (liquid polymer, varnish) is printed between the barrier lines. Because of the hydrophobic behavior of the lines, the contact angle between the substrate surface and the liquid core material is increased which yields to higher aspect ratio. The distance between the barrier lines is at least 100 μm, which defines the width of the waveguide. The minimum height of the core shall be 50 μm. After UV-curing of the core polymer, the cladding material is printed on the top. This is also applied by using the AJP technology. Various tests were performed to achieve the optimal surface properties for adequate adhesion and machine process parameters.

  1. Optical pH detector based on LTCC and sol-gel technologies

    Science.gov (United States)

    Tadaszak, R. J.; Łukowiak, A.; Golonka, L. J.

    2013-01-01

    This paper presents an investigation on using sol-gel thin film as a material for sensors application in LTCC (Low Temperature Co-fired Ceramics) technology. This material gives the opportunity to make new, low-cost highly integrated optoelectronic devices. Sensors with optical detection are a significant part of these applications. They can be used for quick and safe diagnostics of some parameters. Authors present a pH detector with the optical detection system made of the LTCC material. The main part of the device is a flow channel with the chamber and sol-gel active material. The silica sol-gel with bromocresol green indicator was used. As the absorbance of sol-gel layer changes with the pH value of a measured medium, the transmitted light power was measured. The pH detector was integrated with the electronic components on the LTCC substrate.

  2. Data Fusion Based on Optical Technology for Observation of Human Manipulation

    Science.gov (United States)

    Falco, Pietro; De Maria, Giuseppe; Natale, Ciro; Pirozzi, Salvatore

    2012-01-01

    The adoption of human observation is becoming more and more frequent within imitation learning and programming by demonstration approaches (PbD) to robot programming. For robotic systems equipped with anthropomorphic hands, the observation phase is very challenging and no ultimate solution exists. This work proposes a novel mechatronic approach to the observation of human hand motion during manipulation tasks. The strategy is based on the combined use of an optical motion capture system and a low-cost data glove equipped with novel joint angle sensors, based on optoelectronic technology. The combination of the two information sources is obtained through a sensor fusion algorithm based on the extended Kalman filter (EKF) suitably modified to tackle the problem of marker occlusions, typical of optical motion capture systems. This approach requires a kinematic model of the human hand. Another key contribution of this work is a new method to calibrate this model.

  3. Cleaning mechanism of particle contaminants on large aperture optical components by using air knife sweeping technology

    Science.gov (United States)

    Niu, Longfei; Liu, Hao; Miao, Xinxiang; Lv, Haibing; Yuan, Xiaodong; Zhou, Hai; Yao, Caizhen; Zhou, Guorui; Li, Qin

    2017-05-01

    The cleaning mechanism of optical surface particle contaminants in the light pneumatic tube was simulated based on the static equations and JKR model. Cleaning verification experiment based on air knife sweeping system and on-line monitoring system in high power laser facility was set up in order to verify the simulated results. Results showed that the removal ratio is significantly influenced by sweeping velocity and angle. The removal ratio can reach to 94.3% by using higher input pressure of the air knife, demonstrating that the air knife sweeping technology is useful for maintaining the surface cleanliness of optical elements, and thus guaranteeing the long-term stable running of the high power laser facility.

  4. Generation-X mirror technology development plan and the development of adjustable x-ray optics

    Science.gov (United States)

    Reid, Paul B.; Davis, William; O'Dell, Stephen; Schwartz, Daniel A.; Tolier-McKinstry, Susan; Wilke, Rudeger H. T.; Zhang, William

    2009-08-01

    Generation-X is being studied as an extremely high resolution, very large area grazing incidence x-ray telescope. Under a NASA Advanced Mission Concepts Study, we have developed a technology plan designed to lead to the 0.1 arcsec (HPD) resolution adjustable optics with 50 square meters of effective area necessary to meet Generation-X requirements. We describe our plan in detail. In addition, we report on our development activities of adjustable grazing incidence optics via the fabrication of bimorph mirrors. We have successfully deposited thin-film piezo-electric material on the back surface of thin glass mirrors. We report on the electrical and mechanical properties of the bimorph mirrors. We also report on initial finite element modeling of adjustable grazing incidence mirrors; in particular, we examine the impact of how the mirrors are supported - the boundary conditions - on the deformations which can be achieved.

  5. Research on diversity receive technology for wireless optical communication using PPM in weak turbulence atmosphere channel

    Science.gov (United States)

    Liu, Yang; Zhang, Guo-an

    2014-09-01

    In order to mitigate atmospheric turbulence, the free space optical (FSO) system model with spatial diversity is analyzed based on intensity detection pulse position modulation (PPM) in the weak turbulence atmosphere. The slot error rate (SER) calculating formula of the system without diversity is derived under pulse position modulation firstly. Then as a benchmark, independent of identical distribution, the average slot error rates of the three linear combining technologies, which are the maximal ratio combining (MRC), equal gain combining (EGC) and selection combining (SelC), are compared. Simulation results show that the performance of system is the best improved by MRC, followed by EGC, and is poor by SelC, but SelC is simpler and more convenient. Spatial diversity is efficient to improve the performance and has strong ability on resistance to atmospheric channel decline. The above scheme is more suitable for optical wireless communication systems.

  6. Review of biomedical optical imaging—a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis

    Science.gov (United States)

    Balas, Costas

    2009-10-01

    This paper reviews the recent developments in the field of biomedical optical imaging, emphasizing technologies that have been moved from 'bench top to bedside'. Important new developments in this field allow for unprecedented visualization of the tissue microstructure and enable quantitative mapping of disease-specific endogenous and exogenous substances. With these advances, optical imaging technologies are becoming powerful clinical tools for non-invasive and objective diagnosis, guided treatment and monitoring therapies. Recent developments in visible and infrared diffuse spectroscopy and imaging, spectral imaging, optical coherence tomography, confocal imaging, molecular imaging and dynamic spectral imaging are presented together with their derivative medical devices. Their perspectives and challenges are discussed.

  7. Optical waveguiding and applied photonics technological aspects, experimental issue approaches and measurements

    CERN Document Server

    Massaro, Alessandro

    2012-01-01

    Optoelectronics--technology based on applications light such as micro/nano quantum electronics, photonic devices, laser for measurements and detection--has become an important field of research. Many applications and physical problems concerning optoelectronics are analyzed in Optical Waveguiding and Applied Photonics.The book is organized in order to explain how to implement innovative sensors starting from basic physical principles. Applications such as cavity resonance, filtering, tactile sensors, robotic sensor, oil spill detection, small antennas and experimental setups using lasers are a

  8. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials

    Directory of Open Access Journals (Sweden)

    Manjusha Ramakrishnan

    2016-01-01

    Full Text Available This paper provides an overview of the different types of fiber optic sensors (FOS that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements.

  9. Optical image encryption based on binary Fourier transform computer-generated hologram and pixel scrambling technology

    Science.gov (United States)

    Wang, Yong-Ying; Wang, Yu-Rong; Wang, Yong; Li, Hui-Juan; Sun, Wen-Jia

    2007-07-01

    A new method of optical image encryption with binary Fourier transform computer-generated hologram (CGH) and pixel-scrambling technology is presented. In this method, the orders of the pixel scrambling, as well as the encrypted image, are used as the keys to decrypt the original image. Therefore, higher security is achieved. Furthermore, the encrypted image is binary, so it is easy to be fabricated and robust against noise and distortion. Computer simulation results are given to verify the feasibility of this method and its robustness against occlusion and additional noise.

  10. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials.

    Science.gov (United States)

    Ramakrishnan, Manjusha; Rajan, Ginu; Semenova, Yuliya; Farrell, Gerald

    2016-01-15

    This paper provides an overview of the different types of fiber optic sensors (FOS) that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements.

  11. Characterization of the influence of strain on the optical properties of waveguides and microresonators in silicon-on-insulator technology

    NARCIS (Netherlands)

    Westerveld, W.J.; Harmsma, P.J.; Schmits, R.; Tabak, E.; Pozo Torres, J.M.; Urbach, H.P.; Yousefi, M.

    2011-01-01

    Silicon-on-insulator (SOI) technology has become one of the focus platforms for photonic integrated circuits (PICs). The CMOS technology opens the possibility for reliable mass fabrication of cost-effective photonic circuits. Recently there has been a growing interest in direct optical sensing of, f

  12. Optical gesture sensing and depth mapping technologies for head-mounted displays: an overview

    Science.gov (United States)

    Kress, Bernard; Lee, Johnny

    2013-05-01

    Head Mounted Displays (HMDs), and especially see-through HMDs have gained renewed interest in recent time, and for the first time outside the traditional military and defense realm, due to several high profile consumer electronics companies presenting their products to hit market. Consumer electronics HMDs have quite different requirements and constrains as their military counterparts. Voice comments are the de-facto interface for such devices, but when the voice recognition does not work (not connection to the cloud for example), trackpad and gesture sensing technologies have to be used to communicate information to the device. We review in this paper the various technologies developed today integrating optical gesture sensing in a small footprint, as well as the various related 3d depth mapping sensors.

  13. The application of confocal technology based on polycapillary X-ray optics in surface topography

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guangcui, E-mail: zgcshirley@yahoo.cn [The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi; Liu, Zhiguo; Yuan, Hao; Li, Yude; Liu, Hehe; Zhao, Weigang; Zhang, Ruixia; Min, Qin; Peng, Song [The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2013-09-01

    A confocal micro-X-ray fluorescence (MXRF) technology based on polycapillary X-ray optics was proposed for determining surface topography. This confocal topography method involves elemental sensitivity and can be used to classify the objects according to their elemental composition while obtaining their surface topography. To improve the spatial resolution of this confocal topography technology, the center of the confocal micro-volume was overlapped with the output focal spot of the polycapillary X-ray, focusing the lens in the excitation channel. The input focal spot of the X-ray lens parallel to the detection channel was used to determine the surface position of the sample. The corresponding surface adaptive algorithm was designed to obtain the surface topography. The surface topography of a ceramic chip was obtained. This confocal MXRF surface topography method could find application in the materials sciences.

  14. Developing Magnetorheological Finishing (MRF) Technology for the Manufacture of Large-Aperture Optics in Megajoule Class Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    Menapace, J A

    2010-10-27

    Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm{sup 2} at 1053 nm), visible (>18 J/cm{sup 2} at 527 nm), and ultraviolet (>10 J/cm{sup 2} at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chain or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large-aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture large-aperture damage resistant optics.

  15. Characterization of a Reconfigurable Free-Space Optical Channel for Embedded Computer Applications with Experimental Validation Using Rapid Prototyping Technology

    Directory of Open Access Journals (Sweden)

    Rafael Gil-Otero

    2007-02-01

    Full Text Available Free-space optical interconnects (FSOIs are widely seen as a potential solution to current and future bandwidth bottlenecks for parallel processors. In this paper, an FSOI system called optical highway (OH is proposed. The OH uses polarizing beam splitter-liquid crystal plate (PBS/LC assemblies to perform reconfigurable beam combination functions. The properties of the OH make it suitable for embedding complex network topologies such as completed connected mesh or hypercube. This paper proposes the use of rapid prototyping technology for implementing an optomechanical system suitable for studying the reconfigurable characteristics of a free-space optical channel. Additionally, it reports how the limited contrast ratio of the optical components can affect the attenuation of the optical signal and the crosstalk caused by misdirected signals. Different techniques are also proposed in order to increase the optical modulation amplitude (OMA of the system.

  16. Characterization of a Reconfigurable Free-Space Optical Channel for Embedded Computer Applications with Experimental Validation Using Rapid Prototyping Technology

    Directory of Open Access Journals (Sweden)

    Lim Theodore

    2007-01-01

    Full Text Available Free-space optical interconnects (FSOIs are widely seen as a potential solution to current and future bandwidth bottlenecks for parallel processors. In this paper, an FSOI system called optical highway (OH is proposed. The OH uses polarizing beam splitter-liquid crystal plate (PBS/LC assemblies to perform reconfigurable beam combination functions. The properties of the OH make it suitable for embedding complex network topologies such as completed connected mesh or hypercube. This paper proposes the use of rapid prototyping technology for implementing an optomechanical system suitable for studying the reconfigurable characteristics of a free-space optical channel. Additionally, it reports how the limited contrast ratio of the optical components can affect the attenuation of the optical signal and the crosstalk caused by misdirected signals. Different techniques are also proposed in order to increase the optical modulation amplitude (OMA of the system.

  17. [Review on label-free optical bio-sensing technology based on whisper-gallery-mode].

    Science.gov (United States)

    Jiang, Jun-feng; Liu, Tie-gen; Li, Hai-wei; Hui, Rong-qing; Liu, Kuni; Zhang, Yi-mo

    2010-11-01

    Optical biosensors are becoming an important tool for drug research and life science, and the label-free optical biosensor based on whisper-gallery-mode (WGM) is reviewed in the present paper. The WGM-based sensors are categorized into three types according to the microcavity structure. The biosensor using microsphere got extensive research because of high quality factor, and its response to protein, virus, and bacteria had been studied. The models based on single photon resonant state and perturbation theory were established. The biosensor using microdisk was proposed early since it can make use of mature lithography technology; however, the quality factor was increased greatly only after the thermal reflow process was introduced and single molecule measurement was then realized. The biosensor using microring has simpler mode structure and materials such as polymer, silicon nitride and silicon-on-insulator had been used for sensor fabrication. As a 3-dimension expansion, sensor using microtube can combine the optical channel and fluidic channel, which attracting more and more attention.

  18. Correction technology of a polarization lidar with a complex optical system.

    Science.gov (United States)

    Di, Huige; Hua, Hangbo; Cui, Yan; Hua, Dengxin; Li, Bo; Song, Yuehui

    2016-08-01

    A complex optical system used in polarization lidars often modifies the input polarization of the return signal so that it may significantly impact depolarization estimates and introduce errors to polarization lidar measurements. In most cases, retardation, depolarization, and misalignment of the system exist at the same time and interact with each other. Polarization effects of the system cannot be represented by a simple correction coefficient, so they cannot be removed using a traditional calibration method. Detailed analysis and correction technologies were provided to remove systematic biases in estimating depolarization values from a polarization lidar owing to multiple optical components. The Mueller matrices from an emitter to a receiver were calculated, and the expression for an aerosol depolarization parameter including system polarization effects was derived and obtained. In addition, the correction algorithm based on the Mueller matrix was introduced and provided. A polarization lidar was established, and the polarization characteristics of its optical components were measured with a laboratory ellipsometer; then, the Mueller matrix of the receiver was calculated and obtained. Lidar observations were performed, and our correction algorithm was applied to lidar field data. The results show that the correction method can significantly remove systematic polarization effects.

  19. Application of Distributed Optical Fiber Sensing Technology in the Anomaly Detection of Shaft Lining in Grouting

    Directory of Open Access Journals (Sweden)

    Chunde Piao

    2015-01-01

    Full Text Available The rupture of the shaft lining caused by grouting has seriously undermined the safety in coal mining. Based on BOTDR distributed optical fiber sensing technology, this paper studied the layout method of optical fiber sensors and the anomaly detection method of the deformation and obtained the evolution law of shaft deformation triggered by grouting. The research results showed that the bonding problem of optical fiber sensors in damp environment could be effectively solved, by applying the binder consisting of sodium silicate and cement. Through BOTDR-based deformation detection, the real-time deformation of the shaft lining caused by grouting was immediately spotted. By comparing the respective strain of shaft lining deformation and concrete deformation, the risk range of shaft lining grouting was identified. With the additional strain increment of the shaft lining triggered by each process of grouting, the saturated condition of grouting volume in strata was analyzed, providing an important technical insight into the field construction and the safety of the shaft lining.

  20. A Novel Monopulse Antenna Based on Quasi-Optical Technology at Sub-millimeter Wavelengths

    Science.gov (United States)

    Zhang, Long; Dou, Wenbin; Su, Hongyan; Zhang, Xiaojing

    2015-08-01

    In this paper, a novel monopulse antenna operating at sub-millimeter wavelengths is firstly proposed and developed based on quasi-optical (QO) technology. The developed monopulse antenna is composed of spherical thin lens, ellipsoid mirrors, plane mirrors, quasi-optical sum-difference comparator, and dielectric prisms. The parameters of quasi-optical elements are determined by using Gaussian-Beam theory. Then, the antenna configuration is simulated and further optimized by finite-difference time-domain (FDTD) method. The simulated results show good sum-difference performance, with the sidelobe levels below -10.0 dB and the null-depth approximately -35.0 dB at the center frequency of 375 GHz. A prototype of the proposed monopulse antenna is fabricated and measured. The measured results have a good agreement with the simulated results in the near-field test process. This type of QO monopulse antenna may be used as an excellent candidate for tracking system over 300 GHz.

  1. Progress in the indirect slumping technology development at MPE for lightweight x-ray optics

    Science.gov (United States)

    Wen, Mingwu; Proserpio, Laura; Breunig, Elias; Friedrich, Peter; Burwitz, Vadim; Madarasz, Emanuel

    2016-10-01

    Large X-ray telescopes for future observatories need to combine a big collecting area, meaning thin mirrors with large diameter, with good angular resolution. Structures have to be stiff enough to guarantee the correct profiles and positioning of such mirrors. Due to the mass limits of the launching rockets, lightweight materials and configurations are required.. The Slumped Glass Optic (SGO) group of the Max-Planck-Institute for Extraterrestrial physics (MPE) is developing the indirect slumping technology to comply with this need. This technique foresees the shaping at high temperature of thin glass foils, originally flat, to Wolter I design X-ray mirror segments, by using suitable moulds. During the thermal cycle inside an electrical oven the glass viscosity is such reduced that it allows its bending onto the mould. So the mould's shape is replicated while still maintaining the original micro-roughness of the glass on the non-contact side that is of fundamental importance for X-ray reflections. This replication process is particularly suitable for the manufacturing of several identical optical elements, which must successively be coated with the necessary reflective layer and then aligned and integrated into supporting structures. Numerous aspects of the technology have been studied in the past, such as the selection of mould and glass materials, and the corresponding optimization of the thermal cycle parameters. During the last year, we focused on different process set-ups. The current results and status of activities will be presented in the paper.

  2. Resilient backhaul network design using hybrid radio/free-space optical technology

    KAUST Repository

    Douik, Ahmed

    2016-07-26

    The radio-frequency (RF) technology is a scalable solution for the backhaul planning. However, its performance is limited in terms of data rate and latency. Free Space Optical (FSO) backhaul, on the other hand, offers a higher data rate but is sensitive to weather conditions. To combine the advantages of RF and FSO backhauls, this paper proposes a cost-efficient backhaul network using the hybrid RF/FSO technology. To ensure a resilient backhaul, the paper imposes a given degree of redundancy by connecting each node through K link-disjoint paths so as to cope with potential link failures. Hence, the network planning problem considered in this paper is the one of minimizing the total deployment cost by choosing the appropriate link type, i.e., either hybrid RF/FSO or optical fiber (OF), between each couple of base-stations while guaranteeing K link-disjoint connections, a data rate target, and a reliability threshold. The paper solves the problem using graph theory techniques. It reformulates the problem as a maximum weight clique problem in the planning graph, under a specified realistic assumption about the cost of OF and hybrid RF/FSO links. Simulation results show the cost of the different planning and suggest that the proposed heuristic solution has a close-to-optimal performance for a significant gain in computation complexity. © 2016 IEEE.

  3. High-precision, three-dimensional tracking of mouse whisker movements with optical motion capture technology

    Directory of Open Access Journals (Sweden)

    Snigdha eRoy

    2011-06-01

    Full Text Available The mystacial vibrissae or whiskers in rodents are sensitive tactile hairs emerging from both sides of the face. Rats and mice actively move these whiskers during exploration. The neuronal mechanisms controlling whisker movements and the sensory representation of whisker tactile information are widely studied as a model for sensorimotor processing in mammals. Studies of the natural whisker movement patterns during exploration and tactile examination are still in their early stages. Tracking the movements of whiskers is technically challenging as they move relatively fast and are very thin, particularly in mice. Existing systems detect light-beam interruptions by the whiskers or use high-speed video to track whisker movements in one or two dimensions. Here we describe a method for tracking the movements of mouse whiskers in 3 dimensions (3D using using optical motion capture technology. Optical motion capture technology tracks the movements of small retro-reflective markers attached to whiskers of a head-fixed mouse with a spatial resolution of <0.5mm in all three dimensions and a temporal resolution of 5msec (200 fps. The system stores the 3D coordinates of the marker’s trajectories onto hard disk allowing a detailed analysis of movement trajectories bilateral coordination.

  4. Optical coordinate scanners applied for the inspection of large scale housings produced in foundry technology

    Directory of Open Access Journals (Sweden)

    M. Grzelka

    2010-01-01

    Full Text Available The paper presents possibilities of the dimensional and geometry measurement of the large scale casting details with a coordinate measuring technique. In particular, the analysis has been devoted to the measurement strategy in case of the measurement of large scale detail (larger than 1000 mm made in foundry technology, with the 3D optical scanner. The attention was paid on the possibility created by the advanced software attached to the scanner for measurement data processing. Preparation to the geometrical accuracy analysis of the measured objects consisted of the identification of particular geometrical features based on the large number of probing points, as well as the creation of the coordinate systems derived from the best-fitting algorithms which calculate the inscribed or circumscribed geometrical elements. Analysis of accuracy in every probing point has been performed through the comparison of their coordinates with nominal values set by 3D model. Application of the 3D optical coordinate scanner with advanced measurement software for the manufacturing accuracy inspection is very useful in case of large scale details produced with foundry technologies and allows to carry out full accuracy analysis of the examined detail.

  5. Advanced manufacturing technologies for light-weight post- polished snap-together reflective optical system designs

    Science.gov (United States)

    Sweeney, Michael N.

    2002-09-01

    Fast, light weight, off-axis, aspheric, reflective optical designs are increasingly being designed and built for space-based remote sensing, fire control systems, aerial reconnaissance, cryovac instrumentation and laser scanning. Diamond point turning (DPT) is the technology of first resort for many of these applications. In many cases the best diamond machining technologies available cannot meet the desired requirements for system wavefront error and scatter. Aluminum, beryllium, AlBeMet and silicon carbide mirrors, layered with thin films of electroless nickel or silicon can be first diamond machined and then post polished to achieve greatly enhanced performance levels for surface scatter, wavefront error (WFE), and alignment registration. By application of post polishing using precise null testing techniques, the objectives of snap-together, or limited compensation alignment of aggressive reflective optical systems can be achieved that are well beyond the performance envelope achievable by diamond machining alone. This paper discusses the tradeoffs among materials and processes selection for post polished reflective systems and illustrates actual applications including telescopes for earth and Mars orbit, and a commercial, high speed, flat field scan engine.

  6. Zigbee networking technology and its application in Lamost optical fiber positioning and control system

    Science.gov (United States)

    Jin, Yi; Zhai, Chao; Gu, Yonggang; Zhou, Zengxiang; Gai, Xiaofeng

    2010-07-01

    4,000 fiber positioning units need to be positioned precisely in LAMOST(Large Sky Area Multi-object Optical Spectroscopic Telescope) optical fiber positioning & control system, and every fiber positioning unit needs two stepper motors for its driven, so 8,000 stepper motors need to be controlled in the entire system. Wireless communication mode is adopted to save the installing space on the back of the focal panel, and can save more than 95% external wires compared to the traditional cable control mode. This paper studies how to use the ZigBee technology to group these 8000 nodes, explores the pros and cons of star network and tree network in order to search the stars quickly and efficiently. ZigBee technology is a short distance, low-complexity, low power, low data rate, low-cost two-way wireless communication technology based on the IEEE 802.15.4 protocol. It based on standard Open Systems Interconnection (OSI): The 802.15.4 standard specifies the lower protocol layers-the physical layer (PHY), and the media access control (MAC). ZigBee Alliance defined on this basis, the rest layers such as the network layer and application layer, and is responsible for high-level applications, testing and marketing. The network layer used here, based on ad hoc network protocols, includes the following functions: construction and maintenance of the topological structure, nomenclature and associated businesses which involves addressing, routing and security and a self-organizing-self-maintenance functions which will minimize consumer spending and maintenance costs. In this paper, freescale's 802.15.4 protocol was used to configure the network layer. A star network and a tree network topology is realized, which can build network, maintenance network and create a routing function automatically. A concise tree network address allocate algorithm is present to assign the network ID automatically.

  7. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    Science.gov (United States)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  8. Technology of optical switch in all optical communication%全光通信中的光开关技术

    Institute of Scientific and Technical Information of China (English)

    李红春; 赵巧霞; 陶晓燕; 王豆豆

    2011-01-01

    Optical switch is the kernel device of all optical switchingCurrently the study on optical switch has become the focus of all optical communication. This paper summarized the principle of optical switch, analyzed the application of optical switch. The traditional mechanical, micro electro-mechanical system (MEMS) and thermo-optic switch were further divided, and their characteristics were pointed out. Then an evaluation system was put forward for optical switch assessment, by comparing the qualitative and quantitative of the four common optical switches,the advatnges and inadequacics of different types of optical switches were pointed out. Finauy,according to the trend of all optical communication, the large-scale array, high speed, transparent and low loss optical switch is the key development of direction.%光开关是实现全光交换的核心器件,光开关的研究已成为全光通信领域研究的焦点.本文首先对光开关的原理进行归纳,总结光开关的应用范围.对传统机械式光开关、微电子机械式光开关、热光开关进行了进一步地划分,分析了它们的结构形式和性能特点.设计了光开关性能评价指标体系,对常见的4种光开关进行了定性与定量对比,指出不同类型光开关的优点和不足之处.最后依据全光通信网的发展趋势,指出大容童、高速、透明、低损耗是光开关的重点发展方向.

  9. Participant recruitment and motivation for participation in optical technology for cervical cancer screening research trials.

    Science.gov (United States)

    Shuhatovich, Olga M; Sharman, Mathilde P; Mirabal, Yvette N; Earle, Nan R; Follen, Michele; Basen-Engquist, Karen

    2005-12-01

    In order to improve recruitment for cervical cancer screening trials, it is necessary to analyze the effectiveness of recruitment strategies used in current trials. A trial to test optical spectroscopy for the diagnosis of cervical neoplasia recruited 1000 women from the community; the trial evaluated the emerging technology against Pap smears and colposcopically directed biopsies for cervical dysplasia. We have examined women's reasons for participating as well as the effectiveness and efficiency for each recruitment strategy. Reasons for participation were identified and compared between trials. The recruitment method that resulted in the most contacts was newspaper reportorial coverage and advertising, followed by family and friends, then television news coverage. The most cost-effective method for finding eligible women who attend the research appointment is word of mouth from a family member or friend. Recommendations are given for maximizing the efficiency of recruitment for cervical cancer screening trials.

  10. Polarization Sensitive Optical Coherence Tomography: A Review of Technology and Applications

    Directory of Open Access Journals (Sweden)

    Bernhard Baumann

    2017-05-01

    Full Text Available Polarization sensitive optical coherence tomography (PS-OCT is an imaging technique based on light scattering. PS-OCT performs rapid two- and three-dimensional imaging of transparent and translucent samples with micrometer scale resolution. PS-OCT provides image contrast based on the polarization state of backscattered light and has been applied in many biomedical fields as well as in non-medical fields. Thereby, the polarimetric approach enabled imaging with enhanced contrast compared to standard OCT and the quantitative assessment of sample polarization properties. In this article, the basic methodological principles, the state of the art of PS-OCT technologies, and important applications of the technique are reviewed in a concise yet comprehensive way.

  11. Refractive index sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology.

    Science.gov (United States)

    Zhao, Ying; Pang, Fufei; Dong, Yanhua; Wen, Jianxiang; Chen, Zhenyi; Wang, Tingyun

    2013-11-04

    The atomic layer deposition (ALD) technology is introduced to enhance the sensitivity of optical fiber cladding mode to surrounding refractive index (SRI) variation. The highly uniform Al2O nanofilm was deposited around the double cladding fiber (DCF) which presents cladding mode resonant feature. With the high refractive index coating, the cladding mode resonant spectrum was tuned. And the sensitivity enhancement for SRI sensor was demonstrated. Through adjusting the deposition cycles, a maximum sensitivity of 723 nm/RIU was demonstrated in the DCF with 2500 deposition cycles at the SRI of 1.34. Based on the analysis of cladding modes reorganization, the cladding modes transition of the coated DCF was investigated theoretically. With the high performance nanofilm coating, the proposed SRI sensor is expected to have wide applications in chemical sensors and biosensors.

  12. Evaluation of dry technology for removal of pellicle adhesive residue on advanced optical reticles

    Science.gov (United States)

    Paracha, Shazad; Bekka, Samy; Eynon, Benjamin; Choi, Jaehyuck; Balooch, Mehdi; Varghese, Ivin; Hopkins, Tyler

    2013-09-01

    The fast pace of MOSFET scaling is accelerating the introduction of smaller technology nodes to extend CMOS beyond 20nm as required by Moore's law. To meet these stringent requirements, the industry is seeing an increase in the number of critical layers per reticle set as it move to lower technology nodes especially in a high volume manufacturing operation. These requirements are resulting in reticles with higher feature densities, smaller feature sizes and highly complex Optical Proximity Correction (OPC), built with using new absorber and pellicle materials. These rapid changes are leaving a gap in maintaining these reticles in a fab environment, for not only haze control but also the functionality of the reticle. The industry standard of using wet techniques (which uses aggressive chemicals, like SPM, and SC1) to repel reticles can result in damage to the sub-resolution assist features (SRAF's), create changes to CD uniformity and have potential for creating defects that require other means of removal or repair. Also, these wet cleaning methods in the fab environment can create source for haze growth. Haze can be controlled by: 1) Chemical free (dry) reticle cleaning, 2) In-line reticle inspection in fab, and 3) Manage the environment where reticles are stored. In this paper we will discuss a dry technique (chemical free) to remove pellicle adhesive residue from advanced optical reticles. Samsung Austin Semiconductors (SAS), jointly worked with Eco-Snow System (a division of RAVE N.P., Inc.) to evaluate the use of Dry Reactive Gas (DRG) technique to remove pellicle adhesive residue on reticles. This technique can significantly reduce the impact to the critical geometry in active array of the reticle, resulting in preserving the reticle performance level seen at wafer level. The paper will discuss results on the viability of this technique used on advanced reticles.

  13. An optical fiber Fabry-Perot flow measurement technology based on partial bend structure

    Science.gov (United States)

    Yang, Huijia; Jiang, Junfeng; Zhang, Xuezhi; Pan, Yuheng; Zhu, Wanshan; Zhou, Xiang; Liu, Tiegen

    2016-08-01

    An optical fiber Fabry-Perot (F-P) flow measurement technology is presented, which is based on partial bend structure. A 90° partial bend structure is designed to achieve the non-probe flow measurement with a pressure difference. The fluid simulation results of partial bend structure show that the error of the pressure difference is below 0.05 kPa during steady flow. The optical fiber F-P sensor mounted on the elbow with pressure test accuracy of 1% full scale is used to measure the fluid flow. Flow test results show that when the flow varies from 1 m3/h to 6.5 m3/h at ambient temperature of 25 °C, the response time is 1 s and the flow test accuracy is 4.5% of the F-P flow test system, proving that the F-P flow test method based on partial bend structure can be used in fluid flow measurement.

  14. Determination of inorganic elements in animal feeds by NIRS technology and a fibre-optic probe.

    Science.gov (United States)

    González-Martín, Inmaculada; Alvarez-García, Noelia; González-Pérez, Claudio; Villaescusa-García, Virginia

    2006-05-15

    In the present work we study the use of near infra-red spectroscopy (NIRS) technology together with a remote reflectance fibre-optic probe for the analysis of the mineral composition of animal feeds. The method allows immediate control of the feeds without prior sample treatment or destruction through direct application of the fibre-optic probe on the sample. The regression method employed was modified partial least squares (MPLS). The calibration results obtained using forty samples of animal feeds allowed the determination of Fe, Mn, Ca, Na, K, P, Zn and Cu, with a standard error of prediction (SEP(C)) and a correlation coefficient (RSQ) of 0.129 and 0.859 for Fe; 0.175 and 0.816 for Mn; 5.470 and 0.927 for Ca; 2.717 and 0.862 for Na; 4.397 and 0.891 for K; 2.226 and 0.881 for P; 0.153 and 0.764 for Zn, and 0.095 and 0.918 for Cu, respectively. The robustness of the method was checked by applying it to 10 animal feeds samples of unknown mineral composition in the external validation.

  15. Defect Detection in Pipes using a Mobile Laser-Optics Technology and Digital Geometry

    Directory of Open Access Journals (Sweden)

    Tezerjani Abbasali Dehghan

    2015-01-01

    Full Text Available This paper presents a novel method for defect detection in pipes using a mobile laser-optics technology and conventional digital-geometry-based image processing techniques. The laser-optics consists of a laser that projects a line onto the pipe’s surface, and an omnidirectional camera. It can be mounted on a pipe crawling robot for conducting continuous inspection. The projected laser line will be seen as a half-oval in the image. When the laser line passes over defected points, the image moments on the pixel information would change. We propose a B-spline curve fitting on the digitally-convoluted image and a curvature estimation algorithm to detect the defects from the image. Defect sizes of 2 mm or larger can be detected using this method in pipes of up to 24 inch in diameter. The proposed sensor can detect 180-degree (i.e., upper half surface of the pipe. By turning the sensor 180 degrees, one will be able to detect the other half (i.e., lower half of the pipe’s surface. While, 360-degree laser rings are available commercially, but they did not provide the intensity needed for our experimentation. We also propose a fast boundary extraction algorithm for real time detection of defects, where a trace of consecutive images are used to track the image features. Tests were carried out on PVC and steel pipes.

  16. Near infrared optical technologies to illuminate the status of the neonatal brain.

    Science.gov (United States)

    Liao, Steve M; Culver, Joseph P

    2014-01-01

    The neurodevelopmental outcome of at-risk infants in the neonatal intensive care unit (NICU) is concerning despite steady improvement in the survival rate of these infants. Our current management is often complicated by delayed realization of cerebral deficits due to late manifestation and lack of effective screening tools and neuroimaging/monitoring techniques that are suitable for sick neonates at the bedside. Near infrared specstrocopy (NIRS) is a noninvasive, safe, and portable technique providing a wide range of cerebral hemodynamic contrasts for evaluating the brain. The current state of NIRS technology can be devided into three generations. The first generation represents conventional trend monitoring oximeters that are currently the most widely used in the clinical settings, while the second generation focuses on improving the quantitive accuracy of NIRS measurements by advanced optical techniques. The emergence of diffuse optical imaging (DOI) represents a third generation which opens up more potential clinical applications by providing regional comparisons of brain oximetry and functions either at rest or in response to interventions. Successful integration of NIRS/DOI into the clinical setting requires matching the different capabilities of each instrument to specific clinical goals.

  17. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  18. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  19. Application of fluidic lens technology to an adaptive holographic optical element see-through autophoropter

    Science.gov (United States)

    Chancy, Carl H.

    A device for performing an objective eye exam has been developed to automatically determine ophthalmic prescriptions. The closed loop fluidic auto-phoropter has been designed, modeled, fabricated and tested for the automatic measurement and correction of a patient's prescriptions. The adaptive phoropter is designed through the combination of a spherical-powered fluidic lens and two cylindrical fluidic lenses that are orientated 45o relative to each other. In addition, the system incorporates Shack-Hartmann wavefront sensing technology to identify the eye's wavefront error and corresponding prescription. Using the wavefront error information, the fluidic auto-phoropter nulls the eye's lower order wavefront error by applying the appropriate volumes to the fluidic lenses. The combination of the Shack-Hartmann wavefront sensor the fluidic auto-phoropter allows for the identification and control of spherical refractive error, as well as cylinder error and axis; thus, creating a truly automated refractometer and corrective system. The fluidic auto-phoropter is capable of correcting defocus error ranging from -20D to 20D and astigmatism from -10D to 10D. The transmissive see-through design allows for the observation of natural scenes through the system at varying object planes with no additional imaging optics in the patient's line of sight. In this research, two generations of the fluidic auto-phoropter are designed and tested; the first generation uses traditional glass optics for the measurement channel. The second generation of the fluidic auto-phoropter takes advantage of the progress in the development of holographic optical elements (HOEs) to replace all the traditional glass optics. The addition of the HOEs has enabled the development of a more compact, inexpensive and easily reproducible system without compromising its performance. Additionally, the fluidic lenses were tested during a National Aeronautics Space Administration (NASA) parabolic flight campaign, to

  20. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  1. Advanced technology optical telescopes IV; Proceedings of the Meeting, Tucson, AZ, Feb. 12-16, 1990. Parts 1 & 2

    Science.gov (United States)

    Barr, Lawrence D. (Editor)

    1990-01-01

    The present conference on the current status of large, advanced-technology optical telescope development and construction projects discusses topics on such factors as their novel optical system designs, the use of phased arrays, seeing and site performance factors, mirror fabrication and testing, pointing and tracking techniques, mirror thermal control, structural design strategies, mirror supports and coatings, and the control of segmented mirrors. Attention is given to the proposed implementation of the VLT Interferometer, the first diffraction-limited astronomical images with adaptive optics, a fiber-optic telescope using a large cross-section image-transmitting bundle, the design of wide-field arrays, Hartmann test data reductions, liquid mirrors, inertial drives for telescope pointing, temperature control of large honeycomb mirrors, evaporative coatings for very large telescope mirrors, and the W. M. Keck telescope's primary mirror active control system software.

  2. Design and Development of the WVU Advanced Technology Satellite for Optical Navigation

    Science.gov (United States)

    Straub, Miranda

    In order to meet the demands of future space missions, it is beneficial for spacecraft to have the capability to support autonomous navigation. This is true for both crewed and uncrewed vehicles. For crewed vehicles, autonomous navigation would allow the crew to safely navigate home in the event of a communication system failure. For uncrewed missions, autonomous navigation reduces the demand on ground-based infrastructure and could allow for more flexible operation. One promising technique for achieving these goals is through optical navigation. To this end, the present work considers how camera images of the Earth's surface could enable autonomous navigation of a satellite in low Earth orbit. Specifically, this study will investigate the use of coastlines and other natural land-water boundaries for navigation. Observed coastlines can be matched to a pre-existing coastline database in order to determine the location of the spacecraft. This paper examines how such measurements may be processed in an on-board extended Kalman filter (EKF) to provide completely autonomous estimates of the spacecraft state throughout the duration of the mission. In addition, future work includes implementing this work on a CubeSat mission within the WVU Applied Space Exploration Lab (ASEL). The mission titled WVU Advanced Technology Satellite for Optical Navigation (WATSON) will provide students with an opportunity to experience the life cycle of a spacecraft from design through operation while hopefully meeting the primary and secondary goals defined for mission success. The spacecraft design process, although simplified by CubeSat standards, will be discussed in this thesis as well as the current results of laboratory testing with the CubeSat model in the ASEL.

  3. Cost-effective backhaul design using hybrid radio/free-space optical technology

    KAUST Repository

    Douik, Ahmed S.

    2015-06-08

    The deluge of date rate in today\\'s networks poses a cost burden on the backhaul network design. Developing cost efficient backhaul solutions becomes an interesting, yet challenging, problem. Traditional technologies for backhaul networks include either radio-frequency backhauls (RF) or optical fibres (OF). While RF is a cost-effective solution as compared to OF, it supports lower data rate requirements. Another promising backhaul solution that may combine both a high data rate and a relatively low cost is the free-space optics (FSO). FSO, however, is sensitive to nature conditions (e.g., rain, fog, line-ofsight, etc.). A more reliable alternative is, therefore, to combine RF and FSO solutions through a hybrid structure called hybrid RF/FSO. Consider a backhaul network, where the base-stations (BS) can be connected to each other either via OF or hybrid RF/FSO backhaul links. The paper addresses the problem of minimizing the cost of backhaul planning under connectivity and data rates constraints, so as to choose the appropriate costeffective backhaul type between BSs (i.e., either OF or hybrid RF/FSO). The paper solves the problem using graph theory techniques by introducing the corresponding planning graph. It shows that under a specified realistic assumption about the cost of OF and hybrid RF/FSO links, the problem is equivalent to a maximum weight clique problem, which can be solved with moderate complexity. Simulation results show that our proposed solution shows a close-to-optimal performance, especially for practical prices of the hybrid RF/FSO.

  4. Introduction of fibre-optic technology in an opencast lignite mine; Einfuehrung von LWL-Technik in einem Braunkohlentagebau

    Energy Technology Data Exchange (ETDEWEB)

    Paus, K.H. [RWE Power AG, Ressort Braunkohlenbergbau/Veredlung, Technikzentrum Tagebaue/HW, Elektrotechnik und technische Vergabe PDV, Kommunikationsanlagen (PBZ-KK), Frechen (Germany); Hehlert, H.A. [RWE Power AG, Ressort Braunkohlenbergbau/Veredlung, Technikzentrum Tagebaue/HW, Elektrotechnik und technische Vergabe Foerderanlagen (PBZ-KP), Frechen (Germany); Andres, M. [RWE Power AG, Ressort Braunkohlenbergbau/Veredlung, Tagebau Hambach, Infrastruktur Prozessdatenverarbeitung (PBH-IP), Niederzier (Germany)

    2006-06-15

    The introduction of fibre-optic technology for the communications infrastructure in our opencast mines entailed the envisaged improvements in automation and operations management. A motivated project team prepared to face new technologies, adopt and use them in day-to-day operations and optimize them has helped sensitive fibre-optic technology to stand the 'acid test' of opencast mine operations. The concepts and operating equipment developed within the scope of the pilot project in the Hambach mine have meanwhile become a standard applied in all RWE Power mines. The whole Garzweiler II mine, for example, has been erected on the basis of these standards. And the upcoming new installation of the belt conveyors in the Inden II mine will be executed in line with these standards as well. (orig.)

  5. Research on the surveillance technology and the comprehensive management network system using the optical fiber about a road management system

    Science.gov (United States)

    Nakano, Masahiro; Okuno, Masatomi; Sasaki, Susumu; Yano, Koji

    2005-05-01

    In recent years, IT (Information Technology) has been utilized in various fields of civil engineering. Especially, trials have been made to utilize optical fibers as sensors to measure strain of civil engineering structures, ground deformation, temperature, etc., and they have been installed for measuring in road structures and civil engineering structures including tunnel, river, and cut-slope structures. In order to make such optical monitoring systems of civil engineering structures more general and organic systems, it would be effective to combine them with such comprehensive systems as ITS. We investigate checking systems utilizing GIS technology, etc. that can process and analyze an enormous amount of data in real time and also investigate the construction of general monitoring systems of road facilities which can perform thorough management from monitoring to maintenance utilizing information technology networks.

  6. A novel approach to smart grid technology for electrical power transmission lines by a self-organized optical network node based on optical bistability

    Science.gov (United States)

    Nakanishi, Soichiro; Sasaki, Wakao

    2011-01-01

    In this work, we have demonstrated a new smart grid model by our novel green photonics technology based on selforganized optical networks realizing an autonomous peer-to-peer electric power transmissions without centralized control for the power grid. In this optical network, we introduced an adaptive algorithm for concurrent peer-to-peer communications, by utilizing optical nonlinearity depending only on the signal strength passing through the network. This method is applicable for autonomous organization of functions for ad-hoc electric power distribution systems for the power grid. For this purpose, a simple optical- electrical hybrid bistable circuit composed of such as light emitting diode (LED) and photo diode (PD), has been incorporated into the network node. In the experiment, the method uses a simple, local adaptation of transmission weights at each network node, which enables self-organizing functions of the network, such as self-routing, self-optimization, self-recovery and self-protection. Based on this method, we have demonstrated experimentally a new smart grid model applicable for ad-hoc electric power distribution systems mediated by power comsumptions. In this model, electric power flow is controlled autonomously through the self-organized network nodes associated with individual power facilities having photovoltaics and electric storage devices, etc., and the nodes convert the amounts of electric power supply and/or comsumption to the light intensity values using above mentioned transmission weights at each node. As a consequence, we have experimentally demonstrated a simple shorthaul system model for ad-hoc electric power distribution with a self-organized optical network as a novel green photonics technology application for smart grid.

  7. Linear and nonlinear optics of pyronin Y/flexible polymer substrate for flexible organic technology: New optical approach

    Science.gov (United States)

    Yahia, I. S.; Zahran, H. Y.; Alamri, F. H.

    2017-10-01

    Pyronin Y (PY) thin films of different thicknesses were deposited on a flexible polyacetate substrate by using the spin-coating method. Pyronin Y thin films have an amorphous structure as identified by X-ray diffraction method. The linear and nonlinear optical properties of PY thin films were studied in details as a function of wavelengths. Transmittance, absorbance and reflectance spectra of pyronin Y thin films were recorded in the wavelengths range from 300 to 2500 nm. The refractive and absorption indices have been computed from Fresnel's equation. The optical band gaps were calculated for the studied PY thin film of thicknesses 205, 140 and 95 nm. Both direct and indirect gaps were computed as a function of PY of different thicknesses. The dielectric constant, dielectric loss and dissipation factor were investigated for the studied material. Spectrophotometric data was used to determine the nonlinear refractive index and the third nonlinear optical susceptibility. Pyronin Y thin films/polymer flexible substrate can be used in many applications such as flexible optoelectronic/electronic devices and for nonlinear optics with specified band gap.

  8. Nanomechanical recognition of prognostic biomarker suPAR with DVD-ROM optical technology

    Science.gov (United States)

    Bache, Michael; Bosco, Filippo G.; Brøgger, Anna L.; Frøhling, Kasper B.; Sonne Alstrøm, Tommy; Hwu, En-Te; Chen, Ching-Hsiu; Eugen-Olsen, Jesper; Hwang, Ing-Shouh; Boisen, Anja

    2013-11-01

    In this work the use of a high-throughput nanomechanical detection system based on a DVD-ROM optical drive and cantilever sensors is presented for the detection of urokinase plasminogen activator receptor inflammatory biomarker (uPAR). Several large scale studies have linked elevated levels of soluble uPAR (suPAR) to infectious diseases, such as HIV, and certain types of cancer. Using hundreds of cantilevers and a DVD-based platform, cantilever deflection response from antibody-antigen recognition is investigated as a function of suPAR concentration. The goal is to provide a cheap and portable detection platform which can carry valuable prognostic information. In order to optimize the cantilever response the antibody immobilization and unspecific binding are initially characterized using quartz crystal microbalance technology. Also, the choice of antibody is explored in order to generate the largest surface stress on the cantilevers, thus increasing the signal. Using optimized experimental conditions the lowest detectable suPAR concentration is currently around 5 nM. The results reveal promising research strategies for the implementation of specific biochemical assays in a portable and high-throughput microsensor-based detection platform.

  9. Optical signal processing for indoor positioning using a-SiCH technology

    Science.gov (United States)

    Vieira, M. A.; Vieira, M.; Louro, P.; Silva, V.

    2016-05-01

    In this paper, we use the nonlinear property of SiC multilayer devices under UV irradiation to design an optical processor for indoor positioning. The transducer combines the simultaneous demultiplexing operation with the photodetection and self-amplification. The proposed coding is based on SiC technology. Based on that, we present a way to achieve indoor localization using the parity bits and a navigation syndrome. A representation with a 4 bit original string colour message and the transmitted 7 bit string, the encoding and decoding accurate positional information processes and the design of SiC navigation syndrome generators are discussed and tested. A visible multilateration method estimates the position of the device by using the decoded information received from several, non-collinear transmitters. The location and motion information is found by mapping position and estimates the location areas. Since the indoor position of the LED light source is known from building floor plans and lighting plans, the corresponding indoor position and travel direction of a mobile device can be determined.

  10. Optical signal processing for indoor positioning using a-SiCH technology

    Science.gov (United States)

    Vieira, Manuel A.; Vieira, Manuela; Louro, Paula; Silva, Vitor; Vieira, Pedro

    2016-10-01

    We use the nonlinear property of silicon carbon (SiC) multilayer devices under UV irradiation to design an optical processor for indoor positioning. The transducer combines the simultaneous demultiplexing operation with photodetection and self-amplification. The proposed coding is based on SiC technology. Based on that, we present a way to achieve indoor localization using the parity bits and a navigation syndrome. A representation with a 4-bit original string color message and the transmitted 7-bit string, the encoding and decoding of accurate positional information processes, and the design of SiC navigation syndrome generators are discussed and tested. A visible multilateration method estimates the position of the device using the decoded information received from several noncollinear transmitters. The location and motion information is found by mapping position and estimates the location areas. Since the indoor position of the light-emitting diode light source is known from building floor plans and lighting plans, the corresponding indoor position and travel direction of a mobile device can be determined.

  11. High Sensitivity Refractometer Based on TiO₂-Coated Adiabatic Tapered Optical Fiber via ALD Technology.

    Science.gov (United States)

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Guo, Qiang; Wen, Jianxiang; Wang, Tingyun

    2016-08-15

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractometer based on an adiabatic tapered optical fiber. Different thicknesses of titanium dioxide (TiO₂) nanofilm were coated around the tapered fiber precisely and uniformly under different deposition cycles. Attributed to the higher refractive index of the TiO₂ nanofilm compared to that of silica, an asymmetric Fabry-Perot (F-P) resonator could be constructed along the fiber taper. The central wavelength of the F-P resonator could be controlled by adjusting the thickness of the TiO₂ nanofilm. Such a F-P resonator is sensitive to changes in the surrounding refractive index (SRI), which is utilized to realize a high sensitivity refractometer. The refractometer developed by depositing 50.9-nm-thickness TiO₂ on the tapered fiber shows SRI sensitivity as high as 7096 nm/RIU in the SRI range of 1.3373-1.3500. Due to TiO₂'s advantages of high refractive index, lack of toxicity, and good biocompatibility, this refractometer is expected to have wide applications in the biochemical sensing field.

  12. ECOAL Project—Delivering Solutions for Integrated Monitoring of Coal-Related Fires Supported on Optical Fiber Sensing Technology

    Directory of Open Access Journals (Sweden)

    Joana Ribeiro

    2017-09-01

    Full Text Available The combustion of coal wastes resulting from mining is of particular environmental concern, and the importance of proper management involving real-time assessment of their status and identification of probable evolution scenarios is recognized. Continuous monitoring of the combustion temperature and emission levels of certain gases allows for the possibility of planning corrective actions to minimize their negative impact on the surroundings. Optical fiber technology is well suited to this purpose and here we describe the main attributes and results obtained from a fiber optic sensing system projected to gather data on distributed temperature and gas emissions in these harsh environments.

  13. Is Optical Gas Imaging Effective for Detecting Fugitive Methane Emissions? - A Technological and Policy Perspective

    Science.gov (United States)

    Ravikumar, A. P.; Wang, J.; Brandt, A. R.

    2016-12-01

    Mitigating fugitive methane emissions from the oil and gas industry has become an important concern for both businesses and regulators. While recent studies have improved our understanding of emissions from all sectors of the natural gas supply chain, cost-effectively identifying leaks over expansive natural gas infrastructure remains a significant challenge. Recently, the Environmental Protection Agency (EPA) has recommended the use of optical gas imaging (OGI) technologies to be used in industry-wide leak detection and repair (LDAR) programs. However, there has been little to no systematic study of the effectiveness of infrared-camera-based OGI technology for leak detection applications. Here, we develop a physics-based model that simulates a passive infrared camera imaging a methane leak against varying background and ambient conditions. We verify the simulation tool through a series of large-volume controlled release field experiments wherein known quantities of methane were released and imaged from a range of distances. After simulator verification, we analyze the effects of environmental conditions like temperature, wind, and imaging background on the amount of methane detected from a statistically representative survey program. We also examine the effects of LDAR design parameters like imaging distance, leak size distribution, and gas composition. We show that imaging distance strongly affects leak detection - EPA's expectation of a 60% reduction in fugitive emissions based on a semi-annual LDAR survey will be realized only if leaks are imaged at a distance less than 10 m from the source under ideal environmental conditions. Local wind speed is also shown to be important. We show that minimum detection limits are 3 to 4 times higher for wet-gas compositions that contain a significant fraction of ethane and propane, resulting a significantly large leakage rate. We also explore the importance of `super-emitters' on the performance of an OGI-based leak

  14. Optical communications and a comparison of optical technologies for a high data rate return link from Mars

    Science.gov (United States)

    Spence, Rodney L.

    1993-01-01

    The important principles of direct- and heterodyne-detection optical free-space communications are reviewed. Signal-to-noise-ratio (SNR) and bit-error-rate (BER) expressions are derived for both the direct-detection and heterodyne-detection optical receivers. For the heterodyne system, performance degradation resulting from received-signal and local oscillator-beam misalignment and laser phase noise is analyzed. Determination of interfering background power from local and extended background sources is discussed. The BER performance of direct- and heterodyne-detection optical links in the presence of Rayleigh-distributed random pointing and tracking errors is described. Finally, several optical systems employing Nd:YAG, GaAs, and CO2 laser sources are evaluated and compared to assess their feasibility in providing high-data-rate (10- to 1000-Mbps) Mars-to-Earth communications. It is shown that the root mean square (rms) pointing and tracking accuracy is a critical factor in defining the system transmitting laser-power requirements and telescope size and that, for a given rms error, there is an optimum telescope aperture size that minimizes the required power. The results of the analysis conducted indicate that, barring the achievement of extremely small rms pointing and tracking errors (less than 0.2 microrad), the two most promising types of optical systems are those that use an Nd:YAG laser (lambda = 1.064 microns) and high-order pulse position modulator (PPM) and direct detection, and those that use a CO2 laser (lambda = 10.6 microns) and phase shifting keying homodyne modulation and coherent detection. For example, for a PPM order of M = 64 and an rms pointing accuracy of 0.4 microrad, an Nd:YAG system can be used to implement a 100-Mbps Mars link with a 40-cm transmitting telescope, a 20-W laser, and a 10-m receiving photon bucket. Under the same conditions, a CO2 system would require 3-m transmitting and receiving telescopes and a 32-W laser to implement such

  15. Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

    Science.gov (United States)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  16. Optical fiber chemical sensors with sol-gel derived nanomaterials for monitoring high temperature/high pressure reactions in clean energy technologies

    Science.gov (United States)

    Tao, Shiquan

    2010-04-01

    The development of sensor technologies for in situ, real time monitoring the high temperature/high pressure (HTP) chemical processes used in clean energy technologies is a tough challenge, due to the HTP, high dust and corrosive chemical environment of the reaction systems. A silica optical fiber is corrosive resistance, and can work in HTP conditions. This paper presents our effort in developing fiber optic sensors for in situ, real time monitoring the concentration of trace ammonia and hydrogen in high temperature gas samples. Preliminary test results illustrate the feasibility of using fiber optic sensor technologies for monitoring HTP processes for next generation energy industry.

  17. Blind Source Separation Model of Earth-Rock Junctions in Dike Engineering Based on Distributed Optical Fiber Sensing Technology

    Directory of Open Access Journals (Sweden)

    Huaizhi Su

    2015-01-01

    Full Text Available Distributed temperature sensing (DTS provides an important technology support for the earth-rock junctions of dike projects (ERJD, which are binding sites between culvert, gates, and pipes and dike body and dike foundation. In this study, a blind source separation model is used for the identification of leakages based on the temperature data of DTS in leakage monitoring of ERJD. First, a denoising method is established based on the temperature monitoring data of distributed optical fiber in ERJD by a wavelet packet signal decomposition technique. The temperature monitoring messages of fibers are combined response for leakages and other factors. Its character of unclear responding mechanism is very obvious. Thus, a blind source separation technology is finally selected. Then, the rule of temperature measurement data for optical fiber is analyzed and its temporal and spatial change process is also discussed. The realization method of the blind source separation model is explored by combining independent component analysis (ICA with principal component analysis (PCA. The practical test result in an example shows that the method could efficiently locate and identify the leakage location of ERJD. This paper is expected to be useful for further scientific research and efficient applications of distributed optical fiber sensing technology.

  18. Optical and millimeter-wave radio seamless MIMO transmission based on a radio over fiber technology.

    Science.gov (United States)

    Kanno, Atsushi; Kuri, Toshiaki; Hosako, Iwao; Kawanishi, Tetsuya; Yoshida, Yuki; Yasumura, Yoshihiro; Kitayama, Ken-ichi

    2012-12-31

    Multi-input multi-output (MIMO) transmission of two millimeter-wave radio signals seamlessly converted from polarization-division-multiplexed quadrature-phase-shift-keying optical signals is successfully demonstrated, where a radio access unit basically consisting of only optical-to-electrical converters and a radio receiver performs total signal equalization of both the optical and the radio paths and demodulation with digital signal processing (DSP). Orthogonally polarized optical components that are directly converted to two-channel radio components can be demultiplexed and demodulated with high-speed DSP as in optical digital coherent detection. 20-Gbaud optical and radio seamless MIMO transmission provides a total capacity of 74.4 Gb/s with a forward error correction overhead of 7%.

  19. Power efficient and colorless PON upstream system using asymmetric clipping optical OFDM and TDMA technologies

    Science.gov (United States)

    Zhao, Yuan; Qiao, Yaojun; Ji, Yuefeng

    2012-04-01

    Asymmetric clipping optical orthogonal frequency division multiplexing (ACO-OFDM) based time division multiple access (TDMA) Passive Optical Network (PON) upstream transmission architecture is proposed. The system features low power consumption, colorless, and cost effectiveness. Performance and validity of 10 Gb/s upstream transmission are studied and confirmed by simulation. Performance degradation due to interference from rogue Optical Network Unit (ONU) is also studied.

  20. Get smart, go optical: example uses of optical fibre sensing technology for production optimisation and subsea asset monitoring

    Science.gov (United States)

    Staveley, Chris

    2014-06-01

    With the growth in deep-water oil and gas production, condition monitoring of high-value subsea assets to give early warning of developing problems is vital. Offshore operators can then transport and deploy spare parts before a failure occurs, so minimizing equipment down-time, and the significant costs associated with unscheduled maintenance. Results are presented from a suite of tests in which multiple elements of a subsea twin-screw pump and associated electric motor were monitored using a fibre optic sensing system based on fibre Bragg gratings (FBG) that simultaneously measured dynamic strain on the main rotor bearings, pressure and temperature of the lubricating oil, distributed temperature through the motor stator windings and vibration of the pump and motor housings.

  1. Research on Structural Stress Optical Fiber Testing Technology Based on Brillouin Scattering

    Directory of Open Access Journals (Sweden)

    Wang Xian-Jin

    2016-01-01

    Full Text Available In this paper, the principle of distributed optical fiber measurement and measurement of axial stress is introduced by analyzing the principle of Brillouin scattering in an optical fiber with a certain power. Making the experimental device, measuring the individual strain model, analyzing the wave shape of the scattered wave, and preliminary understanding of the image characteristics of the stress in the optical fiber Brillouin scattering spectrum. The effect of stress on the different position of the fiber, and the difference between them and the scattering waveform obtained from the stress free action poetry are compared, and the effect of the light pulse on the optical fiber transmission is studied. The results show that the effect of the stress is different in the position of the action, and the effect of the propagation of the pulse light is mainly affected by the Stokes and anti Stokes light scattering. The research can provide reference for distributed optical fiber measurement, and it can promote the application of distributed optical fiber in measuring micro deformation. The innovative point of this study is to use the pulley method to solve the effect of the different position of the same stress in the distribution of optical fiber.

  2. The Infrared & Electro-Optical Systems Handbook. Emerging Systems and Technologies, Volume 8

    Science.gov (United States)

    1993-01-01

    ERIM staff included Ivan Clemons, Jenni Cook, Tim Kellman, Lisa Lyons, Judy Steeh, Barbara Wood, and the members of their respective organizations that...Evers, R. Sepucha, and C. Whitney, Applied Optics 18, 2638 (1979). 41. C. B. Hogge , J. F. Schultz, D. B. Mason, and W. E. Thompson, "Physical optics of...the IEEE 61, 731 (1973). 55. C. B. Hogge and R. R. Butts, AFWL-TR-78-15, U.S. Air Force Weapons Laboratory (1978). 56. L. C. Marquet, Applied Optics

  3. Manufacturing Methods and Technology Program for Ruggedized Tactical Fiber Optic Cable. Revision.

    Science.gov (United States)

    1982-04-01

    14830 Seicor optical Cables 631 Miracle Mile Horseheads, NY 14845 Bunker-Ramo Amphenol Div 33 East Franklin Street Danbury, Connecticut 06810 Attn: Mr. J. Makuch 21708a H-..5 ____~~ - - -*- - *-x . .- .- --. - - - -FILMED

  4. NASA Armstrong Flight Research Center (AFRC) Fiber Optic Sensing System (FOSS) Technology

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Chan, Patrick; Hamory, Phil; Pena, Frank

    2014-01-01

    Attached is a power point presentation created to assist the Tech Transfer Office and the FOSS project team members in responding to inquiries from the public about the capabilities of the Fiber Optic Sensing System.

  5. Edge Control in Large Segmented Optics Using Zeeko Polishing Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The fabrication of very large optical telescopes for space astronomy can be prohibitively costly due to the immense weight and size of monolithic primary mirrors....

  6. Cryogenic Liquid Level-Sensing using Fiber-Optic Strain Sensor (FOSS) Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong innovators have developed a highly accurate method for measuring liquid levels using optical fibers. Unlike liquid level gauges that rely on discrete...

  7. Technologies for Compensation or Mitigation of Transmission Impairments in Future High-Speed Optical Networks

    Institute of Scientific and Technical Information of China (English)

    W.Weiershausen; S.Vorbeck

    2003-01-01

    The presentation will give an overview over different classes of signal impairments in ultra-long-haul and high-speed optical WDM transmission systems and adequate approaches for suppression, mitigation or compensation are discussed.

  8. Advancing adaptive optics technology: Laboratory turbulence simulation and optimization of laser guide stars

    Science.gov (United States)

    Rampy, Rachel A.

    Since Galileo's first telescope some 400 years ago, astronomers have been building ever-larger instruments. Yet only within the last two decades has it become possible to realize the potential angular resolutions of large ground-based telescopes, by using adaptive optics (AO) technology to counter the blurring effects of Earth's atmosphere. And only within the past decade have the development of laser guide stars (LGS) extended AO capabilities to observe science targets nearly anywhere in the sky. Improving turbulence simulation strategies and LGS are the two main topics of my research. In the first part of this thesis, I report on the development of a technique for manufacturing phase plates for simulating atmospheric turbulence in the laboratory. The process involves strategic application of clear acrylic paint onto a transparent substrate. Results of interferometric characterization of the plates are described and compared to Kolmogorov statistics. The range of r0 (Fried's parameter) achieved thus far is 0.2--1.2 mm at 650 nm measurement wavelength, with a Kolmogorov power law. These plates proved valuable at the Laboratory for Adaptive Optics at University of California, Santa Cruz, where they have been used in the Multi-Conjugate Adaptive Optics testbed, during integration and testing of the Gemini Planet Imager, and as part of the calibration system of the on-sky AO testbed named ViLLaGEs (Visible Light Laser Guidestar Experiments). I present a comparison of measurements taken by ViLLaGEs of the power spectrum of a plate and the real sky turbulence. The plate is demonstrated to follow Kolmogorov theory well, while the sky power spectrum does so in a third of the data. This method of fabricating phase plates has been established as an effective and low-cost means of creating simulated turbulence. Due to the demand for such devices, they are now being distributed to other members of the AO community. The second topic of this thesis pertains to understanding and

  9. Fully compatible magneto-optical sol-gel material with glass waveguides technologies: application to mode converters

    Science.gov (United States)

    Royer, François; Jamon, Damien; Broquin, Jean-Emmanuel; Amata, Hadi; Kekesi, Renata; Neveu, Sophie; Blanc-Mignon, Marie-Françoise; Ghibaudo, Elise

    2011-01-01

    To overcome the difficult problem of the integration of magneto-optical materials with classical technologies, our group has developped a composite magneto-optical material made of a hybrid organic-inorganic silica type matrix doped by magnetic nanoparticles. Thin films of this material are obtained through a soft chemistry sol-gel process which gives a full compatibility with an integration on glass substarte. Due to an interesting magneto optical activity (Faraday rotation of 310°/cm) several magneto-optical functionnalities have been realized. A thin film of such composite material coated on a pyrex™ substrate acts as non-reciprocal TE/TM mode converter. An hybrid stucture made of a composite film coated on an ion-exchanged glass waveguide has been realized with a good propagation of light through a hybrid mode. Finally, the sol gel process has been adapted in order to obtain 3D inverse opals which should behave as magnetophotonic crystals. Transmittance curves reveal the photonic band gap of such opals doped with magnetic nanoparticles.

  10. National Institute of Standards and Technology measurement service of the optical properties of biomedical phantoms: current status

    Science.gov (United States)

    Lemaillet, Paul; Cooksey, Catherine C.; Levine, Zachary H.; Pintar, Adam L.; Hwang, Jeeseong; Allen, David W.

    2016-03-01

    The National Institute of Standards and Technology (NIST) has maintained scales for reflectance and transmittance over several decades. The scales are primarily intended for regular transmittance, mirrors, and solid surface scattering diffusers. The rapidly growing area of optical medical imaging needs a scale for volume scattering of diffuse materials that are used to mimic the optical properties of tissue. Such materials are used as phantoms to evaluate and validate instruments under development intended for clinical use. To address this need, a double-integrating sphere based instrument has been installed to measure the optical properties of tissue-mimicking phantoms. The basic system and methods have been described in previous papers. An important attribute in establishing a viable calibration service is the estimation of measurement uncertainties. The use of custom models and comparisons with other established scales enabled uncertainty measurements. Here, we describe the continuation of those efforts to advance the understanding of the uncertainties through two independent measurements: the bidirectional reflectance distribution function and the bidirectional transmittance distribution function of a commercially available solid biomedical phantom. A Monte Carlo-based model is used and the resulting optical properties are compared to the values provided by the phantom manufacturer.

  11. Ergonomic design considerations for an optical data link between a warfighter's head and body-worn technologies

    Science.gov (United States)

    Trew, Noel; Linn, Aaron; Nelson, Zac; Burnett, Greg; Sedillo, Mike

    2012-06-01

    Today, warfighters are burdened by a web of cables linking technologies that span the head and torso regions of the body. These cables help to provide interoperability between helmet-worn peripherals such as head mounted displays (HMDs), cameras, and communication equipment with chest-worn computers and radios. Although promoting enhanced capabilities, this cabling also poses snag hazards and makes it difficult for the warfighter to extricate himself from his kit when necessary. A newly developed wireless personal area network (WPAN), one that uses optical transceivers, may prove to be an acceptable alternative to traditional cabling. Researchers at the Air Force Research Laboratory's 711th Human Performance Wing are exploring how best to mount the WPAN transceivers to the body in order to facilitate unimpeded data transfer while also maintaining the operator's natural range of motion. This report describes the two-step research process used to identify the performance limitations and usability of a body-worn optical wireless system. Firstly, researchers characterized the field of view for the current generation of optical WPAN transceivers. Then, this field of view was compared with anthropometric data describing the range of motion of the cervical vertebrae to see if the data link would be lost at the extremes of an operator's head movement. Finally, this report includes an additional discussion of other possible military applications for an optical WPAN.

  12. Optical technology applied to jet engine; Jet engine seigyo eno hikari gijutsu no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, T.; Ebina, K.; Endo, M. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1997-09-01

    Pyrometer that can be mounted on an aircraft engine is developed for measuring engine turbine blade temperatures. Energy radiated from the blade surface is collected by a lens and then forwarded to a photoelectric conversion photodiode through a heat-resistant optical fiber. A cleaning/purging mechanism is provided in case the lens collects dirt that will attenuate the signal for the indication of a temperature that is lower than the true temperature (in a cold shift phenomenon). The pyrometer is tested on an engine, when a measurement accuracy of {+-}10degC is attained without cold shift taking place. It responds to changes more swiftly than conventional types, which justifies its application to the control of engines. Since it works effectively to connect a bunch of optical fibers, rather than conventional electric wires, to the printed circuit board for guiding optical signals to a printed circuit board in a digital control unit, an optical backplane structure is developed. This structure is designed to be an optical waveguide type which can incorporate into itself some mechanisms of synthesizer, optical waveguide coupler, and light filter, in case of need for handling multiple transmission. The pyrometer is tested on an aircraft engine in operation at high and low temperatures, and demonstrates satisfying light-receiving and light-emitting properties. 4 refs., 10 figs.

  13. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment.

    Science.gov (United States)

    Liu, Zhihai; Wang, Lei; Liang, Peibo; Zhang, Yu; Yang, Jun; Yuan, Libo

    2013-07-15

    We demonstrate trapped yeast cell axial-position adjustment without moving the optical fiber in a single-fiber optical trapping system. The dynamic axial-position adjustment is realized by controlling the power ratio of the fundamental mode beam (LP01) and the low-order mode beam (LP11) generated in a normal single-core fiber. In order to separate the trapping positions produced by the two mode beams, we fabricate a special fiber tapered tip with a selective two-step method. A yeast cell of 6 μm diameter is moved along the optical axis direction for a distance of ~3 μm. To the best of our knowledge, this is the first demonstration of the trapping position adjustment without moving the fiber for single-fiber optical tweezers. The excitation and utilization of multimode beams in a single fiber constitutes a new development for single-fiber optical trapping and makes possible more practical applications in biomedical research fields.

  14. Application of optical fiber sensing technology in the field of security%光纤传感技术在安防领域的应用

    Institute of Scientific and Technical Information of China (English)

    覃健文; 韦焕华

    2013-01-01

    On the basis of optical fiber sensing technology and its application was introduced briefly,optical fiber sensing technology application in security was described with emphasis,and proposed suggestion and forecast for practical process of optical fiber fence alarm system based on optical fiber sensing technology.%在简要介绍光纤传感技术及其应用的基础上,重点阐述了光纤传感技术在安防领域的应用,并对基于光纤传感技术的光纤围栏报警系统的实用化进程提出建议及展望.

  15. The Feasibility of a Fully Miniaturized Magneto-Optical Trap for Portable Ultracold Quantum Technology

    CERN Document Server

    Rushton, Joseph; Himsworth, Matt

    2014-01-01

    Experiments using laser cooled atoms and ions show real promise for practical applications in quantum- enhanced metrology, timing, navigation, and sensing as well as exotic roles in quantum computing, networking and simulation. The heart of many of these experiments has been translated to microfabricated platforms known as atom chips whose construction readily lend themselves to integration with larger systems and future mass production. To truly make the jump from laboratory demonstrations to practical, rugged devices, the complex surrounding infrastructure (including vacuum systems, optics, and lasers) also needs to be miniatur- ized and integrated. In this paper we explore the feasibility of applying this approach to the Magneto-Optical Trap; incorporating the vacuum system, atom source and optical geometry into a permanently sealed micro- litre system capable of maintaining $10^{-10}$ mbar for more than 1000 days of operation with passive pumping alone. We demonstrate such an engineering challenge is achi...

  16. High Speed and High Spatial Density Parameter Measurement Using Fiber Optic Sensing Technology

    Science.gov (United States)

    Parker, Allen R. Jr. (Inventor); Chan, Hon Man (Inventor); Richards, William Lance (Inventor); Piazza, Anthony (Inventor); Hamory, Philip J (Inventor)

    2017-01-01

    The present invention is an improved fiber optic sensing system (FOSS) having the ability to provide both high spatial resolution and high frequency strain measurements. The inventive hybrid FOSS fiber combines sensors from high acquisition speed and low spatial resolution Wavelength-Division Multiplexing (WDM) systems and from low acquisition speed and high spatial resolution Optical Frequency Domain Reflection (OFDR) systems. Two unique light sources utilizing different wavelengths are coupled with the hybrid FOSS fiber to generate reflected data from both the WDM sensors and OFDR sensors operating on a single fiber optic cable without incurring interference from one another. The two data sets are then de-multiplexed for analysis, optionally with conventionally-available WDM and OFDR system analyzers.

  17. Integrated optical frequency shifter in silicon-organic hybrid (SOH) technology.

    Science.gov (United States)

    Lauermann, M; Weimann, C; Knopf, A; Heni, W; Palmer, R; Koeber, S; Elder, D L; Bogaerts, W; Leuthold, J; Dalton, L R; Rembe, C; Freude, W; Koos, C

    2016-05-30

    We demonstrate for the first time a waveguide-based frequency shifter on the silicon photonic platform using single-sideband modulation. The device is based on silicon-organic hybrid (SOH) electro-optic modulators, which combine conventional silicon-on-insulator waveguides with highly efficient electro-optic cladding materials. Using small-signal modulation, we demonstrate frequency shifts of up to 10 GHz. We further show large-signal modulation with optimized waveforms, enabling a conversion efficiency of -5.8 dB while suppressing spurious side-modes by more than 23 dB. In contrast to conventional acousto-optic frequency shifters, our devices lend themselves to large-scale integration on silicon substrates, while enabling frequency shifts that are several orders of magnitude larger than those demonstrated with all-silicon serrodyne devices.

  18. Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology.

    Science.gov (United States)

    Camino, Acner; Zhang, Miao; Gao, Simon S; Hwang, Thomas S; Sharma, Utkarsh; Wilson, David J; Huang, David; Jia, Yali

    2016-10-01

    Artifacts introduced by eye motion in optical coherence tomography angiography (OCTA) affect the interpretation of images and the quantification of parameters with clinical value. Eradication of such artifacts in OCTA remains a technical challenge. We developed an algorithm that recognizes five different types of motion artifacts and used it to evaluate the performance of three motion removal technologies. On en face maximum projection of flow images, the summed flow signal in each row and column and the correlation between neighboring rows and columns were calculated. Bright line artifacts were recognized by large summed flow signal. Drifts, distorted lines, and stretch artifacts exhibited abnormal correlation values. Residual lines were simultaneously a local maximum of summed flow and a local minimum of correlation. Tracking-assisted scanning integrated with motion correction technology (MCT) demonstrated higher performance than tracking or MCT alone in healthy and diabetic eyes.

  19. DNA Optical Detection Based on Porous Silicon Technology: from Biosensors to Biochips

    Directory of Open Access Journals (Sweden)

    Ivo Rendina

    2007-02-01

    Full Text Available A photochemical functionalization process which passivates the porous silicon surface of optical biosensors has been optimized as a function of the thickness and the porosity of the devices. The surface modification has been characterized by contact angle measurements. Fluorescence measurements have been used to investigate the stability of the DNA single strands bound to the nanostructured material. A dose-response curve for an optical label-free biosensor in the 6-80 μM range has been realized.

  20. Application of optical fiber sensing technology in the hydraulic decoking monitoring system

    Science.gov (United States)

    Fan, Yun-feng; Tong, Xing-lin; Ji, Tao; Gao, Xue-qing; Zhong, Dong

    2013-09-01

    On the basis of the analysis of the current hydraulic decoking monitoring system, it is proposed that use optical fiber Bragg grating (FBG) vibration sensor and fiber Fabry-Perot (FP) acoustic sensors to online monitor vibration signal and audio signal hydraulic of the coke drum in the running state progress, analysis the vibration sensor and acoustic sensor used in the system. Based on the actual monitoring results in Sinopec Wuhan Branch , the fiber optic acoustic emission sensors is more suitable for the hydraulic decoking online monitoring system than the FBG vibration sensor ,which can more accurate monitor of hydraulic decoking.

  1. Performances for confocal X-ray diffraction technology based on polycapillary slightly focusing X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hehe; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stxbeijing@163.com [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Sun, Weiyuan; Li, Yude; Lin, Xiaoyan; Zhao, Weigang; Zhao, Guangcui; Luo, Ping; Pan, Qiuli; Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2013-09-21

    The confocal X-ray diffraction (XRD) technology based on a polycapillary slightly focusing X-ray lens (PSFXRL) in excitation channel and a polycapillary parallel X-ray lens (PPXRL) with a long input focal distance in detection channel was developed. The output focal spot of the PSFXRL and the input focal spot of the PPXRL were adjusted in confocal configuration, and only the X-rays from the volume overlapped by these foci could be accordingly detected. This confocal configuration was helpful in decreasing background. The convergence of the beam focused by the PSFXRL and divergence of the beam which could be collected by the PPXRL with a long input focal distance were both about 9 mrad at 8 keV. This was helpful in improving the resolution of lattice spacing of this confocal XRD technology. The gain in power density of such PSFXRL and PPXRL was about 120 and 7 at 11 keV, respectively, which was helpful in using the low power source to perform XRD analysis efficiently. The performances of this confocal XRD technology were provided, and some common plastics were analyzed. The experimental results demonstrated that the confocal diffraction technology base on polycapillary slightly focusing X-ray optics had wide potential applications.

  2. Fiber Optic 3-D Space Piezoelectric Accelerometer and its Antinoise Technology

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The mechanical structure of piezoelectric accelerometer is designed, and the operation equations on X-, Y-, and Z-axes are deduced. The test results of 3-D frequency response are given. Noise disturbances are effectively eliminated by using fiber optic transmission and synchronous detection.

  3. SOFTWARE FOR SIMULATION OF TECHNOLOGICAL ADAPTATION OF THE OPTICAL INSTRUMENTS SYSTEMS

    Directory of Open Access Journals (Sweden)

    N. K. Artioukhina

    2012-01-01

    Full Text Available Programs for calculation and analysis of optical systems of any class are provides. The most effective was to combine the programs into a complex with the general system of mathematical models. A characteristic feature is to unify the exchange of information between these programs and software systems Opal and Zemax.

  4. Surface Contaminant Control Technologies to Improve Laser Damage Resistance of Optics

    Directory of Open Access Journals (Sweden)

    Xiaofeng Cheng

    2014-01-01

    Full Text Available The large high-power solid lasers, such as the National Ignition Facility (NIF of America and the Shenguang-III (SG-III laser facility of China, can output over 2.1 MJ laser pulse for the inertial confinement fusion (ICF experiments. Because of the enhancement of operating flux and the expansion of laser driver scale, the problem of contamination seriously influences their construction period and operation life. During irradiation by intense laser beams, the contaminants on the metallic surface of beam tubes can be transmitted to the optical surfaces and lead to damage of optical components. For the high-power solid-state laser facilities, contamination control focuses on the slab amplifiers, spatial filters, and final-optical assemblies. In this paper, an effective solution to control contaminations including the whole process of the laser driver is put forward to provide the safe operation of laser facilities, and the detailed technical methods of contamination control such as washing, cleanliness metrology, and cleanliness protecting are also introduced to reduce the probability of laser-induced damage of optics. The experimental results show that the cleanliness level of SG-III laser facility is much better to ensure that the laser facility can safely operate at high energy flux.

  5. Laser & Fiber Optics: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    Science.gov (United States)

    Eickhoff, Luvern R.

    This instructional manual contains 20 learning activity packets for use in a workshop on lasers and fiber optics. The lessons cover the following topics: what a laser; coherent light; setting up the laser; characteristics of the laser beam; scattering of light; laser beam divergence, intensity, color, ophthalmology, and reflections; directivity of…

  6. Laser & Fiber Optics: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    Science.gov (United States)

    Eickhoff, Luvern R.

    This instructional manual contains 20 learning activity packets for use in a workshop on lasers and fiber optics. The lessons cover the following topics: what a laser; coherent light; setting up the laser; characteristics of the laser beam; scattering of light; laser beam divergence, intensity, color, ophthalmology, and reflections; directivity of…

  7. All-optical broadcast and multicast technologies based on PPLN waveguide

    DEFF Research Database (Denmark)

    Ye, Lingyun; Wang, Ju; Hu, Hao

    2013-01-01

    All-optical 1×4 broadcast and 1×3 multicast experiments of a 40-Gb/s return-to-zero on-off keying (RZ-OOK) signal based on a periodically poled lithium niobate (PPLN) waveguide are demonstrated in this letter. Clear opened eye diagrams and error-free performance are achieved for the broadcast...

  8. Implant planning and placement using optical scanning and cone beam CT technology

    NARCIS (Netherlands)

    J.M. van der Zel

    2008-01-01

    There is a growing interest in minimally invasive implant therapy as a standard prosthodontic treatment, providing complete restoration of occlusal function. A new treatment method (CADDIMA), which combines both computerized tomographic (CT) and optical laser-scan data for planning and design of sur

  9. Large-scale integrated optics using TriPleXTM waveguide technology: from UV to IR

    NARCIS (Netherlands)

    Heideman, Rene; Leinse, Arne; Hoving, Willem; Dekker, R.; Geuzebroek, D.H.; Klein, E.J.; Stoffer, Remco; Roeloffzen, C.G.H.; Zhuang, L.; Meijerink, Arjan; Glebov, Alexei L.; Chen, Ray T.

    2009-01-01

    We present a new class of low-loss integrated optical waveguide structures as CMOS-compatible industrial standard for photonic integration on silicon or glass. A TriPleXTM waveguide is basically formed by a -preferably rectangular- silicon nitride (Si3N4) shell filled with and encapsulated by

  10. Innovation on Energy Power Technology (24)Development of Composite Fiber-Optic Ground Wire

    Science.gov (United States)

    Hanada, Toshiki; Tamura, Kiyoshi

    In correspondence with the development of the high information-oriented society, macroscale of the information voltage by the optical fiber is planned. In such situation, it is OPGW forming the basis of the current communication. I introduce process about this development.

  11. Optical fiber grating based technologies and their applications: from nuclear fusion to medical

    NARCIS (Netherlands)

    Cheng, L.K.; Vliegenhart, W.A.; Habisreuther, T.

    2012-01-01

    In the last decades, Fiber Optic (FO) sensor has gained increasing acceptance. Among the different FO sensor types, Fiber Bragg Grating is most widely used due to its commercial availability and the unique multiplexing potential. The latter feature enables the development of large sensor array and/o

  12. Development of Optical Fiber Technology in Poland, International Journal of Electronics and Telecommunication, vol. 57, no 2, pp.191-197, July 2011

    CERN Document Server

    Dorosz, J

    2011-01-01

    In this paper, the authors, chairmen of the 13th Conference on Optical Fibers and Their Applications OFA2011, and editors of the conference proceedings summarize the development of optical fiber technology in Poland (during the period of 2009- 2011) on the basis of papers presented there and consecutively published in this volume. The digest is thus not full but covers the periodically presented material every 18 months during the meetings on optical fibers in Białystok-Białowie˙za and Lublin- Krasnobród. OFC systems are developed for HEP experiments and accelerators. OFC systems are also developed for virtual atomic clocks. EuCARD information presentation was organized during this meeting. Keywords— optical fibers, optical communication systems, photonic sources and detectors, photonic sensors, integrated optics, photonics applications, photonic materials.

  13. Optical and mechanical properties of nanofibrillated cellulose: Toward a robust platform for next-generation green technologies.

    Science.gov (United States)

    Simão, Claudia D; Reparaz, Juan S; Wagner, Markus R; Graczykowski, Bartlomiej; Kreuzer, Martin; Ruiz-Blanco, Yasser B; García, Yamila; Malho, Jani-Markus; Goñi, Alejandro R; Ahopelto, Jouni; Sotomayor Torres, Clivia M

    2015-08-01

    Nanofibrillated cellulose, a polymer that can be obtained from one of the most abundant biopolymers in nature, is being increasingly explored due to its outstanding properties for packaging and device applications. Still, open challenges in engineering its intrinsic properties remain to address. To elucidate the optical and mechanical stability of nanofibrillated cellulose as a standalone platform, herein we report on three main findings: (i) for the first time an experimental determination of the optical bandgap of nanofibrillated cellulose, important for future modeling purposes, based on the onset of the optical bandgap of the nanofibrillated cellulose film at Eg≈275 nm (4.5 eV), obtained using absorption and cathodoluminescence measurements. In addition, comparing this result with ab-initio calculations of the electronic structure the exciton binding energy is estimated to be Eex≈800 meV; (ii) hydrostatic pressure experiments revealed that nanofibrillated cellulose is structurally stable at least up to 1.2 GPa; and (iii) surface elastic properties with repeatability better than 5% were observed under moisture cycles with changes of the Young modulus as large as 65%. The results obtained show the precise determination of significant properties as elastic properties and interactions that are compared with similar works and, moreover, demonstrate that nanofibrillated cellulose properties can be reversibly controlled, supporting the extended potential of nanofibrillated cellulose as a robust platform for green-technology applications.

  14. An experimental indoor phasing system based on active optics using dispersed Hartmann sensing technology in the visible waveband

    Institute of Scientific and Technical Information of China (English)

    Yong Zhang; Gen-Rong Liu; Yue-Fei Wang; Ye-Ping Li; Ya-Jun Zhang; Liang Zhang; Yi-Zhong Zeng; Jie Zhang

    2011-01-01

    A telescope with a larger primary mirror can collect much more light and resolve objects much better than one with a smaller mirror,and so the larger version is always pursued by astronomers and astronomical technicians.Instead of using a monolithic primary mirror,more and more large telescopes,which are currently being planned or in construction,have adopted a segmented primary mirror design.Therefore,how to sense and phase such a primary mirror is a key issue for the future of extremely large optical/infrared telescopes.The Dispersed Fringe Sensor (DFS),or Dispersed Hartmann Sensor (DHS),is a non-contact method using broadband point light sources and it can estimate the piston by the two-directional spectrum formed by the transmissive grating's dispersion and lenslet array.Thus it can implement the combination of co-focusing by Shack-Hartmann technology and phasing by dispersed fringe sensing technologies such as the template-mapping method and the Hartmann method.We introduce the successful design,construction and alignment of our dispersed Hartmann sensor together with its design principles and simulations.We also conduct many successful real phasing tests and phasing corrections in the visible waveband using our existing indoor segmented mirror optics platform.Finally,some conclusions are reached based on the test and correction of experimental results.

  15. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovative, high transmission band-pass filter technology proposed here is an improvement in multilayer metal-mesh filter design and manufacture for the far IR...

  16. Precision Mobile-Joint and Latching Technologies for Deployable Optical Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Planned future NASA missions in astrophysics will push the state of the art in current opto-mechanical technologies. Specifically, precision deployable structures...

  17. Optical fronthauling for 5G mobile: A perspective of passive metro WDM technology

    DEFF Research Database (Denmark)

    Zou, Shihuan Jim; Wagner, Christoph; Eiselt, Michael

    2017-01-01

    We discuss the necessity of passive WDM technology in the 5G fronthaul application. The proof-of-concept field trial showed that the proposed system integrated seamlessly with the current wireless equipment and had no impact on services.......We discuss the necessity of passive WDM technology in the 5G fronthaul application. The proof-of-concept field trial showed that the proposed system integrated seamlessly with the current wireless equipment and had no impact on services....

  18. OFDM 技术在光纤通信系统中的应用探究%Application of OFDM Technology in Optical Communication System

    Institute of Scientific and Technical Information of China (English)

    程敏捷

    2015-01-01

    Optical communication system based on OFDM technology combines the advantages of both OFDM technology and optical communication.In optical system with features of high speed,ultra long distance and huge capacity,OFDM can be regarded as a key technology.This paper briefly outlines OFDM technology,describes the characteristics of optical communi-cation systems,and explores the comprehensive application of OFDM technology in optical communication system.%基于 OFDM 技术的光纤通信系统融合了 OFDM 技术以及光纤通信的双重优点。在高速率、超长距离、大容量的光纤系统中,光 OFDM 可作为关键技术来应用。文中简要的概述 OFDM 技术,介绍了光纤通信系统的特性,探究了OFDM 技术在光纤通信系统中的综合应用。

  19. Research on fault location technology based on BP neural network in DWDM optical network

    Institute of Scientific and Technical Information of China (English)

    LIAO Xiao-min; ZHANG Yin-fa; YANG Shi-ping; LIN Chu-shan

    2008-01-01

    BP neural network is introduced to the fault location field of DWDM optical network in this paper. The alarm characteris-tics of the optical network equipments are discussed, and alarm vector and fault vector diagrams are generated by analyzingsome typical instances. A 17×14×18 BP neural network structure is constructed and trained by using MATLAB. Bycomparing the training performances, the best training algorithm of fault location among the three training algorithms ischosen. Numerical simulation results indicate that the sum squared error (SSE) of fault location is less than 0.01, and theprocessing time is less than 100 ms. This method not only well deals with the missing alarms or false alarms, but alsoimproves the fault location accuracy and real-time ability.

  20. De novo assembly of Dekkera bruxellensis: a multi technology approach using short and long-read sequencing and optical mapping.

    Science.gov (United States)

    Olsen, Remi-Andre; Bunikis, Ignas; Tiukova, Ievgeniia; Holmberg, Kicki; Lötstedt, Britta; Pettersson, Olga Vinnere; Passoth, Volkmar; Käller, Max; Vezzi, Francesco

    2015-01-01

    It remains a challenge to perform de novo assembly using next-generation sequencing (NGS). Despite the availability of multiple sequencing technologies and tools (e.g., assemblers) it is still difficult to assemble new genomes at chromosome resolution (i.e., one sequence per chromosome). Obtaining high quality draft assemblies is extremely important in the case of yeast genomes to better characterise major events in their evolutionary history. The aim of this work is two-fold: on the one hand we want to show how combining different and somewhat complementary technologies is key to improving assembly quality and correctness, and on the other hand we present a de novo assembly pipeline we believe to be beneficial to core facility bioinformaticians. To demonstrate both the effectiveness of combining technologies and the simplicity of the pipeline, here we present the results obtained using the Dekkera bruxellensis genome. In this work we used short-read Illumina data and long-read PacBio data combined with the extreme long-range information from OpGen optical maps in the task of de novo genome assembly and finishing. Moreover, we developed NouGAT, a semi-automated pipeline for read-preprocessing, de novo assembly and assembly evaluation, which was instrumental for this work. We obtained a high quality draft assembly of a yeast genome, resolved on a chromosomal level. Furthermore, this assembly was corrected for mis-assembly errors as demonstrated by resolving a large collapsed repeat and by receiving higher scores by assembly evaluation tools. With the inclusion of PacBio data we were able to fill about 5 % of the optical mapped genome not covered by the Illumina data.

  1. Improved parameters metropolitan area network supported with all-optical network's technology

    Science.gov (United States)

    Gradkowska, Magdalena; Kalita, Mariusz

    2006-03-01

    The advantages of all-optical network's technics make them one of main elements of the metropolitan area networks. They enable different applications in high quality mulitimedia services and guarantee a constant and reliable access to the Internet. As the growing expansion of the Internet continues in an unpredictable direction, many new solutions are expected. The major challenge is the increasing demand for flexible, transparent and customised bandwidth services for both private and business customers.

  2. Optical power 1 × 7 splitter based on multicore fiber technology

    Science.gov (United States)

    Pytel, Anna; Napierała, Marek; Szostkiewicz, Łukasz; Ostrowski, Łukasz; Murawski, Michał; Mergo, Paweł; Nasiłowski, Tomasz

    2017-09-01

    Multicore and microstructured fibers open a new door for designing all-fiber telecom components. In this article we propose a design of an optical power splitter based on the phenomenon of power coupling in the tapered splice between a single-core (SMF-28) and a seven core fiber (MCF-7), which was originally developed for spatial division multiplexing telecommunication systems. Comprehensive numerical analysis is presented and backed up with an experimental demonstration.

  3. Optical biosensor technologies for molecular diagnostics at the point-of-care

    Science.gov (United States)

    Schotter, Joerg; Schrittwieser, Stefan; Muellner, Paul; Melnik, Eva; Hainberger, Rainer; Koppitsch, Guenther; Schrank, Franz; Soulantika, Katerina; Lentijo-Mozo, Sergio; Pelaz, Beatriz; Parak, Wolfgang; Ludwig, Frank; Dieckhoff, Jan

    2015-05-01

    Label-free optical schemes for molecular biosensing hold a strong promise for point-of-care applications in medical research and diagnostics. Apart from diagnostic requirements in terms of sensitivity, specificity, and multiplexing capability, also other aspects such as ease of use and manufacturability have to be considered in order to pave the way to a practical implementation. We present integrated optical waveguide as well as magnetic nanoparticle based molecular biosensor concepts that address these aspects. The integrated optical waveguide devices are based on low-loss photonic wires made of silicon nitride deposited by a CMOS compatible plasma-enhanced chemical vapor deposition (PECVD) process that allows for backend integration of waveguides on optoelectronic CMOS chips. The molecular detection principle relies on evanescent wave sensing in the 0.85 μm wavelength regime by means of Mach-Zehnder interferometers, which enables on-chip integration of silicon photodiodes and, thus, the realization of system-on-chip solutions. Our nanoparticle-based approach is based on optical observation of the dynamic response of functionalized magneticcore/ noble-metal-shell nanorods (`nanoprobes') to an externally applied time-varying magnetic field. As target molecules specifically bind to the surface of the nanoprobes, the observed dynamics of the nanoprobes changes, and the concentration of target molecules in the sample solution can be quantified. This approach is suitable for dynamic real-time measurements and only requires minimal sample preparation, thus presenting a highly promising point-of-care diagnostic system. In this paper, we present a prototype of a diagnostic device suitable for highly automated sample analysis by our nanoparticle-based approach.

  4. An Optical Fiber Viscometer Based on Long-Period Fiber Grating Technology and Capillary Tube Mechanism

    Directory of Open Access Journals (Sweden)

    Jian-Neng Wang

    2010-12-01

    Full Text Available This work addresses the development and assessment of a fiber optical viscometer using a simple and low-cost long-period fiber grating (LPFG level sensor and a capillary tube mechanism. Previous studies of optical viscosity sensors were conducted by using different optical sensing methods. The proposed optical viscometer consists of an LPFG sensor, a temperature-controlled chamber, and a cone-shaped reservoir where gravitational force could cause fluid to flow through the capillary tube. We focused on the use of LPFGs as level sensors and the wavelength shifts were not used to quantify the viscosity values of asphalt binders. When the LPFG sensor was immersed in the constant volume (100 mL AC-20 asphalt binder, a wavelength shift was observed and acquired using LabVIEW software and GPIB controller. The time spent between empty and 100 mL was calculated to determine the discharge time. We simultaneously measured the LPFG-induced discharge time and the transmission spectra both in hot air and AC-20 asphalt binder at five different temperatures, 60, 80, 100, 135, and 170 Celsius. An electromechanical rotational viscometer was also used to measure the viscosities, 0.15–213.80 Pa·s, of the same asphalt binder at the above five temperatures. A non-linear regression analysis was performed to convert LPFG-induced discharge time into viscosities. Comparative analysis shows that the LPFG-induced discharge time agreed well with the viscosities obtained from the rotational viscometer.

  5. Damage Resistant Optical Glasses for High Power Lasers: A Continuing Glass Science and Technology Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J H

    2002-08-28

    A major challenge in the development of optical glasses for high-power lasers is reducing or eliminating laser-induced damage to the interior (bulk) and the polished surface of the glass. Bulk laser damage in glass generally originates from inclusions. With the development of novel glass melting and forming processes it is now possible to make both fused silica and a suit of meta-phosphate laser glasses in large sizes ({approx}>0.5-lm diameter), free of inclusions and with high optical homogeneity ({approx} 10{sup -6}). Considerable attention also has been focused on improving the laser damage resistance to polished optical glass surfaces. Studies have shown that laser-induced damage to surfaces grows exponentially with the number of shots when illuminated with nano-second pulses at 351-nm above a given fluence threshold. A new approach for reducing and eliminating laser-induced surface damage relies on a series of post-polishing treatment steps. This damage improvement method is briefly reviewed.

  6. System technology for laser-assisted milling with tool integrated optics

    Science.gov (United States)

    Hermani, Jan-Patrick; Emonts, Michael; Brecher, Christian

    2013-02-01

    High strength metal alloys and ceramics offer a huge potential for increased efficiency (e. g. in engine components for aerospace or components for gas turbines). However, mass application is still hampered by cost- and time-consuming end-machining due to long processing times and high tool wear. Laser-induced heating shortly before machining can reduce the material strength and improve machinability significantly. The Fraunhofer IPT has developed and successfully realized a new approach for laser-assisted milling with spindle and tool integrated, co-rotating optics. The novel optical system inside the tool consists of one deflection prism to position the laser spot in front of the cutting insert and one focusing lens. Using a fiber laser with high beam quality the laser spot diameter can be precisely adjusted to the chip size. A high dynamic adaption of the laser power signal according to the engagement condition of the cutting tool was realized in order not to irradiate already machined work piece material. During the tool engagement the laser power is controlled in proportion to the current material removal rate, which has to be calculated continuously. The needed geometric values are generated by a CAD/CAM program and converted into a laser power signal by a real-time controller. The developed milling tool with integrated optics and the algorithm for laser power control enable a multi-axis laser-assisted machining of complex parts.

  7. Challenges in Ecohydrological Monitoring at Soil-Vegetation Interfaces: Exploiting the Potential for Fibre Optic Technologies

    Science.gov (United States)

    Chalari, A.; Ciocca, F.; Krause, S.; Hannah, D. M.; Blaen, P.; Coleman, T. I.; Mondanos, M.

    2015-12-01

    The Birmingham Institute of Forestry Research (BIFoR) is using Free-Air Carbon Enrichment (FACE) experiments to quantify the long-term impact and resilience of forests into rising atmospheric CO2 concentrations. The FACE campaign critically relies on a successful monitoring and understanding of the large variety of ecohydrological processes occurring across many interfaces, from deep soil to above the tree canopy. At the land-atmosphere interface, soil moisture and temperature are key variables to determine the heat and water exchanges, crucial to the vegetation dynamics as well as to groundwater recharge. Traditional solutions for monitoring soil moisture and temperature such as remote techniques and point sensors show limitations in fast acquisition rates and spatial coverage, respectively. Hence, spatial patterns and temporal dynamics of heat and water fluxes at this interface can only be monitored to a certain degree, limiting deeper knowledge in dynamically evolving systems (e.g. in impact of growing vegetation). Fibre optics Distributed Temperature Sensors (DTS) can measure soil temperatures at high spatiotemporal resolutions and accuracy, along kilometers of optical cable buried in the soil. Heat pulse methods applied to electrical elements embedded in the optical cable can be used to obtain the soil moisture. In July 2015 a monitoring system based on DTS has been installed in a recently forested hillslope at BIFoR in order to quantify high-resolution spatial patterns and high-frequency temporal dynamics of soil heat fluxes and soil moisture conditions. Therefore, 1500m of optical cables have been carefully deployed in three overlapped loops at 0.05m, 0.25m and 0.4m from the soil surface and an electrical system to send heat pulses along the optical cable has been developed. This paper discussed both, installation and design details along with first results of the soil moisture and temperature monitoring carried out since July 2015. Moreover, interpretations

  8. Application of MIMO technology for next-generation optical and millimeter-wave interconnects

    Science.gov (United States)

    Fan, Shu-Hao; Guidotti, Daniel; Chang, Gee-Kung

    2012-01-01

    Millimeter-wave wireless interconnects is an emerging technology for ultra-short-reach off-chip transmission, providing spatial flexibility and power-efficient high-speed data transportation. Integrated with carrier-over-fiber technology, we propose a low-phase-noise multi-wireless-transceiver architecture to improve the bit-error-rate performance of conventional wireless interconnects. Multiplexing schemes, including frequency division multiplexing, spatial multiplexing, and beam isolation, can be facilitated by carrier-over-fiber techniques. We introduce a potential application of the multi-input-multi-output high-speed analog multiplexing with open-loop analog circuits and digital feedback.

  9. Biomedical lab on glass slide for crystallo-optic diagnostics: high technology

    Science.gov (United States)

    Berg, Dmitri B.; Mintz, Rafail I.

    1997-05-01

    The unique analytic potential of biofluids crystallooptic diagnostics (COD) is determined by visualization of aggregation properties and molecular biofluid organization, that reflect an important information about functional state of separate systems as well as about the physiological status of the whole organism. Extraction, visualization and processing of the diagnostic information are supplied by the smart-technology. COD techniques experience in studies of bile, urine, liquor, tear, saliva, blood and other biological fluids is generalized: crystallooptic diagnosticums are the pool of analytical system 'Mesotest'. Combining of biofluids COD with the modern computer technologies transfer such methods into the category of intellectual prompts.

  10. Self-Raman Nd:YVO4 laser and electro-optic technology for space-based sodium lidar instrument

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-02-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nm. A CW External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nm. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nm. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9W @ 532 nm wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  11. Self-Raman Nd:YVO4 Laser and Electro-Optic Technology for Space-Based Sodium Lidar Instrument

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-01-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nanometers. A CW (Continuous Wave) External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nanometers. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nanometers. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9 watts-at-532-nanometer wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  12. Measurement of Oil and Natural Gas Well Pad Enclosed Combustor Emissions Using Optical Remote Sensing Technologies

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD) and EPA Region 8 are collaborating under the EPA’s Regional Applied Research Effort (RARE) program to evaluate ground-based remote sensing technologies that could be used to characterize emis...

  13. Measurement of Oil and Gas Well Pad Enclosed Combustor Emissions Using Optical Remote Sensing Technologies

    Science.gov (United States)

    The U.S. EPA Office of Research and Development and U.S. EPA Region 8 are collaborating to investigate the impact of energy production under the EPA’s Regional Applied Research Effort (RARE) program. As part of this effort, a research study was conducted to evaluate technologies...

  14. Physics Teacher Candidates' Opinions on Fiber Optics and New Technologies in This Field

    Science.gov (United States)

    Çildir, Sema

    2016-01-01

    Factors such as innovations brought in by the developing technology, also rapidly changing social structures casted various roles to both the student and the teacher. Therefore, it is necessary to associate such knowledge acquired in courses with implications of the knowledge in our real lives and to constantly enrich course contents, namely to…

  15. Nanomechanical recognition of prognostic biomarker suPAR with DVD-ROM optical technology

    DEFF Research Database (Denmark)

    Bache, Michael; Bosco, Filippo; Brøgger, Anna Line

    2013-01-01

    In this work the use of a high-throughput nanomechanical detection system based on a DVD-ROM optical drive and cantilever sensors is presented for the detection of urokinase plasminogen activator receptor inflammatory biomarker (uPAR). Several large scale studies have linked elevated levels...... of soluble uPAR (suPAR) to infectious diseases, such as HIV, and certain types of cancer. Using hundreds of cantilevers and a DVD-based platform, cantilever deflection response from antibody–antigen recognition is investigated as a function of suPAR concentration. The goal is to provide a cheap and portable...

  16. Optimum design for optical proximity correction in submicron bipolar technology using critical shape error analysis

    Science.gov (United States)

    Arthur, Graham G.; Martin, Brian; Wallace, Christine

    2000-06-01

    A production application of optical proximity correction (OPC) aimed at reducing corner-rounding and line-end shortening is described. The methodology, using critical shape error analysis, to calculate the correct serif size is given and is extended to show the effect of OPC on the process window (i.e. depth-of-focus and exposure latitude). The initial calculations are made using the lithography simulation tools PROLITH/2 and SOLID-C, the results of which are transferred to the photo-cell for practical results.

  17. 浅论光纤通信技术的特点与应用%On the Characteristics and Applications of Optical Fiber Communication Technology

    Institute of Scientific and Technical Information of China (English)

    徐澜涛; 姜其政

    2015-01-01

    At present, optical fiber communication technology has been integrated into power, military and other industries. China's optical fiber communications industry has achieved fruitful results, but it does not explain China has fully mastered the optical fiber communication technology; it still needs careful analysis of the relevant characteristics of optical fiber communication technology so as to make optical fiber communication technology better play its role.%目前,光纤通信技术已经融入到电力、军事等多种行业中。我国光纤通信行业已取得丰硕成果,但并不能说明我国已经完全掌握了光纤通信技术,仍需认真分析光纤通信技术的相关特点,让光纤通信技术更好的发挥其作用。

  18. Growth technology, X-ray and optical properties of CdSe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Esparza-Ponce, H.E. [CINVESTAV-IPN Unidad Queretaro, Queretaro 76230, Qro (Mexico); CIMAV, Miguel de Cervantes 120, Chihuahua 31109, Chih. (Mexico)], E-mail: hilda.esparza@cimav.edu.mx; Hernandez-Borja, J. [CINVESTAV-IPN Unidad Queretaro, Queretaro 76230, Qro (Mexico); Reyes-Rojas, A. [CIMAV, Miguel de Cervantes 120, Chihuahua 31109, Chih. (Mexico); Cervantes-Sanchez, M. [CINVESTAV-IPN Unidad Queretaro, Queretaro 76230, Qro (Mexico); Instituto Tecnologico de Morelia, Morelia 58120, Michoacan (Mexico); Vorobiev, Y.V.; Ramirez-Bon, R.; Perez-Robles, J.F. [CINVESTAV-IPN Unidad Queretaro, Queretaro 76230, Qro (Mexico); Gonzalez-Hernandez, J. [CIMAV, Miguel de Cervantes 120, Chihuahua 31109, Chih. (Mexico)

    2009-02-15

    An ammonia-free chemical-bath deposition was used to obtain CdSe thin films on glass substrate. The materials used in the chemical bath were cadmium chloride complexed with sodium citrate and sodium selenosulphate. The preparation conditions, especially the starting solution characteristics, such as concentration of dissolved materials, temperature, pH value as well as deposition time and immersion cycles were optimized to obtain homogeneous stoichiometric films with good adherence to the glass substrate. The films thickness was in the range of 400-500 nm with a growing time of 4 h. The material obtained was characterized by optical absorption, SEM with the energy dispersive X-ray analysis (EDS) and X-ray diffraction. The films obtained at bath temperatures of 70 and 80 deg. C had the hexagonal structure (of wurtzite type), with crystallite size of about 20 nm. Room temperature deposition results in films with the cubic structure and crystallite size of about 4 nm. From optical transmission data, an energy gap equal to 1.88 eV was found. The material is interesting for applications in hybrid systems for solar energy conversion.

  19. Electro-optical equivalent calibration technology for high-energy laser energy meters.

    Science.gov (United States)

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  20. Electro-optical equivalent calibration technology for high-energy laser energy meters

    Science.gov (United States)

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  1. Use of NIRS technology with a remote reflectance fibre-optic probe for predicting major components in cheese.

    Science.gov (United States)

    González-Martín, Inmaculada; González-Pérez, Claudio; Hernández-Hierro, José Miguel; González-Cabrera, José Miguel

    2008-04-15

    In the present work the potential of near infra-red spectroscopy technology (NIRS) together with the use of a remote reflectance fibre-optic probe for the analysis of fat, moisture, protein and chlorides contents of commercial cheeses elaborated with mixtures of cow's, ewe's and goat's milk and with different curing times was examined. The probe was applied directly, with no previous sample treatment. The regression method employed was modified partial least squares (MPLS). The equations developed for the cheese samples afforded fat, moisture, protein, and chloride contents in the range 13-52%, 10-62%, 20-30%, and 0.7-2.9%, respectively. The multiple correlation coefficients (RSQ) and prediction corrected standard errors (SEP (C)) obtained were respectively 0.97 and 0.995% for fat; 0.96% and 1.640% for moisture; 0.78% and 0.760% for protein, and 0.89% and 0.112% for chlorides.

  2. Fabricating Optical Fiber Imaging Sensors Using Inkjet Printing Technology: a pH Sensor Proof-of-Concept

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J C; Alvis, R M; Brown, S B; Langry, K C; Wilson, T S; McBride, M T; Myrick, M L; Cox, W R; Grove, M E; Colston, B W

    2005-03-01

    We demonstrate the feasibility of using Drop-on-Demand microjet printing technology for fabricating imaging sensors by reproducibly printing an array of photopolymerizable sensing elements, containing a pH sensitive indicator, on the surface of an optical fiber image guide. The reproducibility of the microjet printing process is excellent for microdot (i.e. micron-sized polymer) sensor diameter (92.2 {+-} 2.2 microns), height (35.0 {+-} 1.0 microns), and roundness (0.00072 {+-} 0.00023). pH sensors were evaluated in terms of pH sensing ability ({le}2% sensor variation), response time, and hysteresis using a custom fluorescence imaging system. In addition, the microjet technique has distinct advantages over other fabrication methods, which are discussed in detail.

  3. A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces

    Science.gov (United States)

    Fanara, Carlo; Shore, Paul; Nicholls, John R.; Lyford, Nicholas; Sommer, Phil; Fiske, Peter

    2006-06-01

    The next generation of 30-100 metre diameter extremely large telescopes (ELTs) requires large numbers of hexagonal primary mirror segments. As part of the Basic Technology programme run jointly by UCL and Cranfield University, a reactive atomic plasma technology (RAP(tm)) emerged from the US Lawrence Livermore National Laboratory (LLNL), is employed for the finishing of these surfaces. Results are presented on this novel etching technology. The Inductively Coupled Plasma (ICP) operated at atmospheric pressure using argon, activates the chemical species injected through its centre and promotes the fluorine-based chemical reactions at the surface. Process assessment trials on Ultra Low Expansion (ULE(tm)) plates, previously ground at high material removal rates, have been conducted. The quality of the surfaces produced on these samples using the RAP process are discussed. Substantial volumetric material removal rates of up to 0.446(21) mm 3/s at the highest process speed (1,200 mm/min) were found to be possible without pre-heating the substrate. The influences of power transfer, process speed and gas concentration on the removal rates have been determined. The suitability of the RAP process for revealing and removing sub-surface damage induced by high removal rate grinding is discussed. The results on SiC samples are reported elsewhere in this conference.

  4. OFSETH: optical technologies embedded in smart medical textile for continuous monitoring of respiratory motions under magnetic resonance imaging

    Science.gov (United States)

    Narbonneau, F.; De Jonckheere, J.; Jeanne, M.; Kinet, D.; Witt, J.; Krebber, K.; Paquet, B.; Depré, A.; D'Angelo, L. T.; Thiel, T.; Logier, R.

    2010-04-01

    The potential impact of optical fiber sensors embedded into medical textiles for the continuous monitoring of the patient during Magnetic Resonance Imaging (MRI) is now proved. We report how two pure optical technologies can successfully sense textile elongation between, 0% and 3%, while maintaining the stretching properties of the textile substrates for a good comfort of the patient. Investigating influence of different patients' morphology as well as textile integration issues to let free all vitals organs for medical staff actions, the OFSETH harness allows a continuous measurement of respiration movements. For example, anaesthesia for MRI examination uses the same drugs as for any surgical procedure. Even if spontaneous respiration can be preserved most of the time, spontaneous respiration is constantly at risk of being impaired by anaesthetic drugs or by upper airway obstruction. Monitoring of the breathing activity is needed to assess adequate ventilation or to detect specific obstruction patterns. Moreover artefacts due to physiological motions induce a blooming effect on the MRI result. The use of synchronisation devices allows reducing these effects. Positioned at certain strategic places according to the investigated organ, the presented sensors could constitute an efficient and adapted solution for respiratory synchronisation of the MRI acquisition.

  5. Use of NIRS technology with a remote reflectance fibre-optic probe for predicting major components in bee pollen.

    Science.gov (United States)

    González-Martín, I; Hernández-Hierro, J M; Barros-Ferreiro, N; Cordón Marcos, C; García-Villanova, R J

    2007-05-15

    In the present work, we study the use of near infra-red spectroscopy (NIRS) technology together with a remote reflectance fibre-optic probe for determination of the major components in bee pollen. The method allows immediate control of the bee pollen without prior sample treatment or destruction through direct application of the fibre-optic probe to the sample. The regression method employed was modified partial least squares (MPLS). The calibration results obtained using 45 samples of bee pollen allowed the measurement of protein, moisture, ash, reducing sugars, and pH with multiple correlation coefficients (RSQ) and prediction corrected standard errors (SEPC) of 0.91, 0.56% for protein, of 0.78 and 0.49% for moisture; 0.92 and 0.049% for ash; 0.81 and 1.32g of glucose/100g of bee pollen; 0.84 and 0.15 for pH, respectively. The prediction capacity of the pattern was checked by applying it to samples of unknown pollen in external validation.

  6. Functional design and implementation with on-line programmable technology in optical fiber communication pulse code modulation test system

    Science.gov (United States)

    Xu, Yuan; Ding, Huan; Gao, Youtang

    2010-10-01

    In order to complete the functional design in the fiber optical communication pulse code modulation test system, taking advantage of CPLD / FPGA and SOPC technology, software solutions used to design system hardware features and control functions, thereby the whole system could attain optimisation in the logic control as well as encoding and decoding functional designs on the motherboard, enabling this system fulfill the capacities varying from simple digital simulation transmission modulate to the high speed fiber optical communication network information encoding and decoding functions. Simultaneously the application of logarithmic pressure companding technique, PCM encoding and decoding system to improve the small signal quantizing SNR(Signal-to-Noise Ratio), TP3067 adopting A rate thirteen broken lines to carry on signal pressure companding. When the signal at a certain stage, the quantizing SNR is invariable(as signal receives uniform quantization in this phase, therefore the quantizing SNR drops along with signal amplititude decreasing). Test results are as follows: ideal various signal encoding and decoding system waveforms, high performance parameters , achieve the desired designing aim, a entirely new approach to realize different kinds of information encoding and decoding model building and implementation, saving development costs, improving design efficiency, satisfactory actual results, stable operation.

  7. Free-space optics technology employed in an UMTS release 4 bearer independent core network access part

    Science.gov (United States)

    Bibac, Ionut

    2005-08-01

    The UMTS Bearer Independent Core Network program introduced the 3rd Generation Partnership Program Release 4 BICN architecture into the legacy UMTS TDM-switched network. BICN is the application of calI server archltecture for voice and circuit switched data, enabling the provisioning of traditional circuit-switched services using a packet-switched transport network. Today"s business climate has made it essential for service providers to develop a comprehensive networking strategy that means introduction of RCBICN networks. The R4-BICN solution to the evolution of the Core Network in UMTS will enable operators to significantly reduce the capital and operational costs of delivering both traditional voice sewices and new multimedia services. To build the optical backbone, which can support the third generation (3G) packetized infrastructure, the operators could choose a fibre connection, or they could retain the benefits of a wireless connectivity by using a FSO - Free Space Optical lmk, the only wireless technology available that is capable of achieving data rates up to 2.4 Gbit/s. FSO offers viable alternatives for both core transmission networks and for replacing microwaves links in NodeB - RNC access networks. The paper and presentation aim to demonstrate the manner in which FSO products and networks are employed into R4-BICN design solutions.

  8. Nondestructive sensing technologies using micro-optical elements for applications in the NIR-MIR spectral regions

    Science.gov (United States)

    Otto, Thomas; Saupe, Ray; Bruch, Reinhard F.; Fritzsch, Uwe; Stock, Volker; Gessner, Thomas; Afanasyeva, Natalia I.

    2001-11-01

    The field of microtechnology is an important industrial and scientific resource for the 21st century. There is a great interest in spectroscopic sensors in the near and middle infrared (NIR-MIR) wavelength regions (1 - 2.5 micrometers ; 2.5 - 4.5 micrometers ; 4 - 6 micrometers ). The potential for cheap and small devices for nondestructive, remote sensing techniques at a molecular level has stimulated the design and development of more compact analyzer systems. Therefore we will try to build analyzers using micro optical components such as micromirrors and embossed micro gratings optimized for the above mentioned spectral ranges. Potentially, infrared sensors can be used for rapid nondestructive diagnostics of surfaces, liquids, gases, polymers and complex biological systems including proteins, blood, cells and cellular debris as well as body tissue. Furthermore, NIR-MIR microsensing spectroscopy will be utilized to monitor the chemical composition of petrochemical products like gasoline and diesel. In addition, miniature analyzers will be used for rapid measuring of food, in particular oil, starch and meat. In this paper we will present an overview of several new approaches for subsurface and surface sensing technologies based on the integration of optical micro devices, the most promising sensors for biomedical, environmental and industrial applications, data processing and evaluation algorithms for classification of the results. Both scientific and industrial applications will be discussed.

  9. 光纤通信系统保密技术研究%Research on the Security Technology of Optical Fiber Communication System

    Institute of Scientific and Technical Information of China (English)

    吉文龙

    2011-01-01

    For the wide transmission band and good secrecy performance, Optical fiber communication is one of the world's most promising communication technologies. In this thesis, the chaotic secure communication, optical code division multiple access security technology and quantum secure communication technology are discussed, and the three kinds of security technology principle and technical features are described in detail.%光纤通信传输频带宽,保密性能好,是当今世界上最有发展前途的通信技术。本论文就混沌保密通信技术、光纤码分多址保密技术和量子保密通信技术进行了讨论,并详细阐述了该三种保密技术的原理、技术特点等。

  10. Research on zero-sum magnetic field integral technology of optical current sensors

    Science.gov (United States)

    Li, Shen-wang; Yu, Wen-bin; Zhang, Guo-qing; Guo, Zhi-zhong; Shen, Yan

    2013-10-01

    An architecture based on the Faraday effect to minimize the crosstalk effect in optical current sensors (OCSs) is proposed. It was demonstrated that the magnetic field integral along a discrete loop can meet Ampere's law under certain conditions, and the mathematical model of zero-sum points was given. Based on it, a zero-sum OCS (ZOCS) was proposed, which consists of several OCSs forming a symmetrical discrete loop. Ideally, the currents that flow outside the ZOCS do not contribute to the measurement of the currents inside it. The experimental results showed that the magnetic crosstalk-induced errors of ZOCS were less than 0.2%, and the influence of external current was reduced one order compared with conventional OCSs.

  11. TECHNOLOGICAL IMPERFECTIONS OF FORCE ROD GEOMETRICAL PARAMETERS FOR PANDA OPTICAL FIBERS PRODUCTION

    Directory of Open Access Journals (Sweden)

    N. V. Semenov

    2014-01-01

    Full Text Available The paper deals with the dependence in radial dimensions changes of the workpieces on the angular coordinate based on experimental data about the geometry of the cross-sections of force rods batch for the production of anisotropic Panda-type optical fibers. An algorithm of geometrical parameters statistical processing is described, which gives the possibility to find the similarity in the geometry of the cross-sections of different force rods, and reveal the characteristic shape of the crosssection for all the samples. The algorithm contains the shift of points for dependence changes in radial dimensions of the workpieces on the angular coordinate in order to find curves with maximum correlation coefficient. Afterwards, the distribution of the radius values for each angular coordinate is found basing on the obtained curves. It is demonstrated that in case of the force rods production with variable amount of alloying dopes on the radius via the MCVD method, it is impossible to get

  12. Aeroelastic Control of a Segmented Trailing Edge Using Fiber Optic Strain Sensing Technology

    Science.gov (United States)

    Graham, Corbin Jay; Martins, Benjamin; Suppanade, Nathan

    2014-01-01

    Currently, design of aircraft structures incorporate a safety factor which is essentially an over design to mitigate the risk of structure failure during operation. Typically this safety factor is to design the structure to withstand loads much greater than what is expected to be experienced during flight. NASA Dryden Flight Research Centers has developed a Fiber Optic Strain Sensing (FOSS) system which can measure strain values in real-time. The Aeroelastics Lab at the AERO Institute is developing a segmented trailing edged wing with multiple control surfaces that can utilize the data from the FOSS system, in conjunction with an adaptive controller to redistribute the lift across a wing. This redistribution can decrease the amount of strain experienced by the wing as well as be used to dampen vibration and reduce flutter.

  13. On the use of the earth resources technology satellite /LANDSAT-1/ in optical oceanography

    Science.gov (United States)

    Maul, G. A.; Gordon, H. R.

    1975-01-01

    Observations of the Gulf Stream System in the Gulf of Mexico were obtained in synchronization with LANDSAT-1. Computer enhanced images, which are necessary to extract useful oceanic information, show that the current can be observed by color (diffuse radiance) or sea state (specular radiance) effects associated with the cyclonic boundary even in the absence of a surface thermal signature. The color effect relates to the spectral variations in the optical properties of the water and its suspended particles, and is studied by radiative transfer theory. Significant oceanic parameters identified are: the probability of forward scattering, and the ratio of scattering to total attenuation. Several spectra of upwelling diffuse light are computed as a function of the concentration of particles and yellow substance.

  14. Underwater Depth and Temperature Sensing Based on Fiber Optic Technology for Marine and Fresh Water Applications

    Directory of Open Access Journals (Sweden)

    Dinesh Babu Duraibabu

    2017-05-01

    Full Text Available Oceanic conditions play an important role in determining the effects of climate change and these effects can be monitored through the changes in the physical properties of sea water. In fact, Oceanographers use various probes for measuring the properties within the water column. CTDs (Conductivity, Temperature and Depth provide profiles of physical and chemical parameters of the water column. A CTD device consists of Conductivity (C, Temperature (T and Depth (D probes to monitor the water column changes with respect to relative depth. An optical fibre-based point sensor used as a combined pressure (depth and temperature sensor and the sensor system are described. Measurements accruing from underwater trials of a miniature sensor for pressure (depth and temperature in the ocean and in fresh water are reported. The sensor exhibits excellent stability and its performance is shown to be comparable with the Sea-Bird Scientific commercial sensor: SBE9Plus.

  15. Underwater Depth and Temperature Sensing Based on Fiber Optic Technology for Marine and Fresh Water Applications.

    Science.gov (United States)

    Duraibabu, Dinesh Babu; Leen, Gabriel; Toal, Daniel; Newe, Thomas; Lewis, Elfed; Dooly, Gerard

    2017-05-27

    Oceanic conditions play an important role in determining the effects of climate change and these effects can be monitored through the changes in the physical properties of sea water. In fact, Oceanographers use various probes for measuring the properties within the water column. CTDs (Conductivity, Temperature and Depth) provide profiles of physical and chemical parameters of the water column. A CTD device consists of Conductivity (C), Temperature (T) and Depth (D) probes to monitor the water column changes with respect to relative depth. An optical fibre-based point sensor used as a combined pressure (depth) and temperature sensor and the sensor system are described. Measurements accruing from underwater trials of a miniature sensor for pressure (depth) and temperature in the ocean and in fresh water are reported. The sensor exhibits excellent stability and its performance is shown to be comparable with the Sea-Bird Scientific commercial sensor: SBE9Plus.

  16. Advanced manufacturing technologies for reduced cost and weight in portable ruggedized VIS-IR and multi-mode optical systems for land, sea, and air

    Science.gov (United States)

    Sweeney, Michael; Spinazzola, Robert; Morrison, Donald; Macklin, Dennis; Marion, Jared

    2011-06-01

    Homeland security systems, special forces, unmanned aerial vehicles (UAV), and marine patrols require low cost, high performance, multi-mode visible through infrared (VIS-IR) wavelength optical systems to identify and neutralize potential threats that often arise at long ranges and under poor visibility conditions. Long range and wide spectral performance requirements favor reflective optical system design solutions. The limited field of view of such designs can be significantly enhanced by the use of catadioptric optical solutions that utilize molded or diamond point machined VIS-IR lenses downstream from reflective objective optics. A common optical aperture that services multiple modes of field-of-view, operating wavelength, and includes laser ranging and spotting, provides the highest utility and is most ideal for size and weight. Such a design also often requires fast, highly aspheric, reflective, refractive, and sometimes diffractive surfaces using high performance and aggressively light-weighted materials that demand the finest of manufacturing technologies. Visible wavelength performance sets the bar for component optical surface irregularity on the order of 20 nm RMS and surface finishes less than 3.0 nm RMS. Aluminum mirrors and structures can also be precision machined to yield "snap together alignment" or limited compensation assembly approaches to reduce cost and enhance interchangeability. Diamond point turning, die cast and investment cast mirror substrates and structures, computerized optical polishing, mirror replication, lens molding and other advanced manufacturing technologies can all be used to minimize the cost of this type of optical equipment. This paper discusses the tradeoffs among materials and process selection for catadioptric, multi-mode systems that are under development for a variety of DoD and Homeland Security applications. Several examples are profiled to illuminate the confluence of applicable design and manufacturing

  17. Circuit-breakers: optical technologies for probing neural signals and systems.

    Science.gov (United States)

    Zhang, Feng; Aravanis, Alexander M; Adamantidis, Antoine; de Lecea, Luis; Deisseroth, Karl

    2007-08-01

    Neuropsychiatric disorders, which arise from a combination of genetic, epigenetic and environmental influences, epitomize the challenges faced in understanding the mammalian brain. Elucidation and treatment of these diseases will benefit from understanding how specific brain cell types are interconnected and signal in neural circuits. Newly developed neuroengineering tools based on two microbial opsins, channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), enable the investigation of neural circuit function with cell-type-specific, temporally accurate and reversible neuromodulation. These tools could lead to the development of precise neuromodulation technologies for animal models of disease and clinical neuropsychiatry.

  18. Advances in Fiber Optic Sensors Technology Development for temperature and strain measurements in Superconducting magnets and devices

    CERN Document Server

    Chiuchiolo, A.; Bajko, M.; Bottura, L.; Consales, M.; Cusano, A.; Giordano, M.; Perez, J. C.

    2016-01-01

    The luminosity upgrade of the Large Hadron Collider (HL-LHC) requires the development of a new generation of superconducting magnets based on Nb3Sn technology. In order to monitor the magnet thermo-mechanical behaviour during its service life, from the coil fabrication to the magnet operation, reliable sensing systems need to be implemented. In the framework of the FP7 European project EUCARD, Nb3Sn racetrack coils are developed as test beds for the fabrication validation, the cable characterization and the instrumentation development. Fiber optic sensors (FOS) based on Fiber Bragg Grating (FBG) technology have been embedded in the coils of the Short Model Coil (SMC) magnet. The FBG sensitivity to both temperature and strain required the development of a solution able to separate the mechanical and temperature effects. This work presents the feasibility study of the implementation of embedded FBG sensors for the temperature and strain monitoring of the 11 T type conductor. We aim to monitor and register these...

  19. Research of developing and processing technology of new visual and optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Jae; Kim, K. H.; Rhee, C. K.; Lee, H. G.; Kim, W. W.; Jeon, C. J.; Park, S.; Kim, H. S

    2000-08-01

    Crystalline TiO{sub 2} powder with rutile phase for the plastic lens material was prepared by the homogeneous precipitation process at ambient or low temperatures (HPPLT) using simply heating aqueous TiOCl{sub 2} solution. The transparent TiO{sub 2} thin films and CR39/TiO{sub 2} composite lens were fabricated using dispersed TiO{sub 2} particle in the aqueous or organic solution. The monodisperse TiO{sub 2} ultrafine particles with the diameters of 40 {approx} 400 nm were obtained from aqueous TiOCl{sub 2} solution with an appropriate Ti{sup 4+} concentration by the HPPLT. The process was carried out under the conditions in the ranges of 17 {approx} 230 deg C to prevent H{sub 2}O evaporation completely and to make it freely or to prevent it thoroughly. The existence of SO{sub 4}{sup 2-} ion in aqueous TiOCl{sub 2} solution make the preferential growth of the acicular primary particles suppressed, resulting in the spherical or round primary particles with the anatase phase. The ultrafine TiO{sub 2} powder by the HPPLT was well dispersed with sizes of 20 {approx} 50 nm in n-butyl alcohol solution. The mixture of TiO{sub 2} particles with silica sol, corresponding to 1.0 wt.% SiO{sub 2} in 99 wt.% (TiO{sub 2} + H{sub 2}O) aqueous solution was coated with 40 {approx} 50 nm thickness on the substrate. The optical transmittance of CR39/TiO{sub 2} composite lens with increase in the addition of the ultrafine TiO{sub 2} powder decreases gradually although TiO{sub 2} particles were well dispersed in n-butyl alcohol solution. Thus, it can be thought that it is appropriate to add 0.3 mL of 1.0 g TiO{sub 2}/1000 mL n-butyl alcohol solution to the CR39 solution for the CR39/TiO2 composite lens with optical transmittances more than 90 %. It was also confirmed that PMMA/TiO{sub 2} composite thin films showed a similar transmittance like the CR39/TiO{sub 2} composite lens.

  20. Optical sensor technology for a noninvasive continuous monitoring of blood components

    Science.gov (United States)

    Kraitl, Jens; Timm, Ulrich; Lewis, Elfed; Ewald, Hartmut

    2010-02-01

    NIR-spectroscopy and Photoplethysmography (PPG) is used for a measurement of blood components. The absorptioncoefficient of blood differs at different wavelengths. This fact is used to calculate the optical absorbability characteristics of blood which is yielding information about blood components like hemoglobin (Hb), carboxyhemoglobin (CoHb) and arterial oxygen saturation (SpO2). The measured PPG time signals and the ratio between the peak to peak pulse amplitudes are used for a measurement of these parameters. Hemoglobin is the main component of red blood cells. The primary function of Hb is the transport of oxygen from the lungs to the tissue and carbon dioxide back to the lungs. The Hb concentration in human blood is an important parameter in evaluating the physiological status of an individual and an essential parameter in every blood count. Currently, invasive methods are used to measure the Hb concentration, whereby blood is taken from the patient and subsequently analyzed. Apart from the discomfort of drawing blood samples, an added disadvantage of this method is the delay between the blood collection and its analysis, which does not allow real time patient monitoring in critical situations. A noninvasive method allows pain free continuous on-line patient monitoring with minimum risk of infection and facilitates real time data monitoring allowing immediate clinical reaction to the measured data.

  1. Recent progress in optical coating technology: low-voltage ion plating deposition

    Science.gov (United States)

    Guenther, Karl H.

    1990-08-01

    After fairly extensive discussions of the advantages and disadvantages of low energy and high energy ion beam bombardment of a growing film, we review briefly a number of experimental results obtained with various samples made with low voltage reactive ion plating deposition. The availability of a state-of-the-art high vacuum coating machine specifically equipped for this process is the foundation for a major leap toward achieving near-perfect optical coatings. The high density of ion plated thin films makes them impermeable to water vapor and corrosive solutions. This has been demonstrated with protected aluminum mirrors, polarizers, and infrared anti-reflection coatings. An indication of the high packing density is the substantially higher refractive index than that of comparable layers deposited with either conventional electron beam evaporation or ion assisted deposition. The spectral transmittance of multilayer stacks of oxide thin films is lower than expected from theoretical predictions which assume absorption-free dielectrics. The observed absorption is primarily of an interface nature rather than a volume effect and occurs predominantly in combinations of Ti02 and Si02 thin films.

  2. An overview of micro-optical components and system technology: bulk, planar, and thin-film for laser initiated devices

    Science.gov (United States)

    Lizotte, Todd

    2010-08-01

    There are a number of attractive micro optical elements or combinations of elements that are currently used or could be employed in optically initiated ordnance systems. When taking a broad-spectrum examination of optically initiated devices, the required key parameters become obviously straightforward for micro optics. Plainly stated, micro optics need to be simple, inexpensive, reliable, robust and compatible within their operational environment. This presentation focuses on the variety of optical elements and components available in the market place today that could be used to realize micro-optical beam shaping and delivery systems for optically initiated devices. A number of micro optical elements will be presented with specific bulk, planar optical and thin film optical devices, such as diffractive optics, micro prisms, axicons, waveguides, micro lenses, beam splitters and gratings. Further descriptions will be presented on the subject of coupling light from a laser beam into a multimode optical fiber. The use of micro optics for collimation of the laser source and conditioning of the laser beam to achieve the highest efficiency and matching the optical fiber NA will be explained. An emphasis on making these optical assemblies compact and rugged will be highlighted.

  3. Status on Technology Development of Optic Fiber-Coupled Laser Ignition System for Rocket Engine Applications

    Science.gov (United States)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew; Bossard, John

    2003-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concept: not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio. This incentive can be translated to a convenience in the thrust chamber packaging.

  4. Research Center for Optical Physics: Education and Technology for the 21st Century

    Science.gov (United States)

    2003-01-01

    During the past eleven years since its inception, RCOP has excelled in its two primary goals: 1) training of the scientists and engineers needed for the twenty-first century with special emphasis on underrepresented citizens and 2) research and technological development in areas of relevance to NASA. In the category of research training, as of May 2003, RCOP produced 36 Bachelors degrees, 25 Masters degrees, and 13 Doctoral degrees. Of these, all 36 Bachelors degrees, 16 of the Masters degrees and 9 of the Doctoral degrees were awarded to African Americans. Four of the Doctoral graduates and one of the Masters graduates are working at NASA Field Centers. RCOP has also provided research experiences to 130 undergraduate students and 22 high school students through a number of outreach programs held during the summer and the academic year. RCOP has also been crucial to the development of the Ph.D. program in physics at Hampton University by providing high quality research training and technical electives required for a Doctoral degree in physics. RCOP has also excelled in research and technological development. Since 1992, RCOP researchers have leveraged over 8 million dollars in additional research funding, published 152 papers in refereed journals and proceedings, and given 125 presentations at refereed international conferences in the United States and eight other countries. RCOP also developed numerous collaborations with other research centers, universities and industries. In recognition of this outstanding work, RCOP is the first research center in the United States invited to join the Joint Open Laboratory for Laser Crystals and Precise Laser Systems headed by Dr. Alexander Kaminiskii of the Russian Academy of Sciences.

  5. Optical materials technology for energy efficiency and solar energy conversion VII; Proceedings of the Meeting, Hamburg, Federal Republic of Germany, Sept. 19-21, 1988

    Science.gov (United States)

    Granqvist, Claes G.; Lampert, Carl M.

    Various papers on optical materials technology for energy efficiency and solar energy conversion are presented. Individual topics addressed include: nonlinear optical effects in organic molecules and polymers, optical and electrical properties of amorphous Li(x)WO3 films, electrochromism in sputtered vanadium pentoxide, characterization of nickel oxide electrochromic films, radiative cooling with pigmented polyethylene foils, plasma-film interactions in RF sputtered a-Si:H and a-Ge:H, metal oxyfluoride coatings for energy-efficient windows, fatigue-resistant photochromic plastics, evaporated VO(x) thin films, electrochromism in nickel oxide films, system design for high-rate deposition of indium oxide solar coatings, performance and bandwidth analysis of holographic solar reflectors, laser and spectroscopic characterization of thin films, high-efficiency collectors for solar energy applications, influence of surface roughness on the optical properties of cermet coatings, and sputtered aluminum composite selective absorbing surfaces.

  6. Hot slumping glass technology for the grazing incidence optics of future missions with particular reference to IXO

    Science.gov (United States)

    Ghigo, M.; Basso, S.; Bavdaz, M.; Conconi, P.; Citterio, O.; Civitani, M.; Friedrich, P.; Gallieni, D.; Guldimann, B.; Martelli, F.; Negri, R.; Pagano, G.; Pareschi, G.; Parodi, G.; Proserpio, L.; Salmaso, B.; Scaglione, F.; Spiga, D.; Tagliaferri, G.; Terzi, L.; Tintori, M.; Vongehr, M.; Wille, E.; Winter, A.; Zambra, A.

    2010-07-01

    The mirrors of the International X-ray Observatory (IXO) consist of a large number of high quality segments delivering a spatial resolution better than 5 arcsec. A study concerning the slumping of thin glass foils for the IXO mirrors is under development in Europe, funded by ESA and led by the Brera Observatory. We are investigating two approaches, the "Direct" and "Indirect" slumping technologies, being respectively based on the use of convex and concave moulds. In the first case during the thermal cycle the optical surface of the glass is in direct contact with the mould surface, while in the second case it is the rear side of the foil which touches the master. Both approaches present pros and cons and aim of this study is also to make an assessment of both processes and to perform a trade-off between the two. The thin plates are made of D263glass produced by Schott. Each plate is 0.4 mm thick, with a reflecting area of 200 mm x 200 mm; the mould are made of Fused Silica. After the thermal cycle the slumped MPs are characterized to define their optical quality and microroughness. The adopted integration process foresees the bonding of the slumped foils to a rigid backplane by means of reinforcing ribs. During the bonding process the plates are constrained to stay in close contact to the surface of the master (i.e. the same mould used for the hot slumping process) by the application of a vacuum pump suction. In this way spring-back deformations and low frequency errors still present on the foil profile after slumping can be corrected. In this paper we present the preliminary results concerning achieved during the first part of the project.

  7. Design of atmospheric composition monitor based on ultraviolet optical absorption technology

    Institute of Scientific and Technical Information of China (English)

    LI Wen-jun

    2011-01-01

    An open path atmospheric composition monitor is designed based on ultraviolet differential absorption technology.Dark current correction and diode response correction are used to improve the detection limit and Savitzky-Golay filter is used to improve the measurement accuracy.The experimental results show that the designed system has the ability to measure NO and NO2 in real time with reasonable accuracy.The detection limit of the system is about 0.25 ppm for NO and 0.28 ppm for NOr When the concentration level of the target gases is below 100 ppm,the system has good linearity and high measurement accuracy,i.e.,the measurement accuracy is about 2% for NO and about 4% for NO2.The detection limit of dark current can be improved by about 5 to 10 ppb,and the correction of diode response can improve the detection limit by around 30 ppb.Moving window average can improve the detection limit at low concentration levels but will generate more errors at higher concentration leveis.Generally,the designed system meets the requirement of measuring multi-species air pollutants in real time and accurately.

  8. Optical oxygen sensing systems for drug discovery applications: Respirometric Screening Technology (RST)

    Science.gov (United States)

    Papkovsky, Dmitri B.; Hynes, James; Fernandes, Richard

    2005-11-01

    Quenched-fluorescence oxygen sensing allows non-chemical, reversible, real-time monitoring of molecular oxygen and rates of oxygen consumption in biological samples. Using this approach we have developed Respirometric Screening Technology (RST); a platform which facilitates the convenient analysis of cellular oxygen uptake. This in turn allows the investigation of compounds and processes which affect respiratory activity. The RST platform employs soluble phosphorescent oxygen-sensitive probes, which may be assessed in standard microtitter plates on a fluorescence plate reader. New formats of RST assays and time-resolved fluorescence detection instrumentation developed by Luxcel provide improvements in assay sensitivity, miniaturization and overall performance. RST has a diverse range of applications in drug discovery area including high throughput analysis of mitochondrial function; studies of mechanisms of toxicity and apoptosis; cell and animal based screening of compound libraries and environmental samples; and, sterility testing. RST has been successfully validated with a range of practical targets and adopted by several leading pharmaceutical companies.

  9. Optical gravitational wave detectors on the ground and in space: theory and technology

    Institute of Scientific and Technical Information of China (English)

    Jean-Yves Vinet

    2010-01-01

    Major predictions of General Relativity, unforeseen at the beginning of the preceding century, are now under investigation. The existence of black holes of any mass from tens to billions of solar masses is now established, and the physics around these objects begins to be studied through direct observations in a wide electromagnetic spectrum from visible light to X-rays. General relativity, however, provides an extra medium which carries more information on the regions of intense gravitational field, namely gravitational waves (GWs). Due to their extremely weak coupling to matter, GWs are precisely generated in those regions of spacetime undergoing strong curvature, which is very exciting for modern astrophysics. On the other hand, this weak coupling makes it difficult for GWs to cause appreciable effects in human made instruments. This is why technology of GW detectors took such a long time to reach a sensitivity level consistent with GW amplitudes predicted by theoretical models of sources. In the present status, apart from resonant solid detectors, two large interferometric antennas (LIGO in the USA and the French-Italian Virgo) are beginning to produce data, and a joint ESA-NASA space mission, resulting from a wide effort of European and American groups, is reaching a crucial approval phase. The aim of the present review is to give the theoretical bases of GW detectors using light.

  10. Optical fibers installation the different technologies and the advantages of using the RTE power grid; Pose de fibres optiques les differentes technologies et les avantages lies a l'utilisation du reseau de transport d'electricite de RTE

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    To install optical fibers lines RTE implements two different technologies: the THYM line and the COE line. The two technologies are explained and compared with the advantages of using RTE for such an equipment. (A.L.B.)

  11. Technology.

    Science.gov (United States)

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  12. The application of surgical navigation system using optical molecular imaging technology in orthotopic breast cancer and metastasis studies

    Science.gov (United States)

    Chi, Chongwei; Zhang, Qian; Kou, Deqiang; Ye, Jinzuo; Mao, Yamin; Qiu, Jingdan; Wang, Jiandong; Yang, Xin; Du, Yang; Tian, Jie

    2014-02-01

    Currently, it has been an international focus on intraoperative precise positioning and accurate resection of tumor and metastases. The methods such as X-rays, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role in preoperative accurate diagnosis. However, most of them are inapplicable for intraoperative surgery. We have proposed a surgical navigation system based on optical molecular imaging technology for intraoperative detection of tumors and metastasis. This system collects images from two CCD cameras for real-time fluorescent and color imaging. For image processing, the template matching algorithm is used for multispectral image fusion. For the application of tumor detection, the mouse breast cancer cell line 4T1-luc, which shows highly metastasis, was used for tumor model establishment and a model of matrix metalloproteinase (MMP) expressing breast cancer. The tumor-bearing nude mice were given tail vein injection of MMP 750FAST (PerkinElmer, Inc. USA) probe and imaged with both bioluminescence and fluorescence to assess in vivo binding of the probe to the tumor and metastases sites. Hematoxylin and eosin (H&E) staining was performed to confirm the presence of tumor and metastasis. As a result, one tumor can be observed visually in vivo. However liver metastasis has been detected under surgical navigation system and all were confirmed by histology. This approach helps surgeons to find orthotopic tumors and metastasis during intraoperative resection and visualize tumor borders for precise positioning. Further investigation is needed for future application in clinics.

  13. High Sensitivity Refractometer Based on TiO2-Coated Adiabatic Tapered Optical Fiber via ALD Technology

    Science.gov (United States)

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Guo, Qiang; Wen, Jianxiang; Wang, Tingyun

    2016-01-01

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractometer based on an adiabatic tapered optical fiber. Different thicknesses of titanium dioxide (TiO2) nanofilm were coated around the tapered fiber precisely and uniformly under different deposition cycles. Attributed to the higher refractive index of the TiO2 nanofilm compared to that of silica, an asymmetric Fabry–Perot (F-P) resonator could be constructed along the fiber taper. The central wavelength of the F-P resonator could be controlled by adjusting the thickness of the TiO2 nanofilm. Such a F-P resonator is sensitive to changes in the surrounding refractive index (SRI), which is utilized to realize a high sensitivity refractometer. The refractometer developed by depositing 50.9-nm-thickness TiO2 on the tapered fiber shows SRI sensitivity as high as 7096 nm/RIU in the SRI range of 1.3373–1.3500. Due to TiO2’s advantages of high refractive index, lack of toxicity, and good biocompatibility, this refractometer is expected to have wide applications in the biochemical sensing field. PMID:27537885

  14. Technologies for Lunar Surface Power Systems Power Beaming and Transfer

    Science.gov (United States)

    Marzwell, Neville; Pogorzelski, Ronald J.; Chang, Kai; Little, Frank

    2008-01-01

    Wireless power transmission within a given working area is required or enabling for many NASA Exploration Systems. Fields of application include robotics, habitats, autonomous rendezvous and docking, life support, EVA, and many others. In robotics applications, for example, the robots must move in the working area without being hampered by power cables and, meanwhile, obtain a continuous and constant power from a power transmitter. The development of modern technology for transmitting electric power over free space has been studied for several decades, but its use in a system has been mainly limited to low power, 1-2 Vdc output voltage at a transmission distance of few meters for which relatively less than 0.5 mW/cm2 is required (e.g., Radio frequency identification RFID). Most of the rectenna conversion efficiency research to date has concentrated in low GHz frequency range of 2.45 to 10 GHz, with some work at 35 GHz. However, for space application, atmospheric adsorbtion is irrelevant and higher frequency systems with smaller transmit and receive apertures may be appropriate. For high power, most of the work on rectennas has concentrated on optimizing the conversion efficiency of the microwave rectifier element; the highest power demonstrated was 35 kW of power over a distance of 1.5 km. The objective of this paper is to establish the manner in which a very large number of very low power microwave devices can be synchronized to provide a beam of microwaves that can be used to efficiently and safely transport a significant amount of power to a remote location where it can be converted to dc (or ac) power by a ``rectenna.'' The proposed system is based on spatial power combining of the outputs of a large number of devices synchronized by mutual injection locking. We have demonstrated at JPL that such power could be achieved by combining 25 sources in a configuration that allows for convenient steering of the resulting beam of microwaves. Retrodirective beam

  15. Optical electronics

    CERN Document Server

    Yariv, Amnon

    1991-01-01

    This classic text introduces engineering students to the first principles of major phenomena and devices of optoelectronics and optical communication technology. Yariv's "first principles" approach employs real-life examples and extensive problems. The text includes separate chapters on quantum well and semiconductor lasers, as well as phase conjugation and its applications. Optical fiber amplification, signal and noise considerations in optical fiber systems, laser arrays and distributed feedback lasers all are covered extensively in major sections within chapters.

  16. Optical materials technology for energy efficiency and solar energy conversion VI; Proceedings of the Meeting, San Diego, CA, Aug. 18, 19, 1987

    Science.gov (United States)

    Lampert, Carl M.

    1987-01-01

    Recent advances in optical materials for energy conversion are discussed in reviews and reports. Sections are devoted to transparent IR reflectors and large-area deposition technology; optical switching materials; holographic films and reflector technology; and absorbers, photovoltaics, and solar materials. Topics addressed include bendable Ag-based low-emissivity coating on glass, plasma oxidation of Ag and Zn in low-emissivity stacks, smart window coatings, improved colored-state reflectivity in lithiated WO3 films, photochromic and thermochromic pigments for solar absorbing-reflecting coatings, the design and optimization of holographic solar concentrators, the properties of black cobalt coatings, and interface states and Fermi-level pinning in CdSe thin-film solar cells.

  17. The even device fabricated by the deep etched binary optics technology for the exposure system of the quasi-molecule laser

    Institute of Scientific and Technical Information of China (English)

    徐平; 孙一翎; 李景镇

    2002-01-01

    By applying the specific properties and the fabricating technology of the deep etched elements presented by us, the even device of deep etched binary optics has been designed and fabricated which can be used in quasi-molecule laser exposure system. This even device is light in weight, easy to adjust and has a high utilization rate of energy and is able to project well-distributed light beams. So it is better than the conventional one which was an array made up of quartz sticks. The properties and designed parameters were studied and simulated. The fabricated even was precisely tested by high precision Alpha-Steper. The testing result of the surface relief structures of the even has been profoundly analyzed by introducing "boundary errors". The theory agrees well with the results of the experiment. This is the first successful application of the deep etched theory and technology of binary optics to the exposure system of microfabrication.

  18. Bringing (Century-Old) Technology into the Classroom, Part II: Teaching Vibrations and Waves, Electricity and Magnetism, and Optics with Antiques

    Science.gov (United States)

    Jewett, John W.

    2016-01-01

    This is the second in a series of two articles on using antique devices to teach introductory physics. As mentioned in the first article, students can more clearly see the physics required for the operation of antique devices than for modern-day technological devices. This article will discuss antiques used to teach vibrations and waves, electricity and magnetism, and optics. In addition, a description of possible sources for obtaining antiques will help those interested in pursuing these ideas.

  19. 超高速光通信的新技术及应用%New Technologies and Applications of Ultra-High Speed Optical Communication

    Institute of Scientific and Technical Information of China (English)

    吕建新

    2011-01-01

    This paper describes new technologies that will be used in 40 Gbit/s, 100 Gbit/s and higher rates ultra-high speed optical communication, including phase modulation, quadrature amplitude modulation, multi-level modulation and other new modulation techniques such as polarization multiplexing and orthogonal frequency division multiplexing, also coherent receiver technology principles, the advantages and application necessity, photonic integration technology and evolution. The end of this paper introduces the applications about these new technologies in ultra-high speed optical communication such as 400 Gbit/s/1 Tbit/s. This article also describes the research progress of fiberhome in ultra-high speed optical communication, including research results of 100 Gbit/s ethemet and 1 Tbit/s coherent optical orthogonal frequency division multiplexing (CO-OFDM) 1 040 km error-free ordinary single-mode fiber transmission .%介绍了40 Gbit/s、100 Gbit/s及以上速率超高速光通信中将会用到的新技术,包括相位调制、正交幅度调制、多电平调制等新型调制技术,偏振复用和正交频分复用等新型复用技术,相干接收技术,光子集成技术.最后介绍了这些新技术在400 Gbit/s、1 Tbit/s等超高速光通信上的应用以及超高速光通信方面的研究进展,实现了1Tbit/s速率下CO-OFDM 1040 km的普通单模光纤的无误码传输.

  20. Application of Modern Optical Fiber Communication Transmission Technology%现代光纤通信传输技术的应用探讨

    Institute of Scientific and Technical Information of China (English)

    李彬; 赵静娟

    2013-01-01

    Optical fiber communication, as the principal communication technology in modern telecom network, has achieved rapid development and fairly good economic benefit in recent years. Along with the continuous development of communication technology, the optical fiber-leading communication transmission technology, for its large capacity, high speed and strong anti-interference capability, is widely applied in the field of communication. This paper describes the characteristics of optical fiber communication, discusses the concrete application and the future development trend of modern optical fiber communication transmission technology.%  在现代电信网中有着重要地位的光纤通信已经成为主要的通信技术,并在近几年发展速度非常快,也取得了良好的效益。随着通信技术的不断发展,以光纤为主导的通信传输技术由于其传输信息量大、速递快、抗干扰能力强等特点在通信领域得到了广泛的应用。这里介绍了光纤通信的特点,探讨了现代光纤通信传输技术的具体应用以及未来的发展趋势,随着对信息量需求的增加,光纤通信一定会取代其他的通信方式,成为信息通信领域中主流的技术。

  1. Multifocal and pattern-reversal visual evoked potentials vs. automated perimetry frequency-doubling technology matrix in optic neuritis

    Directory of Open Access Journals (Sweden)

    Marcella Nebbioso

    2013-01-01

    Full Text Available Background: To compare the usefulness of the traditional pattern-reversal Visual Evoked Potentials (VEP with multifocal VEP (mfVEP and Frequency-Doubling Technology (FDT perimetry in the evaluation of the ocular abnormalities induced by acute or subacute optic neuritis (ON. Materials and Methods: The test results of 24 ON patients were compared with those obtained in 40 normal control subjects. MfVEP recordings were obtained by using an Optoelectronic Stimulator that extracts topographic VEP using a pseudorandom m-sequence stimulus. Receiver operator characteristic (ROC curves were calculated to determine the sensitivity and specificity of abnormal values. Results: The frequency of the abnormal ocular findings differed in the ON patients according to the used technique. Reduced visual sensitivity was demonstrated in 12 eyes (54.5% using FDT perimetry; 17 eyes (77.2% showed decreased amplitude and/or an increase in the implicit time of the P1 wave in mfVEP and 20 eyes (90.9% showed an abnormal decrease in the amplitude and/or an increase in the latency of the P100 peak at VEP examination. The areas under the ROC curves ranged from 0.743 to 0.935, with VEP having the largest areas. The VEP and mfVEP amplitudes and latencies yielded the greatest sensitivity and specificity. Conclusions: The mfVEP and the FDT perimetry can be used for the evaluation and monitoring of visual impairment in patients with ON. The most sensitive and practical diagnostic tool in patients with ON is, however, the traditional VEP. The mfVEP can be utilized in those cases with doubtful or negative VEP results.

  2. A scintillation testing technology at a viewpoint of optical test. At a memory of winning of the Radiation Prize (Prize of Encouragement)

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Tatsuyuki [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    2000-04-01

    In a 'summer school' held at Matsushima, a series of developmental results had been introduced on a wavelength shift type beta-ray detector and others recently progressed by author at a viewpoint of 'new reconsideration on scintillation testing, one of the oldest radiation testing technology for an optical testing'. As a chance to write this theme again was obtained at present, here were introduced on trial and errors, backgrounds on ideas, pains for trial production and so forth at a process of putting together them for actual technologies and products under combining a series of ideas with their needs. Here were newly introduced on developmental backgrounds, points for practicability, and so forth on optical radiation testing technology which had been developed by authors. By upgrading of radiation resistance on the optical fibers themselves, developments for not only radiation testing but also instrumentation in storage vessel specific to nuclear instrumentation are considered in future. And, some findings on new elements and techniques, such as application of radiation to refractive index change due to much minute exotherm, application of Cherenkov phenomenon in glass, fiber grating and interference test assembles a minute diffraction lattice into a core, and so forth are found recently, which will be expected for their future developments. (G.K.)

  3. Digital Optical Circuit Technology.

    Science.gov (United States)

    1985-03-01

    rencontrer leurs coll~gues et d’examiner avec eux les; details techniques de cc domaine hautement sp~cialis6. L𔄀tat de l’art en ce qui concerne les...e d hi I n i Ct I S i llk kiillt t Ih t hi r O liii Site ,e 1 IHOlink i thut l c CIi IItn I III t)lt it xIIC I I Te IJ11 t Ixui Ice ll i I I x Ittt

  4. Conference Paper NFO-7:7th International Conference on Near-Field Optics and Related Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Prof.Dr. Lukas Novotny

    2004-10-18

    The seventh conference in the NFO conference series, held here in Rochester, provided to be the principal forum for advances in sub-wavelength optics, near-field optical microscopy, local field enhancement, instrumental developments and the ever-increasing range of applications. This conference brought together the diverse scientific communities working on the theory and application of near-field optics (NFO) and related techniques.

  5. Summary of Recent Results from NASA's Space Solar Power (SSP) Programs and the Current Capabilities of Microwave WPT Technology

    Science.gov (United States)

    McSpadden, James; Mankins, John C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    The concept of placing enormous solar power satellite (SPS) systems in space represents one of a handful of new technological options that might provide large-scale, environmentally clean base load power into terrestrial markets. In the US, the SPS concept was examined extensively during the late 1970s by the U.S. Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). More recently, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the "fresh look" study, and during 1998 in an SSP "concept definition study". As a result of these efforts, in 1999-2000, NASA undertook the SSP Exploratory Research and Technology (SERT) program which pursued preliminary strategic technology research and development to enable large, multi-megawatt SSP systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). During 2001-2002, NASA has been pursuing an SSP Concept and Technology Maturation (SCTM) program follow-on to the SERT, with special emphasis on identifying new, high-leverage technologies that might advanced the feasibility of future SSP systems. In addition, in 2001, the U.S. National Research Council (NRC) released a major report providing the results of a peer review of NASA's SSP strategic research and technology (R&T) road maps. One of the key technologies needed to enable the future feasibility of SSP/SPS is that of wireless power transmission. Advances in phased array antennas and rectennas have provided the building blocks for a realizable WPT system. These key components include the dc-RF converters in the transmitter, the retrodirective beam control system, and the receiving rectenna. Each subject is briefly covered, and results from the SERT program that studied a 5.8 GHz SPS system are presented. This paper presents a summary results from NASA's SSP efforts, along with a summary of the status of microwave WPT technology development.

  6. Design and Performance Evaluation of Optical Ethernet Switching Architecture with Liquid Crystal on Silicon-Based Beam-Steering Technology

    Science.gov (United States)

    Cheng, Yuh-Jiuh; Chou, H.-H.; Shiau, Yhi; Cheng, Shu-Ying

    2016-07-01

    A non-blocking optical Ethernet switching architecture with liquid crystal on a silicon-based beam-steering switch and optical output buffer strategies are proposed. For preserving service packet sequencing and fairness of routing sequence, priority and round-robin algorithms are adopted at the optical output buffer in this research. Four methods were used to implement tunable fiber delay modules for the optical output buffers to handle Ethernet packets with variable bit-rates. The results reported are based on the simulations performed to evaluate the proposed switching architecture with traffic analysis under a traffic model captured from a real-core network.

  7. 光纤网络在通讯工程技术中的应用%Application of Optical Fiber Network in Telecommunications Engineering Technology

    Institute of Scientific and Technical Information of China (English)

    王林

    2015-01-01

    光纤网络的诞生和发展是电信史上的一次重要革命,因其具有抗干扰、速率快、容量大的特点,利用光纤的信息传递优势可以最大限度的提高资源利用效率,因此光纤通信改变了传统的通信方式。随着光纤网络在通讯工程技术中的广泛应用,与之配合的网络基础技术也随之发展起来,其已经渗入到有线通信的多个领域,成为现代通信的主力军,对社会生活的影响日益深刻。展望将来的通信行业,光纤网络技术具有不可限量的潜力。因此,研究光纤网络在通讯工程技术中的应用具有十分重要的现实意义。%The birth and development of optical network is an important revolution in the history of telecommunications, because of its advantages of anti-jamming, speed and large capacity optical ifber characteristics, using the advantage of information transmission can improve efifciency and maximum utilization of resources, so the optical ifber communication has changed the traditional way of communication. With the wide application of optical ifber network in telecommunications engineering technology in the basic technology and network matching has been developed, which has penetrated into many ifelds of wire communication, become the main force of modern communication, more profound inlfuence on social life. The prospect of the communications industry in the future, optical ifber network technology has limitless potential. Therefore, has the extremely important practical signiifcance in the application research of optical ifber network communication technology in engineering.

  8. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov;

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers....

  9. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov;

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on air-optical wavelength converter types based on semiconductor optical amplifiers....

  10. TECHNOLOGICAL ASPECTS OF MANUFACTURING SILICA OPTICAL FIBERS WITH LARGE CENTRAL DEFECT OF GRADED REFRACTIVE INDEX PROFILE FOR FIBER OPTIC SENSORS BASED ON FEW-MODE EFFECTS

    National Research Council Canada - National Science Library

    V V Demidov; E V Ter-Nersesyantz; A V Bourdine; V A Burdin; A Y Minaeva; A V Khokhlov; A V Komarov; S V Ustinov; K V Dukelskiy

    2017-01-01

    The paper deals with results of the study on the main technological aspects relating to a full production cycle of silica multimode graded-index fibers with the refractive index profile having central...

  11. Low Loss Electro-Optic Polymer Based Fast Adaptive Phase Shifters Realized in Silicon Nitride and Oxynitride Waveguide Technology

    Directory of Open Access Journals (Sweden)

    Lars Baudzus

    2016-08-01

    Full Text Available We present a comprehensive study on how to design and fabricate low loss electro-optic phase shifters based on an electro-optic polymer and the silicon nitride and silicon oxynitride waveguide material systems. The loss mechanisms of phase shifters with an electro-optic (EO polymer cladding are analyzed in detail and design solutions to achieve lowest losses are presented. In order to verify the low loss design a proof of concept prototype phase shifter was fabricated, which exhibits an attenuation of 0.8 dB/cm at 1550 nm and an electro-optic efficiency factor of 27%. Furthermore, the potential of this class of phase shifters is evaluated in numerical simulations, from which the optimal design parameters and achievable figures of merit were derived. The presented phase shifter design has its potential for application in fast adaptive multi stage devices for optical signal processing.

  12. 复用技术在空间光通信中的应用研究%Application of Division Multiplexing Technology in Space Optical Communication

    Institute of Scientific and Technical Information of China (English)

    王翔; 赵尚弘; 李勇军; 朱子行; 赵顾颢

    2011-01-01

    The division multiplexing technology, which can improve the capacity of the system by using the present instruments and mature technologies, has become an important technical method for high-speed space optical communication. From the viewpoint of increasing the speed of transmitting information, the recent progresses and basic principles of five kinds of division multiplexing technology are introduced, including polarization division multiplexing, wavelength division multiplexing, time division multiplexing, optical MIMO and orthogonal frequency division multiplexing. The advantages and disadvantages of each division multiplexing technology are analyzed. The analytical results indicate that the orthogonal frequency division multiplexing and optical MIMO is one of the effective methods for realizing the transmission of massive information.%复用技术能够利用现有的硬件设备和成熟技术,成倍地提高系统容量,已经成为高速空间光通信的重要技术手段.文章从提高信息传输速率的角度出发,研究了偏振复用、波分复用、时分复用、光MIMO以及正交频分复用五种复用技术在空间光通信应用的基本原理,并介绍了最新研究动态.对比分析了空间光通信中五种复用技术的优缺点,结果表明正交频分复用和光MIMO技术是实现空间光通信海量信息传输的有效途径之一,具有很大的发展潜力.

  13. 超高速光通信的新技术及应用%New Technologies and Applications in Ultra-high Speed Optical Communication

    Institute of Scientific and Technical Information of China (English)

    吕建新

    2011-01-01

    文章介绍了40 Gbit/s、100 Gbit/s及以上速率超高速光通信中将会用到的新技术,包括相位调制、正交幅度调制、多电平调制等新型调制技术;偏振复用和正交频分复用这两种新型复用技术;相干接收技术原理、优点和应用必要性;光子集成技术的应用和技术发展。最后介绍了这些新技术在400 Gbit/和1 Tbit/s等超高速光通信上的应用。%This paper describes new technologies that will be used in 40Gb/s,100Gb/s and higher rates ultra-high speed optical communication,including phase modulation,QAM,multi-level modulation and other new modulation techniques such as polarization multiplexing and OFDM;also coherent receiver technology principles,the advantages and application necessity;photonic integration technology and evolution.The end of this paper introduces the applications about these new technologies in ultra-high speed optical communication such as 400G/1T.This article also describes the research progress of Fiberhome in ultra-high speed optical communication,including research results of 100Gb /s Ethernet and 1 Tb/s CO-OFDM 1040 km errorfree ordinary single-mode fiber transmission.

  14. Laser-based technology of scanning near-field optical probes fabrication: study of kinetics and progress of measuring

    Science.gov (United States)

    Veiko, Vadim P.; Kalachev, Alexey I.; Kaporsky, Lev N.; Volkov, Sergey A.; Voznesensky, Nikolay B.

    2003-02-01

    Basic principles of laser assisted process of fiber etching for scanning near-field optical (SNO) probes formation and control technique are presented. The thermal and temporal regimes are considered in order to provide stable reproducibility and high quality of a tapered end of the optical fiber. Problems of adequate definition of the scanning imaging properties of a SNO probe are discussed. Thus an optical method of far-field registration and processing together with a new autoelectronic emission method are considered for solution of the task of a subwavelength SNO probe aperture measurement and estimation of its apparatus function.

  15. Optical Disk Technology and the Library. Part 1: The Technology and Its Applications. Part 2: The National Library Videodisc Demonstration Project. Canadian Network Papers Number 9 = Technologie du Videodisque et la Bibliotheque. Premiere partie: La Technologie et ses Applications. Deuxieme partie: Projet de Demonstration du Videodisque a la Bibliotheque Nationale. Documents sur les Reseaux Canadiens Numero 9.

    Science.gov (United States)

    Duchesne, Roddy; Sonnemann, Sabine S.

    This report is intended to assist Canadian libraries in assessing potential library applications of optical disk technology. Part 1 provides a general outline of the technology and describes a number of library applications and projects. Descriptions are purposely general and illustrative in nature since the technology and its applications are…

  16. Optical Disk Technology and the Library. Part 1: The Technology and Its Applications. Part 2: The National Library Videodisc Demonstration Project. Canadian Network Papers Number 9 = Technologie du Videodisque et la Bibliotheque. Premiere partie: La Technologie et ses Applications. Deuxieme partie: Projet de Demonstration du Videodisque a la Bibliotheque Nationale. Documents sur les Reseaux Canadiens Numero 9.

    Science.gov (United States)

    Duchesne, Roddy; Sonnemann, Sabine S.

    This report is intended to assist Canadian libraries in assessing potential library applications of optical disk technology. Part 1 provides a general outline of the technology and describes a number of library applications and projects. Descriptions are purposely general and illustrative in nature since the technology and its applications are…

  17. Fiscal 1998 research report. R and D on the nanometer-controlled optical disk system / Magnetic domain- response 3-D optical memory technology (Development of rational use technology of energy); 1998 nendo nanometa seigyo hikari disk system no kenkyu kaihatsu seika hokokusho (jiku oto sanjigen hikari memory gijutsu). Energy shiyo gorika gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This report describes the fiscal 1998 result on the magnetic domain-response 3-D optical memory of the nanometer-controlled optical disk system. The magnetic domain response technology is a next-generation optical disk technology which copies fine bits recorded on a recording layer on a read-out layer while magnifying them, and detects the bit smaller than a read out optical spot as large signal level. Magnetic domain-response read out of a fine magnetic domain of 0.12{mu}m in mark length and 0.60{mu}m in track width recorded by optical pulse magnetic field modulation was attempted under the conditions of conventional wavelength (around 680nm) and NA (0.55), and succeeded in expanding unobservable signals up to saturated amplitudes. This is equivalent to a 2-D recording density of 10Gbit/in{sup 2}. Crosstalk-free read out was also verified. As for R and D on the magnetic circular polarization enhanced multiple read out system, the 2-wavelength read out system was fabricated by using 515nm Ar laser light and 780nm semiconductor laser light. It was verified in 2- wavelength read out test that the multi-wavelength read out system is reasonable theoretically. (NEDO)

  18. Clinically applicable optical imaging technology for body size and shape analysis: comparison of systems differing in design.

    Science.gov (United States)

    Bourgeois, B; Ng, B K; Latimer, D; Stannard, C R; Romeo, L; Li, X; Shepherd, J A; Heymsfield, S B

    2017-09-06

    Recent advances have extended anthropometry beyond flexible tape measurements to automated three-dimensional optical devices that rapidly acquire hundreds of body surface dimensions. Three new devices were recently introduced that share in common inexpensive optical cameras. The design, and thus potential clinical applicability, of these systems differ substantially leading us to critically evaluate their accuracy and precision. 113 adult subjects completed evaluations by the three optical devices (KX-16 (16 stationary cameras), Proscanner (1 vertically oscillating camera), and Styku scanner (1 stationary camera)), air displacement plethysmography (ADP), dual-energy X-ray absorptiometry (DXA) and a flexible tape measure. Optical measurements were compared to reference method estimates that included results acquired by flexible tape, DXA and ADP. Optical devices provided respective circumference and regional volume estimates that overall were well-correlated with those obtained from flexible tape measurements (for example, hip circumference: R(2), 0.91, 0.90, 0.96 for the KX-16, Proscanner, and Styku scanner, respectively) and DXA (for example, trunk volume: R(2), 0.97, 0.97, and 0.98). Total body volumes measured by the optical devices were highly correlated with those from the ADP system (all R(2)s, 0.99). Coefficient of variations obtained from duplicate measurements (n, 55) were larger in optical than in reference measurements and significant (Pmethod estimates. Overall, the evaluated optical imaging systems differing in design provided body surface measurements that compared favorably with corresponding reference methods. However, our evaluations uncovered system measurement limitations, such as discrepancies in landmarking, that with correction have the potential to improve future developed devices.European Journal of Clinical Nutrition advance online publication, 6 September 2017; doi:10.1038/ejcn.2017.142.

  19. Results from the electro-optic sensors domain of the materials and components for missiles innovation and technology partnership (phase 1)

    Science.gov (United States)

    Bray, Mark E.; Shears, Robert A.

    2013-10-01

    The Materials and Components for Missiles Innovation and Technology Partnership (ITP) is a research programme supporting research for guided weapons at Technology Readiness Levels 1 to 4. The Anglo-French initiative is supported by the DGA and the MoD, with matched funding from industry. A major objective is to foster projects which partner UK and French universities, SMEs and larger companies. The first projects started in January 2008 and the first phase completed in spring 2013. Providing funding is secured, the next phase of the programme is due to start later in 2013. Selex ES leads Domain 3 of the MCM-ITP which develops Electro-Optic sensor technology. In collaboration with DGA, MoD and MBDA, the prime contractor, we identified 4 key objectives for the first ITP phase and focussed resources on achieving these. The objectives were to enable better imagery, address operationally stressing scenarios, provide low overall through life cost and improve active and semi-active sensors Nine normal projects and one ITP innovation fund project have been supported within the domain. The technology providers have included 3 SMEs and 8 research centres from both the United Kingdom and France. Highlights of the projects are included. An outline of the priorities for the domain for the new phase ise provided and we encourage organisations with suitable technology to contact us to get involved.

  20. The Athena Optics

    DEFF Research Database (Denmark)

    Bavdaz, Marcos; Wille, Eric; Shortt, Brian;

    2015-01-01

    studies and in parallel a comprehensive series of technology preparation activities. [1-3].The core enabling technology for the high performance mirror is the Silicon Pore Optics (SPO), a modular X-ray optics technology, which utilises processes and equipment developed for the semiconductor industry [4...

  1. [The Stability and Measuring Technology of the Maximum Optical Path Difference of Photo-Elastic Modulator Interferograms].

    Science.gov (United States)

    Zhang, Min-juan; Wang, Zhi-bin; Li, Xiao; Li, Jin-hua; Wang, Yan-chao

    2015-05-01

    In order to improve the accuracy and stability of the rebuilt spectrums, it is necessary that stability analysis and nicety measuring of the maximum optical path difference of interferograms in the photo-elastic modulator Fourier transform spectrometers(PEM-FTS). The maximum optical difference of interferograms is uncertain parameter, and it is relate to the resonant state, characteristic of frequency-thermal drift and driving voltage of PEM. Therefore, based on the principle of photo-elastic modulator Fourier transform interferometer, the model of the freguency-thermal drift is built, and the variety of the maximum optical path difference is analyzed; A measuring method of the maximum optical path difference is put forward, which is zero-crossing counting of laser's interference signal when the driving signal of PEM is as the standard. In the method the dual channel high-speed comparator and FPGA are used to transform sine wave to square wave, to realize zero-crossing trigger counting and errors compensation. On the condition that the 670. 8 nm laser is as the power source to produce the reference interferograms by the PEM interferometer, the 77. 471 µm maximum optical path difference could be measured by the zero-crossing counting the measuring errors is less than 0. 167 nm, the rebuilt spectral peak wavelength errors of the infrared blackbody is less than 2 nm. the result is content with PEM-FTS.

  2. Converging Technologies for Passive Optical Network and Mobile Backhaul%无源光网络与无线回传的融合技术

    Institute of Scientific and Technical Information of China (English)

    何浩; 董毅; 胡卫生

    2012-01-01

    文章认为新一代无线回传承载网将需要提供更高的传输带宽、更多的用户数量以及更好的服务质量才能满足3G技术的需求,无源光网络具有带宽大、部署灵活、多业务承载能力强等特点,适合建设新一代无线回传承载网.文章给出了一种基于无源光网络(PON)的无线回传网络结构.在该网络中,光线路终端(OLT)放置在中心局,与无线核心网络连接;光网络单元(ONU)放置在移动基站处.无源光分路器和光缆构成OLT和ONU之间的无源光纤传输网络.%To meet the demands created by 3G technology, next-generation wireless backhaul networks require higher bandwidth, more users, and better service quality? Passive optical networks (PONs) have large bandwidth; they can be flexibly deployed? and they are able to carry multiple services. In this paper, we discuss the architecture of a wireless backhaul based on PON. In such a network, the optical line terminal is placed in a central office and connects with the wireless core network. The optical network unit is placed in the mobile station. A passive optical splitter and fiber optic cable constitute a PON between the OLT and ONU.

  3. 光通信网物理层全光异或加解密技术研究%Research on all-optical XOR encryption and decryption technology for physical layer of optical communication networks

    Institute of Scientific and Technical Information of China (English)

    曹东东; 邓大鹏; 朱峰; 郭燕; 李将

    2013-01-01

    针对目前光通信保密系统中基于电信号处理的流密码加解密技术的局限性,提出基于全光信号处理的加解密技术;对几种典型的全光异或加密方案进行了研究,介绍了各自的工作原理、特点及研究进展;利用 OptiSystem 软件搭建了基于SOA-MZI(半导体光放大器-马赫-曾德干涉仪)异或门的全光加解密系统仿真模型,并基于 HNLF(高非线性光纤)的自相位调制效应设计了一个优化结构对系统进行优化。研究表明:全光加解密技术具有优良的特性,能使整个光通信保密系统运算速率更高,传输更安全。%In view of the limitations of the electric signal processing-based stream cipher encryption/decryption technology for optical communication security systems,this paper presents an all-optical signal processing-based encryption/decryption tech-nology,studies several typical all-optical XOR encryption schemes and introduces their operating principles,characteristics and research advances.Then,it builds a simulation model for the SOA-MZI XOR gate-based all-optical encryption/decryption sys-tem using the OptiSystem software and optimizes the system by a optimization structure designed on the basis of the self-phase modulation effects of High Nonlinear Fiber (HNLF).Studies show that the all-optical encryption/decryption technology has excellent performances and enables the entire security system to have higher operation rates and more secured transmissions.

  4. Situation of optical fiber communication technology and development trends%试论光纤通信技术的现状及发展趋势

    Institute of Scientific and Technical Information of China (English)

    闫玉霞

    2014-01-01

    随着现代科学技术的发展,吸波材料被广泛的应用于人体安全防护、微波暗室、通讯以及导航系统的电磁干扰、安全信息保密、电磁兼容、核反应堆防辐射等多方面。文章对光纤通信技术的现状及发展趋势进行了详细分析。%along with the development of modern science and technology, absorbing material is widely used in human security, microwave anechoic chamber, communication and navigation systems, electromagnetic interference,the security of information, electromagnetic compatibility, radiation protection and other aspects of nuclear reactor. In this paper, the present situation and development trend of optical fiber communication technology is analyzed in detail.

  5. Photonic crystal optical memory

    Science.gov (United States)

    Lima, A. Wirth; Sombra, A. S. B.

    2011-06-01

    After several decades pushing the technology and the development of the world, the electronics is giving space for technologies that use light. We propose and analyze an optical memory embedded in a nonlinear photonic crystal (PhC), whose system of writing and reading data is controlled by an external command signal. This optical memory is based on optical directional couplers connected to a shared optical ring. Such a device can work over the C-Band of ITU (International Telecommunication Union).

  6. Advanced digital optical communications

    CERN Document Server

    Binh, Le Nguyen

    2015-01-01

    This book provides a fundamental understanding of digital communication applications in optical communication technologies. Emphasizing operation principles versus mathematical analysis, the Second Edition includes new coverage of superchannel optical transmission systems, metropolitan and long-haul optical systems and networks, and Nyquist pulse shaping and high spectral efficiency of optical transmission systems, as well as new homework problems and examples. Featuring theoretical foundations as well as practical case studies, the text focuses on enhancements to digital technologies that are

  7. Fibre-optic communications

    CERN Document Server

    Lecoy, Pierre

    2010-01-01

    This book describes in a comprehensive manner the components and systems of fiber optic communications and networks. The first section explains the theory of multimode and single-mode fibers, then the technological features, including manufacturing, cabling, and connecting. The second section describes the various components (passive and active optical components, integrated optics, opto-electronic transmitters and receivers, and optical amplifiers) used in fiber optic systems. Finally, the optical transmission system design is explained, and applications to optical networks and fiber optic se

  8. Cognitive technologies

    CERN Document Server

    Mello, Alan; Figueiredo, Fabrício; Figueiredo, Rafael

    2017-01-01

    This book focuses on the next generation optical networks as well as mobile communication technologies. The reader will find chapters on Cognitive Optical Network, 5G Cognitive Wireless, LTE, Data Analysis and Natural Language Processing. It also presents a comprehensive view of the enhancements and requirements foreseen for Machine Type Communication. Moreover, some data analysis techniques and Brazilian Portuguese natural language processing technologies are also described here. .

  9. Nuclear Technology. Course 27: Metrology. Module 27-4, Angle Measurement Instruments, Optical Projections and Surface Texture Gages.

    Science.gov (United States)

    Selleck, Ben; Espy, John

    This fourth in a series of eight modules for a course titled Metrology describes the universal bevel protractor and the sine bar, the engineering microscope and optical projector, and several types of surface texture gages. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3)…

  10. Development and Station of Fiber Optical Communication Technology Characteristics%光纤通信技术发展特点及现状

    Institute of Scientific and Technical Information of China (English)

    王锐

    2011-01-01

    Optical fiber communication is its transmission frequency bandwldtla, communlcauon capacity, long distance relay, low loss characteristics, and with anti-electromagnetic interference capability, security and good benefits, the trunk lines in the communications, power control systems and military communications field the use of more and more widely. Optical fiber communication technology is moving in large capacity, ultra-long haul transmission and switching, the direction of all-optical networks.%光纤通信是以其传输频带宽、通信容量大、中继距离长、损耗低特点,并具有抗电磁干扰能力强,保密性好的优势,在通信的主干线路中、电力通信控制系统中以及军事领域的用途越来越广泛。光纤通信技术正朝着超大容量、超长距离传输和交换、全光网络方向发展。

  11. Near-infrared emitting fluorescent nanocrystals-labeled natural killer cells as a platform technology for the optical imaging of immunotherapeutic cells-based cancer therapy

    Science.gov (United States)

    Taik Lim, Yong; Cho, Mi Young; Noh, Young-Woock; Chung, Jin Woong; Chung, Bong Hyun

    2009-11-01

    This study describes the development of near-infrared optical imaging technology for the monitoring of immunotherapeutic cell-based cancer therapy using natural killer (NK) cells labeled with fluorescent nanocrystals. Although NK cell-based immunotherapeutic strategies have drawn interest as potent preclinical or clinical methods of cancer therapy, there are few reports documenting the molecular imaging of NK cell-based cancer therapy, primarily due to the difficulty of labeling of NK cells with imaging probes. Human natural killer cells (NK92MI) were labeled with anti-human CD56 antibody-coated quantum dots (QD705) for fluorescence imaging. FACS analysis showed that the NK92MI cells labeled with anti-human CD56 antibody-coated QD705 have no effect on the cell viability. The effect of anti-human CD56 antibody-coated QD705 labeling on the NK92MI cell function was investigated by measuring interferon gamma (IFN- γ) production and cytolytic activity. Finally, the NK92MI cells labeled with anti-human CD56 antibody-coated QD705 showed a therapeutic effect similar to that of unlabeled NK92MI cells. Images of intratumorally injected NK92MI cells labeled with anti-human CD56 antibody-coated could be acquired using near-infrared optical imaging both in vivo and in vitro. This result demonstrates that the immunotherapeutic cells labeled with fluorescent nanocrystals can be a versatile platform for the effective tracking of injected therapeutic cells using optical imaging technology, which is very important in cell-based cancer therapies.

  12. Optical sensing technologies for the generation of reality-based 3D models of Cultural Heritage artifacts

    OpenAIRE

    2012-01-01

    The central theme of the thesis is the use of triangulation laser scanning and other optical three-dimensional surveying systems for the realization of 3D models of objects of historical and artistic interest - sculptures, archaeological finds, decorative elements in architecture. The subject is faced keeping in mind the purposes and needs the models should or could meet, and which are the challenging steps to become a more common tool. To name one, a fundamental aspect is bridging gaps betwe...

  13. Deep lithography with protons Modelling and predicting the performances of a novel fabrication technology for micro-optical components

    CERN Document Server

    Volckaerts, B; Veretennicoff, I; Thienpont, H

    2002-01-01

    We developed a simulation package that predicts 3D-dose distributions in proton irradiated poly(methylmetacrylate) samples considering primary energy transfer and scattering phenomena. In this paper, we apply this code to predict the surface flatness and maximum thickness of micro-optical and mechanical structures fabricated with deep lithography with protons (DLP). We compare these simulation results with experimental data and highlight the fundamental differences between DLP and deep X-ray lithography.

  14. Successful field application in continuous DTS monitoring under harsh environment of SAGD wells using improved optical fiber technology

    Energy Technology Data Exchange (ETDEWEB)

    Kaura, J.; Sierra, J. [Halliburton Energy Services, Calgary, AB (Canada). WellDynamics

    2008-10-15

    Most protective materials of conventional optical fibers used in well monitoring applications are not designed for the extreme temperatures associated with steam assisted gravity drainage (SAGD) operations. Optical fiber performance is highly affected by hydrogen ingression; thermal resistance of materials; and mechanical resistance of the fiber. Optical fibers exposed to hydrogen experience increased absorption or light loss due to various chemical species in the glass fiber. This paper described the performance of a newly developed distributed temperature sensing (DTS) high temperature (HT) system for use in a hydrogen-rich SAGD environment. The OptoLog uses a new single-mode fiber that is hydrogen resilient under severe temperature. Hydrogen molecular reactions with impurities from the manufacturing process are minimized by a pure core glass fiber. The new temperature calculation algorithm used by the system was also described in this paper along with a comparative evaluation of the system performance with that of a conventional multi-mode DTS system. It was concluded that this newly developed system is a feasible solution for lowering Opex and minimizing interventions. It also reduces personnel exposure to hazardous well conditions because of the enhanced longevity of the OptoLog DTS-HT fiber. The data provided by the new system enables users to quickly identify anomalies; implement corrective actions immediately; and allow for better steam utilization. 24 refs., 6 figs.

  15. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  16. Optical Measurement Technologies for High Temperature, Radiation Exposure, and Corrosive Environments—Significant Activities and Findings: In-vessel Optical Measurements for Advanced SMRs

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong (Amy); Suter, Jonathan D.

    2012-09-01

    Development of advanced Small Modular Reactors (aSMRs) is key to providing the United States with a sustainable, economically viable, and carbon-neutral energy source. The aSMR designs have attractive economic factors that should compensate for the economies of scale that have driven development of large commercial nuclear power plants to date. For example, aSMRs can be manufactured at reduced capital costs in a factory and potentially shorter lead times and then be shipped to a site to provide power away from large grid systems. The integral, self-contained nature of aSMR designs is fundamentally different than conventional reactor designs. Future aSMR deployment will require new instrumentation and control (I&C) architectures to accommodate the integral design and withstand the extreme in-vessel environmental conditions. Operators will depend on sophisticated sensing and machine vision technologies that provide efficient human-machine interface for in-vessel telepresence, telerobotic control, and remote process operations. The future viability of aSMRs is dependent on understanding and overcoming the significant technical challenges involving in-vessel reactor sensing and monitoring under extreme temperatures, pressures, corrosive environments, and radiation fluxes

  17. Lasers technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The Lasers Technology Program of IPEN is committed to the development of new lasers based on the research of optical materials and new technologies, as well to laser applications in several areas: Nuclear, Medicine, Dentistry, Industry, Environment and Advanced Research. The Program is basically divided into two main areas: Material and Laser Development and Laser Applications.

  18. 支撑光网络与无线网络融合的传输技术%Transmission Technology for Integration of Optical and Wireless Network

    Institute of Scientific and Technical Information of China (English)

    刘琪; 胡晶晶

    2013-01-01

    This paper studies the transmission characteristics of communication system based on Radio over Fiber(ROF) technology,and then studies the application of ROF technology in access network for realization of optical and wireless convergence,which provides one of the most promising solutions for 'last mile' access network.By analyzing integrated optical and wireless network architecture,the paper will discuss the key technologies involved in the network integration and focus on the investigation of transmission characteristics of the ROF technology in communication systems.Results show that the error vector magnitude (EVM) of the demodulated signal is 8.87% after 10.36 km optical fiber transmission and still remains almost as good performance as the original signal,which indicates that both the single sideband filtering transmission scheme and the carrier suppression transmission scheme used in the paper can effectively combat the influence of dispersion induced power fading and achieve long-distance transmission of the signal.With optimized transmission scheme,the optical and wireless access network based on ROF technology can realize long distance transmission of signal without influercing the signal quality.%目的 研究基于射频光纤传输(Radio Over Fiber,ROF)技术的通信系统传输特性及ROF技术在光与无线网络融合的接入网中的应用,为“最后一公里”的接入网提供理想的解决方案.方法 分析光与无线网络融合的网络构架,对网络融合中的关键技术进行对比分析,对基于ROF技术的通信系统的传输特性进行实验研究,通过星座图观察解调的QPSK信号.结果 采用单边带滤波的传输方案以及载波抑制的传输方案,经过10.36km光纤传输之后,所得到解调信号的矢量信号误差向量幅度(Error Vector Magnitude,EVM)值为8.87%,基本保持了原始信号的性能,可有效对抗色散引入的功率衰减,实现长距离的信号传输.结论 通过选择

  19. Direct optical to microwave conversion

    Science.gov (United States)

    Taylor, Henry F.

    1990-09-01

    Support of high frequency fiber optic links through development of innovative higher efficiency techniques to convert optical energy directly to RF Energy. Control of Phases Arrays by optical means in an area of expanding technology development. Fiber optics and other forms of optical waveguide can provide greater accuracy and true time delay in a phase delay network. Methods of improvement in transfer of optical energy to RF Energy are determined. Development of Direct Optical-to-RF-Direct Amplifiers will result in higher efficiency, low noise, optical receivers for fiber optic links with improved performance. This results in longer fiber optic links without repeaters and improved BER or shorter links.

  20. APE: the Active Phasing Experiment to test new control system and phasing technology for a European Extremely Large Optical Telescope

    Science.gov (United States)

    Gonte, F.; Yaitskova, N.; Derie, F.; Constanza, A.; Brast, R.; Buzzoni, B.; Delabre, B.; Dierickx, P.; Dupuy, C.; Esteves, R.; Frank, C.; Guisard, S.; Karban, R.; Koenig, E.; Kolb, J.; Nylund, M.; Noethe, L.; Surdej, I.; Courteville, A.; Wilhelm, R.; Montoya, L.; Reyes, M.; Esposito, S.; Pinna, E.; Dohlen, K.; Ferrari, M.; Langlois, M.

    2005-08-01

    The future European Extremely Large Telescope will be composed of one or two giant segmented mirrors (up to 100 m of diameter) and of several large monolithic mirrors (up to 8 m in diameter). To limit the aberrations due to misalignments and defective surface quality it is necessary to have a proper active optics system. This active optics system must include a phasing system to limit the degradation of the PSF due to misphasing of the segmented mirrors. We will present the lastest design and development of the Active Phasing Experiment that will be tested in laboratory and on-sky connected to a VLT at Paranal in Chile. It includes an active segmented mirror, a static piston plate to simulate a secondary segmented mirror and of four phasing wavefront sensors to measure the piston, tip and tilt of the segments and the aberrations of the VLT. The four phasing sensors are the Diffraction Image Phase Sensing Instrument developed by Instituto de Astrofisica de Canarias, the Pyramid Phasing Sensor developed by Arcetri Astrophysical Observatory, the Shack-Hartmann Phasing Sensor developed by the European Southern Observatory and the Zernike Unit for Segment phasing developed by Laboratoire d'Astrophysique de Marseille. A reference measurement of the segmented mirror is made by an internal metrology developed by Fogale Nanotech. The control system of Active Phasing Experiment will perform the phasing of the segments, the guiding of the VLT and the active optics of the VLT. These activities are included in the Framework Programme 6 of the European Union.

  1. Improved fiber-optic link for the phase reference distribution system for the TESLA technology based projects

    Science.gov (United States)

    Czuba, Krzysztof; Felber, Matthias

    2005-09-01

    The UV Free-Electron Laser (UVFEL) [1], The X-Ray Free-Electron Laser (XFEL) [2] and The International Linear Accelerator (ILC) [9] projects will require phase synchronization of various RF frequency subsystems on kilometer distances with accuracy better than 1ps. To fulfill these requirements, a phase reference distribution system concept was proposed and a prototype was developed for tests in the TESLA Test Facility 2 (TTF2). An important part of the phase reference system is the fiber-optic phase stable, long distance link described in this paper. An interferometrical scheme with feedback on phase, suppressing long term phase drifts induced by temperature changes was developed and tested in laboratory and under accelerator conditions. A motorized optical delay line was used in the system to compensate for phase errors. Described are error considerations and most important project issues like the hardware development and the real time phase controller software. The presented measurement results satisfy the design requirements. Experience gained during the experiments yielded proposals for system improvements.

  2. Technology of Digital Disruptive Pattern Based on Optical Camouflage%基于光学伪装的数码迷彩技术

    Institute of Scientific and Technical Information of China (English)

    喻钧; 双晓; 胡志毅; 苏海涛

    2011-01-01

    基于光学伪装的数码迷彩是一种通过提取自然背景的纹理、颜色和层次等信息,并以数码像素点阵图案的形式表现出来的新型迷彩.文章对数码迷彩的研究发展现状、数码迷彩设计技术、伪装效果评价方法等做了全面系统的介绍.%Digital Disruptive Pattern based on optical camouflage is a new kind camouflage which behaves digital dotmatrix by extracting the information of the texture, color, and hiberarchy from natural backgrounds. The paper systematically introduces the actuality of research and development, design technology, and evaluation method of camouflage effect.

  3. All-optical repeater.

    Science.gov (United States)

    Silberberg, Y

    1986-06-01

    An all-optical device containing saturable gain, saturable loss, and unsaturable loss is shown to transform weak, distorted optical pulses into uniform standard-shape pulses. The proposed device performs thresholding, amplification, and pulse shaping as required from an optical repeater. It is shown that such a device could be realized by existing semiconductor technology.

  4. 基于光纤无线融合的射频无源光网络%Converged Fiber-Wireless Radio Passive Optical Network Technologies

    Institute of Scientific and Technical Information of China (English)

    刘德明; 邓磊

    2012-01-01

    To increase the capacity of the access network and converge services, next-generation optical access network technologies are highly desirable. In this paper, we propose converged fiber-wireless radio passive optical (RPON) architecture. This incorporates the low-cost and easy-control of PON and the high flexibility, good mobility of radio over fiber. With millimeter-wave optical generator and wavelength division multiplexing, our RPON system is capable of transmitting 1 Gbit/s wireless signals over 10 km single mode fiber and 5 m air distance in both the upstream and downstream. Our proposed system can be applied at low cost.%文章认为为了实现更大的光接入网容量,并能更好地完成多业务的承载与融合,亟待发展下一代光接入网技术.文章提出了基于光纤无线融合的射频无源光网络(RPON),其不仅具有现有无源光网络系统低成本和易管控的特点,还具备光载射频系统灵活度高和移动性好的优势.该系统通过光生毫米波和波分复用的方式,实现了1 Gb/s多媒体业务的单纤上下行传输,达到了10 km光纤和5m无线的接入距离,能够满足低成本化推广应用要求.

  5. [Adaptive optics for ophthalmology].

    Science.gov (United States)

    Saleh, M

    2016-04-01

    Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy.

  6. Optics in aircraft engines

    Science.gov (United States)

    Vachon, James; Malhotra, Subhash

    The authors describe optical IR&D (independent research and development) programs designed to demonstrate and evaluate optical technologies for incorporation into next-generation military and commercial aircraft engines. Using a comprehensive demonstration program to validate this technology in an on-engine environment, problems encountered can be resolved early and risk can be minimized. In addition to specific activities related to the optics demonstration on the fighter engine, there are other optical programs underway, including a solenoid control system, a light off detection system, and an optical communication link. Research is also underway in simplifying opto-electronics and exploiting multiplexing to further reduce cost and weight.

  7. Automatic on-line detection system design research on internal defects of metal materials based on optical fiber F-P sensing technology

    Science.gov (United States)

    Xia, Liu; Shan, Ning; Chao, Ban; Caoshan, Wang

    2016-10-01

    Metal materials have been used in aerospace and other industrial fields widely because of its excellent characteristics, so its internal defects detection is very important. Ultrasound technology is used widely in the fields of nondestructive detection because of its excellent characteristic. But the conventional detection instrument for ultrasound, which has shortcomings such as low intelligent level and long development cycles, limits its development. In this paper, the theory of ultrasound detection is analyzed. A computational method of the defects distributional position is given. The non-contact type optical fiber F-P interference cavity structure is designed and the length of origin cavity is given. The real-time on-line ultrasound detecting experiment devices for internal defects of metal materials is established based on the optical fiber F-P sensing system. The virtual instrument of automation ultrasound detection internal defects is developed based on LabVIEW software and the experimental study is carried out. The results show that this system can be used in internal defect real-time on-line locating of engineering structures effectively. This system has higher measurement precision. Relative error is 6.7%. It can be met the requirement of engineering practice. The system is characterized by simple operation, easy realization. The software has a friendly interface, good expansibility, and high intelligent level.

  8. Educational area for learning of optics and technologies: union of open laboratories of ideas, methods and practices (OLIMP)

    Science.gov (United States)

    Ivashchenko, Maksim; Bodrov, Kirill; Tolstoba, Nadezhda

    2016-09-01

    The paper deals with the concept of creating the union of Open Laboratories of Ideas, Methods and Practices (OLIMP). It describes the structure designed to simplify the relationship, such as business incubators, start-up accelerators, small innovative enterprises, fabrication laboratories and student centers. We consider their advantages and disadvantages for the specific audience of students and enthusiasts who do not have funding for their own projects. The experience of interaction between the Open Laboratories of Ideas, Methods and Practices and the Student Research Laboratory for Optical Engineering shows the relative impact of structures on each other and the value of using such interaction in the learning process. The paper also addresses issues such as: the motivation of students, enthusiasm for the direction the lab participants identify and maintain the initiatives, profiling in the design, scientific, commercial, social sphere.

  9. Integrating undergraduate research into the electro-optics and laser engineering technology program at Indiana University of Pennsylvania

    Science.gov (United States)

    Zhou, Andrew F.

    2014-07-01

    Bringing research into an undergraduate curriculum is a proven and powerful practice with many educational benefits to students and the professional rewards to faculty mentors. In recent years, undergraduate research has gained national prominence as an effective problem-based learning strategy. Developing and sustaining a vibrant undergraduate research program of high quality and productivity is an outstanding example of the problem-based learning. To foster student understanding of the content learned in the classroom and nurture enduring problem-solving and critical-thinking abilities, we have created a collaborative learning environment by building research into the Electro-Optics curriculum for the first- and second-year students. The teaching methodology is described and examples of the research projects are given. Such a research-integrated curriculum effectively enhances student learning and critical thinking skills, and strengthens the research culture for the first- and second-year students.

  10. The ATHENA optics development

    Science.gov (United States)

    Bavdaz, Marcos; Wille, Eric; Shortt, Brian; Fransen, Sebastiaan; Collon, Maximilien; Barriere, Nicolas; Yanson, Alexei; Vacanti, Giuseppe; Haneveld, Jeroen; van Baren, Coen; Zuknik, Karl-Heinz; Christensen, Finn; Della Monica Ferreira, Desiree; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Spiga, Daniele; Valsecchi, Giuseppe; Vernani, Dervis

    2016-07-01

    ATHENA (Advanced Telescope for High ENergy Astrophysics) is being studied by the European Space Agency (ESA) as the second large science mission, with a launch slot in 2028. System studies and technology preparation activities are on-going. The optics of the telescope is based on the modular Silicon Pore Optics (SPO), a novel X-ray optics technology significantly benefiting from spin-in from the semiconductor industry. Several technology development activities are being implemented by ESA in collaboration with European industry and institutions. The related programmatic background, technology development approach and the associated implementation planning are presented.

  11. Brief Introduction to Chinese Optics and Applied Optics Abstracts

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The Chinese Optics and Applied Optics Abstracts,sponsored by the Documentation and Information Center of the Chinese Academy of Sciences,the Optical Information Network of the Chinese Academy of Sciences and the Changchun Institute of Optics,Fine Mechanics and Physics of the Chinese Academy of Sciences,is one of the series of science and technology indexing periodicals published by the Chinese Academy of Sciences. The Chinese Optics and Applied Optics Abstracts started a quarterly publication in 1985,

  12. Application of confocal technology based on polycapillary X-ray optics in three-dimensional diffraction scanning analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Tianxi, E-mail: stxbeijing@163.com [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Liu, Hehe; Liu, Zhiguo; Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Sun, Weiyuan; Luo, Ping; Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-03-15

    The confocal technology based on a polycapillary focusing X-ray lens in the excitation channel and a polycapillary parallel X-ray lens in the detection channel was used to perform three-dimensional energy dispersive X-ray diffraction scanning analysis of a copper film on a silicon substrate. A theoretical model of correcting the intensity of the diffracted X-rays from different parts of the sample in the confocal volume was designed. The point-to-point 3D diffraction information of the sample was obtained.

  13. 叶酸受体介导的肿瘤靶向光学成像技术%Targeted Optical Imaging Technology on the Cancer Mediated Folate Receptor

    Institute of Scientific and Technical Information of China (English)

    费学宁; 刘丽娟; 朱森; 刘玉茹

    2011-01-01

    Folate receptor (FR) are up regulated in a broad spectrum of malignant tumors, including cancers of breast, ovary, endometrium, lung, kidney, colon, brain and myeloid cells of hematopoietic origin, while limited expression on normal cells. This over-expression of folate receptors on cancer tissues can be exploited to target folate-linked imaging agents specifically to FR-expressing tumor cells to realize the specific targeted optical imaging by linking folate to fluorescent probes using FR' s character of binding folate and folate conjugate with very high affinity . In this review,the schematic of folate fluorescence probe and its mechanism on the marking of tumor cells are introduced. Research and development of FR-mediated tumor targeting optical imaging technology in recent ten years such as the use of organic fluorescent dye, dye-doped nanoparticles, quantum dots (QDs), magnetic nanoparticles and multifunctional particles are summarized. The future prospects and challenges of the current tumor targeted optical imaging research are also proposed in this review. Some FR-mediated tumor targeting optical imaging technologies are shown to be very effective for sensitive cancer imaging with greater success in the cellular level, but most of the experiments are in vitro. There are several challenges in developing fluorescent probes for in vivo cancer imaging applications, such as, to develop NIR fluorescent agents and improve surface modifying technology.%叶酸受体(FR)在肿瘤细胞中都有过度表达,而在正常组织中保守表达,利用叶酸受体与叶酸及其类似物高亲合力结合的特性,将叶酸偶联荧光探针输送到肿瘤组织,从而实现肿瘤组织的特异性靶向光学成像。本文阐述了叶酸荧光探针的结构及其用于标记肿瘤细胞的作用机制,介绍了近十年来叶酸受体介导的肿瘤靶向光学成像技术,例如有机荧光染料,染料掺杂纳米颗粒,量子点,磁

  14. 光纤传感技术快速检验舒必利片%Rapid detection of Sulpiride Tablets by optic fiber sensing technologies

    Institute of Scientific and Technical Information of China (English)

    张春玲; 李莉; 杨婷; 冯翠娟

    2012-01-01

    目的 建立光纤传感技术对舒必利片快速定性、定量分析的方法.方法 采用光纤传感装置,将光纤探头直接插入待测样品溶液中,氘灯发出的光通过光纤传输到达探头,经探头感受溶液吸收的光信号,并再次通过光纤反馈到CCD检测器,最终通过计算机可瞬间获得待测样品的光纤紫外-可见吸收光谱,使用系统软件直接读取相关参数,实现了舒必利片的快速定性、定量分析.结果 该法测定的最大吸收波长及含量均在中国药典规定的范围内,并与药典含量测定方法进行一致性比较,结果表明2种测定方法差异无统计学意义(P>0.05).结论 光纤传感技术实现了对舒必利片快速定性和定量分析.%Objective To establish a rapid and effective method to analyze contents of Sulpiride Tablets qualitatively and quantitative ly. Methods By employing optic fiber sensing device, the probe was put directly into sample solution;and light ray emit by deuteri um lamp was led to the probe through optical fiber transmission; through probe sensing and sample solution absorption,light signal was generated and was fed back to CCD detector again through optical fiber. And finally UV Vis absorption spectrum was obtained instantaneously from sample solution through computer. Related parameters were directly read by software system so as to achieve rapid qualitative and quantitative analysis of Sulpiride Tablets. Results The maximum absorbent wavelength detected from this method and contents were proved to be within the limit proposed by Chinese Pharmacopoeia. And compared with the method pre scribed in the pharmacopoeia,the results indicated that there was no significant difference between the two methods (P>0. 05 ). Conclusion Optic fiber sensing technology achieves rapidly qualitatively and quantitatively analysis of Sulpiride Tablets.

  15. Focus issue introduction: nonlinear optics 2013.

    Science.gov (United States)

    Dadap, Jerry I; Karlsson, Magnus; Panoiu, Nicolae C

    2013-12-16

    Nonlinear Optics has continued to develop over the last few years at an extremely fast pace, with significant advances being reported in nonlinear optical metamaterials, optical signal processing, quantum optics, nonlinear optics at subwavelength scale, and biophotonics. These exciting new developments have generated significant potential for a broad spectrum of technological applications in which nonlinear-optical processes play a central role.

  16. 紫外光学吸收式TOC检测技术研究%Research on ultraviolet optical absorbable TOC detection technology

    Institute of Scientific and Technical Information of China (English)

    陈丽洁; 付士民; 丁文波; 李起栋; 钟志

    2013-01-01

    Total organic carbon(TOC) is the sum of organic compound in water, and water pollution degree by organic substance can be evaluated comprehensively by TOC detection. TOC detecting technology is researched based on ultraviolet optical absorbable method. The ultraviolet at 254nm on demarcation line of absorption spectrum of organic substance and inorganic substance is used as detecting light source. Lock-in amplifier technology is used to extract weak first harmonic amplitude signal, and TOC concentration measurement is achieved. The results show that this technology has advantages of realtime online,noncontact measurement, small size,and so on,and can be widely used in TOC detection of daily drinking water and industrial water.%总有机碳(TOC)是水中所含有机物的总和,通过检测TOC可以更加全面地评价水体受有机物质污染程度.研究了紫外光学吸收式TOC检测技术,利用有机物和无机物的吸收光谱分界线的254 nm的紫外光作为检测光源,并应用锁相放大技术提取微弱的一次谐波幅度信号,实现对TOC浓度的测量.结果表明:该项技术具有实时在线、不接触测量、体积小等优点,可以广泛应用到日常饮用水、工业用水TOC含量的检测.

  17. Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke

    Science.gov (United States)

    Steinkellner, Oliver; Gruber, Clemens; Wabnitz, Heidrun; Jelzow, Alexander; Steinbrink, Jens; Fiebach, Jochen B.; MacDonald, Rainer; Obrig, Hellmuth

    2010-11-01

    We present results of a clinical study on bedside perfusion monitoring of the human brain by optical bolus tracking. We measure the kinetics of the contrast agent indocyanine green using time-domain near-IR spectroscopy (tdNIRS) in 10 patients suffering from acute unilateral ischemic stroke. In all patients, a delay of the bolus over the affected when compared to the unaffected hemisphere is found (mean: 1.5 s, range: 0.2 s to 5.2 s). A portable time-domain near-IR reflectometer is optimized and approved for clinical studies. Data analysis based on statistical moments of time-of-flight distributions of diffusely reflected photons enables high sensitivity to intracerebral changes in bolus kinetics. Since the second centralized moment, variance, is preferentially sensitive to deep absorption changes, it provides a suitable representation of the cerebral signals relevant for perfusion monitoring in stroke. We show that variance-based bolus tracking is also less susceptible to motion artifacts, which often occur in severely affected patients. We present data that clearly manifest the applicability of the tdNIRS approach to assess cerebral perfusion in acute stroke patients at the bedside. This may be of high relevance to its introduction as a monitoring tool on stroke units.

  18. Blood gases and oximetry: calibration-free new dry-chemistry and optical technology for near-patient testing.

    Science.gov (United States)

    Boalth, N; Wandrup, J; Larsson, L; Frischauf, P A; Lundsgaard, F C; Andersen, W L; Jensen, N; Singer, R; Troldborg, C P; Lunding, G

    2001-05-01

    The first calibration-free Near-Patient-Testing instrument (NPT7) for blood gases, pH and oximetry has been developed. With cartridges of 30 single-use cuvettes, the NPT7 needs no preparation prior to sample aspiration, no manual calibration, and no maintenance apart from paper and cartridge changes and regulatory quality control. Each cuvette measures pCO2, pO2, pH, total hemoglobin (ctHb), oxygen saturation (sO2), fractions of carboxyhemoglobin (FCOHb) and methemoglobin (FMetHb) on 95 microl whole blood with a 110-s measuring cycle. The measurement principles are as follows: pCO2-three-wavelength infrared spectroscopy of dissolved CO2; pO2-measurement of O2-induced changes in the decay time of phosphorescence; pH-the absorbance spectra change of an azo-dye color indicator; and oximetry is performed with a 128-wavelength spectrophotometer. We determined the within and between instrument variations with tonometered whole blood on seven prototype instruments, using between one and five control levels per analyte. The 95% analytical performance limits: +/-(/Bias/ +2 xS(T)) in the NPT7 instrument matched the analytical performance criteria for the measured quantities as defined by AACC guidelines. The application of these optical measuring methods for blood gases, pH and oximetry in single-use devices introduces a new concept into point-of-care testing (POCT), where preanalytical activities otherwise associated with instrument preparation are eliminated.

  19. Improved information processing and dissemination through the introduction of new technology

    Energy Technology Data Exchange (ETDEWEB)

    Spath, C E; Marsh, Jr, F E

    1983-10-01

    This paper discusses the following topic on information technology: technology signals a liberation; application of information technology; optical character recognition; optical memories; and planning considerations and the future.

  20. Brief Introduction to Chinese Optics and Applied Optics Abstracts

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The Chinese Optics and Applied Optics Abstracts, sponsored by the Documentation and Information Center of the Chinese Academy of Sciences, the Optical Information Network of the Chinese Academy of Sciences and the Changchun Institute of Optics,Fine Mechanics and Physics of the Chinese Academy of Sciences, is one of the series of science and technology in-

  1. Human photoreceptor cone density measured with adaptive optics technology (rtx1 device) in healthy eyes: Standardization of measurements.

    Science.gov (United States)

    Zaleska-Żmijewska, Anna; Wawrzyniak, Zbigniew M; Ulińska, Magdalena; Szaflik, Jerzy; Dąbrowska, Anna; Szaflik, Jacek P

    2017-06-01

    The anatomic structures of the anterior segment of the eye enable correct reception of stimuli by the retina, which contains receptors that receive light impulses and transmit them to the visual cortex. The aim of this study was to assess the effect of the size of the sampling window in an adaptive optics (AO) flood-illumination retinal camera (rtx1) on cone density measurements in the eyes of healthy individuals and to investigate the differences in cone density and spacing in different quadrants of the retina. Thirty-three subjects with no ophthalmic or systemic disease underwent a detailed ophthalmologic examination. Photographs of retinal fragments 3 degrees from the fovea were taken using the rtx1 AO retinal camera. We used sampling windows with 3 sizes (50 × 50, 100 × 100, and 250 × 250 μm). Cone density, spacing, and shape were determined using AOdetect software. The median (interquartile range) cone density was 19,269 (4964) cones/mm. There were statistically significant differences between measurements taken with the 50/50 and 250/250-m windows. There were no significant differences in the cone spacing results between any of the windows examined, but the measurements differed according to location between the superior and temporal quadrants. The most common cone shape was hexagonal (47.6%) for all window sizes and locations. These findings may help in the development of a normative database for variation in cone density in healthy subjects and to allow the best window to be chosen for obtain the most correct values for eccentricity measurements of 3 degrees. In our study, the optimal sampling window was 100 × 100 μm.

  2. Use of NIRS technology with a remote reflectance fibre-optic probe for predicting mineral composition (Ca, K, P, Fe, Mn, Na, Zn), protein and moisture in alfalfa.

    Science.gov (United States)

    González-Martín, I; Hernández-Hierro, J M; González-Cabrera, J M

    2007-03-01

    In the present work we study the use of near-infrared spectroscopy (NIRS) technology together with a remote reflectance fibre-optic probe for the analysis of major (Ca, K, P) and minor (Fe, Mn, Na, Zn) elements, protein and moisture in alfalfa. The method allows immediate analysis of the alfalfa without prior sample treatment or destruction through direct application of the fibre-optic probe on ground samples in the case of the mineral composition and on-ground and compacted (baled) samples in the case of protein and humidity. The regression method employed was modified partial least-squares (MPLS). The calibration results obtained using samples of alfalfa allowed the determination of Ca, K, P, Fe, Mn, Na and Zn, with a standard error of prediction (SEP(C)) and a correlation coefficient (RSQ) expressed in mg/kg of alfalfa of 1.37x10(3) and 0.878 for Ca, 1.10x10(3) and 0.899 for K, 227 and 0.909 for P, 103 and 0.948 for Fe, 5.1 and 0.843 for Mn, 86.2 and 0.979 for Na, and of 1.9 and 0.853 for Zn, respectively. The SEP(C) and RSQ values (in %) for protein and moisture in ground samples were 0.548 and 0.871 and 0.150 and 0.981, respectively; while in the compacted samples they were 0.564 and 0.826 and 0.262 and 0.935, respectively. The prediction capacity of the model and the robustness of the method were checked in the external validation in alfalfa samples of unknown composition, and the results confirmed the suitability of the method.

  3. Efficient Testing Technology of Optical Nanosurface Processing Defect%纳米光学表面加工缺陷高效检测技术

    Institute of Scientific and Technical Information of China (English)

    朱学亮; 杭凌侠; 田爱玲

    2011-01-01

    Optical nanosurface whose RMS of roughness is at the nanoscale, is widely used in microelectronics and optical instruments. Optical nanosurface processing defects mainly contain surface damage and subsurface damage. Because of the advantage of non-destructive testing, we analyze the measurement technique of surface scattering theory and white light interferometry. Then the test samples with different processing defects are prepared from different technological conditions, and are measured by three different techniques, such as white light interferometer, atomic force microscopy and surface scattering measuring instrument. Comparison of experimental results show that white light interferometry is an effective measurement means for the measurement of surface roughness and subsurface damage with high precision, high speed and no other damage during the testing.%纳米光学表面是指表面粗糙度均方根值在纳米尺度的光学表面,广泛应用于微电子领域以及光学仪器和装备领域.纳米光学表面加工缺陷主要有表面损伤和亚表层损伤两个方面;基于非接触式无损检测手段的优点,针对白光干涉技术和表面散射测量技术等进行原理分析,采用不同的工艺条件制备不同加工缺陷的测试样片,分别采用白光干涉仪、原子力显微镜和表面散射测量仪进行测量对比分析,实验结果表明白光干涉技术是进行表面粗糙度和亚表层损伤测量的有效手段,具有检测精度高、测量速度快以及对被测件无损伤等特点.

  4. Optical Fiber Devices in WDM Networks

    Institute of Scientific and Technical Information of China (English)

    Shan Jiang; Yong Luo; Xinda Yin; Wei Shi; Qianggao Hu

    2003-01-01

    Crystal optics and fiber grating technology are two of the most important optical fiber device technologies.In this paper, we report several new devices developed in Accelink for WDM networks application.

  5. Optical Fiber Devices in WDM Networks

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Crystal optics and fiber grating technology are two of the most important optical fiber device technologies. In this paper, we report several new devices developed in Accelink for WDM networks application.

  6. Optic glioma

    Science.gov (United States)

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  7. Banana technology

    Science.gov (United States)

    van Amstel, Willem D.; Schellekens, E. P. A.; Walravens, C.; Wijlaars, A. P. F.

    1999-09-01

    With 'Banana Technology' an unconventional hybrid fabrication technology is indicated for the production of very large parabolic and hyperbolic cylindrical mirror systems. The banana technology uses elastic bending of very large and thin glass substrates and fixation onto NC milled metal moulds. This technology has matured during the last twenty years for the manufacturing of large telecentric flat-bed scanners. Two construction types, called 'internal banana' and 'external banana; are presented. Optical figure quality requirements in terms of slope and curvature deviations are discussed. Measurements of these optical specifications by means of a 'finishing rod' type of scanning deflectometer or slope tester are presented. Design constraints for bending glass and the advantages of a new process will be discussed.

  8. Lasers technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Laser Technology Program of IPEN is developed by the Center for Lasers and Applications (CLA) and is committed to the development of new lasers based on the research of new optical materials and new resonator technologies. Laser applications and research occur within several areas such as Nuclear, Medicine, Dentistry, Industry, Environment and Advanced Research. Additional goals of the Program are human resource development and innovation, in association with Brazilian Universities and commercial partners.

  9. 光纤传感器在物联网关键技术中的应用%Optical fiber sensors application of the key technology in the internet of things

    Institute of Scientific and Technical Information of China (English)

    王鹏宇

    2012-01-01

    随着近年来光纤传感技术的发展,光纤传感器越来越多的应用于物联网中原始数据的采集。为了可以将光纤传感器更好的应用于物联网技术.文中在描述了物联网技术和光纤传感技术基本概念和理论的基础上,阐述了光纤传感器在石油工业、电力工业、建筑工程、军事安防和医疗领域的实际应用情况,最后提出了光纤传感器在物联网技术中的应用还需要解决造价高、产品集成化和实用化困难的问题。%Optical fiber sensors are applied to the original data collection in the Internet of things more and more, with the development of the optical fiber sensing technology.To study the better application of the optical fiber sensors, described the basic conceptions and theories of the Internet of Things and optical fiber sensing technology ;reported the optical fiber sensing technology application in the different fields such as petroleum industry, electric power system, building fields, military security and medical system; pointed out the application difficulties in the Internet of things including the high coast, hard integration and practice of the optical fiber sensors.

  10. 无线光通信及其关键技术分析%Research on Optical Wireless Communication and Its Key Technologies

    Institute of Scientific and Technical Information of China (English)

    水生军

    2014-01-01

    无线光通信是无线通信和光纤通信结合的产物,具有具有通信速率高,抗干扰性强,保密性好,无电磁干扰,无需频率许可等众多优点。该文在分析国内外研究现状的基础上,分析了无线光通信的关键技术,主要包括信道建模技术、调制编码技术、同步检测技术、器件设计、通信协议设计、网络拓扑设计。%Inherit from the sophisticated wireless communication and fiber communication, wireless optical communication (WOC) takes the advantages like high data rate, strong anti-interference ability, high security, no EMI, free license, etc. Based on the global research status, this paper discussed key technologies of the WOC like channel modeling, modulation&coding, syn-chronization&detection, transceiver design, communication protocol design, network topology, etc.

  11. Excimer Laser Technology

    CERN Document Server

    Basting, Dirk

    2005-01-01

    This comprehensive survey on Excimer Lasers investigates the current range of the technology, applications and devices of this commonly used laser source, as well as the future of new technologies, such as F2 laser technology. Additional chapters on optics, devices and laser systems complete this compact handbook. A must read for laser technology students, process application researchers, engineers or anyone interested in excimer laser technology. An effective and understandable introduction to the current and future status of excimer laser technology.

  12. GIG Technologies

    Science.gov (United States)

    2008-08-08

    caching • GIG as a sensor • Cyber SA/defense • Cross Domain Information Sharing • Multi-Level Security solutions • Enterprise Service Bus ( ESB ...Link Layer Technologies Integrated Link Layer All Optical Core For Terrestrial and Space Networks Separate Transmission Networks Mid-Term Integrated

  13. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  14. Optical communication components

    Science.gov (United States)

    Eldada, Louay

    2004-03-01

    We review and contrast key technologies developed to address the optical components market for communication applications. We first review the component requirements from a network perspective. We then look at different material systems, compare their properties, and describe the functions achieved to date in each of them. The material systems reviewed include silica fiber, silica on silicon, silicon on insulator, silicon oxynitride, sol-gels, polymers, thin-film dielectrics, lithium niobate, indium phosphide, gallium arsenide, magneto-optic materials, and birefringent crystals. We then describe the most commonly used classes of optical device technology and present their pros and cons as well as the functions achieved to date in each of them. The technologies reviewed include passive, actuation, and active technologies. The passive technologies described include fused fibers, dispersion-compensating fiber, beam steering, Bragg gratings, diffraction gratings, holographic elements, thin-film filters, photonic crystals, microrings, and birefringent elements. The actuation technologies include thermo-optics, electro-optics, acousto-optics, magneto-optics, electroabsorption, liquid crystals, total internal reflection technologies, and mechanical actuation. The active technologies include heterostructures, quantum wells, rare-earth doping, dye doping, Raman amplification, and semiconductor amplification. We also investigate the use of different material systems and device technologies to achieve building-block functions, including lasers, amplifiers, detectors, modulators, polarization controllers, couplers, filters, switches, attenuators, isolators, circulators, wavelength converters, chromatic dispersion compensators, and polarization mode dispersion compensators. Some of the technologies presented are well established in the industry and in some cases have reached the commodity stage, others have recently become ready for commercial introduction, while some others

  15. Optical material. Hikari zairyo

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T.; Sakate, N.; Ueoka, T.; Iwakuni, H. (Mazda Motor Corp., Hiroshima (Japan))

    1990-06-01

    It is obvious that various electronic technologies will be positively adopted in automobiles in the future and optical materials are supporting the above trend greatly. In this article, with regard to the optical materials now adopted in automobiles or those expected to be adopted therein in the future, their principles as well as usage, etc. are outlined. Furthermore, the prospect of the materials in the future is stated. The optical materials selected in this article are as follows: as for optical communications; optical fibers, photo emission/reception components, connecting technologies, and photo switches, etc., concerning materials for display such as meters and instrument panels for automobiles, etc.; liquid crystal, electroluminescent elements, light emitting diodes, and polarization films, with regard to dimmering materials; electrochromism and photochromism, and concerning other optical materials; solar cells, and transparent electroconductive films. 13 refs., 4 figs., 6 tabs.

  16. 光纤通信技术在消防部队的实践与发展前景%Application of Optical Fiber Communication Technology in Fire Forces and Its Development Prospect

    Institute of Scientific and Technical Information of China (English)

    黄雅蕾

    2015-01-01

    光纤通信技术广泛应用到各行各业,促进了社会经济的快速发展。文中针对光纤通信技术在消防部队的应用情况进行分析和探讨,并对其发展前景进行相关展望。%Optical fiber communication technology has been widely applied to all walks of life,which promotes rapid development of social economy.In this article,application of optical fiber communication technology in fire department is analyzed and discussed,and its development prospect is presented.

  17. Optical fiber-based devices and applications

    Institute of Scientific and Technical Information of China (English)

    Perry Ping SHUM; Jonathan C. KNIGHT; Jesper LAEGSGAARD; Dora Juan Juan HU

    2010-01-01

    @@ Optical fiber technology has undergone tremendous growth and development over the last 40 years. Optical fibers constitute an information super highway and are vital in enabling the proliferating use of the Internet. Optical fiber is also an enabling technology which can find applications in sensing, imaging, biomedical, machining, etc. There have been a few milestones in the advancement of optical fiber technology. Firstly, the invention and development of the laser some 50 years ago made optical communications possible. Secondly, the fabrication of low-loss optical fibers has been a key element to the success of optical communication.

  18. Optical Clocks in Space

    CERN Document Server

    Schiller, S; Nevsky, A; Koelemeij, J C J; Wicht, A; Gill, P; Klein, H A; Margolis, H S; Mileti, G; Sterr, U; Riehle, F; Peik, E; Tamm, C; Ertmer, W; Rasel, E; Klein, V; Salomon, C; Tino, G M; Lemonde, P; Holzwarth, R; Hänsch, T W; Tamm, Chr.

    2007-01-01

    The performance of optical clocks has strongly progressed in recent years, and accuracies and instabilities of 1 part in 10^18 are expected in the near future. The operation of optical clocks in space provides new scientific and technological opportunities. In particular, an earth-orbiting satellite containing an ensemble of optical clocks would allow a precision measurement of the gravitational redshift, navigation with improved precision, mapping of the earth's gravitational potential by relativistic geodesy, and comparisons between ground clocks.

  19. The Fiber Optic Connection.

    Science.gov (United States)

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…

  20. POLARISATION PRESERVING OPTICAL FIBRE

    DEFF Research Database (Denmark)

    2000-01-01

    . This cladding structure provides polarisation preserving properties to the optical fibre. Optical fibres using this technology may have claddings with elements placed non-periodically as well as in a two-dimensional periodic lattice - such as cladding providing Photonic Band Gap (PBG) effects....