WorldWideScience

Sample records for technology oast conducted

  1. The NASA-OAST earth-to-orbit propulsion technology program - The action plan

    Science.gov (United States)

    Escher, W. J. D.; Moses, J. L.; Liang, A. D.; Stephenson, F. W.

    1992-01-01

    The paper discusses the primary objective of the NASA-OAST earth-to-orbit (ETO) propulsion technology program, namely, to completely overhaul the nation's liquid rocket design and analysis capabilities which were found to be severely limited when used for the design and development of the Space Shuttle Main Engine (SSME). Meeting this objective is to provide a much sounder, very comprehensive technology base that will enable the cost-effective low-risk development, acquisition, and operation of high-performance, expendable, or reusable ETO propulsion systems. This in turn will enable the future development of space transportation system launch vehicles with greatly reduced life-cycle costs. Work is carried out in three major areas: combustion devices, turbomachinery, and controls and health management.

  2. OAST Space Theme Workshop. Volume 3: Working group summary. 2: Data handling, communications (E-2). A. Statement. B. Technology needs (form 1). C. Priority assessment (form 2)

    Science.gov (United States)

    1976-01-01

    Technologies required to support the stated OAST thrust to increase information return by X1000, while reducing costs by a factor of 10 are identified. The most significant driver is the need for an overall end-to-end data system management technology. Maximum use of LSI component technology and trade-offs between hardware and software are manifest in most all considerations of technology needs. By far, the greatest need for data handling technology was identified for the space Exploration and Global Services themes. Major advances are needed in NASA's ability to provide cost effective mass reduction of space data, and automated assessment of earth looking imagery, with a concomitant reduction in cost per useful bit. A combined approach embodying end-to-end system analysis, with onboard data set selection, onboard data processing, highly parallel image processing (both ground and space), low cost, high capacity memories, and low cost user data distribution systems would be necessary.

  3. OAST Space Theme Workshop. Volume 3: Working Group Summary. 5: Propulsion (P-1). A. Summary Statement. B. Technology Needs (Form 1). C. Priority Assessments (Form 2)

    Science.gov (United States)

    1976-01-01

    All themes require some form of advanced propulsion capabilities to achieve their stated objectives. Requirements cover a broad spectrum ranging from a new generation of heavy lift launch vehicles to low thrust, long lift system for on-orbit operations. The commonality extant between propulsive technologies was established and group technologies were grouped into vehicle classes by functional capability. The five classes of launch vehicles identified by the space transportation theme were augmented with a sixth class, encompassing planetary and on-orbit operations. Propulsion technologies in each class were then ranked, and assigned priority numbers. Prioritized technologies were matched to theme requirements.

  4. OAST Theme Workshop. Volume 3: Working group summary. 8: Structures, dynamics (M-2). A. Statement. B. Technology needs (form 1). C. Priority assessments (form 2)

    Science.gov (United States)

    1976-01-01

    A technology program on large space structures was defined to respond to common need perceived for five of the six themes. Greatly expanded power, facilities, and communications/sensing requirements appear to demand a new structures technology for construction in space. Requirements to construct huge structural arrays with precision surfaces in space will need creative research efforts to identify practical structural elements and construction techniques. Requirements for advanced transportation structures were defined to respond to the space transportation theme. Because of the criticality of thermal structures to achieve lower cost transportation systems, renewed emphasis on technology in this area is recommended. A second technology needing renewed emphasis is the area of recovery and landing technology structures to permit full reuse of launch vehicle propulsion elements.

  5. OAST Space Theme Workshop. Volume 3: Working group summary. 4: Software (E-4). A. Summary. B. Technology needs (form 1). C. Priority assessment (form 2)

    Science.gov (United States)

    1976-01-01

    Only a few efforts are currently underway to develop an adequate technology base for the various themes. Particular attention must be given to software commonality and evolutionary capability, to increased system integrity and autonomy; and to improved communications among the program users, the program developers, and the programs themselves. There is a need for quantum improvement in software development methods and increasing the awareness of software by all concerned. Major thrusts identified include: (1) data and systems management; (2) software technology for autonomous systems; (3) technology and methods for improving the software development process; (4) advances related to systems of software elements including their architecture, their attributes as systems, and their interfaces with users and other systems; and (5) applications of software including both the basic algorithms used in a number of applications and the software specific to a particular theme or discipline area. The impact of each theme on software is assessed.

  6. OAST Space Theme Workshop. Volume 3: Working group summary. 9: Aerothermodynamics (M-3). A: Statement. B: Technology needs (form 1). C. Priority assessment (form 2). D. Additional assessments

    Science.gov (United States)

    1976-01-01

    Twelve aerothermodynamic space technology needs were identified to reduce the design uncertainties in aerodynamic heating and forces experienced by heavy lift launch vehicles, orbit transfer vehicles, and advanced single stage to orbit vehicles for the space transportation system, and for probes, planetary surface landers, and sample return vehicles for solar system exploration vehicles. Research and technology needs identified include: (1) increasing the fluid dynamics capability by at least two orders of magnitude by developing an advanced computer processor for the solution of fluid dynamic problems with improved software; (2) predicting multi-engine base flow fields for launch vehicles; and (3) developing methods to conserve energy in aerothermodynamic ground test facilities.

  7. Conducting a Technology Audit

    Science.gov (United States)

    Flaherty, William

    2011-01-01

    Technology is a critical component in the success of any high-functioning school district, thus it is important that education leaders should examine it closely. Simply put, the purpose of a technology audit is to assess the effectiveness of the technology for administrative or instructional use. Rogers Public Schools in Rogers, Arkansas, recently…

  8. OAST Space Theme Workshop. Volume 3: Working group summary. 7: Material (M-1). A. Statement. B. Technology needs (form 1). C. Priority assessment (form 2)

    Science.gov (United States)

    1976-01-01

    The approach of matching technology areas with various themes needs was not effective for the materials and thermal control discipline because of the diversity of requirements for each. Top priorities were evolved from the advanced space transportation system and the space power platform because these are essential building blocks in fulfilling some of the other themes. Important needs identified include life long-life cryogenic cooling systems for sensors, masers, and other devices and the needs for lightweight nuclear shielding materials for nuclear electric propulsion.

  9. Guidance manual for conducting technology demonstration activities

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, Robert L.; Morris, Michael I.; Singh, Suman P.N.

    1991-12-01

    This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety.

  10. Systems autonomy technology: Executive summary and program plan

    Science.gov (United States)

    Bull, John S (Editor)

    1987-01-01

    The National Space Strategy approved by the President and Congress in 1984 sets for NASA a major goal of conducting effective and productive space applications and technology programs which contribute materially toward United States leadership and security. To contribute to this goal, OAST supports the Nation's civil and defense space programs and overall economic growth. OAST objectives are to ensure timely provision of new concepts and advanced technologies, to support both the development of NASA missions in space and the space activities of industry and other organizations, to utilize the strengths of universities in conducting the NASA space research and technology program, and to maintain the NASA centers in positions of strength in critical space technology areas. In line with these objectives, NASA has established a new program in space automation and robotics that will result in the development and transfer and automation technology to increase the capabilities, productivity, and safety of NASA space programs including the Space Station, automated space platforms, lunar bases, Mars missions, and other deep space ventures. The NASA/OAST Automation and Robotics program is divided into two parts. Ames Research Center has the lead role in developing and demonstrating System Autonomy capabilities for space systems that need to make their own decisions and do their own planning. The Jet Propulsion Laboratory has the lead role for Telerobotics (that portion of the program that has a strong human operator component in the control loop and some remote handling requirement in space). This program is intended to be a working document for NASA Headquarters, Program Offices, and implementing Project Management.

  11. Aviation and programmatic analyses; Volume 1, Task 1: Aviation data base development and application. [for NASA OAST programs

    Science.gov (United States)

    1977-01-01

    A method was developed for using the NASA aviation data base and computer programs in conjunction with the GE management analysis and projection service to perform simple and complex economic analysis for planning, forecasting, and evaluating OAST programs. Capabilities of the system are discussed along with procedures for making basic data tabulations, updates and entries. The system is applied in an agricultural aviation study in order to assess its value for actual utility in the OAST working environment.

  12. New DDC conduction system for house technology

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, H.

    1987-10-01

    For the regulation and control of heating, ventilation and air conditioning installations, so-called DDC systems (Direct Digital Control) are increasingly being used. A review is given on the construction and working of such DDC-systems. DDC-components are named, the scope of DDC-systems with autonomous intelligence, the direct, digital, free programmable regulation and control, AD and DA transformer and microprocessor. Furthermore, the demands of the system architecture, the differences between control and decentral systems as well as structure, function and efficiency of a new decentral DDC-conduction system for housetechnology are described. The system components are summarized in three production sortiments divided according to functional levels; conduction and monitoring function; regulation, control and energy-management function; regulation and control function in secondary plants. Finally, reference is made to software and putting into operation. (HWJ).

  13. Using mobile technology to conduct epidemiological investigations

    Directory of Open Access Journals (Sweden)

    Onicio Batista Leal Neto

    2015-02-01

    Full Text Available INTRODUCTION : The aim of this study was to report the experience of an epidemiological field survey for which data were collected and analyzed using tablets. METHODS : The devices used Epi Info 7 (Android version, which has been modeled a database with variables of the traditional form. RESULTS : Twenty-one households were randomly selected in the study area; 75 residents were registered and completed household interviews with socioeconomic and environmental risk variables. CONCLUSIONS : This new technology is a valuable tool for collecting and analyzing data from the field, with advantageous benefits to epidemiological surveys.

  14. NASA-OAST program in photovoltaic energy conversion

    Science.gov (United States)

    Mullin, J. P.; Flood, D. J.

    1982-01-01

    The NASA program in photovoltaic energy conversion includes research and technology development efforts on solar cells, blankets, and arrays. The overall objectives are to increase conversion efficiency, reduce mass, reduce cost, and increase operating life. The potential growth of space power requirements in the future presents a major challenge to the current state of technology in space photovoltaic systems.

  15. History of the technological development of air conduction hearing aids.

    Science.gov (United States)

    Mudry, A; Dodelé, L

    2000-06-01

    This was a study of the history of the technological development of air conduction hearing aids, and a review of international literature on the subject. The technological evolution of amplification devices, from their origin to the present day, can be divided into seven distinct periods: the period of sound collectors, the period of hearing devices constructed from carbon, the period of vacuum tubes, the transistor period, the period of integrated circuits, the microprocessor period and the period of digital hearing instruments. Throughout these different stages, hearing instruments have progressively developed reaching their present state. The current era is itself undergoing constant development and change. With the introduction of new technologies, we expect that the rate of change will increase rapidly in the future.

  16. Assessment of conducting polymer applications in power equipment technology

    Energy Technology Data Exchange (ETDEWEB)

    Schoch, K.F. Jr.; Bennett, A.I.; Burghardt, R.R.; Cookson, A.H.; Kennedy, W.N.; Oommen, T.V.; Saunders, H.E.; Smith, J.D.B.; Voshall, R.E. (Westinghouse Electric Corp., Pittsburgh, PA (USA)); Fort, E.M. (Westinghouse Electric Corp., Orlando, FL (USA)); Robbins, B. (Reynolds Metals Co., Richmond, VA (USA))

    1991-05-01

    This report describes for the first time the state-of-the-art in conducting polymer technology specifically relating to electric power apparatus for transmission, distribution and generation. Thirty-two new applications in power equipment are proposed and assessed. The areas of the proposed applications include solid dielectric cable, oil-filled cable, capacitors, transformers, rotating machines, bushings, surge supressors, vacuum interrupters, gas-insulated equipment, and miscellaneous applications. The best applications will result in improved reliability and efficiency, design innovations, and simpler manufacturing procedures by taking advantage of the particular characteristics of conducting polymers. These characteristics include good control of conductivity over a range of 10{sup {minus}8} to 10{sup 3} S/cm, compatibility with organic compounds, simple preparation and development of anisotropic conductivity by polymer orientation. The proposed applications were evaluated according to technical impact, probability of success, economic impact, and time frame for implementation. The state-of-the-art of conducting polymers is also reviewed and areas requiring further research for these applications are discussed. Because of substantial recent progress is developing more practical conducting polymer materials, now is an excellent time to pursue the additional research needed. 37 refs., 16 figs., 15 tabs.

  17. Characterization of solar cells for space applications. Volume 6: Electrical characteristics of Spectrolab BSF, BSR, textured, 10 ohm-cm, 50 micron advanced OAST solar cells as a function of intensity, temperature, and irradiation

    Science.gov (United States)

    Anspaugh, B. E.; Downing, R. G.; Miyahira, T. F.; Weiss, R. S.

    1979-01-01

    Electrical parametric data are presented on BSF, BSR, textured 10 ohm cm, 50 micron advanced OAST cells in graphical and tabular form as functions of solar illumination intensity, temperature, and 1 MeV electron fluence.

  18. Development of Novel Alternative Technologies for Decontamination of Warfare Agents: Electric Heating with Intrinsically Conductive Polymers

    Science.gov (United States)

    2007-11-02

    in converting electric energy to thermal energy for the decon applications. Other conductive materials, such as polythiophenes , polypyrroles, carbon...Development of Novel Alternative Technologies for Decontamination of Warfare Agents: Electric Heating with Intrinsically Conductive Polymers...Joule)-heating with conducting polymers. The basic concept is that electrically conducting polymers, such as polyaniline, can be used as coatings or

  19. Novel transparent conducting oxide technology for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, P.T.; Sutton, P.A.; Gardener, M.; Wakefield, G.

    2005-07-01

    This report outlines the development of both n- and p-type transparent Conducting Oxide (TCO) materials and the demonstrated feasibility of economic production of TCO films by deposition techniques. Descriptions are given of the four main tasks of the project with Task A concentrating on material design and synthesis covering the new precursor to zinc oxide thin films and selection of polymers for formulation; Task B dealing with film formation involving film deposition by spin coating, screen printing, inkjet printing, dip coating and chemical vapour deposition; Task C concerning performance evaluation; and Task D examining manufacturing process development. The prospects for commercialisation are explored and recommendation for future work are considered.

  20. Agreement for NASA/OAST - USAF/AFSC space interdependency on spacecraft environment interaction

    Science.gov (United States)

    Pike, C. P.; Stevens, N. J.

    1980-01-01

    A joint AF/NASA comprehensive program on spacecraft environment interactions consists of combined contractual and in house efforts aimed at understanding spacecraft environment ineraction phenomena and relating ground test results to space conditions. Activities include: (1) a concerted effort to identify project related environmental interactions; (2) a materials investigation to measure the basic properties of materials and develop or modify materials as needed; and (3) a ground simulation investigation to evaluate basic plasma interaction phenomena and provide inputs to the analytical modeling investigation. Systems performance is evaluated by both ground tests and analysis. There is an environmental impact investigation to determine the effect of future large spacecraft on the charged particle environment. Space flight investigations are planned to verify the results. The products of this program are test standards and design guidelines which summarize the technology, specify test criteria, and provide techniques to minimize or eliminate system interactions with the charged particle environment.

  1. The technological socio-materiality of kindergarten children’s conduct of everyday life

    DEFF Research Database (Denmark)

    Chimirri, Niklas Alexander

    The conduct of everyday life concept has been enormously fruitful for theorizing how persons come to live their lives across diverse social contexts as participants in and contributors to social practices. However, social practice research still needs to investigate in a more detailed manner...... the relevance of material artifacts for conducting one’s everyday life. Everyday artifacts such as media technologies heavily shape the concrete socio-material arrangements in specific practices, hence co-constituting the scope of imaginable action possibilities. The presentation builds on insights drawn from...... a four-month researcher participation in a kindergarten practice. It argues that the relevance of media technologies can only be investigated in relation to the various perspectives of the other practice participants. The main focus is put on the children’s perspectives, as it is their conduct...

  2. Variable conductance heat pipe technology for precise temperature control of the NASA/DDLT transmitter

    Science.gov (United States)

    Vanevenhoven, D. E.; Antoniak, D.

    1989-01-01

    The application of variable conductance heat pipe technology for achieving precise temperature control to + or - 0.1 C for a space-based laser diode transmitter is described. Heat pipe theory of operation and test data are presented along with a discussion of its applicability for NASA's Direct Detection Laser Transceiver (DDLT) program. This design for the DDLT transmitter features a reduction in space radiator size and up to 42 percent reduction in prime power requirements.

  3. Developing a Framework for Conducting Economic Evaluations of Community-Based Health Information Technology Interventions

    Science.gov (United States)

    Eisenstein, Eric L.; Anstrom, Kevin J.; Macri, Jennifer M.; Crosslin, David R.; Johnson, Frederick S.; Kawamoto, Kensaku; Lobach, David F.

    2005-01-01

    This study describes a framework for conducting economic analyses for health information technology (HIT) interventions, in the context of three interventions that are currently being implemented in a community-based health network caring for 17,779 Medicaid beneficiaries in Durham County, North Carolina. We show that if the HIT interventions were to redirect only 10% of low-severity emergency room encounters to outpatient care, it will result in $12,523 of monthly savings. PMID:16779235

  4. Conductive Carbon Nanotube Inks for Use with Desktop Inkjet Printing Technology

    Science.gov (United States)

    Roberson, Luke; Williams, Martha; Tate, LaNetra; Fortier, Craig; Smith, David; Davia, Kyle; Gibson, Tracy; Snyder, Sarah

    2013-01-01

    Inkjet printing is a common commercial process. In addition to the familiar use in printing documents from computers, it is also used in some industrial applications. For example, wire manufacturers are required by law to print the wire type, gauge, and safety information on the exterior of each foot of manufactured wire, and this is typically done with inkjet or laser printers. The goal of this work was the creation of conductive inks that can be applied to a wire or flexible substrates via inkjet printing methods. The use of inkjet printing technology to print conductive inks has been in testing for several years. While researchers have been able to get the printing system to mechanically work, the application of conductive inks on substrates has not consistently produced adequate low resistances in the kilohm range. Conductive materials can be applied using a printer in single or multiple passes onto a substrate including textiles, polymer films, and paper. The conductive materials are composed of electrical conductors such as carbon nanotubes (including functionalized carbon nanotubes and metal-coated carbon nanotubes); graphene, a polycyclic aromatic hydrocarbon (e.g., pentacene and bisperipentacene); metal nanoparticles; inherently conductive polymers (ICP); and combinations thereof. Once the conductive materials are applied, the materials are dried and sintered to form adherent conductive materials on the substrate. For certain formulations, increased conductivity can be achieved by printing on substrates supported by low levels of magnetic field alignment. The adherent conductive materials can be used in applications such as damage detection, dust particle removal, smart coating systems, and flexible electronic circuitry. By applying alternating layers of different electrical conductors to form a layered composite material, a single homogeneous layer can be produced with improved electrical properties. It is believed that patterning alternate layers of

  5. A study of laser-beam welding conducted at the Centre for Laser Technologies of Metals

    Science.gov (United States)

    Antoszewski, Bogdan; Gradoń, Ryszard; Trela, Paweł; Cendrowicz, Edward

    2013-01-01

    The study reported here is part of a larger research project on laser-beam welding conducted at the Centre for Laser Technologies of Metals. The primary objectives were to compare laser-beam welding with a conventional process when used for longitudinal seams in street lamp posts, to select the process parameters for girth welds in cylindrical high-strength steel machine elements, and to assess whether laser-beam welding can be used for magnesium alloys. The paper includes recommendations for the selection of welding parameters.

  6. Variable conductance heat pipe technology. [research project resulting in heat pipe experiment on OAO-3 satellite

    Science.gov (United States)

    Anderson, W. T.; Edwards, D. K.; Eninger, J. E.; Marcus, B. D.

    1974-01-01

    A research and development program in variable conductance heat pipe technology is reported. The project involved: (1) theoretical and/or experimental studies in hydrostatics, (2) hydrodynamics, (3) heat transfer into and out of the pipe, (4) fluid selection, and (5) materials compatibility. The development, fabrication, and test of the space hardware resulted in a successful flight of the heat pipe experiment on the OAO-3 satellite. A summary of the program is provided and a guide to the location of publications on the project is included.

  7. Microchip electrophoresis in low-temperature co-fired ceramics technology with contactless conductivity measurement.

    Science.gov (United States)

    Fercher, Georg; Smetana, Walter; Vellekoop, Michiel J

    2009-07-01

    In this paper a novel micromachined contactless conductivity CE device produced in low temperature co-fired ceramics (LTCC) is introduced. The application of LTCC multilayer technology provides a promising method for the contactless detection of conductive compounds because of its increased dielectric constant compared with glass or plastics. The capacitive coupling of the excitation signal into the microchannel across the LTCC substrate is improved, resulting in better detection sensitivity. Two silver electrodes located externally at opposite sides at the end of the separation channel act as detector. Impedance variations in the channel are measured without galvanic contact between electrodes and fluid. Inorganic ions are separated in less than 1 min with this novel ceramic device. The limit of detection is 10 microM for potassium.

  8. The influence of the technological parameters on the ionic conductivity of samarium doped ceria thin films

    Directory of Open Access Journals (Sweden)

    Mantas Sriubas

    2015-03-01

    Full Text Available Sm0,20Ce0,80O2 powder was used for the formation of samarium doped cerium oxide (SDC thin films using e-beam. Surface area of powder was 34.9 m2/g and particle size – 0.3-0.5 μm. Thin films were deposited using physical vapor deposition system on SiO2 and Alloy 600 substrates. 2 Å/s – 16 Å/s growth rate and 20 °C – 600 °C substrate temperature were used during the deposition. Ionic conductivity investigation revealed that the maximum ionic conductivity (1.67 S/m has the thin film deposited on 300 °C temperature substrate using 4 Å/s growth rate. Minimum ionic conductivity (0.26 S/m has thin film which was deposited on 20 °C temperature substrate using 8 Å/s growth rate. Vacancy activation energies vary in 0.87 eV – 0.97 eV range. Furthermore the calculations of crystallite size revealed that crystallite size increases with increasing substrate temperature: from 7.50 nm to 46.23 nm on SiO2 substrate and from 9.30 nm to 44.62 nm on Alloy 600 substrate. Molar concentration of samarium in initial evaporated material is 19.38 mol% and varies from 11.37 mol% to 21 mol% in formed thin films depending on technological parameters.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5700

  9. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a

  10. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, Gary S.; Bluhm, Martin; Coffey, James; Korotkov, Roman; Polsz, Craig; Salemi, Alexandre; Smith, Robert; Smith, Ryan; Stricker, Jeff; Xu, Chen; Shirazi, Jasmine; Papakonstantopulous, George; Carson, Steve; Hartmann, Sören; Jessen, Frank; Krogmann, Bianaca; Rickers, Christoph; Ruske, Manfred; Schwab, Holger; Bertram, Dietrich

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exaserbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectonic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availablility of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a

  11. Detection of off-flavor in catfish using a conducting polymer electronic-nose technology.

    Science.gov (United States)

    Wilson, Alphus D; Oberle, Charisse S; Oberle, Daniel F

    2013-11-25

    The Aromascan A32S conducting polymer electronic nose was evaluated for the capability of detecting the presence of off-flavor malodorous compounds in catfish meat fillets to assess meat quality for potential merchantability. Sensor array outputs indicated that the aroma profiles of good-flavor (on-flavor) and off-flavor fillets were strongly different as confirmed by a Principal Component Analysis (PCA) and a Quality Factor value (QF > 7.9) indicating a significant difference at (P flavor and off-flavor catfish at high levels of accuracy (>90%) and with relatively low rates (≤5%) of unknown or indecisive determinations in three trials. This A32S e-nose instrument also was capable of detecting the incidence of mild off-flavor in fillets at levels lower than the threshold of human olfactory detection. Potential applications of e-nose technologies for pre- and post-harvest management of production and meat-quality downgrade problems associated with catfish off-flavor are discussed.

  12. Disruptive Conduct: The Impact of Disruptive Technologies on Social Relations in Higher Education

    Science.gov (United States)

    Flavin, Michael

    2016-01-01

    Higher education institutions (HEIs) have invested significantly in digital technologies for learning and teaching. However, technologies provided by HEIs have not been universally successful in terms of adoption and usage. Meanwhile, both students and lecturers use disruptive technologies to support learning and teaching. This article examines…

  13. A Computer-Assisted Approach for Conducting Information Technology Applied Instructions

    Science.gov (United States)

    Chu, Hui-Chun; Hwang, Gwo-Jen; Tsai, Pei Jin; Yang, Tzu-Chi

    2009-01-01

    The growing popularity of computer and network technologies has attracted researchers to investigate the strategies and the effects of information technology applied instructions. Previous research has not only demonstrated the benefits of applying information technologies to the learning process, but has also revealed the difficulty of applying…

  14. Disruptive Conduct: The Impact of Disruptive Technologies on Social Relations in Higher Education

    Science.gov (United States)

    Flavin, Michael

    2016-01-01

    Higher education institutions (HEIs) have invested significantly in digital technologies for learning and teaching. However, technologies provided by HEIs have not been universally successful in terms of adoption and usage. Meanwhile, both students and lecturers use disruptive technologies to support learning and teaching. This article examines…

  15. Teacher Researchers: Technology and Ethical Considerations while Conducting an Action Research

    Science.gov (United States)

    Isman, Aytekin; Altinay Aksal, Fahriye; Altinay Gazi, Zehra

    2009-01-01

    The research study stimulates critical approach to research and practice, with an increasing emphasis on ethics and ethical decision making of the teacher researchers within action research process by using technology in its process. The study investigates the impact of technology within the action research, ethical considerations and dilemmas…

  16. Conducting polymer coatings in electrochemical technology: part 2 – application areas.

    OpenAIRE

    Ponce De Leon, Carlos; Campbell, Sheelagh; Smith, James; Walsh, Frank

    2008-01-01

    Conducting polymers can combine the electronic characteristics of metals with the engineering properties of polymers. Polypyrrole (PPy), polythiophene (PTh) and polyaniline (PAni) are common examples of conducting polymers which can be electrodeposited from their respective heterocyclic monomers. The applications of these and other electrodeposited polymer materials are considered in this review. Application areas include electronic and optical materials, sensors, bioimplants, actuators and c...

  17. Digital technologies, participatory learning and the transformation of students’ conduct of everyday life

    DEFF Research Database (Denmark)

    Schraube, Ernst

    expanding human activities, they are also powerful socio-political “forms of life” (Langdon Winner) transforming fundamentally the practice of teaching and learning as well as the students’ conduct of everyday life. The paper explores the meaning of digital learning spaces at universities (especially...... Roskilde University) focusing on their implications for the learning processes and conduct of life of students. Based on a conceptual inclusion of the learning subjects and their conduct of everyday life into the research and a discussion of the analytical concepts of defensive versus expansive learning...

  18. Technology Commercialization Effects on the Conduct of Research in Higher Education

    Science.gov (United States)

    Powers, Joshua B.; Campbell, Eric G.

    2011-01-01

    The objective of this study was to investigate the effects of technology commercialization on researcher practice and productivity at U.S. universities. Using data drawn from licensing contract documents and databases of university-industry linkages and faculty research output, the study findings suggest that the common practice of licensing…

  19. Technology Commercialization Effects on the Conduct of Research in Higher Education

    Science.gov (United States)

    Powers, Joshua B.; Campbell, Eric G.

    2011-01-01

    The objective of this study was to investigate the effects of technology commercialization on researcher practice and productivity at U.S. universities. Using data drawn from licensing contract documents and databases of university-industry linkages and faculty research output, the study findings suggest that the common practice of licensing…

  20. Conducting Video Research in the Learning Sciences: Guidance on Selection, Analysis, Technology, and Ethics

    Science.gov (United States)

    Derry, Sharon J.; Pea, Roy D.; Barron, Brigid; Engle, Randi A.; Erickson, Frederick; Goldman, Ricki; Hall, Rogers; Koschmann, Timothy; Lemke, Jay L.; Sherin, Miriam Gamoran; Sherin, Bruce L.

    2010-01-01

    Focusing on expanding technical capabilities and new collaborative possibilities, we address 4 challenges for scientists who collect and use video records to conduct research in and on complex learning environments: (a) Selection: How can researchers be systematic in deciding which elements of a complex environment or extensive video corpus to…

  1. Clinic staff attitudes towards the use of mHealth technology to conduct perinatal depression screenings: a qualitative study.

    Science.gov (United States)

    Pineros-Leano, Maria; Tabb, Karen M; Sears, Heather; Meline, Brandon; Huang, Hsiang

    2015-04-01

    The use of mHealth technology is an innovative approach for screening low-income mothers for depression. Past studies show that the use of technology removes barriers such as literacy issues, language challenges, concerns about privacy and lack of transportation and can also increase reliability. However, little is known about staff attitudes and perceptions towards using mHealth technology for screening low-income women for depression in clinics. Four focus groups were conducted with staff members in a supplemental nutrition program for women, infants and children located in a public health clinic. A semi-structured focus group interview guide was used to examine staff perceptions related to depression screening with tablet technology. All interviews were audio recorded and transcribed verbatim. Thematic analysis was used to analyse all focus group data. Three major benefits and two major barriers were found. The benefits of using technology for perinatal depression screenings were reduction of literacy and language barriers, reduction of redundancy and errors and increased privacy for clients. The barriers were increased network issues and responsibility for technology, which included fear of the devices being lost, stolen or broken. Before implementing mHealth tablet technology for depression screening in a public health clinic, it is important to address the concerns of staff members to make the transition more effective. This study provides timely information on staff-perceived benefits and barriers when implementing mHealth technology in a public health setting. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Developing Infrared (IR) Transparent Conductive Electrode Technology for Multi-Functional Infrared (IR) Sensing

    Science.gov (United States)

    2011-07-13

    Lett., vol. 63, pp. 1-3 (1993). [4] C. G. Granqvist, ―Transparent conductive electrodes for electrochromic devices : A review,‖ Applied Physics A...2]. The poor mechanical flexibility and high substrate temperature requirement seriously limit its applications in flexible devices , such as...Surface Science, vol. 252, pp. 425-429 (2005). [12] S. M. Sze, "Physics of Semiconductor Devices ," 3rd Ed. pp. 305, 2007. [13] J. E. Baumgardner, A. A

  3. Conductive lithium nickel oxide thin film patterns via inkjet printing technology

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chun-Chih, E-mail: r00524055@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Su, Pei-Chen, E-mail: peichensu@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liao, Ying-Chih, E-mail: liaoy@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China)

    2013-10-01

    In this research, a simple direct-writing method by inkjet printing to create conductive lithium nickel oxide thin film patterns at micrometer-scale is presented. Nickel/lithium hydroxides dissolved in acetic acid were inkjet-printed on quartz plates to create micro patterns, including lines and meshes, and converted into oxides by thermal pyrolysis. The synthesized thin films were composed of nanoparticles with 60 nm diameter after the sintering process. Thermogravimetric analysis results showed that the precursor inks decomposed into oxides at temperatures higher than 420 °C. The X-ray diffractograms showed that Ni{sub 2}O{sub 3} was synthesized with lithium oxides after sintered at 500 °C for an hour. The existence of Ni{sub 2}O{sub 3} in the prepared thin films leads to better electrical conductivity, which follows the Arrhenius relation with activation energy of 0.38 eV. - Highlights: • Conductive lithium nickel oxide patterns are fabricated via inkjet printing method. • The precursor inks decompose into oxides at temperatures higher than 420 °C. • Surface morphology and crystal structures of the sintered thin films are examined. • Electrical resistivity of the oxide thin films obeys the Arrhenius relation. • An activation energy of 0.38 eV is found in the Arrhenius relation.

  4. Applying nitrogen site-specifically using soil electrical conductivity maps and precision agriculture technology.

    Science.gov (United States)

    Lund, E D; Wolcott, M C; Hanson, G P

    2001-10-16

    Soil texture varies significantly within many agricultural fields. The physical properties of soil, such as soil texture, have a direct effect on water holding capacity, cation exchange capacity, crop yield, production capability, and nitrogen (N) loss variations within a field. In short, mobile nutrients are used, lost, and stored differently as soil textures vary. A uniform application of N to varying soils results in a wide range of N availability to the crop. N applied in excess of crop usage results in a waste of the grower"s input expense, a potential negative effect on the environment, and in some crops a reduction of crop quality, yield, and harvestability. Inadequate N levels represent a lost opportunity for crop yield and profit. The global positioning system (GPS)-referenced mapping of bulk soil electrical conductivity (EC) has been shown to serve as an effective proxy for soil texture and other soil properties. Soils with a high clay content conduct more electricity than coarser textured soils, which results in higher EC values. This paper will describe the EC mapping process and provide case studies of site-specific N applications based on EC maps. Results of these case studies suggest that N can be managed site-specifically using a variety of management practices, including soil sampling, variable yield goals, and cropping history.

  5. Fabrication of a LCP-based conductivity cell and resistive temperature device via PCB MEMS technology

    Science.gov (United States)

    Broadbent, Heather A.; Ivanov, Stanislav Z.; Fries, David P.

    2007-04-01

    Printed circuit board microelectromechanical systems are a set of fabrication techniques that use traditional inexpensive printed circuit board processes to construct microsensors. These techniques keep gaining popularity and are utilized herein. The design, fabrication and construction of a miniature, low-cost conductivity cell and resistive temperature device transducers are presented. The transducers utilize a liquid crystal polymer (LCP), a thin-film material, which exhibits moisture resistant properties that makes it suitable for aquatic applications. Novel processing techniques that are reported here include the use of a direct-write photolithography tool eliminating the use of photomasks and chemical catalytic metallization of LCP material. The rapid fabrication of these devices and the repeatability of the fabrication are demonstrated by comparing the calibration of multiple devices. The sensors' sensitivities are found to be 1082.40 ± 144.18 mS cm-1 per siemens and 5.910 ± 0.765 °C per ohm for the conductivity and temperature transducers, respectively.

  6. Applying Nitrogen Site-Specifically Using Soil Electrical Conductivity Maps and Precision Agriculture Technology

    Directory of Open Access Journals (Sweden)

    E.D. Lund

    2001-01-01

    Full Text Available Soil texture varies significantly within many agricultural fields. The physical properties of soil, such as soil texture, have a direct effect on water holding capacity, cation exchange capacity, crop yield, production capability, and nitrogen (N loss variations within a field. In short, mobile nutrients are used, lost, and stored differently as soil textures vary. A uniform application of N to varying soils results in a wide range of N availability to the crop. N applied in excess of crop usage results in a waste of the grower’s input expense, a potential negative effect on the environment, and in some crops a reduction of crop quality, yield, and harvestability. Inadequate N levels represent a lost opportunity for crop yield and profit. The global positioning system (GPS-referenced mapping of bulk soil electrical conductivity (EC has been shown to serve as an effective proxy for soil texture and other soil properties. Soils with a high clay content conduct more electricity than coarser textured soils, which results in higher EC values. This paper will describe the EC mapping process and provide case studies of site-specific N applications based on EC maps. Results of these case studies suggest that N can be managed site-specifically using a variety of management practices, including soil sampling, variable yield goals, and cropping history.

  7. Proton conducting polymeric materials for hydrogen based electrochemical energy conversion technologies

    DEFF Research Database (Denmark)

    Aili, David

    and electrode separator in both PEM fuel cells and water electrolyzers. The proton conductivity mechanism of Nafion® is strongly dependent on the presence of water within the membrane nanostructure, which limits the operating temperature to about 80 °C unless the system is pressurized in order to keep......Proton transport is one of the most fundamental phenomena in nature and it also plays key role in proton exchange membrane (PEM) fuel cells and water electrolyzers. Conventionally, a well hydrated membrane of perfluorosulfonic acid (PFSA) such as Nafion® (DuPont) is used as proton conductor...... the membrane well hydrated. However, some of the main issues of the conventional PFSA based PEM fuel cells and water electrolyzers are directly or indirectly related to their relatively low operating temperature. An elevated operating temperature results in better electrode kinetics in general and improved...

  8. OAST Space Theme Workshop. Volume 3: Working group summary. 3: Sensors (E-3). A. Statement. B. Technology needs (form 1). C. Priority assessment (form 2). D. Additional assessment

    Science.gov (United States)

    1976-01-01

    Developments required to support the space power, SETI, solar system exploration and global services programs are identified. Instrumentation and calibration sensors (rather than scientific) are needed for the space power system. Highly sophisticated receivers for narrowband detection of microwave sensors and sensors for automated stellar cataloging to provide a mapping data base for SETI are needed. Various phases of solar system exploration require large area solid state imaging arrays from UV to IR; a long focal plane telescope; high energy particle detectors; advanced spectrometers; a gravitometer; and atmospheric distanalyzer; sensors for penetrometers; in-situ sensors for surface chemical analysis, life detection, spectroscopic and microscopic analyses of surface soils, and for meteorological measurements. Active and passive multiapplication sensors, advanced multispectral scanners with improved resolution in the UV and IR ranges, and laser techniques for advanced probing and oceanographic characterization will enhance for global services.

  9. OAST Space Theme Workshop. Volume 3: Working group summary. 6: Power (P-2). A. Statement. B. Technology needs (form 1). C. Priority assessment (form 2)

    Science.gov (United States)

    1976-01-01

    Power requirements for the multipurpose space power platform, for space industrialization, SETI, the solar system exploration facility, and for global services are assessed for various launch dates. Priorities and initiatives for the development of elements of space power systems are described for systems using light power input (solar energy source) or thermal power input, (solar, chemical, nuclear, radioisotopes, reactors). Systems for power conversion, power processing, distribution and control are likewise examined.

  10. OAST Space Theme Workshop. Volume 3: Working group summary. 1: Navigation, guidance, control (E-1) A. Statement. B. Technology needs (form 1). C. Priority assessment (form 2)

    Science.gov (United States)

    1976-01-01

    The six themes identified by the Workshop have many common navigation guidance and control needs. All the earth orbit themes have a strong requirement for attitude, figure and stabilization control of large space structures, a requirement not currently being supported. All but the space transportation theme have need for precision pointing of spacecraft and instruments. In addition all the themes have requirements for increasing autonomous operations for such activities as spacecraft and experiment operations, onboard mission modification, rendezvous and docking, spacecraft assembly and maintenance, navigation and guidance, and self-checkout, test and repair. Major new efforts are required to conceptualize new approaches to large space antennas and arrays that are lightweight, readily deployable, and capable of precise attitude and figure control. Conventional approaches offer little hope of meeting these requirements. Functions that can benefit from increasing automation or autonomous operations are listed.

  11. 电子封装中各向异性导电胶的可靠性%Reliability aspects of electronics packaging technology using anisotropic conductive adhesives

    Institute of Scientific and Technical Information of China (English)

    刘建影; 路秀真; 曹立强

    2007-01-01

    Anisotropic conductive adhesive technology for electronics packaging and interconnect application has significantly been developed during the last few years. It is time to make a summary of what has been done in this field. The present paper reviews the technology development, especially from the reliability point of view. It is pointed out that anisotropic conductive adhesives are now widely used in many applications and the reliability data and models have been developed to a large extent for anisotropic conductive adhesives in various applications.

  12. An Approach for Doctoral Students Conducting Context-Specific Review of Literature in IT, ICT, and Educational Technology

    Science.gov (United States)

    Pretto, Gabriella; Curró, Gina

    2017-01-01

    Since 1980s the rate of technological change has been phenomenal, creating an impact on the information-seeking behaviors of doctoral students and other researchers. When searching the three fields of Information Technology (IT), Information and Communication Technology (ICT), and Educational Technology (EdTech), it is like opening a Pandora's…

  13. An Approach for Doctoral Students Conducting Context-Specific Review of Literature in IT, ICT, and Educational Technology

    Science.gov (United States)

    Pretto, Gabriella; Curró, Gina

    2017-01-01

    Since 1980s the rate of technological change has been phenomenal, creating an impact on the information-seeking behaviors of doctoral students and other researchers. When searching the three fields of Information Technology (IT), Information and Communication Technology (ICT), and Educational Technology (EdTech), it is like opening a Pandora's…

  14. Q-SEA – a tool for quality assessment of ethics analyses conducted as part of health technology assessments

    Directory of Open Access Journals (Sweden)

    Scott, Anna Mae

    2017-03-01

    Full Text Available Introduction: Assessment of ethics issues is an important part of health technology assessments (HTA. However, in terms of existence of quality assessment tools, ethics for HTA is methodologically underdeveloped in comparison to other areas of HTA, such as clinical or cost effectiveness. Objective: To methodologically advance ethics for HTA by: (1 proposing and elaborating Q-SEA, the first instrument for quality assessment of ethics analyses, and (2 applying Q-SEA to a sample systematic review of ethics for HTA, in order to illustrate and facilitate its use.Methods: To develop a list of items for the Q-SEA instrument, we systematically reviewed the literature on methodology in ethics for HTA, reviewed HTA organizations’ websites, and solicited views from 32 experts in the field of ethics for HTA at two 2-day workshops. We subsequently refined Q-SEA through its application to an ethics analysis conducted for HTA. Results: Q-SEA instrument consists of two domains – the process domain and the output domain. The process domain consists of 5 elements: research question, literature search, inclusion/exclusion criteria, perspective, and ethics framework. The output domain consists of completeness, bias, implications, conceptual clarification, and conflicting values. Conclusion: Q-SEA is the first instrument for quality assessment of ethics analyses in HTA. Further refinements to the instrument to enhance its usability continue.

  15. Real Virtuality: A Code of Ethical ConductRecommendations for Good Scientific Practice and the Consumers of VR-Technology

    Directory of Open Access Journals (Sweden)

    Michael eMadary

    2016-02-01

    Full Text Available The goal of this article is to present a first list of ethical concerns that may arise from research and personal use of virtual reality (VR and related technology, and to offer concrete recommendations for minimizing those risks. Many of the recommendations call for focused research initiatives. In the first part of the article, we discuss the relevant evidence from psychology that motivates our concerns. In section 1.1, we cover some of the main results suggesting that one’s environment can influence one’s psychological states, as well as recent work on inducing illusions of embodiment. Then, in section 1.2, we go on to discuss recent evidence indicating that immersion in VR can have psychological effects that last after leaving the virtual environment. In the second part of the article we turn to the risks and recommendations. We begin, in section 2.1, with the research ethics of VR, covering six main topics: the limits of experimental environments, informed consent, clinical risks, dual-use, online research, and a general point about the limitations of a code of conduct for research. Then, in section 2.2, we turn to the risks of VR for the general public, covering four main topics: long-term immersion, neglect of the social and physical environment, risky content, and privacy. We offer concrete recommendations for each of these ten topics, summarized in Table 1.

  16. Fatty-acid alkyl esters in table olives in relation to abnormal fermentation and poorly conducted technological treatments

    Energy Technology Data Exchange (ETDEWEB)

    Lanza, B.; Serio, M.G. di; Giacinto, L. di

    2016-07-01

    There are several methods to prepare table olives, and each of the steps and conditions during this processing can affect the composition and nutritional value of the product. The influence of abnormal fermentation and poorly conducted technological treatments was examined here in terms of the lipid fraction of table olives. In ‘Greek style’ olives, a low concentration of brine can allow the growth of spontaneous microflora and consequent organoleptic defects (‘putrid/butyric fermentation’, ‘winey-vinegary’). Here, the ‘Kalamata’ and ‘Moresca’ cultivars can produce methyl esters (methyl oleate/ linoleate: 553 and 450 mg·kg−1 oil, respectively) and ethyl esters (ethyl oleate/ inoleate: 4764 and 4195; palmitate: 617 and 886 mg·kg −1 oil, respectively). In ‘Sevillan style’ olives, a high NaOH concentration influences the fatty-acid composition less, but is difficult to eliminate, for a ‘soapy’ defect. The ‘Giarraffa’ and ‘Nocellara del Belice’ cultivars produce only ethyl esters (ethyl oleate/ linoleate: 222 and 289 mg·kg−1 oil, respectively). With this production of ethyl and methyl esters from the principal fatty acids in the lipid fractions of table olives, methods that provide only biological treatments (i.e., Greek style) pose more risk than methods that provide only chemical treatments (i.e., Sevillan style). (Author)

  17. On-line monitoring of milk electrical conductivity by fuzzy logic technology to characterise health status in dairy goats

    Directory of Open Access Journals (Sweden)

    Mauro Zaninelli

    2014-04-01

    Full Text Available Intramammary infection affects the quality and quantity of dairy goat milk. Health status (HS and milk quality can be monitored by electrical conductivity (EC. The aim of the study was to determine the detection potential of EC when measured on-line on a daily basis and compared with readings from previous milkings. Milk yields (MYs were investigated with the same approach. To evaluate these relative traits, a multivariate model based on fuzzy logic technology – which provided interesting results in cows – was used. Two foremilk samples from 8 healthy Saanen goats were measured daily over the course of six months. Bacteriological tests and somatic cells counts were used to define the HS. On-line EC measurements for each gland and MYs were also considered. Predicted deviations of EC and MY were calculated using a moving-average model and entered in the fuzzy logic model. The reported accuracy has a sensitivity of 81% and a specificity of 69%. Conclusions show that fuzzy logic is an interesting approach for dairy goats, since it offered better accuracy than other methods previously published. Nevertheless, specificity was lower than in dairy cows, probably due to the lack of a significant decrease of MY in diseased glands. Still, results show that the detection of the HS characteristics with EC is improved, when measured on-line, daily and compared with the readings from previous milkings.

  18. Fatty-acid alkyl esters in table olives in relation to abnormal fermentation and poorly conducted technological treatments

    Directory of Open Access Journals (Sweden)

    Lanza, B.

    2016-06-01

    Full Text Available There are several methods to prepare table olives, and each of the steps and conditions during this processing can affect the composition and nutritional value of the product. The influence of abnormal fermentation and poorly conducted technological treatments was examined here in terms of the lipid fraction of table olives. In ‘Greek style’ olives, a low concentration of brine can allow the growth of spontaneous microflora and consequent organoleptic defects (‘putrid/butyric fermentation’, ‘winey-vinegary’. Here, the ‘Kalamata’ and ‘Moresca’ cultivars can produce methyl esters (methyl oleate/ linoleate: 553 and 450 mg·kg-1 oil, respectively and ethyl esters (ethyl oleate/ inoleate: 4764 and 4195; palmitate: 617 and 886 mg·kg-1 oil, respectively. In ‘Sevillan style’ olives, a high NaOH concentration influences the fatty-acid composition less, but is difficult to eliminate, for a ‘soapy’ defect. The ‘Giarraffa’ and ‘Nocellara del Belice’ cultivars produce only ethyl esters (ethyl oleate/ linoleate: 222 and 289 mg·kg-1 oil, respectively. With this production of ethyl and methyl esters from the principal fatty acids in the lipid fractions of table olives, methods that provide only biological treatments (i.e., Greek style pose more risk than methods that provide only chemical treatments (i.e., Sevillan style.H

  19. Q-SEA – a tool for quality assessment of ethics analyses conducted as part of health technology assessments

    Science.gov (United States)

    Scott, Anna Mae; Hofmann, Björn; Gutiérrez-Ibarluzea, Iñaki; Bakke Lysdahl, Kristin; Sandman, Lars; Bombard, Yvonne

    2017-01-01

    Introduction: Assessment of ethics issues is an important part of health technology assessments (HTA). However, in terms of existence of quality assessment tools, ethics for HTA is methodologically underdeveloped in comparison to other areas of HTA, such as clinical or cost effectiveness. Objective: To methodologically advance ethics for HTA by: (1) proposing and elaborating Q-SEA, the first instrument for quality assessment of ethics analyses, and (2) applying Q-SEA to a sample systematic review of ethics for HTA, in order to illustrate and facilitate its use. Methods: To develop a list of items for the Q-SEA instrument, we systematically reviewed the literature on methodology in ethics for HTA, reviewed HTA organizations’ websites, and solicited views from 32 experts in the field of ethics for HTA at two 2-day workshops. We subsequently refined Q-SEA through its application to an ethics analysis conducted for HTA. Results: Q-SEA instrument consists of two domains – the process domain and the output domain. The process domain consists of 5 elements: research question, literature search, inclusion/exclusion criteria, perspective, and ethics framework. The output domain consists of 5 elements: completeness, bias, implications, conceptual clarification, and conflicting values. Conclusion: Q-SEA is the first instrument for quality assessment of ethics analyses in HTA. Further refinements to the instrument to enhance its usability continue. PMID:28326147

  20. Complete blood count using VCS (volume, conductivity, light scatter) technology is affected by hyperlipidemia in a child with acute leukemia.

    Science.gov (United States)

    Gokcebay, D G; Azik, F M; Isik, P; Bozkaya, I O; Kara, A; Tavil, E B; Yarali, N; Tunc, B

    2011-12-01

    Asparaginase, an effective drug in the treatment of childhood acute lymphoblastic leukemia (ALL), has become an important component of most childhood ALL regimens during the remission induction or intensification phases of treatment. The incidence range of asparaginase-associated lipid abnormalities that are seen in children is 67-72%. Lipemia causes erroneous results, which uses photometric methods to analyze blood samples. We describe a case of l-asparaginase-associated severe hyperlipidemia with complete blood count abnormalities. Complete blood count analysis was performed with Beckman COULTER(®) GEN·S™ system, which uses the Coulter Volume, Conductivity, Scatter technology to probe hydrodynamically focused cells. Although an expected significant inaccuracy in hemoglobin determination occurred starting from a lipid value of 3450 mg/dl, we observed that triglyceride level was 1466 mg/dl. Complete blood count analysis revealed that exceptionally high hemoglobin, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration levels vs. discordant with red blood cell count, mean corpuscular volume, and hematocrit levels. Total leukocyte count altered spontaneously in a wide range, and was checked with blood smear. Platelet count was in expected range (Table 1). Thus, we thought it was a laboratory error, and the patient's follow-up especially for red cell parameters was made by red blood cell and hematocrit values.

  1. Research and technology goals and objectives for Integrated Vehicle Health Management (IVHM)

    Science.gov (United States)

    1992-01-01

    Integrated Vehicle Health Management (IVHM) is defined herein as the capability to efficiently perform checkout, testing, and monitoring of space transportation vehicles, subsystems, and components before, during, and after operational This includes the ability to perform timely status determination, diagnostics, and prognostics. IVHM must support fault-tolerant response including system/subsystem reconfiguration to prevent catastrophic failures; and IVHM must support the planning and scheduling of post-operational maintenance. The purpose of this document is to establish the rationale for IVHM and IVHM research and technology planning, and to develop technical goals and objectives. This document is prepared to provide a broad overview of IVHM for technology and advanced development activities and, more specifically, to provide a planning reference from an avionics viewpoint under the OAST Transportation Technology Program Strategic Plan.

  2. 骨导助听技术研究与应用进展%Advance in research and application of bone conduction hearing aid technology

    Institute of Scientific and Technical Information of China (English)

    艾海明; 郭红阳; 王杰

    2016-01-01

    Hearing aid techniques consist of air conduction and bone conduction in terms of sound transmission pathway. On the bone conduction, the sound signal vibrating the skull and transmitting it into the inner ear directly rather than by the outer and middle ear sequentially. By the bone conduction-hearing mechanism, ambient noise interference can be effectively prevented, so that the bone conduction technology is an alternative hearing aid modality for hearing-impaired subjects. This paper mainly reviewed updating research of bone conduction on hearing aid techniques, core algorithm development and clinical application, which aims to enhance the development of bone conduction technology and to promote its clinical application.%助听技术按传导径路可分为气导与骨导两类。骨传导声音信号通过振动颅骨,不经过外耳、中耳而直接传递至内耳,可有效防止外界环境噪声干扰,为听力障碍者提供一种可选的可靠助听方式。本文主要通过对现今骨传导助听技术研究现状、核心算法开发和应用场景等进行综述,旨在促进此项技术发展及推广临床应用。

  3. The nature of science and technology for pre-service chemistry teacher: A case of techno-chemistry experiment "From Stannum Metalicum to conductive glass"

    Science.gov (United States)

    Mudzakir, A.; Widhiyanti, T.; Hernani, Arifin, M.; Lestari, A. N.; Jauhariansyah, S.

    2017-08-01

    The study was conducted to address the problems related to low Indonesian students' scientific literacy as revealed in the PISA (Program for International Student Assessment) since 2000-2015. Science teachers (e.g. chemistry teacher) must recognize the nature of science (NOS) to assist their students in preparing an explanation of a phenomenon scientifically correctly. Teachers also need to understand critically about nature of technology (NOT) and it relationship with science as well as society. To integrate those two kinds of knowledge (NOS and NOT), we can conduct a techno-science activity, which integrate the technology to science course in pre-service teacher education program, so that they can improve their knowledge about nature of science and technology (NOST) and pedagogical content knowledge related to NOST. The purpose of this study was to construct an inquiry based laboratory activity worksheet for making conductive glass so that the pre-service teacher could explain how the structure of the semiconductor Fluor doped Tin Oxide (SnO2.F) affect their performance. This study we conducted, described how to design a pre-service chemistry teacher education course that can improve recognizing view of NOST by using a framework called model of educational reconstruction (MER). The scientific activities in the course were guided inquiry based techno-chemistry experiments involving "From Stannum Metallicum to Conductive Glass". Conductive glasses are interesting subject research for several reason. The application of this technology could be found on solar cell, OLED, and display panel. The doped Tin dioxide has been deposited on glass substrate using the spray pyrolysis technique at 400-550°C substrate temperature, 4-5 times, 20 cm gap between glass and sprayer and 450 angle to form a thin film which will act as electrical contact. The resistivity is about 0.5 - 15Ω. The product resulted on this study was rated by several expert to find if the worksheet could

  4. Develop Hydrophilic Conductive Coating Technology with High Oxidation Resistance for Non-Flow-Through PEM Fuel Cells and Electrolyzers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ElectroChem proposes to develop oxidation resistant, electrically conductive, hydrophilic coatings in PEM fuel cells and in PEM electrolyzers. The use of hydrophilic...

  5. Powder-blasting technology as an alternative tool for micro-fabrication of CE-chip with integrated conductivity sensors

    NARCIS (Netherlands)

    Schlautmann, Stefan; Wensink, Henk; Schasfoort, Richard; Elwenspoek, Miko; Berg, van den Albert

    2001-01-01

    The fabrication and characterization of a microfluidic device for capillary electrophoresis applications is presented. The device consists of a glass chip which contains a single separation channel as well as an integrated conductivity detection cell. In contrast to most microfluidic glass devices t

  6. Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips with integrated conductivity sensors

    NARCIS (Netherlands)

    Schlautmann, Stefan; Wensink, Henk; Schasfoort, Richard; Elwenspoek, Miko; Berg, van den Albert

    2001-01-01

    The fabrication and characterization of a microfluidic device for capillary electrophoresis applications is presented. The device consists of a glass chip which contains a single separation channel as well as an integrated conductivity detection cell. In contrast to most microfluidic glass devices t

  7. Tools and Technologies Needed for Conducting Planetary Field Geology While On EVA: Insights from the 2010 Desert RATS Geologist Crewmembers

    Science.gov (United States)

    Young, Kelsey; Hurtado, Jose M., Jr.; Bleacher, Jacob E.; Garry, W. Brent; Bleisath, Scott; Buffington, Jesse; Rice, James W., Jr.

    2011-01-01

    Observation is the primary role of all field geologists, and geologic observations put into an evolving conceptual context will be the most important data stream that will be relayed to Earth during a planetary exploration mission. Sample collection is also an important planetary field activity, and its success is closely tied to the quality of contextual observations. To test protocols for doing effective planetary geologic fieldwork, the Desert RATS (Research and Technology Studies) project deployed two prototype rovers for two weeks of simulated exploratory traverses in the San Francisco volcanic field of northern Arizona. The authors of this paper represent the geologist crewmembers who participated in the 2010 field test. We document the procedures adopted for Desert RATS 2010 and report on our experiences regarding these protocols. Careful consideration must be made of various issues that impact the interplay between field geologic observations and sample collection, including time management; strategies related to duplication of samples and observations; logistical constraints on the volume and mass of samples and the volume/transfer of data collected; and paradigms for evaluation of mission success. We find that the 2010 field protocols brought to light important aspects of each of these issues, and we recommend best practices and modifications to training and operational protocols to address them. Underlying our recommendations is the recognition that the capacity of the crew to "flexibly execute" their activities is paramount. Careful design of mission parameters, especially field geologic protocols, is critical for enabling the crews to successfully meet their science objectives.

  8. NASA-OAST photovoltaic energy conversion program

    Science.gov (United States)

    Mullin, J. P.; Loria, J. C.

    1984-01-01

    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  9. Technology.

    Science.gov (United States)

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  10. Assessment of analytical and experimental techniques utilized in conducting plume technology tests 575 and 593. [exhaust flow simulation (wind tunnel tests) of scale model Space Shuttle Orbiter

    Science.gov (United States)

    Baker, L. R.; Sulyma, P. R.; Tevepaugh, J. A.; Penny, M. M.

    1976-01-01

    Since exhaust plumes affect vehicle base environment (pressure and heat loads) and the orbiter vehicle aerodynamic control surface effectiveness, an intensive program involving detailed analytical and experimental investigations of the exhaust plume/vehicle interaction was undertaken as a pertinent part of the overall space shuttle development program. The program, called the Plume Technology program, has as its objective the determination of the criteria for simulating rocket engine (in particular, space shuttle propulsion system) plume-induced aerodynamic effects in a wind tunnel environment. The comprehensive experimental program was conducted using test facilities at NASA's Marshall Space Flight Center and Ames Research Center. A post-test examination of some of the experimental results obtained from NASA-MSFC's 14 x 14-inch trisonic wind tunnel is presented. A description is given of the test facility, simulant gas supply system, nozzle hardware, test procedure and test matrix. Analysis of exhaust plume flow fields and comparison of analytical and experimental exhaust plume data are presented.

  11. Conduct disorder

    Science.gov (United States)

    ... Conduct disorder is often linked to attention-deficit disorder . Conduct disorder also can be an early sign of ... child or teen has a history of conduct disorder behaviors. A physical examination and blood tests can help ...

  12. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  13. Polímeros com condutividade iônica: desafios fundamentais e potencial tecnológico Polymers with ionic conductivity: fundamental challenges and technological potential

    Directory of Open Access Journals (Sweden)

    Virgínia P. R. Silva

    2005-11-01

    Full Text Available Polímeros condutores iônicos ou eletrólitos poliméricos constituídos por um sistema de sal dissolvido em uma matriz polimérica sólida são materiais que apresentam interesse científico e potencial tecnológico. A dissolução de sais em uma matriz polimérica amorfa ou semicristalina sólida leva a estudos sobre intrigantes aspectos estruturais, que podem ser abordados por técnicas físico-químicas diversas tais como RMN, Raman e Espectroscopia de Vida Média de Pósitrons. Os estudos estruturais são correlacionados com propriedades eletroquímicas visando à utilização desses materiais em dispositivos tais como baterias, supercapacitores e células solares. Grupos brasileiros têm gradativamente ampliado os estudos e aplicações de eletrólitos poliméricos sólidos.Ionic conducting polymers or polymer electrolytes prepared with the addition of a soluble salt in a solid polymeric matrix are very important materials, associated with an intense research activity and technological efforts. Structural studies in a system of salt dissolved in an amorphous or semicrystalline solid polymeric matrix can be done with various techniques, such as NMR, Raman and Positron Annihilation Spectroscopy. The structural studies are correlated with electrochemical properties in order to evaluate these materials for applications in batteries, supercapacitors and solar cells. Brazilian researchers are contributing to the fundamental research and development of new applications of polymeric electrolytes.

  14. Challenges and impact of conducting vaccine trials in Asia and Africa: New Technologies in Emerging Markets, October 16th-18th 2012; World Vaccine Congress, Lyon.

    Science.gov (United States)

    Kochhar, Sonali

    2013-04-01

    Immunization is one of the most beneficial and cost-effective disease prevention measures. There are global efforts to develop new vaccines for disease control. The vaccine clinical trials must be conducted in the countries where they will be used. This has led to vaccine trials being conducted across Asia and Africa where there is a high burden of infectious diseases. The setup and successful conduct of International standard GCP vaccine trials across trial centers located in resource constrained settings are challenging. The challenges, ethical considerations and impact of the implementation of clinical trials in low-resource settings are highlighted here to help vaccine development programs successfully conduct such trials.

  15. Electrical Conductivity.

    Science.gov (United States)

    Hershey, David R.; Sand, Susan

    1993-01-01

    Explains how electrical conductivity (EC) can be used to measure ion concentration in solutions. Describes instrumentation for the measurement, temperature dependence and EC, and the EC of common substances. (PR)

  16. Precision Rolled-Ink Nano-Technology; Development of a Direct Write Technique for the Fabrication of Thin Films and Conductive Elements

    Science.gov (United States)

    2012-10-01

    feature sizes on substrates with complex topographies like textiles , textured surfaces, and woven fiber composites. It is possible that some of the...deposition on to flat, uniform planes, and also for traversing of transitions on complex surfaces like textiles , fiber reinforced polymer composites...Today 2004, 7/8, 32–39. 5. Robinson, C.J.; Stucker, B.; et. al. Integration of Direct-Write (DW) and Ultrasonic Consolidation (UC) Technologies to

  17. Conduct disorders

    NARCIS (Netherlands)

    Buitelaar, J.K.; Smeets, K.C.; Herpers, P.; Scheepers, F.; Glennon, J.; Rommelse, N.N.J.

    2013-01-01

    Conduct disorder (CD) is a frequently occurring psychiatric disorder characterized by a persistent pattern of aggressive and non-aggressive rule breaking antisocial behaviours that lead to considerable burden for the patients themselves, their family and society. This review paper updates diagnostic

  18. Tracing Source Technology for Shock-conducting Tube%导爆管的示踪剂溯源方法研究

    Institute of Scientific and Technical Information of China (English)

    段红珍; 钱华; 万方; 潘峰; 杨祖一; 刘大斌

    2012-01-01

    Aiming at effectively tracing the source of shock-conducting tube, tracer adding method and the detection method were studied in this paper. Shock-conducting tubes with different tracers and dosages were prepared by changing tracer component and its mass. The prepared shock-conducting tubes before detonation and after detonation were tested by Inductively Coupled Plasma method . The influence of doping uniformity, shock-conducting tube sampling length and sampling location on the test result after detonation was discussed. The results illustrate that the influences of doping uniformity and sampling location are insignificant. In addition, sampling shock-conducting tube of 10 cm can ensure the validity of the test results and the half quantitative design method could effectively solve the problem of the shock-conducting tube tracea-bility.%为了能使导爆管具有良好的可溯源特性,研究了示踪剂在导爆管中的添加方法以及检测方法,通过改变示踪剂的组分及其添加量,得到含有不同种类示踪剂的导爆管,利用电感耦合等离子发射光谱对爆前和爆后样品中的示踪剂配比及含量进行研究,探讨了导爆管的装药均匀性、导爆管取样长度、导爆管取样位置对爆后测试结果的影响.结果表明,导爆管的装药均匀性及取样位置对示踪效果影响较小,长度为10cm的导爆管取样量可以保证检测结果的有效性,半定量设计配比法可以有效地解决导爆管的溯源问题.

  19. COMPUTER RESEARCH OF INFLUENCE OF THERMAL CONDUCTIVITY CHANGE OF THE VACUUM-FILM MOLD OF ON CHARACTERISTICS OF THE CASTING PRODUCTION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2013-01-01

    Full Text Available The influence of changes in the thermal conductivity of vacuum-film mold at production of cast iron castings «body» was studied. Three variants of the gating system with different thermal conductivity l, 0,6 l and 0,4 l are considered. The dependencies of speed change and its projections on the time of filling in the allocated form points were established. Statistical distributions of temperatures in the casting for various moments of times are calculated. The technique of the formalization of statistical distributions characterizing the quantification of different groups of grid elements on the average temperature of the object was offered.

  20. A research feasibility study proposal for conducting experimental research in curriculum sharing via Communications Technology Satellite among institutions having large minority enrollments

    Science.gov (United States)

    Williams, L., Jr.

    1978-01-01

    The applicability of the tele-conference method of curriculum sharing as well as the sharing of scientific research results between universities and industrial organizations was evaluated in relation to other techniques and methods. Ten universities cooperated with NC A&T State University in an effort to increase the number of minority scientists and engineers in the USA via the utilization of the communication features of satellites. Research activities, experiments and studies in curriculum sharing are described as well as the techniques, interconnections and equipment utilized. Suggested methods and recommendations for a continuation of innovative applications of satellite technology in higher education at NC A&T State University are included.

  1. Conduction apraxia.

    Science.gov (United States)

    Ochipa, C; Rothi, L J; Heilman, K M

    1994-01-01

    A left hemisphere damaged patient with ideomotor apraxia is described, whose performance on pantomime to verbal command was superior to pantomime imitation. His reception of these same gestures (gesture naming) was spared. This syndrome has been named conduction apraxia. To account for this selective impaired performance on gesture imitation, a separation of the representations for gesture production and reception is proposed and a non-lexical gesture processing route for gesture imitation is suggested. Images PMID:7931387

  2. Conduction apraxia.

    OpenAIRE

    Ochipa, C; Rothi, L J; Heilman, K M

    1994-01-01

    A left hemisphere damaged patient with ideomotor apraxia is described, whose performance on pantomime to verbal command was superior to pantomime imitation. His reception of these same gestures (gesture naming) was spared. This syndrome has been named conduction apraxia. To account for this selective impaired performance on gesture imitation, a separation of the representations for gesture production and reception is proposed and a non-lexical gesture processing route for gesture imitation is...

  3. How can students use the potential of technology and the Internet in an elementary science club as the conduit for conducting scientific inquiry?

    Science.gov (United States)

    Bosseler, Marcia L.

    2005-11-01

    The principles underlying this qualitative study were to use technology as a resource to provide new opportunities for students to engage in the process of learning science through inquiry, and to engage in action research on my teaching. The setting was a science club for fourth and fifth graders in a summer school program. As a teacher and mutual stakeholder, I guided my students with my pedagogical content knowledge through interdisciplinary patterns of collaborative inquiry. Set in a socially constructivist environment, this action research became the catalyst for my professional growth and fostered the growth of the learning community. My goals were to engage learners in the construction of their own understanding of science, technology, and the world in which they live. To ensure that students experienced scientific inquiry, conflicting pedagogies between the established school curriculum and my own constructivist methodology prevailed throughout the study. Through socially constructed partnerships, stakeholder club members helped define the process of learning. Product-based simulations and strategies for scaffolding higher-level learning elicited inquiry-oriented and problem-solving skills using the Internet, thereby, enriching the curriculum while teaching students to synthesize information they found on the Internet and make a step towards becoming lifelong learners.

  4. Conductivity Probe

    Science.gov (United States)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air. The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air. The needles on the probe are 15 millimeters (0.6 inch) long. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Conducted Vasoreactivity

    DEFF Research Database (Denmark)

    Postnov, D. E.; Neganova, A Y; Sosnovtseva, Olga

    2015-01-01

    , the underlying mechanisms are debated. Here, we focus on dynamical aspects of the problem hypothesizing the existence of a bistability-powered mechanism for regenerative pulse transmission along the endothelium. Bistability implies that the cell can have two different stable resting potentials and can switch......Conducted vasodilation is part of the physiological response to increasing metabolic demand of the tissue. Similar responses can be elicited by focal electrical or chemical stimulation. Some evidence suggests an endothelial pathway for nondecremental transmission of hyperpolarizing pulses. However...... a theoretical analysis as well as numerical simulations of both single- and multiunit bistable systems mimicking endothelial cells to investigate the self-consistence and stability of the proposed mechanism. We find that the individual cell may switch readily between two stable potentials. An array of coupled...

  6. [Conduct disorders].

    Science.gov (United States)

    Stadler, Christina

    2014-05-01

    The diagnosis conduct disorder (CD) is characterized by aggressive (e.g., physical aggression) as well as nonaggressive symptoms (e.g., violation of rules, truancy). Conclusions regarding the course and prognosis, or recommendations for effective interventions, seem not to be equally valid for the whole patient group. DSM-IV-TR included subtyping age-of-onset as a prognostic criterion, even though the evidence base for subtyping from age of onset was rather sparse. The relevant literature on CD has grown substantially since the publication of DSM-IV-TR in 1994. For the new DSM-5 edition, some important issues were discussed, for example, consideration of personality traits, female-specific or dimensional criteria, and adding a childhood-limited subtype (Moffitt et al., 2008). Nevertheless, the diagnostic protocol for CD was not changed in the most parts in the new edition of the DSM-5; the addition of a CD specifier with limited emotions is the most relevant change. On the basis of the existing evidence base, this review discusses whether the modifications in DSM-5 are helpful for fulfilling the requirements of a reliable and valid psychiatric classification.

  7. Electrical Conductivity in Textiles

    Science.gov (United States)

    2006-01-01

    Copper is the most widely used electrical conductor. Like most metals, though, it has several drawbacks: it is heavy, expensive, and can break. Fibers that conduct electricity could be the solutions to these problems, and they are of great interest to NASA. Conductive fibers provide lightweight alternatives to heavy copper wiring in a variety of settings, including aerospace, where weight is always a chief concern. This is an area where NASA is always seeking improved materials. The fibers are also more cost-effective than metals. Expenditure is another area where NASA is always looking to make improvements. In the case of electronics that are confined to small spaces and subject to severe stress, copper is prone to breaking and losing connection over time. Flexible conductive fibers eliminate that problem. They are more supple and stronger than brittle copper and, thus, find good use in these and similar situations. While clearly a much-needed material, electrically conductive fibers are not readily available. The cost of new technology development, with all the pitfalls of troubleshooting production and the years of testing, and without the guarantee of an immediate market, is often too much of a financial hazard for companies to risk. NASA, however, saw the need for electrical fibers in its many projects and sought out a high-tech textile company that was already experimenting in this field, Syscom Technology, Inc., of Columbus, Ohio. Syscom was founded in 1993 to provide computer software engineering services and basic materials research in the areas of high-performance polymer fibers and films. In 1999, Syscom decided to focus its business and technical efforts on development of high-strength, high-performance, and electrically conductive polymer fibers. The company developed AmberStrand, an electrically conductive, low-weight, strong-yet-flexible hybrid metal-polymer YARN.

  8. 煤矿导水通道探查与水害综合防治技术研究%Study on water-conducting channels exporation and water control technology in coal mine

    Institute of Scientific and Technical Information of China (English)

    姚小平; 姚磊华; 陈国胜; 郑金峰

    2015-01-01

    It is difficult to find out water source and water‐conducting channels in some coal mine with complex hydrogeological conditions ,and simplex technology of water control may be not satisfying in this kind of coal mine .Geophysical prospecting ,site reconnaissance ,flow monitoring in sections of rivers ,and analysis of exiting hydrological and geological data are all used to find out water source and water‐conducting channels ,and compositive water control technology is studied for them .Take the No .7 coal mine of Pingmei Group for example ,many methods are adopted to find out the water source and water‐conducting channels of No .7 coal mine ,and the scheme of hardening part of river way and intercepting water‐conducting channels by grouting is worked out .The effect evaluation of the scheme shows that water source and water‐conducting channels of No .7 coal mine are located accurately ,and the effect is satisfying .Applying many methods synthetically can accurately find out water source and water‐conducting channels in the coal mine with complex hydrogeological conditions ,and compositive technology of water control can be satisfying .%针对水文地质条件复杂矿井其充水水源和导水通道难以确定,单一的防治水技术无法取得满意的防治水效果的问题进行研究,提出了通过地面物探、现场踏勘、地表水流量监测及水文、地质、气象资料综合分析等多种手段探查矿井充水水源及导水通道的方法,并据此研究矿井水害综合防治技术。以水文地质条件复杂的平煤股份七矿为例,用综合探查方法查明了七矿的充水水源和导水通道,并据此制定了地表河道局部硬化和导水通道地面注浆截流的综合治水方案。初步实施后,评估表明七矿充水水源和导水通道探查准确,所采取的综合防治水措施效果良好。故综合探测方法可准确确定水文地质条件复杂矿井的充水水源及导水

  9. Study on the Technology of Micro Silver-coated Copper Powders in Conductive Ink%用于导电油墨的银包覆铜微粉工艺研究

    Institute of Scientific and Technical Information of China (English)

    李雅丽

    2012-01-01

    The micro size of copper powders were prepared by pre-reduction method using glucose in the ethyl-ene glycol system, and the micro silver type of copper-coated powders were directly made through substitution reaction method. By means of the laboratory experiment on the conductivity, the varieties of resistance value was discussed on the powders at different conditions. Therefore the optimum technology condition is confirmed to prepare the micro silver-coated copper powders.%在乙二醇体系中采用葡萄糖预还原法制备微米级铜粉,由直接置换法制备银包覆铜型微粉.通过导电性实验讨论不同条件下粉体的电阻值变化,确定了制备银包覆铜型微粉的最佳工艺条件.

  10. Highly Thermal Conductive Nanocomposites

    Science.gov (United States)

    Sun, Ya-Ping (Inventor); Connell, John W. (Inventor); Veca, Lucia Monica (Inventor)

    2015-01-01

    Disclosed are methods for forming carbon-based fillers as may be utilized in forming highly thermal conductive nanocomposite materials. Formation methods include treatment of an expanded graphite with an alcohol/water mixture followed by further exfoliation of the graphite to form extremely thin carbon nanosheets that are on the order of between about 2 and about 10 nanometers in thickness. Disclosed carbon nanosheets can be functionalized and/or can be incorporated in nanocomposites with extremely high thermal conductivities. Disclosed methods and materials can prove highly valuable in many technological applications including, for instance, in formation of heat management materials for protective clothing and as may be useful in space exploration or in others that require efficient yet light-weight and flexible thermal management solutions.

  11. 以石墨为导电基质的黑孔化新技术%New technologies of graphite as the conductive matrix on the black hole process

    Institute of Scientific and Technical Information of China (English)

    遇世友; 李宁; 谢金平

    2012-01-01

    介绍了以石墨作为导电基质,进行印刷电路板孔金属化直接电镀的黑孔新技术,探讨了以石墨分散液在孔壁成膜的过程与导电原理。介绍了黑孔处理的工艺流程,以及黑孔质量与黑孔液稳定性的检测方法。通过孔横截面的金相显微照片确认了通孔与盲孔经过以石墨为导电基质的黑孔液处理后,均能获得完整的电镀铜层。%This article describes a new technology of graphite as a conductive matrix used in plated throughhole by direct plating. Surface film formation process and the conductivity principle of the graphite dispersion are investigated in porous. The black hole process and relative test are summarized. It is found that the hole crosssection of both blind holes and through holes after the black hole processes by means of direct plating copper can form a complete copper layer through metallographic photos.

  12. Investigation of the thermal conduction characteristics of meridian over human body based on infrared technology%基于红外技术的人体经脉热传输特性探讨

    Institute of Scientific and Technical Information of China (English)

    潘晓华; 许金森; 郑淑霞; 兰彩莲

    2012-01-01

    目的:探讨人体经脉线上热传输的特性.方法:以先进的红外热成像技术为支撑,利用中医热灸的方法,在人体任脉线上的穴位与非穴位点及旁开非经非穴点加热,诱发出人体经络的循经红外辐射轨迹.结果:可观察到与古代医典和中医学理论所描述的人体任脉循行路线基本一致的轨迹,在加热神阙穴旁开对照点时,还观察到与人体足少阴肾经循行路线基本一致的轨迹.对人体经络的热传输特性进行分析,揭示热在经脉线上的传输具有循经特异性.结论:实验观察到的现象很难用现代医学解剖学来解释,为经络的存在提供了更为有力的证据,对经脉线上的热传输特性的分析表明人体经脉线可能是热的良通道.%Objective: To investigate the thermal conduction characteristics along the meridian course over human body. Methods: Based on the principles of traditional Chinese medicine thermal moxibustion, elicited the infrared radiant track along meridian course over human body surface by local heating acupoint or non-acupoint along meridian course, recorded by advanced infrared thermal imaging technology. Results: The infrared radiant track along Conception Vessel course can be observed over human body surface. Their courses coincide or basically coincide with the Fourteen Meridians that described by the Chinese ancient physicians. It's surprise that IRRTM of Kidney Channel of Foot-Shaoyin displayed on the screen when local heating the non-acupoint beside Shenque. Analysis on the thermal conduction characteristics of the meridian over human body indicated that the thermal conductivity of the corresponding tissues along meridian course was better than that of nonmeridain area. Conclusion: These phcnomcnons are difficult to be explained by anatomy of modern medicine, but they provided some more convincing evidences for the existence of meridians, illustrated that meridian of human body may be the good channels

  13. Electrically conductive graphene/polystyrene nanocomposites obtained by self-assembly based latex template technology%乳液模板-自组装法制备石墨烯/聚苯乙烯导电复合材料

    Institute of Scientific and Technical Information of China (English)

    赵鹏飞; 罗勇悦; 何东宁; 彭政; 杨其

    2013-01-01

    利用乳液模板-静电自组装法,以甲基丙烯酰氧乙烯氯化铵(DMC)接枝改性的聚苯乙烯阳离子微球(PS+)为基体模板、石墨烯为导电介质,利用氧化石墨烯(GO)与PS+间强烈的静电相互作用直接在水中共组装,通过水合肼原位还原(in-situ reduction)成功制备了纳米石墨烯片(GNs)填充的聚苯乙烯(PS)导电复合材料。复合材料断口扫描电镜(SEM)和电性能结果表明,静电自组装有利于形成较为完善的石墨烯导电网络,GNs/PS 复合材料具有极低的导电逾渗值(0.09%(体积分数))和较高的饱和导电率(25.2S/m)。结合表面 zeta 电位、复合物微观形貌的表征,对组装机理和结构-性能关系进行了讨论。此外,热重热分析(TGA)结果表明,石墨烯的加入有效地改善了材料的热稳定性。%Electrically conductive graphene nanosheets filled polystyrene (GNs/PS)nanocomposites were fabrica-ted via electrostatic assembly integrated latex-template technology.Firstly,positive charged PS beads were synthesized with dispersed polymerization by using methacryloxyethyltrimethyl ammonium chloride as co-mon-omer,and then coassembled with graphene oxide.Eventually,GNs/PS nanocomposites with a honeycomb-like GNs framework were obtained after the follwoing in situ reduction and hot compression molding steps.Due to the well-constructed GNs network which elecrevealed by scanning electron microscope (SEM),the resulted GNs/PS nanocomposites show extremely low percolation threshold of 0.09vol% and high saturated conductivity of 25.2S/m.TGA analysis implied that the thermal stability of PS was improved by the addition of GNs.The mechanism of co-assembly and the formation of such microstructure were discussed.

  14. Multidimensional Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of multidimensional heat conduction. General heat conduction equation in three dimensions. Steay state, analytical solutions. The Laplace equation. Method of separation of variables. Principle of superposition. Shape factors. Transient, multidimensional heat conduction....

  15. Application Technology Research Unit

    Data.gov (United States)

    Federal Laboratory Consortium — To conduct fundamental and developmental research on new and improved application technologies to protect floricultural, nursery, landscape, turf, horticultural, and...

  16. Conductivity Measurements of Silverpastes

    Directory of Open Access Journals (Sweden)

    M. Dirix

    2010-01-01

    Full Text Available The development of three-dimensional printed circuit boards requires research on new materials which can easily be deformed. Conducting pastes are well suited for deformation even after they are applied to the dielectric carrier. This paper deals with measurements of the electrical conductivity of these conducting pastes. Two different conductivity measurement techniques are explained and carried out. The resulting measurements give an overview of the conductivity of several measured samples.

  17. 心理咨询技术在基层派出所治安调解中的应用%The Application of Psychological Consultation Technology When Conducting Security Mediations in Police Stations

    Institute of Scientific and Technical Information of China (English)

    杨青

    2016-01-01

    To deeply enhance the effectiveness of public order mediation work and improve police-community relations, this research explored the applications of psychological counseling technology in public order mediation work.The polices on basic level do paper interview by two issues, one is the problems in public order mediation, the other is the feedback and tips of psychological consulting methods'application in public order mediation.The conclusion is that, using listening technology, empathy technology, endoplasmic technology, self-open technology in public order mediation work can significantly improve basic level polices'work efficiency.The application of psychological con-sultation technology has brought new vitality in public order mediation work.%为进一步增强基层派出所治安调解工作的有效性,帮助改善警民关系,研究探索了将心理咨询技术引入治安调解工作中的具体应用方法与注意事项。通过对基层民警在进行治安调解时面临的主要问题和使用心理咨询技术的反馈与心得进行访谈发现,倾听技术、共情技术、面质技术、自我开放技术的应用可以有效提高基层民进治安调解工作的实际效果,为基层治安案件的调解工作注入了新的活力。

  18. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...

  19. The Conductivity of Solutions.

    Science.gov (United States)

    Rayner-Canham, Geoff

    1993-01-01

    Presents historical background and modern explanations for the popular demonstration of showing conductivity of solutions through the insertion of a light-bulb conductivity tester into deionized water and water with salt in it. (PR)

  20. Limits of proton conductivity.

    Science.gov (United States)

    Kreuer, Klaus-Dieter; Wohlfarth, Andreas

    2012-10-15

    Parasitic current seems to be the cause for the "highest proton conductivity" of a material reported to date. Kreuer and Wohlfarth verify this hypothesis by measuring the conductivity of the same materials after preparing them in a different way. They further explain the limits of proton conductivity and comment on the problems of determining the conductivity of small objects (e.g., whiskers, see picture).

  1. High-Thermal-Conductivity Fabrics

    Science.gov (United States)

    Chibante, L. P. Felipe

    2012-01-01

    Heat management with common textiles such as nylon and spandex is hindered by the poor thermal conductivity from the skin surface to cooling surfaces. This innovation showed marked improvement in thermal conductivity of the individual fibers and tubing, as well as components assembled from them. The problem is centered on improving the heat removal of the liquid-cooled ventilation garments (LCVGs) used by astronauts. The current design uses an extensive network of water-cooling tubes that introduces bulkiness and discomfort, and increases fatigue. Range of motion and ease of movement are affected as well. The current technology is the same as developed during the Apollo program of the 1960s. Tubing material is hand-threaded through a spandex/nylon mesh layer, in a series of loops throughout the torso and limbs such that there is close, form-fitting contact with the user. Usually, there is a nylon liner layer to improve comfort. Circulating water is chilled by an external heat exchanger (sublimator). The purpose of this innovation is to produce new LCVG components with improved thermal conductivity. This was addressed using nanocomposite engineering incorporating high-thermalconductivity nanoscale fillers in the fabric and tubing components. Specifically, carbon nanotubes were added using normal processing methods such as thermoplastic melt mixing (compounding twin screw extruder) and downstream processing (fiber spinning, tubing extrusion). Fibers were produced as yarns and woven into fabric cloths. The application of isotropic nanofillers can be modeled using a modified Nielsen Model for conductive fillers in a matrix based on Einstein s viscosity model. This is a drop-in technology with no additional equipment needed. The loading is limited by the ability to maintain adequate dispersion. Undispersed materials will plug filtering screens in processing equipment. Generally, the viscosity increases were acceptable, and allowed the filled polymers to still be

  2. Conducting polymer materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2003-01-01

    Full Text Available Conducting polymers represent a very interesting group of polymer materials Investigation of the synthesis, structure and properties of these materials has been the subject of considerable research efforts in the last twenty years. A short presentating of newer results obtained by investigating of the synthesis, structure and properties of two basic groups of conducting polymers: a conducting polymers the conductivity of which is the result of their molecular structure, and b conducting polymer composites (EPC, is given in this paper. The applications and future development of this group of polymer materials is also discussed.

  3. Fabrication Technology

    Energy Technology Data Exchange (ETDEWEB)

    Blaedel, K.L.

    1993-03-01

    The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.

  4. Fabrication Technology

    Energy Technology Data Exchange (ETDEWEB)

    Blaedel, K.L.

    1993-03-01

    The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.

  5. Voltammetry of conducting polymers

    OpenAIRE

    Gulaboski, Rubin

    2014-01-01

    The search for new materials for enhancing electrical conductivity of various materials is one of the most active research areas today. Conducting polymers represent a unique class of organic materials that have been used in many applications such as bioelectronics, sensors, corrosion protection, electrocatalysis, and energy storage devices. Application of the conductive polymers in electrochemistry is almost inevitable in order to get better features of the voltammetric systems ...

  6. Graphene Conductance Uniformity Mapping

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due; Petersen, Dirch Hjorth; Bøggild, Peter

    2012-01-01

    We demonstrate a combination of micro four-point probe (M4PP) and non-contact terahertz time-domain spectroscopy (THz-TDS) measurements for centimeter scale quantitative mapping of the sheet conductance of large area chemical vapor deposited graphene films. Dual configuration M4PP measurements......, demonstrated on graphene for the first time, provide valuable statistical insight into the influence of microscale defects on the conductance, while THz-TDS has potential as a fast, non-contact metrology method for mapping of the spatially averaged nanoscopic conductance on wafer-scale graphene with scan times......, dominating the microscale conductance of the investigated graphene film....

  7. Electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  8. Charge-transport model for conducting polymers

    Science.gov (United States)

    Dongmin Kang, Stephen; Jeffrey Snyder, G.

    2016-11-01

    The growing technological importance of conducting polymers makes the fundamental understanding of their charge transport extremely important for materials and process design. Various hopping and mobility edge transport mechanisms have been proposed, but their experimental verification is limited to poor conductors. Now that advanced organic and polymer semiconductors have shown high conductivity approaching that of metals, the transport mechanism should be discernible by modelling the transport like a semiconductor with a transport edge and a transport parameter s. Here we analyse the electrical conductivity and Seebeck coefficient together and determine that most polymers (except possibly PEDOT:tosylate) have s = 3 and thermally activated conductivity, whereas s = 1 and itinerant conductivity is typically found in crystalline semiconductors and metals. The different transport in polymers may result from the percolation of charge carriers from conducting ordered regions through poorly conducting disordered regions, consistent with what has been expected from structural studies.

  9. Is Conductive Education Transplantable?

    Science.gov (United States)

    Bairstow, Phillip; Cochrane, Raymond

    1993-01-01

    This article highlights difficulties in replicating the Andras Peto Institute for Motor Disorders in Hungary by establishing the Birmingham (England) Institute for Conductive Education, for children with cerebral palsy. Difficulties included a lack of conductive education principles in clear English, failure to properly identify children who could…

  10. Conductive fabric seal

    Energy Technology Data Exchange (ETDEWEB)

    Livesay, Ronald Jason; Mason, Brandon William; Kuhn, Michael Joseph; Rowe, Nathan Carl

    2017-04-04

    Disclosed are several examples of a system and method for detecting if an article is being tampered with. Included is a covering made of a substrate that is coated with a layer of an electrically conductive material that forms an electrically conductive surface having an electrical resistance. The covering is configured to at least partially encapsulate the article such that the article cannot be tampered with, without modifying the electrical resistance of the electrically conductive surface of the covering. A sensing device is affixed to the electrically conductive surface of the covering and the sensing device monitors the condition of the covering by producing a signal that is indicative of the electrical resistance of the electrically conductive surface of the covering. A measured electrical resistance that differs from a nominal electrical resistance is indicative of a covering that is being tampered with and an alert is communicated to an observer.

  11. Thermal Conductivity of Diamond Composites

    Directory of Open Access Journals (Sweden)

    Fedor M. Shakhov

    2009-12-01

    Full Text Available A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m·K and 400 W/(m·K, respectively. Significantly, the thermal expansion coefficient of metals differs markedly from those of the materials employed in semiconductor electronics (mostly silicon; one should add here the low electrical resistivity metals possess. By contrast, natural single-crystal diamond is known to feature the highest thermal conductivity of all the bulk materials studied thus far, as high as 2,200 W/(m·K. Needless to say, it cannot be applied in heat removal technology because of high cost. Recently, SiC- and AlN-based ceramics have started enjoying wide use as heat sink materials; the thermal conductivity of such composites, however, is inferior to that of metals by nearly a factor two. This prompts a challenging scientific problem to develop diamond-based composites with thermal characteristics superior to those of aluminum and copper, adjustable thermal expansion coefficient, low electrical conductivity and a moderate cost, below that of the natural single-crystal diamond. The present review addresses this problem and appraises the results reached by now in studying the possibility of developing composites in diamond-containing systems with a view of obtaining materials with a high thermal conductivity.

  12. Trends of Training Courses Conducted in the Human Resources Development Center of the National Institute for Quantum and Radiological Science and Technology After the Fukushima Dai-Ichi Nuclear Power Plant Accident.

    Science.gov (United States)

    Shimizu, Yuko; Iida, Haruzo; Nenoi, Mitsuru

    2017-07-01

    Environmental contamination with radioactive materials caused by the Fukushima Dai-ichi Nuclear Power Plant (NPP) accident in 2011 raised a serious health concern among residents in Japan, and the demand for radiation experts who can handle the radiation-associated problems has increased. The Human Resources Development Center (HRDC) of the National Institute of for Quantum and Radiological Science and Technology in Japan has offered a variety of training programs covering a wide range of technologies associated with radiation since 1959. In this study, the time-course change in the number and age of the applicants for training programs regularly scheduled at HRDC were analyzed to characterize the demand after the NPP accident. The results suggested that the demand for the training of industrial radiation experts elevated sharply after the NPP accident followed by a prompt decrease, and that young people were likely stimulated to learn the basics of radiation. The demand for the training of medical radiation experts was kept high regardless of the NPP accident. The demand for the training of radiation emergency experts fluctuated apparently with three components: a terminating demand after the criticality accident that occurred in 1999, an urgent demand for handling of the NPP accident, and a sustained demand from local governments that undertook reinforcement of their nuclear disaster prevention program. The demand for the training of school students appeared to be increasing after the NPP accident. It could be foreseen that the demand for training programs targeting young people and medical radiation experts would be elevated in future.

  13. Electrically Conducting Polymers.

    Science.gov (United States)

    1983-04-07

    polypyrrole, the oxidized polythiophene is also unstable in air. A rather different class of conducting polymers lies outside the scope of this review but...AD-A129 488 ELECTRICALLY CONDUCTING POLYNERS(U) IBM RESEARCH LAB / SAN JOSE CA W D GILL ET RL. 97 APR 83 TR-B UNCLASSIFIED F/G 7/3 N I Ihhhhhhhhhhhhl...00 Contract N00014-80-C-0779 Technical Report No. 8 *Electrically Conducting Polymers by W. D. Gill, T. C. Clarke, and G. B. Street Prepared for

  14. Philosophy of Technology Assumptions in Educational Technology Leadership

    Science.gov (United States)

    Webster, Mark David

    2017-01-01

    A qualitative study using grounded theory methods was conducted to (a) examine what philosophy of technology assumptions are present in the thinking of K-12 technology leaders, (b) investigate how the assumptions may influence technology decision making, and (c) explore whether technological determinist assumptions are present. Subjects involved…

  15. Philosophy of Technology Assumptions in Educational Technology Leadership

    Science.gov (United States)

    Webster, Mark David

    2017-01-01

    A qualitative study using grounded theory methods was conducted to (a) examine what philosophy of technology assumptions are present in the thinking of K-12 technology leaders, (b) investigate how the assumptions may influence technology decision making, and (c) explore whether technological determinist assumptions are present. Subjects involved…

  16. Conductive open frameworks

    Science.gov (United States)

    Yaghi, Omar M.; Wan, Shun; Doonan, Christian J.; Wang, Bo; Deng, Hexiang

    2016-02-23

    The disclosure relates generally to materials that comprise conductive covalent organic frameworks. The disclosure also relates to materials that are useful to store and separate gas molecules and sensors.

  17. Conductivities from attractors

    CERN Document Server

    Erdmenger, Johanna; Goulart, Prieslei; Witkowski, Piotr

    2016-01-01

    In the context of applications of the AdS/CFT correspondence to condensed matter physics, we compute conductivities for field theory duals of dyonic planar black holes in 3+1-dimensional Einstein-Maxwell-dilaton theories at zero temperature. We combine the near-horizon data obtained via Sen's entropy function formalism with known expressions for conductivities. In this way we express the conductivities in terms of the extremal black hole charges. We apply our approach to three different examples for dilaton theories for which the background geometry is not known explicitly. For a constant scalar potential, the thermal conductivity explicitly scales as $\\alpha_{xy}\\sim N^{3/2}$, as expected.

  18. Nerve conduction velocity

    Science.gov (United States)

    ... to measure the speed of the nerve signals. Electromyography (recording from needles placed into the muscles) is ... Often, the nerve conduction test is followed by electromyography (EMG). In this test, needles are placed into ...

  19. Dissecting holographic conductivities

    CERN Document Server

    Davison, Richard A

    2015-01-01

    The DC thermoelectric conductivities of holographic systems in which translational symmetry is broken can be efficiently computed in terms of the near-horizon data of the dual black hole. By calculating the frequency dependent conductivities to the first subleading order in the momentum relaxation rate, we give a physical explanation for these conductivities in the simplest such example, in the limit of slow momentum relaxation. Specifically, we decompose each conductivity into the sum of a coherent contribution due to momentum relaxation and an incoherent contribution, due to intrinsic current relaxation. This decomposition is different from those previously proposed, and is consistent with the known hydrodynamic properties in the translationally invariant limit. This is the first step towards constructing a consistent theory of charged hydrodynamics with slow momentum relaxation.

  20. Nonequilibrium mesoscopic conductance fluctuations

    Science.gov (United States)

    Ludwig, T.; Blanter, Ya. M.; Mirlin, A. D.

    2004-12-01

    We investigate the amplitude of mesoscopic fluctuations of the differential conductance of a metallic wire at arbitrary bias voltage V . For noninteracting electrons, the variance ⟨δg2⟩ increases with V . The asymptotic large- V behavior is ⟨δg2⟩˜V/Vc (where eVc=D/L2 is the Thouless energy), in agreement with the earlier prediction by Larkin and Khmelnitskii. We find, however, that this asymptotics has a very small numerical prefactor and sets in at very large V/Vc only, which strongly complicates its experimental observation. This high-voltage behavior is preceded by a crossover regime, V/Vc≲30 , where the conductance variance increases by a factor ˜3 as compared to its value in the regime of universal conductance fluctuations (i.e., at V→0 ). We further analyze the effect of dephasing due to the electron-electron scattering on ⟨δg2⟩ at high voltages. With the Coulomb interaction taken into account, the amplitude of conductance fluctuations becomes a nonmonotonic function of V . Specifically, ⟨δg2⟩ drops as 1/V for voltages V≫gVc , where g is the dimensionless conductance. In this regime, the conductance fluctuations are dominated by quantum-coherent regions of the wire adjacent to the reservoirs.

  1. Proton conducting cerate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, G.W.; Pederson, L.R.; Armstrong, T.R.; Bates, J.L.; Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-08-01

    Cerate perovskites of the general formula AM{sub x}Ce{sub 1-x}O{sub 3-{delta}}, where A = Sr or Ba and where M = Gd, Nd, Y, Yb or other rare earth dopant, are known to conduct a protonic current. Such materials may be useful as the electrolyte in a solid oxide fuel cell operating at intermediate temperatures, as an electrochemical hydrogen separation membrane, or as a hydrogen sensor. Conduction mechanisms in these materials were evaluated using dc cyclic voltammetry and mass spectrometry, allowing currents and activation energies for proton, electron, and oxygen ion contributions to the total current to be determined. For SrYb{sub 0.05}Ce{sub 0.95}O{sub 3-{delta}}, one of the best and most environmentally stable compositions, proton conduction followed two different mechanisms: a low temperature process, characterized by an activation energy of 0.42{+-}0.04 eV, and a high temperature process, characterized by an activation energy of 1.38{+-}0.13 eV. It is believed that the low temperature process is dominated by grain boundary conduction while bulk conduction is responsible for the high temperature process. The activation energy for oxygen ion conduction (0.97{+-}0.10 eV) agrees well with other oxygen conductors, while that for electronic conduction, 0.90{+-}0.09 eV, is affected by a temperature-dependent electron carrier concentration. Evaluated by direct measurement of mass flux through a dense ceramic with an applied dc field, oxygen ions were determined to be the majority charge carrier except at the lowest temperatures, followed by electrons and then protons.

  2. Heat conduction. 3. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Jiji, Latif M. [City Coll. of City Univ. of New York, NY (United States). Dept. of Mechanical Engineering

    2009-07-01

    This textbook presents the classical topics of conduction heat transfer and extends the coverage to include chapters on perturbation methods, heat transfer in living tissue, and microscale conduction. This makes the book unique among the many published textbook on conduction heat transfer. Other noteworthy features of the book are: The material is organized to provide students with the tools to model, analyze and solve a wide range of engineering applications involving conduction heat transfer. Mathematical techniques are presented in a clear and simplified fashion to be used as instruments in obtaining solutions. The simplicity of one-dimensional conduction is used to drill students in the role of boundary conditions and to explore a variety of physical conditions that are of practical interest. Examples are carefully selected to illustrate the application of principles and the construction of solutions. Students are trained to follow a systematic problem solving methodology with emphasis on thought process, logic, reasoning and verification. Solutions to all examples and end-of-chapter problems follow an orderly problems solving approach. (orig.)

  3. Conducting everyday life

    DEFF Research Database (Denmark)

    Juhl, Pernille

    In the paper I discuss how small children (0-4 year) develop through ‘conducting everyday life’ across contexts (Holzkamp 2013). I discuss how this process of conducting everyday life is essential when discussing the ‘good life for children’ from a child perspective. These issues are addressed...... by using materials from my ongoing Ph.D. project which is based on cultural-historical research traditions and critical psychological conceptualizations. The project is a qualitative study of 6 children, who for various reasons are defined as being children-at-risk. Due to concerns about their development......, they are involved in preventive interventions. I conducted participatory observations with the children in their everyday life. Overall, the study stresses that even small children must be perceived as active participants who act upon and struggle with different conditions and meaning making processes across...

  4. Conducting everyday life

    DEFF Research Database (Denmark)

    Juhl, Pernille

    In the paper I discuss how small children (0-4 year) develop through ‘conducting everyday life’ across contexts (Holzkamp 2013). I discuss how this process of conducting everyday life is essential when discussing the ‘good life for children’ from a child perspective. These issues are addressed......, they are involved in preventive interventions. I conducted participatory observations with the children in their everyday life. Overall, the study stresses that even small children must be perceived as active participants who act upon and struggle with different conditions and meaning making processes across...... by using materials from my ongoing Ph.D. project which is based on cultural-historical research traditions and critical psychological conceptualizations. The project is a qualitative study of 6 children, who for various reasons are defined as being children-at-risk. Due to concerns about their development...

  5. Low thermal conductivity oxides

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei; Phillpot, Simon R.; Wan, Chunlei; Chernatynskiy, Aleksandr; Qu, Zhixue

    2012-10-09

    Oxides hold great promise as new and improved materials for thermal-barrier coating applications. The rich variety of structures and compositions of the materials in this class, and the ease with which they can be doped, allow the exploration of various mechanisms for lowering thermal conductivity. In this article, we review recent progress in identifying specific oxides with low thermal conductivity from both theoretical and experimental perspectives. We explore the mechanisms of lowering thermal conductivity, such as introducing structural/chemical disorder, increasing material density, increasing the number of atoms in the primitive cell, and exploiting the structural anisotropy. We conclude that further systematic exploration of oxide crystal structures and chemistries are likely to result in even further improved thermal-barrier coatings.

  6. Responsible conduct of research

    CERN Document Server

    Shamoo, Adil E

    2015-01-01

    Since the early 2000s, the field of Responsible Conduct of Research has become widely recognized as essential to scientific education, investigation, and training. At present, research institutions with public funding are expected to have some minimal training and education in RCR for their graduate students, fellows and trainees. These institutions also are expected to have a system in place for investigating and reporting misconduct in research or violations of regulations in research with human subjects, or in their applications to federal agencies for funding. Public scrutiny of the conduct of scientific researchers remains high. Media reports of misconduct scandals, biased research, violations of human research ethics rules, and moral controversies in research occur on a weekly basis. Since the 2009 publication of the 2nd edition of Shamoo and Resnik's Responsible Conduct of Research, there has been a vast expansion in the information, knowledge, methods, and diagnosis of problems related to RCR and the ...

  7. Chiral conducting polymers.

    Science.gov (United States)

    Kane-Maguire, Leon A P; Wallace, Gordon G

    2010-07-01

    This critical review describes the preparation and properties of a relatively new class of chiral macromolecules, namely chiral conducting polymers. It focuses in particular on examples based on polypyrrole, polythiophene and polyaniline. They possess remarkable properties, combining not only chirality with electrical conductivity but also the ability to undergo facile redox and pH switching. These unique properties have opened up a range of exciting new potential applications, including as chiral sensors, as novel stationary phases for chiral separations, and as chiral electrodes for electrochemical asymmetric synthesis (153 references).

  8. Natures of Conduct

    DEFF Research Database (Denmark)

    Sielemann, Rasmus Basse

    Natures of Conduct explores the rationalities, practices and techniques of government processes in the Danish West Indies in the period between the late eighteenth century to the end of Danish colonial rule in 1917. In doing so, it engages Michel Foucault’s concepts of governmentality and the ‘di......Natures of Conduct explores the rationalities, practices and techniques of government processes in the Danish West Indies in the period between the late eighteenth century to the end of Danish colonial rule in 1917. In doing so, it engages Michel Foucault’s concepts of governmentality...

  9. Conducted interference, challenges and interference cases

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2015-01-01

    Conducted interference has become increasingly problematic in the past few years, especially within the 2-150 kHz band. The high penetration of non-linear loads, combined with distributed generation, will influence the voltage profile, i.e. the power quality. New technologies will introduce new type

  10. Conducted interference, challenges and interference cases

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2015-01-01

    Conducted interference has become increasingly problematic in the past few years, especially within the 2-150 kHz band. The high penetration of non-linear loads, combined with distributed generation, will influence the voltage profile, i.e. the power quality. New technologies will introduce new

  11. Conducting Social Experiments.

    Science.gov (United States)

    Boruch, Robert F.

    1987-01-01

    It is difficult to conduct randomized field experiments. In the past decade, the use of alternative randomization plans and incentives has contributed to their operational feasibility; legal, ethical, and professional arguments for experimentation have matured; and expectations have become better aligned with practical constraints that are likely…

  12. Conducting Educational Design Research

    Science.gov (United States)

    McKenney, Susan; Reeves, Thomas

    2012-01-01

    Educational design research blends scientific investigation with systematic development and implementation of solutions to educational problems. Empirical investigation is conducted in real learning settings--not laboratories--to craft usable and effective solutions. At the same time, the research is carefully structured to produce theoretical…

  13. New code of conduct

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    During his talk to the staff at the beginning of the year, the Director-General mentioned that a new code of conduct was being drawn up. What exactly is it and what is its purpose? Anne-Sylvie Catherin, Head of the Human Resources (HR) Department, talked to us about the whys and wherefores of the project.   Drawing by Georges Boixader from the cartoon strip “The World of Particles” by Brian Southworth. A code of conduct is a general framework laying down the behaviour expected of all members of an organisation's personnel. “CERN is one of the very few international organisations that don’t yet have one", explains Anne-Sylvie Catherin. “We have been thinking about introducing a code of conduct for a long time but lacked the necessary resources until now”. The call for a code of conduct has come from different sources within the Laboratory. “The Equal Opportunities Advisory Panel (read also the "Equal opportuni...

  14. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L

    2006-01-01

    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  15. Transient Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of transient heat conduction.Fourier's law. General heat conducation equation. Thermal diffusivity. Biot and Fourier numbers. Lumped analysis and time constant. Semi-infinite body: fixed surface temperature, convective heat transfer at the surface, or constant surface heat flux...

  16. Conducting Educational Design Research

    Science.gov (United States)

    McKenney, Susan; Reeves, Thomas

    2012-01-01

    Educational design research blends scientific investigation with systematic development and implementation of solutions to educational problems. Empirical investigation is conducted in real learning settings--not laboratories--to craft usable and effective solutions. At the same time, the research is carefully structured to produce theoretical…

  17. Conducting metal dithiolate complexes

    DEFF Research Database (Denmark)

    Underhill, A. E.; Ahmad, M. M.; Turner, D. J.;

    1985-01-01

    Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound...

  18. Conductance eigenchannels in nanocontacts

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Sørensen, Mads Reinholdt; Jacobsen, Karsten Wedel

    1997-01-01

    The electronic conductance of metal nanocontacts is analyzed in terms of eigenchannels for the transmission. The transmission through individual eigenchannels is calculated numerically for realistic models of gold point contacts based on molecular-dynamics simulation of the elongation of a contac...

  19. Conductive Education Perspectives.

    Science.gov (United States)

    Spivack, Frieda

    1995-01-01

    This article describes conductive education for children with neuromotor disabilities and identifies its major concepts, including orthofunction, rhythmic intention, and verbal regulation. Also addressed are the role of the conductor and the group and the training of conductors at the Peto Institute in Hungary. Research on the method's…

  20. CONFINING CONDUCTING POLYANILINE IN A STABLE INORGANIC NETWORK

    Institute of Scientific and Technical Information of China (English)

    Yan-ju Wang; Nian-jiang Liu; Jin-long Lu; Jian Liu; Ji Li; Xia-bin Jing; Fo-song Wang; Xian-hong Wang

    2003-01-01

    Water soluble conducting polyaniline with electrical conductivity of 10-1-10-2 S/cm was prepared employing dopant induced water solubility technology. The water resistance of the conducting film was significantly improved employing sol-gel hybrids method, especially when the conductive polyaniline loading was below 30 wt%. The reason for the improvement is that the conducting polyaniline chains are confined in a stable inorganic network.

  1. Nanostructured conductive polymeric materials

    Science.gov (United States)

    Al-Saleh, Mohammed H.

    Conductive polymer composites (CPCs) are a suitable alternative to metals in many applications due to their light-weight, corrosion resistance, low cost, ease of processing and design flexibility. CPCs have been formulated using different types of conductive fillers. In this PhD thesis, the focus is on CPCs for electrostatic discharge (ESD) protection and electromagnetic interference (EMI) attenuation. Despite the versatility of conductive fillers, carbon black (CB) has been the dominant filler to make CPCs for ESD protection applications because CB/polymer composites have a cost advantage over all other CPCs. For EMI shielding, stainless steel fibres and metal coated fibers are the preferred fillers, however CPCs made of those fibers are not the dominant EMI shielding materials. Metal coated and polymer plated polymers are the most widely used EMI shielding options. The limited use of CPCs in the EMI shielding market is because the high filler loading required to formulate a composite with an adequate level of shielding remarkably increases the composite price. In order to increase the competitiveness of CPCs, percolation threshold should be minimized as much as possible and composites with high EMI shielding capabilities at low filler loading should be formulated because all conductive fillers are expensive compared to polymers. In this thesis, two different methodologies to reduce percolation threshold in CPCs have been successfully developed and a CPC with exceptional EMI shielding capability has been formulated using copper nanowires as conductive filler. The first percolation threshold reduction technique is based on the selective localization of CB at the interface of immiscible polymer blend. The technique requires adding a copolymer that prefers the blend's interface and for which CB nanoparticles has the highest affinity. The second method is based on producing a CPC powder and then using this powder as a conductive filler to produce composite by dry

  2. 'Stuffed' conducting polymers

    DEFF Research Database (Denmark)

    Winther-Jensen, Bjørn; Chen, Jun; West, Keld

    2005-01-01

    Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid. In the pres......Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid....... In the present work we demonstrate this principle on three different CP's: polypyrrole (PPy), poly-terthiophene (PTTh) and poly(3,4-ethylenedioxy thiophene) (PEDT), using ferrocene as a model molecule to be trapped in the polymer films. (c) 2005 Elsevier Ltd. All rights reserved....

  3. Conducting Polymer Based Nanobiosensors

    Directory of Open Access Journals (Sweden)

    Chul Soon Park

    2016-06-01

    Full Text Available In recent years, conducting polymer (CP nanomaterials have been used in a variety of fields, such as in energy, environmental, and biomedical applications, owing to their outstanding chemical and physical properties compared to conventional metal materials. In particular, nanobiosensors based on CP nanomaterials exhibit excellent performance sensing target molecules. The performance of CP nanobiosensors varies based on their size, shape, conductivity, and morphology, among other characteristics. Therefore, in this review, we provide an overview of the techniques commonly used to fabricate novel CP nanomaterials and their biosensor applications, including aptasensors, field-effect transistor (FET biosensors, human sense mimicking biosensors, and immunoassays. We also discuss prospects for state-of-the-art nanobiosensors using CP nanomaterials by focusing on strategies to overcome the current limitations.

  4. Phoenix Conductivity Probe

    Science.gov (United States)

    2008-01-01

    This image taken by the Surface Stereo Imager on Sol 49, or the 49th Martian day of the mission (July 14, 2008), shows thermal and electrical conductivity probe on NASA's Phoenix Mars Lander's Robotic Arm. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Conducting Thermoset Polymers.

    Science.gov (United States)

    2007-11-02

    polymers conducting. The acetylene-terminated Schiff base and acetylene-terminated polythiophene monomers were first cured, then doped with iodine... Schiff base thermoset was implanted with high energy argon ions using a commercial ion implanter. Electron spin resonance, photoluminescence, and...photoabsorption data suggest that polarons can form in the doped and undoped forms of the acetylene-terminated Schiff base and polythiophene thermoset

  6. Thermally conductive polymers

    Science.gov (United States)

    Byrd, N. R.; Jenkins, R. K.; Lister, J. L. (Inventor)

    1971-01-01

    A thermally conductive polymer is provided having physical and chemical properties suited to use as a medium for potting electrical components. The polymer is prepared from hydroquinone, phenol, and formaldehyde, by conventional procedures employed for the preparation of phenol-formaldehyde resins. While the proportions of the monomers can be varied, a preferred polymer is formed from the monomers in a 1:1:2.4 molar or ratio of hydroquinone:phenol:formaldehyde.

  7. STUDIES ON ENHANCED CONDUCTIVITY OF STRETCHED CONDUCTING POLYMERS

    Institute of Scientific and Technical Information of China (English)

    WAN Meixiang

    1995-01-01

    A physical model of series of the conductivity on chain and the interchain conductivity between chains is proposed to explain enhanced conductivity of stretched conducting polymers.This model suggests that the enhanced conductivity for stretched conducting polymers might be due to increasing of the interchain conductivity between chains along the elongation direction after drawing processes if the conductivity on chain is assumed much larger than that of the interchain conductivity between chains. According to this model, it is expected that the temperature dependence of conductivity measured by four-probe method for stretched conducting polymers is controlled by a variation of the interchain conductivity between chains with temperature, which can be used to explain that a metallic temperature dependence of conductivity for stretched conducting polymers is not observed although the conductivity along the elongation direction is enhanced by two or three orders of magnitude.

  8. Conductive dense hydrogen.

    Science.gov (United States)

    Eremets, M I; Troyan, I A

    2011-11-13

    Molecular hydrogen is expected to exhibit metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature, T(c), of 200-400 K, and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid. It may potentially be recovered metastably at ambient pressures. However, experiments carried out at low temperatures, Thydrogen remains in the molecular insulating state. Here we report on the transformation of normal molecular hydrogen at room temperature (295 K) to a conductive and metallic state. At 200 GPa the Raman frequency of the molecular vibron strongly decreased and the spectral width increased, evidencing a strong interaction between molecules. Deuterium behaved similarly. Above 220 GPa, hydrogen became opaque and electrically conductive. At 260-270 GPa, hydrogen transformed into a metal as the conductance of hydrogen sharply increased and changed little on further pressurizing up to 300 GPa or cooling to at least 30 K; and the sample reflected light well. The metallic phase transformed back at 295 K into molecular hydrogen at 200 GPa. This significant hysteresis indicates that the transformation of molecular hydrogen into a metal is accompanied by a first-order structural transition presumably into a monatomic liquid state. Our findings open an avenue for detailed and comprehensive studies of metallic hydrogen.

  9. Conduction heat transfer solutions

    Energy Technology Data Exchange (ETDEWEB)

    VanSant, J.H.

    1983-08-01

    This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. The introduction presents a synopsis on the theory, differential equations, and boundary conditions for conduction heat transfer. Some discussion is given on the use and interpretation of solutions. Supplementary data such as mathematical functions, convection correlations, and thermal properties are included for aiding the user in computing numerical values from the solutions. 155 figs., 92 refs., 9 tabs.

  10. Robust mixed conducting membrane structure

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a membrane structure, comprising in said order a first electronically conducting layer, an ionically conducting layer, and a second electronically conducting layer, characterized in that the first and second electronically conducting layers are internally short circ...

  11. Thermal contact conductance

    CERN Document Server

    Madhusudana, Chakravarti V

    2013-01-01

    The work covers both theoretical and practical aspects of thermal contact conductance. The theoretical discussion focuses on heat transfer through spots, joints, and surfaces, as well as the role of interstitial materials (both planned and inadvertent). The practical discussion includes formulae and data that can be used in designing heat-transfer equipment for a variety of joints, including special geometries and configurations. All of the material has been updated to reflect the latest advances in the field.

  12. Electrically Conductive Porous Membrane

    Science.gov (United States)

    Burke, Kenneth Alan (Inventor)

    2014-01-01

    The present invention relates to an electrically conductive membrane that can be configured to be used in fuel cell systems to act as a hydrophilic water separator internal to the fuel cell, or as a water separator used with water vapor fed electrolysis cells, or as a water separator used with water vapor fed electrolysis cells, or as a capillary structure in a thin head pipe evaporator, or as a hydrophobic gas diffusion layer covering the fuel cell electrode surface in a fuel cell.

  13. Conductive dense hydrogen

    Science.gov (United States)

    Eremets, M.; Troyan, I.

    2012-12-01

    Hydrogen at ambient pressures and low temperatures forms a molecular crystal which is expected to display metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature Tc of 200-400 K. The superconductor may potentially be recovered metastably at ambient pressures, and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid. Recent experiments performed at low temperatures T 220 GPa, new Raman modes arose, providing evidence for the transformation to a new opaque and electrically conductive phase IV. Above 260 GPa, in the next phase V, hydrogen reflected light well. Its resistance was nearly temperature-independent over a wide temperature range, down to 30 K, indicating that the hydrogen was metallic. Releasing the pressure induced the metallic phase to transform directly into molecular hydrogen with significant hysteresis at 200 GPa and 295 K. These data were published in our paper: M. I. Eremets and I. A. Troyan "Conductive dense hydrogen." Nature Materials 10: 927-931. We will present also new results on hydrogen: phase diagram with phases IV and V determined in P,T domain up to 300 GPa and 350 K. We will also discuss possible structures of phase IV based on our Raman and infrared measurements up to 300 GPa.

  14. Radiative thermal conduction fronts

    Science.gov (United States)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-01-01

    The discovery of the O VI interstellar absorption lines in our Galaxy by the Copernicus observatory was a turning point in our understanding of the Interstellar Medium (ISM). It implied the presence of widespread hot (approx. 10 to the 6th power K) gas in disk galaxies. The detection of highly ionized species in quasi-stellar objects' absorption spectra may be the first indirect observation of this hot phase in external disk galaxies. Previous efforts to understand extensive O VI absorption line data from our Galaxy were not very successful in locating the regions where this absorption originates. The location at interfaces between evaporating ISM clouds and hot gas was favored, but recent studies of steady-state conduction fronts in spherical clouds by Ballet, Arnaud, and Rothenflug (1986) and Bohringer and Hartquist (1987) rejected evaporative fronts as the absorption sites. Researchers report here on time-dependent nonequilibrium calculations of planar conductive fronts whose properties match well with observations, and suggest reasons for the difference between the researchers' results and the above. They included magnetic fields in additional models, not reported here, and the conclusions are not affected by their presence.

  15. Robust mixed conducting membrane structure

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a membrane structure, comprising in said order a first electronically conducting layer, an ionically conducting layer, and a second electronically conducting layer, characterized in that the first and second electronically conducting layers are internally short...... circuited. The present invention further provides a method of producing the above membrane structure, comprising the steps of : providing a ionically conducting layer; applying at least one layer of electronically conducting material on each side of said ionically conducting layer; sintering the multilayer...

  16. Conductive concrete wins Popular Science prize

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-06-01

    A conductive concrete developed by a research team at IRC (Institute for Research in Construction, National Research Council of Canada) has won a prize in the home technology category because of its possible use in heating homes. Following the award, there have been a number of inquiries regarding possible applications for the concrete. Greatest interests in the concrete have been in its potential to heat buildings by using it as flooring. Other possible applications included de-icing pavements to building warming pads for parking aircraft. Essentially, carbon fibres and conductive particles are added to a concrete mix in such a quantity that they form a network within the mix, ensuring high electrical conductivity. A demonstration project is underway to build a 20 by 80 foot conductive concrete pad to test the material`s capability as a snow removal and de-icing tool.

  17. Conducting polymers for electrochemical DNA sensing.

    Science.gov (United States)

    Peng, Hui; Zhang, Lijuan; Soeller, Christian; Travas-Sejdic, Jadranka

    2009-04-01

    Conducting polymers (CPs) are a class of polymeric materials that have attracted considerable interest because of their unique electronic, chemical and biochemical properties, making them suitable for numerous applications such as energy storage, memory devices, chemical sensors, and in electrocatalysis. Conducting polymer-based electrochemical DNA sensors have shown applicability in a number of areas related to human health such as diagnosis of infectious diseases, genetic mutations, drug discovery, forensics and food technology due to their simplicity and high sensitivity. This review paper summarizes the advances in electrochemical DNA sensing based on conducting polymers as active substrates. The various conducting polymers used for DNA detection, along with different DNA immobilization and detection methodologies are presented. Current trends in this field and newly developed applications due to advances in nanotechnology are also discussed.

  18. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    B D Malhotra; Rahul Singhal

    2003-08-01

    Biomolecular electronics is rapidly evolving from physics, chemistry, biology, electronics and information technology. Organic materials such as proteins, pigments and conducting polymers have been considered as alternatives for carrying out the functions that are presently being performed by semiconductor silicon. Conducting polymers such as polypyrroles, polythiophenes and polyanilines have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices. Our group has been actively working towards the application of conducting polymers to Schottky diodes, metal–insulator–semiconductor (MIS) devices and biosensors for the past 10 years. This paper is a review of some of the results obtained at our laboratory in the area of conducting polymer biomolecular electronics.

  19. Conducted Electromagnetic Interference (EMI) in Smart Grids

    CERN Document Server

    Smolenski, Robert

    2012-01-01

    As power systems develop to incorporate renewable energy sources, the delivery systems may be disrupted by the changes involved. The grid’s technology and management must be developed to form Smart Grids between consumers, suppliers and producers. Conducted Electromagnetic Interference (EMI) in Smart Grids considers the specific side effects related to electromagnetic interference (EMI) generated by the application of these Smart Grids. Conducted Electromagnetic Interference (EMI) in Smart Grids presents specific EMI conducted phenomena as well as effective methods to filter and handle them once identified. After introduction to Smart Grids, the following sections cover dedicated methods for EMI reduction and potential avenues for future development including chapters dedicated to: •potential system services, •descriptions of the EMI spectra shaping methods, •methods of interference voltage compensation, and theoretical analysis of experimental results.  By focusing on these key aspects, Conducted El...

  20. Ion-conducting membranes

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard L.; Chen, Qingmei; Liu, Zengcai; Kutz, Robert

    2016-06-21

    An ion conducting polymeric composition mixture comprises a copolymer of styrene and vinylbenzyl-R.sub.s. R.sub.s is selected from the group consisting of imidazoliums and pyridiniums. The composition contains 10%-90% by weight of vinylbenzyl-R.sub.s. The composition can further comprise a polyolefin comprising substituted polyolefins, a polymer comprising cyclic amine groups, a polymer comprising at least one of a phenylene group and a phenyl group, a polyamide, and/or the reaction product of a constituent having two carbon-carbon double bonds. The composition can be in the form of a membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  1. Ion-conducting membranes

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I.; Chen, Qingmei; Liu, Zengcai; Kutz, Robert

    2017-02-28

    An ion conducting polymeric composition mixture comprises a copolymer of styrene and vinylbenzyl-R.sub.s. R.sub.s is selected from the group consisting of imidazoliums, pyridiniums, pyrazoliums, pyrrolidiniums, pyrroliums, pyrimidiums, piperidiniums, indoliums, and triaziniums. The composition contains 10%-90% by weight of vinylbenzyl-R.sub.s. The composition can further comprise a polyolefin comprising substituted polyolefins, a polymer comprising cyclic amine groups, a polymer comprising at least one of a phenylene group and a phenyl group, a polyamide, and/or the reaction product of a constituent having two carbon-carbon double bonds. The composition can be in the form of a membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  2. [Female conduct disorders].

    Science.gov (United States)

    Vloet, Timo D; Großheinrich, Nicola; Konrad, Kerstin; Freitag, Christine; Herpertz-Dahlmann, Beate

    2014-03-01

    The last few years have seen much research on girls with conduct disorder (CD). This article summarizes the gender-specific data regarding prevalence, differences with respect to symptomatology (e.g., subtypes of aggression, callous-unemotional (cu)-traits), and it presents data on the autonomic and neuroendocrine stress system as well as genetic, neurocognitive, and neuroimaging data. Differences in the impact of environmental factors on boys and girls for the development of CD are discussed. Taken together, the data indicate that there is great overlap in symptomatology, personality traits, and neurobiological aberrations in girls and boys with CD. Since fewer girls than boys exhibit CD symptomatology, further investigations on CD in girls might help to identify resilience factors that could improve future therapeutic interventions.

  3. Lateral conduction infrared photodetector

    Science.gov (United States)

    Kim, Jin K.; Carroll, Malcolm S.

    2011-09-20

    A photodetector for detecting infrared light in a wavelength range of 3-25 .mu.m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.

  4. Wearable technologies for sweat rate and conductivity sensors

    CERN Document Server

    Salvo, Pietro

    2012-01-01

    Hauptbeschreibung Wearable sensors present a new frontier in the development of monitoring techniques. They are of great importance in sectors such as sports and healthcare, as they permit the continuous monitoring of physiological and biological elements, such as ECG and human sweat. Until recently, this could only be carried out in specialized laboratories in the presence of cumbersome, and usually, expensive devices. Sweat monitoring sensors integrated onto textile substrates are not only part of a new field of work but, they also represent the first attempt to implement such an

  5. Scanning microscopic four-point conductivity probes

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Hansen, Torben Mikael; Bøggild, Peter

    2002-01-01

    A method for fabricating microscopic four-point probes is presented. The method uses silicon-based microfabrication technology involving only two patterning steps. The last step in the fabrication process is an unmasked deposition of the conducting probe material, and it is thus possible to select...... the conducting material either for a silicon wafer or a single probe unit. Using shadow masking photolithography an electrode spacing (pitch) down to 1.1 mum was obtained, with cantilever separation down to 200 run. Characterisation measurements have shown the microscopic probes to be mechanically very flexible...

  6. CONDUCTIVITY OF DONKEY MILK

    Directory of Open Access Journals (Sweden)

    F. Conte

    2009-06-01

    Full Text Available The electrical conductivity (EC of milk is considered as one of the most important parameters which supports the diagnosis of mastitis in cows.Milk ions have a considerable influence on EC and their concentrations vary depending on animal species, season, lactation stage, etc. Some components of milk can change the EC, e.g. lactose. A negative correlation between EC values and the concentration of lactose is noticed, as a consequence of the inverse relation between this disaccharide and the chlorine content in milk. Fat and casein contents exert some influence on the EC, too. This study provides preliminary results on the physiological EC values in donkey milk and aims to highlight any correlation with some of its chemical-physical parameters and Somatic Cell Count (SCC. Mean EC value in donkey milk was found to be 3.57 mS. Statistically significant correlations were found between EC and SCC (r = 0.57 , p < 0.01 and between EC and (r = 0.30 , p < 0.05. The EC and lactose were not correlated although a reduction of EC was often observed when the lactose content increased, as reported in the literature for bovine milk. According to the EC can be considered as a reliable parameter to identify any breast disorder, taking into account the physiological factors that influence EC.

  7. Thermal Contact Conductance

    Science.gov (United States)

    Salerno, Louis J.; Kittel, Peter

    1997-01-01

    The performance of cryogenic instruments is often a function of their operating temperature. Thus, designers of cryogenic instruments often are required to predict the operating temperature of each instrument they design. This requires accurate thermal models of cryogenic components which include the properties of the materials and assembly techniques used. When components are bolted or otherwise pressed together, a knowledge of the thermal performance of such joints are also needed. In some cases, the temperature drop across these joints represents a significant fraction of the total temperature difference between the instrument and its cooler. While extensive databases exist on the thermal properties of bulk materials, similar databases for pressed contacts do not. This has often lead to instrument designs that avoid pressed contacts or to the over-design of such joints at unnecessary expense. Although many people have made measurements of contact conductances at cryogenic temperatures, this data is often very narrow in scope and even more often it has not been published in an easily retrievable fashion, if published at all. This paper presents a summary of the limited pressed contact data available in the literature.

  8. Conducting Wall Hall Thrusters

    Science.gov (United States)

    Goebel, Dan M.; Hofer, Richard R.; Mikellides, Ioannis G.; Katz, Ira; Polk, James E.; Dotson, Brandon

    2013-01-01

    A unique configuration of the magnetic field near the wall of Hall thrusters, called Magnetic Shielding, has recently demonstrated the ability to significantly reduce the erosion of the boron nitride (BN) walls and extend the life of Hall thrusters by orders of magnitude. The ability of magnetic shielding to minimize interactions between the plasma and the discharge chamber walls has for the first time enabled the replacement of insulating walls with conducting materials without loss in thruster performance. The boron nitride rings in the 6 kW H6 Hall thruster were replaced with graphite that self-biased to near the anode potential. The thruster efficiency remained over 60% (within two percent of the baseline BN configuration) with a small decrease in thrust and increase in Isp typical of magnetically shielded Hall thrusters. The graphite wall temperatures decreased significantly compared to both shielded and unshielded BN configurations, leading to the potential for higher power operation. Eliminating ceramic walls makes it simpler and less expensive to fabricate a thruster to survive launch loads, and the graphite discharge chamber radiates more efficiently which increases the power capability of the thruster compared to conventional Hall thruster designs.

  9. Technology Transfer and Commercialization

    Science.gov (United States)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  10. Technology Transfer and Commercialization

    Science.gov (United States)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  11. Conduction, reverse conduction and switching characteristics of GaN E-HEMT

    DEFF Research Database (Denmark)

    Sørensen, Charlie; Lindblad Fogsgaard, Martin; Christiansen, Michael Noe;

    2015-01-01

    In this paper switching and conduction characterization of the GS66508P-E03 650V enhancement mode gallium nitride (GaN) transistor is described. GaN transistors are leading edge technology and as so, their characteristics are less than well documented. The switching characteristics are found using...

  12. Research in Antenna Technology, Radar Technology and Electromagnetic Scattering Phenomena

    Science.gov (United States)

    2015-04-06

    AFRL-OSR-VA-TR-2015-0081 Research in Antenna Technology John Schindler ARCON CORP Final Report 04/06/2015 DISTRIBUTION A: Distribution approved for...a group of six researchers in the fields of electromagnetics, radar and antenna technology. Research was conducted during this reporting period in...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Research in Antenna technology, Radar Technology and Electromagnetic Scattering Phenomena

  13. CHP Technologies

    Science.gov (United States)

    Learn about CHP technologies, including reciprocating engines, combustion turbines, steam turbines, microturbines, fuel cells, and waste heat to power. Access the Catalog of CHP Technologies and the Biomass CHP Catalog of Technologies.

  14. Assistive Technology

    Science.gov (United States)

    ... Page Resize Text Printer Friendly Online Chat Assistive Technology Assistive technology (AT) is any service or tool that helps ... be difficult or impossible. For older adults, such technology may be a walker to improve mobility or ...

  15. Thermal Conductivity of Carbon Nanotube Composite Films

    Science.gov (United States)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Walker, Megan D.; Koehne, Jessica E.; Meyyappan, M.; Li, Jun; Yang, Cary Y.

    2004-01-01

    State-of-the-art ICs for microprocessors routinely dissipate power densities on the order of 50 W/sq cm. This large power is due to the localized heating of ICs operating at high frequencies, and must be managed for future high-frequency microelectronic applications. Our approach involves finding new and efficient thermally conductive materials. Exploiting carbon nanotube (CNT) films and composites for their superior axial thermal conductance properties has the potential for such an application requiring efficient heat transfer. In this work, we present thermal contact resistance measurement results for CNT and CNT-Cu composite films. It is shown that Cu-filled CNT arrays enhance thermal conductance when compared to as-grown CNT arrays. Furthermore, the CNT-Cu composite material provides a mechanically robust alternative to current IC packaging technology.

  16. Comparing proton conductivity of polymer electrolytes by percent conducting volume

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung [Los Alamos National Laboratory; Pivovar, Bryan [NREL

    2009-01-01

    Proton conductivity of sulfonated polymers plays a key role in polymer electrolyte membrane fuel cells. Mass based water uptake and ion exchange capacity of sulfonated polymers have been failed to correlating their proton conductivity. In this paper, we report a length scale parameter, percent conductivity volume, which is rather simply obtained from the chemical structure of polymer to compare proton conductivity of wholly aromatic sulfonated polymer perflurosulfonic acid. Morphology effect on proton conductivity at lower RH conditions is discussed using the percent conductivity volume parameter.

  17. Stretchable, Porous, and Conductive Energy Textiles

    KAUST Repository

    Hu, Liangbing

    2010-02-10

    Recently there is strong interest in lightweight, flexible, and wearable electronics to meet the technological demands of modern society. Integrated energy storage devices of this type are a key area that is still significantly underdeveloped. Here, we describe wearable power devices using everyday textiles as the platform. With an extremely simple "dipping and drying" process using single-walled carbon nanotube (SWNT) ink, we produced highly conductive textiles with conductivity of 125 S cm-1 and sheet resistance less than 1 Ω/sq. Such conductive textiles show outstanding flexibility and stretchability and demonstrate strong adhesion between the SWNTs and the textiles of interest. Supercapacitors made from these conductive textiles show high areal capacitance, up to 0.48F/cm2, and high specific energy. We demonstrate the loading of pseudocapacitor materials into these conductive textiles that leads to a 24-fold increase of the areal capacitance of the device. These highly conductive textiles can provide new design opportunities for wearable electronics and energy storage applications. © 2010 American Chemical Society.

  18. Stretchable, porous, and conductive energy textiles.

    Science.gov (United States)

    Hu, Liangbing; Pasta, Mauro; Mantia, Fabio La; Cui, Lifeng; Jeong, Sangmoo; Deshazer, Heather Dawn; Choi, Jang Wook; Han, Seung Min; Cui, Yi

    2010-02-10

    Recently there is strong interest in lightweight, flexible, and wearable electronics to meet the technological demands of modern society. Integrated energy storage devices of this type are a key area that is still significantly underdeveloped. Here, we describe wearable power devices using everyday textiles as the platform. With an extremely simple "dipping and drying" process using single-walled carbon nanotube (SWNT) ink, we produced highly conductive textiles with conductivity of 125 S cm(-1) and sheet resistance less than 1 Omega/sq. Such conductive textiles show outstanding flexibility and stretchability and demonstrate strong adhesion between the SWNTs and the textiles of interest. Supercapacitors made from these conductive textiles show high areal capacitance, up to 0.48F/cm(2), and high specific energy. We demonstrate the loading of pseudocapacitor materials into these conductive textiles that leads to a 24-fold increase of the areal capacitance of the device. These highly conductive textiles can provide new design opportunities for wearable electronics and energy storage applications.

  19. Electrical Conductivity of Ferritin Proteins by Conductive AFM

    Science.gov (United States)

    Xu, Degao; Watt, Gerald D.; Harb, John N.; Davis, Robert C.

    2005-01-01

    Electrical conductivity measurements were performed on single apoferritin and holoferritin molecules by conductive atomic force microscopy. Conductivity of self-assembled monolayer films of ferritin molecules on gold surfaces was also measured. Holoferritin was 5-25 times more conductive than apoferritin, indicating that for holoferritin most electron-transfer goes through the ferrihydrite core. With 1 V applied, the average electrical currents through single holoferritin and apoferritin molecules were 2.6 PA and 0.19 PA, respectively.

  20. Experimental Investigation of Thermal Conductivity of Meat During Freezing

    Science.gov (United States)

    Shinbayeva, A.; Arkharov, I.; Aldiyarov, A.; Drobyshev, A.; Zhubaniyazova, M.; Kurnosov, V.

    2017-04-01

    The cryogenic technologies of processing and storage of agricultural products are becoming increasingly indispensable in the food industry as an important factor of ensuring food safety. One of such technologies is the shock freezing of meat, which provides a higher degree of preservation of the quality of frozen products in comparison with traditional technologies. The thermal conductivity of meat is an important parameter influencing the energy consumption in the freezing process. This paper presents the results of an experimental investigation of the temperature dependence of the thermal conductivity of beef. The measurements were taken by using a specially designed measurement cell, which allows covering the temperature range from 80 to 300 K.

  1. The electrical conductivity and surface conduction of consolidated rock cores.

    Science.gov (United States)

    Alkafeef, Saad F; Alajmi, Abdullah F

    2007-05-15

    A fully computerized high-pressure and high-temperature core holder device is simultaneously used to determine the electrical conductivity, zeta potential, and surface conductivity of consolidated rock cores in aqueous and nonaqueous systems. The total electrical conductivity of rock cores was determined by coupling streaming current and potential measurements. This shows that neglecting the surface conductivity Ksigma is crucial to converting the streaming potential into zeta potentials. It is observed that plots of the core total conductivity as a function of the electrolyte conductivity KL exhibit two behaviors. At low ionic strength, the core conductivity clearly depends on the contribution of surface conductivity behind the slip plane, whereas at higher ionic strength, the magnitude of the surface conductivity becomes negligible. The electrical conductivity of rock cores was found to be in good agreement with the O'Brien theory and the Briggs method. The contribution of the stagnant layer to the surface conductivity in nonaqueous systems has been shown to be significant. This shows that the stagnant layer displays significantly different behavior in different nonaqueous systems, depending on the core porosity and the double-layer overlap. The results indicate that the application of electrokinetics in petroleum reservoirs can provide important insights into reservoir fluid flow characterization.

  2. Conductivity effect in electrorheological fluids

    Institute of Scientific and Technical Information of China (English)

    TIAN; Yu; WEN; Shizhu; MENG; Yonggang

    2004-01-01

    Based on conduction model and cubic particle model, the relationship between current density and shear yield stress of electrorheological (ER) fluids was calculated and compared with some reported experimental results. The conductivity of the insulating oils is found to have been changed by the mixed particles. Several ways to decrease insulating liquid conductivity and increase the conductivity ratio of ER fluids have been proposed to prepare ER fluids with high shear yield stresses but low current densities.

  3. THERMAL CONDUCTIVITY OF METALLIC WIRES

    Institute of Scientific and Technical Information of China (English)

    LU XIANG; GU JI-HUA; CHU JUN-HAO

    2001-01-01

    The effect of radial thickness on the thermal conductivity of a free standing wire is investigated. The thermal conductivity is evaluated using the Boltzmann equation. A simple expression for the reduction in conductivity due to the increase of boundary scattering is presented. A comparison is made between the experimental results of indium wires and the theoretical calculations. It is shown that this decrease of conductivity in wires is smaller than that in film where heat flux is perpendicular to the surface.

  4. Tunable Nanopatterning of Conductive Polymers via Electrohydrodynamic Lithography

    OpenAIRE

    Rickard, Jonathan James Stanley; Farrer, Ian; Goldberg Oppenheimer, Pola

    2016-01-01

    An increasing number of technologies require the fabrication of conductive structures on a broad range of scales and over large areas. Here, we introduce advanced yet simple electrohydrodynamic lithography (EHL) for patterning conductive polymers directly on a substrate with high fidelity. We illustrate the generality of this robust, low-cost method by structuring thin polypyrrole films via electric-field-induced instabilities, yielding well-defined conductive structures with feature sizes ra...

  5. A pore water conductivity sensor

    NARCIS (Netherlands)

    Hilhorst, M.A.

    2001-01-01

    The electrical permittivity and conductivity of the bulk soil are a function of the permittivity and conductivity of the pore water. For soil water contents higher than 0.10 both functions are equal, facilitating in situ conductivity measurements of the pore water. A novel method is described, based

  6. Laser patterning of highly conductive flexible circuits

    Science.gov (United States)

    Ji, Seok Young; Muhammed Ajmal, C.; Kim, Taehun; Chang, Won Seok; Baik, Seunghyun

    2017-04-01

    There has been considerable attention paid to highly conductive flexible adhesive (CFA) materials as electrodes and interconnectors for future flexible electronic devices. However, the patterning technology still needs to be developed to construct micro-scale electrodes and circuits. Here we developed the selective laser sintering technology where the pattering and curing were accomplished simultaneously without making additional masks. The CFA was composed of micro-scale Ag flakes, multiwalled carbon nanotubes decorated with Ag nanoparticles, and a nitrile-butadiene-rubber matrix. The Teflon-coated polyethylene terephthalate film was used as a flexible substrate. The width of lines (50-500 μm) and circuit patterns were controlled by the programmable scanning of a focused laser beam (power = 50 mW, scanning speed = 1 mm s-1). The laser irradiation removed solvent and induced effective coalescence among fillers providing a conductivity as high as 25 012 S cm-1. The conductivity stability was excellent under the ambient air and humid environments. The normalized resistance change of the pattern was smaller than 1.2 at the bending radius of 5 mm. The cyclability and adhesion of the laser-sintered line pattern on the substrate was excellent. A flexible circuit was fabricated sequentially for operating light emitting diodes during the bending motion, demonstrating excellent feasibility for practical applications in flexible electronics.

  7. Technology Maturity is Technology Superiority

    Science.gov (United States)

    2008-09-09

    Dominant Air Power: Design For Tomorrow…Deliver Today 2 TECHNOLOGY MATURITY CONFERENCE • ONE DEFINITION OF MATURITY – GOOD JUDGEMENT COMES FROM...EXPERIENCE—EXPERIENCE COMES FROM BAD JUDGEMENT Dominant Air Power: Design For Tomorrow…Deliver Today 3 TECHNOLOGY MATURITY CONFERENCE • THIS WILL BE A...2008 TECHNOLOGY MATURITY CONFERENCE “ TECHNOLOGY MATURITY IS TECHNOLOGY SUPERIORITY” Aeronautical Systems Center Dr. Tom Christian ASC/EN, WPAFB OH

  8. Hydraulic conductivity of organomodified soil

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, R.B.; Grant, J.M.; Voice, T.C.; Rakhshandehroo, G.; Xu, S.; Boyd, S.A. [Michigan State Univ., East Lansing, MI (United States)

    1995-11-01

    The effects of organomodification on soil hydraulic conductivity were investigated. Hydraulic conductivity and porosity of treated and untreated samples of a sandy loam were measured as a function of effective stress. Batch treatment with hexadecyltrimethyl ammonium (HDTMA) and dry packing produced organomodified samples that were 79% less conducive than untreated samples prior to loading. Treated samples lost less hydraulic conductivity as a result of loading than untreated samples so that treated samples had higher conductivity at high loads. Observed differences in conductivity are explained in terms of the role of the treated and untreated clay in controlling initial effective pore size and its change during consolidation.

  9. Conductive nanomaterials for printed electronics.

    Science.gov (United States)

    Kamyshny, Alexander; Magdassi, Shlomo

    2014-09-10

    This is a review on recent developments in the field of conductive nanomaterials and their application in printed electronics, with particular emphasis on inkjet printing of ink formulations based on metal nanoparticles, carbon nanotubes, and graphene sheets. The review describes the basic properties of conductive nanomaterials suitable for printed electronics (metal nanoparticles, carbon nanotubes, and graphene), their stabilization in dispersions, formulations of conductive inks, and obtaining conductive patterns by using various sintering methods. Applications of conductive nanomaterials for electronic devices (transparent electrodes, metallization of solar cells, RFID antennas, TFTs, and light emitting devices) are also briefly reviewed.

  10. Photon technology. Laser processing technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Survey has been conducted to develop laser processing technology utilizing the interaction between substance and photon. This is a part of the leading research on photon technology development. The photon technology development is aimed at novel technology development highly utilizing the quantum nature of photons. In the field of laser processing, high quality photons are used as tools, special functions of atoms and molecules will be discovered, and processing for functional fabrication (photon machining) will be established. A role of laser processing in industries has become significant, which is currently spreading not only into cutting and welding of materials and scalpels but also into such a special field as ultrafine processing of materials. The spreading is sometimes obstructed due to the difficulty of procurement of suitable machines and materials, and the increase of cost. The purpose of this study is to develop the optimal laser technology, to elucidate the interaction between substance and photon, and to develop the laser system and the transmission and regulation systems which realize the optimal conditions. 387 refs., 115 figs., 25 tabs.

  11. Electrical Conductivity of the Carbon Fiber Conductive Concrete

    Institute of Scientific and Technical Information of China (English)

    HOU Zuofu; LI Zhuoqiu; WANG Jianjun

    2007-01-01

    This paper discussed two methods to enhance the electrical conductivity of the carbon fiber(CF) electrically conductive concrete. The increase in the content of stone and the amount of water used to dissolve the methylcellulose and marinate the carbon fibers can decrease the electrical resistivity of the electrically conductive concrete effectively. Based on these two methods, the minimum CF content of the CF electrically conductive concrete for deicing or snow-melting application and the optimal ratio of the amount of water to dissolve the methylcellulose and marinate the carbon fibers were obtained.

  12. Readiness for Living Technology

    DEFF Research Database (Denmark)

    Peronard, Jean-Paul

    2013-01-01

    This paper is a comparative analysis between workers in healthcare with high and low degree of readiness for living technology such as robotics. To explore the differences among workers’ readiness for robotics in healthcare, statistical analysis was conducted in the data set obtained from 200...

  13. Understanding University Technology Transfer

    Science.gov (United States)

    Association of American Universities, 2011

    2011-01-01

    Federal government agencies provide about $33 billion a year to universities to conduct scientific research. That continuing investment expands human knowledge and helps educate the next generation of science and technology leaders. New discoveries from university research also form the basis for many new products and processes that benefit the…

  14. The Investigation of Conductive Via Properties

    Directory of Open Access Journals (Sweden)

    Jurkow Dominik

    2015-03-01

    Full Text Available The investigation ofthe Low Temperature Co-fired Ceramic (L TCC via filling process quality is presented in this paper. The goal of this paper was to propose and to validate a way of the verification whether the L TCC fabrication was conducted correctly. The work presents an application of the Design of the Experiment (DoE methodology in such validation and discusses usefulness and drawbacks of the chosen solution. The optimized technology of via filling will be applied in the fabrication of tactile displays for blind people.

  15. Theoretical approaches to superionic conductivity

    Indian Academy of Sciences (India)

    C S Sunandana; P Senthil Kumar

    2004-02-01

    Recent theoretical approaches to the understanding of superionic conductivity in polycrystalline, glassy and polymeric materials are briefly reviewed. Phase transitions to the superionic conducting state in the AgI family are apparently triggered by cluster formation and strong mobile ion interaction within the clusters. Anomalous conductivity and related physical properties are explained in the cluster induced distortion model. Ionic composites such as AgX : Al2O3 ( = Cl, Br and I) involve conducting and non-conducting phases and the all-important interface between the two whose space charge enhances the conductivity and also trigger phase transitions to exotic polymorphic phases, for which the mechanisms are yet to be explored. Ion hopping dynamics controls the conductivity of superionic glasses. Mode coupling and jump relaxation theories account for the non-Debye relaxation observed in a.c. conductivity of these glasses. The theory of conductivity in polymer electrolytes-still in its infancy-involves their complex structure and glass transition behaviour. Preparative and thermal history, composition and crystallinity control ionic conductivity. New approaches to the synthesis of optimal polymer electrolytes such as rubbery electrolytes, crystalline polymers and nanocomposites must be considered before achieving a comprehensive theoretical understanding.

  16. Manufacturing of Conductive Circuits for Embedding Stereolithography by Means of Conductive Adhesive and Laser Sintering

    Science.gov (United States)

    Niese, Bernd; Stichel, Thomas; Amend, Philipp; Urmoneit, Uwe; Roth, Stephan; Schmidt, Michael

    The embedding stereolithography (eSLA) is an additive, hybrid process which combines the flexible production of 3D-components with the integration of electrical and optical conductive structures and functional components. This combination of several process steps in one manufacturing process implies a high technological potential regarding the integration density of the assemblies.To create conductive circuitsinside and on the surface of SLA-parts, the manufacturing process of these structures has to be integrated into the SLA-process and shouldnot contain disassembling of partsfrom the SLA-building platform. In this context, the production of embedded conductive circuits by means of dispensing conductive adhesivesand laser sintering is a highly promising process.The dispensing can be made during the entire SLA-process by interrupting it. In this way the conductive adhesive can be deposit inside the part and the electrical conductivity of these structures will be achieved by laser sintering in the next step.This paper shows fundamental investigations concerning the applicability of the conductive adhesive for embedding stereolithography and the laser sintering process as well.

  17. Globalization & technology

    DEFF Research Database (Denmark)

    Narula, Rajneesh

    Technology and globalization are interdependent processes. Globalization has a fundamental influence on the creation and diffusion of technology, which, in turn, affects the interdependence of firms and locations. This volume examines the international aspect of this interdependence at two levels...

  18. Living Technology

    DEFF Research Database (Denmark)

    2010-01-01

    This book is aimed at anyone who is interested in learning more about living technology, whether coming from business, the government, policy centers, academia, or anywhere else. Its purpose is to help people to learn what living technology is, what it might develop into, and how it might impact...... our lives. The phrase 'living technology' was coined to refer to technology that is alive as well as technology that is useful because it shares the fundamental properties of living systems. In particular, the invention of this phrase was called for to describe the trend of our technology becoming...... increasingly life-like or literally alive. Still, the phrase has different interpretations depending on how one views what life is. This book presents nineteen perspectives on living technology. Taken together, the interviews convey the collective wisdom on living technology's power and promise, as well as its...

  19. Living Technology

    DEFF Research Database (Denmark)

    2010-01-01

    This book is aimed at anyone who is interested in learning more about living technology, whether coming from business, the government, policy centers, academia, or anywhere else. Its purpose is to help people to learn what living technology is, what it might develop into, and how it might impact...... our lives. The phrase 'living technology' was coined to refer to technology that is alive as well as technology that is useful because it shares the fundamental properties of living systems. In particular, the invention of this phrase was called for to describe the trend of our technology becoming...... increasingly life-like or literally alive. Still, the phrase has different interpretations depending on how one views what life is. This book presents nineteen perspectives on living technology. Taken together, the interviews convey the collective wisdom on living technology's power and promise, as well as its...

  20. Emerging Technologies

    OpenAIRE

    Salgar, S. M.

    2004-01-01

    Phenomenal advancements have taken place in the field of Information and communication technologies in the last decade. Spectacular and innovative changes are expected to take place in these fields in coming decade. Networking technologies are going through a sea change. This paper enumerates the likely networking technologies which are emerging, particularly WLANs. Most of the personal communication in the country will be through cellular/ mobile technologies, which are also covered in the p...

  1. Technology Catalogue. First edition

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).

  2. Does Technology Acceptance Affect E-Learning in a Non-Technology-Intensive Course?

    Science.gov (United States)

    Buche, Mari W.; Davis, Larry R.; Vician, Chelley

    2012-01-01

    Prior research suggests that individuals' technology acceptance levels may affect their work and learning performance outcomes when activities are conducted through information technology usage. Most previous research investigating the relationship between individual attitudes towards technology and learning has been conducted in…

  3. Soulful Technologies

    DEFF Research Database (Denmark)

    Fausing, Bent

    2010-01-01

    or anthropomorphism is important for the branding of new technology. Technology is seen as creating a techno-transcendence towards a more qualified humanity which is in contact with fundamental human values like intuition, vision, and sensing; all the qualities that technology, industrialization, and rationalization...

  4. Technology Tiers

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    A technology tier is a level in a product system: final product, system, subsystem, component, or part. As a concept, it contrasts traditional “vertical” special technologies (for example, mechanics and electronics) and focuses “horizontal” feature technologies such as product characteristics...

  5. Technology Tiers

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    A technology tier is a level in a product system: final product, system, subsystem, component, or part. As a concept, it contrasts traditional “vertical” special technologies (for example, mechanics and electronics) and focuses “horizontal” feature technologies such as product characteristics...

  6. Assistive Technologies

    Science.gov (United States)

    Auat Cheein, Fernando A., Ed.

    2012-01-01

    This book offers the reader new achievements within the Assistive Technology field made by worldwide experts, covering aspects such as assistive technology focused on teaching and education, mobility, communication and social interactivity, among others. Each chapter included in this book covers one particular aspect of Assistive Technology that…

  7. Feasibility studies and technological innovation

    DEFF Research Database (Denmark)

    2004-01-01

    The chapter offers a tool to conduct feasibility studies and focuses on how to make feasibility studies in a situation with environmental concerns, in which technological innovation and institutional chnages are among the objectives.......The chapter offers a tool to conduct feasibility studies and focuses on how to make feasibility studies in a situation with environmental concerns, in which technological innovation and institutional chnages are among the objectives....

  8. Feasibility studies and technological innovation

    DEFF Research Database (Denmark)

    2004-01-01

    The chapter offers a tool to conduct feasibility studies and focuses on how to make feasibility studies in a situation with environmental concerns, in which technological innovation and institutional chnages are among the objectives.......The chapter offers a tool to conduct feasibility studies and focuses on how to make feasibility studies in a situation with environmental concerns, in which technological innovation and institutional chnages are among the objectives....

  9. Thermoelectric Properties of Conducting Polymers

    Science.gov (United States)

    1994-07-01

    conductivity of highly ordered pyrolytic graphite and benzene-derived graphite fiber. For a heat treament temperature (HTT) of 2900 °C, the unstretched film has... heat transmission is 5 important. The electrons responsible for electrical conductivity in metals also allow heat transmission by electrons, K. in Fig. 1... Heat transmission in polymers is by means of lattice vibrations, K, which do not contribute to electrical conductvity. Previous work with conducting

  10. Conducting polymers: Synthesis and industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1997-04-01

    The Conducting Polymer project funded by the AIM Program has developed new methods for the synthesis of conducting polymers and evaluated new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1996 included two ongoing efforts on membranes for gas separation and on electrochemical capacitors and a third new application: electrochemical reactors (ECRs) based on polymeric electrolytes. As a gas separation membrane, conducting polymers offer high selectivity and the potential to chemically or electrically adapt the membrane for specific gas combinations. Potential energy savings in the US for this application are estimated at 1 to 3 quads/yr. As an active material in electrochemical capacitors, electronically conducting polymers have the potential of storing large amounts of electric energy in low cost materials. Potential energy savings estimated at 1 quad/yr would result from introduction of electrochemical capacitors as energy storage devices in power trains of electric and hybrid vehicles, once such vehicles reach 20% of the total transportation market in the US. In the chlor-alkali industry, electrochemical reactors based on polymer electrolyte membranes consume around 1 % of the total electric power in the US. A new activity, started in FY 1996, is devoted to energy efficient ECRs. In the case of the chlor-alkali industry, energy savings as high as 50% seem possible with the novel ECR technology demonstrated by the author in 1996.

  11. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  12. Holographic Conductivity in Disordered Systems

    CERN Document Server

    Ryu, Shinsei; Ugajin, Tomonori

    2011-01-01

    The main purpose of this paper is to holographically study the behavior of conductivity in 2+1 dimensional disordered systems. We analyze probe D-brane systems in AdS/CFT with random closed string and open string background fields. We give a prescription of calculating the DC conductivity holographically in disordered systems. In particular, we find an analytical formula of the conductivity in the presence of codimension one randomness. We also systematically study the AC conductivity in various probe brane setups without disorder and find analogues of Mott insulators.

  13. Ubiquitous Computing Technologies in Education

    Science.gov (United States)

    Hwang, Gwo-Jen; Wu, Ting-Ting; Chen, Yen-Jung

    2007-01-01

    The prosperous development of wireless communication and sensor technologies has attracted the attention of researchers from both computer and education fields. Various investigations have been made for applying the new technologies to education purposes, such that more active and adaptive learning activities can be conducted in the real world.…

  14. Art Therapists and Computer Technology

    Science.gov (United States)

    Peterson, Brent C.; Stovall, Kay; Elkins, David E.; Parker-Bell, Barbara

    2005-01-01

    The purpose of this study was to understand the impact of technology on art therapists by exploring how art therapists own and use technology and to determine barriers to ownership and use. A survey was conducted at the 2002 annual conference of the American Art Therapy Association in Washington, DC. Of the 250 surveys distributed, 195 were…

  15. Sensemaking technologies

    DEFF Research Database (Denmark)

    Madsen, Charlotte Øland

    Research scope: The scope of the project is to study technological implementation processes by using Weick's sensemaking concept (Weick, 1995). The purpose of using a social constructivist approach to investigate technological implementation processes is to find out how new technologies transform......, Orlikowski 2000). Viewing the use of technology as a process of enactment opens up for investigating the social processes of interpreting new technology into the organisation (Orlikowski 2000). The scope of the PhD project will therefore be to gain a deeper understanding of how the enactment of new...... & Brass, 1990; Kling 1991; Orlikowski 2000). It also demonstrates that technology is a flexible variable adapted to the organisation's needs, culture, climate and management philosophy, thus leading to different uses and outcomes of the same technology in different organisations (Barley 1986; 1990...

  16. Appropriate Technology as Indian Technology.

    Science.gov (United States)

    Barry, Tom

    1979-01-01

    Describes the mounting enthusiasm of Indian communities for appropriate technology as an inexpensive means of providing much needed energy and job opportunities. Describes the development of several appropriate technology projects, and the goals and activities of groups involved in utilizing low scale solar technology for economic development on…

  17. Minimum Thermal Conductivity of Superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Simkin, M. V.; Mahan, G. D.

    2000-01-31

    The phonon thermal conductivity of a multilayer is calculated for transport perpendicular to the layers. There is a crossover between particle transport for thick layers to wave transport for thin layers. The calculations show that the conductivity has a minimum value for a layer thickness somewhat smaller then the mean free path of the phonons. (c) 2000 The American Physical Society.

  18. Conductive Mechanism of Organic Conductor

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Organic conductor is a kind of organic compound which has special electronic and magnetic properties. The research of the organic compounds has received considerable attention because of their potential applications in many areas. The molecular conductive units are theoretically investigated as well as their energy gap and charge distribution. The relationship of conductivity and micro-mechanism is discussed.

  19. Thermal conductivity of supercooled water.

    Science.gov (United States)

    Biddle, John W; Holten, Vincent; Sengers, Jan V; Anisimov, Mikhail A

    2013-04-01

    The heat capacity of supercooled water, measured down to -37°C, shows an anomalous increase as temperature decreases. The thermal diffusivity, i.e., the ratio of the thermal conductivity and the heat capacity per unit volume, shows a decrease. These anomalies may be associated with a hypothesized liquid-liquid critical point in supercooled water below the line of homogeneous nucleation. However, while the thermal conductivity is known to diverge at the vapor-liquid critical point due to critical density fluctuations, the thermal conductivity of supercooled water, calculated as the product of thermal diffusivity and heat capacity, does not show any sign of such an anomaly. We have used mode-coupling theory to investigate the possible effect of critical fluctuations on the thermal conductivity of supercooled water and found that indeed any critical thermal-conductivity enhancement would be too small to be measurable at experimentally accessible temperatures. Moreover, the behavior of thermal conductivity can be explained by the observed anomalies of the thermodynamic properties. In particular, we show that thermal conductivity should go through a minimum when temperature is decreased, as Kumar and Stanley observed in the TIP5P model of water. We discuss physical reasons for the striking difference between the behavior of thermal conductivity in water near the vapor-liquid and liquid-liquid critical points.

  20. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  1. INFRARED EMISSIVITY OF CONDUCTING POLYMERS

    Institute of Scientific and Technical Information of China (English)

    WAN Meixiang; LI Suzhen; LI Junchao; DONG Haiou

    1991-01-01

    The infrared emissivity of conducting polymers in 8-20μm and at 50-150℃ in the direction of normal line has been measured as a function of wavelength, conductivity at room temperature,counterion, doping levels, measuring temperature and thickness of sample.

  2. INNOVATIVE TECHNOLOGY EVALUATION REPORT: RADIO FREQUENCY HEATING, KAI TECHNOLOGIES, INC.

    Science.gov (United States)

    A demonstration of KAI Technologies in-situ radio frequency heating system for soil treatment was conducted from January 1994 to July 1994 at Kelly Air Force Base in San Antonio, Texas. This demonstration was conducted as a joint effort between the USEPA and the USAF. The technol...

  3. Intraatrial conduction disturbances: vectorcardiographic patterns.

    Science.gov (United States)

    Zoneraich, O; Zoneraich, S

    1976-04-01

    Frank P loop vectorcardiograms were recorded in 30 normal subjects and in 40 patients who had intraatrial conduction disturbances alone or in association with cardiac disease. High magnification of the P loop (0.1 mv = 3 cm) permitted accurate measurement of the P loop duration, magnitude and direction. High-frequency recordings allowed optimal evaluation of the notches, bites and conduction delays in the PsE loop. Four vectorcardiographic patterns have been selected as counterparts of the four types of enlarged P waves seen in electrocardiograms of patients with atrial conduction disturbances. When intraatrial conduction disturbances coexisted with left atrial enlargment, the PsE loop was larger and smoother. The role of partial or complete block in the specific internodal or interatrial pathways is discussed. High magnification, high-frequency vectorcardiography of the P loop seems to be the best available method for determing a specific pattern of intraatrial conduction disturbance.

  4. Thermal conductance through molecular wires

    CERN Document Server

    Segal, D; Nitzan, A; Segal, Dvira; Nitzan, Abraham; Hanggi, Peter

    2003-01-01

    We consider phononic heat transport through molecular chains connecting two thermal reservoirs. For relatively short molecules at normal temperatures heat conduction is dominated by the harmonic part of the molecular force-field. We develop a general theory for the heat conduction through harmonic chains in 3-dimensions. A Landauer-type expression for the heat conduction is obtained, in agreement with other recent studies. We use this formalism to study the heat conduction properties of alkanes. For relatively short (1-30 carbon atoms) chains the length and temperature dependence of the molecular heat conduction result from the balance of three factors: (i) The molecular frequency spectrum in relation to the frequency cutoff of the thermal reservoirs, (ii) the degree of localization of the molecular normal modes and (iii) the molecule-heat reservoirs coupling. The fact that molecular modes at different frequency regimes have different localization properties gives rise to intricate dependence of the heat cond...

  5. Conductive polymer-based material

    Science.gov (United States)

    McDonald, William F.; Koren, Amy B.; Dourado, Sunil K.; Dulebohn, Joel I.; Hanchar, Robert J.

    2007-04-17

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  6. Thermal conductivity of graphene laminate.

    Science.gov (United States)

    Malekpour, H; Chang, K-H; Chen, J-C; Lu, C-Y; Nika, D L; Novoselov, K S; Balandin, A A

    2014-09-10

    We have investigated thermal conductivity of graphene laminate films deposited on polyethylene terephthalate substrates. Two types of graphene laminate were studied, as deposited and compressed, in order to determine the physical parameters affecting the heat conduction the most. The measurements were performed using the optothermal Raman technique and a set of suspended samples with the graphene laminate thickness from 9 to 44 μm. The thermal conductivity of graphene laminate was found to be in the range from 40 to 90 W/mK at room temperature. It was found unexpectedly that the average size and the alignment of graphene flakes are more important parameters defining the heat conduction than the mass density of the graphene laminate. The thermal conductivity scales up linearly with the average graphene flake size in both uncompressed and compressed laminates. The compressed laminates have higher thermal conductivity for the same average flake size owing to better flake alignment. Coating plastic materials with thin graphene laminate films that have up to 600× higher thermal conductivity than plastics may have important practical implications.

  7. Edge conduction in vacuum glazing

    Energy Technology Data Exchange (ETDEWEB)

    Simko, T.M.; Collins, R.E. [Sydney Univ., NSW (Australia). Dept. of Applied Physics; Beck, F.A.; Arasteh, D. [Lawrence Berkeley Lab., CA (United States)

    1995-03-01

    Vacuum glazing is a form of low-conductance double glazing using in internal vacuum between the two glass sheets to eliminate heat transport by gas conduction and convection. An array of small support pillars separates the sheets; fused solder glass forms the edge seal. Heat transfer through the glazing occurs by radiation across the vacuum gap, conduction through the support pillars, and conduction through the bonded edge seal. Edge conduction is problematic because it affects stresses in the edge region, leading to possible failure of the glazing; in addition, excessive heat transfer because of thermal bridging in the edge region can lower overall window thermal performance and decrease resistance to condensation. Infrared thermography was used to analyze the thermal performance of prototype vacuum glazings, and, for comparison, atmospheric pressure superwindows. Research focused on mitigating the edge effects of vacuum glazings through the use of insulating trim, recessed edges, and framing materials. Experimentally validated finite-element and finite-difference modeling tools were used for thermal analysis of prototype vacuum glazing units and complete windows. Experimental measurements of edge conduction using infrared imaging were found to be in good agreement with finite-element modeling results for a given set of conditions. Finite-element modeling validates an analytic model developed for edge conduction.

  8. Hydraulic conductivity of compacted zeolites.

    Science.gov (United States)

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  9. Electrically conductive and thermally conductive materials for electronic packaging

    Science.gov (United States)

    Liu, Zongrong

    The aim of this dissertation is to develop electrically or thermally conductive materials that are needed for electronic packaging and microelectronic cooling. These materials are in the form of coatings and are made from pastes. The research work encompasses paste formulation, studying the process of converting a paste to a conductive material, relating the processing conditions to the structure and performance, and evaluating performance attributes that are relevant to the application of these conductive materials. The research has resulted in new information that is valuable to the microelectronic industry. Work on electrically conductive materials emphasizes the development of electrical interconnection materials in the form of air-firable glass-free silver-based electrically conductive thick films, which use the Ti-Al alloy as the binder and are in contrast to conventional films that use glass as the binder. The air-firability, as enabled by minor additions of tin and zinc to the paste, is in contrast to previous glass-free films that are not firable. The recommended firing condition is 930°C in air. The organic vehicle in the paste comprises ethyl cellulose, which undergoes thermal decomposition during burnout of the paste. The ethyl cellulose is dissolved in ether, which facilitates the burnout. Excessive ethyl cellulose hinders the burnout. A higher heating rate results in more residue after burnout. The presence of silver particles facilitates drying and burnout. Firing in air gives lower resistivity than firing in oxygen. Firing in argon gives poor films. Compared to conventional films that use glass as the binder, these films, when appropriately fired, exhibit lower electrical resistivity (2.5 x 10-6 O.cm) and higher scratch resistance. Work on thermally conductive materials addresses thermal interface materials, which are materials placed at the interface between a heat sink and a heat source for the purpose of improving the thermal contact. Heat

  10. Electrical Conductivity of Cryolite Melts

    Science.gov (United States)

    Fellner, P.; Grjotheim, K.; Kvande, H.

    1985-11-01

    This paper proposes an equation for the electrical conductivity of multicomponent cryolite-based mixtures. The equation is based on a physical model which assumes that the conductivity is proportional to the number density of the effective electric charges in the melt. The various authors in the available literature show a great discrepancy in conductivity data of cryolite-based melts. The equation based on the physical model enables determination of which set of data is preferable. Special consideration in this respect is given to the influence of magnesium flouride and lithium flouride additions to the melt.

  11. Sensemaking technologies

    DEFF Research Database (Denmark)

    Madsen, Charlotte Øland

    & Brass, 1990; Kling 1991; Orlikowski 2000). It also demonstrates that technology is a flexible variable adapted to the organisation's needs, culture, climate and management philosophy, thus leading to different uses and outcomes of the same technology in different organisations (Barley 1986; 1990......, Orlikowski 2000). Viewing the use of technology as a process of enactment opens up for investigating the social processes of interpreting new technology into the organisation (Orlikowski 2000). The scope of the PhD project will therefore be to gain a deeper understanding of how the enactment of new...

  12. Chemistry Technology

    Data.gov (United States)

    Federal Laboratory Consortium — Chemistry technology experts at NCATS engage in a variety of innovative translational research activities, including:Design of bioactive small molecules.Development...

  13. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...

  14. Conducting Polymers: Emerging Commercial Materials

    Directory of Open Access Journals (Sweden)

    N. Kumar

    1996-04-01

    Full Text Available Conducting polymers are materials of recent origin. They are obtained by polymerisation of simple organic monomers and doping with electron acceptor or donor species and show conductivity ranging from that of a semiconductor to that of metal. These materials are now available with unique electronic and optical properties of metals and semiconductors in combination with the attractive mechanical and processable advantages of polymers. The field has progressed to a level of maturity consistent with a new set of opportunities to develop Wide range of applications based upon conducting polymers as materials for industrial products.Examples include: static charge dissipation, EMI shielding, flexible light emitting diodes, transparent electrodes, batteries, gas sensors, gas separators, etc. Many of the conducting polymers and devices based on them are now available commercially.

  15. Thermally conducting electron transfer polymers

    Science.gov (United States)

    Byrd, N. R.; Jenkins, R. K.; Lister, J. L.

    1969-01-01

    New polymeric material exhibits excellent physical shock protection, high electrical resistance, and thermal conductivity. It is especially useful for electronic circuitry, such as subminiaturization of components and modular construction of circuits.

  16. NOAA NOS SOS, EXPERIMENTAL - Conductivity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have conductivity data. *These services are for testing and evaluation use...

  17. Heat conduction mechanism in nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Changwei; Hong, Hi ki [Kyung Hee University, Yongin (Korea, Republic of); Kang, Yong Tae; Lee, Jae Won [Korea University, Seoul (Korea, Republic of)

    2014-07-15

    Nanofluids are produced by dispersing nanoparticles in basefluid. Given its superior thermo-physical properties, nanofluids are gaining increasing attention and are showing promising potential in various applications. Numerous studies have been conducted in the past decade to experimentally and theoretically investigate thermal conductivity. The experimental finding is briefly summarized in this study; however, we do not intend to present a systematic summary of the available references from the literature. The primary objective of this study is to review and summarize the most debated mechanisms for heat conduction in nanofluids, such as the effects of a nanolayer, the Brownian motion of nanoparticles and aggregation, as well as induced convection. Finally, at a low concentration of nanoparticles, nanoconvection is the leading contributor to thermal conductivity enhancement, whereas at a higher concentration, the natural thermal transport along the backbone would aggregate, and the effects of the nanolayer would become significant and become ineligible.

  18. Shape memory thermal conduction switch

    Science.gov (United States)

    Vaidyanathan, Rajan (Inventor); Krishnan, Vinu (Inventor); Notardonato, William U. (Inventor)

    2010-01-01

    A thermal conduction switch includes a thermally-conductive first member having a first thermal contacting structure for securing the first member as a stationary member to a thermally regulated body or a body requiring thermal regulation. A movable thermally-conductive second member has a second thermal contacting surface. A thermally conductive coupler is interposed between the first member and the second member for thermally coupling the first member to the second member. At least one control spring is coupled between the first member and the second member. The control spring includes a NiTiFe comprising shape memory (SM) material that provides a phase change temperature <273 K, a transformation range <40 K, and a hysteresis of <10 K. A bias spring is between the first member and the second member. At the phase change the switch provides a distance change (displacement) between first and second member by at least 1 mm, such as 2 to 4 mm.

  19. Conductance Quantization in Resistive Random Access Memory.

    Science.gov (United States)

    Li, Yang; Long, Shibing; Liu, Yang; Hu, Chen; Teng, Jiao; Liu, Qi; Lv, Hangbing; Suñé, Jordi; Liu, Ming

    2015-12-01

    The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects.

  20. Conductance Quantization in Resistive Random Access Memory

    Science.gov (United States)

    Li, Yang; Long, Shibing; Liu, Yang; Hu, Chen; Teng, Jiao; Liu, Qi; Lv, Hangbing; Suñé, Jordi; Liu, Ming

    2015-10-01

    The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects.

  1. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  2. Good Conduct in the Sciences

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    2006-01-01

    What is scientific dishonesty? How to handle the problem? How to prevent it? These three questions are discussed in an international perspective, focusing on ways of achieving and maintaining good conduct in the sciences.......What is scientific dishonesty? How to handle the problem? How to prevent it? These three questions are discussed in an international perspective, focusing on ways of achieving and maintaining good conduct in the sciences....

  3. Anisotropic heat conduction in diacetylenes

    Science.gov (United States)

    Morelli, D. T.; Heremans, J.; Sakamoto, M.; Uher, C.

    1986-08-01

    Measurements of the low-temperature thermal conductivity of diacetylene single crystals are reported. Monomer samples show little anisotropy and display the temperature dependence of a crystalline dielectric. In polymerized samples, heat is conducted up to 60 times better parallel to the chains than perpendicular to them. Dislocations can account for this anisotropy at the lowest temperatures. Quasi one dimensionality of the polymer crystals induces anisotropy at higher temperatures and strongly suppresses anharmonic phonon interactions.

  4. Do dialysate conductivity measurements provide conductivity clearance or ionic dialysance?

    Science.gov (United States)

    Petitclerc, T

    2006-11-01

    Dialysate conductivity measurements allow on-line estimation of urea clearance during hemodialysis session. Conductivity measurements provide a value of 'conductivity clearance' for some authors, but a value of 'ionic dialysance' for others. This paper aims at explaining which term should be the more appropriate. Clearance is a parameter defined for measuring the power of a mechanism, which aims at 'clearing' a solution by depurating some solutes. In hemodialysis, clearance measures the efficacy of patient's depuration. In contrast, dialysance measures the capability of transferring solutes between blood and dialysate. The conventional definition of dialysance, requiring the absence of convective transfer, should be generalized to the case of the usual presence of ultrafiltration during the hemodialysis session. For a solute (as urea) absent from the dialysate delivered to the dialyzer inlet, the clearance is equal to its dialysance. In order to avoid a dramatic fall in ionic concentrations during hemodialysis treatment, the clearance of ions is reduced by adding these ions in the dialysate and becomes lower than their dialysance. Conductivity measurements provide a value of electrolytes dialysance. Thus the term of 'ionic dialysance' is more appropriate than the term of 'conductivity clearance'. Nevertheless ionic dialysance represents a good estimation of urea clearance.

  5. Studies on Nanocomposite Conducting Coatings

    Directory of Open Access Journals (Sweden)

    Amitava Bhattacharyya

    2013-01-01

    Full Text Available Nanocomposite conducting coatings can impart stable surface electrical conductivity on the substrate. In this paper, carbon nanofiber (CNF and nanographite (NG are dispersed in thermoplastic polyurethane matrix and coated on the surface of glass and polyethylene terephthalate (PET film. The nanoparticles dispersion was studied under TEM. The coating thicknesses were estimated. Further, their resistance and impedance were measured. It has been observed that the 5 wt% CNF dispersed nanocomposite coatings show good conductivity. The use of NG can bring down the amount of CNF; however, NG alone has failed to show significant improvement in conductivity. The nanocomposite coating on PET film using 2.5 wt% of both CNF and NG gives frequency-independent impedance which indicates conducting network formation by the nanoparticles. The study was carried out at different test distances on nanocomposite coated PET films to observe the linearity and continuity of the conducting network, and the result shows reasonable linearity in impedance over total test length (from 0.5 cm to 4.5 cm. The impedance of nanocomposite coatings on glass is not frequency independent and also not following linear increase path with distance. This indicates that the dispersion uniformity is not maintained in the coating solution when it was coated on glass.

  6. Impulse propagation in a conducting medium with arbitrary thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Myasnikov, S.P.

    1977-07-01

    An examination is made of impulse propagation in a conducting medium that accounts for its thermal conductivity. Such a medium, even with an infinitely large electric conductivity, will have a weak dispersion. Following dispersion through a sufficiently large time interval, out of the entire set of planar waves comprising a wave packet, only the low-frequency components were shown to remain (these are the components that are propagated at a velocity of c/sub s/) along with the high-frequency components that are propagated at the speed of c/sub T/. Consequently, the initial derangement is converted into two separate waves of a bell-shaped form that run to various sides at a phase velocity equal to the adiabatic speed of sound c/sub s/. 6 references.

  7. Applications of conducting polymers: robotic fins and other devices

    Science.gov (United States)

    Tangorra, James L.; Anquetil, Patrick A.; Weideman, Nathan S.; Fofonoff, Timothy; Hunter, Ian W.

    2007-04-01

    Conducting polymers are becoming viable engineering materials and are gradually being integrated into a wide range of devices. Parallel efforts conducted to characterize their electromechanical behavior, understand the factors that affect actuation performance, mechanically process films, and address the engineering obstacles that must be overcome to generate the forces and displacements required in real-world applications have made it possible to begin using conducting polymers in devices that cannot be made optimal using traditional actuators and materials. The use of conducting polymers has allowed us to take better advantage of biological architectures for robotic applications and has enabled us to pursue the development of novel sensors, motors, and medical diagnostic technologies. This paper uses the application of conducting polymer actuators to a biorobotic fin for unmanned undersea vehicles (UUVs) as a vehicle for discussing the efforts in our laboratory to develop conducting polymers into a suite of useful actuators and engineering components.

  8. Studies and Properties of Ceramics with High Thermal Conductivity

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The sintering technology of the AlN ceramics power were discussed. It is discussed that the compound sintering aids is consistent with the enhancement of the the thermal conductivity of AlN ceramics, and sintering technics is helped to the improvement of density. It is analyzed how to sinter machinable AlN ceramics with high thermal conductivity. And the microstructure of compound ceramics based on AlN was studied.

  9. Thermally activated technologies: Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  10. Thermally activated technologies: Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  11. Plastics Technology.

    Science.gov (United States)

    Barker, Tommy G.

    This curriculum guide is designed to assist junior high schools industrial arts teachers in planning new courses and revising existing courses in plastics technology. Addressed in the individual units of the guide are the following topics: introduction to production technology; history and development of plastics; safety; youth leadership,…

  12. Lasers technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The Lasers Technology Program of IPEN is committed to the development of new lasers based on the research of optical materials and new technologies, as well to laser applications in several areas: Nuclear, Medicine, Dentistry, Industry, Environment and Advanced Research. The Program is basically divided into two main areas: Material and Laser Development and Laser Applications.

  13. Maritime Technology

    DEFF Research Database (Denmark)

    Sørensen, Herman

    1997-01-01

    Elementary introduction to the subject "Maritime Technology".The contents include drawings, sketches and references in English without any supplementary text.......Elementary introduction to the subject "Maritime Technology".The contents include drawings, sketches and references in English without any supplementary text....

  14. Maritime Technology

    DEFF Research Database (Denmark)

    Sørensen, Herman

    1997-01-01

    Elementary introduction to the subject "Maritime Technology".The contents include drawings, sketches and references in English without any supplementary text.......Elementary introduction to the subject "Maritime Technology".The contents include drawings, sketches and references in English without any supplementary text....

  15. Technology Push

    Science.gov (United States)

    Kennedy, Mike

    2008-01-01

    When students, teachers, administrators and others employed in education arrive at work every day on thousands of campuses across the nation, it should come as no surprise that at every step along the way, technology is there to greet them. Technological advancements in education, as well as in facilities operation and management, are not a…

  16. Sensemaking technology

    DEFF Research Database (Denmark)

    Madsen, Charlotte Øland

    Research objective: The object of the LOK research project is to gain a better understanding of the technological strategic processes in organisations by using the concept/metaphor of sensemaking. The project will investigate the technological strategies in organisations in order to gain a deeper...... understanding of the cognitive competencies and barriers towards implementing new technology in organisations. The research will therefore concentrate on researching the development process in the organisation's perception of the external environmental elements of customers, suppliers, competitors, internal...... and external technology and legislation and the internal environmental elements of structure, power relations and political arenas. All of these variables have influence on which/how technologies are implemented thus creating different outcomes all depending on the social dynamics that are triggered by changes...

  17. Sensemaking technology

    DEFF Research Database (Denmark)

    Madsen, Charlotte Øland

    Research objective: The object of the LOK research project is to gain a better understanding of the technological strategic processes in organisations by using the concept/metaphor of sensemaking. The project will investigate the technological strategies in organisations in order to gain a deeper...... understanding of the cognitive competencies and barriers towards implementing new technology in organisations. The research will therefore concentrate on researching the development process in the organisation's perception of the external environmental elements of customers, suppliers, competitors, internal...... and external technology and legislation and the internal environmental elements of structure, power relations and political arenas. All of these variables have influence on which/how technologies are implemented thus creating different outcomes all depending on the social dynamics that are triggered by changes...

  18. Technology collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Jacob [Halliburton (Brazil)

    2011-07-01

    The aim of this paper is to present Halliburton's Brazilian technology center. Halliburton has technology centers in the United States, Saudi Arabia, India, Singapore and Brazil, all of which aim at delivering accelerated innovation in the oil sector. The technology centers engage in research and development activities with the help of various universities and in collaboration with the customer or supplier. The Halliburton Brazil technology center provides its customers with timely research and development solutions for enhancing recovery and mitigating reservoir uncertainty; they are specialized in finding solutions for pre- and post-salt carbonate drilling and in the enhancement of production from mature fields. This presentation showcased the work carried out by the Halliburton Brazil technology center to help customers develop their deepwater field activities.

  19. Air conducted and body conducted sound produced by own voice

    DEFF Research Database (Denmark)

    Hansen, Mie Østergaard

    1998-01-01

    When we speak, sound reaches our ears both through the air, from the mouth to ear, and through our body, as vibrations. The ratio between the air borne and body conducted sound has been studied in a pilot experiment where the air borne sound was eliminated by isolating the ear with a large...

  20. Conductance measurements on bismuth nanobridges

    Energy Technology Data Exchange (ETDEWEB)

    Pernau, H.F.; Schirm, C.; Scheer, E. [Univ. of Konstanz (Germany) Dept. of Physics

    2007-07-01

    By electron beam lithography and reactive ion etching we fabricate freestanding metallic bismuth nano-bridges which serve as starting point for arranging atomic-size and tunnel contacts with the help of the mechanically controlled breakjunction technique. Since the bridges are broken in cryogenic vacuum, the contacts are free of oxygen or other contamination. The transport measurements are performed in a {sup 3}He cryostat in the temperature range from 0.25 K up to 2 K and in transverse magnetic fields up to 8 T. After determining the preferred conductance values by recording conductance histograms, we study the conductance as a function of temperature, bias voltage and magnetic field at various contact values corresponding to those preferred conductance values. We observe reproducible conductance fluctuations as a function of both bias voltage and magnetic field and a well pronounced zero-bias anomaly which is modulated periodically with the magnetic field. We interprete our data in terms of phase coherent transport and onsetting superconductivity due to the granular structure of the film. (orig.)

  1. Electrical conductivity of chondritic meteorites

    Science.gov (United States)

    Duba, AL; Didwall, E. M.; Burke, G. J.; Sonett, C. P.

    1987-01-01

    The electrical conductivity of samples of the Murchison and Allende carbonaceous chondrites is 4 to 6 orders of magnitude greater than rock forming minerals such as olivine for temperatures up to 700 C. The remarkably high electrical conductivity of these meteorites is attributed to carbon at the grain boundaries. Much of this carbon is produced by pyrolyzation of hydrocarbons at temperatures in excess of 150 C. As the temperature increases, light hydrocarbons are driven off and a carbon-rich residue or char migrates to the grain boundaries enhancing electrical conductivity. Assuming that carbon was present at the grain boundaries in the material which comprised the meteorite parent bodies, the electrical heating of such bodies was calculated as a function of body size and solar distance during a hypothetical T-Tauri phase of the sun. Input conductivity data for the meteorite parent body were the present carbonaceous chondrite values for temperatures up to 840 C and the electrical conductivity values for olivine above 840 C.

  2. Resistance switching in oxides with inhomogeneous conductivity

    Institute of Scientific and Technical Information of China (English)

    Shang Da-Shan; Sun Ji-Rong; Shen Bao-Gen; Wuttig Matthias

    2013-01-01

    Electric-field-induced resistance switching (RS) phenomena have been studied for over 60 years in metal/dielectrics/metal structures.In these experiments a wide range of dielectrics have been studied including binary transition metal oxides,perovskite oxides,chalcogenides,carbon-and silicon-based materials,as well as organic materials.RS phenomena can be used to store information and offer an attractive performance,which encompasses fast switching speeds,high scalability,and the desirable compatibility with Si-based complementary metal--oxide-semiconductor fabrication.This is promising for nonvolatile memory technology,i.e.,resistance random access memory (RRAM).However,a comprehensive understanding of the underlying mechanism is still lacking.This impedes faster product development as well as accurate assessment of the device performance potential.Generally speaking,RS occurs not in the entire dielectric but only in a small,confined region,which results from the local variation of conductivity in dielectrics.In this review,we focus on the RS in oxides with such an inhomogeneous conductivity.According to the origin of the conductivity inhomogeneity,the RS phenomena and their working mechanism are reviewed by dividing them into two aspects:interface RS,based on the change of contact resistance at metal/oxide interface due to the change of Schottky barrier and interface chemical layer,and bulk RS,realized by the formation,connection,and disconnection of conductive channels in the oxides.Finally the current challenges of RS investigation and the potential improvement of the RS performance for the nonvolatile memories are discussed.

  3. Ethical Applications of Technology in HRD

    Science.gov (United States)

    Lin, Hong

    2006-01-01

    Human resource development (HRD) professionals are increasingly incorporating technology into their work activities. However, research that examines the ethics in the use of technology by HRD professionals is still underrepresented in the literature. This article first conducts a PEST (political, economic, social-cultural, and technological)…

  4. Consumer Attitudes Regarding Information Technology Usage

    Directory of Open Access Journals (Sweden)

    Durmus YORUK

    2010-08-01

    Full Text Available This paper intends to formulate the hypotheses for the factors that influence individuals to adopt Information Technology as a mean to conduct the traditional services. The hypotheses are developed based on previous works utilizing the theories on technology acceptance and on related findings from empirical studies on information technologies,e-commerce and e-banking.

  5. Introducing Mobile Technology in Graduate Professional Education

    Science.gov (United States)

    Anand, Gopesh; Chhajed, Dilip; Hong, Seung Won; Scagnoli, Norma

    2014-01-01

    The insertion of mobile technology in educational settings is becoming more prevalent, making it important to understand the effectiveness of such technology in enhancing students' learning and engagement. This article is based on research conducted to study the effects of the use of mobile technology--specifically iPads--by students in a graduate…

  6. Conductive mechanism in manganite materials

    Science.gov (United States)

    Liu, Xianming; Zhu, Hong; Zhang, Yuheng

    2002-01-01

    We describe a model in which f(T)=M(T)/Mmax represents both the fraction of the itinerant electron density in the double-exchange (DE) theory and the magnetization σ in the current carrier density collapse (CCDC) theory. With this model, we have checked the DE and CCDC theories with our experimental results of the transport behavior. The DE theory yields agreement with the experimental resistivity excellently, in which the conductivity is the sum of the polaronic and itinerant electronic conductivity for the insulator-metal transition regime. The fitting curves of the resistivity by the CCDC theory deviate from the experiment seriously. This might be caused by the improper assumption of the temperature-dependent carrier density and the temperature-independent carrier mobility. Therefore, it is concluded that the DE theory is more suitable to explain the conductive mechanism in perovskite manganites.

  7. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  8. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  9. Conductivities in an anisotropic medium

    Science.gov (United States)

    Khimphun, Sunly; Lee, Bum-Hoon; Park, Chanyong

    2016-10-01

    In order to imitate the anisotropic medium of a condensed matter system, we take into account an Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this background, we investigate how the linear responses of vector modes like electric, thermoelectric, and thermal conductivities rely on the anisotropy. We find that the electric conductivity in the low frequency limit shows a Drude peak and that, in the intermediate frequency regime, it reveals the power law behavior. Specifically, when the anisotropy increases, the exponent of the power law becomes smaller. In addition, we find that a critical value for the anisotropy exists at which the dc conductivity reaches to its maximum value.

  10. Optical conductivity of curved graphene.

    Science.gov (United States)

    Chaves, A J; Frederico, T; Oliveira, O; de Paula, W; Santos, M C

    2014-05-07

    We compute the optical conductivity for an out-of-plane deformation in graphene using an approach based on solutions of the Dirac equation in curved space. Different examples of periodic deformations along one direction translates into an enhancement of the optical conductivity peaks in the region of the far- and mid-infrared frequencies for periodicities ∼100 nm. The width and position of the peaks can be changed by dialling the parameters of the deformation profiles. The enhancement of the optical conductivity is due to intraband transitions and the translational invariance breaking in the geometrically deformed background. Furthermore, we derive an analytical solution of the Dirac equation in a curved space for a general deformation along one spatial direction. For this class of geometries, it is shown that curvature induces an extra phase in the electron wave function, which can also be explored to produce interference devices of the Aharonov-Bohm type.

  11. Low Conductivity Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dong-Ming

    2005-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and requirements will be discussed. An experimental approach is established to monitor in real time the thermal conductivity of the coating systems subjected to high-heat-flux, steady-state and cyclic temperature gradients. Advanced low conductivity thermal barrier coatings have also been developed using a multi-component defect clustering approach, and shown to have improved thermal stability. The durability and erosion resistance of low conductivity thermal barrier coatings have been improved utilizing advanced coating architecture design, composition optimization, in conjunction with more sophisticated modeling and design tools.

  12. Conductivities in an anisotropic medium

    CERN Document Server

    Khimphun, Sunly; Park, Chanyong

    2016-01-01

    In order to imitate anisotropic medium of a condensed matter system, we take into account an Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this background, we investigate how the linear responses of vector modes like electric, thermoelectric, and thermal conductivities rely on the anisotropy. We find that the electric conductivity in low frequency limit shows a Drude peak and that in the intermediate frequency regime it reveals the power law behavior. Especially, when the anisotropy increases the exponent of the power law becomes smaller. In addition, we find that there exist a critical value for the anisotropy at which the DC conductivity reaches to its maximum value.

  13. Electric Conductivity of Phosphorus Nanowires

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-Xiang; LI Hui; ZHANG Xue-Qing; LIEW Kim-Meow

    2009-01-01

    We present the structures and electrical transport properties of nanowires made from different strands of phosphorus chains encapsulated in carbon nanotubes. Optimized by density function theory, our results indicate that the conductance spectra reveal an oscillation dependence on the size of wires. It can be seen from the density of states and current-voltage curves that the structure of nanowires affects their properties greatly. Among them,the DNA-like double-helical phosphorus nanowire exhibits the distinct characteristic of an approximately linear I - V relationship and has a higher conductance than others. The transport properties of phosphorus nanowires are highly correlated with their microstructures.

  14. Electroosmosis in conducting nanofluidic channels

    CERN Document Server

    Zhao, Cunlu

    2010-01-01

    Theoretical modeling of electroosmosis through conducting (ideally polarizable) nanochannels is reported. Based on the theory of induced charge electrokinetics, a novel nanofluidic system which possesses both adjustable ion selective characteristics and flexible flow control is proposed. Such nanofluidic devices operate only with very low gate control voltage applied on the conductive walls of nanochannels, and thus even can be energized by normal batteries. We believe that it is possible to use such metal-electrolyte configurations to overcome the difficulties met with conventional metal-isolator-electrolyte systems for nanofluidic applications.

  15. Selected soil thermal conductivity models

    Directory of Open Access Journals (Sweden)

    Rerak Monika

    2017-01-01

    Full Text Available The paper presents collected from the literature models of soil thermal conductivity. This is a very important parameter, which allows one to assess how much heat can be transferred from the underground power cables through the soil. The models are presented in table form, thus when the properties of the soil are given, it is possible to select the most accurate method of calculating its thermal conductivity. Precise determination of this parameter results in designing the cable line in such a way that it does not occur the process of cable overheating.

  16. Twin delivery: method, timing and conduct.

    Science.gov (United States)

    Barrett, Jon F R

    2014-02-01

    The incidence of twin pregnancy has increased worldwide over the past 10 years, largely as a consequence of the assisted reproductive technologies. Issues such as intrapartum monitoring and operative interventions, especially relating to the second twin, provide a unique challenge in labour and delivery. Epidemiological and cohort data suggest that twins have a three-fold higher mortality rate than singletons, and that the second twin might have a better outcome if delivered by lower segment caesarean section. The recently completed Twin Birth Study has found that planned vaginal lower segment caesarean section is not advantageous to the fetus. In the light of this large randomised-controlled trial, vaginal delivery if twin A presents by the vertex is recommended as long as guidelines for the conduct of such delivery are followed.

  17. Low noise and conductively cooled microchannel plates

    Science.gov (United States)

    Feller, W. B.

    1990-01-01

    Microchannel plate (MCP) dynamic range has recently been enhanced for both very low and very high input flux conditions. Improvements in MCP manufacturing technology reported earlier have led to MCPs with substantially reduced radioisotope levels, giving dramatically lower internal background-counting rates. An update is given on the Galileo low noise MCP. Also, new results in increasing the MCP linear counting range for high input flux densities are presented. By bonding the active face of a very low resistance MCP (less than 1 megaohm) to a substrate providing a conductive path for heat transport, the bias current limit (hence, MCP output count rate limit) can be increased up to two orders of magnitude. Normal pulse-counting MCP operation was observed at bias currents of several mA when a curved-channel MCP (80:1) was bonded to a ceramic multianode substrate; the MCP temperature rise above ambient was less than 40 C.

  18. Ergonomics technology

    Science.gov (United States)

    Jones, W. L.

    1977-01-01

    Major areas of research and development in ergonomics technology for space environments are discussed. Attention is given to possible applications of the technology developed by NASA in industrial settings. A group of mass spectrometers for gas analysis capable of fully automatic operation has been developed for atmosphere control on spacecraft; a version for industrial use has been constructed. Advances have been made in personal cooling technology, remote monitoring of medical information, and aerosol particle control. Experience gained by NASA during the design and development of portable life support units has recently been applied to improve breathing equipment used by fire fighters.

  19. A Model for Conducting and Assessing Interdisciplinary Undergraduate Dissertations

    Science.gov (United States)

    Engström, Henrik

    2015-01-01

    This paper presents an effort to create a unified model for conducting and assessing undergraduate dissertations, shared by all disciplines involved in computer game development at a Swedish university. Computer game development includes technology-oriented disciplines as well as disciplines with aesthetical traditions. The challenge has been to…

  20. Force dependent metalloprotein conductance by conducting atomic force microscopy

    Science.gov (United States)

    Zhao, Jianwei; Davis, Jason J.

    2003-09-01

    Our ability to analyse charge transport through a biological macromolecule, pertinent to our understanding not only of biological redox processes but also, for example, to our interpretation of tunnelling imaging, remains a significant practical and theoretical issue. Though much information can be gained by carrying out such examinations at a molecular level, there exist few methods where such controlled analyses are, in fact, feasible. Here we report on the electron transport characteristics of a blue copper metalloprotein as characterized at a refined level by conductive-probe atomic force microscopy. The modulation of this conductance with compressional force has also been examined. Though highly resistive, observations are consistent with the ability of the protein matrix to mediate appreciable tunnelling current. This work, then, paves the way for designed implementation of biomacromolecules into electronic devices.

  1. Hybrid Silicon Nanostructures with Conductive Ligands and Their Microscopic Conductivity

    Science.gov (United States)

    Bian, Tiezheng; Peck, Jamie N.; Cottrell, Stephen P.; Jayasooriya, Upali A.; Chao, Yimin

    2016-09-01

    Silicon nanoparticles (SiNPs) functionalized with conjugated molecules are a promising potential pathway for generating an alternative category of thermoelectric materials. While the thermoelectric performance of materials based on phenylacetylene-capped SiNPs has been proven, their low conductivity is still a problem for their general application. A muon study of phenylacetylene-capped SiNPs was recently carried out using the HIFI spectrometer at the Rutherford Appleton Laboratory, measuring the avoided level-crossing spectra as a function of temperature. The results show a reduction in the measured line width of the resonance above room temperature, suggesting an activated behaviour for this system. This study shows that the muon study could be a powerful method for investigating microscopic conductivity of hybrid thermoelectric materials.

  2. DC electrical conductivity study of cerium doped conducting glass systems

    Science.gov (United States)

    Barde, R. V.; Waghuley, S. A.

    2013-06-01

    The glass samples of composition 60V2O5-5P2O5-(35-x)B2O3-xCeO2, (1 ≤ x ≤ 5) were prepared by the conventional melt quench method. The samples were characterized by X-ray diffraction and thermo gravimetric-differential thermal analysis. The glass transition temperature and crystallization temperature determined from TG-DTA analysis. The DC electrical conductivity has been carried out in the temperature range 303-473 K. The maximum conductivity and minimum activation energy were found to be 0.039 Scm-1 and 0.15 eV at 473 K for x=1, respectively.

  3. Electrical Conductivity in Transition Metals

    Science.gov (United States)

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  4. Conductive Polymers via Reactive Aligomer.

    Science.gov (United States)

    1987-01-30

    properties are presumably due to the formation of dibenzothiophene units 7 .! 9 NADC-87038-60 and intermolecular crosslinking(1 6). Frommer and...2), 280, (1984). 17. J.E. Frommer and R.R. Chance, "Electrically Conductive Polymers", Encycoedia of Polymer Science and Engineering. V. 5, Second

  5. Conducting Simulation Studies in Psychometrics

    Science.gov (United States)

    Feinberg, Richard A.; Rubright, Jonathan D.

    2016-01-01

    Simulation studies are fundamental to psychometric discourse and play a crucial role in operational and academic research. Yet, resources for psychometricians interested in conducting simulations are scarce. This Instructional Topics in Educational Measurement Series (ITEMS) module is meant to address this deficiency by providing a comprehensive…

  6. Conducting miller-urey experiments

    National Research Council Canada - National Science Library

    Parker, Eric T; Cleaves, James H; Burton, Aaron S; Glavin, Daniel P; Dworkin, Jason P; Zhou, Manshui; Bada, Jeffrey L; Fernández, Facundo M

    2014-01-01

    ... the water was simultaneously heated. The purpose of this manuscript is to provide the reader with a general experimental protocol that can be used to conduct a Miller-Urey type spark discharge experiment, using a simplified 3 L reaction flask...

  7. Supporting planning and conducting experiments

    NARCIS (Netherlands)

    Riesen, van Siswa A.N.; Gijlers, Hannie; Anjewierden, Anjo; Jong, de Ton

    2016-01-01

    In inquiry learning learners design and conduct experiments. Learners experience difficulties with the involved processes and need guidance to design useful experiments. To guide students in this we created a configurable experiment design tool that is usable in multiple domains. The tool was tested

  8. How to Conduct Ethnographic Research

    Science.gov (United States)

    Sangasubana, Nisaratana

    2011-01-01

    The purpose of this paper is to describe the process of conducting ethnographic research. Methodology definition and key characteristics are given. The stages of the research process are described including preparation, data gathering and recording, and analysis. Important issues such as reliability and validity are also discussed.

  9. Heat conduction in three dimensions

    Science.gov (United States)

    Danza, T. M.; Fesler, L. W.; Mongan, R. D.

    1980-01-01

    Multidimensional heat conduction program computes transient temperature history and steady state temperatures of complex body geometries in three dimensions. Emphasis is placed on type of problems associated with Space Shuttle thermal protection system, but program could be used in thermal analysis of most three dimensional systems.

  10. Supporting planning and conducting experiments

    NARCIS (Netherlands)

    van Riesen, Siswa; Gijlers, Aaltje H.; Anjewierden, Anjo Allert; de Jong, Anthonius J.M.; Looi, Chee-Kit; Polman, Joseph; Cress, Ulrike; Reimann, Peter

    2016-01-01

    In inquiry learning learners design and conduct experiments. Learners experience difficulties with the involved processes and need guidance to design useful experiments. To guide students in this we created a configurable experiment design tool that is usable in multiple domains. The tool was tested

  11. Thermal radiation of conducting nanoparticles

    CERN Document Server

    Martynenko, Y V; Martynenko, Yu. V.

    2005-01-01

    A simple and universal criterion was obtained for the thermal radiation energy loss efficiency by small conductive particles which include along with metals and graphite also most practically important metal carbides like tungsten carbide, titanium carbide and the number of others.

  12. Fluctuation conductivity in cuprate superconductors

    Indian Academy of Sciences (India)

    S N Bhatia

    2002-05-01

    We have measured the in-plane resistivity of Bi2Sr2CaCu2O8+ and Tl2Ba2CaCu2O8+ single crystals in the temperature range 70–300 K. The thermodynamic fluctuations in the conductivity of both the samples start around ∼ 125 K. We find the Lawrence and Doniach [1] model to be inadequate to describe the fluctuation conductivity in these materials. The modification suggested by Ramallo et al [4] where by the conductivity is enhanced due to the presence of two superconducting layers in each unit cell is also not adequate. We suggest the fluctuation conductivity to be reduced due to the reduction in the density of states (DOS) of the quasiparticles which results due to the formation of Cooper pairs at the onset of the fluctuations. The data agrees with the theory proposed by Dorin et al [5] which takes into account this reduction in DOS.

  13. Heat conduction in three dimensions

    Science.gov (United States)

    Danza, T. M.; Fesler, L. W.; Mongan, R. D.

    1980-01-01

    Multidimensional heat conduction program computes transient temperature history and steady state temperatures of complex body geometries in three dimensions. Emphasis is placed on type of problems associated with Space Shuttle thermal protection system, but program could be used in thermal analysis of most three dimensional systems.

  14. Characterization and Conduction Mechanism of Highly Conductive Vanadate Glass

    Directory of Open Access Journals (Sweden)

    Tetsuaki Nishida

    2015-12-01

    Full Text Available This paper reviews recent studies of highly conductive barium iron vanadate glass with a composition of 20 BaO ∙ 10 Fe2O3 ∙ 70 V2O5 (in mol %. Isothermal annealing of the vanadate glass for several ten minutes at a given temperature, higher than glass transition temperature or crystallization temperature, caused an increase in σ. Substitution of CuI (3d10, ZnII (3d10 and CuII (3d9 for FeIII (3d5 was investigated to elucidate the effect of electron configuration on the conductivity (σ. A marked decrease in the activation energy of conduction (Ea was also observed after the annealing. Values of Ea were correlated to the energy gap between the donor level and the conduction band (CB in the n-type semiconductor model. Isothermal annealing of ZnII-substituted vanadate glass (20 BaO ∙ 5 ZnO ∙ 5 Fe2O3 ∙ 70 V2O5 at 450 °C for 30 min showed an increase in σ from 2.5 × 10–6 to 2.1 × 10–1 S cm–1, which was one order of magnitude larger than that of non-substituted vanadate glass (3.4 × 10–2 S cm–1. Under the same annealing condition, σ’s of 2.0 × 10–1 and 3.2 × 10–1 S cm–1 were observed for 20 BaO ∙ 5 Cu2O ∙ 5 Fe2O3 ∙ 70 V2O5 and 20 BaO ∙ 5 CuO ∙ 5 Fe2O3 ∙ 70 V2O5 glasses, respectively. These results demonstrate an increase in the carrier (electron density in the CB, primarily composed of anti-bonding 4s-orbitals.

  15. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  16. Technology Innovation

    Science.gov (United States)

    EPA produces innovative technologies and facilitates their creation in line with the Agency mission to create products such as the stormwater calculator, remote sensing, innovation clusters, and low-cost air sensors.

  17. Banana technology

    Science.gov (United States)

    van Amstel, Willem D.; Schellekens, E. P. A.; Walravens, C.; Wijlaars, A. P. F.

    1999-09-01

    With 'Banana Technology' an unconventional hybrid fabrication technology is indicated for the production of very large parabolic and hyperbolic cylindrical mirror systems. The banana technology uses elastic bending of very large and thin glass substrates and fixation onto NC milled metal moulds. This technology has matured during the last twenty years for the manufacturing of large telecentric flat-bed scanners. Two construction types, called 'internal banana' and 'external banana; are presented. Optical figure quality requirements in terms of slope and curvature deviations are discussed. Measurements of these optical specifications by means of a 'finishing rod' type of scanning deflectometer or slope tester are presented. Design constraints for bending glass and the advantages of a new process will be discussed.

  18. Exploration technology

    Energy Technology Data Exchange (ETDEWEB)

    Roennevik, H.C. [Saga Petroleum A/S, Forus (Norway)

    1996-12-31

    The paper evaluates exploration technology. Topics discussed are: Visions; the subsurface challenge; the creative tension; the exploration process; seismic; geology; organic geochemistry; seismic resolution; integration; drilling; value creation. 4 refs., 22 figs.

  19. UPLIFTING TECHNOLOGY

    National Research Council Canada - National Science Library

    Thomas K Grose

    2015-01-01

      Inspired by Star Trek turbolifts, German engineering firm ThyssenKrupp says it's ready to replace cables and pulleys using maglev, or magnetic levitation technology, that enables the world's fastest...

  20. Videodisc technology

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, F.E. Jr.

    1981-03-01

    An overview of the technology of videodiscs is given. The emphasis is on systems that use reflection or transmission of laser light. Possible use of videodiscs for storage of bibliographic information is considered. 6 figures, 3 tables. (RWR)

  1. Cognitive technologies

    CERN Document Server

    Mello, Alan; Figueiredo, Fabrício; Figueiredo, Rafael

    2017-01-01

    This book focuses on the next generation optical networks as well as mobile communication technologies. The reader will find chapters on Cognitive Optical Network, 5G Cognitive Wireless, LTE, Data Analysis and Natural Language Processing. It also presents a comprehensive view of the enhancements and requirements foreseen for Machine Type Communication. Moreover, some data analysis techniques and Brazilian Portuguese natural language processing technologies are also described here. .

  2. Lasers technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Laser Technology Program of IPEN is developed by the Center for Lasers and Applications (CLA) and is committed to the development of new lasers based on the research of new optical materials and new resonator technologies. Laser applications and research occur within several areas such as Nuclear, Medicine, Dentistry, Industry, Environment and Advanced Research. Additional goals of the Program are human resource development and innovation, in association with Brazilian Universities and commercial partners.

  3. Conductive Elastomers for Stretchable Electronics, Sensors and Energy Harvesters

    Directory of Open Access Journals (Sweden)

    Jin-Seo Noh

    2016-04-01

    Full Text Available There have been a wide variety of efforts to develop conductive elastomers that satisfy both mechanical stretchability and electrical conductivity, as a response to growing demands on stretchable and wearable devices. This article reviews the important progress in conductive elastomers made in three application fields of stretchable technology: stretchable electronics, stretchable sensors, and stretchable energy harvesters. Diverse combinations of insulating elastomers and non-stretchable conductive materials have been studied to realize optimal conductive elastomers. It is noted that similar material combinations and similar structures have often been employed in different fields of application. In terms of stretchability, cyclic operation, and overall performance, fields such as stretchable conductors and stretchable strain/pressure sensors have achieved great advancement, whereas other fields like stretchable memories and stretchable thermoelectric energy harvesting are in their infancy. It is worth mentioning that there are still obstacles to overcome for the further progress of stretchable technology in the respective fields, which include the simplification of material combination and device structure, securement of reproducibility and reliability, and the establishment of easy fabrication techniques. Through this review article, both the progress and obstacles associated with the respective stretchable technologies will be understood more clearly.

  4. Ionic conductivity in oxide heterostructures: the role of interfaces

    Directory of Open Access Journals (Sweden)

    Emiliana Fabbri, Daniele Pergolesi and Enrico Traversa

    2010-01-01

    Full Text Available Rapidly growing attention is being directed to the investigation of ionic conductivity in oxide film heterostructures. The main reason for this interest arises from interfacial phenomena in these heterostructures and their applications. Recent results revealed that heterophase interfaces have faster ionic conduction pathways than the bulk or homophase interfaces. This finding can open attractive opportunities in the field of micro-ionic devices. The influence of the interfaces on the conduction properties of heterostructures is becoming increasingly important with the miniaturization of solid-state devices, which leads to an enhanced interface density at the expense of the bulk. This review aims to describe the main evidence of interfacial phenomena in ion-conducting film heterostructures, highlighting the fundamental and technological relevance and offering guidelines to understanding the interface conduction mechanisms in these structures.

  5. Nanostructured conducting polymer hydrogels for energy storage applications.

    Science.gov (United States)

    Shi, Ye; Peng, Lele; Yu, Guihua

    2015-08-14

    Conducting polymer hydrogels are emerging as a promising class of polymeric materials for various technological applications, especially for energy storage devices due to their unique combination of advantageous features of conventional polymers and organic conductors. To overcome the drawbacks of conventional synthesis, new synthetic routes in which acid molecules are adopted as both crosslinkers and dopants have been developed for conducting polymer hydrogels with unique 3D hierarchical porous nanostructures, resulting in high electrical conductivity, large surface area, structural tunability and hierarchical porosity for rapid mass/charge transport. The newly developed conducting polymer hydrogels exhibit high performance when applied as active electrode materials for electrochemical capacitors or as functional binder materials for high-energy lithium-ion batteries. This feature article summarizes the synthesis of conducting polymer hydrogels, presents their applications in energy storage, and discusses further opportunities and challenges.

  6. Investigations Regarding the Thermal Conductivity of Straw

    Directory of Open Access Journals (Sweden)

    Marian Pruteanu

    2010-01-01

    Full Text Available The reduction of buildings heat losses and pollutants emissions is a worldwide priority. It’s intending to reduce the specific final energy consumption under limit of 120...150 kWh/m2.yr and even under 15...45 kWh/m2.yr, foreseen in 2020 for the passive houses, which is necessary for a sustainable development and for allowing to became profitable the use of unconventional energies [1]. These values can be achieved through the use of thermal insulations, for protecting the constructions fund and through making envelope elements, as much as possible, from materials with a high thermal resistance, for new buildings. With intention to substitute the conventional thermal insulations: mineral wool, expanded polystyrene, which are both great energy consumers, it’s proposed, among others unconventional technologies and materials, the use of vegetable wastes both as a thermal insulation material and as a material used for building load-bearing and in-fill straw-bale construction. In speciality literature there are presented experimental determinations of this material’s thermal conductivity. The paper proposes a simple method, adequate for the measurement of thermal conductivity for bulk’s materials as straw bales.

  7. Dielectric properties of conductive ionomers

    Science.gov (United States)

    Klein, Robert James

    Ion and polymer dynamics of ion-containing polymers were investigated, with the majority of results obtained from application of a physical model of electrode polarization (EP) to dielectric spectroscopy data. The physical model of MacDonald, further developed by Coelho, was extended for application to tan delta (the ratio of dielectric loss to dielectric constant) as a function of frequency. The validity of this approach was confirmed by plotting the characteristic EP time as a function of thickness and comparing the actual and predicted unrelaxed dielectric constant for a poly(ethylene oxide) (PEO)-based ionomer neutralized by lithium, sodium, and cesium. Results were obtained for ion mobility and mobile ion concentration for a neat PEO-based ionomer, two (methoxyethoxy-ethoxy phosphazene) (MEEP) -based ionomers, two MEEP-based salt-doped polymers, sulfonated polystyrene (SPS) neutralized by sodium with a high sulfonation fraction, and SPS neutralized by zinc with a low sulfonation fraction. Additionally, the conductivity parameters of six plasticized forms of a neat PEO-based ionomer were characterized, but the method apparently failed to correctly evaluate bulk ionic behavior. In all cases except the SPS ionomers ion mobility follows a Vogel-Fulcher-Tammann (VFT) temperature dependence. In all cases, mobile ion concentration follows an Arrhenius temperature dependence. Fitting parameters from these two relationships yielded direct information about the state of ionic diffusion and ion pairing in each system. Combination of these two functionalities predicts a relationship for conductivity that is significantly different than the VFT relation typically used in the literature to fit conductivity. The most outstanding result was the extremely small fraction of ions found to be mobile. For ionomers it can be concluded that the primary reason for low conductivities arises from the low fraction of mobile ions. The local and segmental dynamics of the neat and

  8. Technology and technology transfer: some basic issues

    OpenAIRE

    Shamsavari, Ali; Adikibi, Owen; Taha, Yasser

    2002-01-01

    This paper addresses various issues relating to technology and transfer of technology such as technology and society, technology and science, channels and models of technology transfer, the role of multinational companies in transfer of technology, etc. The ultimate objective is to pose the question of relevance of some existing models and ideas like technological independence in an increasingly globalised world economy.

  9. Improving the firm's environmental conduct

    DEFF Research Database (Denmark)

    Knudsen, Thorbjørn; Koed Madsen, Tage

    2001-01-01

    lead to strategic advantage and, thus, economic gains at the firm level. In view of the great importance of this claim, the purpose of the present article was to apply resource-based insights in order to develop this reasoning further and provide an empirical test of three hypotheses related...... to the claim. Our empirical test filled a gap in previous research and offered evidence in support of this claim as well as support for two related hypotheses developed on the basis of the resource-based view.......  It has recently been argued that growing societal pressures for better environmental conduct could induce environmental innovation, thereby entailing lower costs due to increased value and/or more efficient resource allocation. This has led to the claim that improved environmental conduct may...

  10. Conducting Miller-Urey Experiments

    Science.gov (United States)

    Parker, Eric Thomas; Cleaves, Henderson James; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason; Zhou, Manshui; Bada, Jeffrey L.; Fernandez, Facundo M.

    2014-01-01

    In 1953, Stanley Miller reported the production of biomolecules from simple gaseous starting materials, using apparatus constructed to simulate the primordial Earth's atmosphere-ocean system. Miller introduced 200 ml of water, 100 mmHg of H2, 200mmHg of CH4, and 200mmHg of NH3 into the apparatus, then subjected this mixture, under reflux, to an electric discharge for a week, while the water was simultaneously heated. The purpose of this manuscript is to provide the reader with a general experimental protocol that can be used to conduct a Miller-Urey type spark discharge experiment, using a simplified 3 L reaction flask. Since the experiment involves exposing inflammable gases to a high voltage discharge, it is worth highlighting important steps that reduce the risk of explosion. The general procedures described in this work can be extrapolated to design and conduct a wide variety of electric discharge experiments simulating primitive planetary environments.

  11. Inductive heating of conductive nanoparticles

    CERN Document Server

    Nordebo, Sven

    2016-01-01

    We consider the heating of biological tissue by injecting gold nanoparticles and subjecting the system to an electromagnetic field in the radio frequency spectrum. There are results that indicate that small conducting particles can substantially increase the heating locally and thus provide a method to treat cancer. However, recently there are also other publications that question whether metal nanoparticles can be heated in radiofrequency at all. This paper presents a simplified analysis and some interesting observations regarding the classical electromagnetic background to this effect. Here, it is assumed that the related dipole effects are based solely on conducting nanospheres that are embedded in a surrounding medium. From this point of view it is concluded that the effect of using a capactive coupling i.e., a strong electric field to induce electric dipoles can be disregarded unless the volume fraction of the gold nanoparticles is unrealistically high or if there are some other external electric dipole ...

  12. Conduct of operations implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, C.K.; Hall, R.L.

    1991-02-20

    This implementation plan describes the process and provides information and schedules that are necessary to implement and comply with the Department of Energy (DOE) Order 5480.19, {open_quotes}Conduct of Operations{close_quotes} (CoOp). This plan applies to all Pinellas Plant operations and personnel. Generally, this Plan discusses how DOE Order 5480.19 will be implemented at the Pinellas Plant.

  13. Anomalous electronic conductance in quasicrystals

    Science.gov (United States)

    Roche, Stephan; Moulopoulos, Konstantinos

    2000-03-01

    Subtle quantum interference effects in one-dimensional quasicrystals are reported. Quite opposite to their metallic counterparts, quasiperiodic systems are shown to exhibit interesting variations of their conducting properties upon disruption of their long-range order. A sudden phason change in the structure leads to a series of transitions that proceed from extremely simple and regular to highly complex self-similar resistive patterns.

  14. Conducting Service Research that Matters

    OpenAIRE

    Gustafsson, Anders; Aksoy, Lerzan; Brady, Michael; McColl-Kennedy, Janet; Sirianni, Nancy; Witell, Lars; Wünderlich, Nancy V.

    2015-01-01

    Purpose –The purpose of this essay is to encourage the reader to think differently about service related issues, and to strive to conduct service research that makes a transformational impact on individuals, organizations, and society. The authors suggest that service researchers are in an excellent position to develop research that matters by making stronger connections with theory, and elevating purely applied research to research that is higher in both practical relevance and methodolo...

  15. Challenges in conducting psychiatry studies in India

    Directory of Open Access Journals (Sweden)

    Saifuddin Kharawala

    2011-01-01

    Full Text Available A large number of psychiatry studies are conducted in India. Psychiatry studies are complex and present unique challenges in the Indian setting. Ethical issues pertaining to the risk of worsening of illness, use of placebo and validity of informed consents are commonly faced. Site selection can be difficult due to the relative paucity of ICH-GCP (International Conference on Harmonisation - Good Clinical Practice trained psychiatry investigators in India. Recruitment can be challenging due to issues such as strict eligibility criteria, (lack of availability of caregiver, illness-related considerations, etc. Assessment of the consent capacity of patients is not simple, while structured assessments are not commonly employed. As the illness fluctuates, the consent capacity may change, thus requiring continued assessment of consent capacity. Study patients run the risk of worsening of illness and suicide due to exposure to inactive treatments; this risk is counterbalanced by use of appropriate study designs, as well as the indirect psychotherapeutic support received. Psychiatry studies are associated with a high placebo response. This necessitates conduct of placebo-controlled studies despite the attendant difficulties. Also, the high placebo response is often the cause of failed trials. Rating scales are essential for assessment of drug response. Some rating instruments as well as some rater training procedures may not be suitable for the Indian setting. Technological advancements may increase the procedural complexity but improve the quality of ratings. Psychiatry studies present monitors and auditors with unique scenarios too. Utilization of psychiatry specific training and expertise is recommended to ensure successful conduct of these studies in India.

  16. New technology for food systems and security.

    Science.gov (United States)

    Yau, N J Newton

    2009-01-01

    In addition to product trade, technology trade has become one of the alternatives for globalization action around the world. Although not all technologies employed on the technology trade platform are innovative technologies, the data base of international technology trade still is a good indicator for observing innovative technologies around world. The technology trade data base from Sinew Consulting Group (SCG) Ltd. was employed as an example to lead the discussion on security or safety issues that may be caused by these innovative technologies. More technologies related to processing, functional ingredients and quality control technology of food were found in the data base of international technology trade platform. The review was conducted by categorizing technologies into the following subcategories in terms of safety and security issues: (1) agricultural materials/ingredients, (2) processing/engineering, (3) additives, (4) packaging/logistics, (5) functional ingredients, (6) miscellaneous (include detection technology). The author discusses examples listed for each subcategory, including GMO technology, nanotechnology, Chinese medicine based functional ingredients, as well as several innovative technologies. Currently, generation of innovative technology advance at a greater pace due to cross-area research and development activities. At the same time, more attention needs to be placed on the employment of these innovative technologies.

  17. Nerve conduction and electromyography studies.

    Science.gov (United States)

    Kane, N M; Oware, A

    2012-07-01

    Nerve conduction studies (NCS) and electromyography (EMG), often shortened to 'EMGs', are a useful adjunct to clinical examination of the peripheral nervous system and striated skeletal muscle. NCS provide an efficient and rapid method of quantifying nerve conduction velocity (CV) and the amplitude of both sensory nerve action potentials (SNAPs) and compound motor action potentials (cMAPs). The CV reflects speed of propagation of action potentials, by saltatory conduction, along large myelinated axons in a peripheral nerve. The amplitude of SNAPs is in part determined by the number of axons in a sensory nerve, whilst amplitude of cMAPs reflects integrated function of the motor axons, neuromuscular junction and striated muscle. Repetitive nerve stimulation (RNS) can identify defects of neuromuscular junction (NMJ) transmission, pre- or post-synaptic. Needle EMG examination can detect myopathic changes in muscle and signs of denervation. Combinations of these procedures can establish if motor and/or sensory nerve cell bodies or peripheral nerves are damaged (e.g. motor neuronopathy, sensory ganglionopathy or neuropathy), and also indicate if the primary target is the axon or the myelin sheath (i.e. axonal or demyelinating neuropathies). The distribution of nerve damage can be determined as either generalised, multifocal (mononeuropathy multiplex) or focal. The latter often due to compression at the common entrapment sites (such as the carpal tunnel, Guyon's canal, cubital tunnel, radial groove, fibular head and tarsal tunnel, to name but a few of the reported hundred or so 'entrapment neuropathies').

  18. Proton-conducting cerate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Coffey, G.W.; Bates, J.L.; Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Single-cell solid oxide fuel cells were constructed using strontium cerate as the electrolyte and their performance tested. Like certain zirconates, hafnates, and tantalates, the cerate perovskites are among a class of solid electrolytes that conduct protons at elevated temperatures. Depending on the temperature and chemical environment, these ceramics also support electronic and oxygen ion currents. A maximum power output of {approx}100 mW per cm{sup 2} electrolyte surface area was obtained at 900{degrees}C using 4% hydrogen as the fuel and air as the oxidant. A series of rare earth/ceria/zirconia were prepared and their electrical properties characterized. Rare earth dopants included ytterbia, yttria, terbia, and europia. Ionic conductivities were highest for rare earth/ceria and rare earth zirconia compositions; a minimum in ionic conductivity for all series were found for equimolar mixtures of ceria and zirconia. Cerium oxysulfide is of interest in fossil energy applications because of its high chemical stability and refractory nature. An alternative synthesis route to preparing cerium oxysulfide powders has been developed using combustion techniques.

  19. Heat conduction within linear thermoelasticity

    CERN Document Server

    Day, William Alan

    1985-01-01

    J-B. J. FOURIER'S immensely influential treatise Theorie Analytique de la Chaleur [21J, and the subsequent developments and refinements of FOURIER's ideas and methods at the hands of many authors, provide a highly successful theory of heat conduction. According to that theory, the growth or decay of the temperature e in a conducting body is governed by the heat equation, that is, by the parabolic partial differential equation Such has been the influence of FOURIER'S theory, which must forever remain the classical theory in that it sets the standard against which all other theories are to be measured, that the mathematical investigation of heat conduction has come to be regarded as being almost identicalt with the study of the heat equation, and the reader will not need to be reminded that intensive analytical study has t But not entirely; witness, for example, those theories which would replace the heat equation by an equation which implies a finite speed of propagation for the temperature. The reader is refe...

  20. Thermal Conductivity of Humid Air

    Science.gov (United States)

    Beirão, S. G. S.; Ribeiro, A. P. C.; Lourenço, M. J. V.; Santos, F. J. V.; Nieto de Castro, C. A.

    2012-09-01

    In this article, measurements of the thermal conductivity of humid air as a function of pressure, temperature, and mole fraction of water, for pressures up to 5 MPa and temperatures up to 430 K, for different water contents (up to 10 % vapor mole fraction) are reported. Measurements were performed using a transient hot-wire apparatus capable of obtaining data with an uncertainty of 0.8 % for gases. However, as moist air becomes corrosive above 373 K and at pressures >5 MPa, the apparatus, namely, the pressure vessel and the cells had to be modified, by coating all stainless-steel parts with a titanium nitride thin film coating, about 4 μm thick, obtained by physical vapor deposition. The expanded uncertainty (coverage factor k = 2) of the present experimental thermal conductivity data is 1.7 %, while the uncertainty in the mole fraction is estimated to be better than 0.0006. Experimental details regarding the preparation of the samples, the precautions taken to avoid condensation in the tubes connected to the measuring cell, and the method developed for obtaining reliable values of the water content for the gas mixtures are discussed. A preliminary analysis of the application of the kinetic theory of transport properties in reacting mixtures to interpret the complex dependence of the thermal conductivity of humid air on water composition is addressed.

  1. Thermal Conductivity Of Rubble Piles

    CERN Document Server

    Luan, Jing

    2015-01-01

    Rubble piles are a common feature of solar system bodies. They are composed of monolithic elements of ice or rock bound by gravity. Voids occupy a significant fraction of the volume of a rubble pile. They can exist up to pressure $P\\approx \\epsy\\mu$, where $\\epsy$ is the monolithic material's yield strain and $\\mu$ its rigidity. At low $P$, contacts between neighboring elements are confined to a small fraction of their surface areas. As a result, the effective thermal conductivity of a rubble pile, $\\kcon\\approx k(P/(\\epsy\\mu))^{1/2}$, can be orders of magnitude smaller than, $k$, the thermal conductivity of its monolithic elements. In a fluid-free environment, only radiation can transfer energy across voids. It contributes an additional component, $\\krad=16\\ell\\sigma T^3/3$, to the total effective conductivity, $\\keff=\\kcon +\\krad$. Here $\\ell$, the inverse of the opacity per unit volume, is of order the size of the elements and voids. An important distinction between $\\kcon$ and $\\krad$ is that the former i...

  2. Nonlinear conductivity in silicon nitride

    Science.gov (United States)

    Tuncer, Enis

    2017-08-01

    To better comprehend electrical silicon-package interaction in high voltage applications requires full characterization of the electrical properties of dielectric materials employed in wafer and package level design. Not only the packaging but wafer level dielectrics, i.e. passivation layers, would experience high electric fields generated by the voltage applied pads. In addition the interface between the passivation layer and a mold compound might develop space charge because of the mismatch in electrical properties of the materials. In this contribution electrical properties of a thin silicon nitride (Si3N4) dielectric is reported as a function of temperature and electric field. The measured values later analyzed using different temperature dependent exponential expressions and found that the Mott variable range hopping conduction model was successful to express the data. A full temperature/electric field dependency of conductivity is generated. It was found that the conduction in Si3N4 could be expressed like a field ionization or Fowler-Nordheim mechanism.

  3. Information technology in health promotion.

    Science.gov (United States)

    Lintonen, T P; Konu, A I; Seedhouse, D

    2008-06-01

    eHealth, the use of information technology to improve or enable health and health care, has recently been high on the health care development agenda. Given the vivid interest in eHealth, little reference has been made to the use of these technologies in the promotion of health. The aim of this present study was to conduct a review on recent uses of information technology in health promotion through looking at research articles published in peer-reviewed journals. Fifteen relevant journals with issues published between 2003 and June 2005 yielded altogether 1352 articles, 56 of which contained content related to the use of information technology in the context of health promotion. As reflected by this rather small proportion, research on the role of information technology is only starting to emerge. Four broad thematic application areas within health promotion were identified: use of information technology as an intervention medium, use of information technology as a research focus, use of information technology as a research instrument and use of information technology for professional development. In line with this rather instrumental focus, the concepts 'ePromotion of Health' or 'Health ePromotion' would come close to describing the role of information technology in health promotion.

  4. Technology cycles and technology revolutions

    Energy Technology Data Exchange (ETDEWEB)

    Paganetto, Luigi; Scandizzo, Pasquale Lucio

    2010-09-15

    Technological cycles have been characterized as the basis of long and continuous periods economic growth through sustained changes in total factor productivity. While this hypothesis is in part consistent with several theories of growth, the sheer magnitude and length of the economic revolutions experienced by humankind seems to indicate surmise that more attention should be given to the origin of major technological and economic changes, with reference to one crucial question: role of production and use of energy in economic development.

  5. CONDUCTIVE CHANNEL FOR ENERGY TRANSMISSION

    Directory of Open Access Journals (Sweden)

    V. V. Apollonov

    2014-01-01

    Full Text Available Laser spark obtained by using a conical optics is much more appropriate to form conducting channels in atmosphere. Only two types of lasers are actively considered to be used in forming high-conductivity channels in atmosphere, controlled by laser spark: pulsed sub-microsecond gas and chemical lasers (CO2, DF and short pulse solid-state and UV lasers. Main advantage of short pulse lasers is their ability in forming of super long ionized channels with a characteristic diameter of ~100  µ  in atmosphere along the  beam propagation direction. At estimated electron densities below  10 ⋅ 16 cm–3 in these filaments and laser wavelengths in the range of 0,5–1,0 mm, the plasma barely absorbs laser radiation.  In this case, the length of the track composed of many filaments is determined by the laser intensity and may reach many kilometers at a femtosecond pulse energy of ~100 mJ. However, these lasers could not be used to form high-conductivity long channels in atmosphere. The ohmic resistance of this type a conducting channels turned out to be very high, and the gas in the channels could not be strongly heated (< 1 J. An electric breakdown controlled by radiation of femtosecond solid-state laser was implemented in only at a length of 3 m with a voltage of 2 MV across the discharge gap (670 kV/m.Not so long ago scientific group from P. N. Lebedev has improved that result, the discharge gap – 1 m had been broken under KrF laser irradiation when switching high-voltage (up to 390 kV/m electric discharge by 100-ns UV pulses. Our previous result  –  16 m long conducting channel controlled by a  laser spark at the voltage  –  3 MV  – was obtained more than 20 years ago in Russia and Japan by using pulsed CO2  laser with energy  –  0,5 kJ. An average electric field strength  was < 190 kV/m. It is still too much for efficient applications.

  6. Conducting an information security audit

    Directory of Open Access Journals (Sweden)

    Prof. Ph.D . Gheorghe Popescu

    2008-05-01

    Full Text Available The rapid and dramatic advances in information technology (IT in recent years have withoutquestion generated tremendous benefits. At the same time, information technology has created significant,nunprecedented risks to government and to entities operations. So, computer security has become muchmore important as all levels of government and entities utilize information systems security measures toavoid data tampering, fraud, disruptions in critical operations, and inappropriate disclosure of sensitiveinformation. Obviously, uses of computer security become essential in minimizing the risk of malicious attacksfrom individuals and groups, considering that there are many current computer systems with onlylimited security precautions in place.As we already know financial audits are the most common examinations that a business manager en-counters.This is a familiar area for most executives: they know that financial auditors are going to examine the financial records and how those records are used. They may even be familiar with physical securityaudits. However, they are unlikely to be acquainted with information security audits; that is an audit ofhow the confidentiality, availability and integrity of an organization’s information are assured. Any way,if not, they should be, especially that an information security audit is one of the best ways to determine thesecurity of an organization’s information without incurring the cost and other associated damages of a securityincident.

  7. Technology to prevent deposition of marine organisms by means of electrically conductive coating. Discussions on current and potential distribution by using experiments; Doden tomaku ni yoru kaiyo seibutsu fuchaku boshi gijutsu. Denryu den`i bunpu ni kansuru jikken ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Usami, M.; Masaki, T. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Ueda, K.

    1996-04-10

    Steel structures in sea water and surface of hulls are deposited with such marine organisms as microorganisms, algae and shellfish. The deposition causes a large problem such as occurrence of abnormal local corrosion in the structures, and increase in cruising resistance in ocean vessels. The present study has introduced a simplified equation of estimation for current and potential distribution in parts coated with an electrically conductive film, and verified its reasonability by an experiment. The equation of estimation was introduced by following a model of current flow in the electrically conductive coating. The experiment has the conductive coating applied to the interior of a concrete water tank with a length of 10.8 m, a width of 5 m and a depth of 3 m to measure potential at different locations. The conductive coating was energized from copper foils attached on each applied face, whereas the current was applied to two faces between the conductive films as a pair among the four coating applied faces to measure potential in each location. A simulated calculation revealed that the potential range in the depth direction is made smaller if specific resistance of the conductive film is decreased, and made greater if increased. Effectiveness of the equation of estimation was verified by an experiment. This method has provided a prospect of achieving optimization of the specification for application of the conductive film. 2 refs., 7 figs.

  8. Knowledge Technologies

    CERN Document Server

    Milton, Nick

    2008-01-01

    Several technologies are emerging that provide new ways to capture, store, present and use knowledge. This book is the first to provide a comprehensive introduction to five of the most important of these technologies: Knowledge Engineering, Knowledge Based Engineering, Knowledge Webs, Ontologies and Semantic Webs. For each of these, answers are given to a number of key questions (What is it? How does it operate? How is a system developed? What can it be used for? What tools are available? What are the main issues?). The book is aimed at students, researchers and practitioners interested in Knowledge Management, Artificial Intelligence, Design Engineering and Web Technologies. During the 1990s, Nick worked at the University of Nottingham on the application of AI techniques to knowledge management and on various knowledge acquisition projects to develop expert systems for military applications. In 1999, he joined Epistemics where he worked on numerous knowledge projects and helped establish knowledge management...

  9. Persuasive Technology

    DEFF Research Database (Denmark)

    This book constitutes the proceedings of the 5th International Conference on Persuasive Technology, PERSUASIVE 2010, held in Copenhagen Denmark in June 2010. The 25 papers presented were carefully reviewed and selected from 80 submissions. In addition three keynote papers are included in this vol......This book constitutes the proceedings of the 5th International Conference on Persuasive Technology, PERSUASIVE 2010, held in Copenhagen Denmark in June 2010. The 25 papers presented were carefully reviewed and selected from 80 submissions. In addition three keynote papers are included...... in this volume. The topics covered are emotions and user experience, ambient persuasive systems, persuasive design, persuasion profiles, designing for health, psychology of persuasion, embodied and conversational agents, economic incentives, and future directions for persuasive technology....

  10. Seafood Technology

    DEFF Research Database (Denmark)

    Børresen, Torger

    This presentation will fill the total picture of this conference between fisheries and aquaculture, blue biotech and bioconservation, by considering the optimal processing technology of marine resources from the raw material until the seafood reaches the plate of the consumer. The situation today...... must be performed such that total traceability and authenticity of the final products can be presented on demand. The most important aspects to be considered within seafood technology today are safety, healthy products and high eating quality. Safety can be divided into microbiological safety...... and not presenting any safety risk per se. Seafood is healthy due to the omega-3 fatty acids and the nutritional value of vitamins, peptides and proteins. The processing technology must however be performed such that these valuable features are not lost during production. The same applies to the eating quality. Any...

  11. Persuasive Technology

    DEFF Research Database (Denmark)

    This book constitutes the proceedings of the 5th International Conference on Persuasive Technology, PERSUASIVE 2010, held in Copenhagen Denmark in June 2010. The 25 papers presented were carefully reviewed and selected from 80 submissions. In addition three keynote papers are included in this vol......This book constitutes the proceedings of the 5th International Conference on Persuasive Technology, PERSUASIVE 2010, held in Copenhagen Denmark in June 2010. The 25 papers presented were carefully reviewed and selected from 80 submissions. In addition three keynote papers are included...... in this volume. The topics covered are emotions and user experience, ambient persuasive systems, persuasive design, persuasion profiles, designing for health, psychology of persuasion, embodied and conversational agents, economic incentives, and future directions for persuasive technology....

  12. Technology Transfer

    Science.gov (United States)

    Smith, Nanette R.

    1995-01-01

    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can

  13. Soulful Technologies

    DEFF Research Database (Denmark)

    Fausing, Bent

    2010-01-01

    Samsung introduced in 2008 a mobile phone called "Soul" made with a human touch and including itself a "magic touch". Through the analysis of a Nokia mobile phone TV-commercials I want to examine the function and form of digital technology in everyday images. The mobile phone and its digital came...... commercials and internet commercials for mobile phones from Nokia, or handheld computers, as Sony-Ericsson prefers to call them. Digital technology points towards a forgotten pre-human and not only post-human condition....

  14. Playful Technology

    DEFF Research Database (Denmark)

    Johansen, Stine Liv; Eriksson, Eva

    2013-01-01

    In this paper, the design of future services for children in Danish public libraries is discussed, in the light of new challenges and opportunities in relation to new media and technologies. The Danish government has over the last few years initiated and described a range of initiatives regarding...... in the library, the changing role of the librarians and the library space. We argue that intertwining traditional library services with new media forms and engaging play is the core challenge for future design in physical public libraries, but also that it is through new media and technology that new...

  15. Playful Technology

    DEFF Research Database (Denmark)

    Johansen, Stine Liv; Eriksson, Eva

    2013-01-01

    in the library, the changing role of the librarians and the library space. We argue that intertwining traditional library services with new media forms and engaging play is the core challenge for future design in physical public libraries, but also that it is through new media and technology that new......In this paper, the design of future services for children in Danish public libraries is discussed, in the light of new challenges and opportunities in relation to new media and technologies. The Danish government has over the last few years initiated and described a range of initiatives regarding...

  16. Architectural technology

    DEFF Research Database (Denmark)

    2005-01-01

    The booklet offers an overall introduction to the Institute of Architectural Technology and its projects and activities, and an invitation to the reader to contact the institute or the individual researcher for further information. The research, which takes place at the Institute of Architectural...... Technology at the Roayl Danish Academy of Fine Arts, School of Architecture, reflects a spread between strategic, goal-oriented pilot projects, commissioned by a ministry, a fund or a private company, and on the other hand projects which originate from strong personal interests and enthusiasm of individual...

  17. Unified Hamiltonian for conducting polymers

    Science.gov (United States)

    Leitão Botelho, André; Shin, Yongwoo; Li, Minghai; Jiang, Lili; Lin, Xi

    2011-11-01

    Two transferable physical parameters are incorporated into the Su-Schrieffer-Heeger Hamiltonian to model conducting polymers beyond polyacetylene: the parameter γ scales the electron-phonon coupling strength in aromatic rings and the other parameter ɛ specifies the heterogeneous core charges. This generic Hamiltonian predicts the fundamental band gaps of polythiophene, polypyrrole, polyfuran, poly-(p-phenylene), poly-(p-phenylene vinylene), and polyacenes, and their oligomers of all lengths, with an accuracy exceeding time-dependent density functional theory. Its computational costs for moderate-length polymer chains are more than eight orders of magnitude lower than first-principles approaches.

  18. On Vasyliunas's equivalent conductivity formalism

    Science.gov (United States)

    Pontius, D. H., Jr.

    1992-01-01

    The Vasyliunas's (1972) equivalent conductivity formalism (ECF) for representing the coupling of the ionosphere and the magnetosphere is discussed, and a new, simpler, derivation is presented of the ECF, in which certain of the underlying assumptions and their implications are made transparent. The derivation presented indicates that the only role of the ions in the ECF is to insure quasi-neutrality. It is shown that the ECF is not as robust as usually assumed and that caution must be used to insure that reasonable results are obtained.

  19. Learning the Hard Way? Issues in the Adoption of New Technology in Small Technology Oriented Firms

    Science.gov (United States)

    Chibelushi, Caroline

    2008-01-01

    Purpose: The purpose of this paper is to explore, through a survey and two short case studies, the issues smaller firms face with the adoption of new technologies. Design/methodology/approach: A survey of the pressures to adopt new technologies and the existence of specialist technology skills was conducted of small ICT oriented firms in the West…

  20. Dynamical conductivity of confined water

    Science.gov (United States)

    Artemov, V. G.

    2017-01-01

    The electrodynamic response of water confined in nanoporous MCM-41 is measured in the frequency range 1 MHz-3 THz at room temperature. The results are analyzed in the context of a recently proposed ionic model of water. We found an increase in dc-conductivity of confined water by 3 orders of magnitude (3.3 · 10-3 Ω-1 · m-1) compared to bulk water (5.5 · 10-6 Ω-1 · m-1). This is attributed to the increase of H3O+ and OH- ion mobility, due to a decrease of the effective potential amplitude by walls of the confining environment. We found that the absorption in the microwave frequency range is much smaller in the medium with confined water than in the bulk water, and the quadratic dependence of the conductivity (σ) on frequency (ω) becomes less steep and tends to σ ~ ω. The results are of fundamental importance and can be used for understanding of the proton transport in systems with water in the nanoconfined state.

  1. Transparent conducting silver nanowire networks

    CERN Document Server

    van de Groep, Jorik; Polman, Albert; 10.1021/nl301045a

    2013-01-01

    We present a transparent conducting electrode composed of a periodic two-dimensional network of silver nanowires. Networks of Ag nanowires are made with wire diameters of 45-110 nm and pitch of 500, 700 and 1000 nm. Anomalous optical transmission is observed, with an averaged transmission up to 91% for the best transmitting network and sheet resistances as low as 6.5 {\\Omega}/sq for the best conducting network. Our most dilute networks show lower sheet resistance and higher optical transmittance than an 80 nm thick layer of ITO sputtered on glass. By comparing measurements and simulations we identify four distinct physical phenomena that govern the transmission of light through the networks: all related to the excitation of localized surface plasmons and surface plasmon polaritons on the wires. The insights given in this paper provide the key guidelines for designing high-transmittance and low-resistance nanowire electrodes for optoelectronic devices, including thin-film solar cells. For these latter, we disc...

  2. Infrared Hall Conductivity in Graphene

    Science.gov (United States)

    Ellis, C. T.; Kim, M.-H.; Wu, T.; Sambandamurthy, G.; Cerne, J.; Lee, V.; Banerjee, S.

    2009-03-01

    Among the many different techniques which have revealed graphene's remarkable properties, infrared conductivity (σxx) (Jiang, PRL 2007) and the DC Hall effect (Novoselov, Nature 2005; Zhang, Nature 2005; Zhang, PRL 2006) have provided new insights into this material. In our study we determine the infrared Hall conductivity (σxy) for graphene in the 120-1000 meV range at temperatures down to 7K and magnetic fields up to 7T using Faraday measurements. Unlike σxx, which measures the sum of the optical responses for left and right circularly polarized light, σxy measures the difference and therefore is sensitive to small changes in symmetry. We compare graphene samples that are prepared using several methods, including cleaving from parent materials such as highly ordered pyrolytic graphite, as well as sonication-assisted solution-phase exfoliation of natural flake graphite powder. The films are then deposited onto Si/SiO2 substrates for infrared measurements. This work is supported by the NSF-CAREER-DMR0449899, also GS and SB thank the UB-IRDF for financial support.

  3. Radiative magnetized thermal conduction fronts

    Science.gov (United States)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-01-01

    The evolution of plane-parallel magnetized thermal conduction fronts in the interstellar medium (ISM) was studied. Separating the coronal ISM phase and interstellar clouds, these fronts have been thought to be the site of the intermediate-temperature regions whose presence was inferred from O VI absorption-line studies. The front evolution was followed numerically, starting from the initial discontinuous temperature distribution between the hot and cold medium, and ending in the final cooling stage of the hot medium. It was found that, for the typical ISM pressure of 4000 K/cu cm and the hot medium temperature of 10 to the 6th K, the transition from evaporation to condensation in a nonmagnetized front occurs when the front thickness is 15 pc. This thickness is a factor of 5 smaller than previously estimated. The O VI column densities in both evaporative and condensation stages agree with observations if the initial hot medium temperature Th exceeds 750,000 K. Condensing conduction fronts give better agreement with observed O VI line profiles because of lower gas temperatures.

  4. Conduction-coupled Tesla transformer.

    Science.gov (United States)

    Reed, J L

    2015-03-01

    A proof-of-principle Tesla transformer circuit is introduced. The new transformer exhibits the high voltage-high power output signal of shock-excited transformers. The circuit, with specification of proper circuit element values, is capable of obtaining extreme oscillatory voltages. The primary and secondary portions of the circuit communicate solely by conduction. The destructive arcing between the primary and secondary inductors in electromagnetically coupled transformers is ubiquitous. Flashover is eliminated in the new transformer as the high-voltage inductors do not interpenetrate and so do not possess an annular volume of electric field. The inductors are remote from one another. The high voltage secondary inductor is isolated in space, except for a base feed conductor, and obtains earth by its self-capacitance to the surroundings. Governing equations, for the ideal case of no damping, are developed from first principles. Experimental, theoretical, and circuit simulator data are presented for the new transformer. Commercial high-temperature superconductors are discussed as a means to eliminate the counter-intuitive damping due to small primary inductances in both the electromagnetic-coupled and new conduction-coupled transformers.

  5. Manufacturing technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  6. Blast Technologies

    Science.gov (United States)

    2011-06-27

    Team Leader Risa Scherer Blast Mitigation Interior and Laboratory Team Leader Blast Technologies POC’s Government Point Of Contacts (POCs): To...to yield injury assessments at higher fidelities and with higher confidence UNCLASSIFIED UNCLASSIFIED Risa Scherer Blast Mitigation Interior and

  7. Energy Technology.

    Science.gov (United States)

    Eaton, William W.

    Reviewed are technological problems faced in energy production including locating, recovering, developing, storing, and distributing energy in clean, convenient, economical, and environmentally satisfactory manners. The energy resources of coal, oil, natural gas, hydroelectric power, nuclear energy, solar energy, geothermal energy, winds, tides,…

  8. Strategic Technology

    Science.gov (United States)

    2012-03-11

    the spectrum of future conflict and engagement. Technology Surprise Francis Fukuyama , in his introduction to the book Blindside, summarizes recent...atrocities or large-scale natural disasters abroad 12 Francis Fukuyama , ed, Blindside (Baltimore, MD: Brookings Institute Press, 2007), 1. 13 Defense

  9. (Environmental technology)

    Energy Technology Data Exchange (ETDEWEB)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  10. GIG Technologies

    Science.gov (United States)

    2008-08-08

    caching • GIG as a sensor • Cyber SA/defense • Cross Domain Information Sharing • Multi-Level Security solutions • Enterprise Service Bus ( ESB ...Link Layer Technologies Integrated Link Layer All Optical Core For Terrestrial and Space Networks Separate Transmission Networks Mid-Term Integrated

  11. Geospatial Technology

    Science.gov (United States)

    Reed, Philip A.; Ritz, John

    2004-01-01

    Geospatial technology refers to a system that is used to acquire, store, analyze, and output data in two or three dimensions. This data is referenced to the earth by some type of coordinate system, such as a map projection. Geospatial systems include thematic mapping, the Global Positioning System (GPS), remote sensing (RS), telemetry, and…

  12. Sport Technology

    CSIR Research Space (South Africa)

    Kirkbride, T

    2007-11-01

    Full Text Available in design and manufacturing to virtual reality. There are carbon fiber materials used and in performance analysis that use video base technology. In the 1999 cricket World Cup, small earphones were used for Hansie to communicate with the coach and were later...

  13. A review of conduction phenomena in Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Myounggu; Zhang, Xiangchun; Chung, Myoungdo; Less, Gregory B. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Sastry, Ann Marie [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Material Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2010-12-15

    Conduction has been one of the main barriers to further improvements in Li-ion batteries and is expected to remain so for the foreseeable future. In an effort to gain a better understanding of the conduction phenomena in Li-ion batteries and enable breakthrough technologies, a comprehensive survey of conduction phenomena in all components of a Li-ion cell incorporating theoretical, experimental, and simulation studies, is presented here. Included are a survey of the fundamentals of electrical and ionic conduction theories; a survey of the critical results, issues and challenges with respect to ionic and electronic conduction in the cathode, anode and electrolyte; a review of the relationship between electrical and ionic conduction for three cathode materials: LiCoO{sub 2}, LiMn{sub 2}O{sub 4}, LiFePO{sub 4}; a discussion of phase change in graphitic anodes and how it relates to diffusivity and conductivity; and the key conduction issues with organic liquid, solid-state and ionic liquid electrolytes. (author)

  14. Vacuum Technology

    Energy Technology Data Exchange (ETDEWEB)

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  15. Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2002-01-01

    Advanced thermal barrier coatings, having significantly reduced long-term thermal conductivities, are being developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and physical vapor-deposited thermal barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.

  16. Dynamic conductance in L-shaped graphene nanosystems

    Energy Technology Data Exchange (ETDEWEB)

    Ye, En-Jia, E-mail: yeenjia@jiangnan.edu.cn; Nie, Yanguang; Shi, Haifeng; Zhang, Chengliang [School of Science, Jiangnan University, Wuxi 214122 (China); Zhao, Xuean [Department of Physics, Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027 (China)

    2015-01-07

    Dynamic conductance of nanocircuit, which demonstrates dc and ac transport properties, is regarded as vital indicator for device feature. With the help of nonequilibrium Green's function technology and Buttiker's ac transport theory, we present dynamic conductance in L-shaped graphene nanosystems (LGNSs). It is found that electronic transport is highly sensitive to the geometric feature as well as the size of LGNSs. The armchair edge lead determines whether LGNS shows ac response or not around Dirac point. The increase of width of zigzag edge lead suppresses dc conductance and induces capacitive responses at the anti-resonance states. This is due to large dwell time originated from edge state in zigzag edge lead. In the energy region far away from Dirac point, LGNS responds inductively with the transportation channel opens. Behaviors of dynamic conductance at Dirac point and anti-resonance states are discussed by interesting spacial-resolved local density of states.

  17. Aqueous supercapacitors on conductive cotton

    KAUST Repository

    Pasta, Mauro

    2010-06-01

    Wearable electronics offer the combined advantages of both electronics and fabrics. In this article, we report the fabrication of wearable supercapacitors using cotton fabric as an essential component. Carbon nanotubes are conformally coated onto the cotton fibers, leading to a highly electrically conductive interconnecting network. The porous carbon nanotube coating functions as both active material and current collector in the supercapacitor. Aqueous lithium sulfate is used as the electrolyte in the devices, because it presents no safety concerns for human use. The supercapacitor shows high specific capacitance (~70-80 F·g-1 at 0.1 A·g-1) and cycling stability (negligible decay after 35,000 cycles). The extremely simple design and fabrication process make it applicable for providing power in practical electronic devices. © 2010 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  18. Guidelines for conducting geropsychotherapy research.

    Science.gov (United States)

    Areán, Patricia A; Cook, Beth L; Gallagher-Thompson, Dolores; Hegel, Mark T; Schulberg, Herbert C; Schulz, Richard

    2003-01-01

    Geropsychotherapy researchers have established specific methods that improve the reliability and generalizability of the data from this research. To date, there has been little formal dissemination of these methods. The authors present guidelines for the optimal conduct of psychotherapy research in older adults, which include selection of age-appropriate psychotherapies and control conditions, use of consumer-based methods for recruitment, evaluation of age-related treatment processes and outcomes, and adjusting the research design to accommodate age-specific life events and provide examples of how each guideline was used in their psychotherapy studies. Psychotherapy research with older adults has benefited from methodological advances that improve our ability to ascertain the impact of psychotherapy on late-life disorders. However, the field is still in need of better outcome and process measures, methods for measuring the therapeutic content of non-psychotherapy encounters, and methods for determining the impact of choice of treatment on outcome.

  19. Thermal Conductance of Andreev Interferometers

    Science.gov (United States)

    Jiang, Z.; Chandrasekhar, V.

    2005-04-01

    We calculate the thermal conductance GT of diffusive Andreev interferometers, which are hybrid loops with one superconducting arm and one normal-metal arm. The presence of the superconductor suppresses GT; however, unlike a conventional superconductor, GT/GTN does not vanish as the temperature T→0, but saturates at a finite value that depends on the resistance of the normal-superconducting interfaces, and their distance from the path of the temperature gradient. The reduction of GT is determined primarily by the suppression of the density of states in the proximity-coupled normal metal along the path of the temperature gradient. GT is also a strongly nonlinear function of the thermal current, as found in recent experiments.

  20. Thermal conductivity of molten metals

    Energy Technology Data Exchange (ETDEWEB)

    Peralta-Martinez, Maria Vita

    2000-02-01

    A new instrument for the measurement of the thermal conductivity of molten metals has been designed, built and commissioned. The apparatus is based on the transient hot-wire technique and it is intended for operation over a wide range of temperatures, from ambient up to 1200 K, with an accuracy approaching 2%. In its present form the instrument operates up to 750 K. The construction of the apparatus involved four different stages, first, the design and construction of the sensor and second, the construction of an electronic system for the measurement and storage of data. The third stage was the design and instrumentation of the high temperature furnace for the melting and temperature control of the sample, and finally, an algorithm was developed for the extraction of the thermal conductivity from the raw measurement data. The sensor consists of a cylindrical platinum-wire symmetrically sandwiched between two rectangular plane sheets of alumina. The rectangular sensor is immersed in the molten metal of interest and a voltage step is applied to the ends of the platinum wire to induce heat dissipation and a consequent temperature rise which, is in part, determined by the thermal conductivity of the molten metal. The process is described by a set of partial differential equations and appropriate boundary conditions rather than an approximate analytical solution. An electronic bridge configuration was designed and constructed to perform the measurement of the resistance change of the platinum wire in the time range 20 {mu}s to 1 s. The resistance change is converted to temperature change by a suitable calibration. From these temperature measurements as a function of time the thermal conductivity of the molten metals has been deduced using the Finite Element Method for the solution of the working equations. This work has achieved its objective of improving the accuracy of the measurement of the thermal conductivity of molten metals from {+-}20% to {+-}2%. Measurements

  1. Damage Detection in Electrically Conductive Structures

    Science.gov (United States)

    Anderson, Todd A.

    2002-12-01

    High-technology systems are in need of structures that perform with increased functionality and a reduction in weight, while simultaneously maintaining a high level of performance and reliability. To accomplish this, structural elements must be designed more efficiently and with increased functionality, thereby creating multifunctional structures (MFS). Through the addition of carbon fibers, nanotubes, or particles, composite structures can be made electrically conductive while simultaneously increasing their strength and stiffness to weight ratios. Using the electrical properties of these structures for the purpose of damage detection and location for health and usage monitoring is of particular interest for aerospace structures. One such method for doing this is Electrical Impedance Tomography (EIT). With EIT, an electric current is applied through a pair of electrodes and the electric potential is recorded at other monitoring electrodes around the area of study. An inverse solution of the governing Maxwell equations is then required to determine the conductivities of discrete areas within the region of interest. However, this method is nearly ill-posed and computationally intensive as it focuses on imaging small changes in conductivity within the region of interest. For locating damage in a medium with an otherwise homogeneous conductivity, an alternative approach is to search for parameters such as the damage location and size. Towards those ends, this study develops an Artificial Neural Network (ANN) to determine the state of an electrically conductive region based on applied reference current and electrical potentials at electrodes around the periphery of the region. A significant benefit of the ANN approach is that once trained, the solution of an inverse problem does not require costly computations of the inverse problem. This method also takes advantage of the pattern recognition abilities of neural networks and is a robust solution method in the presence

  2. Technological Fantasies of Nao

    DEFF Research Database (Denmark)

    Hasse Jørgensen, Stina; Tafdrup, Oliver Alexander

    2017-01-01

    This article will through a ‘what-if’ scenario involving the humanoid robot, Nao, as a museum guide, discuss the potential benefits of theorizing social robots through a perspective grounded in critical design and postphenomenology. Within Science and Technology-studies (STS) postphenomenology has...... been the ‘go-to’ theory when discussing the philosophical aspects of human-technology relations. Postphenomenology directly addresses how humans on a phenomenological level relate to robots through an ‘alterity-relation’ that establishes the robot as a ‘quasi-other’. A methodological discussion of how...... to conduct empirical postphenomenological research into robotics, has, however, not been thoroughly unfolded, although the question of a general postphenomenological methodology has been touched upon. This article provides a contribution to the debate on how to enquire into human-robot relations...

  3. Technology Programme

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo (ed.)

    2005-07-01

    The technology activities carried out by the Euratom-ENEA Association in the framework of the European Fusion Development Agreement concern the Next Step (International Thermonuclear Experimental Reactor - ITER), the Long-Term Programme (breeder blanket, materials, International Fusion Materials Irradiation Facility - IFMIF), Power Plant Conceptual Studies and Socio-Economic Studies. The Underlying Technology Programme was set up to complement the fusion activities as well to develop technologies with a wider range of interest. The Technology Programme mainly involves staff from the Frascati laboratories of the Fusion Technical and Scientific Unit and from the Brasimone laboratories of the Advanced Physics Technologies Unit. Other ENEA units also provide valuable contributions to the programme. ENEA is heavily engaged in component development/testing and in design and safety activities for the European Fusion Technology Programme. Although the work documented in the following covers a large range of topics that differ considerably because they concern the development of extremely complex systems, the high level of integration and coordination ensures the capability to cover the fusion system as a whole. In 2004 the most significant testing activities concerned the ITER primary beryllium-coated first wall. In the field of high-heat-flux components, an important achievement was the qualification of the process for depositing a copper liner on carbon fibre composite (CFC) hollow tiles. This new process, pre-brazed casting (PBC), allows the hot radial pressing (HRP) joining procedure to be used also for CFC-based armour monoblock divertor components. The PBC and HRP processes are candidates for the construction of the ITER divertor. In the materials field an important milestone was the commissioning of a new facility for chemical vapour infiltration/deposition, used for optimising silicon carbide composite (SiCf/SiC) components. Eight patents were deposited during 2004

  4. 32 CFR 234.7 - Disorderly conduct.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Disorderly conduct. 234.7 Section 234.7 National... CONDUCT ON THE PENTAGON RESERVATION § 234.7 Disorderly conduct. A person commits disorderly conduct when... nature and purpose of the actor's conduct, location, time of day or night, and other factors that would...

  5. Benchmarking foreign electronics technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bostian, C.W.; Hodges, D.A.; Leachman, R.C.; Sheridan, T.B.; Tsang, W.T.; White, R.M.

    1994-12-01

    This report has been drafted in response to a request from the Japanese Technology Evaluation Center`s (JTEC) Panel on Benchmarking Select Technologies. Since April 1991, the Competitive Semiconductor Manufacturing (CSM) Program at the University of California at Berkeley has been engaged in a detailed study of quality, productivity, and competitiveness in semiconductor manufacturing worldwide. The program is a joint activity of the College of Engineering, the Haas School of Business, and the Berkeley Roundtable on the International Economy, under sponsorship of the Alfred P. Sloan Foundation, and with the cooperation of semiconductor producers from Asia, Europe and the United States. Professors David A. Hodges and Robert C. Leachman are the project`s Co-Directors. The present report for JTEC is primarily based on data and analysis drawn from that continuing program. The CSM program is being conducted by faculty, graduate students and research staff from UC Berkeley`s Schools of Engineering and Business, and Department of Economics. Many of the participating firms are represented on the program`s Industry Advisory Board. The Board played an important role in defining the research agenda. A pilot study was conducted in 1991 with the cooperation of three semiconductor plants. The research plan and survey documents were thereby refined. The main phase of the CSM benchmarking study began in mid-1992 and will continue at least through 1997. reports are presented on the manufacture of integrated circuits; data storage; wireless technology; human-machine interfaces; and optoelectronics. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  6. Hearing Assistive Technology

    Science.gov (United States)

    ... for the Public / Hearing and Balance Hearing Assistive Technology Hearing Assistive Technology: FM Systems | Infrared Systems | Induction ... Assistive Technology Systems Solutions What are hearing assistive technology systems (HATS)? Hearing assistive technology systems (HATS) are ...

  7. Inkjet Printing of High Conductivity, Flexible Graphene Patterns.

    Science.gov (United States)

    Secor, Ethan B; Prabhumirashi, Pradyumna L; Puntambekar, Kanan; Geier, Michael L; Hersam, Mark C

    2013-04-18

    The ability to print high conductivity, conformal, and flexible electrodes is an important technological challenge in printed electronics, especially for large-area formats with low cost considerations. In this Letter, we demonstrate inkjet-printed, high conductivity graphene patterns that are suitable for flexible electronics. The ink is prepared by solution-phase exfoliation of graphene using an environmentally benign solvent, ethanol, and a stabilizing polymer, ethyl cellulose. The inkjet-printed graphene features attain low resistivity of 4 mΩ·cm after a thermal anneal at 250 °C for 30 min while showing uniform morphology, compatibility with flexible substrates, and excellent tolerance to bending stresses.

  8. Communications technology

    Science.gov (United States)

    Cuccia, C. Louis; Sivo, Joseph

    1986-01-01

    The technologies for optimized, i.e., state of the art, operation of satellite-based communications systems are surveyed. Features of spaceborne active repeater systems, low-noise signal amplifiers, power amplifiers, and high frequency switches are described. Design features and capabilities of various satellite antenna systems are discussed, including multiple beam, shaped reflector shaped beam, offset reflector multiple beam, and mm-wave and laser antenna systems. Attitude control systems used with the antenna systems are explored, along with multiplexers, filters, and power generation, conditioning and amplification systems. The operational significance and techniques for exploiting channel bandwidth, baseband and modulation technologies are described. Finally, interconnectivity among communications satellites by means of RF and laser links is examined, as are the roles to be played by the Space Station and future large space antenna systems.

  9. Manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L. [eds.

    1993-08-01

    This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

  10. Photonics: Technology project summary

    Science.gov (United States)

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  11. Hydrogen aircraft technology

    Science.gov (United States)

    Brewer, G. D.

    1991-01-01

    A comprehensive evaluation is conducted of the technology development status, economics, commercial feasibility, and infrastructural requirements of LH2-fueled aircraft, with additional consideration of hydrogen production, liquefaction, and cryostorage methods. Attention is given to the effects of LH2 fuel cryotank accommodation on the configurations of prospective commercial transports and military airlifters, SSTs, and HSTs, as well as to the use of the plentiful heatsink capacity of LH2 for innovative propulsion cycles' performance maximization. State-of-the-art materials and structural design principles for integral cryotank implementation are noted, as are airport requirements and safety and environmental considerations.

  12. Photonics: Technology project summary

    Science.gov (United States)

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  13. Dipole Engineering for Conducting Polymers

    Science.gov (United States)

    McClain, William Edward

    A method for the growth of a TiO2 adhesion layer on PEDOT:PSS (poly[3,4- ethylenedioxythiophene]: poly[styrenesulfonate]) and for further functionalization with self-assembled monolayers of phosphonates (SAMPs) was developed. The TiO2 adhesion layer was grown via chemical vapor deposition using a titanium(IV) t-butoxide precursor, and was characterized by goniometry and X-ray photoelectron spectroscopy. TiO 2 grown on a model system, H-terminated silicon, indicated that the surface was t-butoxide terminated. Phenylphosphonic acids were synthesized with a variety of molecular dipoles and were used to change the work function of PEDOT:PSS through the formation of an aggregate surface dipole. Good correlation was found between the z-component of the molecular dipole and the change in work function, indicating that the film was well-ordered and dense. The magnitude of the changes in work function and goniometry measurements were similar to measurements on ITO, a substrate on which phosphonates form well-ordered monolayers. As-grown PEDOT:PSS/TiO 2 electrodes showed a lower work function compared to PEDOT:PSS, which is attributed to residual t-butoxide groups on the TiO 2 surface. UPS measurements revealed that reductions in work function in the modified electrodes lowered the difference in energy between the Fermi energy (EF) of the conducting polymer and the LUMO of PCBM ([6,6]-phenyl-C 61-butyric acid methyl ester). A reduction of this energy difference should translate into increased electron injection in electron-only diodes; however, devices with modified electrodes showed decreased current densities. UPS/IPES measurements show that TiO2 grown using this method has a much larger band gap than bulk or nanocrystalline TiO2, which is likely responsible for this decrease in device currents. At high bias, device currents increase dramatically, and the effects of the phosphonates or t-butoxide terminated TiO2 vanish. This is attributed to a reduction of the TiO2 to

  14. Emerging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee

    1993-03-01

    The mission of the Emerging Technologies thrust area at Lawrence Livermore National Laboratory is to help individuals establish technology areas that have national and commercial impact, and are outside the scope of the existing thrust areas. We continue to encourage innovative ideas that bring quality results to existing programs. We also take as our mission the encouragement of investment in new technology areas that are important to the economic competitiveness of this nation. In fiscal year 1992, we have focused on nine projects, summarized in this report: (1) Tire, Accident, Handling, and Roadway Safety; (2) EXTRANSYT: An Expert System for Advanced Traffic Management; (3) Odin: A High-Power, Underwater, Acoustic Transmitter for Surveillance Applications; (4) Passive Seismic Reservoir Monitoring: Signal Processing Innovations; (5) Paste Extrudable Explosive Aft Charge for Multi-Stage Munitions; (6) A Continuum Model for Reinforced Concrete at High Pressures and Strain Rates: Interim Report; (7) Benchmarking of the Criticality Evaluation Code COG; (8) Fast Algorithm for Large-Scale Consensus DNA Sequence Assembly; and (9) Using Electrical Heating to Enhance the Extraction of Volatile Organic Compounds from Soil.

  15. Technology Management

    DEFF Research Database (Denmark)

    Pilkington, Alan

    2014-01-01

    This paper reports a bibliometric analysis (co-citation network analysis) of 10 journals in the management of technology (MOT) field. As well as introducing various bibliometric ideas, network analysis tools identify and explore the concepts covered by the field and their inter-relationships. Spe......This paper reports a bibliometric analysis (co-citation network analysis) of 10 journals in the management of technology (MOT) field. As well as introducing various bibliometric ideas, network analysis tools identify and explore the concepts covered by the field and their inter......-relationships. Specific results from different levels of analysis show the different dimensions of technology management: • Co-word terms identify themes • Journal co-citation network: linking to other disciplines • Co-citation network show concentrations of themes The analysis shows that MOT has a bridging role...... in integrating ideas from several distinct disciplines. This suggests that management and strategy are central to MOT which essentially relates to the firm rather than policy. Similarly we have a dual focus on capabilities, but can see subtle differences in how we view these ideas, either through an inwards...

  16. Gate-Tunable Conducting Oxide Metasurfaces.

    Science.gov (United States)

    Huang, Yao-Wei; Lee, Ho Wai Howard; Sokhoyan, Ruzan; Pala, Ragip A; Thyagarajan, Krishnan; Han, Seunghoon; Tsai, Din Ping; Atwater, Harry A

    2016-09-14

    Metasurfaces composed of planar arrays of subwavelength artificial structures show promise for extraordinary light manipulation. They have yielded novel ultrathin optical components such as flat lenses, wave plates, holographic surfaces, and orbital angular momentum manipulation and detection over a broad range of the electromagnetic spectrum. However, the optical properties of metasurfaces developed to date do not allow for versatile tunability of reflected or transmitted wave amplitude and phase after their fabrication, thus limiting their use in a wide range of applications. Here, we experimentally demonstrate a gate-tunable metasurface that enables dynamic electrical control of the phase and amplitude of the plane wave reflected from the metasurface. Tunability arises from field-effect modulation of the complex refractive index of conducting oxide layers incorporated into metasurface antenna elements which are configured in reflectarray geometry. We measure a phase shift of 180° and ∼30% change in the reflectance by applying 2.5 V gate bias. Additionally, we demonstrate modulation at frequencies exceeding 10 MHz and electrical switching of ±1 order diffracted beams by electrical control over subgroups of metasurface elements, a basic requirement for electrically tunable beam-steering phased array metasurfaces. In principle, electrically gated phase and amplitude control allows for electrical addressability of individual metasurface elements and opens the path to applications in ultrathin optical components for imaging and sensing technologies, such as reconfigurable beam steering devices, dynamic holograms, tunable ultrathin lenses, nanoprojectors, and nanoscale spatial light modulators.

  17. Civil Engineering Technology Needs Assessment.

    Science.gov (United States)

    Oakland Community Coll., Farmington, MI. Office of Institutional Planning and Analysis.

    In 1991, a study was conducted by Oakland Community College (OCC) to evaluate the need for a proposed Civil Engineering Technology program. An initial examination of the literature focused on industry needs and the job market for civil engineering technicians. In order to gather information on local area employers' hiring practices and needs, a…

  18. Genetic technologies meet the public

    DEFF Research Database (Denmark)

    Lassen, Jesper; Jamison, Andrew

    2006-01-01

    To clarify concerns that the public has with genetic technologies, the article presents the results of focus group interviews conducted in Denmark in 2000. The concerns of the public are divided into three ideal-typical categories: social (dealing with environmental and health risks), economic (d...

  19. Rigidity-tuning conductive elastomer

    Science.gov (United States)

    Shan, Wanliang; Diller, Stuart; Tutcuoglu, Abbas; Majidi, Carmel

    2015-06-01

    We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young’s) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE-PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ˜6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE-PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE-PDMS ‘active tendons’ into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation.

  20. Effective electrical conductivity of a nonuniform plasma

    Science.gov (United States)

    Nichols, L. D.

    1975-01-01

    A simple nonuniformity model for calculating effective electrical conductivity and Hall parameter is proposed. The model shows that the effective conductivity can be significantly reduced by nonuniformities in the Hall parameter, even if the local conductivity is uniform.

  1. The Office of Industrial Technologies technical reports

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

  2. Composites incorporated a conductive polymer nanofiber network

    Energy Technology Data Exchange (ETDEWEB)

    Pozzo, Lilo Danielle; Newbloom, Gregory

    2017-04-11

    Methods of forming composites that incorporate networks of conductive polymer nanofibers are provided. Networks of less-than conductive polymers are first formed and then doped with a chemical dopant to provide networks of conductive polymers. The networks of conductive polymers are then incorporated into a matrix in order to improve the conductivity of the matrix. The formed composites are useful as conductive coatings for applications including electromagnetic energy management on exterior surfaces of vehicles.

  3. Savannah River Technology Center, monthly report

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This is the monthly report to detail the research currently being conducted at the Savannah River Technology Center. The areas of research are in Tritium, Seperation processes, Environmental Engineering, and Waste Management.

  4. Appalachian clean coal technology consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kutz, K.; Yoon, Roe-Hoan [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A&E firms working in the Appalachian coal fields. This approach is consistent with President Clinton`s initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force.

  5. Evaluation of New Thermally Conductive Geopolymer in Thermal Energy Storage

    Science.gov (United States)

    Černý, Matěj; Uhlík, Jan; Nosek, Jaroslav; Lachman, Vladimír; Hladký, Radim; Franěk, Jan; Brož, Milan

    This paper describes an evaluation of a newly developed thermally conductive geopolymer (TCG), consisting of a mixture of sodium silicate and carbon micro-particles. The TCG is intended to be used as a component of high temperature energy storage (HTTES) to improve its thermal diffusivity. Energy storage is crucial for both ecological and economical sustainability. HTTES plays a vital role in solar energy technologies and in waste heat recovery. The most advanced HTTES technologies are based on phase change materials or molten salts, but suffer with economic and technological limitations. Rock or concrete HTTES are cheaper, but they have low thermal conductivity without incorporation of TCG. It was observed that TCG is stable up to 400 °C. The thermal conductivity was measured in range of 20-23 W m-1 K-1. The effect of TCG was tested by heating a granite block with an artificial fissure. One half of the fissure was filled with TCG and the other with ballotini. 28 thermometers, 5 dilatometers and strain sensors were installed on the block. The heat transport experiment was evaluated with COMSOL Multiphysics software.

  6. Space and Industrial Brine Drying Technologies

    Science.gov (United States)

    Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali

    2014-01-01

    This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.

  7. Agreement technologies

    CERN Document Server

    Ossowski, Sascha

    2013-01-01

    More and more transactions, whether in business or related to leisure activities, are mediated automatically by computers and computer networks, and this trend is having a significant impact on the conception and design of new computer applications. The next generation of these applications will be based on software agents to which increasingly complex tasks can be delegated, and which interact with each other in sophisticated ways so as to forge agreements in the interest of their human users. The wide variety of technologies supporting this vision is the subject of this volume. It summarises

  8. Seafood Technology

    DEFF Research Database (Denmark)

    Børresen, Torger

    -Trophic Aquaculture (IMTA) is needed to pay attention to environmental protection and continued biodiversity. Further, it is necessary to use all the raw materials provided such that present by-products and side streams in processing are being upgraded for a better use than today. Principles of blue biotechnology may......This presentation will fill the total picture of this conference between fisheries and aquaculture, blue biotech and bioconservation, by considering the optimal processing technology of marine resources from the raw material until the seafood reaches the plate of the consumer. The situation today...

  9. Thermal Conductivity Designed Hard Protective Thin Films

    Science.gov (United States)

    2014-05-01

    University of Leoben. After his PhD in 2001 on Materials Science Aspects of Nanocrystalline PVD Hard Coatings in collaboration with the West Bohemian...Vienna University of Technology) Materials Science and Technology Karlsplatz 13 Wien (Vienna) 1040, AUSTRIA EOARD Grant 13-2147 Report Date: May...University of Technology) Materials Science and Technology Karlsplatz 13 Wien (Vienna) 1040, AUSTRIA 8. PERFORMING ORGANIZATION REPORT NUMBER N/A 9

  10. 78 FR 50374 - Proposed Information Collection; Comment Request; Information and Communication Technology Survey

    Science.gov (United States)

    2013-08-19

    ... Census Bureau Proposed Information Collection; Comment Request; Information and Communication Technology... Bureau plans to conduct the 2013 through 2015 Information and Communication Technology Survey (ICTS). The... leases and rental payments) for four types of information and communication technology equipment...

  11. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  12. South African human language technologies audit

    CSIR Research Space (South Africa)

    Grover, AS

    2010-05-01

    Full Text Available Human language technologies (HLT) can play a vital role in bridging the digital divide and thus the HLT field has been recognised as a priority area by the South African government. The authors present the work on conducting a technology audit...

  13. The Role of Technology in SLA Research

    Science.gov (United States)

    Chun, Dorothy M.

    2016-01-01

    In this review article for the 20th Anniversary Issue, I look back at research from the last two decades on the role of computer technology in understanding and facilitating second language acquisition (SLA) and forward to what future research might investigate. To be discussed are both how technology has been used to conduct research on SLA…

  14. Indigenous Learning Preferences and Interactive Technologies

    Science.gov (United States)

    Kitchenham, Andrew

    2017-01-01

    This three-year research study examined the influence of interactive technologies on the math achievement of Indigenous students in Years 4, 5, 6 and 7 technology-equipped classrooms in a rural elementary school in British Columbia, Canada. Using a mixed-methods approach, the researcher conducted semistructured interviews and collected math…

  15. Historiography in Graduate Technology Teacher Education

    Science.gov (United States)

    Flowers, Jim; Hunt, Brian

    2012-01-01

    A proposal is made suggesting the inclusion of historiography (i.e., historical research and the writing of history) into graduate technology teacher education. In particular, a strategy is forwarded to have graduate students in technology teacher education, who are working at schools in different locations, conduct historical research and write…

  16. Air Force Research Laboratory Technology Milestones 2008

    Science.gov (United States)

    2008-01-01

    develop a unique measurement platform employing tunable diode laser absorption spectroscopy ( TDLAS ). The TDLAS platform provides a novel approach to...conduct research in the exploration and development of fundamental hypersonic aerospace technologies. TDLAS experiments are scheduled for three of...team expects that the TDLAS measurement platform will achieve Technology Readiness Level 6 status (i.e., system/subsystem model or prototype

  17. Preservice Teachers' Technology Self-Efficacy

    Science.gov (United States)

    Kent, Andrea M.; Giles, Rebecca M.

    2017-01-01

    Since efficacy of experienced teachers is difficult to change (Hoy, 2000), preservice teachers' technology self-efficacy is a creditable indicator of graduates' likelihood to use instructional technology throughout their careers. A study was conducted with elementary preservice teachers (n = 62) who completed a 5-item, Likert-type survey measuring…

  18. A Senior Teacher's Implementation of Technology Integration

    Science.gov (United States)

    Tsai, Hsien-Chang

    2015-01-01

    This study investigated whether a senior teacher with many years of teaching experience, despite lacking adequate technology skills or contending with other barriers, can sufficiently implement technology integration in the classroom. The research was conducted between October 2013 and January 2014 and was focused on a junior high school biology…

  19. Management of Innovative Projects through Agile Technology

    Directory of Open Access Journals (Sweden)

    Radu Bucea-Manea-Tonis

    2014-09-01

    Full Text Available Because of the globalization and the evolution of internet and technologies, nowadays the innovation is associated with open collaboration conducted by a legal framework. The paper analyses the methods that allow a better management for innovative projects and focuses on agile projects within a technological network.

  20. The Role of Technology in SLA Research

    Science.gov (United States)

    Chun, Dorothy M.

    2016-01-01

    In this review article for the 20th Anniversary Issue, I look back at research from the last two decades on the role of computer technology in understanding and facilitating second language acquisition (SLA) and forward to what future research might investigate. To be discussed are both how technology has been used to conduct research on SLA…

  1. Thermally Conductive Tape Based on Carbon Nanotube Arrays

    Science.gov (United States)

    Kashani, Ali

    2011-01-01

    array of CNTs was measured to be as high as 10 W/K. The high thermal conductivity and the nanoscale size make CNTs ideal as thermal interface materials. The CNT-based thermal tape can be used for the thermal management of microelectronic packages and electronic systems. It also can be integrated with current device technology and packaging. The material would allow for an efficient method to manage excess heat generation without requiring any additional power. Lastly, the CNT tape can be used to enhance thermal contact conductance across two mating surfaces on some NASA missions.

  2. OHVT Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.A.

    2001-10-22

    The U.S. Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) was created in March 1996 to address the public-interest transportation-energy aspects of a set of customers who at that time had been largely unrecognized, namely, the manufacturers, suppliers, and users of heavy transport vehicles (trucks, buses, rail, and inland marine). Previously, the DOE had focused its attention on meeting the needs of the personal-transport-vehicle customer (automobile manufacturers, suppliers, and users). Those of us who were of driving age at the time of the 1973 oil embargo and the 1979 oil price escalation vividly recall the inconvenience and irritation of having to wait in long lines for gasoline to fuel our cars. However, most of us, other than professional truck owners or drivers, were unaware of the impacts that these disruptions in the fuel supply had on those whose livelihoods depend upon the transport of goods. Recognizing the importance of heavy vehicles to the national economic health, the DOE created OHVT with a mission to conduct, in collaboration with its industry partners and their suppliers, a customer-focused national program to research and develop technologies that will enable trucks and other heavy vehicles to be more energy-efficient and able to use alternative fuels while reducing emissions. The Office of Heavy Vehicle Technologies convened a workshop in April 1996 to elicit input from DOE's heavy vehicle industry customers, including truck and bus manufacturers, diesel-engine manufacturers, fuel producers, suppliers to these industries, and the trucking industry. The preparation of a ''technology roadmap'' was one of the key recommendations by this customer group. Therefore, the OHVT Technology Roadmap* was developed in 1996 as a first step in crafting a common vision for a government research and development (R and D) partnership in this increasingly important transportation sector. The approach used in

  3. Emerging educational technologies: Tensions and synergy

    OpenAIRE

    J. Michael Spector

    2014-01-01

    A review of high level sources with regard to new and emerging technologies was conducted. Three technologies, according to these sources, appear especially promising: (a) massive open online courses (MOOCs), (b) personalized learning, and (c) game-based learning. This paper will review information from the US National Science Foundation, the US Department of Education, the New Media Consortium, and two European Networks of Excellence with regard to new and emerging technologies. A critique w...

  4. ANSTO: Australian Nuclear Science and Technology Organization

    Science.gov (United States)

    The Australian Nuclear Science and Technology Organization conducts or is engaged in collaborative research and development in the application of nuclear science and associated technology. Through its Australian radio-isotopes unit, it markets radioisotopes, their products and other services for the nuclear medicine industry and research. It also operates national nuclear facilities (HIFAR and Moata research reactors), promotes training, provides advice and disseminates information on nuclear science and technology. The booklet briefly outlines these activities.

  5. Wearable Technology

    Science.gov (United States)

    Watson, Amanda

    2013-01-01

    Wearable technology projects, to be useful, in the future, must be seamlessly integrated with the Flight Deck of the Future (F.F). The lab contains mockups of space vehicle cockpits, habitat living quarters, and workstations equipped with novel user interfaces. The Flight Deck of the Future is one element of the Integrated Power, Avionics, and Software (IPAS) facility, which, to a large extent, manages the F.F network and data systems. To date, integration with the Flight Deck of the Future has been limited by a lack of tools and understanding of the Flight Deck of the Future data handling systems. To remedy this problem it will be necessary to learn how data is managed in the Flight Deck of the Future and to develop tools or interfaces that enable easy integration of WEAR Lab and EV3 products into the Flight Deck of the Future mockups. This capability is critical to future prototype integration, evaluation, and demonstration. This will provide the ability for WEAR Lab products, EV3 human interface prototypes, and technologies from other JSC organizations to be evaluated and tested while in the Flight Deck of the Future. All WEAR Lab products must be integrated with the interface that will connect them to the Flight Deck of the Future. The WEAR Lab products will primarily be programmed in Arduino. Arduino will be used for the development of wearable controls and a tactile communication garment. Arduino will also be used in creating wearable methane detection and warning system.

  6. Thermionic fuel element technology status

    Science.gov (United States)

    Holland, J. W.; Horner, M. W.; Yang, L.

    1985-01-01

    The results of research, conducted between the mid-1960s and 1973, on the multiconverter thermionic fuel elements (TFEs) that comprise the reactor core of an SP-100 thermionic reactor system are presented. Fueled-emitter technology, insulator technology and cell and TFE assembly technology of the prototypical TFEs which were tested in-pile and out-of-pile during these years are described. The proto-TFEs have demonstrated reproducible performance within 5 percent and no premature failures within the 1.5 yr of operation (with projected 3-yr lifetimes). The two primary life-limiting factors had been identified as thermionic emitter dimensional increase due to interactions with the fuel and electrical insulator structural damage from fast neutrons. Multiple options for extending TFE lifetimes to 7 yr or longer are available and will be investigated in the 1984-1985 SP-100 program for resolution of critical technology issues. Design diagrams and test graphs are included.

  7. Making Conductive Polymers By Arc Tracking

    Science.gov (United States)

    Daech, Alfred F.

    1992-01-01

    Experimental technique for fabrication of electrically conductive polymeric filaments based on arc tracking, in which electrical arc creates conductive carbon track in material that initially was insulator. Electrically conductive polymeric structures made by arc tracking aligned along wire on which formed. Alignment particularly suited to high conductivity and desirable in materials intended for testing as candidate superconductors.

  8. 31 CFR 8.52 - Disreputable conduct.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Disreputable conduct. 8.52 Section 8... ALCOHOL, TOBACCO AND FIREARMS Disciplinary Proceedings § 8.52 Disreputable conduct. Disreputable conduct... violation of this provision. (j) Contemptuous conduct in connection with practice before the Bureau...

  9. 32 CFR 1903.14 - Disorderly conduct.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Disorderly conduct. 1903.14 Section 1903.14 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY CONDUCT ON AGENCY INSTALLATIONS § 1903.14 Disorderly conduct. A person commits disorderly conduct when, with intent...

  10. 12 CFR 19.196 - Disreputable conduct.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Disreputable conduct. 19.196 Section 19.196... PROCEDURE Parties and Representational Practice Before the OCC; Standards of Conduct § 19.196 Disreputable conduct. Disreputable conduct for which an individual may be censured, debarred, or suspended from...

  11. 36 CFR 1002.34 - Disorderly conduct.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Disorderly conduct. 1002.34... RECREATION § 1002.34 Disorderly conduct. (a) A person commits disorderly conduct when, with intent to cause... purpose of the actor's conduct, location, time of day or night, and other factors that would govern the...

  12. 25 CFR 11.441 - Disorderly conduct.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Disorderly conduct. 11.441 Section 11.441 Indians BUREAU... ORDER CODE Criminal Offenses § 11.441 Disorderly conduct. (a) A person is guilty of disorderly conduct... or she persists in disorderly conduct after reasonable warning or request to desist. Otherwise...

  13. Ion conduction in crystalline superionic solids and its applications

    Science.gov (United States)

    Chandra, Angesh

    2014-06-01

    Superionic solids an area of multidisciplinary research activity, incorporates to study the physical, chemical and technological aspects of rapid ion movements within the bulk of the special class of ionic materials. It is an emerging area of materials science, as these solids show tremendous technological scopes to develop wide variety of solid state electrochemical devices such as batteries, fuel cells, supercapacitors, sensors, electrochromic displays (ECDs), memories, etc. These devices have wide range of applicabilities viz. power sources for IC microchips to transport vehicles, novel sensors for controlling atmospheric pollution, new kind of memories for computers, smart windows/display panels, etc. The field grew with a rapid pace since then, especially with regards to designing new materials as well as to explore their device potentialities. Amongst the known superionic solids, fast Ag+ ion conducting crystalline solid electrolytes are attracted special attention due to their relatively higher room temperature conductivity as well as ease of materials handling/synthesis. Ion conduction in these electrolytes is very much interesting part of today. In the present review article, the ion conducting phenomenon and some device applications of crystalline/polycrystalline superionic solid electrolytes have been reviewed in brief. Synthesis and characterization tools have also been discussed in the present review article.

  14. Quantum-limited heat conduction over macroscopic distances

    Science.gov (United States)

    Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko

    2016-05-01

    The emerging quantum technological apparatuses, such as the quantum computer, call for extreme performance in thermal engineering. Cold distant heat sinks are needed for the quantized electric degrees of freedom owing to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance. However, the short distance between the heat-exchanging bodies in the previous experiments hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics, which provides a basis for the superconducting quantum computer. Especially, our results facilitate remote cooling of nanoelectronic devices using faraway in situ-tunable heat sinks. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications.

  15. Expanding the conduct of everyday life concept for psychological media research with children

    DEFF Research Database (Denmark)

    Chimirri, Niklas Alexander

    2013-01-01

    , the article shows how the concept is fruitful for investigating how kindergarten children use media technologies for conducting their everyday lives in the mutually shared kindergarten practice. Finally, it argues that the concept needs to be expanded in order to comprehensively grasp the intersubjective...... and material mediatedness of an everyday life with media technologies....

  16. Conduct of Psychological Counseling and Guidance Services over the Internet: Converging Communications

    Science.gov (United States)

    Dincyurek, Sibel; Uygarer, Gulen

    2012-01-01

    Technology brings novelties among human beings' lives and human psychology is also influenced by these novelties in positive and negative way. In the study, positive contribution of the technology and the importance of counseling services were wished to be indicated. School counseling services were conducted to illustrate the importance of online…

  17. Evaluation of a Telehealth Training Package to Remotely Train Staff to Conduct a Preference Assessment

    Science.gov (United States)

    Higgins, William J.; Luczynski, Kevin C.; Carroll, Regina A.; Fisher, Wayne W.; Mudford, Oliver C.

    2017-01-01

    Recent advancements in telecommunication technologies make it possible to conduct a variety of healthcare services remotely (e.g., behavioral-analytic intervention services), thereby bridging the gap between qualified providers and consumers in isolated locations. In this study, web-based telehealth technologies were used to remotely train…

  18. Mobile Health Technology Evaluation

    Science.gov (United States)

    Kumar, Santosh; Nilsen, Wendy J.; Abernethy, Amy; Atienza, Audie; Patrick, Kevin; Pavel, Misha; Riley, William T.; Shar, Albert; Spring, Bonnie; Spruijt-Metz, Donna; Hedeker, Donald; Honavar, Vasant; Kravitz, Richard; Lefebvre, R. Craig; Mohr, David C.; Murphy, Susan A.; Quinn, Charlene; Shusterman, Vladimir; Swendeman, Dallas

    2013-01-01

    Creative use of new mobile and wearable health information and sensing technologies (mHealth) has the potential to reduce the cost of health care and improve well-being in numerous ways. These applications are being developed in a variety of domains, but rigorous research is needed to examine the potential, as well as the challenges, of utilizing mobile technologies to improve health outcomes. Currently, evidence is sparse for the efficacy of mHealth. Although these technologies may be appealing and seemingly innocuous, research is needed to assess when, where, and for whom mHealth devices, apps, and systems are efficacious. In order to outline an approach to evidence generation in the field of mHealth that would ensure research is conducted on a rigorous empirical and theoretic foundation, on August 16, 2011, researchers gathered for the mHealth Evidence Workshop at NIH. The current paper presents the results of the workshop. Although the discussions at the meeting were cross-cutting, the areas covered can be categorized broadly into three areas: (1) evaluating assessments; (2) evaluating interventions; and, (3) reshaping evidence generation using mHealth. This paper brings these concepts together to describe current evaluation standards, future possibilities and set a grand goal for the emerging field of mHealth research. PMID:23867031

  19. ECH Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-12-24

    Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.

  20. Transparent Conducting Oxides—An Up-To-Date Overview

    Directory of Open Access Journals (Sweden)

    Andreas Stadler

    2012-04-01

    Full Text Available Transparent conducting oxides (TCOs are electrical conductive materials with comparably low absorption of electromagnetic waves within the visible region of the spectrum. They are usually prepared with thin film technologies and used in opto-electrical apparatus such as solar cells, displays, opto-electrical interfaces and circuitries. Here, based on a modern database-system, aspects of up-to-date material selections and applications for transparent conducting oxides are sketched, and references for detailed information are given. As n-type TCOs are of special importance for thin film solar cell production, indium-tin oxide (ITO and the reasonably priced aluminum-doped zinc oxide (ZnO:Al, are discussed with view on preparation, characterization and special occurrences. For completion, the recently frequently mentioned typical p-type delafossite TCOs are described as well, providing a variety of references, as a detailed discussion is not reasonable within an overview publication.

  1. The State of Water in Proton Conducting Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Allcock, Harry R.; Benesi, Alan; Macdonald, Digby D.

    2010-08-27

    The research carried out under grant No. DE-FG02-07ER46371, "The State of Water in Proton Conducting Membranes", during the period June 1, 2008 - May 31, 2010 was comprised of three related parts. These are: 1. An examination of the state of water in classical proton conduction membranes with the use of deuterium T1 NMR spectroscopy (Allcock and Benesi groups). 2. A dielectric relaxation examination of the behavior of water in classical ionomer membranes (Macdonald program). 3. Attempts to synthesize new proton-conduction polymers and membranes derived from the polyphosphazene system. (Allcock program) All three are closely related, crucial aspects of the design and development of new and improved polymer electrolyte fuel cell membranes on which the future of fuel cell technology for portable applications depends.

  2. Proton conducting membrane using a solid acid

    Science.gov (United States)

    Haile, Sossina M. (Inventor); Chisholm, Calum (Inventor); Boysen, Dane A. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2006-01-01

    A solid acid material is used as a proton conducting membrane in an electrochemical device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting.

  3. In-Pile Thermal Conductivity Measurement Method for Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Joy L. Rempe; Brandon Fox; Heng Ban; Joshua E. Daw; Darrell L. Knudson; Keith G. Condie

    2009-08-01

    Thermophysical properties of advanced nuclear fuels and materials during irradiation must be known prior to their use in existing, advanced, or next generation reactors. Thermal conductivity is one of the most important properties for predicting fuel and material performance. A joint Utah State University (USU) / Idaho National Laboratory (INL) project, which is being conducted with assistance from the Institute for Energy Technology at the Norway Halden Reactor Project, is investigating in-pile fuel thermal conductivity measurement methods. This paper focuses on one of these methods – a multiple thermocouple method. This two-thermocouple method uses a surrogate fuel rod with Joule heating to simulate volumetric heat generation to gain insights about in-pile detection of thermal conductivity. Preliminary results indicated that this method can measure thermal conductivity over a specific temperature range. This paper reports the thermal conductivity values obtained by this technique and compares these values with thermal property data obtained from standard thermal property measurement techniques available at INL’s High Test Temperature Laboratory. Experimental results and material properties data are also compared to finite element analysis results.

  4. Transparent conducting oxide induced by liquid electrolyte gating

    Science.gov (United States)

    ViolBarbosa, Carlos; Karel, Julie; Kiss, Janos; Gordan, Ovidiu-dorin; Altendorf, Simone G.; Utsumi, Yuki; Samant, Mahesh G.; Wu, Yu-Han; Tsuei, Ku-Ding; Felser, Claudia; Parkin, Stuart S. P.

    2016-10-01

    Optically transparent conducting materials are essential in modern technology. These materials are used as electrodes in displays, photovoltaic cells, and touchscreens; they are also used in energy-conserving windows to reflect the infrared spectrum. The most ubiquitous transparent conducting material is tin-doped indium oxide (ITO), a wide-gap oxide whose conductivity is ascribed to n-type chemical doping. Recently, it has been shown that ionic liquid gating can induce a reversible, nonvolatile metallic phase in initially insulating films of WO3. Here, we use hard X-ray photoelectron spectroscopy and spectroscopic ellipsometry to show that the metallic phase produced by the electrolyte gating does not result from a significant change in the bandgap but rather originates from new in-gap states. These states produce strong absorption below ˜1 eV, outside the visible spectrum, consistent with the formation of a narrow electronic conduction band. Thus WO3 is metallic but remains colorless, unlike other methods to realize tunable electrical conductivity in this material. Core-level photoemission spectra show that the gating reversibly modifies the atomic coordination of W and O atoms without a substantial change of the stoichiometry; we propose a simple model relating these structural changes to the modifications in the electronic structure. Thus we show that ionic liquid gating can tune the conductivity over orders of magnitude while maintaining transparency in the visible range, suggesting the use of ionic liquid gating for many applications.

  5. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers.

    Science.gov (United States)

    Liu, Wei; Liu, Nian; Sun, Jie; Hsu, Po-Chun; Li, Yuzhang; Lee, Hyun-Wook; Cui, Yi

    2015-04-08

    Solid-state electrolytes provide substantial improvements to safety and electrochemical stability in lithium-ion batteries when compared with conventional liquid electrolytes, which makes them a promising alternative technology for next-generation high-energy batteries. Currently, the low mobility of lithium ions in solid electrolytes limits their practical application. The ongoing research over the past few decades on dispersing of ceramic nanoparticles into polymer matrix has been proved effective to enhance ionic conductivity although it is challenging to form the efficiency networks of ionic conduction with nanoparticles. In this work, we first report that ceramic nanowire fillers can facilitate formation of such ionic conduction networks in polymer-based solid electrolyte to enhance its ionic conductivity by three orders of magnitude. Polyacrylonitrile-LiClO4 incorporated with 15 wt % Li0.33La0.557TiO3 nanowire composite electrolyte exhibits an unprecedented ionic conductivity of 2.4 × 10(-4) S cm(-1) at room temperature, which is attributed to the fast ion transport on the surfaces of ceramic nanowires acting as conductive network in the polymer matrix. In addition, the ceramic-nanowire filled composite polymer electrolyte shows an enlarged electrochemical stability window in comparison to the one without fillers. The discovery in the present work paves the way for the design of solid ion electrolytes with superior performance.

  6. Recent advances of conductive nanocomposites in printed and flexible electronics

    Science.gov (United States)

    Khan, Saleem; Lorenzelli, Leandro

    2017-08-01

    Conductive nanocomposites have emerged as significant smart engineered materials for realizing flexible electronics on diverse substrates in recent years. Conductive nanocomposites are comprised of conductive fillers mixed with polymeric elastomer (e.g. polydimethylsiloxane). The possibility to tune electrical as well as mechanical properties of nanocomposites makes them suitable for a wide spectrum of applications including sensors and electronics on non-planar and stretchable surfaces. A number of conductive nanofillers and manufacturing technologies have been developed to meet the diverse requirements of various applications. Considering the substantial contribution of conductive nanocomposites, it is opportune time to review the potentials of various nanofillers, their synthesis, processing methodologies and challenges associated to them. This paper reviews conductive nanocomposites, especially in context with their use in the development of electronic components and the sensors exploiting the piezoresistive behavior. The paper is structured around the nanocomposites related studies aiming to develop various building blocks of flexible electronic skin systems such as pressure, touch, strain and temperature sensors as well as stretchable interconnects. Besides this, the use of nanocomposites in other stimulating industrial and biomedical applications has also been explored briefly.

  7. Sequence dependent proton conduction in self-assembled peptide nanostructures

    Science.gov (United States)

    Lerner Yardeni, Jenny; Amit, Moran; Ashkenasy, Gonen; Ashkenasy, Nurit

    2016-01-01

    The advancement of diverse electrochemistry technologies depends on the development of novel proton conducting polymers. Inspired by the efficacy of proton transport through proteins, we show in this work that self-assembling peptide nanostructures may be a promising alternative for such organic proton conducting materials. We demonstrate that aromatic amino acids, which participate in charge transport in nature, unprecedentedly promote proton conduction under both high and low relative humidity conditions for d,l α-cyclic peptide nanotubes. For dehydrated networks long-range order of the assemblies, induced by the aromatic side chains, is shown to be a dominating factor for promoting conductivity. However, for hydrated networks this order of effect is less significant and conductivity can be improved by the introduction of proton donating carboxylic acid peptide side chains in addition to the aromatic side chains despite the lower order of the assemblies. Based on these observations, a novel cyclic peptide that incorporates non-natural naphthyl side chains was designed. Self-assembled nanotubes of this peptide show greatly improved dehydrated conductivity, while maintaining high conductivity under hydrated conditions. We envision that the demonstrated modularity and versatility of these bio inspired nanostructures will make them extremely attractive building blocks for the fabrication of devices for energy conversion and storage applications, as well as other applications that involve proton transport, whether dry or wet conductivity is desired.The advancement of diverse electrochemistry technologies depends on the development of novel proton conducting polymers. Inspired by the efficacy of proton transport through proteins, we show in this work that self-assembling peptide nanostructures may be a promising alternative for such organic proton conducting materials. We demonstrate that aromatic amino acids, which participate in charge transport in nature

  8. Technology maturity and technology development

    Energy Technology Data Exchange (ETDEWEB)

    Underhill, Gary K.; Carlson, Ronald A.; Clendinning, William A.; Erdos, Jozsef; Gault, John; Hall, James W.; Jones, Robert L.; Michael, Herbert K.; Powell, Paul H.; Riemann, Carl F.; Rios-Castellon, Lorenzo; Shepherd, Burchard P.; Wilson, John S.

    1976-01-01

    All of the work reported in the preceding chapters was performed in order to assess the technical, economic, and energetic feasibility of proceeding with more detailed studies of the geopressured geothermal resource. The preliminary conceptual design and costing activities represented the prime activity for component by component review of the maturity of the technology available for resource utilization facilities. The economics and energetics studies focussed attentions on the areas of major capital and energy investment; these results comprise a useful guide for focussing design in order to reduce initial and operations and maintenance costs and/or investment. The following presents a discussion of the primary technical problems identified.

  9. Conceptual Model for Transfer of Technology in a Shipyard

    OpenAIRE

    Firmansyah, Mohammad Rizal; Djafar, Wihdat

    2017-01-01

    Transfer of technology is an important program to be done by a shipyard if the respective shipyard is to maintain and increase its competitiveness. But sometimes, some aspects that need to be considered in a transfer of technology program are ignored. Before any transfer of technology program is to be conducted in any shipyard, identification of the required technology to be transferred and why the changes in shipyard technology are needed must be done. These identifications will lead to the ...

  10. Technology Deployment Annual Report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Keith Arterburn

    2009-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties.

  11. Incineration technologies

    CERN Document Server

    Buekens, Alfons

    2013-01-01

    Waste incineration is the art of completely combusting waste, while maintaining or reducing emission levels below current emission standards. Where possible, objectives include the recovering of energy as well as the  combustion residues.  Successful waste incineration makes it possible to achieve a deep reduction in waste volume, obtain a compact and sterile residue, and eliminate a wide array of pollutants. This book places waste incineration within the wider context of waste management, and demonstrates that, in contrast to landfills and composting, waste incineration can eliminate objectionable and hazardous properties such as flammability and toxicity, result in a significant reduction in volume, and destroy gaseous and liquid waste streams leaving little or no residues beyond those linked to flue gas neutralization and treatment. Moreover, waste incineration sterilizes and destroys putrescible matter, and produces usable heat.  Incineration Technologies first appeared as a peer-reviewed contribution ...

  12. Double-Wall Nanotubes and Graphene Nanoplatelets for Hybrid Conductive Adhesives with Enhanced Thermal and Electrical Conductivity.

    Science.gov (United States)

    Messina, Elena; Leone, Nancy; Foti, Antonino; Di Marco, Gaetano; Riccucci, Cristina; Di Carlo, Gabriella; Di Maggio, Francesco; Cassata, Antonio; Gargano, Leonardo; D'Andrea, Cristiano; Fazio, Barbara; Maragò, Onofrio Maria; Robba, Benedetto; Vasi, Cirino; Ingo, Gabriel Maria; Gucciardi, Pietro Giuseppe

    2016-09-07

    Improving the electrical and thermal properties of conductive adhesives is essential for the fabrication of compact microelectronic and optoelectronic power devices. Here we report on the addition of a commercially available conductive resin with double-wall carbon nanotubes and graphene nanoplatelets that yields simultaneously improved thermal and electrical conductivity. Using isopropanol as a common solvent for the debundling of nanotubes, exfoliation of graphene, and dispersion of the carbon nanostructures in the epoxy resin, we obtain a nanostructured conducting adhesive with thermal conductivity of ∼12 W/mK and resistivity down to 30 μΩ cm at very small loadings (1% w/w for nanotubes and 0.01% w/w for graphene). The low filler content allows one to keep almost unchanged the glass-transition temperature, the viscosity, and the curing parameters. Die shear measurements show that the nanostructured resins fulfill the MIL-STD-883 requirements when bonding gold-metalized SMD components, even after repeated thermal cycling. The same procedure has been validated on a high-conductivity resin characterized by a higher viscosity, on which we have doubled the thermal conductivity and quadrupled the electrical conductivity. Graphene yields better performances with respect to nanotubes in terms of conductivity and filler quantity needed to improve the resin. We have finally applied the nanostructured resins to bond GaN-based high-electron-mobility transistors in power-amplifier circuits. We observe a decrease of the GaN peak and average temperatures of, respectively, ∼30 °C and ∼10 °C, with respect to the pristine resin. The obtained results are important for the fabrication of advanced packaging materials in power electronic and microwave applications and fit the technological roadmap for CNTs, graphene, and hybrid systems.

  13. 76 FR 34845 - Medical Devices; Ear, Nose, and Throat Devices; Classification of the Wireless Air-Conduction...

    Science.gov (United States)

    2011-06-15

    ... wireless air-conduction hearing aid, and it is identified as a wearable sound-amplifying device, intended to compensate for impaired hearing, that incorporates wireless technology in its programming or use... function due to Wireless technology design, wireless technology disruption such as description, and...

  14. Thermal conductivity of silver loaded conductive epoxy from cryogenic to ambient temperature and its application for precision cryogenic noise measurements

    Science.gov (United States)

    Amils, Ricardo I.; Gallego, Juan Daniel; Sebastián, José Luis; Muñoz, Sagrario; Martín, Agustín; Leuther, Arnulf

    2016-06-01

    The pressure to increase the sensitivity of instrumentation has pushed the use of cryogenic Low Noise Amplifier (LNA) technology into a growing number of fields. These areas range from radio astronomy and deep space communications to fundamental physics. In this context manufacturing for cryogenic environments requires a proper thermal knowledge of the materials to be able to achieve adequate design behavior. In this work, we present experimental measurements of the thermal conductivity of a silver filled conductive epoxy (EPO-TEK H20E) which is widely used in cryogenic electronics applications. The characterization has been made using a sample preparation which mimics the practical use of this adhesive in the fabrication of cryogenic devices. We apply the data obtained to a detailed analysis of the effects of the conductive epoxy in a monolithic thermal noise source used for high accuracy cryogenic microwave noise measurements. In this application the epoxy plays a fundamental role since its limited thermal conductivity allows heating the chip with relatively low power. To our knowledge, the cryogenic thermal conductivity data of this epoxy has not been reported before in the literature in the 4-300 K temperature range. A second non-conductive epoxy (Gray Scotch-Weld 2216 B/A), also widely used in cryogenic applications, has been measured in order to validate the method by comparing with previous published data.

  15. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to

  16. 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles.

    Science.gov (United States)

    Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-05-01

    Coupling the photoreduction of a metal precursor with 3D-printing technology is shown to allow the fabrication of conductive 3D hybrid structures consisting of metal nanoparticles and organic polymers shaped in complex multilayered architectures. 3D conductive structures are fabricated incorporating silver nitrate into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system.

  17. In situ measurement of conductivity during nanocomposite film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Blattmann, Christoph O.; Pratsinis, Sotiris E., E-mail: sotiris.pratsinis@ptl.mavt.ethz.ch

    2016-05-15

    Highlights: • Flame-made nanosilver dynamics are elucidated in the gas-phase & on substrates. • The resistance of freshly depositing nanosilver layers is monitored. • Low T{sub g} polymers facilitate rapid synthesis of conductive films. • Conductive nanosilver films form on top of or within the polymer depending on MW. - Abstract: Flexible and electrically conductive nanocomposite films are essential for small, portable and even implantable electronic devices. Typically, such film synthesis and conductivity measurement are carried out sequentially. As a result, optimization of filler loading and size/morphology characteristics with respect to film conductivity is rather tedious and costly. Here, freshly-made Ag nanoparticles (nanosilver) are made by scalable flame aerosol technology and directly deposited onto polymeric (polystyrene and poly(methyl methacrylate)) films during which the resistance of the resulting nanocomposite is measured in situ. The formation and gas-phase growth of such flame-made nanosilver, just before incorporation onto the polymer film, is measured by thermophoretic sampling and microscopy. Monitoring the nanocomposite resistance in situ reveals the onset of conductive network formation by the deposited nanosilver growth and sinternecking. The in situ measurement is much faster and more accurate than conventional ex situ four-point resistance measurements since an electrically percolating network is detected upon its formation by the in situ technique. Nevertheless, general resistance trends with respect to filler loading and host polymer composition are consistent for both in situ and ex situ measurements. The time lag for the onset of a conductive network (i.e., percolation) depends linearly on the glass transition temperature (T{sub g}) of the host polymer. This is attributed to the increased nanoparticle-polymer interaction with decreasing T{sub g}. Proper selection of the host polymer in combination with in situ resistance

  18. Emerging educational technologies: Tensions and synergy

    Directory of Open Access Journals (Sweden)

    J. Michael Spector

    2014-01-01

    Full Text Available A review of high level sources with regard to new and emerging technologies was conducted. Three technologies, according to these sources, appear especially promising: (a massive open online courses (MOOCs, (b personalized learning, and (c game-based learning. This paper will review information from the US National Science Foundation, the US Department of Education, the New Media Consortium, and two European Networks of Excellence with regard to new and emerging technologies. A critique will then be provided using established principles pertaining to learning and instruction and a recommended curriculum for advanced learning technologies. The general result is that it appears that some educational technology advocates are overstating the likelihood of these three technologies having a significant and sustained impact in the near future, although there are promising aspects to each of these technologies in the long term.

  19. Quantum technology: from research to application

    Science.gov (United States)

    Schleich, Wolfgang P.; Ranade, Kedar S.; Anton, Christian; Arndt, Markus; Aspelmeyer, Markus; Bayer, Manfred; Berg, Gunnar; Calarco, Tommaso; Fuchs, Harald; Giacobino, Elisabeth; Grassl, Markus; Hänggi, Peter; Heckl, Wolfgang M.; Hertel, Ingolf-Volker; Huelga, Susana; Jelezko, Fedor; Keimer, Bernhard; Kotthaus, Jörg P.; Leuchs, Gerd; Lütkenhaus, Norbert; Maurer, Ueli; Pfau, Tilman; Plenio, Martin B.; Rasel, Ernst Maria; Renn, Ortwin; Silberhorn, Christine; Schiedmayer, Jörg; Schmitt-Landsiedel, Doris; Schönhammer, Kurt; Ustinov, Alexey; Walther, Philip; Weinfurter, Harald; Welzl, Emo; Wiesendanger, Roland; Wolf, Stefan; Zeilinger, Anton; Zoller, Peter

    2016-05-01

    The term quantum physics refers to the phenomena and characteristics of atomic and subatomic systems which cannot be explained by classical physics. Quantum physics has had a long tradition in Germany, going back nearly 100 years. Quantum physics is the foundation of many modern technologies. The first generation of quantum technology provides the basis for key areas such as semiconductor and laser technology. The "new" quantum technology, based on influencing individual quantum systems, has been the subject of research for about the last 20 years. Quantum technology has great economic potential due to its extensive research programs conducted in specialized quantum technology centres throughout the world. To be a viable and active participant in the economic potential of this field, the research infrastructure in Germany should be improved to facilitate more investigations in quantum technology research.

  20. EDITORIAL: On display with transparent conducting films On display with transparent conducting films

    Science.gov (United States)

    Demming, Anna

    2012-03-01

    Transparent conducting films were already featuring in scientific literature over one hundred years ago. In 1894 Aryton and Mather described a conducting varnish for coating the screens of electric apparatus so they would not charge when accidentally brushed by a coat sleeve or other material [1]. Their method began with a similar approach to that used to make savoury jellies; by dissolving gelatine in vinegar, after which less palatable ingredients were incorporated including sulphuric acid and an antisulphuric enamel. While the search for transparent conducting films continued to attract other researchers, the same problem remained: the transparency would be compromised if the film was too thick, and the conductivity would be compromised if the film was too thin. In the early 1950s Gillham and Preston reported that thin gold films sputtered on bismuth oxide and heated resulted in a material that successfully combined the previously mutually exclusive properties of transparency and conductivity [2]. Other oxide films were also found to favourably combine these properties, including tin oxide, as reported by Ishiguro and colleagues in Japan in 1958 [3]. Today tin oxide doped with indium (ITO) has become the industry standard for transparent conducting films in a range of applications including photovoltaic technology and displays. It is perhaps the mounting ubiquity of electronic displays as a result of the increasingly digitised and computerised environment of the modern day world that has begun to underline the main drawback of ITO: expense. In this issue, a collaboration of researchers in Korea present an overview of graphene as a transparent conducting material with the potential to replace ITO in a range of electronic and optoelectronic applications [4]. One of the first innovations in optical microscopy was the use of dyes. This principle first came into practice with the use of ultraviolet light to reveal previously indistinguishable features. As explained

  1. Synthesis of novel electrically conducting polymers: Potential conducting Langmuir-Blodgett films and conducting polymers on defined surfaces

    Science.gov (United States)

    Zimmer, Hans

    1993-01-01

    Based on previous results involving thiophene derived electrically conducting polymers in which it was shown that thiophene, 3-substituted thiophenes, furans, and certain oligomers of these compounds showed electrical conductivity after polymerization. The conductivity was in the order of up to 500 S/cm. In addition, these polymers showed conductivity without being doped and most of all they were practically inert toward ambient conditions. They even could be used in aqueous media. With these findings as a guide, a number of 3-long-chain-substituted thiophenes and 1-substituted-3-long-chain substituted pyrrols were synthesized as monomers for potential polymeric electrically conducting Langmuir-Blodgett films.

  2. Direct current hopping conductance along DNA chain

    Institute of Scientific and Technical Information of China (English)

    Ma Song-Shan; Xu Hui; Liu Xiao-Liang; Li Ming-Jun

    2007-01-01

    This paper proposes a model of direct current(DC) electron hopping transport in DNA,in which DNA is considered as a binary one-dimensional disordered system.To quantitatively study the DC conductivity in DNA,it numerically calculates the DC conductivity of DNA chains with difierent parameter values.The result shows that the DC conductivity of DNA chain increases with the increase of temperature.And the conductivity of DNA chain is depended on the probability P.which represents the degree of compositional disorder in a DNA sequence to some extent.For P<0.5,the conductivity of DNA chain decreases with the increase of P,while for P≥0.5,the conductivity increases with the increase of p.The DC conductivity in DNA chain also varies with the change of the electric field,it presents non-Ohm's law conductivity characteristics.

  3. Electrical Resistance Tomography of Conductive Thin Films

    CERN Document Server

    Cultrera, Alessandro

    2016-01-01

    The Electrical Resistance Tomography (ERT) technique is applied to the measurement of sheet conductance maps of both uniform and patterned conductive thin films. Images of the sheet conductance spatial distribution, and local conductivity values are obtained. Test samples are tin oxide films on glass substrates, with electrical contacts on the sample boundary, some samples are deliberately patterned in order to induce null conductivity zones of known geometry while others contain higher conductivity inclusions. Four-terminal resistance measurements among the contacts are performed with a scanning setup. The ERT reconstruction is performed by a numerical algorithm based on the total variation regularization and the L-curve method. ERT correctly images the sheet conductance spatial distribution of the samples. The reconstructed conductance values are in good quantitative agreement with independent measurements performed with the van der Pauw and the four-point probe methods.

  4. BIOGAS TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    D.B. SALUNKHE

    2012-12-01

    Full Text Available Due to scarcity of petroleum and coal it threatens supply of fuel throughout the world also problem of their combustion leads to research in different corners to get access the new sources of energy, like renewable energy resources. Solar energy, wind energy, different thermal and hydro sources of energy, biogas are all renewable energy resources. But, biogas is distinct from other renewable energies because of its characteristics of using, controlling and collecting organic wastes and at the same time producing fertilizer and water for use in agricultural irrigation. Biogas does not have any geographical limitations nor does it require advanced technology for producing energy, also it is very simple to use and apply. Anaerobic digestion is controlled biological degradation process which allows efficient capturing & utilization of biogas (approximately 60% methane and 40% carbon dioxide for energy generation. Anaerobic digestion of food waste is achievable but different types, composition of food waste results in varying degrees of methane yields, and thus the effects of mixing various types of food waste and their proportions should be determined on case by case basis.

  5. CMM Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Robert C.

    2008-10-20

    This project addressed coordinate measuring machine (CMM) technology and model-based engineering. CMM data analysis and delivery were enhanced through the addition of several machine types to the inspection summary program. CMM hardware and software improvements were made with the purchases of calibration and setup equipment and new model-based software for the creation of inspection programs. Kansas City Plant (KCP) personnel contributed to and influenced the development of dimensional metrology standards. Model-based engineering capabilities were expanded through the development of software for the tolerance analysis of piece parts and for the creation of model-based CMM inspection programs and inspection plans and through the purchase of off-the-shelf software for the tolerance analysis of mechanical assemblies. An obsolete database application used to track jobs in Precision Measurement was replaced by a web-based application with improved query and reporting capabilities. A potential project to address the transformation of the dimensional metrology enterprise at the Kansas City Plant was identified.

  6. Tunable Nanopatterning of Conductive Polymers via Electrohydrodynamic Lithography.

    Science.gov (United States)

    Rickard, Jonathan James Stanley; Farrer, Ian; Oppenheimer, Pola Goldberg

    2016-03-22

    An increasing number of technologies require the fabrication of conductive structures on a broad range of scales and over large areas. Here, we introduce advanced yet simple electrohydrodynamic lithography (EHL) for patterning conductive polymers directly on a substrate with high fidelity. We illustrate the generality of this robust, low-cost method by structuring thin polypyrrole films via electric-field-induced instabilities, yielding well-defined conductive structures with feature sizes ranging from tens of micrometers to hundreds of nanometers. Exploitation of a conductive polymer induces free charge suppression of the field in the polymer film, paving the way for accessing scale sizes in the low submicron range. We show the feasibility of the polypyrrole-based structures for field-effect transistor devices. Controlled EHL pattering of conductive polymer structures at the micro and nano scale demonstrated in this study combined with the possibility of effectively tuning the dimensions of the tailor-made architectures might herald a route toward various submicron device applications in supercapacitors, photovoltaics, sensors, and electronic displays.

  7. Anisotropic thermal conductivity in epoxy-bonded magnetocaloric composites

    Science.gov (United States)

    Weise, Bruno; Sellschopp, Kai; Bierdel, Marius; Funk, Alexander; Bobeth, Manfred; Krautz, Maria; Waske, Anja

    2016-09-01

    Thermal management is one of the crucial issues in the development of magnetocaloric refrigeration technology for application. In order to ensure optimal exploitation of the materials "primary" properties, such as entropy change and temperature lift, thermal properties (and other "secondary" properties) play an important role. In magnetocaloric composites, which show an increased cycling stability in comparison to their bulk counterparts, thermal properties are strongly determined by the geometric arrangement of the corresponding components. In the first part of this paper, the inner structure of a polymer-bonded La(Fe, Co, Si)13-composite was studied by X-ray computed tomography. Based on this 3D data, a numerical study along all three spatial directions revealed anisotropic thermal conductivity of the composite: Due to the preparation process, the long-axis of the magnetocaloric particles is aligned along the xy plane which is why the in-plane thermal conductivity is larger than the thermal conductivity along the z-axis. Further, the study is expanded to a second aspect devoted to the influence of particle distribution and alignment within the polymer matrix. Based on an equivalent ellipsoids model to describe the inner structure of the composite, numerical simulation of the thermal conductivity in different particle arrangements and orientation distributions were performed. This paper evaluates the possibilities of microstructural design for inducing and adjusting anisotropic thermal conductivity in magnetocaloric composites.

  8. ExMC Technology Watch

    Science.gov (United States)

    Krihak, M.; Barr, Y.; Watkins, S.; Fung, P.; McGrath, T.; Baumann, D.

    2012-01-01

    The Technology Watch (Tech Watch) project is a NASA endeavor conducted under the Human Research Program's (HRP) Exploration Medical Capability (ExMC) element, and focusing on ExMC technology gaps. The project involves several NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion and further NASA's goal to provide a safe and healthy environment for human exploration. In 2011, the major focus areas for Tech Watch included information dissemination, education outreach and public accessibility to technology gaps and gap reports. The dissemination of information was accomplished through site visits to research laboratories and/or companies, and participation at select conferences where Tech Watch objectives and technology gaps were presented. Presentation of such material provided researchers with insights on NASA ExMC needs for space exploration and an opportunity to discuss potential areas of common interest. The second focus area, education outreach, was accomplished via two mechanisms. First, several senior student projects, each related to an ExMC technology gap, were sponsored by the various NASA centers. These projects presented ExMC related technology problems firsthand to collegiate laboratories

  9. 39 CFR 447.21 - Prohibited conduct.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Prohibited conduct. 447.21 Section 447.21 Postal Service UNITED STATES POSTAL SERVICE PERSONNEL RULES OF CONDUCT FOR POSTAL EMPLOYEES Employee Conduct..., or for appointment in the U.S. Postal Service, when these activities are dependent on information...

  10. Ionic conduction of lithium hydride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pilipenko, G.I.; Oparin, D.V.; Zhuravlev, N.A.; Gavrilov, F.F.

    1987-09-01

    Using the electrical-conductivity- and NMR-measurement- methods, the ionic-conduction mechanism is established in stoichiometric lithium hydride single crystals. The activation energies of migration of anion- and cation-vacancies and the formation of Schottky-pair defects are determined. They assume that the mechanisms of self-diffusion and conductivity are different in lithium hydride.

  11. The Workshop on Conductive Polymers: Final Report

    Science.gov (United States)

    1985-10-01

    Reports are made by groups on: polyacetylene, polyphenylene, polyaniline, and related systems; molecular, crystallographic, and defect structures in conducting polymers; heterocyclic polymers; synthesis of new and improved conducting polymers; future applications possibilities for conducting polymers; and challenges for improved understanding of properties. (DLC)

  12. Electrically conducting polymers for aerospace applications

    Science.gov (United States)

    Meador, Mary Ann B.; Gaier, James R.; Good, Brian S.; Sharp, G. R.; Meador, Michael A.

    1991-01-01

    Current research on electrically conducting polymers from 1974 to the present is reviewed focusing on the development of materials for aeronautic and space applications. Problems discussed include extended pi-systems, pyrolytic polymers, charge-transfer systems, conductive matrix resins for composite materials, and prospects for the use of conducting polymers in space photovoltaics.

  13. 45 CFR 81.111 - Conduct.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Conduct. 81.111 Section 81.111 Public Welfare... 80 OF THIS TITLE Judicial Standards of Practice § 81.111 Conduct. Parties and their representatives are expected to conduct themselves with honor and dignity and observe judicial standards of practice...

  14. 36 CFR 2.34 - Disorderly conduct.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Disorderly conduct. 2.34... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.34 Disorderly conduct. (a) A person commits disorderly conduct when, with intent to cause public alarm, nuisance, jeopardy or violence, or knowingly or...

  15. 38 CFR 18b.90 - Conduct.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Conduct. 18b.90 Section 18b.90 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) PRACTICE AND... Practice § 18b.90 Conduct. Parties and their representatives are expected to conduct themselves with honor...

  16. 76 FR 15856 - Standards of Conduct

    Science.gov (United States)

    2011-03-22

    ... ADMINISTRATION 41 CFR Part 105-735 RIN 3090-AJ10 Standards of Conduct AGENCY: General Services Administration... standards of conduct. DATES: Effective Date: This final rule is effective March 22, 2011. FOR FURTHER..., November 1, 1995 which codified GSA's supplemental standards of ethical conduct in the new 5 CFR part 6701...

  17. 14 CFR 300.5 - Prohibited conduct.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Prohibited conduct. 300.5 Section 300.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) PROCEDURAL REGULATIONS RULES OF CONDUCT IN DOT PROCEEDINGS UNDER THIS CHAPTER § 300.5 Prohibited conduct. No person shall...

  18. 17 CFR 200.56 - Personal conduct.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Personal conduct. 200.56 Section 200.56 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION ORGANIZATION; CONDUCT AND ETHICS; AND INFORMATION AND REQUESTS Canons of Ethics § 200.56 Personal conduct. Appointment to...

  19. 32 CFR 776.5 - Judicial conduct.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Judicial conduct. 776.5 Section 776.5 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS RULES PROFESSIONAL CONDUCT... § 776.5 Judicial conduct. To the extent that it does not conflict with statutes, regulations, or this...

  20. 34 CFR 101.111 - Conduct.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Conduct. 101.111 Section 101.111 Education Regulations of the Offices of the Department of Education OFFICE FOR CIVIL RIGHTS, DEPARTMENT OF EDUCATION... Conduct. Parties and their representatives are expected to conduct themselves with honor and dignity and...

  1. Expanding Technological Frames Towards Mediated Collaboration

    DEFF Research Database (Denmark)

    Bjørn, Pernille; Scupola, Ada; Fitzgerald, Brian

    2006-01-01

    This paper provides an in-depth analysis of technological and social factors leading to the successful adoption of groupware in a virtual team in educational setting. Drawing on a theoretical framework based on the concept of technological frames, we conducted an action research study to analyze...... of their work practices and use of technology. Finally the third step includes participants' commitment and practical enactment of groupware. One of the key findings is that in groupware adoption the alignment of the individual technological frames requires articulation and re-evaluation of experienced...

  2. The Multistability of Technological Breakdowns in Education

    DEFF Research Database (Denmark)

    Andersen, Bjarke Lindsø; Tafdrup, Oliver Alexander

    2017-01-01

    technological breakdowns become a more and more ubiquitous phenomenon due to the rapid increase of technological artefacts utilized for educational purposes (Riis, 2012). The breakdowns impact the educational practice with consequences ranging from creating small obstacles to rendering it impossible to conduct......Introduction Everyone who is involved with modern technological artefacts such as computers, software and tablets has experienced situations where the artefacts suddenly cease to function properly. This is commonly known as a technological breakdown. Within education and the praxis of teaching...

  3. [Application of "regulating spirit and conducting qi" therapy in treatment of psychological diseases].

    Science.gov (United States)

    Chen, Li-zhi; Wang, Ling-ling

    2011-11-01

    Taking the clinical curative effects of psychological diseases treated with "regulating spirit and conducting qi" therapy as the starting point, the manipulation and technology method of "regulating spirit and conducting qi" therapy are introduced in the paper. Based on analysis of "conducting qi" therapy of Neijing (Internal Classic), it is summarized that, in "regulating spirit and conducting qi" therapy, tardiness and tenderness are taken as technical core of manipulation, individualization of patients is taken as basis, and regulation on spirit as key issue of technology, so as to rapidly, effectively and safely regulate the functional status of emotion and organism. It is aq effective technology method for treating psychological diseases, especially for insomnia, anxiety and somatic symptoms, with better curative effects.

  4. Examining Philosophy of Technology Using Grounded Theory Methods

    Directory of Open Access Journals (Sweden)

    Mark David Webster

    2016-03-01

    Full Text Available A qualitative study was conducted to examine the philosophy of technology of K-12 technology leaders, and explore the influence of their thinking on technology decision making. The research design aligned with CORBIN and STRAUSS grounded theory methods, and I proceeded from a research paradigm of critical realism. The subjects were school technology directors and instructional technology specialists, and data collection consisted of interviews and a written questionnaire. Data analysis involved the use of grounded theory methods including memo writing, open and axial coding, constant comparison, the use of purposive and theoretical sampling, and theoretical saturation of categories. Three broad philosophy of technology views were widely held by participants: an instrumental view of technology, technological optimism, and a technological determinist perspective that saw technological change as inevitable. Technology leaders were guided by two main approaches to technology decision making, represented by the categories Educational goals and curriculum should drive technology, and Keep up with technology (or be left behind. The core category and central phenomenon that emerged was that technology leaders approached technology leadership by placing greater emphasis on keeping up with technology, being influenced by an ideological orientation to technological change, and being concerned about preparing students for a technological future. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs160252

  5. Conducting polymers in electronic chemical sensors.

    Science.gov (United States)

    Janata, Jiri; Josowicz, Mira

    2003-01-01

    Conducting organic polymers have found two main kinds of application in electronics so far: as materials for construction of various devices and as selective layers in chemical sensors. In either case, interaction with ambient gases is critical. It may compromise the performance of a device based on conducting polymers, whereas it is beneficial in a sensor. Conductivity has been the primary property of interest. Work function--related to conductivity, but in principle a different property--has received only scant attention. Our aim here is to discuss the usability of conducting polymers in both types of electronic applications in light of these two parameters.

  6. Electrochemical Study of Conductive Gel Polymer

    Institute of Scientific and Technical Information of China (English)

    Zhaohui Li; Jing Jiang; Gangtie Lei

    2005-01-01

    @@ 1Introduction Conventional ion-conducting polymer consists of electrolyte salt and polymer matrix, so-called salt-inpolymer. It possesses lower conductivity because the migration of ions depends on the motion of polymer segmental. To increase the ionic conductivity, a kind of gel polymer film (GPF) was prepared by in situ polymerization of methyl methacrylate (MMA) monomer in room-temperature ionic liquid(RTIL), 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6). Due to immeasurably low vapor pressure, high ionic conductivity, and greater thermal and electrochemical stability, BMIPF6 is suitable electrolyte salts for ion-conducting polymer.

  7. ECG by mobile technologies.

    Science.gov (United States)

    Guzik, Przemyslaw; Malik, Marek

    Mobile electrocardiographs consist of three components: a mobile device (e.g. a smartphone), an electrocardiographic device or accessory, and a mobile application. Mobile platforms are small computers with sufficient computational power, good quality display, suitable data storage, and several possibilities of data transmission. Electrocardiographic electrodes and sensors for mobile use utilize unconventional materials, e.g. rubber, e-textile, and inkjet-printed nanoparticle electrodes. Mobile devices can be handheld, worn as vests or T-shirts, or attached to patient's skin as biopatches. Mobile electrocardiographic devices and accessories may additionally record other signals including respiratory rate, activity level, and geolocation. Large-scale clinical studies that utilize electrocardiography are easier to conduct using mobile technologies and the collected data are suitable for "big data" processing. This is expected to reveal phenomena so far inaccessible by standard electrocardiographic techniques.

  8. IMPROVED ROOF STABILIZATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    Many U.S. Department of Energy (DOE) remediation sites have performed roof repair and roof replacement to stabilize facilities prior to performing deactivation and decommissioning (D&D) activities. This project will review the decision criteria used by these DOE sites, along with the type of repair system used for each different roof type. Based on this information, along with that compiled from roofing experts, a decision-making tool will be generated to aid in selecting the proper roof repair systems. Where appropriate, innovative technologies will be reviewed and applied to the decision-making tool to determine their applicability. Based on the results, applied research and development will be conducted to develop a method to repair these existing roofing systems, while providing protection for the D and D worker in a cost-efficient manner.

  9. Intelligent Mobile Technologies

    Science.gov (United States)

    Alena, Rick; Gilbaugh, Bruce; Glass, Brian; Swanson, Keith (Technical Monitor)

    2000-01-01

    Testing involves commercial radio equipment approved for export and use in Canada. Testing was conducted in the Canadian High Arctic, where hilly terrain provided the worst-case testing. SFU and Canadian governmental agencies made significant technical contributions. The only technical data related to radio testing was exchanged with SFU. Test protocols are standard radio tests performed by communication technicians worldwide. The Joint Fields Operations objectives included the following: (1) to provide Internet communications services for field science work and mobile exploration systems; (2) to evaluate the range and throughput of three different medium-range radio link technologies for providing coverage of the crater area; and (3) to demonstrate collaborative software such as NetMeeting with multi-point video for exchange of scientific information between remote node and base-base camp and science centers as part of communications testing.

  10. The symmetry of single-molecule conduction.

    Science.gov (United States)

    Solomon, Gemma C; Gagliardi, Alessio; Pecchia, Alessandro; Frauenheim, Thomas; Di Carlo, Aldo; Reimers, Jeffrey R; Hush, Noel S

    2006-11-14

    We introduce the conductance point group which defines the symmetry of single-molecule conduction within the nonequilibrium Green's function formalism. It is shown, either rigorously or to within a very good approximation, to correspond to a molecular-conductance point group defined purely in terms of the properties of the conducting molecule. This enables single-molecule conductivity to be described in terms of key qualitative chemical descriptors that are independent of the nature of the molecule-conductor interfaces. We apply this to demonstrate how symmetry controls the conduction through 1,4-benzenedithiol chemisorbed to gold electrodes as an example system, listing also the molecular-conductance point groups for a range of molecules commonly used in molecular electronics research.

  11. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  12. 78 FR 11902 - Review of Gun Safety Technologies

    Science.gov (United States)

    2013-02-20

    ... of Justice Programs Review of Gun Safety Technologies AGENCY: National Institute of Justice, JPO, DOJ...) is conducting a review of existing and emerging gun safety technologies and plans to issue a report... to help inform its technology assessment and market research of existing and emerging gun...

  13. Telemetry Modernization with Open Architecture Software-Defined Radio Technology

    Science.gov (United States)

    2016-01-01

    As the market demand for use of the existing Telemetry Modernization with Open Architecture Software-Defined Radio Technology Lincoln Laboratory...is conducting a software-defined radio technology development program to improve the way telemetered information is collected and processed...architecture software-defined radio technology . Approved for public release; distribution unlimited (SMDC-5102 26OCT2015). This material is based

  14. Emerging technologies and corporate culture at Microsoft: a methodological note.

    Science.gov (United States)

    Klein, David; Schmeling, James; Blanck, Peter

    2005-01-01

    This article explores factors important in the study and examination of corporate culture and change. The particular focus is on the technological methods used to conduct a study of accessible technology and corporate culture at Microsoft Corporation. Reasons for particular approaches are explained. Advantages and challenges of emerging technologies that store and retrieve information in the study of corporate culture are reviewed.

  15. Factors Affecting Teachers' Competence in the Field of Information Technology

    Science.gov (United States)

    Tambunan, Hamonangan

    2014-01-01

    The development of learning technology today, have a direct impact on improving teachers' information technology competence. This paper is presented the results of research related to teachers' information technology competence. The study was conducted with a survey of some 245 vocational high school teachers. There are two types of instrument…

  16. Use of Educational Technology in Promoting Distance Education

    Science.gov (United States)

    Rashid, Muhammad; Elahi, Uzma

    2012-01-01

    Educational technology plays an important role in distance education system. By adapting new communication educational technologies in distance educational programmes their quality could be ensured. Instructions conducted through the use of technologies which significantly or completely eliminate the traditional face to face communication between…

  17. Beyond checklists: toward an ethical-constructive technology assessment

    NARCIS (Netherlands)

    Kiran, Asle; Oudshoorn, Nelly E.J.; Verbeek, Peter P.C.C.

    2015-01-01

    While many technology assessments (TAs) formally conducted by TA organizations in Europe and the USA have examined the implications of new technologies for ‘quantifiable risks’ regarding safety, health or the environment, they have largely ignored the ethical implications of those technologies.

  18. Texas Public School Technology Survey, 1988. Final Report.

    Science.gov (United States)

    Denton, Jon; Davis, Trina; Strader, Arlen; Jessup, George

    The Texas Association of School Administrators (TASA) with technical support from the South Central Regional Technology in Education Consortia-Texas (SCR*TEC-TX) conducted a survey of the technology infrastructure in all public schools in Texas. This document provides the final report of the 1998 Texas Public School Technology Survey. Following…

  19. TECHNOLOGY DEMONSTRATION SUMMARY. BABCOCK AND WILCOX CYCLONE FURNACE VITRIFICATION TECHNOLOGY (EPA/540/SR-92/017)

    Science.gov (United States)

    A Superfund Innovative Technology Evaluation (SITE) Demonstration of the Babcock & Wilcox Cyclone Furnace Vitrification Technology was conducted in November 1991. This Demonstration occurred at the Babcock & Wilcox (B&W) Alliance Research Center (ARC) in Alliance, OH. The B&W cyc...

  20. A Study of Mathematics Needed for Dental Laboratory Technology, Medical Laboratory Technology, and Respiratory Therapy.

    Science.gov (United States)

    Roberts, Keith J.

    A study was conducted to determine what mathematics skills were needed for Dental Laboratory Technology, Medical Laboratory Technology, and Respiratory Therapy. Data obtained from studies, course outlines, textbooks, and reports were used to construct a 79-item mathematics skill questionnaire. This questionnaire was administered to employers,…

  1. TECHNOLOGICAL WASTE DISPOSAL BY SUBSURFACE INJECTION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Janković Branimir

    2002-12-01

    Full Text Available The application of oilfield and solution mining technology to subsurface disposal of technological wastes has proven to be an environmentally, technically and economically suitable method for the disposal of the waste generated in petroleum industry as well as other industrial branches. This paper describes the subsurface injection technology, the disposal formation characteristics, the waste disposal well design, evaluates the environmental impact of above mentioned technology and proposes a solutions for disposing of technological wastes in Croatia or nerby region by implementing underground injection technology according to the world experience (the paper is published in Croatian.

  2. Habitat Technology Research at DLR

    OpenAIRE

    Quantius, Dominik; Schubert, Daniel; Maiwald, Volker; Hauslage, Jens; Bornemann, Gerhild; Waßer, Kai; Hill, Jürgen; Henn, Norbert; Ruyters, Hans-Günter; Braun, Markus

    2013-01-01

    For long duration space missions a closed-loop system which can re-use of materials is mandatory. Also on Earth there are harsh environments or overpopulated areas where a sustainable handling of given goods is indispensable. Addressing these challenges the German Aerospace Center (DLR) conducts research in various fields of habitat technology development, which will be illustrated within this paper. There are various complementary topics, such as coordination and funding of building blocks f...

  3. Distillation process using microchannel technology

    Science.gov (United States)

    Tonkovich, Anna Lee; Simmons, Wayne W.; Silva, Laura J.; Qiu, Dongming; Perry, Steven T.; Yuschak, Thomas; Hickey, Thomas P.; Arora, Ravi; Smith, Amanda; Litt, Robert Dwayne; Neagle, Paul

    2009-11-03

    The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

  4. Japan Report, Science and Technology

    Science.gov (United States)

    2007-11-02

    Ishikawa; OPTRONICS, Oct 86) 47 NEW MATERIALS /9986 High Thermal Conductive Aluminum Nitride Discussed (Kazuo Shinozaki, Akihiko Tsuge; CERAMICS...cooling systems (kerosene and gas) in terms of convenience, safety, and cleanliness . It will attract consumers’ attention in the future if its thermal...constant demands for safety, cleanliness , low cost, and convenience. The development of technology is indispensable to the management of electric

  5. Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays

    OpenAIRE

    Spurgeon, Joshua M.; Walter, Michael G.; Zhou, Junfeng; Kohl, Paul A.; Lewis, Nathan S.

    2011-01-01

    The optical absorption, ionic conductivity, electronic conductivity, and gas separation properties have been evaluated for flexible composite films of ionically conductive polymers that contain partially embedded arrays of ordered, crystalline, p-type Si microwires. The cation exchange ionomer Nafion, and a recently developed anion exchange ionomer, poly(arylene ether sulfone) that contains quaternary ammonium groups (QAPSF), produced composite microwire array/ionomer membrane films that were...

  6. Assistive Technology and Affective Mediation

    Directory of Open Access Journals (Sweden)

    Nestor Garay

    2006-01-01

    Full Text Available The lack of attention towards affective communication in assistive technology and disability research can be potentially overcome thanks to the development of affective computing and affective mediation areas. This document describes the main impairments and disorders that may involve affective communication deficits. We also present several affective mediation technologies that are being applied or may be integrated in assistive technologies in order to improve affective communication for a range of disabilities. Finally, we describe our experience with Gestele, an application that incorporates multimodal elements of affective mediation for people with mobility impairments, as well as the results of an empirical study conducted to evaluate the application’s validity in communication via telephone.

  7. MULTIMEDIA TECHNOLOGIES IN PRIMARY SCHOOL

    Directory of Open Access Journals (Sweden)

    Vira M. Andriievska

    2010-08-01

    Full Text Available In the article it has been analysed a role of multimedia technologies in primary school. On the basis of conducted analysis of different approaches to interpretation of “multimedia technologies” concept the context of this term is summarized. It is grounded an expedience of the use of multimedia in primary school practice as well as the types of multimedia technologies are selected. The factors which must be taken into account during organization the work of primary school pupils with programmatic facilities such as features of psychophysiologic development of primary school pupils and their educational-cognitive activity; didactics potential of multimedia technologies; features of the use of multimedia in studies; requirements to introduction of multimedia in the educational process of primary school are considered.

  8. Electrochemical/mechanical coupling in ion-conducting soft matter.

    Science.gov (United States)

    Kusoglu, Ahmet; Weber, Adam Z

    2015-11-19

    Mechanical and electrochemical phenomena exhibit many interesting multidirectional couplings in ion-exchange soft matter due to their intrinsic material physiochemical states and responses to environmental stressors. In this Perspective, such coupling is explored in terms of recent studies with a focus on the degradation of polymer-electrolyte fuel-cell membranes. In addition, (electro)chemical-mechanical coupling of ion-conducting polymers in other applications is also introduced, as there is a research need to explore the interactions between these often wrongly assumed disparate fields in order to optimize, exploit, and discover new technologies and applications.

  9. New secondary batteries utilizing electronically conductive polymer cathodes

    Science.gov (United States)

    Martin, Charles R.; White, Ralph E.

    1989-01-01

    The objectives of this project are to characterize the transport properties in electronically conductive polymers and to assess the utility of these films as cathodes in lithium/polymer secondary batteries. During this research period, progress has been made in a literature survey of the historical background, methods of preparation, the physical and chemical properties, and potential technological applications of polythiophene. Progress has also been made in the characterization of polypyrrole flat films and fibrillar films. Cyclic voltammetry and potential step chronocoulometry were used to gain information on peak currents and potentials switching reaction rates, charge capacity, and charge retention. Battery charge/discharge studies were also performed.

  10. On conduction mechanism in paramagnetic phase of Gd based manganites

    Indian Academy of Sciences (India)

    S Sagar; M R Anantharaman

    2012-02-01

    Materials belonging to the family of manganites are technologically important since they exhibit colossal magneto resistance. A proper understanding of the transport properties is very vital in tailoring the properties. A heavy rare earth doped manganite like Gd0.7Sr0.3MnO3 is purported to be exhibiting unusual properties because of smaller ionic radius of Gd. Gd0.7Sr0.3MnO3 is prepared by a wet solid state reaction method. The conduction mechanism in such a compound has been elucidated by subjecting the material to low temperature d.c. conductivity measurement. It has been found that the low band width material follows a variable range hopping (VRH) model followed by a small polaron hopping (SPH) model. The results are presented here.

  11. Current-induced surface roughness reduction in conducting thin films

    Science.gov (United States)

    Du, Lin; Maroudas, Dimitrios

    2017-03-01

    Thin film surface roughness is responsible for various materials reliability problems in microelectronics and nanofabrication technologies, which requires the development of surface roughness reduction strategies. Toward this end, we report modeling results that establish the electrical surface treatment of conducting thin films as a physical processing strategy for surface roughness reduction. We develop a continuum model of surface morphological evolution that accounts for the residual stress in the film, surface diffusional anisotropy and film texture, film's wetting of the layer that is deposited on, and surface electromigration. Supported by linear stability theory, self-consistent dynamical simulations based on the model demonstrate that the action over several hours of a sufficiently strong and properly directed electric field on a conducting thin film can reduce its surface roughness and lead to a smooth planar film surface. The modeling predictions are in agreement with experimental measurements on copper thin films deposited on silicon nitride layers.

  12. Fabrication and Microstructure of BN Matrix Composites with Electrical Conductivity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    BN ceramic is an advanced engineering ceramics with excellent thermal shock resistance, good workability and excellent dielectricity.TiB2 ceramic has excellent electric conductivity,high melting points, and corrosion resistance to molten metal.Therefore,the composite consisting of BN and TiB2 ceramics is expected to have a combination of above-mentioned properties,thereby can be used as self- heating crucible.In this paper,hot pressing technology was used to fabricate the high performance BN-TiB2 composite materials.microstructure and electric conducting mechanism were studied,and the relationship between the microstructure and physical property was discussed.The results show that the microstructure of composites has a great influence on the physical property of composites.The BN-TiB2 composites with excellent mechanical strength and stable resistivity can be obtained by optimizing the processing parameter and controlling the microstructure of composites.

  13. Inductive conductivity tensor measurement for flowline or material samples.

    Science.gov (United States)

    Kickhofel, John L; Mohamide, Amine; Jalfin, Jonatan; Gibson, Joshua; Thomas, Philip; Minerbo, Gerald; Wang, Hanming; Homan, Dean M

    2010-07-01

    Present-day galvanic-based electrical conductivity measurements are hampered by limitations and necessary corrections, especially in the domain of geological core analysis. Low-accuracy techniques such as crucible, two-electrode, and four-electrode are constricted by current-path requirements, while high-accuracy techniques are time consuming and have limited domains of applicability. We present a novel apparatus capable of electrical conductivity tensor measurements in a noninvasive, noncontact, inductive manner with resolution from 5 mS/m. Inspired by the triaxial induction logging technology appearing in the oil patch today, our apparatus is naturally applicable in a novel way not only to anisotropic geological core analysis but also to arbitrary material samples and flowline systems.

  14. 3D conductive nanocomposite scaffold for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Shahini A

    2013-12-01

    Full Text Available Aref Shahini,1 Mostafa Yazdimamaghani,2 Kenneth J Walker,2 Margaret A Eastman,3 Hamed Hatami-Marbini,4 Brenda J Smith,5 John L Ricci,6 Sundar V Madihally,2 Daryoosh Vashaee,1 Lobat Tayebi2,7 1School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, 2School of Chemical Engineering, 3Department of Chemistry, 4School of Mechanical and Aerospace Engineering, 5Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA; 6Department of Biomaterials and Biomimetics, New York University, New York, NY; 7School of Material Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK, USA Abstract: Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene poly(4-styrene sulfonate (PEDOT:PSS, in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent

  15. Finite-element technique applied to heat conduction in solids with temperature dependent thermal conductivity

    Science.gov (United States)

    Aguirre-Ramirez, G.; Oden, J. T.

    1969-01-01

    Finite element method applied to heat conduction in solids with temperature dependent thermal conductivity, using nonlinear constitutive equation for heat ABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGH

  16. RFID Technology Based Attendance Management System

    Directory of Open Access Journals (Sweden)

    Sumita Nainan

    2013-01-01

    Full Text Available RFID is a nascent technology, deeply rooted by its early developments in using radar as a harbinger of adversary planes during World War II. A plethora of industries have leveraged the benefits of RFID technology for enhancements in sectors like military, sports, security, airline, animal farms, healthcare and other areas. Industry specific key applications of this technology include vehicle tracking, automated inventory management, animal monitoring, secure store checkouts, supply chain management, automatic payment, sport timing technologies, etc. This paper introduces the distinctive components of RFID technology and focuses on its core competencies: scalability and security. It will be then supplemented by a detailed synopsis of an investigation conducted to test the feasibility and practicality of RFID technology.

  17. Theory of electrical conductivities of ferrogels

    CERN Document Server

    Huang, J P

    2004-01-01

    Conductive organic polymers can be formulated with polymers that incorporate fine dispersed metallic particles. In this work, we present a general model for ferrogels which are chemically cross-linked polymer networks swollen with a ferrofluid. Our aim is to study the effect of the shape and/or material (conductivity) anisotropy on the effective electrical conductivity of the ferrogel in the presence of an external magnetic field. Our theory can reproduce the known results, and provides a link between the particle property and orientation distribution and the effective electrical conductivity. To this end, we find that material (conductivity) anisotropies are more important to yield a high effective electrical conductivity than shape anisotropies, while magnetic fields can offer a correction.

  18. Modeling Classical Heat Conduction in FLAG

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, Scott D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hendon, Raymond Cori [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-12

    The Los Alamos National Laboratory FLAG code contains both electron and ion heat conduction modules; these have been constructed to be directly relevant to user application problems. However, formal code verification of these modules requires quantitative comparison to exact solutions of the underlying mathematical models. A wide variety of exact solutions to the classical heat conduction equation are available for this purpose. This report summarizes efforts involving the representation of the classical heat conduction equation as following from the large electron-ion coupling limit of the electron and ion 3T temperature equations, subject to electron and ion conduction processes. In FLAG, this limiting behavior is quantitatively verified using a simple exact solution of the classical heat conduction equation. For this test problem, both heat conduction modules produce nearly identical spatial electron and ion temperature profiles that converge at slightly less than 2nd order to the corresponding exact solution.

  19. Effective Thermal Conductivity of Corrugated Insulating Materials

    Science.gov (United States)

    Yamada, Etsuro; Kato, Masayasu; Tomikawa, Takayuki; Takahashi, Kaneko

    The effective thermal conductivity of corrugated insulating materials which are made by polypropylene or polycarbonate have been measured by employing steady state comparison method for several specimen having various thickness and specific weight. The thermal conductivity of them evaluated are also by using the thermal resistance models, and are compared with above measured values and raw materials' conductivity. The main results obtained in this paper are as follows: (1) In regard to the specimen in this paper, the effective thermal conductivity increases with increasing temperature, but the increasing rate of them is small. (2) There are considerable differences between the measured values and the predicted ones that are estimated by using the thermal resistance model in which heat flow by conduction only. This differences increase with increasing specimens' thickness. This difference become extinct by considering the coexistence heat flow of conduction and radiation in the air phase of specimen. (3) The thermal resistance of specimen increases linearly with increasing specimens' thickness.

  20. Hopping models for ion conduction in noncrystals

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Schrøder, Thomas

    2007-01-01

    Ion conduction in noncrystals (glasses, polymers, etc) has a number of properties in common. In fact, from a purely phenomenological point of view, these properties are even more widely observed: ion conduction behaves much like electronic conduction in disordered materials (e.g., amorphous...... semiconductors). These universalities are subject of much current interest, for instance interpreted in the context of simple hopping models. In the present paper we first discuss the temperature dependence of the dc conductivity in hopping models and the importance of the percolation phenomenon. Next......, the experimental (quasi)universality of the ac conductivity is discussed. It is shown that hopping models are able to reproduce the experimental finding that the response obeys time-temperature superposition, while at the same time a broad range of activation energies is involved in the conduction process. Again...